title	CBI Projec: Evaluation Phase II: Data Analysis
	Resuits.
INSTITUTION	George Mason Univ., Fairfax, VA. Center for Interactive Educational Technology.
SPONS AGENCY	Interactive Educational Technology. ${ }^{\text {Dependents Schools (DOL), Washington, D.C. }}$
PUB DATE	26 Dec 89
NOTE	182p.; Phase I not available.
PUB TYPE	Statistıcal Data (110) -- Reports
	Research/Technical (143) -- Tests/Evaluation Instruments (160)
EDRS PRICE	MFO1/PCO8 Plus Postage.
DESCRIPTORS	*Computer Rssisted Ins ${ }^{\text {r }}$ (uctıon; Federal Programs;
	Inservice T€ 2 eher Education; Rilitary Organizations; *Needs Assessment; *Program Eyaluation;
	*Questionnaires; School Surveys; Secondary Eaucation;
	*Student Teacher Attitudes
IDEMTIFIERS	Deptndents Schools

Abstract

ABSTKACT This report contains the data and results of a stuay conducted in each of the five Department of Defense Dependents Schools iorldwide concerning uses of and attiruces about computers in grades 5 to 12 and to 543 computer-based instruction (CBI) project teachers. Highlights of the analyses of the responses from 3,851 students and 522 teachers included the following: (1) students exhibited mildiy positıve overall attitudes about computers with males displayıng more positive attitudes than females in grades 5 and 6 , and those with non-school access to ccmputers more positive attitudes than their peers; (z) teachers were uniformly pcsitive about computers across regions, grade levels, genders, and school sizes, and they agreed that computers contributed to stucent creativity and productivity, as well as to increased teacher productivity; (3) teachers expressed a need for more inservice on how to take advantage of whole-group and small-group instruction with computers; (4) top inservice needs cited were learning what other teachers are duing, finding out what software is available, and learning how best to integrate computers into their classrooms; and (5) tha optu, nal stufent-to-computer ratio was reported to be two to four students at a computer, varying according to subject areas such as computer literacy or writing that might requre more individual use of a computer. Data are reported in both narrative and tablular formats. The appendices contain guidelines and a checklist for regional project cocrdinators participating in the survey, the questionnaire and anecdotal record furms for teachers at CBI demonstration sites, and the student questionnaire. (DB)

[^0] OERI pasition or policy

Department of Defense Dependents Schools

CBI Project Evaluation

 Phase II: DATA ANALYSIS RESULTSSubmitted by
Center for Interactive Educational Technolcgy Dr. Charles S. White, Director George Mason University
Fairfax, Virginia 22030-4444

Request No. MDA903-88-Q-0057
December 26, 1989

Center for Interactive Educational Technology

George Mason University

TABLE OF CONTENTS

EXECUTIVE SUMMARY DAR-1
CBI Student Questionnaire DAR-2
Descriptive Statistics for Background Variables DAR-2
Aggregate Results DAR-2
Results by Region DAR-3
Computer Attitudes DAR-3
Instrument Reliability DAR-3
Aggregate Attitude Results DAR-3
Attitude Results, by Background Variables DAR-4
Grades Five and Six DAR-4
Grades Seven through Twelve DAR-5
Attitude Results, by Resource Adequacy DAR-7
CBI Teacher Questionnaire DAR-9
Descriptive Statistics for Backgruund Variables DAR-9
Aggregate Results DAR-9
Results by Region DAR-10
The Adequacy of Computer Resources DAR-10
Adequate Computer Base DAR-10
By subject DAR-11
By grade DAR-11
Computer Needs DAR-11
By subject DAR-11
By grade DAR-12
By region and subject DAR-12
Computer Attitudes DAR-12
Instrument Reliability DAR-12
Aggregate Attitude Results DAR-12
Attilude Results, by Background Variables DAR-12
Attitude Results, by Resource Adequacy DAR-13
Teacher Opinions on CBI Effectiveness DAR-14
Activities Made Possible DAR-14
Creativity DAR-15
Need for More Computers DAR-15
Viability of Whole-Group Instruction DAR-16
Small-Group Instr:ction DAR-17
Lab Configuration DAR-18
Professional Use of Computers DAR-18
Efficiency of Student Work DAR-20
Student Cooperation DAR-21
Other Effects on Students DAR-21
Student Enthusiasm DAR-22
Change in Teaching Methods DAR-23
Knowledge of Avaiiable Software DAR-23
Software Evaluation DAR-24
Teacher Productivity Tools DAR-25
Tool Software DAR. 26
Time on Task DAR-27
One Student per Computer DAR-27
Benefits for Your Subject Area DAR-28
Inservice Training Experiences DAR-28
Inservice Training Needs DAR-31
Effects on Sectors of Learners and Teacher Strategies DAR-34
Perceived Benefits Across Subject Areas DAR-36
Perceived Enthusiasm Across Grades and Subject Areas DAR-37
Enthusiasm, by Grade DAR-37
Enthusiasm, by. Subject DAR-38
Allocation of Computer Resources DAR-39
Given and Desired Computer Distributions DAR-39
Optimal Student-to-Computer Ratios DAR-40
Optimal ratios, by grade DAR-41
Optimal ratios, by subject DAR-41
CBI Arecdotal Reports DAR-42
Trends Across Grades Levels and Subject Areas DAR-43
Inservice Programs DAR-43
Establishing New CBI Sites DAR-44
Trends by Grade Level DAR-46
On the Elementary Level DAR-46
On the Secondary Level DAR-47
RECOMMENDATIONS DAR-49
Figures DAR-52
Exhibits DAR-147

TABLE OF FIGURES

Student Data

Figure DAR-1: Regional Office and Grade-Level Identification. DAR-53
Figure DAR-2: Subject Support Area .DAR-54
Figure DAR-3: Gender Identification and Project Computer Count DAR-55
Figure DAR-4: Computer Needs Count DAR-56
Figure DAR-5: Type of Software Used in Project DAR-57
Figure DAR-6: Grade-Level Identification and Subject Support Area (Atlantic). DAR-58
Figure DAR-7: Gender Identification and Project Computer Count (Atlantic) DAR-59
Figure DAR-8: Computer Needs Count and Type of Software Used (Atlantic) DAR-60
Figure DAR-9: Grade-Level Identification (Germany). DAR-61
Figure DAR-10: Subject Support Area and Gender Identification (Germany) DAR-62
Figure DAR-11: Project Computer Count (Germany) DAR-63
Figure DAR-12: Computer Needs Count (Germany) DAR-ú4
Figure DAR-13: Type of Software Used in Project (Germany) DAR-65
Figure DAR-14: Grade-Level Identification (Mediterranean). DAR-66
Figure DAR-15: Subject Support Area and Gender Identification (Med.) DAR-67
Figure DAR-16: Project Compute- Count and Computer Needs Count (Med.). DA_-68
Figure DAR-17: Type of Software Used in Project (Mediterranean) DAR-69
Figure DAR-18: Grade-Level Identification (Pacific) DAR-70
Figure DAR-19: Subject Support Area and Gender Identification (Pacific). DAR-71
Figure DAR-20: Project Computer Count and Computer Needs Count (Pacific). DAR-72Figure DAR-21: Type of Software Used :- Project (Pacific)DAR-73
Figure DAR-22: Grade-Leve, Identification and Subject Support Area (Panama)DAR-74
Figure DAR-23: Gender, Proje^t Computer Count, Computer Needs (Panama) DAR 5
Figure DAR-24: Type of Software Used in Project (Panama) DAR-76
Figure DAR-25: Aggregate Student Computer Attitude Results (Aggregate) . . . DAR-3
Figure DAR-26: Attitudes (gr. 5-6) x Gender, Breakdown \& ANOVA. DAR-77
Figure DAR-27: Attitudes (gr. 5-6) x Software Type, Breakdown \& ANOVA. DAR-78
Figure DAR-28: Attitudes (gr. 5-6) x Software Type, Tukey HSD DAR-79
Figure DAR-29: Attitudes (gr. 5-6) x Home Computer, Breakdown \& ANOVA. DAR-80
Figure DAR-30: Attitudes (gr. 7-12) x Region, ANCVA \& Tukey HSD. DAR-8i
Figure DAR-31: Attitudes (gr. 7-12) x Subject, Breakdown DAR-82
Figure DAR-32: Attitudes (gr. 7-12) x Subject, ANOVA. DAR-83
Figure DAR-33: Attitudes (gr. 7-12) x Subject, Tukey HSD. DAR-84
Figure DAR-34: Attitudes (gr. 7-12) x Gender, Breakdown \& ANOVA DAR-85
Figure DAR-35: Attitudes (gr. 7-12) x Software Type, Breakdown \& ANOVA DAR-86
Figure DAR-36: Atlitudes (gr. 7-12) x Home Computer, Breakdown \& ANOVADAR-87

Teacher Data

Figure DAR-37: Regional Office and Grade Level Identification. DAR-88
Figure DAR-38: Subject Support Area and Gender. DAR-89
Figure DAR-39: Project Computer Count DAR-90
Figure DAR-40: Computer Needs Count DAR-91
Figure DAR-41: Type of Software Used and Number of Students in School DAR-92
Figure DAR-42: Grade Level and Subject Support Area (Atlantic) DAR-93
Figure DAR-43: Gender Identification and Project Computer Ccunt (Atlantic) . DAR-94
Figure DAR-44: Computer Needs Count and Type of Software Used (Atlantic) DAR-95
Figure DAR-45: Total Number of Students in School (Atlantic). DAR-95
Figure DAR-46: Grade-Level Identification (Germany) DAR-97
Figure DAR-47: Subject Support Area and Gender Identification (Germany) DAR-98
Figure DAR-48: Project Computer Count (Germany) DAR-99
Figure DAR-49: Computer Needs Count (Germany) DAR-100
Figure DAR-50: Type of Software Used, No. of Students in School (Germany) DAR-101
Figure DAR-5i: Grade-Level and Subject Support Area (Mediterranean) DAR-102
Figure DAR-52: Gender Identification and Project Computer Count (Med.) DAR-103
Figur DAR-53: Computer Needs Count, Type of Software Used (Med.). DAR-104
Figure DAR-54: Thtal Number of students in School (Mediterranean). DAR-105
Figure DAR-55: Grade-Level Identification (Pacific). DAR-106
Figure DAR-56: Subject Support Area and Gender Identification (Pacific). DAR-107
Figure DAR-57. Project Comprater Count and Computer Needs Count (Pacific)DA DAR-108
Figure DAR-58: Type of Software Used, No. of Students in School (Pacific) DAR-109
Figure DAR-59: Grade-Level identification, Subject Support Area (Panama) . . DAR-110
Figure DAR-60: Gender Identification and Project Computer Count (Panama) DAR-111
Figure DAR-61: Computer Needs Count, Type of Software Used (Panama). . . DAR-112DAR-113
Figure DAR-63a: Project Computer Count is Subject, Breakdown. DAR-114
Figure DAR-63: Computer Base x Subject, Breakdown DAR-115
Figure DAR-64: Computer Base x Grade, Breakdown \& ANOVA. DAR-116
Figure DAR-65: Computer Needs x Subject, Breakdown \& ANOVA DAR-117
Figure DAR-66: Computer Needs x Subject, Tukey HSD. DAR-118
Figure DAR-67: Computer Needs x Grade, Breakdown \& ANOVA DAR-1i9
Figure DAR-68: Computer Needs x Kegion, Breakdown \& ANOVA DAR-120
Figure DAR-69: Computer Needs x Region x Subject, Breakdown DAR-12.
Figure DAR-70: Teacher Atlitudes, by Region DAR-12
Figure DAR-71: Teacher Attitıdes x Subject, Breakdown \& ANOVA DAR-124
Figure DAR-72: Teacher Attitudes x Subject, Tukey HSD. DAR-125
Figure DAR-73: Teacher Attitudes x Software Type, Breakdown \& ANOVA. DAR-125
Figure DAR-74: Teacher Attitudes x Software Type, Tukey HSD DAR-127
Figure DAR-75: Resource Adequacy Factor x Grade, Breakdown \& ANOVA DAR-128
Figure DAR-76: Resource Adequacy Factor x Grade, Tukey HSD DAR-129
Figure DAR-77: Resource Adequacy Factor x Region, Breaikdown \& ANOVA. DAR-130
Figure DAR-78: Resource Adequacy Factor x Region, Breakdown \& ANOVA DAR-131
Figure DAR-79: Benefits x Subject, Breakdown \& ANOVA DAK-132
Figure DAR-80: Benefits x Subject, Tukey HSD DAR-133
Figure DAR-81: Enthusiasm for Subject x Grade, Breakdown \& ANOVA DAR-134
Figure DAR-82: Enthusiasm for Subject x Grade, Tukey HSN. DAR-135
Figure DAR-83: Enthusiasm for School x Grade, Breakdown \& ANO` DAR-136
Figure DAR-84: Enthusiasm for School x Grade, Tukey HSD DAR-137
Figure DAR-85: Enthusiasm for School x Subject, Breakdown \& f-N JV.A. DAR-138
Figure DAR-86: Enthusiasm for School x Subject, Tukey HSD DAR-139
Figure DAR-87: Proiect Setting x Best Setting, Crosstabs DAR-140
Figure DAR-88: Project Setting x Preferred If One Computer, Crosstabs DAR-141
Figure DAR-89: Resource Adequacy x Best Setting, Brenkdown \& ANOVA DAR-142
Figure DAR-90: Resource Adequacy x Best Setting, Tukey HSD. DAR-143
Figure DAR-91: Best Stud./Computer Ratio x Grade, ANOVA \& Tukey HSD DAR-144
Figure DAR-92: Best Stud./Computer Ratio x Subject, ANDVA. DAR-145
Figure DAR-93: Best Stud./Computer Ratio x Subject, Tukey HSD. DAR-146

TABLE OF EXHIBITS

Guidelines for Regional Coordinators DAR-148
CBI Phase II Sampling Summary DAR-150
Checklist for Regional Coordinators DAR-151
Data Collection Guide for Teachers at CBI Demonstration Sites DAR-152
Questionnaire for Teachers at CBI Den.onstration Sites DAR-153
Anecdc al Record Forms DAR-165
First Semester CBI Record DAR-167
Two-Week CBI Record Form DAR-169
Directions for Administration of Student Questionnaires DAR-171
Student Questionnaire DAR-172

DEPARTMENT OF DEFENSE DEPENDENTS SCHOOLS CBI PROJECT EVALUATION - PHASE II:

EXECUTVE SUMMARY

Each cé the five DoDDS regions uorldwite were asked to administer questionnaires to students in grades 5 and above who were involved in a Computer-Based Instruction (CBI) project (total distribution $=$ 6,850) Five hundred, forty-three (543) project teachers were also asked to complete a questionnaire and anecdutal reports. Highlights of the results of the responses (student $n=3,851$; teaner $n=522$) include the following:

- Students exhibited mildly positive overall attitudes about computers (averaging 3.5 tu 3.62 on a 5 point Likert scalc).
- No differences in student attitudes were detected with respect to regions or subject areas. However, males displayed more positive attitudes that females, buth in grades 5 and 6 (male mean $=99.43$, female mean $=97.22 ; F=9.36, p=.002$) and in $7-12$ (male mean $=175.02$, female mean $=167.16$, $F=63.31, p=.0000)$.
- Studeats with non-school access to cumputers exhibited more positive computer attitudes than their pecrs (means in grades $5-6$ of 99.28 versus $96.15, F=16.21, p=.0001$; in grades $7-12,173.40$ versus 166.26, $F=42.29, p=.0000$).
- Teachers were uniformly positive about cumputers across regions, grade levels, genders, and schoul sizes (mean $=124.2$, Likert equivalent $=4.28$ of 5.0). Nearly 99% of teachers agreed with the statement that computer use in their subject area is beneficial.
- Teachers agreed that computers contributci to student creatuvity (77.6%) and productuvity (69.9%), as well as to increased teacher productinay (78.7%). Seventy (70) percent repurted that the volume of student work had improved.
- Teachers expressed a need for more inservice on how to take advantage of whole-group (61.5%) and small-group (61.7%) instruction with computers.
- Three of the top inservice needs cited by teachers were learning what other teachers are doing (87.6%), finding out what software is available (84.8%), and learning how best to integrate computers into their classrooms (78.5%). Anecdotal repurt data tends to support these questionnare results.
- More than half of the teachers $(51.8 \%$) did not believe a computer lab was essential. Whale they were uncomfortable with whole-group use of computers (85.2%), teachers cited the need for more :nservice on computer-based whole-group instruction, as indicated above.
- Teachers claimed that project computer use had contributed to greater success fur reluctant learnurs (694%), improved enthusiasm for subject area (94.5%), and school generally (74.7%), enhanced peer cooperation among students (85.5%), and increased student time on task (81.5%)

Nea:ly two-thiras of the teachers (64.2%) claimed to have altered their teaching methods as a result of t seir participation in the CBI project.

- Classroom assignment of computers appeared to be the distribution pattern must favered by tedihers (79.8\%). However, teachers whe felt less adequately supported tended to favor labs, while their more well-off colleagues preferred classroom assignment.
- The optimal student-to-computer ratio was reported to be two-to-four students at a computer (57.3%). This varied by subject area, whuse computer science/literacy and writi areas sought a ratio closer to 1.1. Over all, teachers believed that access to about o computers would help achicve cerriculum success. Of the 522 teacher respondents, about a third (37.8%) reported having access to 8 computers.

Data Analysis Results

CBI Student Questionnaire

Phase II

Descriptive Statistics for Background Variables

Aggregate Results

Figures DAR-1 to DAR-5 display system-wide freq rency counts for key variables relating to the student sample, which consists of 3,851 responses across the five regions. ${ }^{2}$ Males accounte'j for 51.7% of the sample, and females accounting for the remaining 48.3%. The distribution across regions is roughly reflective of the relative student enrollments. With respect to GRADE, middle and high school levels are over-represented, since teachers were instructed to administer the question.aire only to students in grades 5 or above. Nonetheless, it appears that about four percent of the respondents had teachers who identified themselves as K-1st or 2 n d-3rd grade teachers.

Nearly one-fifth of student respondents were involved in Language Arts or Engli.h CBI projects (19.9%), followed by science (12.2%), math (12.1%), and social studies (7.6%). Nearly half of the students' computer experience consisted of either word processing (29.0%) or drill and practice $(20.3 \%$). This was followed by simalations

[^1](15.7%) and tutorials (14.3%). Bringing up the rear were programming (1.7%), databases (1.4%), and spreadsheets $(0.0 \%, n=1)$.

Consistent with the initial project distribution of computers, nearly 89 percent of these students reported a hardware base of 1 to 3 computers, with more than half of the sample report. $: 3$ computers. Only 2.2% of students had access to more than 6 computers during Phase II of the project. That more computers:-e needed is reflected in the fact that about half of the students had teachers who wanted up to 3 additional computers in order to maximize instructional benefits in the future (the largest percentage, 22.3%, needed 2 additional computers).

Results by Region

Regional descriptive statistics for the same background variablcs are presented in Figures DAR-6 through DAR-24.

Computer Attitudes

Instrument Reliability,

The Computer Attitude S̈cale was analyzed for reliability twice: once as the 27 item scale for grades 5 and 6 (ATTYOUNG), and again as a 49-item scale for grades 7 12 (ATTOLDER). A Cronbach alpha reliability statistic was obtained for each, yielding an $\alpha=.78$ for ATTYOUNG ($n=: 406$), and an $\alpha=.90$ for $\operatorname{ATTOLDER~(~} n=2237$).

Aggrogate Attitude Results

Figure DAR-25 displays the overall computer attitudes of students in the CBI evaluation projects. Fifth and sixth graders displayed mildly positive attitudes toward computers, with a mean ATTYOUNG score of 97.6 (out of a possible 135). Using the
original, fir e-point Likert scale ($1=$ most negative, $3=$ neutral, $5=$ most positive). the ATTYOUNG rav mean translates to a 3.62 Likert-equivalent. The older sample also displa J positive overall attitudes about computers (3.50 Likert-equivalent). Values for each of the regio. may be interpreted in a similar manner.

	Grades 5-6				Grades 7-12			
	N	\bar{x}	SD	Likert equiv.	N	$\overline{3}$	SD	Ljkert equiv.
Total	1476	97.6	12.3	3.62	2364	170.3	22.6	3.50
A's'	138	98.0	11.4	3.63	254	166.8	23.9	3.40
GE	864	98.0	12.4	3.63	1402	172.0	22.6	3.51
ME	185	97.2	12.4	3.60	2?8	168.6	22.4	3.44
$P A_{2}$	289	96.5	12.4	3.57	384	167.1	22.4	3.41
PN	NA	NA	NA	NA	85	173.2	17.8	3.54

($\mathrm{AT}=$ Atlantic, $\mathrm{GE}=$ Fermany, $\mathrm{ME}=$ Mediterranean, $\mathrm{PA}=$ Pacific, $\mathrm{PN}=$ Panama)
Figure DaR-25 Aggregate Student Computer Altitude Results

Attitude Results, by Background Variables

Of particular interests to DoDDS are differences in s:ident computer attitudes, based on background variables. Because two instruments were usect, the results are reported first for grades five and stx, and then for grades seven through twelve.

Grades Five and Six. There were no statistically-significant differences in computer attitudes across the five DoDDS regions, or across subject areas. The instrument did uncover such a difference for geaver. A one-wu, analysis of vauiance
(ANOVA) revealed that males were more favorably disposed toward computers ($x=$ 99.43) than females ($\bar{x}=97.22$), as shown in Figure DAR-26. Figure DAR-27 demonstrate significant differences in computer attitudes by the type of software used in the project. Specific differences are shown in Figure DAR-28, which indicates the pairs of software types that are statistically different at the .05 confidence level. Computer attitudes among database users ($\bar{x}=91.19$) were significandy less positive than users of tutorials ($x=98.17$), problem-solving ($\bar{x}=98.3 \dot{F}$), ward processing ($\bar{x}=99.85$), integ:ated software ($\bar{x}=100.07$), or pregramming ($\bar{x}=102.03$). Drill and prattice users had less positive attitudes toward computers ($\bar{i}=95.85$) than students who used either word processing or programming. Comparisons between other pairs of software types were not statisticaily significant and, therefore, are not warranted.

Finally, students in grades five and six whe had access to computers ou side of school had more positive attitudes toward computers ($\bar{x}=99.28$) than their counter parts whose access was limited to the school ($\bar{x}=96.15)$, as shown in Figure DAR-29. It is noteworthy that mc ${ }^{\cdots}$ 'han two-inirds of these students $(68.8, \vec{r})$ reported non-school computer access.

Grades Seven throug: Twelve Coniary to the finding for the younger subsample, students' attitudes toward computers did vary significantly by region for grades seven through twelve (Figure DAR-30). Sturents in the Germany region (Group 2) displayed more positive attitudes toward computers ($\bar{x}=172.97$) than students in either the Atlantic ($\bar{x}=167.87$) or the Pacific $(\bar{x}=168.8444)$ regions (Groups 1 and 4, respectively).

Age ir coniary to the younger subsample, difterences in attitudes by subject area wer caldent among the seventh thoush ticifth graders. Figure DAR-31 shows the mean $2 .$. :ic :cures for the va:1ous subjerts \because. ANOVA results in Figure DAR-32 reveal statistucali) significun: wiff, renocs in ativades at the .0002 level. Students whose CBI project ans (WE-hesed (Group 15 on Figur DAR-33) had more negative attitudes toward romputers $(\bar{x}=160.00)$ than student ir Language Arts/English $(\bar{x}=171.81)$, Reading ($\bar{x}=175.69$), Mec.a and Library $(\bar{x}=177.46)$, or PPS $(\bar{x}=179.89)$. PPS students were also more positive in their computers attitudes than students in Home Economics ($\bar{x}=162.64$). Since no other pairs reached significance, there exists no practical attitudinal differences among subject areas.

Gender differences in computer attitudes appeared among the older studen's, and in the same direction as those among the younger students. Figure DAR-34 demonstrates that males hold more positive computer attitudes $(\bar{x}=175.02)$ that do females (\bar{x} $=167.16)$.

With respect to software types, a one-way ANOVA reveals significant differe, zes in computer attitudes. Honevet, in large part due to the extreme range of cases among types, the multiple range test designed to locate those differences was unable to detect statistically different pairs at the .05 level. Visual inspection of mean scores in Figure DAR- 35 shous that database and spreadsheet users seemed to hold more positive attitudes thar users of other softuare types, but these two types are represented by only 8 cases combined.

Finally, significant attitude differences existed between those who have access to computers outside of school ($\bar{x}=173.40$) and those who do not ($\bar{x}=166.26$), according to Figure DAR-36. A high percentage of 7th chrough 12th graders (71.4%) reported having computer access outside of schonl.

Attitude Results, by Resource Adequacy

A Resource Adequacy Factor (RAF) was calculated as a means of gauging the extent to which teach.ers felt they had enough computers to achieve success in their projects. The formula for RAF is based on the number of computers that were available for the project, divided by the sum of this value plus the number of additiona. computers teachers Selieve would be needed to be completely successful. In the SPSS: analysis, this formula is represented at COMPUTRS \div (COMPUTRS + COMPNEED). The result of this calculation yields a value of 1 , where teacters indicated no need for additional computers (COMPNEED $=0$), and descends toward 9 as the number of needed computess rises in relation to given computers. Assuming that teachers' perceptions of resource adequacy are an accurate gauge of genuine resource adequaly, we can use the RAF variable to explore correlations between the adequacy of resource, and students' computer attitudes. One might hypothesize that students' ccmputer attitudes will tend to be more negative if they have been asked to carry out tasks without sufficient computer resources.

Based on correlational analysis using the Pearson Product-Moment procedure, this hypothesis is not well supporte.. . In seneral, only a small correlation exists between grades five and six computer attitudes and . AF, and thi's was actually a negative
correlation (-.11, $p=.00, n=1154$). No correlation was found among the older students. Among th: reginaz, only thiee corre'ations were uncovered, all negative and all among grades i e and six only: Germany ($-.11, p=.002, r_{i}=634$), Mediterranean ($.28, p=.060, n=i+2$), and Pacific ($-.11, p=.049, n=247$).

Data Analysis Results

CBI Teacher Questionnaire

Phase II

Descriptive Siatistics for Background Variables

Aggregate Resuits

Figures DAR-37 to DAR-41 display system-wide frequency counts for key var ables relating to the teacher sample, which consists of 522 responses across the five regions. Females accounted for most of the sample ($72.8, \%$) w. ${ }^{\dagger} h$ males accounting for the remaining 27.2%. The distribution across regions is roughly reflective of the relative size of regions, with over half of the respondents from the Germany region. With respect to GRADE, about half identinied themselves as grades K-6 (57.4\%), with another 12.8% in junior high school and 27.6% in high school.

Nearly one-quarter of teacher respondents were involved in Language Arts or English CBI projects (24.1\%), followed by math (12.3\%), special education (10.2\%), reading (7.3%), and social studies (6.5%). Over half of the reported projects $(58.2 \%$) consisted of either word processing (31.4%) or drill and practice (26.8%). This was followed by tutorials (14.0\%) and simulations (10.5\%). Bringing up the rear were integrated software (7.7%), problem-solving (6.5%), databases (1.9%), and programming (1.1\%).

Consistent with the initial project distribution of computers, more than half of the teachers reported having access to three computers for the pilot projects. Only 7.7% of teachers had access to more than three computers during Phau II of the project. That more computers are needed is reflected in the fact that nearly half of the teachers wanted at least 4 additional computers in order to maximize instructional benefits in the future (the largest percentage, 20.1%, cited a need for 2 additional computers). Sixteen percent of teachers indicated that they did not need more computers to achieve project goals adequately.

Results by Region

Regional descriptive statistics for the same background variables are presented in Figures DAR-42 thrcugh DAR-62.

The Adequacy of Computer Resources

In order to inform the process of hardware acquisition in the future, more detailed analysis of computer needs and what constitutes an adequate computer base is called for. Both of these issues are likely to vary greatly across subject areas and grade levels, and this is borne out by the results of breakdown analyses.

Adequate Computer Base

For each subject area and grade levels, teachers' views about what shouid be a minimally adequate computer base can be inferred by summing their reported access to hardware and the number of additional computers they .ay they needed for optimal achievement ot project objectives.

By subject. Figure DAR-63 preserts teachers' perceptions about an adequate base of computer equipment necessary for optimal achievement of project objectives (compare to the initial allocation of project computers in Figure DAR-63a). Computer science/literacy ranks at the top ($\bar{x}=26.88$), with Host Nation close behind ($\bar{x}=$ 25.00). Industrial arts teachers, on average, believe that 12 computers is the optimal base for their projects, followed by social studies $(\bar{x}=9.97)$, science $(\bar{x}=9.06)$, art $(\bar{x}$ $=8.09$), health ($\bar{x}=8.00$), Language Arts/English ($\bar{x}=7.99$), and math ($\bar{x}=7.64$). At the other end of the scale, the two teachers involved in evaluation saw two computers as optimal, followed by counseling ($\bar{x}=2.18$), $\operatorname{ESL}(\bar{x}=2.94), \operatorname{CWE}(\bar{x}=$ 3.00), and special education ($\bar{x}=4.19$). Cumulatively, the computer base deemed adequate by the 510 teachers would require 3,982 computers.

