
`yr

DOCUMERT RESUME

ED 323 960 IR 014 598

AUTHOR Avner, Elaine
TITLE Summary of the uTutor Language. Second Edition.
INSTITUTION Illinois Univ., Urbana. Computer-Based Education

Research Lab.

PUB DATE Oct 89
NOTE 125p.; The language is referred to throughout as

"uTutor" with the "u" being the Greek letter "Mu".
For additional information, see ED 124 149.

PUB TYPE Guides - General (050) -- Computer Programs (101)

EDRS PRICE MF01/PC05 Plus Postage.
DESCRIPTORS *Authoring Aids (Programing); *Programed Tutoring;

*Programing Languages

IDENTIFIERS *TUTOR Programing Language

ABSTRACT
This summary presents features of the uTUTOR

programming language. Intended for the experienced author who needs a
quick reference for the form of a tag and for some of the
restrictions on commands, it does not discuss fine details of the
uTUTOR language. Topics covered are: (1) calculating, including
operations and symbols, system functions, random numbers, and system
variables; (2) file operations, including datasets, name sets, and
directories; (3) judging, including preparation for responding,
modification of and matching the response, and alteration of judgment

and feedback; (4) presenting, including basic display, graphics,
color display, and non-screen presentation; and (5) sequencing,
including automatic and key-initiated sequencing, pausing and timing,
lesson connections and section, and signing off. Appendices display:
(1) keysets, character codes, hexadecimal numbers, and powers of two;
(2) alphabetical indexes to system variables and commands. (DB)

***************t***
Reproductions supplied by EDRS are the best that can be made

from the original document.

N

Computer-based Education Research Laboratory

©
CD U S DERARTvENT

OF EDUCATIONothre of Eclucahonal
Research and 11rD1Overnen1

EDUCATIONAL RESOURCES
INFORMATION

ha5
beeCENTER

(ERIC)

Crc..
or.g.nabAG. 0
receveo Ir n.o the oe,son o, orgenuabon

)i' rp).3 OOCUTent rl reprooKed as

C\1 C m/A0, changes have
been macle to ornDrOvereproOuct.on Quaioy

V: PoontS or vrew 0, ()Om OOS 3fareCI Jo ihr3 CrOCU= OFR1 post(ton Or poltoy
meet Clo not necessawy ,ep,esem ()moat

c14

CER

SUMMARY OF THE i4TUTOR LANGUAGE

SECOND EDITION

ELAINE AVNER

OCTOBER 1989

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

Elaine Avner

TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)

University of Illinois at Urbana-Champaign

2

' " " :;_, =n1 _x- nn

SUMMARY OF THE 1..1.TUTOR LANGUAGE

Elaine Avner

Computer-based Education Research Laboratory

University of Illinois at Urbana-Champaign

3

Copyright @ 1989 by Elaine S. Avner

First Edition July 1984
Second Edition October 1989

4

Acknowledgment

Members of the Systems Staff of the Computer-based Education Research Laboratory
at the University of Illinois developed the ATUTOR language. Several members of
the Systems Staff and the User Services staff made valuable comments on the
first edition and the current edition of this summary of the language.

Bruce Sherwood made many suggestions about the content of this book,

Sam Milosevich explained details of color features. He also discussed the
meaning of "stand alone" in the Cluster environment.

Charles Bridges reviewed information on file operations.

Judith Sherwood suggested several changes and corrections to the first edition.
She raised questions about some documented features that resulted in
clarification of descriptions.

The keyset diagrams in the appendix are based on diagrams designed by Judith
Sherwood.

Wayne Wilson assisted with final preparation of the manuscript.

5

This summary presents features of the gTUTOR programming language. It is
intended for the experienced author who needs a quick reference for the form of
a tag and for some of the restrictions on commands. It does not discuss fine
details of the ATUTDR language. For such information authors should refer to
The pTUTOR Language by Bruce Sherwood and Judith Sherwood.

Each command includes a brief description.of its purpose and a description
of the tag. e standard form is

command brief description of operation of command

command DESCRIPTION OF TAG (any explanatory comments)

Note: Additional comments about this comeand.

NOTE: General comments about groups of commands.

In the description of a tag, words in upper case represent variables, values,
expressions, or character strings supplied by the author; words in lower case
are required words in the tag and must appear exactly as shown. Arguments in
the tag which are optional are printed in italics. Optional arguments can be
required words or author-supplied information.

For example:

at FINEX,FINEY
draw LOCATION1;skip;LOCATION2
lesson complete
ansv EXPR,TOLERANCE

The commands are grouped into six categories:

calculating X)
file operations (F)
judging (J)

presenting (P)
routing (R)
sequencing (S)

Commands which are difficult to classify are placed in categories which describe
their most probable use.