By grade. As shown in Figure DAR-64, there is no significant difference in perceived adequate computer base, averaging abou: 7.81 computers in each of the grade levels.

Computer Needs

Closi،g the gap between the current and optimal computer base will vary in difficulty by subject area. Teachers have 37.8% of the base level, and say they need 2,477 adritional computers (beyond 1,505) to reach the optimal computer baseline.

By subject. Figure DAR-65 lists project subject areas and ineans for pe-ceived computti needs. Statisticaily the subjeat areas do not differ significantly on this variable, except for computer science/literacy (Group 13) and Host Nation (Group 23), as shown in Figure D $!$ R-66.

By grade. There is no significant difference across grades in the number of additional computer teachers believe they need, as indicated in Figure DAR-67.

By region ar:d subject. As with grade, there is no statistical difference in perceptions of additional computer needs (Figure DAR-68). However, Figure DAR-69a-c displays the means values for computer needs by region, and then by subject within region.

Computer Aittitudes

Instrument Reliability

A 29 -item instrument was constructed to measure teacher attitudes toward cornputers. This Teacher Computer Attitude Scale was analyzed for reliability using the Cronbach alpha reliability procedure. This yielded an $\alpha=.96(n=522)$.

Aggregate Attitude Results

Figure DAR-70 displays the aggregate attitude results for the entire sample, as well as for regional subsamples of teachers. On the whole, teachers were quite positive toward computer use, and this persisted with essentially no differences across regions.

Attitude Results, by Brckground Variables

There are no significant differences in teacher attitudes toward computers based on either grade level, gender, or size of school. Figure DAR-71 reveals attitudinal differences across subject areas. Only one subject area displayed sıgnificantly less positive attitudes towards compu،ers. Special education teachers attitudes ($\bar{x}=113.38$) were less positive han Language Arts/English ($\bar{x}=125.06$), Math ($\bar{x}=126.45$),

	N	$\overline{\mathrm{x}}$	SD	Likert equiv.
Total	522	124.2	17.0	4.28
AT	50	124.3	18.4	4.29
GE	267	124.3	17.6	4.29
ME	47	124.3	17.2	4.29
PA	137	124.5	15.0	4.29
PN	21	120.9	19.0	4.17

Figure DAP. 70 Teacher computer attitudes, by region

Science ($\bar{x}=130.74$), or computer science/literacy ($\bar{x}=131.69$), as shown in Figure DAR-72.

Teacher attitudes toward computers varied somewhat as wel! based on the software type used for the project, as Figures DAR-73 and 74 demonstrate. Teachers whose projects involved the use of integrated software tended to have more positive computer attitudes ($\bar{x}=132.33$) than those who used word processing alone.

Attitude Results, by Resource Adequacy

The same Resource Adequacy Factor (RAF) that was used for comparative purposes in the studer t sample was applied to the teacher sample as well. Virtualiy no correlation could be found between teacher compurer attitudes generally and resource adequacy (.0015, $p=.49, n=522$).

However, statistically-significant differences in RAF were apparent across grade levels and regions. Figure DAR-75 portrays an ANOVA demonstrating differ nnces
among grade levels. Teachers of grades $2-3$ (Group 2) felt that their computer resources were fairly adequate ($\bar{x}=.572$), in comparison to teachers in grades $7-12$ (Groups 4 and $5 ; \bar{x}=.443$ anci 451 , respectively), according to Figure DAR-76. A similar discrepancy across regions was uncovered by the ANOVA presented in Figure DAR-77. In Figure DAR-78, the level of perceived resource adequacy among teachers in the Pacific region (Group 4, $\bar{x}=.539$) outpaced perceptions among their German colleagues (Gioup 2, $\bar{x}=.455$).

Teacher Opinions on CBI Effectiveness

Activities Made Passible

Items 31 and 38 ask whether computer use facilitated activities that would otherwise be impossible. The responses tended to affirm this idea.

Crearivity

Two items gauge how computer work has affected creativity, both for the teacher and his/her students. Teachers were overwhelmingly positive on both counts.

Value Label	Value	Frequency	Percent	Volid Percent	Cum Percent
Strongly agree	1	198	38.8	39.0	$3 ¢ 0$
Agree	2	193	37.8	38.0	$\therefore .0$
Hot sure	3	83	16.3	16.3	93.3
Disagree	4	28	5.5	5.5	98.8
Strongly disagi ee	5	6	1.2	1.7	100.0
		2	. 4	Missing	
	Total	510	100.0	100.0	
Valid cases 508	Hissing	ases 2			
CREATE Student creativity has...					
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Much improved	1	154	30.2	32.0	32.0
Somewhot improved	2	220	43.1	45.6	77.6
Not changed	3	107	21.0	22.2	99.8
Been neg afíected	4	1	. 2	. 2	100.0
	.	28	5.5	Missing	
	Total	510	100.0	100.0	
Valid cases 482	Missing	ases 28			

Need for More Computers

Two items confirmed teachers' interest in acquiring more computer resources.

: EEDMORE Sucsess requires more computers.					
Value label	Value	Frequency	Percent	Volid Percent	Cum Percent
Strongly agree	1	229	44.9	45.2	45.2
Agree	2	137	26.9	27.0	72.2
Not sure	3	55	10.8	10.8	83.0
Disagree	4	65	12.7	12.8	95.9
Strongly disagree	5	21	4.1	4.1	100.0
	.	3	. 6	Missing	
	Total	510	100.0	100.0	
Valic cases 507			Miss	ing coses	3

NEEDLESS Accorpl ish same with fewer computers.

Volue Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	7	1.4	1.4	1.4
Agree		16	3.1	3.1	4.5
Not sure	3	23	4.5	4.5	9.0
Disagree	4	113	22.2	22.2	31.2
Strongly disagree	5	350	68.6	68.8	100.0
	-	1	. 2	Hissing	
	Total	510	100.0	100.0	
Volid cases 509			Aiss	ing cases	1

Viability of Whole-Group Instruction

One mode of computer use muximizes limited computer resources, and three items asked teachers to comment on the usc of computers for whole-group instruction. The results . aggest that teachers are not comfortable with this mode, and need additional inservice to take advantage of ti.e cost effectiveness of whole-group inst ruction with computers.

TRAlNO1 How to use 1 computer for whole group.

Value Labe,	Value	Frequency	Percent	Valid Percent	Cun percent
Strongly agree	1	131	25.7	26.6	26.6
Agree	2	172	33.7	34.9	(1.1.5
Not sure	3	53	12.4	12.8	74.2
Disagree	4	87	17.1	17.6	91.9
Strongly disagree	5	40	7.8	8.1	100.0
	-	17	3.3	Missing	
	Total	510	100.0	100.0	
Volla cases 493	Misaing cos	ases 17			

Small-Group Instruction

A third mode of classroom computer use is for small-group instruction. Three items measured teachers' comfort with this mode of computer use, and their need for additional inservice training (61.7%).

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	:02	20.0	20.7	20.7
Agree	2	202	$3^{0} .6$	41.0	61.7
Not sure	3	52	10.2	10.5	72.2
Disagree	4	102	20.0	20.7	92.9
Strangly disagree	5	35	69	7.1	100.0
	.	17	3.3	Missing	
	Total	510	100.0	100.0	

SHALGRP					
Value Label	value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	69	13.5	14.0	14.0
dgree	2	141	27.6	28.6	42.6
Not sure	3	60	11.8	12.2	54.8
Disagree	4	143	28.0	29.0	83.8
Strongly disagree	5	80	15.7	16.2	100.0
	.	17	3.3	Missing	
	lotal	510	100.0	10 c .0	
Valld cases 493	Missing c	ases 17			

inSERVO9 Classromm management tips helped.

Value Lebel	Volue	Frequency	Percent	valid Percent	Cur. Percent
Stronglv agree	1	38	7.5	8.4	8.4
Agree	2	66	12.9	14.7	23.1
Hot sure	3	87	17.1	19.3	42.4
Disagree	4	119	23.3	26.4	68.9
Strongly disugree	5	140	27.5	31.1	100.0
	-	60	11.8	Missing	
	Total	510	100.0	908.0	
Valid cases 450	Kissing cos	Ses 60			

Lab Configuration

Teachers were asked to comment on the need to have a computer lab in order to achieve project objectives. More than half did not feel a lab was essential, and fewer teachers indicated a need for lab use training (57.6%) compared to whole-group instruction (61.5%).

LABNĖED					
Volue label	slue	irequersiy	Percent	Valid Percent	Cum Percent
Strongly ogree	1	83	16.3	16.4	\%6.4
Agree	2	70	13.7	13.8	30.2
Hot sure	3	91	i7.8	18.0	48.2
Disagree	4	167	32.7	33.0	81.2
rirongly disagree	5	95	18.6	18.8	100.0
	.	4	. 8	Hissing	
	Tctal	510	. 00.0	100.0	
Valid cases 506	Hissing c	ases			

Professional Use of Computers

One aspect of cost effectiveness is captured in rising productivity on the parı \boldsymbol{z} teachers; specifically, the exten! to which computer use saves time ard effort. Teachers consistently attest to the positive effects of computer use on their p -ofessional productivity.

DAR-18

ERIC

PROF 1 Have not saved professional time.					
Value Label	Value	Frequei:y	Percent	Valid Percent	Cum Percent
Strangly agree	1	18	3.5	3.5	3.5
Agree	2	54	10.6	10.6	14.2
Not sure	3	37	7.3	7.3	21.5
Dicagree	4	157	30.8	30.9	52.4
Strongly disagree	5	242	47.5	47.6	100.0
		2	. 4	Missing	
	Total	510	100.0	100.0	
Valid cases 508	Missing c	ases 2			
PROF2 Cormuter speeded my work.					
Value Label	Value	Frequency	Percent	Valid	Cum
Strongly agree	1	235	46.1	46.8	46.8
Agree	,	160	31.4	31.9	78.7
Not sure	3	50	9.8	10.0	88.6
Disagree	4	45	8.8	9.0	97.6
Strongly disagree	5	12	2.4	2.4	100.0
		8	1.6	Missing	
	Total	510	100.0	100.0	
Valid cases 502	Hissing c	ases 8			
PROF3 Helped me use my time more efficientiy.					
Valce Label	Vilue	frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	223	43.7	43.9	43.9
Agree	2	179	35.:	35.2	79.1
Not sure	3	62	12.2	12.2	91.3
Disagree	4	38	7.1	7.1	98.4
Strongly disagree	5	8	1.6	1.6	100.0
		2	. 4	Missing	
	rotal	510	100.0	100.0	
Valid cases 508	Missing c	ases 2			
PROF4 Did not make my professional tasks easier					
Value Label	Value	Frestency	Percent	Valid Percent	cum Percent
Strongly agree	1	6	1.2	1.2	1.2
Agree	2	54	10.6	10.7	11.8
Hot sure	3	32	6.3	6.3	18.1
Disagree	4	193	37.8	38.1	56.2
Strongly disagree	5	222	'3.5	43.8	100.0
		3	. 6	Missing	
	rotal	510	100.0	100.0	
Valid rases 507	Missing c	ases 3			

DAR-19

37

Efficiency of Student Work

The ability of computers to enhar, student productivity represents another facet of the productivity issue. Tei hers reported positive effects of computer use on student productivity.

SILDEFF1 Students make p. xgress faster.

Value Label	value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	151	29.6	30.1	30.1
Agree	2	200	39.2	59.8	69.9
Not sure	3	122	23.9	24.3	94.2
Disagree	4	22	4.3	4.4	98.6
Strongly disagree	5	7	1.4	1.4	100.0
	.	8	1.6	Hissing	
	Total	510	100.0	100.0	

Valid cases 502 Hissing cases 8

STLOEFF2 Students did not learn quicker.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	5	1.0	1.0	1.0
Agree	2	45	8.8	9.1	10.1
Hot sur?	3	73	14.3	14.8	24.9
Disagree	4	220	43.1	44.5	69.4
Strongly disagree	5	151	29.6	30.6	100.0
	.	16	3.1	Missing	
	Total	510	100.0	100.0	

VOLURE Volume of student work has...

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percen:
Huch improved	1	91	17.8	18.9	18.9
Somewhat improved	2	249	48.8	51.7	70.5
Hot changed	3	137	26.9	28.4	99.0
Been neg affected	4	5	1.0	1.0	100.0
	-	28	5.5	Missing	
	Total	510	100.0	100.0	
Valid cases 482	Hissing c	ases 28			

Studeni Cooperation

Teachers reported that cooperation among students improved noticeable as a result of computer use.

Helped cooperation.					
Va!ue Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	190	38.4	38.6	38.6
Agree	2	209	41.0	41.1	79.7
Not sure	3	85	16.7	16.7	\%.5
Disagree	4	15	2.9	3.0	99.4
Strongly disagree	5	3	. 6	. 6	100.0
	.	2	. 4	Hissing	
	Totel	510	100.0	100.0	
Valid cases 508	Nissing	ases 2			
- . - - - - -	-•••	-•••	- -	-- -	-••
COOPERAT Peer cooperation has...					
Value label	Value	Frequency	Percent	Valid Percent	Cum percent
Huch improved	1	173	33.9	35.4	35.6
Someshat improved	2	245	48.0	50.1	85.5
Not changed	3	71	13.9	14.5	100.0
	.	21	4.9	Missing	
	Total	510	100.0	100.0	
Valid cases 489	Missing c	ases 21			

Other Effects on Students

Three additional items asked teachers to react to other possible effects of computer use, particularly for reluctant learners.

Value label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agr se	1	128	c. . 1	25.5	25.5
Agree	2	222	43.5	44.2	$0 \times .7$
Not sure	3	101	19.8	20.1	89.8
Disagree	4	41	8.0	8.2	98.0
Strongly disagree	5	10	2.0	2.0	100.9
	.	8	1.6	Hissing	
	Tetal	510	100.0	100.0	
Valid cases 502	Missing c	cases 8			

HLPSTUD3 Reluctant students not more successful.

Value Label	Value	Frequency	Percent	$\begin{aligned} & \text { Valid } \\ & \text { F-er_ent } \end{aligned}$	Cum Percent
Strongly agree	1	13	2.5	$2 \leq$	2.6
Agree	2	57	11.2	11.3	i3.9
Hot sure	3	81	15.9	16.0	29.9
Disagree	4	243	47.6	48.1	78.0
Strongly disagree	5	111	21.8	22.0	100.0
	.	5	1.0	Hissing	
	Total	510	100.0	100.0	
v id eases 505	Missing	Ses 5			

Student Ens:

Two ite. get the effect of computer use on student enthusiarm, both for the subject matter unde; study and for school in general.

ENTHUS Stidents enthusiasm for subject has...

Value Label	Value	Frequers:y	Percenc	Valid Percent	Cum Percent
Huch improved	1	285	55.9	58.4	58.4
Somewhat improved	2	176	34.5	36.1	94.5
Not changed	3	26	5.1	5.3	99.8
Been neg affected	4	1	. 2	. 2	100.0
	-	22	4.3	Missing	
	Total	510	100.0	100.0	

Vialid cases 488 Hissing cases 22

GENENTH Enthusiasm for school in general har....

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent	
Much improved	1	129	25.3	26.5	26.5	
Somemat improved	2	235	46.1	$4 . .3$	74.7	
Not changed	3	123	24.1	25.3	100.0	
			23	4.5	Missiny	
	Total	510	100.0	100.0		

Change in Teaching Methods

About two mirds of the teachers attested to some alteration in their teaching methods in the course of the CBI project.

METHOOS 1 I have changed my methods.					
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	39	17.5	17.5	17.5
Agree	2	237	46.5	46.7	64.2
Not sure	3	65	12.7	12.8	77.0
Disagree	4	101	19.8	19.9	96.9
Strongly disagree	5	16	3.1	3.1	100.0
	.	2	. 4	Missing	
	Total	510	100.0	100.0	

Valid cases 508 Missing cases 2

AETHCOS2 Computer has not changed my methods.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	16	3.1	3.2	3.2
Agree	2	102	20.0	20.1	23.3
Hot sure	3	53	10.4	10.5	33.7
Disagree	4	224	43.9	$44 .$.	77.9
Strongly disag ${ }^{\text {en }}$	5	112	22.0	2';	100.0
	.	3	. 6	K°	
	Total	510	100.0	100.0	
Valid cases 507			Missing cases		3

Knowledge of Available Software

Teachers did not feel that knowledge of available software contributed positively to their projects, but strongly agreed that more information on available software would be useful (84.8\%).

TRAIN08 What software is available.					
Volve Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	231	45.3	47.0	47.0
Agree	2	186	36.5	37.8	84.8
Not sure	3	29	5.7	5.9	90.7
Disagree	4	33	6.5	6.7	97.4
Strongly disagree	5	13	2.5	2.6	100.0
	.	18	3.5	Missing	
	Total	510	100.0	100.0	
Valid cases 492			Hissing cases		18
- - - - . -	-	-	-	-	- -
IHSERV08 Knowledge of software availability helpe					
Value -abel	Value	Frequency	Percent	Valid Percent	Cun Percent
Strongly agree	1	57	11.2	12.5	12.5
Agree	2	124	24.3	27.3	39.8
wot sure	3	6%	13.1	14.7	54.5
Disagree	4	84	16.5	18.5	73.0
Strongly disegree	5	123	24.1	27.0	100.0
	.	55	10.8	Missing	
	Total	510	100.0	1 CO 0	
Valid cases 455			Hiss	ing cases	55

Scftware Evaluation

In the case of software evaluation, teachers again were not sure that previous inservice training in sofiware evaluation was particularly helpful for their projects, but they were supportive of additional training (60.0\%).

TRAIK11 On evaluating software.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	123	24.1	24.9	24.9
Agree	2	173	33.9	35.1	60.0
Not sure	3	51	10.0	10.3	70.4
Disagree	4	108	21.2	21.9	92.3
Strongly disasree	5	38	7.5	7.7	100.0
	-	17	3.3	Hissing	
	Total	510	100.0	100.0	

INSERVO1 Software evaluation training helped.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	58	11.4	12.4	12.4
Agree	2	118	23.1	25.3	37.8
Not sure	3	108	21.2	23.2	60.9
Disagree	4	98	19.2	21.0	82.0
Strongly disagree	5	84	16.5	18.0	100.0
	-	44	8.6	Missing	
	Total	510	100.0	100.0	

Teacher Productivity Tools

Slightly more than sixty percent of the teachers want more inservice on productivity tools like word processors and gradebooks, noting that previous training was not particularly helpful for the CBI project.

tralk09					
Value Label	value	frequency	Percent	Valid Percent	Cun Percent
Strongly agree	1	135	26.5	27.5	27.5
Agree	2	161	1.6	32.8	60.3
Hot sure	3	38	7.5	7.7	68.0
Dissgree	4	108	21.2	22.0	90.0
Strongly disagree	5	49	9.6	10.0	100.0
	.	19	3.7	Hissing	
	Total	510	100.0	100.0	
Valid cases 491	Missing c	ases 19			

Tool Software

Related to the previous items is the issue of tool software generally and teachers perceptions about their preparation to use these computer applications effectively. Almost 60 percent agree that previous word processing training was helpful for their projects, followed by 32.2 percent for databases and 21.9 percent for spreadsheets. Responses to these items are not indr pendent of the number of projects that used each type of tool software.

INSERVO4 Word pru-essing helped.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	119	23.3	25.5	25.5
Agree	2	160	31.4	34.3	59.7
Not sure	3	35	6.9	7.5	57.2
Disagree	4	60	11.8	12.8	80.1
Strongly disagree	5	93	18.2	19.9	100.0
	-	43	8.4	Missing	
	Tota!	510	100.0	100.0	
Valid cases 467	Missing cas	ases 43			

INSERVOS Databases helped.
Value Label Value frequency percent Percent percent

Strongly agree	1	49	9.6	10.7	10.7
Agree	2	98	19.4	21.5	32.2
Hot sure	3	74	14.5	16.1	48.3
Disagree	4	107	21.0	23.3	71.5
Strongly disagree	5	131	25.7	28.5	100.0
		50	9.8	Missing	
		$\ldots \ldots$	$\ldots-\ldots$	$-\ldots-\ldots$	
	Total	510	100.0	100.0	

Valid cases 460 Missing cases 50
INSERVOS Spreadsheets helped.

Val'ee Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	28	5.5	6.1	6.1
Agree	2	72	14.1	15.1	21.8
Not sure	3	80	is.7	17.5	39.4
Disagree	4	124	24.3	27.1	66.5
Strongly disagree	5	15 S	30.0	33.5	100.0
	.	53	10.4	Hissing	
	Total	510	100.0	100.0	

Time on Task

An overwhelming majority of teachers (81.5\%) agreed that the computer project increased student time-on-task.

TIMETASK Computer increased time-on-task.					
Value Label	Volue	Frequerx y	Percent	Valid Percent	Cum Percent
Strongly agree	1	207	40.6	40.8	40.8
Agree	c	206	40.4	40.6	81.5
Not sure	3	64	12.5	12.6	94.1
Disagree	4	22	4.3	4.3	98.4
Strongly disagree	5	8	1.6	1.6	100.0
	-	3	. 6	Hissing	
	Iotal	510	100.0	100.0	
Valid cases 507	ssing	ses 3			

One Str' ent per Computer

Probably because of the large number of teachers using word processing i. CBI projects, it is not surprising to find that 64.6 percent of teachers believed that their subject area requires students :s work one-on-one with a computer.

on-one at computer					
Value Label	valu	Frequency	Percent	Valid Percent	$\begin{gathered} \text { Cum } \\ \text { Percent } \end{gathered}$
Stromerly agre.	1	136	26.7	26.9	26.9
igree	2	189	37.1	37.4	64.4
Not sure	3	43	8.4	8.5	72.9
Disagrce	4	117	22.9	23.2	96.0
Strengly disagree	5	20	3.9	4.0	100.0
	-	5	1.0	Missing	
	Total	510	100.0	100.0	
Valid cases 505	sing	ases 5			

Beriefits for Your Subject Area

Nearly all of the teachers (98.6%) believe that computer use in their subject area is beneficial to learning. Comparisons across subject areas will be provided below.

BEIFFITS Computer use in my subject is beneficial					
Value Label	Value	Frequency	Percent	Valid Percent	Cum
Strongiy agrec	1	382	74.9	77.2	77.2
Agree	2	106	20.8	21.4	98.6
Not sure	3	5	1.0	1.0	99.6
Disagree	4	1	. 2	. 2	99.8
Strongly disagree	5	1	. 2	. 2	100.0
	.	15	2.9	$\mu \mathrm{Hssing}$	
	rotal	510	100.0	100.0	
Valid cases 495	Missing c	ases 15			

Inse:vice Training Experiences

A number of items asked teachers to characterize their previous inservice training experiences in terms of their contribution to the success of their project. Those items
are presented below, in order of agreement level, with several items repeated from previous sections.

IASFRVO4 Hord processing helped.

Volue Label	Value	Frequeficy	Percent	Valid Persent	Cun Percent
Strongly sgree	1	119	23.3	25.5	25.5
Agree	2	160	31.4	34.3	59.7
Hot sure	3	35	6.9	7.5	67.2
Disagree	4	60	11.8	12.8	80.1
Strongly disagree	5	93	18.2	19.9	100.0
	.	43	8.4	Missing	
	Total	510	100.0	100.0	
Valid cases 467	Missing c	ases 43			

INSERVOB Knowledge of software availability helped

Volue Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	57	11.2	12.5	12.5
Agree	2	124	24.3	27.3	$3 ¢ .8$
Not sure	3	67	13.1	14.7	54.5
Disagree	4	84	16.5	18.5	73.0
Strongly disagree	5	123	26.1	27.0	100.0
	-	55	10.8	Missing	
	Total	510	100.0	100.0	
Valid cases 455			Missing cases		55

INSERVO1 Software evaluation training helped.

Volue Label	Value	Frequency	Percent	Valid Percent	Cum Percent
St \% ogree	i	58	11.4	12.4	12.4
Agree	2	118	23.1	25.3	37.8
Hot sure	3	108	21.2	23.2	60.9
Disagree	4	98	19.2	21.0	82.0
Strongly disagree	5	84	16.5	18.0	100.0
	-	44	8.6	Missing	
	Total	510	100.0	100.0	
Valid cases 466			Hiss	ing cases	44

IHSFRVOS Databases helped.

Value Label	Voive	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	49	9.6	10.7	10.7
Agree	2	99	19.4	21.5	32.2
Not sure	3	74	14.5	16.1	48.3

Disagree Strongly disagree		4	107	21.0	23.3	71.5
		5	131	25.7	28.5	100.0
		.	50	9.8	Missing	
Valid cases	460	Total	510	100.0	100.0	
				Missing cases		50

Value Label	Value	Frequency	Percen ${ }^{\text {- }}$	Valid Percent	Cum Percent
Strongly açree	1	37	7.3	8.2	8.2
Agree	2	85	16.7	18.8	27.0
Hot sure	3	74	14.5	15.4	43.4
Disagree	4	115	22.5	25.4	68.6
Strongly disagree	5	141	27.6	3:. 2	100.0
	-	58	11.4	Missing	
	Total	510	100.0	100.0	
Valid cases 452			Missing cases		58

INSERVO2 Diagnose minor problems helped.

Value Label	Value	Fi equency	Percent	Valid Percent	Cum Percent
Strongly agree	1	56	11.0	12.2	12.2
Agree	2	118	23.1	25.:	37.8
Not sure	3	77	15.1	16.7	54.6
Disagree	4	91	17.8	19.8	74.3
Strongly disagree	5	118	23.1	25.7	100.0
	-	50	9.8	Missing	
	Total	510	100.0	100.0	
Valid cases 460			Miss	ing cases	50

INSERV09 Classroom management tips helped.

Value Label	Volue	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	38	7.5	8.4	8.4
Agree	2	66	12.9	14.7	23.1
Not sure	3	87	17.1	19.3	42.4
Disagree	4	119	23.3	26.4	68.9
Strongly disagree	5	140	27.5	31.1	100.0
	.	60	11.8	Missing	
	Total	510	100.0	100.0	
Valid coses 450			Missing cases		60

INSERVOS Spreaasheets helped.
Volue Lak: 1 Value frequency Percent Percent percent

Strangly agree	1	28	5.5	6.1	6.1
Agree	2	72	14.1	15.8	21.9
Not sure	3	80	15.7	17.5	39.4
Disagree	4	124	24.3	27.1	66.5

Inservice Training Needs

Teachers expressed interest in obtaining additional training in several key areas of computer use. inservice items are presented below, again in the order of agreement strength.

TRAIN10 What other teachers are doing.

Value Label	value	frequency	Percent	$\begin{aligned} & \text {.alid } \\ & \text { farcent } \end{aligned}$	Cum Percent
Stronglv agree	1	226	43.9	45.4	45.4
Agree	2	208	120.8	42.2	87.6
Hot sure	3	29	5.7	5.8	93.5
Disagree	4	24	4.7	4.9	98.4
Strongly disagree	5	8	1.6	1.0	100.0
		17	3.3	Missing	
	Total	510	100.0	100.0	
Valid cases 493			Missing cases		17
trainos that software is available.					
value Label	value	frequercy	Percent	Volid Percent	Cunt percent
Strongly agree	1	231	45.3	47.0	47.0
Agree	2	186	36.5	57.8	34.8
hot sure	3	29	5.7	5.9	90.7
Disagree	4	33	6.5	6.7	97.4

TRAINO1 How to use 1 cormuter for mole group.

TRAIH05 HOw to use to raise conient knowledge.

Value Lakol	Value	Frequency	Percent	Valid Percem:	$\begin{gathered} \text { Cun } \\ \text { Percerit } \end{gathered}$
Strongly agree	1	94	18.4	19.1	19.1
Agree	2	194	38.0	39.5	58.7
Hot sure	3	62	12.2	12.6	71.3
Disagree	4	113	22.2	23.0	94.3
Strong'y disagree	5	28	5.5	5.7	100.0
	.	19	3.7	Missing	
	Tota:	510	100.0	100.0	
Valid cases 491			Miss	ng cases	19

TRAIn03 How to better use computer lab.

Value Lebel	Value	Frequency	Percent	Valid Percent	Cum Percent
Strongly agree	1	102	20.0	20.7	20.7
Agree	2	182	35.7	36.9	57.6
Not sure	3	68	13.3	13.8	71.4
Disagree	4	105	20.6	21.3	92.7
Strongly disagree	5	36	7.1	7.3	100.0
	-	17	3.3	Missing	
	Total	510	100.0	100.0	17
Yalid cases 493			Missing cases		

TRAIHO4 HOW to us' for skill devt.

Value Lebel	Value	frequency	Percent	Valid Percent	Cum Percent
Strongly egree	1	93	18.7	18.9	18.9
Agree	2	183	35.	37.2	56.1
Not sure	3	66	12.9	13.4	69.5
Disagree	4	117	22.9	23.8	93.3
Strongly disagree	5	33	6.5	6.7	100.0
.	.	18	3.5	Missing	
	Total	510	100.0	100.0	
Valid cases 492			Miss	ing cases	12

Effects on Sectors of Leamers and Teacher Strategies

The effects of computer use on students who span the ability spectrum are tapped by the following items, along with the ucefulness of the computer as an individualizing and diagnosing tool.

IWDEPEND Students working independently has...

$y=$: se Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Much i proved	1	217	42.5	44.4	44.4
Somewhat umproved	2	244	42.6	44.2	88.5
Not c^{2} 3nged	3	56	11.0	11.5	100.0
	.	21	4.1	Hissing	
	'ota'	510	100.0	100.0	

va. ${ }^{-1}$ cases $489 \quad$ Missirg cases 21

AVERAGE Learning by average students has...

| Value Label | Value | Frequency | Percent | ValidCun
 Percent | Percent |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Much i.mproved | 1 | 123 | 24.1 | 25.7 | 25.7 |
| Somethat improved | 2 | 290 | 56.9 | 60.7 | 86.4 |
| Hot changed | 3 | 65 | 12.7 | 13.2 | 100.0 |
| | | 32 | 5.3 | Missing | |
| | Total | 510 | 100.0 | 100.0 | |

Valid cases 478 Missing cases 32

ABOVEAVG Learning by above average students has..

Value Label	Value	Frequerxy	Percent	Valid Percent	Cum Percent
Much improved	1	164	32.2	34.1	34.1
Sonewhat improved	2	229	44.9	47.6	81.7
Not changed	3	88	17.3	18.3	100.0
	.	29	5.7	Missing	
	Total	510	100.0	100.0	
Valid casme 481	Hissing c	ases 27			

BELCNAVG Learning by below avarage students has..

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Much improved	1	112	22.0	23.3	23.3
Scrsewhat inproved	2	268	52.5	55.7	79.0
Hot changed	3	167	19.6	¿̇. 8	99.8
Been neg affected	4		. 2	. 2	100.0
	-	78	5.7	Missing	
	Total	510	100.0	100.0	
Va, id cases 481	Hissing c	ases 29			
S!FTED Opportunities for gifted stuxdents have..					
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Mucn improved	1	211	41.4	44.1	44.1
Sonewhat iaproved	2	166	32.5	34.7	78.9
Not changed	3	100	19.6	20.9	99.8
Very neg affected	5	1	. 2	. 2	100.0
	.	32	6.3	Missing	
	Total	510	100.0	100.0	
Valid cases $\quad 478$	Missing c	ases 32			

INDNEEDS Tailoring for individual needs has...

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Huch improved	1	165	32.4	34.0	34.0
Somewhat improyed	2	215	42.2	44.3	78.4
Hot chained	3	105	20.6	21.6	100.0
	.	25	4.9	Missing	
	Total	510	100.0	100.0	
Valid cases 485	Missing cas	ases 25			
- . - . - . -	- . . -	- . - - -	- -	- -	
LD Opportunities for handicapped\&LD student					
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Much improved	1	170	33.3	35.9	35.9
Somewhat improved	2	157	30.8	33.1	69.0
Hot changed	3	145	28.4	30.6	99.6
Been neg affected	4	2	. 4	. 4	100.0
	.	36	7.1	Missing	
	rotal	510	100.0	100.0	
Valid cases 474	Missing c	ases 36			
DIAGNOSE Diagnosing learning problems has...					
Value Label	Value	Frequency	Parcent	Valid Percent	Cum Percent
Nuch improved	1	50	9.8	10.5	10.5
Somewhat improved	2	146	28.6	30.7	41.2
Hot changed	3	279	54.7	58.6	99.8
Been reg affected	4	1	. 2	. 2	100.0
	.	$3 i$	6.7	\cdots ssing	
	Iotal	510	100.0	100.0	
Valio cases 476	- : \%sirg	aces 34			

Perceived Benefits Across Subject Areas

Statistically, differences among subject areas with respect to teachers' perceptions of computer use benefits are virtually non-existent, in large part to the floor effect produced by such strong agreement on the BENEFITS item. A one-way ANOVA

$$
\therefore \cdot x_{2}^{0}
$$

(Figure DAR-79), followed iv the Tukey HSD procedure (Figure DAR-80) did reveal one pair of subject areas ior which there exists a significant difference: \ddagger PS teachers tended to agree more strongly about the benefits of computers in their art a ($\bar{x}=1.05$) than did respondents whose project involved counseling ($\bar{x}=1.78$). ${ }^{3}$ Although differences in raw mean scores are sta.istically meaningless, subjects areas may be ranked by raw score, from strongest perceived benefit, as follows: evaluation, Host Nation, and vocational education ($\bar{x}=1.00$), $\operatorname{PPS}(\bar{x}=1.05)$, music $(\bar{x}=1.13)$, special education (\bar{x} $=1.14)$, reading ($\bar{x}=1.16$), compensatory education and foreign language ($\bar{x}=1.17$), ESL ($\bar{x}=1.18$), computer science/literacy ($\bar{x}=1.19$), home economics ($\bar{x}=1.2$), language arts/English ($\bar{x}=1.21$), science ($\bar{x}=1.23$), art ($\bar{x}=1.27$), business ($\bar{x}=$ 1.29), industria! arts ($\bar{i}=1.30$), social studies ($\bar{x}=1.33$), media and library ($\bar{x}=1.38$), math $(\bar{x}=1.40)$, CWE ($\bar{x}=1.67$), counseling ($\bar{x}=1.78)$, and health $(\bar{x}=1.8)$.

Perceived Enthusiasm Across Grades and Subject Areas

Teachers were unequivocal in claiming substantia! improvement in students' er. husiasm toward subject matter and school generally. Within this overall trend, it was possible to uncover some differences in observations of student enthusiasm by grade and subject area.

Enthusiasm, by Grade

Analysis of variance revealed a statistically-significant difference in teachers' rating of sudent enthusiasm by grade level, as shown in Figure DAR-81. Teachers of

[^2]grades K-6 $(x=1.19$ to 1.39$)$ judged that their students' enthusiasm for the suoject matter improved more dramatically that was the case for 7 th-12th grade teachers $(\bar{i}=$ 1.70), as shown in Figure DAR-82.

A nearly identical pattern appears for somewhat more modest improvements in enthusiasm for school in general (Figure DAR-83 \& 84). Again, teachers of grades 7-12 identified less dramatic improvements in enthusiasm for sci.ool generally ($\bar{x}=2.2$ to 2.3), compared to teachers of younger students ($\bar{x}=1.65$ to 1.9). Students in grades 4-6 $(\bar{x}=1.9)$ also appeared to display less improvement than stcon d and third graders (\bar{x} $=1.65)$.

Enthusicsm, by Subject

While an ANOVA indicated a statistically-significant difference in enthusiasm by subject area, subsequent Tukey analysis found that no two subjects differed.

For improvements in enthusiasm for school in general, there were subject-area differences (Figures DAR-85 \& 86). Teachers whose projects wete related in counseling noted greater improvement in enthusiasm ($\bar{x}=1.6$) than students in music or foreign language. The same was true for language arts/English, where general enthusiasm $(\bar{i}=$ 1.81) improvement more than in music. Other distinctions among subject areas are not supported by the statistical analysis. In terms of raw mean scores, the subject areas may be ranked as follows, from greatest improvement to least: evaluation ($\bar{x}=1.50$), counseling ($\bar{x}=1.60$), reading ($\bar{x}=1.70$), home economics ($\bar{x}=1.80$), computer scienc:/literacy ($\bar{x}=1.81$), language arts/English ($\bar{x}=1.81$), compensatory edueation ($i=1.83$), $\operatorname{ESL}(\bar{x}=1.94), \operatorname{PPS}(\bar{x}=1.94)$, Host Nation/special education/vocational
cuacaion ($x=2.00$), social studies ($\bar{x}=2.03$), industrial arts $(\bar{x}=2.10)$, business (\bar{x} $=2.14$), math $(\bar{x}=2.18)$, art $(\bar{x}=2.18)$, science $(\bar{x}=2.21)$, media \& library $(\bar{x}=$ 2.22), health $(\bar{x}=2.25)$, music ($\bar{x}=2.75$), foreign language ($\bar{x}=2.83$), and CWE (\bar{x} $=3.00$).

Allocation of Computer Resources

Given and Desired Computer Distributions

Teachers were asked to indicate their preferences for computer distribution in the school. CROSSTAB procedures provide a means to assess the relationship between the resource setting under which the teachers carried out their projects and their desired resource setting.

Figure DAR-87 reveals, first, that most tearhers conducted projects with one or more computers assigned to their classrc $3 \mathrm{~ms}(92.8 \%, n=449)$, with 5.2% using a computer lab and the remaining 2.1% using one or more computers on mobile carts. When asked to select the best setting for computer resources in the school, 79.8% chose classroom-assigned co nputers. ©...e can detect some interesı among teachers to locate more computers in lab settings, but the preponderance of teachers who had computers assigned to their classrooms (83.7%) did not wish to see the situation change.

Siven assurance that they would have one computer assigned to their classrooms, teachers were a bit more disposed to favor centralizing remaining computers in a lab setting (Figure DAR-88). Nonetheless, nearly 60 percent of teachers favored computers as a distributed resource.

Teachers who believed their computer resources were relatively adequate, as gauged by the Resource Adequacy Factor, tended to name classroom assignment of omplters. Conversely, teachers with relatively inadequate resources tended to prefer a computer lab as the best setting (Figures DAR-89 \&

Optimal Student-to-Computer Ratios

A related issue in resource allocation is student-to-compuier ratio. When asked to select the best student-computer ratio for their subject area, one-fifth of the respondents recommended $1: 1$, one student per computer. The majority, however, believed that two to four students per computer was preferab:e. Refiecting perhaps a level of discomfort and lack of training in using one computer for whole-group instruction, only 6.4% of teachers opted for a ratio of $10: 1$ or greater.

RAIIO Best student-computer ratio for me						
Vaiue label		Value	Frequency	Percent	Valid Percent	$\xrightarrow{\text { Cum }}$
1:1		1	100	19.9	20.5	20.5
2:1 to 4:1		2	279	54.7	27.3	77.8
5:1 to 9:1		3	77	15.1	15.8	93.6
10:1 to 24:1		4	19	3.7	3.8	97.5
25:1 or more		5	12	2.4	2.5	100.0
		.	23	4.5	Miscing	
		Total	510	100.0	1000	
Valid cases	487	sing	ases 23			

In the likelihood that some variation would exist in ratio preferences by grade and subject area, one-way ANOVAs were run and, where significance was evident, Tukey HSD procedures were performed to locate the source of the differences.

Optimal ratios, by grade. Statistically-significant differences in preferred ratios were found by grade level of the teachers (Figure DAR-91). Further analysis revealed
that teachers in grades K -1 (Group 1) were more likely to accept a higher student-tocomputer ratio ($\bar{x}=2.57$) than were teachers in any other grade level.

Optimal ratios, by subject. Similar analysis was performed for subject area, and significant differences surfaced (Figure DAR-92). As reflected in Figure DAR-93, teachers of CWE were willing to accept a highes rato $(\bar{x}=3.67)$ than were teachers of business ($\bar{x}=1.43$), compensatory education ($\bar{x}=1.56$), computer science/literacy (\bar{x} $=1.63$), or indutrial arts ($\bar{x}=1.70$). Media and library teachers were also willing to accept a higher student-computer ratio ($\bar{x}=2.78$), compared to business, compensatory education, computer science/literacy, or special education ($\bar{x}=1.91$).

Data Analysis Results

CBI Anecdotal Reports

Phase II

To gain a deeper understandin ${ }_{b}$ of teachers' efforts and students' educational gans in the CBI project, participating teachers were asked to complete anecdotal record forms -- first, at the end of the first semester, and at two-week intervals during the spring semester. The summary results reported below was carried on a ten percent sample of report forms representing all various regions.

Each anecdotal record f , was reviewed and thu information provided by the participating ${ }^{\text {cachers }}$ was entered inio a database management program, using key background variables as fields. Some adjustments in the range of values within these field had to be made in order to accommodate rion-standard responses. For example, the grade levels were expanded, since some teachers did not fit into the five categories provided by DoDDs. A code was therefore included for those teachers who worked with students across all the elementary grades, all the secondary grades and who worked with all students in the system (such as resource teachers). Content areas were also included and the areas of Resource, TAG and Learning haprovement were added to those listed by DoDDs.

Analysis of the data was done by subject and grade leve ${ }_{ı}$, but several trends crossed grade levels and are presented as such.

Trends Acrass Grades Levels and Subject Areas

Inservice Programs

1. Teachers felt that their teacher inservice programs were inadequate in the following ways:
a. Inservice was given prior to teachers actually looking at and reviewing software availade in their subject area.
b. There were too few inservices throughout the year that could provide support from a knowledgeable computer expert who could troubleshoot.
c. Teachers would like the opportunity to work with other teachers in their content areas and grade levels who are also participating in the program so that idea's can be exchanged. One teacher suggested that tinis could also be done by mail in the form of a newsletter.
d. Many teachers would have liked the opportunity to discuss specific software they had received with others to better utilize the programs.
e. Some teachers did not receive training at all.
f. Teachers would like greater emphasis on classroom management; that is, how to schedule students of different levels when only one or two computers are available, where to place the computer in a small room so that
it causes less distraction to those not using the comput.r station (especially in the elementary grades).
g. A few teachers noted that those with computer experience should not be in the sarne inservice programs as those with no background.
2. Several teachers would like a resource person available to them during the year that they could call upon for additional help.
3. Several teachers noted that communjeation between the district level of operation and the teachers at the sites was not good re arding training, causing them to miss sessions.

Establishing New CBI Sites

1. Mary teachers felt that the set up of the hardware was difficult, since they had litule knewledge of computers anu needed maierials that were not sent with the original package. Several teachers suggested that someone set up the stations for them and spend time explaining the basics so that minor problems could be handled without the station being lost to repair time outside the classroon.
2. Many teachers noted that the delivery of software was delayed to the point that classes were well under way (some were in their second half of the year) before the software they had ordered the spring before arrived. For this reason, the computers were not used by students in several classrooms for several minnths.
3. It was suggested that stations be located away, , m the main part of the clasjroom.
4. Instead of listing rules on a nearby chalkboard, a bulletin board should be used and charts should display schedules of students using the stations and projects completed.
5. Epson printers were seen as inadequate by many teachers whe would have preferrod Imagewriters.
6. More electrical outlets, tables, covers, adapters and power strips should be provided in the classroom.
7. Computing magazines should be made available to the teachers and students to heighten interests and provide new ideas in the area.
8. Generally, more computers were suggested per classroom.
a. Elementary level teachers generally used sr 'I group work and peer helpers. Groups of 3 to 5 students per station were adequate with a good scheduling system in place.
b. At the secondary level teachers felt very restrained by so few stations. Often teachers noted that students had to rnme during lunch or after school to complete projects and that waiting for stations became a little frustrating. At cimes some projects were put un hold because of a lack of available computer time. Several teachers suggested that a computer lab would be appropriate as students could work in the lab during their free periods as well. It was also noted that many students had prior computer knowledge and were able to move quickly through projects and could then r_{1} help others when more challenging programs were not yet available.
c. In schools where other teachers did not have access to computers, the stations were utilized by teachers when not used by the classes. One teacher suggested that a lab could provide teachers with specific hours when they could work on class materials or grades t. at would not interferc with studcnt use. An alternati-e to this would be the jesignation of a station for teacher use only.
9. There was a concern expressed for security precautions in several reports, notcoly in the Panama region where they had equipment stolen from the school.

Trends by Grade Level

On the Elententary Level

1. Word processing vas very difficult and time consuming for many students. Several teachers had students dictate stories, when that was the objective of the lesson, and had them work on computer skil!s a‘ another time.
2. The activities that teachers felt were impossible or extremely difficult without the computer included. animation, immediate feedback, computer skills, enthusiasm, drilis and reinforcement, and -alf-esteem/confidence.
3. Tearhers saw a need for more wu. with keyboarding as projects were slowed by developing motor skilis of students and lack of experien ee with computers.
4. Teachers thought that a faster pace with non-word processin programs woull be appropriate along with the raising of e ctations, since student progress with these programs has been good.
5. Most notably, teachers observed better teamwork among students as they shared computer stations.

On the Secondary Level

1. As tasks for students on this level are more individualized, students ne a more time allotted for comp!.tion of assignments. As noted before, teachers were not happy with using small groups for most projects.
2. The activities that teachers f ϵ it were impossible or extremely difficult without the computer included: graphics, layout, newspaper justification, data storage and manipulation, graphing and review of material.
3. Teachers gave students more responsibility for care of the software and equipment.
4. Teacners were changing objectives to include more assignments required to be done on the computer and even to have tests done on the computer, with the results being kept and monitored by the students.
5. Some teachers who did not feel that assignments could ta given to the whole class because of a lack of stations. They tended to give extra credit assignments on the computer or to use the software programs as rewards.
6. Graphics take a long time print and cause problems when only one printer is available in a classroom. It would be better if each terminal had its own printer. Several teachers noted that the evaluation form was repetitive, since some questions did not apply each week or changed very little from week "week (such as the
inservice training question). Others felt that continuity in the evaluation was important and believed that the different evaluation criteria presented were not reflective oi the positive aspects of the program and the impact on students.

RECOMMENDATIONS

In light of the results contained in this report, the following recomme..fations should be given careful consideration by DoUDS in order to capitalize on the postitive results of Phase II of the CBI Evaluation Project:

1. Expar:d Teacher Insinvice Opportunities. Teachers consistently repurted limited helpfulness of current inservice efforts in computing, either because iney are only minimally available or because the quality is low. On the other hand, large percertages of teachris reported the need for more computer-related inservice. The results of the questionnaires are supported by the anecdotal reports, where a sizable segment of project teachers emphasized the need for more inservice opportunities to share information and expertise with colleagues, to discover the range of software available to them, and to explore and practice effective classroom integration of computers, including whole-group instruction with a single computer and an LCD projection pad or monitor.
2. Enhance Computer Coordination at DoDDS-Washington. The anecdotal reports underscored the kind of disjointed implementation that many large school distrius experience in the area of technology. Futyre implementation efforts will require a higher level of coordination at the central office loyel to insure equitable distribution of resources, creative application of new technologies, cimely information dissemination, responsive inservice frogram development, and meant al student assessment. Proactive leadership is especially important as DuDDS
pushes tecin :logy use beyond the early adopters and into the mainstream of the curriculum.
3. Maintain in Each School a "Flexible Response" Capability. A $1: 1$ s''Ident to computer ratio is essential for serious work in word processing. For whole-group demonstration, a computer lab is wasted when only one machine is being used extensively by the teacher while students watch. Future equ:pment acquisition plans should aim for a "flexible response" to instructional computing needs. Consider a long-range plan including a lab to accommodate $1: 1$ needs, a large supply of mobil units to achieve a 3:1 or 4:1 ra.io for small group work, and a supply of LCD projectior prids when a one-computer classroom is the preferred environment. Considerable school-level coordination will be required to maintain this capacity.

4 Enhance the Role of Schoi 3 -Based Technolozy Coordinators. Formally establish, train, and provide ircentives for skilled school-based technology coordinators. Evidence from the anccdotal reports suggests that to the extent the regions have identified school-based contact people in technology, the knowledge and skills of thesc individuals range widely. Ultimately, change happens at the school level, and the kind of change DoDDS seeks with respect to educational technology will require a concerted effort within the five regions to better prepare individuals who serve in this role.
5. Improve Communication Among Tecinnology Users. Many stateside computer-using teachers feel isolated as they explore classroom uses of technology. This situation
is exacerbated in the DoDDS system by obstacles, large and small, to easy and frequent communication from school to school, district !o district, and region to region DcDDS should explere ways to break down these communication barriers that prevent teachers from sharing t. ${ }^{-}$experiences with technology in the classroom. The ideal would be a worldwide, user-friendly telecommunications system for teachers (and students). Clearly, however, the wide diversity of communications systems in host countries and wher such circumstances present some serious problems in achieving this ideal. Nonetheless, Do Γ DS-Washington, in conceri with regional personnel, should study whatever options may be available to improve the communica.ion among teachers in the system as they seek to implernent technology-based innovations.

Figures

20-Dec-89 22:54:34 GEORGE MASON UNIVERSITY
File Processing DODSTOTL TXT
region regionel offico ldentification

GRADE Grade level idefitification

value Libel	value	Frequency	Percent		$\begin{aligned} & \text { Vall } \\ & \text { Perce } \end{aligned}$		$\begin{aligned} & \text { Cum } \\ & \text { percent } \end{aligned}$	
X 1	1	17		4		4		4
23	2	1.11	3	4	3	4	3	8
46	3	1300	36	3	38	3	40	2
78	4	774	20	1	20	1	AO	3
912	\square	1 mol	30	0	39	0	99	3
K : 2	G	28		7		7	100	\bigcirc
		1		0	Miss	ng		
	Total	3851	100	0	100	0		

[^3]Figure DAR-1

DAR-53

Flle: Processing DODSTOTL TXT
JUBJECT Subject support area

Value Label	Value	Frequency	Porcent	$\begin{gathered} \frac{1 d}{} \\ \text { Percent } \end{gathered}$	$\begin{gathered} \text { Cum } \\ \text { Percent } \end{gathered}$
Art	10	91	24	24	24
Business	11	68	18	18	42
Compensatory Ed	12	68	17	17	59
Computer sci ${ }^{\text {com lit }}$	13	143		37	1 6
Cosmetology	14	1	0	0	87
CWE	15	74	18		116
Counseling	18	28	7	7	123
ESL	18	33	8	9	132
For. Language	2 C	102	26	27	158
Home Economics	21	42	11	11	170
Health	22	9	2	2	172
Host Natlon	23	43	11	11	183
Industrial Arts	22	98	25	<5	208
Lang Arts \mathcal{E} English	25	763	198	98	408
Malh	26	486	121	122	530
Media 6 Llbrary	27	247	64	65	584
Music	28	81	21	21	615
Reading	30	215	96	58	671
Sclence	31	470	122	123	784
Spec Ed	32	183	48	48	842
Social Studies	33	294	78	77	819
PPS	34	215	¢ 0		975
VOC Ed	35	95	$\bigcirc 5$	25	1000
		25	6	Missing	,
	Total	3851	- on 0	1000	
Valld cases 3826	M1ssing	ases 25			

Figure DAR-2

DAR-54

20-Dec 88
FREQUENCIES of students by descriptive varlables on Gmuv^X.

Flle. Processing dodstoti ixt

GENDER Gender ldertiflation

COMPUTRS Project computer count

Value Label
Value Erequency Percent Percent

Cum Pe cent

1	$3 \cdots 3$	9	7
2	857	24	9
3	2028	52	8
4	$1 \sim 5$	4	5
5	12		3
8	151	3	9
16	25		6
17	13		3
19	15		4
21	1		0
2.2	- 5		6
31	2		1
33	2		1
	74	1	9
Total	2891	100	0

9	9	9	8
25	3	35	2
53	6	88	0
4	θ	93	5
	3	93	8
4	0	97	8
	7	98	5
	3	98	3
	4	po	2
	n	$0 p$	$?$
	7	op	-
	1	90	\bigcirc
	1	100	0
Mis+lng			
1.20			

Valld cases 3777 Missing caspa 74

Figure DAR-3

Flle Processing DODSTOTL TXI

COMPREED Compuier needs count

Value Labol
value Erequency percent
valld cum

0	307	8	0	8	1
1	246	6	4	6	6
2	843	21	9	22	3
3	6.30	16	5	16	8
4	177	4	6	4	7
a	182	4	2	4	5
6	183	4	8	4	8
\because	219	5	7	5	8
8	84	2	2	2	2
\bigcirc	164	4	?	4	3
10	208	7	7	7	8
11	45	1	2	1	2
12	153	4	0	4	1
13	7		2		2
15	42	1	1	1	1
18	30		9	1	0
20	47	1	2	.	a
21	18		5		5
22	3		1		1
24	21		3		6
25	10		3		3
26	23		6		6
28	25		0		7
30	24		6		0
34	2		1		1
50	1		0		0
81	1		0		0
	74	1	9	M1ss	n8

Valld cases momn mssing cases 74

Figure DAR-4
rit

E11e: Processing DODSTOIL TXT

SOFTIYPE Type of software used in profect

Value Label	Value	Frequency	Percent	valld Percent	Cum Percent
Drill g practice	1	785	109	203	203
Tutorlal	2	541	140	143	346
Slmulation	3	593	154	157	503
Database	4	53	14	14	$5: 7$
Word proce ir:	5	1295	2) 4	290	907
Spreadsheei	6	1	0	0	807
Integrated sortrare	7	?3¢	87	88	898
Programming	8	\$4	17	17	913
Problgm-solving	9	329	85	87	1000
		- 5		Klssing	
				- -	
	Tosal	3851	1000	1000	
Valld cases 3775	s'ng	ses -8			

Figure DAR-5

Value Label		Value	Frequency	Percent	$\begin{aligned} & \text { Valid } \\ & \text { percen } \end{aligned}$	Cum Percent
Atlantic		1	392	1000	100.0	100.0
		Total	392	1000	100.0	

Grade Grade level :dentirication

SUbJECT Sublect support area

Value Label	value	Erequencv	jorcent	Valld Percent	Cum percent
Computer 3ct ofllt	13	25	34	64	64
For Lariguage	20	25	64	64	128
Home Economles	2:	18	46	48	173
Lang Arts Engllsh	25	75	181	181	785
Math	28	76	104	104	$=59$
Media Library	27	9	23	23	582
Sclence	31	78	194	184	776
Spec Ed	2	48	125	125	801
Social Studies	33	38	e 7	97	987
PPS	34	1	3	3	1000
	treal	392	1000	- 000	

Figure DAR-6

20-Dec-88 FFEQUENCIES of students by descriptive variades 22:54:38 GEORGE MASON UNIVERSITY

File Processing DODSTOTL TXI

GENDER Genter identification

Value Lb, -		Value	Frequ. rey	Percent	Valid Percent	$\begin{gathered} \text { Cum } \\ \text { percent } \end{gathered}$
male		1	212	541	542	542
remale		2	179	45%	458	1070
			1	3	Missing	
		Tctal	382	1000	1000	
vallu cases	381	H1ssing	ses 1			

COMPUTRS Project computer count

Value Label	Value	Frequency	Percent	$\begin{gathered} \text { valli } \\ \text { percent } \end{gathered}$	$\begin{gathered} \text { Cum } \\ \text { sercont } \end{gathered}$
	1	14		36	36
	2	31	78	78	115
	3	296	755	755	870
	4	25	64	64	834
	22	$2{ }^{\circ}$	64	64	88 7
	33	1	3	3	1000
	Total	202	1000	200-	

[^4]$$
r: i
$$

0 0 0 0

Figure DAR-8

Fily: Processing DODSTOT: TXT
REGION Regional orfice dentification

Figure DAR-9

File: Processing DODSTOTL.TXT
SUBJECT abject support area

GENDER Gender identification

value Labal	value	Frequenct	Percent		valld Percent	$\begin{gathered} \text { Cum } \\ \text { Percent } \end{gathered}$	
	0	1		0	0		0
male	1	1134	49	9	502	50	3
female	2	1123	49	,	497	100	0
		15			M1ssing		
	Total	2273	100	0	100 a		

Figure DAR-10

20-Dec-89 FREQUENCIES of students bv descriptlve variables 22:54:45 GEORGE MASON UNIVERSITY

File. ..ncessing DODSTOTI TXT
Computrs Project computer count

Figure DAR-11

```
20-Dec-89 FREQUENCIES ot students bv dascriptive varlables
22:54:45
F.le: Processing DODSTOTL TXT
COI.PFEED Computer needs count
```

Value Label		Value	Frequency	Percent	Valld Percent	Cum Percent
		0	184	81	83	83
		1	137	60	62	144
		2	524	231	236	380
		3	220	97	9.8	478
		4	169	74	76	555
		5	119	5		608
		6	134	59	60	638
		7	$: 15$	51	52	720
		8	84	37	38	758
		8	91		4.1	789
		10	:-4	77	78	877
		11	25		1 :	888
		12	81	38	36	924
		13	7	3	3	928
		15	24	11		938
		18	36	16	16	955
		20	22	10	10	964
		21	18	8	8	973
		22	2	1	1	973
		25	10	4	4	978
		25	23		1.0	988
		30	24		11	998
		50	1	0	0	1000
		81	1	0	0	1000
			48	$2:$	Missing	
		Total	2273	100°	1000	
Valld cases	2225	sing ca	ses 48			

Figure DAR-i2

Figl e DAR-13

File: Processing LODSTOTL TYT
RECIOR Regional office identification

GRADE Grade level ldentiflcation

Value Label	Value	Erequency	Percent	$\begin{gathered} \text { Vaild } \\ \text { Porcent } \end{gathered}$	Cum Percent
X-1		6	14	1 :	14
4-3	3	157	368	368	384
7-8	*	46	- ${ }^{\text {a }}$	10%	492
9-12	5	188	442	$4{ }^{4} 2$	834
x-12	8	28	66	66	1000
	Total	425	1000	. 000	

Figure DAR-14

20-Dec-89	FREQUENCIES of students by descriptive variables	on GMUVAX::
2a:54:50	GEORGE HASON UF - JERSITY	
File:	Processing DODSTOTL.TXT	
SUBJECT	Subject support area	

SUBJECT Subject support area

Value Labol	Value	Frfyuency	Percent	$\begin{gathered} \text { valld } \\ \text { Percent } \end{gathered}$	$\begin{gathered} \text { Cum } \\ \text { Percent } \end{gathered}$
Art	10	8	19	18	1.8
Business	11	25	59	59	
Compensatory Ed	12	34	80	86	158
CWE	15	25	59	5.9	$\therefore 16$
Counseling	16	24	58	5.6	27.3
ESL	18	6	14	1.4	287
Industrial Atts	24	3	7	. 7	28.4
Lang Arta $\mathrm{E}_{\text {English }}$	25	57	13.6	13.4	42.8
rath	26	68	160	16.0	58.8
Media E Library	27	25	59		647
Kusic	28	14	33	33	680
Reading	30	10	2.4	21	704
Science	31	53	125	125	8 8 8
Spec Ed	32	8	1ε	19	847
Social Studies	33	34	80	80	927
PPS	34	31	73	73	1000
	Total	425	1000	100 C	
Valld cases 425	Missing	ases 0			
- . - - - -	-	- - -	- -	- -	- -

File. Processing DODSTOTL TXT

Computps project computer count

Value Label	Value	Eraquency	Percent	valld Percen*	Cum Percent
	1	81	191	203	203
	2	80	188	20.c	403
	3	212	499	530	933
	6	27	64	6.7	1000
		25	59	Missing	
	Total	425	1000	100	

val:d cases 400 Missing cases 25

COMPNEED Computer needs count

'alue Label		Value	Erequency	Percent	valid percent	$\begin{gathered} \text { Cum } \\ \text { Percent } \end{gathered}$
		0	24	58	60	e 0
		1	40	94	100	160
		2	68	160	170	330
		3	171	402	428	758
		4	8	19	20	778
		7	23	54	58	835
		9	25	$\bigcirc 9$	63	898
		10	38	89	95	983
		12	3	7	8	100 n
			25	59	Missing	
		Total	$\cdots \text {-..- }$			
alid cases	400	sing	Ses 25			

Figure DAR-26

Figure DAR-17

DAR-69

20-Dec-88 22:54:55 REOREE MASOM OM SVERSt
cripilve varisbles on gmuvax : n gmuvax Processing DODSTOTL TXT
File
REGION Regional otfice identification

Value Labol		value	Frequency	Percent	Val:d Percent	Cum Percent
Pactife		4	675	1000	1000	1000
		Total	\cdots	100 0	-1000	
valld cases	075	sing	ses 0			

GRADE Grade level ldentificatlo.