A

CONTENTS

11. Page

Abbreviations
C/assification of commands and system variables ii to vii
CALCULATING

Basic calculating Cl

Operations and sylibols C4
System functions C5
Random numbers C7 C MIS
Character manipulation C8
Operations on lists C10
System variables for calculating C11

FILE OPERATIONS
Datisets Fl

Namesets F3
Directories F7
System variables for file operations F9

JUDGING
Preparation for responding Jl
Modification of the response J3
Modification of the judging procedure J4
Matching theTesponse J5
Information on specific words in the response JB
Reference to other units during judging J9
Alteration of judgment J10
Alteration of feedback J11
System variables for judging J12

PRESENTING
Screen size PI
Basic display P2
Graphics P6
Relocatable graphics P8
Drawing graphs P9 p
Special display P12
Color display P14
Non-screen presentation P16
System variables for presenting P17

ROUTING
Router lesson and curriculum information R1

System variables for routing R2 R IMO
SEDUENCING

Naming a unit Si

Automatic sequencing 92
Key-initiated sequencing S7
Pausing and timing 58
Lesson connections and sections 510 E3

Lesson annotation and debugging Sil
Signing off 912
System variables for sequencing 913

Appendix
Keysets A2
Character codes A4
Hexadecimal numbers A8 A 111111
Powers of two A9

Alphabetical index
System variables Ii

Commands

7

17:0.

4

;*t

rti

......,.

0

Abbreviations and Notes

These abbreviationm are used in the descriptions of command tags:

abbreviation definition

arg argument or tag entry
(b) . blank tag
char character
coarse coarse-grid coordinates
disk magnetic storage disk
expr mathematical expression
finex,finey fine-grid coordinates
num number of
string character string
var variable

In conditional statements and in statements where a variable is set, suffixes
M, 0, 1, 2, etc., denote the minus condition, 0 condition, 1 cuodition,
2 condition, etc., e.g.,

keytype VAR,KEY0,KEY1,KEY2
do EXPR,NAMEM,NAMEO,NAME1,NAME2

In conditional statements the conditional expression is rounded (not truncatad)
to the nearest integer. Thus, a value of -.4 results in the 0 condition being
selected rather than the minus condition.

Generally, wherever a tag entry can be a number, a mathematical expression is
also accepted.

Command names are enclosed in dashes when they are referred to in descriptions,
e.g., -next-. Names of system variables are enclosed in double quotes, e.g.,
"zreture. Key names are capitalized, e.g., NEXT. A function key name followed
by "1", e.g., NEXT1, indicates the SHIFT key is held while the key is pressed.

Commands labEled "non-executable" are active only when the lesson is being
condensed and not during execution.

When variables are used in the tag of certain commands which require names in the
tag, e.g., -jumpout-, the variable must be enclosed in parentheses to indicate
that the information needed is the contents of the variable and not a character
string; e.g., -jumpout (var)- means the file whose name is contained in a buffer
starting with variable var, while -jumpout var- means the file whose name is var.

9

Al= C

CALCULATING

Basic calculating Cl Random numbers C7

define
calc

calcc

calcs
zero
set

compute
block

Operations and symbols C4

+ x * / $divr$ $divt$
()) 4
t 16B 2# BB UN

* *

randu
setpers
randp
remove
restore

Character manipulation CB

pack
packc
search
searchf

Operations on lists ClO

System functions C5 find

abs frac int sqrt
alog log exp In
sin cos tan cot sec csc
arcsin arccos arctan
arccot arcsec arccsc
zk zlength zvloc=#< >
and or not
rsh lsh ars .cls
$mask$ $union$ $diff$
comp bitcnt

System variables for computing Cll

zretinf

10

FILE OPERATIONS

Datasets Fl Directories F7

setfile setfile
addfile addfile
delfile delfile
chgfile chgfile
getfile getfile
datain names
dataout setdir
reserve reserve
release release

T,eTY;Af7T7,r-r4r--

Namesets F3 System variables for file operations F9

setiile zfauth(FIP)
addfilq zfbpi(FIP)
delfile zfbpn(FIP)
chgfile zfbpr(FIP)
getfile zfmaxn(FIP)
names zfnams(FIP)
setname zfrecs(FIP)
addname zftype(FIP)
delname zretinf
chgname zreturn
getname
addrecs
delrecs
datain

dataout
reserve
release

lii

Preparation for Information on specific words
responding J1 in the response JS

darrow getmark
arrow getloc
endarrow
long

force Reference to other units
eraseu during judging J9
jkey

copy iarrow
ijudge

Modification of the
response J3 Alteration of judgaent J10

putd judge

Modification of the judging Alteration uf feedback Jll
procedure J4

specs
okword
noword

Matching the resp..;e J5 System variables for judging J12

keyword zanscnt
answer zcaps
wrong zentire
answerc zextra
urongc zjcount
2xast zjudged
exactw zntries
ansv zopcnt
wrongv zorder
or zspell
ok zwcount
no

ifmatch

PRESENTING

Screen size PI Relocatable graphics P8 Color display P14

coarse rorigin color
fine rat erase
window ratnm mode

rdot

rdraw
Basic display P2 rcircle Non-screen presentation P16

at enable
atria Drawing graphs P9 disable
write xout
writec gorigin xin
show axes beep
showt bounds intrupt
showb scalex
showo scaley
showh labelx System variables for
showa labely presenting P17
text markx