-igure DAR-18

```
20-Dec-89 FREQUENCIES of students by descr:ptive variables
22:54:55 GEORGE MASON UHIVERSITY

Elle：Processing DodstotL．TXI
SUBJECT Subject support area
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Frequency & Percent & \[
\begin{gathered}
\text { vasld } \\
\text { percent }
\end{gathered}
\] & \begin{tabular}{l}
Cum \\
Percent
\end{tabular} \\
\hline Art & 10 & i6 & 24 & 24 & 24 \\
\hline Compensatory Ed & 12 & 2 & 3 & 3 & 27 \\
\hline Computer scl \％llt & 13 & 23 & 34 & 34 & 61 \\
\hline Cosmetology & 14 & 1 & 1 & 1 & 62 \\
\hline CWE & 15 & 24 & 3 6 & 36 & 88 \\
\hline ESL & 18 & 6 & \(\theta\) & 9 & 107 \\
\hline For Language & 20 & 13 & 18 & 19 & 126 \\
\hline Health & 22 & 1 & 1 & 1 & \(12 \%\) \\
\hline Industrial Arts & 24 & 25 & 37 & 37 & 164 \\
\hline Lang Arts English & 25 & 140 & 20.7 & 20.7 & 372 \\
\hline Hath & 26 & 128 & 150 & 180 & 561 \\
\hline Media \(y\) Library & 27 & 23 & 34 & 31 & 596 \\
\hline Mus 10 & 20 & 9 & 13 & 13 & 809 \\
\hline Reading & こ」 & 23 & 34 & 34 & 843 \\
\hline Science & 31 & 153 & 231 & 231 & 874 \\
\hline Spec Ed & 32 & 3 & 4 & 4 & 878 \\
\hline Soclal Studies & 33 & 34 & 50 & 50 & 929 \\
\hline PPS & 34 & 48 & 71 & 71 & 1000 \\
\hline & Total & 675 & 1000 & 1000 & \\
\hline
\end{tabular}

Valld cases 675 Missing cases 0

GENDER Cenderidentification
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Value Labe？} & & Value & Frequency & Percent & \[
\begin{gathered}
\text { Valld } \\
\text { percent }
\end{gathered}
\] & \[
\begin{gathered}
\text { Cum } \\
\text { percont }
\end{gathered}
\] \\
\hline & & 0 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { male } \\
& \text { remale }
\end{aligned}
\]} & & ！ & 347 & 514 & 516 & 518 \\
\hline & & 2 & 324 & 480 & 482 & 1000 \\
\hline & & & 3 & 4 & Missing & \\
\hline & & Total & 875 & 1000 & 1000 & \\
\hline Valla cases & 872 & Mlssing & ses 3 & & & \\
\hline
\end{tabular}

Figure DAR－19

20-DeC:9 22-54:55 GEORGE CASOM UNIVERSIT GEORGE KASOH UNIVERSITY on GhUVAX.
vHS vs

Flle: Processing DODSTOTL TXT
computrs project computer count
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{Value Lajes} & & value & Frequency & Percent & \begin{tabular}{l}
Valld \\
Percent
\end{tabular} & \begin{tabular}{l}
Cum \\
Pe:-ent
\end{tabular} \\
\hline & & 1 & 18 & 27 & 2.7 & 27 \\
\hline & & 2 & 152 & 225 & 225 & 252 \\
\hline & & 3 & 464 & 687 & 687 & 93 - \\
\hline & & 4 & 15 & 22 & 22 & 981 \\
\hline & & 6 & 23 & 37 & 37 & 988 \\
\hline & & 31 & 1 & 1 & 1 & 1000 \\
\hline & & Total & 675 & 100 & 1000 & \\
\hline valld cases & 675 & sing & ses 0 & & & \\
\hline
\end{tabular}

COMPFEED COMPtrer noeds count
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Labe! & Value & Erequency & Percent & Valld Percent & \begin{tabular}{l}
Cum \\
Percent
\end{tabular} \\
\hline & \(n\) & 42 & 61 & B 1 & 6 1 \\
\hline & : & \(-1\) & 105 & 105 & 18 8 \\
\hline & 2 & 108 & 157 & 157 & 323 \\
\hline & 7 & 168 & 248 & 249 & 572 \\
\hline & \(\square\) & 17 & 25 & 25 & 597 \\
\hline & 3 & 49 & 73 & 73 & 670 \\
\hline & \(\cdots\) & 29 & 37 & & - 7 \\
\hline & \(\rho\) & 0 & 13 & 13 & 720 \\
\hline & 10 & 51 & \(\cdots 6\) & 76 & 788 \\
\hline & 11 & 20 & 30 & 30 & 825 \\
\hline & 12 & 80 & 102 & 102 & 82 7 \\
\hline & 20 & 29 & 37 & 37 & 081 \\
\hline & 22 & & 1 & 1 & \(\theta 86\) \\
\hline & 24 & 21 & 31 & 31 & 987 \\
\hline & 34 & 2 & 3 & 3 & 1000 \\
\hline & & - & - & - & \\
\hline & Total & R-5 & 1000 & 1000 & \\
\hline
\end{tabular}

Figure DAR-20


Figure DAR-21

20-Dec-89 GEORGE MASON UHIVERSITY on GMUVAX: : Processing DODSTOTL.TXT
Flle:
REGION Regional office identification


GRADE Grade level identizication
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & Value & Frequency & Percent & \begin{tabular}{l}
V.11d \\
Percent
\end{tabular} & Pe..ont \\
\hline 7-8 & & 4 & 37 & 435 & 435 & 435 \\
\hline 9-12 & & 5 & 48 & 585 & 565 & 1000 \\
\hline & & Total & 85 & 1000 & 1000 & \\
\hline
\end{tabular}

SUBJECT Subject support area

Value Label
Value Frequency percent percent Cum

\(\nabla L \cdot \mathrm{CBO}\)
Figure DAR-22

20-Dec-89 22:55:00 GEORGE MASON UNIVERSITY on GluUVAX:

Flle: Processing dodstoti.tXt
GENDIR Gender luentification
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & value & Frequencv & sercent & \[
\begin{aligned}
& \text { Valld } \\
& \text { percent }
\end{aligned}
\] & \[
\begin{gathered}
\text { Cum } \\
\text { percent }
\end{gathered}
\] \\
\hline maie & 1 & 50 & 588 & 588 & 58.8 \\
\hline female & 2 & 35 & 412 & 41.2 & 100.0 \\
\hline & Total & 85 & 1000 & 1000 & \\
\hline
\end{tabular}

COMPUTRS Project computer count
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & value & Frequency & Percent & \begin{tabular}{l}
valld \\
Percent
\end{tabular} & Cum Percent \\
\hline & 2 & 40 & 471 & 471 & 471 \\
\hline & 3 & 31 & 365 & 365 & 835 \\
\hline & 17 & 13 & 153 & 153 & 988 \\
\hline & 21 & 1 & 12 & 12 & 1000 \\
\hline & Total & 85 & 1000 & 1000 & \\
\hline
\end{tabular}

COMPNEED Computer needs count

Value label value frequency percent vercent percent
valld cases

\section*{\(\varsigma L-q \forall a\)}
\begin{tabular}{rrrrrrrr}
2 & 42 & 49 & 4 & 49 & 4 & 49 & 4 \\
5 & 22 & 14 & 1 & 14 & 1 & 83 & 5 \\
7 & 13 & 15 & 3 & 15 & 3 & 78 & 8 \\
15 & 18 & 21 & 2 & 21 & 2 & 100 & 0 \\
& & & & & 100 & & 100
\end{tabular}

Figure DAR-23

20-Dec-89 FREQUENCIES of stadents by descriptive variables 22:55:00 GEORGE MASON UNIVERSITY

\section*{File: Processing DODSTOTL TXT}

SOFTTYPE Type of software used in project

Value Label
word processor
Integrated software
valdd cases
85

Value Froquency percent
Valld ercent percen

708
 70 B

294
1000 ercent 1000

Figure DAR-24

rotal Cases \(=1154\)



With fewer than three groups, the relationship is linear
\begin{tabular}{llll} 
Within Groups & \(173708.7964 \quad 1152 \quad i 50.7889\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 22-Dec-89 & \multicolumn{5}{|l|}{BREAKDCAM of aggregate gr \(5 \cdot 5\) students' att'tudes Page 9} \\
\hline 18:58:13 & \multicolumn{2}{|l|}{GEORGE MAPON UMIVERSITY} & 1 gmuvax: : & \multicolumn{2}{|l|}{VHS V5.1} \\
\hline File: P & \multicolumn{5}{|l|}{Processing DOOSTJTL.TXT} \\
\hline \multicolumn{6}{|c|}{AHALYSIS OF VARIANCE} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Criterion Variable ATTYOUNG Gr, wes \(5-6\) attitudes iv'ard computers Broken Down by SOFTTYPE TyF 2 of software used in project}} \\
\hline & & & & & \\
\hline Va're & Label & Sun & Mean & Std Dev Sum of Sq & Cases \\
\hline 1 & Dri'l \& practice & 17733.00 & 95.8541 & 11.767525479 .0595 & 185 \\
\hline 2 & Tutorial & 16591.00 & 98.1716 & \(11.971224076 .0<37\) & 169 \\
\hline 3 & Sirulation & 8536.00 & 95.9101 & 13.6579164152809 & 89 \\
\hline 4 & Jatabase & 3374.00 & 91.1892 & 11.03244381 .0757 & 37 \\
\hline 5 & Hord processor & 43134.00 & 99.8472 & 12.612968565 .9167 & 432 \\
\hline 7 & Integrated software & 5604.00 & 100.0714 & \(12.1608 \quad 8133.1143\) & 56 \\
\hline 8 & Programing & 4117.00 & 102.9250 & 10.3066 414?.7750 & 40 \\
\hline 9 & Problem-solving & 14163.00 & 98.3542 & 11.2892 18224.9375 & 144 \\
\hline Within Group & ups Total & 113252.00 & 98.3090 & 12.1694169419 .383 & \(1!52\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & Sum of Squares & U.F. & Mean Square & \(F\) & Sig. \\
\hline Between Groups & 5554.6030 & 7. & 793.5147 & 5.3582 & . 0000 \\
\hline Linearity & 1522.1814 & 1 & 1572.1814 & 10.2785 & . 0014 \\
\hline Dev. from Linearity & 4032.4215 & 6 & 672.0703 & 4.5381 & . 0001 \\
\hline & \(R=.0933\) & R Squa & \(=.0087\) & & \\
\hline Within Groups & 169419.3832 & 1144 & 148.0939 & & \\
\hline
\end{tabular}

Figure DAR-27

Variable ATYYOUNG Grades 5-6 attitudes toward computers
By Variable softtrpe type of software used in project
multiple range test

TUXEY-HSD PROCEDURE
ranges for the u.uso level .
\[
\begin{array}{lllllll}
4.29 & 4.29 & 4.29 & 4.29 & 4.29 & 4.29 & 4.29
\end{array}
\]
the ramges above are table ranges.
the value actually compared with mean(J)-hean(I) is..
8.6051 * RANGE * DSORT(1/N(1) + \(1 / \mathrm{H}(\mathrm{J})\) )
(*) denotes pairs of groups sigificantly different at the 0.050 level
GGGGGGGG
rrerrerr
DPDPDPDP

911892 Grp 4
95.8541 Grp
95.8101
98.1716
98.3542
99.8472
100.0714
102.9250 Grp A

Figure DAR-28

O2-Dec-89 ONEWAY of aggregate gr 7-12. .tudents' attitudes, by descrip vars
O2-Dec-89 ONEWAY of aggregate gr 7-12. .tudents' attitudes, by descrip vars
18:23:57 GEORGE MASON UNIVERSITY
18:23:57 GEORGE MASON UNIVERSITY
file: Processing DODSTOTL.TXT
file: Processing DODSTOTL.TXT
    Variable ATTOLDER iradas 7-12 attitudes toward computers
    By Variable REGION Regional office identification

\section*{analysis of vapiance}

SOURCE
BETMEEN GROUPS WITHIN GROUPS tOTAL

D.F. SOUARES
\(4 \quad 10309.1800\)
20121008801.984 20161019111.164

MEAN
SOUARES
2577.:950
501.3926

F \(\quad F\)
RATIO PROB.
\(5.1403 \quad .0004\)
ATIOLDER Grades 7-12 attitudes toward comouters By Variable REGION Regional office identification
MULTIPLE RAMGE TEST
IUKEY-HSD PRJCEDURE
ranges for the 0.050 level -
\[
\begin{array}{llll}
3.87 & 3.87 & 3.87 & 3.87
\end{array}
\]
the ranges above are table ranges
THE VALUE ACTUALLY COAPARED HITH MEAN(J)-MEAN(!) IS..
15.8334 * RANGE * DSORT(1/H(1) + \(1 / \mathrm{N}(\mathrm{J}))\)
(*) DENOTES PAIRS OF GROUPS SIGNIfICANTLY DIffERENT AT the 0.050 LEVEL
\[
\begin{aligned}
& \text { GGGGG} \\
& r \text { r r r r } \\
& \text { p p p p p }
\end{aligned}
\]
\begin{tabular}{ccc} 
Mean & Group & 13425 \\
& & \\
167.8700 & Grp 1 & \\
168.4722 & Grp 3 & \\
168.8444 & Grp 4 & \\
172.9659 & Grp 2 & \(*\) \\
174.6081 & Grp 5 &
\end{tabular}

Figure DAR-30
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 22-\text { Dec- } 89 \\
& 18: 59: 37 \\
& \text { file: }
\end{aligned}
\] & \[
\begin{array}{r}
\text { BREAKDO } \\
\text { GEORGE } \\
\text { Processing }
\end{array}
\] & W of aggregate gr. AASON UNIVERSITY DOOSTOTL. TXT & 2 students on GNUVAX: & titudes & V5.1 & Page \\
\hline DE & S CRI & TIONOFSU & POPUL & IIONS & & \\
\hline Criterion Broken & Variable Down by & \[
\begin{array}{ll}
\text { ATTOLDER Grades 7 } \\
\text { SUBJECT } & \text { Subject }
\end{array}
\] & 2 attitudes pport area & coward comp & & \\
\hline Variable & Value & Label & Mean & Std Dev & Cases & \\
\hline for tintire & Populotion & & 171.3644 & 22.4836 & 2017 & \\
\hline SUBJECT & 10 & Art & 170.8000 & 23.1624 & 55 & \\
\hline SUBJECT & 11 & Business & 172.4091 & 22.4067 & 66 & \\
\hline SUBJECT & 13 & Computer sci \& lit & 170.3448 & 26.0758 & 29 & \\
\hline SUBJECT & 15 & CUE & 160.0000 & 24.0783 & 61 & \\
\hline SUBJEご & 16 & Counseling & 170.7778 & 18.7275 & 27 & \\
\hline SUBJECT & 18 & ESL & 165.0000 & 2.8284 & 2 & \\
\hline SUBJECT & 20 & for. Languege & 170.9175 & 22.5484 & 97 & \\
\hline SUBJEC: & 21 & Home Economics & 162.6389 & 17.2861 & 36 & \\
\hline SUBJECT & 23 & Host Hation & 176.8571 & 19.2175 & 28 & \\
\hline SUBJECT & 24 & Industrial Arts & 169.7952 & 22.3054 & 83 & \\
\hline SUBJECT & 25 & Leng Arts \& English & i71.8133 & 23.1359 & 316 & \\
\hline SUBJECT & 26 & Math & 170.1327 & 20.5255 & 226 & \\
\hline SUBJECT & 27 & Media \& Library & 177.4571 & 19.4803 & 105 & \\
\hline SUBJECT & 28 & Husic & 170.5429 & 21.1011 & 35 & \\
\hline SUBJECT & 30 & Reading & 175.6860 & 20.9976 & 121 & \\
\hline SUBJECT & 31 & Scierie & 170.3019 & 21.9058 & 318 & \\
\hline SUBJECT & 32 & Spec. Ed. & 169.8627 & 26.9503 & 102 & \\
\hline SUBJECT & 33 & Social Studies & 170.3642 & 20.9064 & 162 & \\
\hline SUBJECT & 34 & Pis & 179.8906 & 23.3096 & 64 & \\
\hline SUBJECT & 35 & Voc. Ed. & 173.2381 & 26.7364 & 84 & \\
\hline
\end{tabular}

Figure DAR-31


ANALYSIS OF VARIANC:
Criterion Variable ATTOLOER Grades 7-12 attitudes toward computers Broken Down by SUBJECT Subject/support ored
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value & Label & Sum & Mean & Std Dev & Sum of Sq & Coses \\
\hline 10 & Art & 9394.00 & 170.8000 & 23.1634 & 28970.8000 & 55 \\
\hline 11 & Business & 11379.00 & 172.4091 & 22.4067 & 32633.9545 & 66 \\
\hline 13 & Computer sci \& lit & 4940.00 & 170.3468 & 26.0758 & 19038.5517 & 29 \\
\hline 15 & CUE & 9760.00 & 160.0000 & 26.0783 & 34786.6000 & 61 \\
\hline 16 & Counseling & 4611.00 & 170.7778 & . 8.7275 & 9118.6567 & 27 \\
\hline 18 & ESL & 330.0 C & 165.0000 & 2.8284 & 8.0000 & 2 \\
\hline 20 & for. Lenguase & 16579.00 & 170.9175 & \(22.548 \%\) & 48809.3402 & 97 \\
\hline 21 & Home Economics & 5855.00 & 162.6389 & 17.2881 & 10458.3056 & 36 \\
\hline 23 & Host Nation & 4952.00 & 176.8571 & 19.217 \({ }^{\text {r }}\) & 2971.4286 & 28 \\
\hline 24 & Industrial Arts & 14673.00 & 169.7952 & 22.3054 & 40797.5181 & 83 \\
\hline 25 & Long Arts 8 English & 54293.00 & 171.8133 & 23.1369 & 168623.986 & 316 \\
\hline 26 & Moth & 38450.00 & 170.1327 & 20.5255 & 94792.0177 & 226 \\
\hline 27 & Medio \& Llbrary & 18633.00 & 177.4571 & 19.4803 & 39466.0571 & 103 \\
\hline 28 & Husic & 5969.00 & 170.5429 & 21.1011 & 15138.6857 & 35 \\
\hline 30 & Reading & 21258.00 & 175.6850 & 20.9976 & 52908.0661 & 121 \\
\hline 31 & Science & 56156.00 & 170.3019 & 21.9058 & 152117.019 & 318 \\
\hline 32 & Spec. Ed. & 17326.00 & 169.3627 & 26.9\%03 & 73358.0784 & 102 \\
\hline 33 & Social Studies & 27599.C0 & 170.3662 & 20.9064 & 70369.5123 & 162 \\
\hline 34 & Pps & 11513.00 & 179.8906 & 23.3096 & 34230.2344 & 6 \\
\hline 35 & Voc. Ed. & 14552.00 & 173.2381 & 26.7364 & 59331.2381 & 84 \\
\hline n Group & Ps rotal & 345042.00 & 171.3644 & 22.3206 & 994927.458 & 2017 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & Sum of Squares & D.F. & Mean Square & F & Sig. \\
\hline Between Groups & 24183.7058 & 19. & 1272.8266 & 2.5548 & . 0002 \\
\hline Linearity & 2376.0910 & 1 & 2376.0910 & 4.7692 & . 0291 \\
\hline Dev. from Linearity & 21407.6148 & 18 & 1211.5342 & 2.4318 & . 0007 \\
\hline & \(R=.0483\) & \(R\) squa & \(=.0023\) & & \\
\hline Within Groups & 9946127.4583 & 1997 & 498.2110 & & \\
\hline
\end{tabular}

Figure DAR-32
Eta \(=.1540 \quad\) Eta Squared \(=.0237\)
```