textn earky zdevice
erase gat zsode
mode gatne zretinf
size gdot zwherex
rotate gdraw zwherey
inhibit gbox zxmin
allow gfill zyein

gcircle zxmax
gvector zycax

Graphics P6 vbar zblack
hbar zred

dot zgreen
draw zyellow
box Special display P12 zblue
fill zmgenta
vector tabiet zcyan
circle char zwhite
circleb plot

charset
getchar
micro

R

vi

4

Router lesson and curriculum information R1

router

lesson
scare
status

System variables for routing R2

zldone
zrouten
zscore
zstatl

14

SEQUENCIN6

Naming a unit SI Pausing and timing S8

unit keylist
pause
keytype

Automatic sequencing 52 press
getkey

do clrkey
goto
jumpn
jump Lesson connections and sections SIO
imain

branch use
doto jumpout
if cstart
elseif cstop
else cstop*
endif

loop

endloop Lesson annotation and debugging SII
outloop
reloop

$$

step
Key-initiated sequencing S7

next Signing off SI2

nextl

back finish
backl protect
stop

nextop
nextlop System variables for sequencing SI3
backop
backlop zargs
stopop zclock
help zday
helpl zkey
data znumpad
datal zport
lab zreturn
labl ztouchx
helpop ztouchy
helplop
dataop
datalop
labop

lablop
base

1 5

vii

al
.A

1
yh

,..
,1

44
47

'
A

z*
*.

Pasic calculating

define

CALCULATING CI

(non-executable) defines names of variables, constants, arrays, and
functions; type is 16-bit signed integer (i,16:) unless specified as
floating point (f,48: or f:), 8-bit signed integer (i,8:), or
8-bit unsigned integer (b:); all definitions following a specified
type have that type until a different type designation is Encountered

for *example:

define NAME1,NAME2,NAME3
NAME4(ARRAYSIZE)
i,C:NAME5,NAME6
b:NAME7
FUNC(ARE,AR82)=EXPR
f,48:NAME8,NAME9(ARRAYSIZE)
i,16:NAME10
i,8:NAMElleNAME9,NAME12aNAME9
NAME13=2001,NAME14=4.3

Note: Defined names can c'ontain up to 7 characters and must start
with a letter.
Up to 6 arguments are permitted in defined functions.
One-dimensional arrays are permitted.
Approximately 1000 definitions are permitted.
Variables are a:located in memory in the order in which they
are defined. Constants and functions are not stored in memory.
The define set '1st be placed before the first -unit- command.

A local define set is declared as a continuation of a -unit- command.
(The -define- command is omitted.) Formats for local variables are
the same as those for global variables.

To serge the local definc set with the global define set:

unit soneu
merge,global:
a,b,d
f:result

examples of definitions:

(final colon is required)

define a,b,c AS 16-bit integers
f:radius $$ floating point
b:char(10) $$ 8-bit unsigned array of 10 elements
sinh(x)=.5x(exp(x)-exp(-x)) $$ one-argument function;
cosh(x!=.5x(exp(x)+exp(-x)) $$ x cannot be previously defined
average(sum,E)=sum/N $$ two-argument function
stdev(sum,sunsq,N)=sqrt((Nxsuesq-sum**2)/(NX(N-1)))

17

,

C2

cal c assigns the value of the expression on the rioht side of the
assignment arrow to the variable on the left side (operations and
functions are given at the end of this subsection on Basic calculating)

calc VAR4EXPR
calc VARVEHARACTER" (single character only; character code is

placed in the right-most B bits of VAR of integer type)

calcc performs one of several calculations depending on the rounded value
of a conditional expression

calcc EXPR,VAR14EXPRM,VAR24EXPRO,VAR34EXPR1VAR44EXPR3

calcs sets a variable to one of several values depending on the rounded
value of a conditional expression

calcs EXPR,VAR4EXPRM,EXPRO,EXPRI,EXPR2,,EXPR4

NOTE: With -calcc- and -calcs- a blank tag entry () means no calculation is
done for the corresponding value of the conditional expression.

zero sets to zero a single variable or consecutive variables

zero VAR
zero STARTING VAR,NUM VARS
zero (B) (sets all defined variables to 0)

Note: In the 2-argument fors, the number of bits zeroed is determined
by the type designation of STARTING VAR.

set sets values of consecutive variables starting at the specified
variable, or sets values of consecutive array elements starting at the
specified element

set STARTING VAR4EXPR1,EXPR2,EXPR:),... (up to 95 values)

Note: All variables must be the same type as STARTING VAR.