22-Dec-89 OHEWAY of aggreqate gr 7-12 studencs' attitudes, by descrip
18:23:59 GEORGE MASOH UNIVERSITY ON G*UUVAX:: VMS V5.1

```
File: Processing DCOSTOTL.TXT

Variable ATTOLDER Grades 7-12 attitudes ioward computer
By Variable SUBJECT Subject/support area
multiple range test
TUKEY-HSD PROCEDURE
RANGES FOR THE 0.050 LEVEL -
\[
\begin{array}{llllllllll}
5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 \\
5.01 & 5.61 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 & 5.01 &
\end{array}
\]
the ranges above are table ranges.
the value actually compared with mean(J)-mean (l) IS..
15.7831 * RANGE * OSORT(1/N(I) + 1/H(J))
(*) DENOTES PAIRS OF GROUPS SIGNIFICANTLY DIFFERENT AT THE 0.050 LEVEL

> GGGGGGGGGGGGGGGGGGGG
> rerrerrerrrerrerrerr
> pppppppppppppppppppp
51842613386005150374

Nean Group
160.0000 Grpls
162.6389 Grp21
165.0000 Grp18
169.7952 Grp24
169.8627 Grp32
170.1327 Grp26
170.3019 Grp31
170.3448 Grp13
170.3642 Grp33
110.5429 Grp28
170.7778 Grp16
170.8000 Grplo
170.9175 Grp20
171.8133 Grp25
172.4091 Grp11
173.2381 Grp35
175.6880 Grp30
\(170.8571 \quad\) Grp23
177.4571 Grp27
179.8906 Grp34 *

Figure DAR-33


ANALIS!S OF VARIANCE
Criterion Variable AIrOLDER Grades \(7-12\) attitudes toward computers
Broken Down by GENDER Gender identification
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value & Label & Soun & Mean & std Dev & Sum of Sq & Cases \\
\hline 1 & male & 188849.00 & 175.0222 & 22.8515 & 562923.466 & 1079 \\
\hline 2 & femate & 156793.00 & 167.1567 & 21.3009 & 425143.963 & 938 \\
\hline Within Group & ps Total & 345642.00 & 171.3644 & 22.1440 & 988067.429 & 2017 \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
Source & \begin{tabular}{c} 
Sum of \\
Squares
\end{tabular} & D.F. & \begin{tabular}{c} 
Mean \\
Square
\end{tabular} & F & Sig. \\
Between Groups & & 31043.7352 & 1. & 31043.7352 & 63.3086
\end{tabular}

With fewer than three groups, the relationship .. linear
\(\begin{array}{lll}\text { Within Groups } & 988067.4289 \quad 2015 \quad 490.3560\end{array}\)
\(E t a=.1745 \quad\) Eta Squared \(=.0305\)
Figure DAR-34
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 2 i-D e c-89 \\
& 18: 59: 37 \\
& \text { file: }
\end{aligned}
\] & \multicolumn{6}{|l|}{\begin{tabular}{l}
BREAKDOWN of aggregate gr. 7-12 students' attitudes \\
GEORGE MASON UNIVERSITI \\
on gmuvax: : \\
VMS V5. 1 \\
Processing ooostotl.txt
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{ANAIYSIG OF VARIANCE} \\
\hline Criterion Broken & Variable ATTOLDER
Down bu SOFTTYPE & \multicolumn{5}{|l|}{Grades 7-12 attitudes toward computers Type of software used in project} \\
\hline value & Label & Sum & Mean & Std Dev & Sum of Sq & Cases \\
\hline & Drill \& practice & 67441.00 & 168.6025 & 20.6271 & 169765.798 & 400 \\
\hline & Tutorial & 52.15.00 & 172.9868 & 22.5264 & 153245.947 & 303 \\
\hline & Simulation & 71151.00 & 169.4071 & 21.8934 & 200835.379 & 420 \\
\hline & Database & 1343.00 & 191.8571 & 19.1610 & 2202.8571 & 7 \\
\hline & Hord processor & 85258.05 & 172.9371 & 23.8863 & 280713.051 & 493 \\
\hline & Spreadsheet & 189.00 & 189.0000 & . 0000 & . 0000 & 1 \\
\hline & Integrated sortware & 39069.00 & 173.6400 & 21.1358 & 100065.840 & 225 \\
\hline & Programing & 2870.00 & 179.3750 & 21.0614 & 6653.7500 & 16 \\
\hline & Problem-solving & 19771.00 & 171.9217 & 23.9737 & 65520.2957 & 115 \\
\hline Within Group & ups rotal & 339507.00 & 171.4682 & 22.2868 & 979002.917 & 1980 \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
Source & \begin{tabular}{c} 
Sum of \\
Squares
\end{tabular} & D.F. & \begin{tabular}{c} 
Mean \\
Square
\end{tabular} & F & Sig. \\
Betwean Groups & 12136.0787 & 8. & 1516.7598 & 3.0537 & .0020 \\
Linearity & 3765.4594 & 1 & 3765.4594 & 7.5809 & .0060 \\
Dev. from Linearity & 8368.6193 & 7 & 195.5170 & 2.4069 & .0187 \\
& R \(=.0616\) & R Squared \(=\) & .0038 & & \\
Within Groups & 979002.9168 & 1971 & 496.7037 & & \\
& Eta \(=.1106\) & Eta Squared \(=\) & .0122 & &
\end{tabular}

Figure DAR-35
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ESCRIP & TION & 0 F & POPUL & 110 N & \\
\hline Criterion Broke & Variable Down by & attoleer HOMECOMP & \multicolumn{4}{|l|}{Grades 7-12 attitudes toward computers Computer outside of sct ool?} \\
\hline Variable & Value & Label & & Mean & Std Dev & Cases \\
\hline For Entir & e Populatio & & & 171.3644 & 22.4836 & 2017 \\
\hline HOMECOMP & 1 & Yes & & 173.3994 & 22.5949 & 1442 \\
\hline HOMECOMP & 2 & No & & 166.2609 & 21.3844 & ; 75 \\
\hline
\end{tabular}

18:59:37 GEORGE MASOH UNIVERSITY On GMUVAX:: VMS V5. 1
File: Processing ocostort.ix

Total Cases \(=2017\)

ANALYSIS OF VARIANCE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Criterion Variable Broien Down by & attolder HOMECOMP & \multicolumn{5}{|l|}{Grades 7-12 attitudes toward computers Computer outside of schnol?} \\
\hline Value Label & & Sum & Mean & Std Des & sum of Sq & Cases \\
\hline 1 Yes & & 250042.00 & 173.3994 & 22.5949 & 735675.920 & 1442 \\
\hline 2 No & & 95600.00 & 166.2609 & 21.3844 & 262486.870 & 575 \\
\hline Within Groups rotal & & 345642.00 & 171.3644 & 22.2568 & 998162.789 & 2017 \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
Source & \begin{tabular}{c} 
Sum of \\
Squares
\end{tabular} & O.F. & \begin{tabular}{c} 
Mean \\
Square
\end{tabular} & F & Sig. \\
Between Groups & 20948.3750 & 1. & 20948.3750 & 42.2887 & .0000
\end{tabular}

With fewer than three groups, the relationship is linear
\(\begin{array}{llll}\text { Within Groups } & 998162.7891 & 2015 & 495.3661\end{array}\)

30-Sep-89 1:59:47 I-S of toachers GEORGE MASON UNIVERSIIY

File: Processing DODDICHR, IXT
REGION Reglonal office ldentiflcation


Figure DAR-37


Fllo: Processing DODDTCHR.TXT
SUBJECT Su'lect.support area


GENDER Gender Identiflcation


Figure DAR-38


Figure DAR-39

38

30-Sep-89
21:59:47
File: Processing DODDTCHR TXT


COKPREED Computer neads cour.t
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & Value & Erequency & Percent & Valld Percent & \[
\begin{gathered}
\text { Cum } \\
\text { Percent }
\end{gathered}
\] \\
\hline & & 0 & 85 & 163 & 163 & 16.3 \\
\hline & & 1 & 47 & 9.0 & 90 & 253 \\
\hline & & 2 & 105 & 201 & 20.1 & 454 \\
\hline & & 3 & 70 & 134 & 134 & 588 \\
\hline & & 4 & 27 & 52 & 52 & 640 \\
\hline & & 5 & 28 & 50 & 50 & 690 \\
\hline & & 8 & 43 & 82 & 8.2 & 772 \\
\hline & & 7 & 24 & 46 & 48 & 818 \\
\hline & & 8 & 7 & & 13 & 831 \\
\hline & & 9 & 9 & 17 & 17 & 84 \% \\
\hline & & 10 & 28 & 54 & 5.4 & 902 \\
\hline & & 11 & 4 & 8 & 3 & 910 \\
\hline & & 12 & 10 & 1.9 & 19 & 928 \\
\hline & & 13 & 2 & 4 & . 4 & 93.3 \\
\hline & & 14 & 2 & 4 & . 4 & \(93 \%\) \\
\hline & & is & 5 & 10 & 10 & 948 \\
\hline & & 18 & 1 & 2 & 2 & 948 \\
\hline & & 17 & 1 & 2 & 2 & 950 \\
\hline & & 18 & 2 & 4 & 4 & 95.4 \\
\hline & & 20 & 3 & 8 & 6 & 980 \\
\hline & & 21 & 2 & 4 & 4 & 984 \\
\hline & & 22 & 1 & 8 & 8 & 971 \\
\hline & & 23 & 1 & 2 & 2 & 973 \\
\hline & & 24 & 3 & 6 & 6 & 979 \\
\hline & & 25 & 2 & 4 & 4 & 983 \\
\hline & & 26 & : & 2 & 2 & 985 \\
\hline & & 27 & 1 & 2 & 2 & 987 \\
\hline & & 28 & 2 & 4 & 4 & 990 \\
\hline & & 30 & 2 & 4 & 4 & 994 \\
\hline & & 34 & 1 & 2 & 2 & 996 \\
\hline & & 70 & 1 & 2 & 2 & 998 \\
\hline & & 99 & 1 & 2 & 2 & 1000 \\
\hline & & Total & --..-. & 1000 & 1000 & \\
\hline valld cases & 522 & ssing & ses 0 & & & \\
\hline
\end{tabular}

Figure DAR-40

File: Processing DODDTCHR.TXT

SOFTIYPE Type of softuare used in project
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value La?el & Value & Frequency & Percent & Valld Percent & \begin{tabular}{l}
Cum \\
Percent
\end{tabular} \\
\hline Drill \({ }^{\text {deractico }}\) & 1 & 140 & 288 & 28.8 & 268 \\
\hline Tutorial & 2 & 73 & 14.0 & 14.0 & 403 \\
\hline Simulation & 3 & 55 & 105 & \(1 \sim 5\) & 513 \\
\hline Database & 4 & 10 & 19 & 19 & 533 \\
\hline word processur & 5 & 164 & 314 & 314 & 847 \\
\hline Integrated software & 7 & 40 & 77 & 77 & 923 \\
\hline programming & 8 & 6 & 1 & 11 & 835 \\
\hline Problem-solving & 9 & 34 & 65 & 65 & 1000 \\
\hline & Total & 522 & 1000 & 1000 & \\
\hline
\end{tabular}

Valld cases 522 Missing cases 0

NuMBSTUD Total number of students in school
\begin{tabular}{|c|c|c|c|c|c|}
\hline Vaiue Label & value & Frequency & Percent & \begin{tabular}{l}
Valid \\
Percent
\end{tabular} & \[
\begin{gathered}
\text { Cum } \\
\text { Percont }
\end{gathered}
\] \\
\hline Fever than 125 & \(i\) & 22 & 42 & 42 & 42 \\
\hline 120-250 & 2 & 44 & 84 & 85 & 127 \\
\hline 251-500 & 3 & 88 & 188 & 189 & 316 \\
\hline 501-1000 & 4 & 231 & 443 & 445 & 761 \\
\hline More than 1000 & \(\star\) & \[
\begin{array}{r}
124 \\
3
\end{array}
\] & 238
8 & \[
\begin{array}{r}
239 \\
M 1 s i n 0
\end{array}
\] & 1000 \\
\hline & & -- & - & H... & \\
\hline & Total & 522 & 1000 & 1000 & \\
\hline
\end{tabular}


File: Processi. DODDTCHR TXT
Ghade Grade level dentification Afluntic
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Value Latel} & Value & Frequency & Percent & valla Percent & \[
\stackrel{\text { Cum }}{\text { Percont }}
\] \\
\hline K-1 & & 1 & 1 & 20 & 20 & 21 \\
\hline 2-3 & & 2 & 11 & 220 & 220 & 246 \\
\hline 4-6 & & 3 & 13 & 28.0 & 260 & 50 J \\
\hline 7-8 & & 4 & 10 & 200 & 200 & \(\square 0\) \\
\hline 9-12 & & 5 & 15 & \(3 C 0\) & 300 & 1000 \\
\hline & & Total & 50 & 1000 & 1000 & \\
\hline Valld cases & 50 & M1ssing & ases 0 & & & \\
\hline
\end{tabular}

SUDJECT Subject support area


Figure DAR-42

101

\section*{FIle: Processing DODDTCHR TXT}

Gender Gender ldentiflcation

Value Labe
male
fomale
valld cases
value
\(\square\) \(\begin{array}{rrr}1 & 16 & 32.0\end{array}\)
Total \(50 \quad 1000 \quad 1000\)
Missing cases 0
Cum percent percent
\(32.0 \quad 320 \quad 320\)
\begin{tabular}{rrr}
88 & 88.0 & 100.0
\end{tabular}
100.0

COMPUTRS Project computer court

Value Label
value Frequency Percent

Valid Cum Percent percent
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 6 & 12 & 0 & 12.0 \\
\hline 2 & 6 & 12 & 0 & 12.0 \\
\hline 3 & 33 & 88 & 0 & B8 0 \\
\hline 4 & 2 & 4 & 0 & 4.0 \\
\hline 6 & 1 & 2 & 0 & 20 \\
\hline 18 & 1 & 2 & 0 & 20 \\
\hline 22 & 1 & 2 & 0 & 20 \\
\hline Total & 50 & 100 & 0 & 1000 \\
\hline
\end{tabular}

120
240
800
940
\(\begin{array}{ll}86 & 0 \\ 98 & 0\end{array}\) 980
1000

30-Sep-88 21:59:49

Flle:
COMPNEED Computer needs count


SOFTTYPE Type of sortware used in project
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & value & Frequency & Percent & \[
\begin{aligned}
& \text { valid } \\
& \text { percsint }
\end{aligned}
\] & \begin{tabular}{l}
Cum \\
percen
\end{tabular} \\
\hline Drill efpractice & 1 & 14 & 280 & 280 & 280 \\
\hline Tutorial & 2 & 8 & 100 & 160 & 140 \\
\hline Simulation & 3 & 4 & 80 & 80 & 520 \\
\hline Database & 4 & 1 & 20 & 20 & 540 \\
\hline word processor & 5 & 10 & 200 & 200 & 740 \\
\hline Integrated sortuare & 7 & 3 & 120 & 120 & 880 \\
\hline Problem solving & 9 & 7 & 140 & 140 & 1000 \\
\hline & Tots 1 & 90 & 1000 & 1000 & \\
\hline
\end{tabular}

Figure DAR-44
103



Figure DAK-46

195

Flle: Processing DODDTCHR TXT
SUBJECI Subject support area
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Erequency & Percent & Valld Percent & \[
\begin{gathered}
\text { Cum } \\
\text { Percent }
\end{gathered}
\] \\
\hline Ast & 10 & 3 & 11 & 1.1 & 11 \\
\hline Business & 11 & 4 & 15 & 15 & 26 \\
\hline Compensatory Ed & 12 & 12 & 45 & 45 & 71 \\
\hline Computer sci t lit & 13 & 11 & 41 & 41 & 112 \\
\hline CWE & 15 & 2 & 7 & 7 & 120 \\
\hline Counseling & 18 & 4 & 15 & 15 & 135 \\
\hline ESL & 18 & 7 & 28 & 26 & 16 \\
\hline Evaluation & 18 & 1 & 4 & 4 & 135 \\
\hline Far. Language & 20 & 2 & 7 & 7 & 172 \\
\hline Home Economics & 21 & 3 & 1 & 11 & 184 \\
\hline Health & 22 & 3 & 11 & 11 & 195 \\
\hline Host Mation & 23 & 3 & 1 & 1 & \(2)^{8}\) \\
\hline Industrial Arts & 24 & 5 & 18 & 19 & 225 \\
\hline Lang nrts Engllsh & 25 & 64 & 240 & 240 & 484 \\
\hline Kath & 26 & : 8 & 87 & & 532 \\
\hline Media \({ }^{\text {E }}\) Llbrary & 27 & 18 & 80 & 80 & 592 \\
\hline Music & 2 P & 4 & 15 & 15 & 307 \\
\hline Reading & 30 & 22 & 82 & & 889 \\
\hline Science & 31 & 13 & 48 & 48 & 738 \\
\hline Spec Ed & 32 & 37 & 139 & 139 & 87 6 \\
\hline Social Siudies & 33 & 13 & 18 & 49 & 925 \\
\hline PPS & 34 & 14 & 52 & & 978 \\
\hline Voc Ed & 35 & 8 & 22 & 22 & 1000 \\
\hline & & - & & - - - & \\
\hline & Total & 287 & 1020 & 1000 & \\
\hline Valld casas 287 & 3:78 & ses 0 & & & \\
\hline
\end{tabular}

GENDER Gender ldentification

\(1 i\)


Figure DAR-48
\[
127
\]

30-Sep-88 21:50:91 GEORGE MASO Of teachers

\section*{Processing podDtchr tXt}

F11日:
COFPREED Computer needs count
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & Value & Frequency & Percent & \begin{tabular}{l}
Valld \\
Percent
\end{tabular} & Cum Percent \\
\hline & & \(\bigcirc\) & 32 & 120 & 120 & 120 \\
\hline & & 1 & 18 & 67 & 67 & 187 \\
\hline & & 2 & 60 & 225 & 225 & 412 \\
\hline & & ? & 27 & 101 & 101 & 513 \\
\hline & & 4 & 17 & 64 & 64 & 577 \\
\hline & & 5 & 17 & 4 & 64 & 640 \\
\hline & & 6 & 29 & 9 & 108 & 749 \\
\hline & & 7 & 12 & 45 & 45 & 794 \\
\hline & & 8 & 6 & 22 & 22 & 816 \\
\hline & & 9 & 4 & 15 & 15 & 831 \\
\hline & & 10 & 14 & 52 & 52 & 884 \\
\hline & & 11 & 2 & 7 & 7 & 831 \\
\hline & & 12 & 6 & - 2 & 22 & 914 \\
\hline & & 13 & 2 & 7 & 7 & 921 \\
\hline & & 14 & 1 & 4 & 4 & 825 \\
\hline & & 15 & 4 & & 15 & 940 \\
\hline & & 16 & 1 & 4 & 4 & 844 \\
\hline & & 17 & 1 & 4 & 4 & ¢f 8 \\
\hline & & 18 & 1 & 4 & 4 & . 1 \\
\hline & & 20 & 2 & 7 & 7 & - 9 \\
\hline & & 21 & 1 & 4 & 4 & 963 \\
\hline & & 22 & 1 & 4 & 4 & P8 6 \\
\hline & & 25 & 1 & 4 & 4 & \(8 \% 0\) \\
\hline & & 28 & 1 & 4 & 4 & 974 \\
\hline & & 27 & 1 & 4 & 4 & 978 \\
\hline & & 28 & 1 & 4 & 4 & 981 \\
\hline & & 30 & 2 & 7 & 7 & 989 \\
\hline & & 34 & 1 & 4 & 4 & 893 \\
\hline & & 70 & 1 & 4 & 4 & 966 \\
\hline & & 98 & 1 & 4 & 4 & 1000 \\
\hline & & Total & 287 & 1000 & 1000 & \\
\hline Valid cases & 267 & sing & ases 0 & & & \\
\hline
\end{tabular}

Figure DAR-49

30-5ep-89 21:58:51 GEORGE HASON UNIVERSIIY
descriptive varlables on GMUVAX:

VMS VS 1
Flle: Processing Doddtchr.tXt
SOITIYPE rype of software used in project
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Labol & Value & Frequency & Percent & \[
\begin{gathered}
\text { valid } \\
\text { Percent }
\end{gathered}
\] & \[
\begin{gathered}
\text { Cum } \\
\text { Percent }
\end{gathered}
\] \\
\hline Drill \(\theta\) practice & 1 & 54 & 202 & 202 & 202 \\
\hline Tutorial & 2 & 40 & 150 & 150 & 352 \\
\hline Simulation & 3 & 24 & 50 & \(\theta 0\) & 142 \\
\hline Database & 4 & 5 & 29 & 19 & 461 \\
\hline Word processor & 5 & 104 & 390 & 300 & 850 \\
\hline Integrated software & 7 & 18 & 71 & 71 & 92 i \\
\hline Programming & 8 & 4 & 15 & 15 & 936 \\
\hline Problem-solving & 9 & 17 & 64 & 64 & 1000 \\
\hline & Total & 287 & 1000 & 1000 & \\
\hline
\end{tabular}

RUMBSTUD Total number of students in school
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value label & Value & Frequency & Percent & Valld Fercent & \[
\begin{gathered}
\text { Cuin } \\
\text { Percent }
\end{gathered}
\] \\
\hline Fever thaf 125 & 1 & 18 & & 68 & 68 \\
\hline 128.250 & 2 & 12 & 45 & 45 & 113 \\
\hline 251-500 & 3 & 45 & 169 & 170 & 283 \\
\hline 501-1000 & 4 & 111 & 416 & 418 & 702 \\
\hline More than 1000 & 5 & 79 & 206 & 298 & 1000 \\
\hline & & 2 & 7 & Missing & \\
\hline & Total & 287 & 1000 & 1000 & \\
\hline
\end{tabular}
Valld cases 285 Missing cases 2

Figure DAR-50


Flle: Processing DODDICHR IXI
GRnDE Grade level ldentirication MEDTERPANEAN



30-5ep-8e 30-5ep-8 21:50:5 GEORGE MASON UN teachers GEORGE MASON UNIVERSITY

\section*{rocessing DODDTCHR TKT}

GFHDER Gender daentification
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & value & Frequency & Percent & \[
\begin{aligned}
& \text { Valld } \\
& \text { Percent }
\end{aligned}
\] & \begin{tabular}{l}
Cum \\
Percent
\end{tabular} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { molo } \\
& \text { remsle }
\end{aligned}
\]} & & 1 & 17 & 362 & 362 & 362 \\
\hline & & 2 & 30 & 638 & 638 & 1000 \\
\hline & & Total & 47 & ¿00 0 & 1000 & \\
\hline Valld cases & 47 & M1ssing & ases 0 & & & \\
\hline
\end{tabular}

COMPUTRS Project computer count

Value Label
Value frequency percent percent percent
\begin{tabular}{lrrrrrr}
1 & 12 & 25 & 5 & 25 & 5 & 25 \\
2 & 11 & 23 & 4 & 23 & 4 & 48 \\
9 \\
3 & 22 & 48 & 8 & 48 & 8 & 95 \\
7 & 2 & 1 & 4 & 97 & 9
\end{tabular}
Total \(\quad\)\begin{tabular}{ccccc} 
& 21 & 21 & 1000 \\
& 47 & 1000 & 1000
\end{tabular}

Valld cases Missing cases 0

Figure DAR-52

30-5ep-89
FREQUENCIES \(0_{2}\) teachers by descriptive varlables GEORG: HASON UNIVERSIIY on GhUVAX:

\section*{File: Processing DODDTCHR TXT}

COMPREED Computer needs count

Value lahel
Value Frequency
Percent percent

Cum
\begin{tabular}{rrrrrr}
0 & 10 & 21 & 3 & 21 & 3 \\
1 & 5 & 10 & 6 & 10 & 0 \\
2 & 8 & 17 & 0 & 17 & 0 \\
3 & 13 & 27 & 7 & 27 & 7 \\
4 & 2 & 4 & 3 & 4 & 3 \\
5 & 3 & 0 & 4 & 0 & 4 \\
6 & 1 & 2 & 1 & 2 & 1 \\
7 & 2 & 4 & 3 & 4 & 3 \\
8 & 1 & 2 & 1 & 2 & 1 \\
10 & 2 & 4 & 3 & 4 & 3 \\
Total & 47 & 100 & 0 & 100 & 0
\end{tabular}
\begin{tabular}{rr}
21 & 3 \\
31 & 9 \\
48 & 9 \\
78 & 6 \\
80 & 9 \\
87 & 2 \\
89 & 4 \\
07 & 6 \\
85 & 7 \\
100 & 0
\end{tabular}

Vslld zases 47 missing casas 0

SOFTIYPE Type of softuare used in project


Figure DAR 53



Figure DAR-55

\section*{File: Processing DODDTCHP TXI}

Subject subject support area
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Labol & Value & Frequency & Percent & Valld Percent & Cuin percent \\
\hline Art & 10 & 3 & 22 & & 22 \\
\hline Busliess & 11 & 1 & 7 & . 7 & 29 \\
\hline Compensatory Ed & 12 & 3 & 22 & 22 & 5 \\
\hline Computer sci flit & 13 & 4 & 29 & 29 & 80 \\
\hline CWE & 15 & 1 & 7 & 7 & 88 \\
\hline Counseling & 16 & " & 22 & 22 & 109 \\
\hline ESL & 18 & 7 & 51 & 51 & 16 \\
\hline Evaiuation & 29 & 1 & 7 & 7 & 188 \\
\hline Eur Language & 20 & 2 & 15 & 15 & 182 \\
\hline Home Econcmics & 21 & 1 & 7 & .7 & 190 \\
\hline Health & 22 & 1 & - & 7 & 19.7 \\
\hline Industrial Arts & 24 & 3 & 22 & 22 & 21.8 \\
\hline Lang Arts 6 Engilsh & 25 & 40 & 4) 2 & 292 & 511 \\
\hline Math & 26 & 21 & 153 & 153 & 684 \\
\hline Media \({ }^{\text {G }}\) Llbrary & 77 & 5 & 36 & 36 & 701 \\
\hline Husic & 28 & 2 & 15 & 15 & 715 \\
\hline Realling & 30 & 8 & 58 & 58 & 774 \\
\hline Sclinco & 31 & 10 & 73 & \(\cdots 3\) & 84 7 \\
\hline Sper, Ed & 32 & 8 & 44 & 44 & 891 \\
\hline Soctal Studies & 33 & 12 & 88 & 88 & 978 \\
\hline PPS & 34 & 3 & 22 & 22 & 1000 \\
\hline & Total & 137 & 1000 & 1000 & \\
\hline
\end{tabular}

GENDER Gender Identification
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & Value & Frequency & Percent & \begin{tabular}{l}
valld \\
Percent
\end{tabular} & \[
\begin{gathered}
\text { Cum } \\
\text { Percent }
\end{gathered}
\] \\
\hline male & & 1 & 33 & 241 & 241 & 241 \\
\hline \multirow[t]{3}{*}{remale} & & 2 & 104 & 758 & 759 & 1000 \\
\hline & & & & - - & -- -- & \\
\hline & & Total & 137 & 1000 & 1000 & \\
\hline Valid cases & 177 & M1ssing & ases 0 & & & \\
\hline
\end{tabular}

Figure دAR-56

File: Processing DODDTCHR TXT
computrs project computer count
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & valu & Frequency & Percent & \[
\begin{gathered}
\text { vallá } \\
\text { Percent }
\end{gathered}
\] & \begin{tabular}{l}
Cum \\
Per.ent
\end{tabular} \\
\hline & 0 & 2 & 15 & 15 & 15 \\
\hline & 1 & 19 & 139 & 139 & 153 \\
\hline & 2 & 27 & 197 & 197 & 35.0 \\
\hline & 3 & 80 & 584 & 584 & 934 \\
\hline & 4 & 5 & 36 & 3.8 & 97.1 \\
\hline & 6 & 3 & 22 & 2.2 & 983 \\
\hline & 9 & 1 & 7 & . 7 & 1000 \\
\hline & Totwl & 7 & 1000 & 1000 & \\
\hline
\end{tabular}

COMPNEED Computer needs count
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Frequency & Percent & Valld percent & \[
\begin{gathered}
\text { Cur } \\
\text { Percent }
\end{gathered}
\] \\
\hline & 0 & 31 & 226 & 226 & 22 e \\
\hline & 1 & 18 & 131 & 131 & 358 \\
\hline & 2 & 33 & 168 & 18.8 & 526 \\
\hline & 3 & . 8 & 131 & 13.1 & 657 \\
\hline & 4 & 5 & 36 & 36 & 693 \\
\hline & 3 & 2 & 15 & 15 & 708 \\
\hline & 6 & 10 & 73 & 73 & 781 \\
\hline & 7 & 5 & 36 & 36 & 81.8 \\
\hline & 8 & 2 & 15 & 15 & 832 \\
\hline & 10 & 7 & 51 & 51 & 883 \\
\hline & 11 & 2 & 15 & 15 & C9 8 \\
\hline & 12 & 4 & 29 & 28 & 927 \\
\hline & 15 & 1 & 7 & 7 & 934 \\
\hline & 18 & 1 & 7 & 7 & 942 \\
\hline & 20 & 1 & 7 & 7 & 949 \\
\hline & 21 & 1 & 7 & 7 & 956 \\
\hline & 22 & 3 & & 22 & 978 \\
\hline & 23 & 1 & 7 & 7 & 985 \\
\hline & 24 & 2 & 15 & 15 & 1000 \\
\hline & Total & 137 & 10<0 & 1000 & \\
\hline
\end{tabular}

\footnotetext{
80I-dVG
valld eases 137
}

Missing cases \(\quad 0\)
37 Hissing 0

Figure DAR-57
\(1: 6\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Frequency & Percent & \begin{tabular}{l}
Valld \\
Percent
\end{tabular} & \begin{tabular}{l}
Cum \\
Percen
\end{tabular} \\
\hline nrill \(\%\) practice & 1 & 43 & 314 & 314 & \(31:\) \\
\hline rutorial & 2 & 17 & 124 & 124 & 438 \\
\hline Simulation & 3 & 20 & 148 & 148 & 58 \\
\hline Database & 4 & 4 & 29 & 29 & 613 \\
\hline word precessor & 5 & 35 & 255 & 255 & 889 \\
\hline Integrated software & 7 & 10 & 7 \% & 73 & 942 \\
\hline Frogramming & 8 & 2 & 15 & 15 & 956 \\
\hline Problem-solving & 9 & 6 & 44 & 44 & 1000 \\
\hline & Total & 137 & 10 & 1000 & \\
\hline
\end{tabular}

NUMBSTUD Total number of students 1,1 school
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Valte Label} & Value & Freq"ency & Percent & \[
\begin{gathered}
\text { volid } \\
\text { pelcent }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Cum } \\
& \text { Percent }
\end{aligned}
\] \\
\hline Fever than 125 & & - & 1 & 7 & 7 & 7 \\
\hline 126-250 & & \(\cdots\) & 11 & 80 & 81 & 88 \\
\hline 251-500 & & 3 & 15 & 108 & 110 & 189 \\
\hline 501-1000 & & 4 & 70 & 511 & 515 & 713 \\
\hline More than 1000 & & 5 & 38 & 285 & 287 & 1000 \\
\hline & & & 1 & 7 & Missing & \\
\hline & & & - & -.. & - - & \\
\hline & & Total & 137 & 1000 & 1000 & \\
\hline valld cases & 136 & M1ssing & ases 1 & & & \\
\hline
\end{tabular}


SUBJFCT Subject support area
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Frequency & Percent & \begin{tabular}{l}
valld \\
Percent
\end{tabular} & \begin{tabular}{l}
cum \\
Percen
\end{tabular} \\
\hline Compensatory Ed & 12 & 1 & 48 & 48 & 48 \\
\hline Counsaling & 16 & 2 & 95 & 95 & 143 \\
\hline ESL & 18 & 1 & 48 & 48 & 190 \\
\hline Lang Arts \(\theta\) Engilsh & 25 & 7 & 333 & 333 & 524 \\
\hline Math & 28 & 5 & 238 & 238 & 762 \\
\hline Media \(\mathcal{t}\) Library & 27 & 1 & 48 & 48 & 810 \\
\hline Science & 31 & 1 & 48 & 48 & 85 - \\
\hline Spec Ed & 32 & 1 & 48 & 48 & 905 \\
\hline So ll Studies & 33 & 2 & 95 & 95 & 1000 \\
\hline & Total & 21 & 1000 & 1000 & \\
\hline Valld cases 21 & Hissing & ases & & & \\
\hline
\end{tabular}

Figure DAR-59
\(1: 8\)
```