;:

C3

compute evaluates a character string containing an expression and stores the
result in the specified variable; the end of the string is determined
by the specified number of characters, by a comma, by a semicolon, or
by a zero byte (#00)

compute VAR FOR RESULT,STARTING VAR OF STRING,NUM 8-BIT BYTES IN
STRINS

Note: The string can contain up to 127 characters. Variables are
not allowed, but these operators and system functions are
permitted: + - + (and /) x (and *) ** (and superscript)
= # < > 5 .).. parentheses and brackets I(°

abs sqrt alog log exp In sin cos tan cot sec csc
arcsin arccos arctan arccot arcsec arccsc

.i

"zretinfl contains the number of characters evaluated,
including terminating punctuation but not terminating zero byte

zreturn = -1 if tt,, expression is evaluated successfully
= 0 if the expression contains operations when

-specs noops- is in effect
= 1 if the expression contains an invalid character
= 2 if there are too many decimal points
= 3 if thc expression is too complicated
= 4 if there is an unrecognized operator
= 5 if the expression has bad fom
= 6 if there are unbalanced parentheses
= 7 if the expression contains undefined words
= 8 if a function contains an illegal argument

block copies a block of consecutive variables into another block of
consecutive variables

block FROM STARTIP, VAR,TO STARTING VAR,NUM VARS

Note: The number of 8-bit bytes copied is determined by the type
designation of the "from" variable.

1 9

C4

nnarafinnc 3" "'"lr u--d in calculations

X + Y addition

X - Y subtraction

X x Y or X * Y multiplication

X + Y or X/Y division

X $divr$ Y integer division, result rounded to nearest integer

X $divt$ Y integer division, result truncated to nearest integer

X*0 or XY exponentiation (if exponent contains more than 1 character,
superscript requires SHIFT SUPER before exponent and
SHIFT SUB after exponent)

(), 3, (parentheses, brackets

4 assignment of a value to a variable (e.g., var02.2xdef+.45

t pi = 3.14159...

° = degree symbol (e.g., 53.403
:weber x 1° cdnverts number to radians (e.g., sin(30x10) or sin(30°) 3

number + 10 converts number to degrees (e.g., arcsin(.5)/1° 3

16# or # prefix designates a hexadecimal constant (e.g., 16#4e or #4e3

2# prefix designates a binary constant [e.g., 2#0100 11103

8# prefix designates an octal constant (e.g., 8#1163

" " used to place a character in the right-mOst 8 bits of an integer variable
(e.g., var4"s"3

Precedence of operations (in brief)

operations within parentheses
exponentiation
multiplication and division
addition and subtraction

Parentheses can be used to insure the desired order of operations.

Representation of numbers

Numbers are represented in twos-complement form; i.e., -X = comp(X)+1 .

The left-most bit of a signed integer is the sign bit (0 if integer 0,
1 if integer is < 0).

Range of values for 8-bit signed integers is -27 to +(27 - 1), or -128 to +127 .

Range of values for 16-bit integers is -215 to +(215 - 1), or -32768 to +32767 .

Range of values for 8-bit unsigned integers is 0 to (28 - 1), or 0 to 255 .

Floating-point numbers contain 48 bits:
left-most bit is the sign bit (0 if number 0, 1 if number < 0);
nRxt 15 bits contain the exponent;
right-most 32 bits contain the coefficient.

Values of floating-point numbers range from +2-16384 to +2+16383

Floating-point numbers have a maximum of 10 significant digits.

4-

System functions (argument can be an expression where apOropriatei

abs(X)

frac(X)

int(A)

sqrt(X)

alog(X)

log(X)

exp(X)

ln(X)

absolute value of X
fractional part of X '\ X is first rounded to the gearest integer
integer part of X J if X is within about 10-9 of the integer
square root of X

common antilogarithm of X (10X)

sodium logarithm of X (bate 10 logarithm)

eX (natural antilogarithm of X)
natural logarithm of X (base e logarithm)

With the following trigonometric functions, X is in radians. For X in degrees,

the argument must be X°, .g., sin(X°).

sin(X)

cos(X)

tan(X)

cot(X)

sec(X)

csc(X)

sine of X
cosine of X
tangent of X
cotangent of X
secant of X
cosecant of X

With the following invirse trigonometric functions, the result is in radians.
Far result in degrees, the function must be divided by I°, e.g., arctan(X)/I° .

arcsin(X)
arccos(X)
arctan(X)
arccot(X)

arcsec(X)
arccsc(X)

inverse sine, principal values -i/2 to +1/2
inverse cosine, principal values 0 to +1
inverse tangent, principal values -1/2 to +1/2
inverse cotangent, principal values 0 to +1
inverse secant, principal valucs 0 to +lc

inverse cosecant, principal values -1/2 to +1/2

zk(KEYNAME) ASCII code for KEYNAME, e.g., zk(M), which has value 114d or 7710 ;

zk(back), whi:h has value #102 or 25810 ;

KEYNAME must be specified; expression is not allowed; allowed
keynases are given in the tables in the appendix

zlength(NAME) number of elements i the array named NAME
zvloc(X) absolute memory location in RAM of the variable X

Logical operations and functions (logical 'true' is -1; logical "false' is 0)

X = Y equal to
X Y not equal to
X S Y less than or equal to
X Y greater than or equal to
X (Y less than

X > Y greater than

equality is "true"
if IX-YI < (10-8 x

(approximately)

X fand$ V logical "and"; result is "true" only if both X and Y are "true"
X Sor$ Y logical "or"; result is 'true' if either X or Y or both are 'true'
not(X) not(X) =0 if X50; not(X) = -1 if X >0

Operations which involve comparisons of floating-point numbers have a tolerance
of 2-26 relative difference (approximately 1.5 x10-8).