SO Sep-80 FREQUEHCIES of teachers by descriptlve varlables 21:58-55 GEORGE MA:ON UNIVERSITY on GMUVAX
File: Processing DODDICHR TXI
GERDER Gender identification

```

computas project computer count
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & Value & Frequency & Fercent & \begin{tabular}{l}
valld \\
Percent
\end{tabular} & \[
\begin{aligned}
& \text { Cum } \\
& \text { Percent }
\end{aligned}
\] \\
\hline & 1 & 4 & 190 & 190 & 180 \\
\hline & 2 & 1 & 48 & 48 & 238 \\
\hline & 3 & 13 & (1) \(\theta\) & 819 & 857 \\
\hline & 5 & 2 & 95 & 95 & \(\theta=2\) \\
\hline & 17 & 1 & 48 & 48 & 1000 \\
\hline & Total & 21 & 1000 & 1000 & \\
\hline
\end{tabular}


File: Processing DODDTCHR TXT
COMPNEED Computer needs count
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Value Label & & Value & Frequency & Percent & \begin{tabular}{l}
Valld \\
Percent
\end{tabular} & \begin{tabular}{l}
Cum \\
Percent
\end{tabular} \\
\hline & & 0 & 4 & 190 & 190 & 180 \\
\hline & & 1 & 4 & 190 & 190 & 381 \\
\hline & & 2 & 4 & :90 & 190 & 571 \\
\hline & & 3 & 3 & 143 & 143 & 714 \\
\hline & & 5 & 2 & 95 & 95 & 810 \\
\hline & & 8 & 1 & 48 & 48 & 857 \\
\hline & & 7 & 1 & & 48 & 905 \\
\hline & & 10 & 1 & 48 & 48 & 952 \\
\hline & & 25 & 1 & 48 & 48 & 1000 \\
\hline & & Total & \[
21
\] & \[
1000
\] & \(100 \%\) & \\
\hline valld cases & 21 & *assing & ases 0 & & & \\
\hline
\end{tabular}

SOFITYPE Type of softuare used in project
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value Label & vilue & Frequency & Percent & \begin{tabular}{l}
Valid \\
Percent
\end{tabular} & \begin{tabular}{l}
Cum \\
percent
\end{tabular} \\
\hline Drily \({ }^{\text {c p practice }}\) & 1 & 9 & 42 ¢ & 429 & 429 \\
\hline Tutorlal & 2 & 1 & 48 & 48 & 476 \\
\hline Simulation & 3 & 1 & 48 & 48 & 524 \\
\hline word processor & 5 & 7 & 333 & 333 & 857 \\
\hline Integrated software & 7 & 3 & 143 & 143 & 1000 \\
\hline & & - & - .-- & & \\
\hline & Total & 21 & 1000 & 100.1 & \\
\hline Valld cases 21 & ssing ca & ses 0 & & & \\
\hline
\end{tabular}



\footnotetext{
Total Cases - 510
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 4-\text { Feb } 90 \\
& 16: 30: 45
\end{aligned}
\] & \multicolumn{4}{|l|}{BREAKDOWN of teachers by descriptive variables george mason university on gavvax:} & VMS V5.2 & Page & 2 \\
\hline sile: & \multicolumn{5}{|l|}{Processing DOODTCHR.TXT} & & \\
\hline \multicolumn{6}{|c|}{OESCRIPTIOH OF SIPBPOPULATIOHS} & & \\
\hline Criterion Broken & Variable Down by & COAPUTRS Project SUBJECT Subject/ & puter coun port area & & & & \\
\hline Variable & Value & Label & Kean & Std Dev & Cases & & \\
\hline For Entire & population & & 2.9234 & 4.2010 & 522 & & \\
\hline Subject & 10 & Art & 2.0000 & . 0000 & 11 & & \\
\hline SUBJECT & 11 & Business & 3.4286 & 1.1339 & 7 & & \\
\hline SUBJECT & 12 & Compensatory Ed & 3.7222 & 3.5778 & 18 & & \\
\hline SUBJECT & 13 & Computer scij \& lit & 12.2353 & 19.7788 & \(\cdot 7\) & & \\
\hline SUBJECT & 15 & ChE & 1.666 ? & . 5774 & 3 & & \\
\hline SUBJECt & 16 & Counseling & 1.0833 & . 2887 & 12 & & \\
\hline SUBJECT & 18 & ESL & . 9412 & . 2425 & 17 & & \\
\hline SUBJECT & 19 & Evaluation & .5c30 & . 7071 & 2 & & \\
\hline SUBJEC: & 20 & for. Languasa & 4.0000 & . 0000 & 6 & & \\
\hline SUbJECT & 21 & Home Economics & 2.6000 & . 8944 & 5 & & \\
\hline SUBJECT & 22 & Health & 2.8000 & 1.7889 & 5 & & \\
\hline SUB.ECT & 23 & Host Mation & 9.0000 & 9.5394 & 3 & & \\
\hline SUBJECT & 24 & Industrial Arts & 3.5000 & 1.9579 & 10 & & \\
\hline SUBJECT & 25 & Lang Arts \& English & 2.9841 & . 8293 & 126 & & \\
\hline SUBJECT & 26 & Math & 3.0938 & . 9548 & 64 & & \\
\hline SUBJECT & 27 & Media a Library & 2.3077 & . 7884 & 26 & & \\
\hline SUBJEC: & 28 & Musi= & 1.0000 & . 0000 & 8 & & \\
\hline SUBJECT & 30 & Reading & 2.2368 & . 5897 & 38 & & \\
\hline SUBJECT & 31 & Science & 3.5625 & 2.8048 & 32 & & \\
\hline SUBJECT & 32 & Spec. Ed. & 1.2075 & . 5320 & 53 & & \\
\hline SUBJECT & 33 & Seital Studies & 31176 & 1.0376 & 34 & & \\
\hline SUBJECT & 34 & pps & 1.7895 & . 6306 & 19 & & \\
\hline SUBJECt & 35 & Voc. Ed. & 2.0000 & . 0000 & 6 & & \\
\hline
\end{tabular}
rota! Cases \(=522\)
\(1 \because 3\)
Figure DAR-63.a
 GEORGE MASON UNIVERSITY
on GMUVAX:


Criterion Variable COHPBASE
Broken Down by GRADE

Falue Label

Source
Between Groups
Ilnearlty
within Groups

Criterion Variable compneed Computer needs count Broken Down by SUBJECT Subject support area
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline value & Labol & Sum & Mean & Std DeV & Sum of ¢q & Cases \\
\hline 10 & Art & 87 & 80909 & 0.0573 & 380.9091 & 11 \\
\hline 11 & Business & 26 & 37143 & 4.1818 & 105.4286 & 7 \\
\hline 12 & Compensatory Ed & 47 & 2.6111 & 1.9445 & 64．2778 & 18 \\
\hline 13 & Computer sci y lit & 225 & 14.0625 & 17．3069 & 4492.9375 & 16 \\
\hline 15 & CWE & 4 & 13333 & 1.5275 & 46687 & 3 \\
\hline 16 & Counseling & 12 & 1.0909 & 1.5136 & 229091 & 11 \\
\hline 18 & ES \({ }^{+}\) & 34 & 20000 & 1.3229 & 28.0000 & 17 \\
\hline 19 & Evaluation & 3 & 15 & ． 7071 & 5000 & \(\bigcirc\) \\
\hline 20 & For Language & 20 & 3 ？ 33 & 32680 & 533333 & 6 \\
\hline 21 & Heme Economics & 16 & 32000 & 25884 & 26 2000 & 5 \\
\hline 22 & Health & 26 & 9 a゙っ」 & 7.1554 & 2048000 & 5 \\
\hline 23 & Hest Nation & 48 & 160.00 & 15.6205 & 4880000 & 3 \\
\hline 24 & Industrial Arts & 85 & \(8506 ?\) & 78775 & 558.5000 & 10 \\
\hline 25 & Lang Arts English & 631 & 50079 & \(5 \quad 5172\) & 38049821 & 126 \\
\hline 28 & Hath & 291 & 45469 & 5.2097 & 17098594 & 64 \\
\hline 27 &  & 113 & 4 7v33 & 5.8198 & 778.9583 & 24 \\
\hline 28 & Husic & 36 & 45000 & 32950 & 78.0000 & 8 \\
\hline 30 & Heading & 145 & 3.9189 & 5.7027 & 1170.7508 & 37 \\
\hline 31 & Scionce & 170 & 54839 & 48895 & 8597418 & 31 \\
\hline 32 & Spec．Ed． & 139 & 2.9574 & 2.5619 & 3019149 & 47 \\
\hline 33 & Social Studies & 233 & 68529 & 77191 & 19882847 & 34 \\
\hline 34 & PPS & 82 & 43198 & 37573 & 2541053 & 18 \\
\hline 35 & Voc Ed & 24 & 40000 & 40000 & 800000 & 8 \\
\hline Within Gxoup & S Total & 2477 & 48589 & 58483 & 17219554 & 510 \\
\hline
\end{tabular}


Figure DAR－65
 File: Processing coodrchr.tXt

VARIABLE COMPNEED COnputer needs count (CONTINUED)

GGGGGGGGGGGGGGGGGGGGGGG
rrerrerirrrrrrrrrrerrrr
ppppppppppppppppppppppp \(\begin{array}{lllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 3 & 2 & 2 & 1 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 3 & 1 & 3 & 2 & 1 & 2\end{array}\)
1.0909 Grpl
1.3333 Gru1s
1.5000 Grpla
2.0000 Grp18
2.6111 Grp12
2.9574 Grp32
3.2000 Grp21
3.3333 Grp20
3.7143 Grp1 \({ }^{*}\)
\(3.9189 \quad\) Grp30
4.0000 Grp35
4.3158 Grp34
4.5000 Grp28
4.5469 Grp26
4.7083 Grp27
5.0079 Grp25
5.2000 Grp22
5.4839 Grp31
6.0909 Grpi0
6.8529 Grp33
8.5000 Grp24
14.0625 Grp13 16.0000 Grp23
Mean Group 659822101094807521 ¿3433
\[
\text { उY } 0<101094807521 \text { に } 3433
\]

Figure DAR-66

Processing DODDTCHR TXT
ANALYSIS OF VARIANCE
Criterion Vallable
Broken Down by

COHPNEED GFADE Computer ne .s count Grade level identification

\section*{Value iabel}
\(1 \quad x-1\)
2 2-3
3 4-8
\(\begin{array}{ll}4 & 7-8 \\ 5 & 9-12\end{array}\)
Within Groups Total
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sum & & Hean & Std & Dev & Sum & of Sq & Cases \\
\hline 158 & 4 & 2703 & 7 & 5743 & 2085 & 2073 & 37 \\
\hline 463 & 4 & 6788 & 8 & 6742 & 7373 & 6568 & pe \\
\hline 783 & 4 & 8810 & 5 & 6180 & 5:09 & 4110 & 163 \\
\hline 350 & 5 & 3731 & 5 & 2709 & 1833 & 6718 & 67 \\
\hline \(-33\) & 5 & 0803 & 4 & 9627 & 3521 & 8284 & 144 \\
\hline 2477 & 4 & 8589 & 6 & 2780 & 19903 & 8829 & 510 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Source & \multicolumn{2}{|l|}{sun of Squares} & & \(F\) & \multicolumn{2}{|l|}{Hean Square} & \(\boldsymbol{F}\) & S18 \\
\hline Betueen Groups & 48 & 8880 & & 4 & 11 & 6720 & 2381 & 8805 \\
\hline linearlty & 32 & 2230 & & 1 & 32 & 2230 & 8178 & 3683 \\
\hline Dev from Linearlty & 14 & 4650 & & 3 & 4 & 8217 & 12.23 & 9468 \\
\hline & F & 0402 & & Squared & & 0016 & & \\
\hline within Groups & 19203 & 8620 & & 05 & 39 & \(\$ 136\) & & \\
\hline & a - & 0484 & , & squered & & 0023 & & \\
\hline
\end{tabular}

Figure DAR-67

```

\&lle Process:ng DODDICHR IXT
ANALYSISOEVARIANCE

```
\begin{tabular}{cll} 
Criterion Variable COMPNEED Computer needs count \\
Broken Doun by & REGION & Regional offlce identiflcation
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline value & Label & sum & & Mean & Std & Dev & Sum & or Sq & Cases \\
\hline 1 & Atiantic & 244 & 4 & 8800 & 5 & 5278 & 1497 & 2800 & 50 \\
\hline 2 & Germany & 1416 & 5 & 4482 & 7 & 0338 & 12814 & 2482 & 260 \\
\hline 3 & Mediterranean & 127 & 2 & 8222 & 2 & 5787 & 282 & 5778 & 45 \\
\hline 4 & Yacifle & 611 & A & 5587 & 5 & 7683 & 4423 & 0224 & 134 \\
\hline 5 & Panama & 78 & 3 & 7615 & 5 & 5218 & 608 & 8095 & 21 \\
\hline within Group & Ps Iotal & 2477 & 4 & 8589 & 6 & 2358 & 19636 & 8358 & 510 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline sourc & \multicolumn{2}{|l|}{Sum of Squares} & D & \(F\) & \multicolumn{2}{|l|}{Mean Square} & \multicolumn{2}{|r|}{\(E\)} & 518 \\
\hline こetween Groups & 313 & 8151 & & 4 & 78 & 4038 & 2 & 0163 & c808 \\
\hline Linearlity & 85 & 2292 & & 1 & 85 & 2282 & 2 & 4490 & 1182 \\
\hline Dev from Linearlty & 218 & 3859 & & 3 & 72 & 7953 & 1 & 8721 & 1333 \\
\hline & R - - & 0691 & \multicolumn{4}{|l|}{R Squared - 0048} & & & \\
\hline within Groups & \multicolumn{2}{|l|}{196388358} & \multicolumn{2}{|l|}{505} & 38 & 8850 & & & \\
\hline
\end{tabular}

Flle: Processing DODDTCHR.TXT
DESCRIPTIONOFSUBPOPULATIONS
\begin{tabular}{|c|c|c|}
\hline n & COMPREED & Computer needs count \\
\hline Broken Down by & REGION & Reglonal office ldentif:cation \\
\hline by & SUBJECT & Subject support area \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Varlable & value & Larel & & Mean & Std & Dev & Cases \\
\hline For Entlre & Population & & 5 & 0134 & 7 & 4481 & 522 \\
\hline REGION & 1 & Atlantic & 4 & 8800 & 5 & 5278 & 50 \\
\hline SUBJECT & 10 & Art & 5 & 0000 & 1 & 4142 & 2 \\
\hline SUBJECT & 13 & Computer sci of lit & 17 & 5000 & 14 & 8492 & 2 \\
\hline SUBJECT & 20 & For. Language & & 0000 & & 0000 & 1 \\
\hline SUSJECT & 21 & Home Economics & 7 & 0000 & & 0000 & 1 \\
\hline SUBJECT & 24 & Industrial Arts & 14 & 0000 & & 0000 & 1 \\
\hline SUBJECT & 25 & Lang Arts \& English & 7 & 6250 & 7 & 6893 & 8 \\
\hline SUBCECT & 28 & Math & 3 & 7682 & 3 & 2698 & 13 \\
\hline SUBJECT & 27 & Media \({ }^{\text {c }}\) Library & 3 & 5000 & 2 & \(121^{\circ}\) & 2 \\
\hline SUBJECT & 30 & Resding & 1 & 0000 & 1 & 4142 & 2 \\
\hline SUBJECT & 31 & Science & 3 & 6000 & 3 & 3615 & 5 \\
\hline SUBJECT & 32 & Spec Ed & 2 & 1429 & 1 & 5736 & 7 \\
\hline SUBJECT & 33 & Social Studies & 4 & 3333 & \(\Sigma\) & 5580 & 6 \\
\hline REजION & 2 & Germany & 5 & - 0 & 8. & \(\bigcirc 973\) & 287 \\
\hline SUBJECT & 10 & Art & 5 & . .000 & 4 & 3589 & 3 \\
\hline SUBJECT & ! & Business & 5 & 0000 & 5. & 2915 & 4 \\
\hline SUBJECT & 12 & Compensatory Ed & 2 & 7500 & 2 & 2208 & 12 \\
\hline SUBJECT & 13 & Computer sci it lit & 25 & 6384 & 30. & 8113 & 11 \\
\hline SUBJECT & 15 & CWE & 2 & 00ro & 1 & 61:2 & 2 \\
\hline SUBJECT & 16 & Counsaling & 1 & 2500 & & 9574 & 4 \\
\hline SMBJECT & 18 & ESL & 1 & ;296 & & 8759 & \\
\hline SUBJEJT & \(\ni\) & Eva.uation & \% & 0000 & & 0000 & \(\downarrow\) \\
\hline SUBJECT & 20 & For Laneyage & 3 & 000c & 1 & 4142 & 2 \\
\hline SUBJECT & 2: & Home Econcmics & 3 & 00* & 1. & Or30 & 3 \\
\hline SUBJECT & 22 & Health & 8 & BRA: & 7 & 571: & 3 \\
\hline UBIECT & 23 & Host Nation & 18 & 0000 & 15 & 3205 & 3 \\
\hline SUBJFCT & 24 & Industrial A.ts & 5 & 8000 & 5 & \({ }^{-602}\) & 5 \\
\hline SUEJEC** & 25 &  & E & 3438 & 5 & 8575 & 64 \\
\hline SUBuECT & 28 & Math & 4 & 3333 & 3 & 3955 & 18 \\
\hline SUR, CT & 27 & Media \(\mathrm{G}_{\text {L L }}\) Library & 4 & 2500 & 4 & 5826 & 16 \\
\hline SUBJECT & -3 & Music & 3 & 2500 & 1 & 5000 & \\
\hline SUBJECT & 30 & Reading & 5 & 38.38 & f & \(893^{\circ}\) & \(2 \cdot\) \\
\hline SUBJECT & 31 & Sclence & a & \(\bigcirc 385\) & 4 & 99 & 13 \\
\hline S'BJEC\& & 32 & Spec Ed & * & 98il & 2 & とつ75 & 37 \\
\hline SUBJECT & 33 & socia! Studles & 10 & . 4815 & 10 & 0334 & 13 \\
\hline SUBJECT & 34 & PPS & 3 & 3571 & 2 & 7903 & 14 \\
\hline SUBJECT & 35 & Voc Ed & 4 & 00 , & 4 & 0000 & 6 \\
\hline
\end{tabular}

\section*{Criterion varlable COMPNEED}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Variable & value & Labe 1 & & Mean & Sta & Dev & Cases \\
\hline REGION & 3 & Mediterranean & 2 & 7872 & 2 & 5278 & 47 \\
\hline SUBJECT & 10 & Art & 3 & 6867 & & 5774 & 3 \\
\hline SUBJECT & 11 & Business & 3 & 0000 & & 0000 & 2 \\
\hline SUBJECT & 12 & Compensatory Ed & 2 & 5000 & & 7071 & 2 \\
\hline SUBJECT & 16 & Counseling & 1 & 6867 & & 8868 & 3 \\
\hline SUBJECT & 18 & ESL & 2 & 0000 & 1 & 4142 & 2 \\
\hline SUBJECT & 20 & For Language & 8 & 0000 & & \(0 \times 00\) & 1 \\
\hline SUBJ ECT & 22 & Health & & 0000 & & 0000 & 1 \\
\hline SUBJECT & 24 & Industrial Arts & 3 & 0000 & & 0000 & 1 \\
\hline SUBJE. & 25 & Lang Arts E English & 2 & 7143 & 2 & 2887 & 7 \\
\hline SUBJECT & 26 & Math & 3 & 1428 & 2 & 9114 & 7 \\
\hline SUBJECT & 27 & Media \({ }^{\text {g L }}\) Library & 1 & 0000 & 1 & 4140 & 2 \\
\hline SUBJECT & 28 & Music & 6 & 0000 & 5 & 6568 & 3 \\
\hline SUBJECT & 30 & Reading & 2 & 1867 & 1 & 7224 & 8 \\
\hline SUBJECT & 31 & Science & 1 & 0000 & 1 & 0000 & 3 \\
\hline SUBJECT & 32 & Spec Ed & 2 & 0000 & 1 & 4142 & 2 \\
\hline SUBJECT & 33 & Soclal Studies & 3 & 0000 & & 0000 & 1 \\
\hline SUBJECT & 34 & PPS & 5 & 5000 & 6 & 3640 & 2 \\
\hline REGION & 4 & Paciric & 4 & 4872 & 5 & 7388 & 137 \\
\hline SUBJECT & 10 & Art & 10 & 3333 & 11 & 1505 & 3 \\
\hline SUBJECT & 11 & Bustuess & & 0000 & & 0000 & 1 \\
\hline SUBJECT & 12 & Compensatorv Ed & 2 & 000こ & 2 & 0000 & 3 \\
\hline SUBL ECT & 13 & Computer sci \(611 t\) & 1 & 7500 & 2 & 0616 & 4 \\
\hline SUBUECT & 15 & CWE & & 0000 & & 0003 & 1 \\
\hline SUBJECT & 16 & Counseling & & 3333 & & 5774 & 3 \\
\hline SUBJECT & 18 & ESL & 2 & 5714 & & 6183 & 7 \\
\hline SUBJECT & 19 & Evaluation & 1 & 0000 & & 0000 & 1 \\
\hline SUBJECT & 20 & For Language & 3 & 0000 & 4 & 2426 & 2 \\
\hline SUBJECT & 21 & Home Economics & & 0000 & & 0000 & 1 \\
\hline SUBJECT & 22 & Health & & 0000 & & 0000 & 1 \\
\hline SUBJECT & 24 & Industrial Arts & 13 & 0000 & 10 & 4403 & 3 \\
\hline SUBJECT & 25 & Lang Arts 6 Eng 11 sh & 4 & 6000 & 5 & 4198 & 40 \\
\hline SUBJECT & 26 & Math & 6 & 1490 & 7 & 8313 & 21 \\
\hline SUBJECT & 27 & Media \({ }^{\text {c }}\) Library & 2 & 6000 & 2 & 1908 & 5 \\
\hline SUBJECT & 28 & Music & 5 & 5000 & 4 & 9497 & 2 \\
\hline SUBJECT & 30 & Reading & 1 & 5000 & 1 & 4112 & 8 \\
\hline SUBJECT & 31 & Science & 5 & 9000 & 5 & 1737 & 10 \\
\hline SUBJECT & 32 & Spec Ed & & 8333 & 1 & 1690 & 8 \\
\hline SUBJECT & 33 & Social Studies & 5 & 5000 & 5 & 8898 & 12 \\
\hline SUBJECT & 24 & PPS & 8 & 0000 & \(\varepsilon\) & 2915 & 3 \\
\hline REGIOH & 5 & Panama & 3 & 7610 & 5 & 5218 & 21 \\
\hline SUBJECT & 12 & Compensatory Ed & 3 & 0000 & & 0000 & 1 \\
\hline SUBJECT & 16 & counseling & 1 & 0000 & & 0000 & 2 \\
\hline
\end{tabular}

\section*{Criterion variable COMPNEED}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & value & I.abel & & Mean & Std Dev & Cases \\
\hline SUBJECT & 18 & ESL & 2 & 0000 & . 0000 & 1 \\
\hline SUBJECT & 25 & Lang Arts English & 3 & 5714 & 3.5989 & 7 \\
\hline SUBJECT & 28 & Math & 2 & 6000 & 18180 & 5 \\
\hline SUBJECT & 27 & Media \(\&\) Library & 25 & 0000 & 0000 & 1 \\
\hline SUBJECT & 31 & Science & 7 & 0000 & . 0000 & 1 \\
\hline SUBJECT & 32 & Spec. Ed & & 0000 & 0000 & 1 \\
\hline SUBJECT & 33 & Social studies & 1 & 0000 & 14142 & 2 \\
\hline
\end{tabular}

File: Processing DODDTCHR TXT
\[
\wedge N \wedge L Y S I S O F V A R I A N C E
\]
Criterion variable TCMRATT Teacher attitudes toward computers
Broken Down by SUBJECT Subject support area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Value & Label & \multicolumn{3}{|c|}{Sum} & Matin & Std Dev & Sum & r \(s q\) & Cases \\
\hline 10 & Art & 1378 & 00 & 125 & 0909 & 14.3837 & 2068 & 9091 & 11 \\
\hline 11 & Business & 807 & 00 & 129 & 5714 & 109065 & 713 & 7143 & 7 \\
\hline 12 & Compensatory Ed & 2155 & 00 & 119 & 7222 & 206135 & 7223 & 6111 & 18 \\
\hline 13 & Computer scl \({ }_{\text {c }}\) lit & \(\because 10{ }^{-}\) & 00 & 131 & 6875 & 149878 & 3360 & 4.775 & 16 \\
\hline 15 & CWE & 375 & 00 & 125 & 0000 & 160935 & 518 & 0000 & 3 \\
\hline 16 & Counseling & 1335 & 00 & 121 & 3636 & 187151 & 3502 & 5455 & 11 \\
\hline 18 & ESI & 2088 & 00 & 122 & 8235 & 17.2019 & 4734 & 4706 & 17 \\
\hline 19 & Evaluation & 280 & 00 & . 40 & 0000 & 14142 & 2 & 0000 & 2 \\
\hline 二0 & For. Language & 813 & 00 & 35 & 5000 & 92882 & 420 & . 5000 & 6 \\
\hline 21 & Home Economics & 318 & 00 & 123 & 2000 & 13.9893 & 782 & 8000 & 5 \\
\hline 22 & Health & 543 & 00 & 108 & 6000 & 232121 & 2155 & 2000 & 5 \\
\hline 23 & Hest Nation & 390 & 00 & 130 & 0000 & 127871 & 328 & 0000 & 3 \\
\hline 24 & Industrial Arts & 1269 & 00 & 126 & 9000 & 14.9105 & 2000 & 8000 & 10 \\
\hline 25 & Lang arts \(\underbrace{}_{\text {English }}\) & 15758 & CO & 125 & 0835 & 164174 & 33691 & 4921 & 126 \\
\hline 28 & Math & 8093 & 00 & 128 & 4531 & 15 8284 & 15778 & 8594 & 84 \\
\hline 27 & Mcd:a \({ }^{\text {g Llbrary }}\) & 3037 & 00 & 126 & 5417 & 157288 & 5689 & 9583 & 24 \\
\hline 28 & Musi~ & 893 & 00 & 124 & 1250 & 125748 & 1108 & 8750 & 8 \\
\hline 30 & Readiug & 4808 & 00 & 124 & 5405 & 155863 & 8723 & 1892 & 37 \\
\hline 31 & Sclerci & 4053 & 00 & 130 & 7419 & 136825 & 5598 & 8355 & 31 \\
\hline 32 & Spec Fci & 5328 & 00 & 113 & 3830 & 200803 & 18511 & 1064 & 47 \\
\hline 33 & Soclal litudies & 4161 & 00 & 122 & 3824 & 155622 & 7992 & 0294 & 34 \\
\hline 34 & PPS & 2453 & 00 & 129 & 1053 & 13 617. & 3337 & 7895 & 19 \\
\hline 35 & VOC Ed & 816 & 00 & 136 & 0000 & 85323 & 364 & 0000 & 6 \\
\hline hin Group & ps Total & 63555 & 00 & 124 & 6176 & 162516 & 123623 & 3323 & 510 \\
\hline
\end{tabular}

Flle: Prañising LoDDTCHR TXT

VARIABLE TCHRATT Ieacher atiludes toward computers (CORTINUED)

\section*{Mean}

Group
\[
\begin{array}{lllllllllllllllllllllll}
G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G & G \\
\Gamma & r & \Gamma & : & \Gamma \\
p & p & p & p & p & p & p & p & p & p & p & p & p & p & p & p & p & N & p & p & p & p & p \\
2 & 3 & 1 & 1 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 1 & 2 & 2 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1
\end{array}
\]

1086000 1133830 1197222 1213636 1223824 1228235 123200 C 123200 C
1241250 \(\begin{array}{ll}124 & 1250 \\ 1245405\end{array}\) 1245405 1250000 1250835 1250909 \(128453!\) 1285417
1289000 1289.000 2291053 1205714 1300000 1307418 1316875 1355000 1360000 14n 0000

Grp22
Grp32
Grp12
Grp18
Grp33
Grp18
Grp21
Grp28
rrp30
Grp15
Grp25
Grp10
Grp2
Grp27
Grp24
Grp34
Grp11
Grp23
Grp31
Grp13
Grp20
Grp 35
Grpl9


Figure DAR-73

Varlable TCHRATT Teacher attltudes toward computers
By Varizble OFTTYPE Type of software used in project
MULTIPLE RAígE TEST

TUKEY-HSD FROCEIURE RANGES FOR THE 0050 LEVEL -
\[
4.30 \quad 4.30 \quad 4.30 \quad 430 \quad 430 \leqslant 30430
\]

THE RANGES ;BOVE ARE TABLE RANGFS
the value actuaily ccmpared with mean (J) heanif) is
(,) DENOTES PAIRS OF GRUUPS SIGNIFIC TJ DI.FERENT AT THE O O5O IEVEL

Mean
Group
1223333
122.9554

123 3t23
1235352
1248364
1280000
128 7353
129
132
3250
323250
Grf 8
Grp 5
Grp 1
Grp 2
Grp 3
Grp 4
Grp 9
Grp 7
                                    GGGGGGG-

                                    pprpprpp

Figure DAR-74
\(1 ? 5\)


Source

\section*{Sum of
Squares} Mean

Eta - 1842 Eta Squared - 0.39

Figure DAR-75


Variable RAF Resource Aćequacy Factor By Variable GRADE Grade level identification

Mul irte range test
TUKEY-HSD PROCEDURE
RANGES FOR ? TMF 0.050 LEVEL -
\(3.88 \quad 3.8083 .88\)
the ranges above are table ranges.
the valije actually compared with mean(j)-mean(l) is..
0.1918 * RANGE * OSQRT(1/N(I) + 1/H(J))
(*) DENOTES PAIRS OF GROUPS SIGNIfICAhtLY DIfferent at the 0.050 Level
\begin{tabular}{|c|c|c|}
\hline & & \[
\begin{array}{lllll}
G G G & G \\
r & r & r & r \\
p & p & p & p & p
\end{array}
\] \\
\hline Mean & Group & 45321 \\
\hline . 4428 & Grp 4 & \\
\hline . 4510 & Grp 5 & \\
\hline . 4937 & Grp 3 & \\
\hline . 5724 & Grp 2 & ** \\
\hline . 5774 & Grp 1 & \\
\hline
\end{tabular}

Figure DAR-76
197


1 :8


Figure DAR-78
139

Pr ssing DODI :CHR.IXI
AHALYSIS OE VAREANCE

Criterion varlabla
Broken Down by
BEREFITS Computer use in my subject is benericial SUBJECT Suhject support aroa
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Value & Iabel & Sum & & Mean & Std Dev & Sum of sq & Cases \\
\hline 10 & Art & 14 & 1 & 2727 & 4871 & 21818 & 11 \\
\hline 11 & Business & 9 & 1 & 2857 & 4880 & 14288 & 7 \\
\hline 12 & Compensatory Ed & 21 & 1 & 1887 & 3835 & 2.5000 & 18 \\
\hline 13 & Computer sci io lit & 19 & 1 & 1875 & 4031 & 24375 & 18 \\
\hline 15 & CWE & 5 & 1 & 8887 & 5774 & 8687 & 3 \\
\hline 18 & Counseling & 16 & 1 & 7778 & 13017 & 135558 & 9 \\
\hline 18 & ESL & 20 & 1 & 1785 & . 3930 & 24708 & 17 \\
\hline 18 & Evaluation & 2 & 1 & 0000 & . 0000 & 0000 & 2 \\
\hline 20 & For. Languag \(\theta\) & 7 & 1 & 1887 & 4082 & 8333 & 8 \\
\hline 21 & Home Economics & 8 & 1 & 2000 & 4472 & 8000 & 5 \\
\hline 22 & Health & 9 & 1 & 8000 & 4472 & 8000 & 5 \\
\hline 23 & Host sation & 3 & 1 & 0000 & 0000 & 0000 & 3 \\
\hline 24 & Industrial Arts & 13 & 1 & 3000 & 4830 & 21000 & 10 \\
\hline 25 & Lang Arts English & 152 & 1 & 2083 & 4253 & 228349 & 128 \\
\hline 28 & Math & 88 & 1 & 3988 & 5547 & 190794 & 83 \\
\hline 27 & Media 8 Library & 33 & 1 & 3750 & 4845 & 58250 & E. \\
\hline 28 & Music & 9 & 1 & 1250 & 3536 & 8750 & 8 \\
\hline 30 & Reading & 43 & 1 & 1822 & 3737 & 50270 & 37 \\
\hline 31 & Science & 37 & 1 & 2333 & 5040 & 73687 & 30 \\
\hline 32 & Spec Ed & 42 & 1 & 1351 & 3488 & 43243 & \(3 \cdot\) \\
\hline 33 & Social Studies & 44 & & . 3333 & . 8822 & 153333 & 33 \\
\hline 34 & PYS & 20 & 1 & 0528 & 2284 & 9474 & 19 \\
\hline 33 & Voc Ed & 8 & 1 & 0000 & 0000 & 0000 & 8 \\
\hline wlthin Group & S Total & 818 & 1 & 2485 & 4848 & \(1: 08870\) & 495 \\
\hline
\end{tabular}


Figure DAR-79


Figure DAR-80

\section*{File. Processing DODDTCHR TXI}
ANAIYSIS OF VARIANCE
Criterion varlable ENTHUS Students enthusiasmfor subject has Broken Down by GRADE Grade level identification



Var"able ENTHUS Students inthusiasm for subject has... By Yariable GRADE Grade le'el identification

\section*{analysis of variance}
\begin{tabular}{|c|c|c|c|c|c|}
\hline .OURCE & D.F. & SUK OF SOUARES & MEAN SOGAR'S & \[
\begin{gathered}
F \\
\text { RATIO }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{F} \\
\text { PROB. }
\end{gathered}
\] \\
\hline BETVEEN GROUPS & 4 & 18.4760 & 4.4190 & 13.8418 & . 0400 \\
\hline WITHI* GROUPS & 483 & 161.1777 & . 3337 & & \\
\hline total & 487 & 179.6537 & & & \\
\hline
\end{tabular}

Variable ENTHUS Students enthusiasm for subject has... By Variable GRADE Grade level identification
mi! tiple range íest
TUKEY-HSD PROCEDURE
RANGF S FOK iHE 0.050 Level -
3.88 3.88 3.88 38
the ranges above a: tabse nayges.





Processing DUDDTCHR.TXI

Criterion variable GENENTH Enthusiasmfor school in general.as.. Broken Down by GRADE

Grade level identification
\begin{tabular}{rl} 
Value & Label \\
1 & K 1 \\
2 & \(2-3\) \\
3 & \(4-6\) \\
4 & \(7-8\) \\
5 & \(9-12\)
\end{tabular}

Within Groups Total
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sum & & Mean & Std Dev & Sum of Sq & Cases \\
\hline 64 & 1 & 7297 & 8519 & 152873 & 37 \\
\hline 163 & 1 & 6465 & 6278 & 386283 & 89 \\
\hline 298 & 1 & 898: & 7441 & 863694 & 157 \\
\hline 143 & 2 & 2000 & 86el & 284000 & 65 \\
\hline 300 & 2 & 3258 & 8270 & 503256 & 129 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 988 & 19877 & 6741 & 2190186 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Source & \multicolumn{2}{|l|}{Sum of Squares} & D & F & \multicolumn{2}{|l|}{Mean Square} & \multicolumn{2}{|r|}{\(F\)} & S18. \\
\hline Between Groups & 32 & 8075 & & 4 & 8 & 2289 & 18 & 1051 & 0000 \\
\hline Linearlty & 30 & 2753 & & 2 & 30 & 2753 & 86 & 8277 & 0000 \\
\hline Dev from linearity & 2 & 6322 & & 3 & & 8774 & 1 & 9308 & 1237 \\
\hline & R - & 3467 & R S & Squared & - & 1202 & & & \\
\hline Within Groups & 219 & O18A & & 82 & & 4544 & & & \\
\hline & - & 3614 & & Squaret & & 1308 & & & \\
\hline
\end{tabular}

Figure DAR-83

23-Dec-89 ONEWAY of aggregate teachers attitudes by descrip. vars Page
03:34:27 GEORGE MASON UNIVERSITY on GMUVAX: : VMS VS.1
File: processing OOODTCHR.TXT

Variable GENENTH Enthusiasm for school in general has... By Variable GRADE Grade level identification

SOURCE BETYEEN GROUPS WITHIE GROUPS total

\begin{tabular}{rr}
4 & 32.90 \\
482 & 219.01
\end{tabular}
\(482 \quad 219.0186\) \(486 \quad 251.926\)

MEAK SQUARES .4544
\(F \quad F\)
RAIIO PROB.

Variable GEHEHTH Enthusiasm for school in general has... By Variable GRADE Grade level identification

MULTIPLE RA.:E T'SSI

TUKEY-ñSD PROCEDURE
RANGES FOR THE 0.050 LEVEL
\[
\begin{array}{llll}
3.88 & 3.88 & 3.88 & 3.88
\end{array}
\]
the raiges above are table rahges.
the value actually compared with mean(j)-meah!i) is..
0.4767 * RANGE * DSORT(1/*(I) + \(1 / \mathrm{N}(\mathrm{J}))\)
(*) DENOTES PAIRS OF GROUPS SIGHIfICANILY DIffereyt at the 0.050 Level
\begin{tabular}{|c|c|c|}
\hline & &  \\
\hline Mear & Group & 21345 \\
\hline 1.6465 & ¢ & \\
\hline 1.72.7 & Grp 1 & \\
\hline 1.8981 & Gro 3 & * \\
\hline 2.2000 & Grp 4 & * * * \\
\hline 2.3256 & Grp 5 & *** \\
\hline
\end{tabular}

Figure DAR-84
145
File: Processing DODDTCHR TXI
\[
A N A L Y S I S O F V A K I A N C E
\]
criterion variable Genenth Enthusiasmror schoolingeneral has Brcion Einun by subject subject support area

\section*{value \\ Labol}

10 Art
11 Business

\section*{compensatory ea} computer sci \(\mathcal{E}\) llt CWE
Counsel:ng ESL
Evaluation For Languag Home Economic Health
Host Nation Industrial Arts Lang Arts \& gllsh Math Hedia \(甘\) Library Media
Music Music Reading Sclence spec Ed Social siudies PFS
Voc Ed
within Gicups To:al

\footnotetext{
(1)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sum & & Mean & Std & Dev & Sum & of Sq & Cases \\
\hline 24 & 2 & 1818 & & 4045 & 1 & 6364 & 11 \\
\hline 15 & 2 & 1429 & & 6901 & 2 & 8571 & 7 \\
\hline 33 & 1 & 8333 & & 8183 & 6 & 50vo & 18 \\
\hline 20 & 1 & 8125 & & 7500 & 8 & 4375 & 16 \\
\hline \(\theta\) & 3 & n000 & & 0000 & & 0000 & 3 \\
\hline 16 & 1 & 6009 & & 6982 & 4 & 4000 & 10 \\
\hline 33 & 1 & 9412 & & 7475 & 8 & 9412 & 17 \\
\hline 3 & 1 & 5000 & & 7071 & & 5000 & 2 \\
\hline 17 & 2 & 8333 & & 4082 & & 8333 & 6 \\
\hline 9 & 1 & 8003 & & 4472 & & 8000 & 5 \\
\hline 9 & 2 & 2500 & & 5000 & & 7500 &  \\
\hline 6 & 2 & 0000 & 1 & 0000 & 2 & 0000 & 3 \\
\hline 21 & \(\stackrel{1}{2}\) & 1000 & & 5676 & 2 & 9000 & 10 \\
\hline 225 & 1 & 8145 & & 7600 & 72 & 73.9 & 124 \\
\hline 135 & 2 & 1774 & & 8659 & 27 & 0484 & 62 \\
\hline \(\bigcirc 1\) & 2 & 2174 & & 5987 & 7 & 9130 & 23 \\
\hline 22 & \(?\) & 7900 & & 4829 & 1 & 5000 & 8 \\
\hline 63 & 1 & 7027 & & 6176 & 13 & 7297 & 37 \\
\hline 64 & 2 & 2089 & & 6750 & 12 & 7586 & 29 \\
\hline 92 & 2 & \(\bigcirc 000\) & & 7171 & 18 & 0000 & 36 \\
\hline 87 & 2 & \(\bigcirc 303\) & & 8840 & 14 & 8697 & 33 \\
\hline 35 & 1 & 9444 & & 8726 & 12 & 9444 & 18 \\
\hline 10 & 2 & 0000 & & 7071 & 2 & 0000 & 5 \\
\hline - & & -- & & & & & - \\
\hline 988 & 1 & 9877 & & B950 & 224 & 1533 & 487 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Source & \multicolumn{2}{|l|}{sum or Squares} & \(\Sigma F\) & \multicolumn{2}{|l|}{Mean Square} & \multicolumn{2}{|r|}{F} & \$18 \\
\hline Between Groups & 27 & 7 728 & 22 & 1 & 2624 & 2 & 8132 & 0001 \\
\hline Linearity & & 1111 & 1 & & 1111 & & 2:30 & A318 \\
\hline Dev from Linoarity & 27 & 8817 & 21 & : & 3172 & 2 & 7247 & 0001 \\
\hline & - & 0210 & R Squared & & 0004 & & & \\
\hline within Groups & 224 & 1533 & 484 & & 4831 & & & \\
\hline & - & 3320 & Et, Squared & & 1102 & & & \\
\hline
\end{tabular}

Figure DAR-85
126


VARIABLE GENELiTH Enthusiasm for school in general has... (COMTINUED
\begin{tabular}{|c|c|c|}
\hline & &  \\
\hline Mean & Group & 96013528432534160172805 \\
\hline 1.5000 & Grpl9 & \\
\hline 1.6000 & Grpit & \\
\hline 1.7027 & Erp30 & \\
\hline 1.8000 & Crp21 & \\
\hline 1.8125 & Grpl3 & \\
\hline 1.8145 & Grp25 & \\
\hline 1.8333 & Grp12 & \\
\hline 1.9412 & Grp18 & \\
\hline 1.9444 & Grp34 & \\
\hline 2.0000 & Grp23 & \\
\hline 2.0000 & Grp32 & \\
\hline 2.0000 & Grp35 & \\
\hline 2.0303 & Grr33 & \\
\hline 2.1000 & Grp24 & \\
\hline 2.1429 & Grpl1 & \\
\hline 2.1774 & Grp26 & \\
\hline 2.1818 & Grp10 & \\
\hline 2.2069 & Grp31 & \\
\hline 2.2174 & Grp27 & \\
\hline 2.2500 & Grp22 & \\
\hline 2.7500 & Grp28 & * * \\
\hline 2.8333 & Gro20 & * \\
\hline 3.0000 & Grels & \\
\hline
\end{tabular}

Figure DAR-86

\section*{File: Processing DODDTCHR TXT}

SETTING Project computers were by BESTSET For best effect. computerz ought to be
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multicolumn{3}{|c|}{BESTSET} & \multicolumn{2}{|l|}{Page 1 or 1} \\
\hline & Count & I & & & \\
\hline & & lused in & assigned & on nobl 1 & \\
\hline & & 1alab & to clas & e \(c: 1\) cts & Row \\
\hline & & 1 & 2 & 3 & Tctal \\
\hline \multicolumn{6}{|l|}{SETTING} \\
\hline & 1 & 19 & 6 & & 25 \\
\hline \multirow[t]{2}{*}{avallable} & only 1 & 1 - & & & 5.2 \\
\hline & 2 & 67 & 378 & 6 & 449 \\
\hline \multirow[t]{2}{*}{assigned} & to my c & 1 & , & & 928 \\
\hline & 3 & 4 & 14 & 2 & 10 \\
\hline \multirow[t]{3}{*}{on mobile} & cart & , & 1 & & 21 \\
\hline & cclumn & 90 & 386 & 8 & 484 \\
\hline & Total & 136 & 798 & 17 & 1000 \\
\hline
\end{tabular}

Figure DAR-87

30-Sep-39 BREARDOWNS of teachers attltudes by descrip. vars GEORGE MASON UNIVERSITY on GMUVAX : :

\section*{s}

\section*{VMS V5 1}

File: Processing DODDTCHR TXT
SETTIAG Project computers were \(\quad\) IFONE If I have cne computer, others should be
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{IFONE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Page 1 of 1}} \\
\hline Count & 1 & & & \\
\hline & 1 & & & \\
\hline & 1 & & & Row \\
\hline & 11 & 2 & 31 & Total \\
\hline SETTING & +---.-. \({ }^{\text {- }}\) & . .-. & - + & \\
\hline 1 & 181 & 4 & 31 & 25 \\
\hline avallable only 1 & 1 & & 1 & 52 \\
\hline 2 & 11731 & 203 & 711 & 447 \\
\hline assigned to my c & , 1 & & 1 & 927 \\
\hline 3 & 51 & 2 & 3 & 10 \\
\hline on moblle cart & 1 1 & & , & 21 \\
\hline column & 196 & 209 & 77 & 482 \\
\hline Total & 407 & 434 & 160 & 1000 \\
\hline
\end{tabular}

Figure DAR-88
IbI-\&Va
\[
149
\]

File: Processing drdDi hr tXI
ANAIYSIS CFVARINNCE
Cr:urion Variable RAF Resource Adequacy Factor
Broken Down by BESTSET For besteffect. computers ought to be

Value Labol
1 usod in a \(1 a b\)
assifned to classroo assigned toclassroo
on mobile car sas n
within Groups Total
BESTSET For best effect. computers ought to be
\begin{tabular}{rrrrrr} 
Sum & Mean & Std Dev & Sum of Sq & Cases \\
3877 & 4260 & 2646 & 6 & 3028 & 93 \\
20451 & 5257 & .2710 & 285033 & 389 \\
4 & 22 & 5271 & .3312 & 7877 & 8 \\
\hdashline 24748 & 5072 & 2708 & 35 & 5739 & 488
\end{tabular}

Source
Between Groups
Linsarlty
Dev from Linearity

Sum of squares

7362
6701
0881
R - 1358
35 5\%

Mean Square
\(\mathcal{F}\)
S18
368150182
\(0012 \quad 3428\)
within oroups
\[
\text { Eta = Eta Squared- } 1424 \text { - } 0203
\]

Figure DAR-89

20-Dec-88

\section*{Flle: Processing DODDTCHR.TXT}

\section*{Varlable RAF \\ Resource Adequacy Factor} By Varlable BESTSET

For best effect. compluters ought to be.
kULTIPLE RANGE TEST

TUREY-HSD PROCEDURE
RANGES FOR THE 0 OSO LEVEL -
334334
THE RAGGES ABOVE AKE TABLE RANGES
THE VALUE ACTUALLY COMPARED WITH KEAN(J)-MEAN(I) IS
01915 : RANGE DSQRT(1 N(I) i N(J))
(•) DENOTES PAIRS OE GROUPS SIGNIFICANTLY DIFFERENT AT THE 0 OSO LEVEL


Figure DAR-90

151
```