21

C6

Bit operations and functions (use with 16-bit integers) (a bit which is set = 1)

With shift operations (rsh, SIsh$1 Sars$, kls$), the shift must be Wolter'
0 and 16 (i.e.; 0 SY SW.

rsh V

X $1sh$ V

X fars$ V

X cls V

X $sask$ Y
X $tinicn$ Y

X $diff$ Y
comp(X)

bitcnt(X)

shifts X to the right Y bit positions; bits shifted off the right
end of X are dropped

shifts X to the left V bit positions; bits shifted off the left
end of X are dropped

shifts X to the right Y bit positions; bits shifted off the right
end of X are dropped; sign bit of X is copied into vacated bits
on the left end of X

shifts X to the left, circularly, Y bit positions; bits shifted
off the left end of X are copied into bits on the right end of X

sets bits where bits are set in both X ano V
sets bits where bits are set in either X or Y or both
sets bits whera bits are set in either X or V but not both
ones complement of X (bit reversal)
number of bits set in X

C7

Random numbers

randu selects a random integer, sampled with replacement, and places it in
the specified integer variable

randu VAR,MAXIMUtl (selects an integer from 1 to MAXIMUM;
0 S MAXIMUM S (214 - 1)

Note: If the integer selected is larger than the specified variable
type can store, only the right-most ei;ht bits are stored.

setperm creates a permutation list of integers of the specified length for
sampling by the -randp- command

setperm LIST LENGTH,STARTING VAR OF LIST (0 S LENGTH S (214-1);
first variable of the list contains the number of integers
not yet selected from the list;
in succeeding variables each bit corresponds to an integer
in the list and is 1 if the integer has amlbeen selected,
0 if the integer has been selected;
integer variables are required:
8-bit signed variables if LENGTH < 128;
8-bit unsigned variables if LENGTH < 256;
16-bit variables if LENGTH k 256);
number of variables required: 2 + int[(LEN6TH
where N is 8 or 16 for 8- or 16-bit variables respectively)

randp selects an integer, sampled without replacement, from the list set up
by -setperm- or by an equivalent method, and places it in the specified
integer variable; when the list is exhausted, the varielle is set to 0

randp VAR FOR STORING VALUE,STARTING VAR OF LIST

Note: If the integer selected is larger than the specified variable
type can store, only the right-most eight bits are stored.

remove removes the specified value from a permutation list

remove INTEGER TO REMOVE,STARTING VAR OF LIST

restore restores the specified value to a permutation list

restore INTEGER TO RESTORE,STARTING VAR OF LIST

23

C8

Character manipulation

pack packs a character string starting in the specified integer variable;
packs each character code into one 8-bit byte; if the byte count is
not desired, the field is blank; string can contain embedded -show-
and -shwa- (and -showt- if %he value is a,floating-point variable)

pack STARTING VAR FOR STORING STRING,VAR FOR STORING BYTE COUNT$
STRING

pack STARTING VAR FOR STORING STRIN",$STRING

packc packs one of several character strings into a buffer of integer
variables, depending on the rounded value of a conditional expression;
packs each character code into one 8-bit byte; if byte count is not
desired, the field is blank; string can contain embedded -short- and
-showa- (and -showt- if the value is a floating-point variable)

packc EXPR,STARTIN6 VAR FOR STORING STRING,VAR FOR STORING
BYTE CVNTeSTRINGNOTRINGO$STRING1WRING2$$STRING4

search searches a buffer for the first occurrence of the specified character
string (each character code occupies an 8-bit byte)

search OBJ,OLEN,BUF,BLEN,STRTIPOSN

OBJ = variable which contains the first character of the
string-to be found

OLEN = number of 8-bit bytes in the string to be found
BUF = starting variable of the buffer to be searched
BLEN = number of 8-bit bytes in the buffer to be searched
STRT = relative byte position-in the buffer at which to start

searching (1st position is 1; 2nd pestion is 2; etc.)
POSN = variable for storing the relative byte position in the

buffer where the object is found (0 if found in the
first 8-bit byte, 1 if found in the second 8-bit byte,
etc., -1 if not found)

,

.

-
C9

searchf searches a buffer far the first occurrence of a charsctmr string in a
specific field within an object

searchf OBJ,OLEN,BUF,ENTR,STRT,ELEN,BYTE,POSN

OBJ = variable which contains the first cOaracter of the
string to be found

OLEN = number of 8-bit bytes in thm string to be found
BUF = starting variable of the buffer to be searched
ENTR = number of entries in the buffer to be searched
STRT = entry in thm buffer at which to start searching
ELEN = number of 8-bit bytes in each entry in the buffer
BYTE = starting byte position within each entry for comparison

with the object string (1st position is 1;
2nd position is 2; etc.)

POSH = variable for storing the relative position in the
buffer of the entry where the object is found
(0 if found in the first entry, 1 if found in the
second entry, etc., -1 if not found)

25

-c-e

:.

C10

0!lerations on lists

find searches each variable in a list of consecutive variables for the
first occurrence of the specified object

find OBJ,LIST,LEN,LOC

OBJ = variable containing the object of the search
LIST = starting variable of the list (variables ir the llst

must be the sase type as the object)
LEN = nuaber of variables in the list
LOC = variable for storing the relative location in the list

where the object is found (0 if found in first variable,
I if found in second variable, etc., -I if not found)

AX:

System variables for calculating

zretinf set by execution of -compute-1 contains the number of characters
evaluated, including terminating punctuation but not terminating
zero byte

27

CII

,4

Additional notes on CALCULATING

28

-

'Pv-7,*q.151,":repx4Vviti;lf4ron:.t,,,e.:11V"-'-VA:7gi":4tl.e.4"h4Vgn`,',Wr.

(NI

t'PZ

.1"*"1/`,;34.:

; 3,

r-4
C

Y
.

FILE OPERATIONS Fl

NOTE: Attributes of files:
File names: up to 29 characters (letters and numerals) followed by a
period and a two-letter extensfon (up to 32 characters total)

extensions: .bi lesson binary file
. ch charset
.da dataset (includes lesson files)
. di directory
. mi sicrotable
.na nameset
. nf notesfile

Record size: 128 8-bit bytes
Extra information: up to 32 8-bit bytes of extra information
Address: File Information Packet (FIP) number; up to 3 files can be

addressed simultaneously by the FIP number
(FIP can have value 1, 2, or 3)

In all commands in this section, FILE NAME can be a literal or the
starting 8-bit variable of a buffer containing the file name. A

variable name must be enclosed in parentheses: (STARTINS VAR OF BUFFER) .

All commands set "zreturn". Values of "zreturn" are given on page F10.

Datasets

NOTE: A dataset is created as a "nem" dataset or an "old" dataset.
New datasets can have write and read codewords, but codewords are not
required. Old datasets cannot have codemords.

setfile attaches the specified file to the specified FIP

setfile FIP;FILE NAME (read and write access for a dataset without
codewords)

setfile FIP;FILE NAME,rm,(STARTINS VAR FOR WRITE CODE) (read and write)
setfile FIP;FILE NAME,ro,(STARTING VAR FOR READ CODE) (read only)

addfile creates a dataset and attaches it to the specified FIP

old dataset
addfile FIP;dataset;name,FNAME;numrecs,NRECS

new dataset
addfile FIP;datasetc;name,FNAME;numrecs,NRECS;writecode,(HCODE);

readcode,(RCOVE)

FNAME = file name, literal or (starting variable of a buffer)
NRECS = number of records in the file
WCODE = starting variable of buffer containing write codewoed
RCODE = starting variable of buffer containing read codeword

32

F2

delfile doztroys the dataset attached to the specified FIP

delfile FIP

chgfile changes parameters of the dataset attached to the specified FIP

chgfile FIP;OPTION1;OPTION2;...

OPTIONS include:

name,FILE NAME or name,(STARTIN6 VAR OF BUFFER)
info,(STARTIN6 8-BIT VAR OF BUFFER WITH NEW EXTRA INFO WITH FILE)
writecode,(STARTIN6 VAR OF BUFFER WITH WRITE CODEWORD) (new datamet)
readcode,(STARTIN6 VAR OF BUFFER WITH READ CODEWORD) (new dataset)

getfile stores parameters of the dataset attached to the specified FIP

getfile FIP;NAMEVAR,INFOVAR

NAMEVAR = starting 8-bit variable for storing file name
INFOVAR = starting 8-bit variable of buffer for storing file

extra information

detain transfers data from records on the disk to the specified buffer

datain FIPOTARTIN6 RECORD,STARTINS VAR OF BUFFER,NUM RECORDS

dataout transfers data from the specified buffer to records on the disk

dataout FIP;STARTIN6 RECORD,STARTIN6 VAR OF BUFFER,NUM RECORDS

reserve sets "zreture in order to allow the user to reserve the dataset to
prevent changes by more than one user at a time

reserve FIP

Nate: If the dataset is reserved elsewhere, "zretine contains the
port number where the dataset is reserved.

release sets "zreturn" to allow the dataset to be released

release FIP

F3

NOTL: A nameset is created as an alphabetized nameset or a nonalphabetized
nameset. An alphabetized ameset is a set of named records arranged in
alphabetical order. A nonalphabetized nameset is a set of named records
arranged in en order specified by the user.