23-Dec-89 ONEWAY of aggregate teachers attitudes by descrip. vars
S:24:45 GEORGE MASON UNIVERSITY ON GMUVAX:: VMS VS.
File: Processing OOODTCHR.TXT

```
    Variable RATIO Best student-computer raiio for me is...
By Variable GRADE Grade level identification
analysis of variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOURCE & D.F. & SUM OF SOUARES & MEAN SOUARES & \[
\begin{gathered}
\text { F } \\
\text { RAIIO }
\end{gathered}
\] & \[
\stackrel{F}{\text { PROB. }}
\] \\
\hline BETMEEH GROUPS & 4 & 9.6406 & 2.4102 & 3.3573 & . \(0^{\circ} 0\) \\
\hline HITHIN GROUPS & 482 & 346.0185 & . 7179 & & \\
\hline total & 486 & 355.6591 & & & \\
\hline
\end{tabular}

Variable Ratio Best student-computer ratio for me is...
By Variable GRADE Grade level identification
multiple rance test

\section*{TUKEY-HSD PROCEDURE}

RANGES FOR ThE G.OSO LEVEL.
\(\begin{array}{llll}3.88 & 3.88 & 3.88 & 3.88\end{array}\)
The ranges above are table ranges.
the value actually compared with mean(j)-mean(l) is..
0.5991 * RANGE * OSORT(1/N(I) + 1/N(J))
(*) DEnOtES palrs of groups SIgnificantly different at the o. O5O level
\begin{tabular}{|c|c|c|c|}
\hline & & \[
\begin{array}{lllll}
G & G & G & G & G \\
r & r & r & r & r \\
p & P & P & p & p
\end{array}
\] & \\
\hline Mean & Group & 43251 & \\
\hline 1.9848 & Grp 4 & & \\
\hline 2.0380 & Grp 3 & & \\
\hline 2.0928 & Grp 2 & & \\
\hline 2.1240 & Grp 5 & & Figure DAR.91 \\
\hline 2.5676 & Grn 1 & **** & Figure DAR \\
\hline
\end{tabular}
```

23-Dec-89 ONEWAY of aggregate teachers attitudes by descrip. vars
15:24:47 GEORGE MASON UHIVERSITY ON GMUVAX:: VMS V5.1
File: Processing 0COOTCHR.TXI
Variable RATlO Best student-computer ratio for me is...
By Variable SUBJECT Subject/support area

```
analysis of variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOURCE & D.F. & SUM OF SQUARES & MEAN SOUARES & \[
\underset{\text { RAT10 }}{\mathbf{F}}
\] & \(\stackrel{F}{\text { Pros. }}\) \\
\hline BETLEEN GROUPS & 22 & 42.2738 & 1.9215 & 2.8450 & . 0000 \\
\hline WITHIN GROUPS & 464 & 313.3853 & . 6754 & & \\
\hline TOTAL & 450 & 355.6591 & & & \\
\hline
\end{tabular}

Variable Ratio Best stusent-computer ratio fe- me is...
By Variable SUBJECT Subject/support area
multiple range tesi

TUKEY-HSD PROCEDURE
RANGES fOR ThE O.CSO LEYEL.
\begin{tabular}{llllllllll}
5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 \\
5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5.13 & 5 \\
5.13 & 5.13 & & & & & & & &
\end{tabular}
the ranges abovz are table ranges.
the value actually compared with mean(j)-mean(i) is..
0.5811 * RANGE * OSORT(1/N(1) + \(1 /\) ( J\()\) )
(*) DENOTES PAIRS OF GROUPS SIGNIfICANTLY DIFFERENT AT The O.OSO LEVEL

Figure DAR-92
1.73


File: Processir: ncootchr.txt
VARIABLE RATIO Best student-computer ratio for ne is...
(COHTIMUED)


\section*{Exhibits}

\title{
DoDDS Computer-Ea ed Instruction (CBI) Program Evaluation - PHASE II
}

\section*{GUIDELINES FOR REGIONAL COORDINATORS}

What is in Your Box(es)? (1) Bundled by school are teacher and student questionnaires ready to be transferred to school mailers, \({ }^{1}\) (2) extra teacher questionnaires to give to CBI project teachers not listed on the attached project listing sheet (additional copies can be made by you if needed), (3) extra optically-scannable answer forms (hereafter referred to simply as "inswer forms" for use by these extra teachers, and (4) a projects listing sheet to use to prepare school mailers and as a checkoff list to monitor returns.

Opening and Unpacizng the Box(es). Open and remove the contents carefully, because each bundle contains loose items that can separate from the rest. Inspect the contents to make sure no items are missing.

Distribution of Questionnaires to Schools ASAP. Since the questionnaires have been bundled with elastic bands by school, the region's initial tass is to transfer each bundle to a mailer to the individual school and send the mailer out. A label on each bundle (or individual teacher questionnaire) states the name of the tec.sher, the name of the school, the two-letter regional identifier (AT for Atlantic), and une or more two-letter subject-area identifiers. In the process of transferring materials between the box(es) and the school mailer, take care that loose items within bundles, like the \#: 10 envelopes with the answer forms, do not fall out. On arrival at the destination school, your local contact person sh culd remove the outer-most elastic bind and distribute the teacher bundles (or indivi jual teacher questionnaire and single answer form).

The distribution of questionnaires may be complicated by changes that may have occurred over the last 12 months since the arrival of computers for project participants. Some of these changes and solutions are described next.

\section*{How 10 Address Changes in the Last 12 Months}

The development of the sample and othe planning for this data coliection effort were based on project abstracts submitted last spring. Much has happened and some changes have occurred over the ensuing year, so let's consider a few possible changes and how you can deal with them with respect to the survey tasks.
1. Tia iudcher who was to carry out a project described in the abstracts has left the school or the system. Solution - give that teacher's materials to the teacher who is running the project now, or to another teacher whose project was added to Phase II and does not appear among the abstracts we examined. Note this

\footnotetext{
'NOTE: Not all project teachers will receive studera questionnaires.
}
action, and the changes in grade-level and content, on the project listing you received in this packet.
2. The project teacher has had to make changes in the project (grade levei or subject area) for any number of understandable reasons. Solution -- make relevant changes on the projes \(i\) listing sheet and forwarc the materials to the teacher.
3. More teachers in your region have joined the \(\quad\) I dimonstration proje., and there are not enough of the green-colored tearher questionnaires to send out from the regio al office. Solution - we have pievided a number of additional answer forms and questionnaires, and you should produce more copies of the teacher questionnaire for toese teachers. To facilitate adequate moniori_g, please ask these teachers \(J\) label their return envelope with their school name and their project's subject area.

\section*{Handling Returrs}

Each project teacher will be sending you an envelope containing either (1) 1 teacher answer form and several [ Lip to 2J] siudent forms or (2) just 1 teache: answer form. Teachers were provided a return label identifying only school name, region, and subject. On your projects listing sheet, check off each return as it arrives. In cases wiere no label appears on tne envelope, simply keep a tally ố such unlabeled returns. In so doing, you will be able to calculat; the return rate, and do foilowup for unreturned answer forms.

By June 15, send the student and wacher (or just teacher) answer sheets, together with a corrected copy of the project listing shee \({ }^{+}\), directly to the project evaluator:

\author{
Dr. Charles S. White, Dircctor \\ Center for Interactive Educational Technology \\ Robinson I, Room 3402 \\ George Mason University \\ 4400 University Drive \\ Fairfax, Virginia 22030
}

Please direct any questions about these instructions, and about other issues that may ailise, to Mary Johnson (autovon 221-0660) at DoDDS in Washington.

\section*{CBI PHASE II -- SAMPLING SUMMARY}

\section*{I ISTRUMENT}

Teacher Questionnaire
Student Questionnaire

NUMBERS DISTRIBUTED

543
6,850

ADMINISTERED

May 8 -19, 1989
May 8-19, 1989

Participants:
One teacher for each demonstration project, based on abstracts submitted to DoDDS in the spring of 1988. If the project teacher is different from that designated on the projects listing sheet, the regional coordinator arranges for redesignation. The Regional coordinator identifies additional Phase II teachers and adds them to the projects listing sheet. Only one teacher per project should complete the teacher questionnaire.

Twenty-five students in \(65 \%\) of the 429 projects that involved students in grade five or above, distributed equally across subject areas.
\(\mathrm{Ar}=29 * ? 5=725\)
\(\mathrm{GE}=163 * 25=4075\)
\(\mathrm{ME}=29 * 25=725\)
\(\mathrm{PA}=42 * 25=1 \omega 50\)
\(\mathrm{PN}=11 * 25=275\)
\(\mathrm{AT}=53\)
GE \(={ }^{-1} 7\)
\(\mathrm{ME}=56\)
\(\mathrm{PA}=100\)
\(\mathrm{PN}=17\)

\section*{CHECKLIST FOR REGIONAL COMPUTER COORDINATORS}

Read all instructions.
As you unpack the box(es), check to see if a change in teacher or project requires changes on the teacher packet and/or the projects listing sheet. If so, make those changes.

Identify additional teachers with CBI demonstration projects who do not appear on the projects listing sheet.

Add those additional teachers to the projects listing sheet.
Construct a questionnaire package for these additional teachers, which includes:
__ the green questionnaire (photocopy if necessary)
- a blue teacher's optical scan answer form
__ one \#10 envelope
___ instructions for labeling the envelope for return
Place each school bundle in a mailer and mail to school contact person.
As returns arrive, mark the corrected projects listing sheet accordingly.
Follow up on late returns by referring to the tallies on \(\imath^{\prime} \geq\) projects listing sheet.

Forward returns by June 15, 1989 to the project evaluator at the end of the survey deadline period, with a copy of the corrected projects listing sheet with returns to date marked.

\title{
DoDDS Computer-Based Instruction (CBI) Program Evaluation - PHASE II
}

\section*{nata collection guide for teachers at CBI DEMONSTRATION SITES}

\begin{abstract}
Background and Purpose: The Department of Defense Dependents Schools (DoDDS) is conducting a system-wide evaluation of CBI activities at over 700 demonstration sites. The CBI plan is a comprehensive effort to integrate hardware and software into classrooms. Phase I (January to May 1988) focused on the use of microcomputers as teacher and student tools. During Phase II (June 1988 to June 1989), DoDDS is evaluating the appropriateness of corputer hardware and curricuilum specific software in your classioom.
\end{abstract}

The attached questi innaire, distributed to all teachers who had computers at the beginning of the current school year, represents one facet of Phase II data collection efforts. For a stratified random sample of projects (233), students are surveyed as well. Finally, projec teachers were asked to maintan anecdotal reperts concerring the evolution of their projects. While all such reports will be forwarded to the regional office, a small random sample of thase will be sent to Washington to help achieve a clearer picture of romputer use in the DoDDS system.

The Questionnaire: The "Questionnaire for Teachers at CBI Demonstration Sites" is designed \(t=\) :apture important information based on your experiences with computers in your classroom over the past school year. The 91 -item instrument is divided into five invependent parts, allowing teachers to complete the questionnaire in a series of manageable chunks over several days. Part I seeks your general views of computers. Part II seeks your judgments about the effect of computer use on the quality of the school experience. The issue of teacher training for computer use is tapped in Part III, while Part IV returns to the impact of computers in the classroom. Finally, Part \(V\) seeks your views about how computers are and should be allocated in your school. Your time and diligence in completing the question na.re is very much appreciated. Directions for completing the questionnaire are provided on the instument itself.

Return Date: The completed questionnaire must be returned to the regional office within two weeks of its receipt and, in any case, before the end of the school year. Thank you for your thoughtful and timely attention to this task.

\title{
DoDDS Computer-Based Instruction (CBI) Program Evaluation - PHASE II
}

\section*{QUESTIONNAIRE for TEACHERS at CBI DEMONSTRATION SITES}

General Directions for Completing the Questionnaire: Before you start, you should have a \#2 pencil and an optical scin answer sheet. Only penciled answers will be read. You should neatly erase any unintended response. Make sure that the entire bubble on the answer sheet is filled in completely.

Completing the "Identification Number" section: In order to analyze responses by certain factors, you will need to enter some numbers, and fill in the corresponding bubbles, in the section of the optical scan sheet labeled "idenmicamon number." Notice that there are 10 boxes, each with a colımn of numbers from 0 to 9 . This section should be completed from lef to right according to the following directions:

Box 1 Regional Office Identification: Using the code numbers below, enter the identifier Jf your region in the left-most box of the Identification Number section on the optical scan answer sheet. Then, darken the bubble - ntaining the number that corresponds to your region's code.
\[
\begin{aligned}
& \text { Region } \\
& \text { Adlantic Region.................................... } 1 \\
& \text { Germany Region............................ } 2 \\
& \text { Mediterranean Region................... } 3 \\
& \text { Pacific Region.................................. } 4 \\
& \text { Panama Regron........................ } 5
\end{aligned}
\]

Rox 2 Grad Level Identification: lat the next box to the right in the Identification Number jection, enter the code number for the grade level of your demonstration project. If your project spans two code numbers (for example, a project involving both ird and sth graders), enter the code number corresponding to the predominant grac' level in.olved. 'f equal numbers of students in both grade levels par pated, enter the lower code number (in the example of 3rd and 4th grade, you would enter a "2"). Then, darken the bubble containing the number that corresponds to the grade level code.
\[
\text { Grade } \quad \text { ID Iumber }
\]
K-1 ..... 1
2-3. ..... 2
\(4-6\) ..... 3
7-8. ..... 4
9-12 .....  5

Boxes 3 \& 4 Subject/Support Area: Use the next two boxes to enter the code number for the subiect/support area in which you implemented your demonstration project. Elementary teachers and "basic allocation" projects must choose a specific area below. Then, darken the bubbles containing the numbers that correspond to the two-digit subject/support area's code.
\begin{tabular}{lll} 
Subject/Support Arca & ID Number & Subject/Support Area
\end{tabular}\(\quad\) ID Numper

Box 5 Gencier Identification: In the 5th box from the left in the Identification Number section, enter the identifier of your gender, whe \(\mathfrak{a}\) " 1 " = MALE and " 2 " = fEMALE. Then, darken the bubble containing the ,umber that corresponds to your gender.

Boxes \(6 \& 7\) Froject Computer Count: For the next 2 boxes in the Identification Number section, enter the number of computers you used for your project. Then, darken the bubbles containing the numbers that correspond to yuur computer count. (nOTE: for numbers less than 10 , include a leading zero; for example, four computers should be recorded as 04.)

Buxes 8 \& 9 Computer Needs Count: For the next 2 boxes in the Identification Number sectior, enter the number of additional computers you would have needed for optimai «chievement of your project objectives. Darken the bubbles containing the numbers that correspond to your computer needs count (nOTE: as with the previous item, include a leading zero for numbers less than 10. )

Box 10 Type of Software Used: In the last box on the right in the Identification Number section, enter the identifier code for the kind of software that was used most predominantly in your project (select only one). Then, darken the bubble containing the number that corresponds to the software type.

Software Type ID Number
Drill and Practice (the content of the sr, ware has been taught
previousty by the teacher, and the software allows students to proctice with the content.)

Tutorial (software intrcduces students to new content, and may allow for practice and self-testing.)

Simulation (software presents students with a simulated representation redity and allows students to make decisions or take actions, and ther to observe the results or consequences of those decisions or action'.)

Dataiose !software consists primarily of data that can be sorted and selectively retrieved to answer given ressarch questions.)

Word processor (software allows students to eater and edit rext as part of writing tasks.)

Spreadsheet (softwäre consists of rows and columns of numerical cells allowing for calcuslation and recalcuiation.)

Integrated software (combines word processor, database, and/or spreadsheet tools into a single package. Choose this option only if your project involved students with at least two of the three integrated software tools.)

Programming (students leam the syntax and semantics of a programming language like BASIC, Logo, or Pascal as the basis for problem solving.)

Problem-solving (software designed explicitly to develop the higherorder thinking skills associated with problem solving.)

Responding to questionnaire statements: After completing the Identification Number section, proceed to respond to the 91 items, organized into 5 parts. Items generally follow the same pattern: For each statement, decide whether you STRONGLY AGREE, AGREE, NOT SURE, DISAGREE, or STKONGLY DISAGREE with it. Then, indicate on the optical scan answer sheet your decision by filling in the A for STrongly agree, \(B\) for agree, \(\mathbf{C}\) for not sure, \(\mathbf{D}\) for disagree, or \(\mathbf{E}\) for strongly disagree. (Where different response types are used, specific instructions are presented.)

Here are examples of answers properly marked on the answer sheet:
1. Moral develonment should be a central goal in the curriculum. \(\quad A \quad B \quad C \quad D \quad E\)

Teacher \#1
(This :'acher agreed with the statemont, but not strongl).\}
Teacher \#2
(This ieacher strongly \& agreed with the statement )
Teacher \#3
(This teacher wasn't sure whether she agreed or disagreed.)


Be sure to respond to all the items, to put all your answers on the answer sheet, and to fill in ONLY ONE ANSWER for each sintement.

You are now ready to begin Part I of the CBI Demonstrution Project Questionnaire on the next pages.

\title{
CBI Demonstratioii Proje ts
}

Teacher Questionnaire
Part I
(Place all responses on the optical scan answer sheet only)
\(A=\) strongly agree \(\quad B=\) agree \(\quad C=\) not sure \(\quad D=\) disagree \(\quad E=\) strongly disagree
1. Compuiers do not scare me at ali.
2. I'm no good with computers.
3. I like working with computers.
4. Working with a complier makes me very nervous.
5. Generally, I feel OK about trying a new problem on the computer.
6. The challenge if solving problems with computers does not appeal to me.
7. I do not feel threatened when others talk about computers.
8. I don't think I would do advanced computer work.
9. I think working with computers is enjoyable and stimulating.
10. I feel aggressive and hostile toward computers.
11. I am sure I could do work with computers.
12. Figuring out cor.puter problems does not appeal to me.
13. It wouldn't bother me at all to take compler courses.
14. I'm not the type to do well with computers.
15. When there is a problem with a computer task that I can't immediately solve, I would stick with it until I have the answer.
16. Computers make me feel uncomfortable.
17. I am sure I could learn a computer language.

A B C D E
ABCDE
\(A B C D E\)
A B C D E
A B C D E

A B C D E

A 3 C D E
A B C D E
A B C D E
A B C D E
A B C D E
A B C D E
A B C D E
A B C D E
A B C D E
A B C
D E

A B C D E
18. I don't understand how some peopie can sperd so much time working with computers and seem to enioy it.
19. I would fee! at ease in a computer class.
20. I think using a computer is very hard for me.
21. Once I start to work with a computer, I would find it hard to stop.
22. I could get good grades in computer courses.
23. I will do as little work with computers as possible.
24. I feel comfortable working with a computer.
25. I do not think I could hanuse a computer :ourse.
26. If a problem is left unsolved in a computer class, I would continue to think about it afterward.
27. Computers make me feel uneasy and confused.
28. it have a 't of self-confidence when it comes to working with computers.
29. I do not enjoy talking with others about computers.
30. What is the total number of students in your school?
A. Fewer than 125
C. \(\quad 251-500\)
E. More than 1000
B. \(126-250\)
D. \(501-1000\)

\title{
CBI Demonstration Projects
}

\section*{Teacher Questionnaire Part II}
(Place all responses on the optical scan answer sheet only)
\(A=\) strongly agree \(\quad B=\) agree \(\quad C=\) not sure \(\quad D=\) disagree \(\quad E=\) strongly disagree
31. There are some activities during the year that I would not have been able to do without the use of the computers.
32. I can be more creative when I work with a computer.
33. To be reaily successful with the project I attempted, I really need more computers.
34. I think I could accomplish the same obiectives next year with fewer computers.
35. I find that one computer used for whole-group instruction and/or demonstration is adequate to accomplish my objectives.
36. Unless I have access to a computer lab, I really won't be able to accomplish the project objectives next year.
37. I can't say that the computer saved me time in performing my professional tasks
38. Except perhaps for motivation, there really wasn't anything computer use did that I couldn't have done without the computer.
39. As time passed, I found that using the comprater really dic speed up my professional wor'..
40. As time passed, I noticed that students were making progress through the content more quickly than in the past.

4i. I noticed that computer use increased students' "time-ontask."
42. Computer use helped studes jimprove cooperation skills.
43. Using the computer in iny work has helped me use my time more efficiently.

A \(\mathrm{P} \quad \mathrm{C} D \mathrm{E}\)
A B C D E

A B C D E

A B C D E

A B C D E

\section*{A B C D E}

\section*{A B C D E}

\section*{A B C D E}

\section*{A B C D F}
\(A B C D E\)
A B C
D E
\(A B C D E\)
A B C D E
\(A=\) strongly agree \(\quad B=a g r e e \quad C=\) not sure \(\quad D=\) disagree \(\quad E=\) strongly disagree
44. I have changed my methods of teaching as a reolt of using computers in this project.
45. Computer use hasn't really changed my teaching methods.
46. If asked, I could identify students who would not have been as successful in my class without the opportunity provided by the computer project.
47. I could name students who rarely submit complete work, but who successfully completed tasks associated with compuier use.
48. I can't say that my "reluctant" students were any more successful with work in the computer project than they are otherwise.
49. I can't say that the computer helped me perform my professional tasks more easily.
50. The content of what 1 teach requires substantial time for ar: individual student to work at a computer station one-on-one.
51. For the content of what I teach, a single computer for wholegroup instruction and/or demonstration would be the most efficient use of the computer.
52. I can't say that the computer really helped my students learn more quickly than traditional instruction.
53. For the content of what I teach, small groups of students teamed around several computer stations would be the most efficient use of the computer.
54. It is clear to me that computer use can be beneficial to students in my subject area in general.

\begin{abstract}
A B C D E
\end{abstract}

A B C D E
A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

\title{
CBI Demonstration Projects
}

\section*{Teacher Questionnaire Part III}
(Place all responses on the optical scan answer sheet only)
\(A=\) strongly \(x_{\mathrm{s}}\) ree
\(\mathbf{3}=\) agree \(\quad r=\) not sure
\(\mathrm{D}=\) disagree
\(\mathrm{E}=\) strongly disagree
55. I need more training on how to use a single computer station for whole-group instruction.
56. I need more training on rcw to organize classroom aciurty for group work at computer stations.
57. I need more training on how to organize instruction to make better use of a computer lab.
jo. I need more training on haw to use computers for skill development.
59. I need more training on how to use computers to increase student conterit knowledge.
60. I need more training on how to measure the gains in student performance that I believe are being achieved using the computer.
61. I need more piarning time to properly integrate compuers in the classroom.
62. I need more training on what software is available to meet my instructional objectives.
63. I need more training on how to use teacher productivity tools like gradetooks and word processing.
64. I need more ixformation about how other teachers in my .ubject area/grade level are using computers
65. I need more training on how to evaluation the quality of software.
\(A B C D E\)
\(\therefore B C D E\)
A B C D E
A B C D E
A B C D E
A B C D E
A. B C \(\quad \mathrm{E}\)
\(A \quad B \quad C \quad D \quad E\)

A B C D E

A B C D E
66. My software evaluation training contributed to the success of this project.
67. My inservice training on how to diagnose and correct minor hardware and software problems contributed to the success of this project.
68. My inservice training in programming contributed to the jccess of this project.
69. My inservice training in word processing contributed to the success of this project.
70. My inservice training with databases contributed to the success of this project.
71. My inservice training w.in spreadsheets contributed to the success of this project.
72. My inservic training about gradebooks and other teacher tools contributed to the surcess of this project.
73. My inservice training on software availability for my subject area/grade level contributed to the success of this project.
74. My inservice training in classroom management for computing contributed to the success of this project.

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

\section*{CBI Demonstration Projects}

\section*{Teacher Questionnaire \\ Part IV}
(Place all resporses on the optical scan answer sheet only)
\(\overline{S a}^{+}\)each item below, please choose the respo we that most closely matche: your opinion. Use the following codes to express your reiponses, ana fill in the appropriate bubble on your answer sheet:
\(\mathrm{A}=\) "much imnroved"
\(\mathrm{B}=\) "somewhat improved"
\(\mathrm{C}=\) "not charged"
\(\mathrm{D}=\) "been somewhat negatively affected"
\(\mathrm{D}=\) "been very negatively affected"
\begin{tabular}{|cccc|}
\hline \begin{tabular}{c} 
much \\
\(\mathbf{A}=\) improved
\end{tabular} & \(\mathbf{B}=\) somproved
\end{tabular}\(\quad \mathbf{C}=\) not changed \(\quad\)\begin{tabular}{c} 
been somewhat \\
\(\mathrm{D}=\) negatively affected
\end{tabular}\(\quad\)\begin{tabular}{c} 
been very \\
\hline
\end{tabular}
75. As a result of using computers, my students' enthusiasm for subjecis for which they used computers has...
76. As a result of using computers, providing special opportunities for gifted students has...
77. As a result of using computers, my students' enthusiasm for school : seneral has...
78. As a result of using computers, providing special opportunities for handicapped or learning disabled students has...
79. As a result of using computess, peer cooperation has...
80. As a result of using computers, students working independently has...
81. As a result of using computers, leaming by melow average students has...
82. As a result of using computers, learning by my average scudents has...
83. As a result of using computers, łearning by my above average students has...
84. As a risult of using computers, tailoring assignments to students individual needs has...

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E
A \(\mathrm{E} C \mathrm{D} E\)
A. \(B C D E\)

A B C D E
\(A B \subset D E\)

A B C D E
85. As a result of using computers, diqgnosing my students' learning problems has...
86. As a result of using computers, the volume or work students produce has...
87. As a result of using computers, the level of creativity among my students has...

A B C D E

A B C D E

A B C D E

\section*{Teacher Questionnaire Part V}

For each multintrace ithoice below, please choose the response that most clusely muishes your opinion, and fill in the appropriate bubble on your optical scan answer sheet.
88. For your demonstr 'on project, the computers were:
A. available only in a lab setting.
B. assigned to my classroom for the duration of the project.
C. wheeled in on mobile carts as needed.
89. To be most effective in the subject area or grade luvel targeted for this project, I think computers ought to be:
A. used in a lab setting.
B. assigned to individual clascrooms on a fairly permanent basis.
C. wheeled in on mobile carts as needed by the teacher.
90. In your judgment, what ratio of students to computers needs to be achieved 1 , ider to maximize the benefits of CBI in your subject area? (For example, 2:1 means 2 students for 1 computer.)
A. \(\quad 1: 1\) (each child has access to his/her own computer)
B. \(2: 1\) to \(4: 1\)
C. \(5: 1\) to \(9: 1\)
D. \(10: 1\) to \(24: 1\)
E. \(25: 1\) or more (1 computer per classroom)
91. Assuming you hau at least one computer and printe. permanently assigned to your classroom, how would you place the other computers in the school for maximum benefit?
A. in a lab
B. assigied to individual classrooms
C. on mobile carts for use as needed

\title{
COMPUTER-BASED INSTRU' TION (CBI)
}

\author{
ANECDOTAL RECORD FORMS \\ TO BE USED IN \\ EVALUATION OF CBI PROJECTS
}

Name of Teacher

Description of Computer-Based Instruction (CBI) Anecdotal Record Forms to be used in the Evaluation of the CBI Program:

Each demonstration site teacher will maintain a site record on a bi-weekly schedule. The record will provide the basis for completing the final evaluation. Record forms will be sent along with the completed evaluation form to the Compuier Coordinator at the Regional Office in May 1989. The evaluation form will then be sent to the DoDDS office in Alexandria, Virginia, and the record forms will be kept on-firs. for six months at the Regional Office. Reporting dates fo، CBI records are:

\author{
Type of Report \\ 1st Seniester CBl Kecord \\ Two-week CBI Record Form \\ Two-week CBI Record Form \\ Two-week CBI Record Form \\ Two-we. k CBI Record Form \\ Two-week CBI Record Form \\ Two-week CBI Record Form \\ Two-week CBI Record Form
}

\section*{Reporting Dates}

J 'jary 20, 1989
February 10, 1989
February 24, 1989
March 10, 1989
March 24, 1989
April 14, 1989
Aprii 28, 1989
May 12, 1989

Keep a copy of the completed record forms in your classroom until you have completed the final evaluation form which will be sent to you at a later date. The basic information needed for part of the evaluation form will come from these questions:
1. What software packages were most effective in achieving the objectives ycu had set?
2. What improvements (if any) have you noticed in student performance as a result of using the computer?
3. Has the number of computer workstations helped or hindered your work or your students' progress?
4. What prior inse,vice training contributed to the success of the project?
5. What additional training or information would have helped make the project more successful?
6. Did the use of the computers allow you to engage in activities that would have been impossible or extremely difficult to conduct without computers?
7. What changes (if any) have you made in your plannt \(\pm\) objectives in relation to student performance or other factors?

The CBI record forms, to be completed by CBI project teachers, reflect cumulative information needed for system-wide evaluation.

\section*{First Semester CBI Record}

Uir stions: Please . aspond to these 7 questions based on your experiences during the firs semester of SY 1988-39. Consider each question carefully before you respond. Be specific in the comments you make. Gene, al comıments are not as valuable in reveaing valid proyram outcomes and rieeds. Where appropriate, attach a sample of student work to illustrate your comments. Please complete on or beiore January \(20,1989\).
1. What recommendations would you make for setting up a new classi unm CB site?
2. What software packages did you feel were most effective in meetiny your objectives during the first semester?
3. What improvements, if any, did you notice in student progress as a result of computer interaction during the first semester?
4. How has the number of computer workstations helped or hindered your work or students' performance thustar?
5. What pror inservice training contributed to the success of the project thusfar? What additional training would have r.ade the project easier to mana'ge or more successful during the first semester?
6. Were there any class activities that would \(r\) e been impussible or extremely difficult without a computer?
7. What modifications, if any, have you made . . your student objectives for this project, based on the first semester student performance, based on the softwart you used, or bi.jed on other factors?

\section*{Two-Week CBI Record Form}

Directions. Please respond tc ie \(\underline{8}\) tems on the basis of a two-week time frame. There may not be a response il every item during each two-week period. Consider each question or item carefully efore you respond. Be specific in the comments you mare. General comments are ..ot as valuable in revealing valid program outcomes and needs. ivhere appiopriate, d.ach a sample of student work to illustrate your comments.
1. Identify software used during this 2-week period:
2. State any student improvement or change noted as a result of computer interaction (e.g., skills, time-on-task, attitudes, etc.):
3. Explain how the number of cumputer workstations helped or hinderec, your work or students' progress:
4. Which inservice training activities contributed to project succes: during this 2-week period?
5. What additional inservice training is needed for better delivery of services to students?
6. What specific activities ware engaged in, if any, that would be impossible or extremely difficult without a computer?
7. What changes, if any, have you made (or will make) in student objectives, based on student performance, based on the software you're using, or based on other factors?
8. Other comments:

\title{
DoDDS Co 'uter-Based Instruction (CBI) Pringr. a Evaluation - PHASE II
}

\section*{DIRECTIONS FOR ADMINISTRATION of STURENT QUESTIONNAIRES}

What is in Your Paiket? (1) ore teacher questionnaire, (2) 25 stu'ent questionnaires, (3) 1 teacher and 25 student optically-scannable answer sheets in an envelope, along with (4) an identifier label to use when returning the answer sheets. With your guidance, students will fill in the needed information for "student ID number" on their answer sheets and then to respond io the 50 items ( 28 itenis if in grades 5 and \(\kappa\) ) by darkening the appropriate bubbles on the scanning form.

Administering thr St Ident Questionnaire: First, make sure your students have \#2 pencils, a copy of the questionnaire nd one of the optical scanning answer sheets provided (do not use any other kind of scanning form). Second, students must fill in the "S dent Identifintion Number" section of the answer sheet. Rather than a student D , however, the student will write in the boxes provided a seri-s of numbers you will have writen on the blackboard. It is the same number (with one exception) that is required on the teacher questionnaire. (So you will need to somplete at least the "Identification Number" tasks on your questionnaire before administering the s.udent questionnaire.) If you refer to page 3 of the directions on the teacher questionnaire, you will see a saniple teacher's number (4226203029). If this were your number, you would write two numbers on the blackboard: 4226203029 for the girls and 4226103029 for boys (the 5th box from the left is reserved to rcword gender). After students have transferred the correct number from the board onto the proper place on their answer forms, they should fill in the appropriate bubble beneath each number. Third, read through the instructions with your studeats and answer whativer questions arise. Fourth, stu _unts may proceed with the questionnaire items. Remind the students that erasures must be complete, that doublemarked answers carnoi be interpret.d, that all items should be answered on the optical scansing sheet nly, and that the answer sheer must be kept in mint condition in order to be read properly by the scanning equipment. Fifth, as the students finish, collect and check the answer sheets to see if students folloued your directions. Finally, place the students' optical scanning shests in a reinforced envelop (perhaps with a piece of cardboard for support) along with the answer sheet from ycur questionnaire, affix the enclosed label, and fc.ward the envelop to your regional computer coorunator.
nuestions about the Student Questionnaire:
To which of my students do I adrininisier the student nuestionraire? The student questionnare should be administered to students .. ho are in grade 5 or above. If your project involves student ranging above and below 5 th grade, then administer the su:vey only to students in grade 5 and up.

You've only sent enough questionnaires and optical scarning forms for one ciais, but I have 3 classes involved in the project. Which class gets the quessionnaire? You selec. the one class who w.il fill out iue questionnaires and, if you have more than 25 students in the class, which students will complete the questionnaire. The other two ciasses will not be surveyed.

My project involves only a handful of students. What do I do with all the extra questionnaires and scanning sheets? Use only the questionnaires and answer sheets you need, administering the instrument to students who were involv 1 with computer use in your project, and discard the rest.

Do all students respond to the same number of items? No. Students in grades 5 and 6 respond only to the first 28 items. Grades 7-12 continue the questionnaire to the e.nd ( -0 items).

Return Date: The completed answer sheets must be retraed : \(\therefore\) ie regional office wihin two weeks nititc receipt and, in any case, hefore the end of the school year. Thank you.

\section*{CRI PROJECT \\ STUDENT QUESTIONNAIRE}

Directions: Before ' ou start, you should have a \#2 pencil and an eptical scar answer sheet. Your tcacher will tell you how to fili in some general information on fic answer sticet before you begin the questionnaire. Then, when initructed to do so, you should begin responding to the 50 items, as follows: For each statement, decide whether you STRONGLY agree, agree, not SURE, DiSaGree, or STRONGLY DISAGREE with \(i\) i. Then, indicate on the optical scan answer sheet your decision by filling in the A for Strongly agree, \(\mathbf{B}\) for AGree, \(\mathbf{C}\) for not Sure, \(\mathbf{D}\) fo: disagree. or \(\mathbf{E}\) for ST:Ofigly disagree. (Ignore the \(\mathbf{T}\) and \(\mathbf{F}\) within the bubbles.)

Here are examples of answers properiy marked on the answer sheet:
1. Sperts is an important part of my school experience. \(\quad\) A \(\quad\) B \(\quad\) C \(\quad\) D \(\quad E\)

Student \#1
\{This student as eed with the statement, but not strongly \}
Student \#2
(This student strongy disagreed with the statement.)
Student \#3
(This student in 'isure whether she agreed or disagreed.)
What would your answer de?
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Answer Sticet} \\
\hline 1. \({ }^{\text {A }}\) & \(\stackrel{\text { B }}{+}\) & c & O & E
0 \\
\hline 1. \({ }^{\text {A }}\) & \({ }^{\text {B }}\) & \(\bigcirc\) & O & \({ }^{\text {E }}\) \\
\hline 1. \({ }^{\text {(c)}}\) & \({ }_{\text {B }}^{\text {B }}\) & C & D & \({ }_{0}^{\mathrm{E}}\) \\
\hline 1. (1) & \({ }^{\text {B }}\) & 0 & 0 & E \\
\hline
\end{tabular}

Be sure to respond to all the items, to put all your answers on the answer sheet, and to fill in ONLY ONE ANSWER for each statement If you have any questions about these directions, please be sure to ask your teacher.

\section*{WHEN INSTRUCTED, YOU MAY BEGIN THE QUESTIONNAIPE}
\(A=\) strongly agree \(\quad B=\) agree \(\quad \mathbf{C}=\) not sure \(\quad \mathbf{D}=\) disagree \(\quad E=\) strungly disagree
1. if I had my own computer, Y'd use it to help with my homework. \(\quad A \quad B \quad C \quad D \quad E\)
2. I can be more creative with a computer. \(A\)
3. Society is becoming too dependent on computers.

A B C C
4. . can express my ideas more clearly when I use a conıputer.

A B C D E
5. Someday, a computer is going to start a war by accident.

A B C D E
6. It takes a good math mind to really use computers.

A B C D E
\begin{tabular}{|c|c|c|c|c|}
\hline A strongly agree & B=agree & Cenot sure & I \(=\) disagree & E= strongly disagree \\
\hline
\end{tabular}
7. Computers create more problems than they solve.
A B C D E
8. I can never get as much time at a computer as I'd like.

A B C D E
9. In a few years, all the interest in computers will die oui.

A B C D E
10. I like working with computers.
\(\therefore B C D E\)
11. If I' ad my way, I'd ban all compuiers.

A B C D E
12. I would spend most of the school day at a computer if I could.
\(A B こ D E\)
13. Sometimes, I get really impatient with people who aren't computer literate. A \(\quad \mathrm{B} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{E}\)
14. I don't understand why a lot of people are so interested in computers.

A B C D E
15. It wouldn't bother me if I found our that the government had information about me in one of its big romputers.
16. Computers can help students raise their test scores.
\(\therefore B C D E\)
17. Most videogames aren't as exciting as people say they are.

A B C D E
18. People who spend all their time at a computer are wasting a lot of good time.
19. I can't picture anyself making a living someday with a computer.

A B C D E
2C. Computers will never live up to the claims prople make about them.
A B C D E
21. People who are afraid of computers are being silly.

A B C D E
22. I have no interest in learning more about how to use a computer.

A B C D E
23. I'm not the kind of person who would work well with a computer.

A B C D E
24. Computers solve more problems than they create.

A B C D E
25. Society wouldn't work very well these days without computers.

A B C D E
26. Sometimes a computer can really mess things up.

A B C D E
27. When people start talking about computers, I feel really out of place.

A B C D E
28. Do you have access to a computer outside of school?
\(\mathrm{Yes}=\mathrm{A} \quad \mathrm{No}_{\mathrm{o}}=\mathrm{B}\)
\[
A=\text { strongly agree } \quad B=\text { agree } \quad C=n u t \text { sure } \quad D=\text { disagree } \quad E=\text { strongly disagree }
\]
29. The compster makes it easier to be creative in my work.
30. If I had enough money, I'd probably spend a lot of time at a videogame arcade.
31. People who say computers are a threat to society don't know what they're talking about.
32. I'm smart enough to learn \(j\) ist about anything I want to know atout computers.
33. We would all he better off without computers.
34. Computer scientists probably do interesting work.
35. I think just about everybody ought to have his/her own computer.
36. People are too quick to blame a computer for mistakes.
37. I'm not interested in taking computer classes.
38. I think computers are great.
39. Colnpuiers in society give too many people too much information ajout people.
40. I really get tired of people who can't stop talking about computers.
41. People get too upset about kjds who use their own computer to break into another computer illegaily.
42. I think I'd like to work with computers after I get out of school.
43. Someday computers are going to get out of controi.
44. Computers are su smart that sometimes they make me feel dumb.
45. Computers are tou complicated for me to use.
46. If I had my way, every student in school wo: Id have his/her own computer.
47. Someday I'll probably lose a job to a robot.

A B C D E
48. Students should be taught more about computers.
49. I don't think I'm very good at using a computer.
50. Compuiers will solve more problems in our world than most people can even imagin.


END

\title{
U.S. De:t. of Education \\ Cffice of Education \\ Sesearch and \\ Improvement (OERI)
}

\section*{ERIC}

Date Filmed

March 29, 1991

ERIC HR```


[^0]:    * Reproductions supplied by EDRS are the best that can be made from the original do cuent.
    * from the original do sument. *

[^1]:    ${ }^{1}$ Unless otherwise nnted, all figures appear at the end of this report.
    ${ }^{2}$ Approximately $64 \%$ of the 429 teachers whose students were in grade 5 or above received 25 student questionnaires, equally distributed across subject areas ( 6,850 total).

[^2]:    ${ }^{3}$ The lower the value, the stronger the agreement.

[^3]:    valid coses
    3850
    Missing cases 1

[^4]:    Valld cases 382