Parameters sot by -addfile- when the nameset is created:

space authorization (spaceauth): number of records allocated (or
authorized) on the disk for the entire nameset

maximum number of names (maxnames): maximum number of names allowed

length of each name (namelth): maximum number of characters in a
name (range 1 to 32)

length of extra information with each name (infolth): maximum number
of 8-bit bytes (range 0 to 32)

setfile attaches the specified file to the specified FIP

setfile FIP;FILE NAME (read and write access for a nameset without
codewords)

setfile FIP;FILE NAME,rw,(STARTIN8 VAR FOR WRITE CODE) (read and write)
setfile FIP;FILE NAME,rol(STARTING VAR FOR READ CODE) (read only)

addfile creates a nameset and attaches it to the specified FIP

alphabetized nageset
addfile FIP;nameset;name,FNAME;eaxnames,NNAMES;spaceauth,NRECS;

namelth,NAMLEN;infolth,INFLEN;writecode,(MCODE);readcodel(RCODE)

nonalahabetized nameset
addfile FIP;namesetn;name,FNAME;maxnames,NNAMES;spaceauth,NRECS;

namelth,NAMLEN;infolth,INFLEN;writecode,(MCODE);readcode,(RCODE)

FNAME = file name, literal or (starting variable of a buffer)
NNAMES = number of names allowed in the namese,
NRECS = number of disk records allocated for the nameset
NAMLEN = number of characters in a name
iNFLEN = number of bytes of extra information with a name
WCODE = starting variable of buffer containing write codeword
RCODE = starting variable of buffer containing read codeword

delfile destroys the nameset attached to the specified FIP; the nameset must
be empty

delfile FIP

F4

N,

chgfile changes parameters of the nameset attached to the specified FIP

chgfile FIP;OPTION1;OPTION2;...

OPTIONS include:

name,NEW FILE NAME cr name,(STARTING VAR OF DUFFER)
info,(STARTIN8 8-BIT VAR OF BUFFER WITH NEW EXTRA INFO WITH FILE)
writecode,(STARTING VAR OF BUFFER WITH NEW WRITE CODE)
readrode,(STARTING VAR OF BUFFER WITH NEW READ CODE)

getfile stores parameters of the nameset attached to the specified FIP

getfile FIP;NAMEVAR,/NFOVAR

NAMEVAR = starting 9-bit variable for storing file name
INFOVAR = starting 8-bit variable of buffer for storing extra

information with file

names reads names (and extra information with each name) in the nameset
attached to the specified FIP; stores data in the specified buffer

names FIP;NAMEPOS,BUFVAR,BUFLEN

NAMEPOS= numerical position of first name to store
BUFVAR = starting 8-bit variable of buffer for storing names

and extra information with each name; format:
zfbpn(FIP) bytes: first name;
zfbpi(FIP) bytes: information with first name;
zfbpn(FIP) bytes: second name;
zfbpi(FIP) bytes: information with second name;
etc.

BUFLEN = number of 8-bit bytes in the buffer

Note: "zretinf" is set to the number of names (with their associated
extra information) stored in the buffer.

setname selects a name in the nameset attached to the specified FIP

setname FIP;NAME (name is a literal)
setname FIP;(STARTING VAR FOR BUFFER CONTAINING NAME)
setname FIP;(first) (selects the first name in the nameset)
setname FIP;<last> (selects the last name in the nameset)
setname FIP;<next) (selects the next name in the nameset)
setname FIP;<prev) (selects the previous name in the nameset)

Note: "zretinf" is set to the number of partial matches to the
specified name.

35

Te."

F5

addname adds a new name and its records to the nameset attached to the
specified FIP

alphabetized nameset
addname FIP;NAMEINRECSIINFOVAR

nonalphabetizid namesgt
addname FINPOSNINAME,NRECS,INFOVAR

POSN = position of new name; value from 1 to zfmaxn(FIP)
NAME = name, literal or (starting variable of a buffer)
NRECS = number of records in the named set of records
INFOVAR = starting 8-bit variable of buffer with extra

information'with new,

delnamr destroys the selected name and its records

delname FIP

chgname changes parameters of the selected name

chgname FIP;OPTION1;OPTION2;...

OPTIONS include:

name,NEW NAME or name,(STARTIN8 VAR OF BUFFER)
info,(STARTIN6 8-8IT VAR OF BUFFER WITH NEW EXTRA INFO WITH NAME)
position,NEW POSITION (value from 1 to zfmaxn(FIP); valid only with

nonalphabetized namesets)

getuame stores parameters of the selected name

getname FIP;NAMEVARIINFOVAR

NAMEVAR = starting 8-bit variable for storing name
INFOVAR = starting 8-bit variable of buffer for storing extra

information with name

addrecs adds records to the selected name starting at the specified position

addrecs FIP;STARTIN6 RECORD POSITIONINUM RECORDS TO ADD

delrecs deletes records from the selected name starting at the specified
pcsition

delrecs FIP;STARTIN6 RECORD rOSITION,NUM RECORDS TO DELETE

36

Aztin transfars data friss disk recur-de fur the selected name to a buffer

datain FIP;STARTINS RECORD,STARTIN6 VAR OF BUFFER,NUM RECORDS

dataout transfers data from a buffer to disk records for the selected name

dataout FIP:STARTIN6 RECORD,STARTIN6 VAR OF 9UFFERINUM RECORDS

reserve sets "zreturn" in order to allow the user to reserve the nameset to
prevent changes by more than one user at a time

reserve FIP

Note: If the dataset is reserved elsewhere, "zretinf" contains the
port number where the datase,, is reserved.

release sets "zreturn" to allow the nameset to be released

release FIP

4:3

.75

Yale GUI.4.04 "Li

NOTE: A directory is a type of file that cnntains file nases.

setfile attaches the specified file to the specified FIP

setfile FIP;FILE NAME (read and write access for a directory without
codewords)

setfile FIP;FILE NAME,rw,(STARTINB VAR FOR WRITE CODE) (read and write)
setfile FIP;FILE NAME,ro,(STARTIN8 VAR FOR READ CODE) (read ()Illy)

addfile creates a directory and attaches it to the specified FIP

addfile FIP;directory;name,DNAME;maxnamesNFILES;spaceauth,NRECS;
namelth,NAMLEN;infolth,INFLEN;writecode,(HCODE);readcodef(RCODE)

DNAME = directory name, literal or (starting variable of buffer)
NFILES= number of files allowed in the directory
NRECS = number of disk records allocated for all files in the

directory
NAMLEN= number of characters in file names in the directory

(value from 4 to 32, including 3-character extension)
INFLEN= nuaber of bytes of extra information with each file

in the directory (value from 0 to 32)
WCODE = starting variable of buffer containing write codeword
RCODE = starting variable of buffer containing read codeword

delfile destroys the directory attached to the specified FIP; the directory
must be empty

delfile FIP

chgfile changes parameters of the directory attached to the specified FIP

chgfile FIP;OPTION1;OPTION2;...

OPTIONS include:

name,NEW DIRECTORY NAME or name,(STARTINS VAR OF BUFFER)
infc,(STARTINB 8-BIT VAR OF BUFFER WITH NEW EXTRA INFO WITH DIRECTORY)
writecode,(STARTINB VAR OF BUFFER WITH NEW WRITE CODE)
readcode,(STARTINS VAR OF BUFFER WITH NEW READ CODE)

38

getfile stores parameters of the dirpctiry aftarhori t^ the epecified FIP

getfile FIP;NAMEVAR,INFOVAR

NANEVAR = starting 8-bit variable for storing directory name
INFOVAR = starting 8-bit variable of buffer for storing extra

information with directory

names reads file names (and extra information with each name) in the
directory attached to the specified FIP; stores data in the specified
buffer

names FIP;NAMEPOS,BUFVAR,BUFLEN

NAMEPOS= numerical position of first file name to store
BUFVAR = starting 8-bit variable of buffer f,r storing file

names and extra information with eau- file name;
zfbon(FIP) bytes: first file na 2;
zfbpi(FIP) bytes: information with first name;
zfbpn(FIP) bytes: second file name;
zfbpi(FIP) bytes: information with second name;
etc.

BUFLEN = number of 8-bit bytes in the buffer

Note: "zretinf" is set to the number of file oases (with their
associated extra information) stored in the buffer.

setdir specifies a directory for use with -setfile- and -addfile- commands

setdir DIRECTORY NAME
setdir (STARTING VAR OF BUFFER CONTAINING NAME)
setdir <*> (system default directory)

Note: Files in a directory can be addressed without a preceding
-setdir- command; a "path" is specified.

For example:

<*>/root.di/analysis.di/class.da
<*>/main.di/characters.ch

reserve sets Izreture in order to allom the user to reserve the directory
to prevent changes by more than one user at a time

reserve FIP

Note: If the dataset is reserved elsewhere, "zretinf" contains the
port number where the dataset is reserved.

release sets "zreturn" to allow the directory tolle released

release FIP

F9

System variables and functions for file ._rerrtions

These functions are set for the file attached to the specified FIP.
FIP can have value of 1, 2, or 3.

zfauth(FIP) number of records allocated (or authorized) on the disk for the
attached nameset or directory

zfbpi(FIP) number of 8-bit bytes of extra information for each name in the
attached nameset or directory

zfbpn(FIP) number of characters (8-bit bytes) in each name in the attached
nameset or directory

zfbpr(FIP) number of 8-bit bytes in each record in the attached file (= 128)

zfeaxn(FIP) maximum number of names allowed in the attached nameset or
directory

zfnams(FIP) number of names in the attached nameset or directory

zfrecs(FIP) number of records in the.attached file

zftype(FIP) value designating type of the attached file
= 0 for a directory
= I for a dataset without codewords
= 2 for an alphabetized naeeset
= 4 for a nonalphabetized nameset
= 5 for a dataset with codewords

zretinf set by execution of -names-, -reserve-, -setname-
-names-: contains the number of names stored in the buffer
-reserve-: contains the port number where the attached file is

reserved
-setnaise-: contains the number of partial matches to the specified

(lame ("zreturn" has value 0)

("zreturn" values are given on the next page)

40

,`

FIO

7rotnrn ant --ding to :vault; of an oparation
= -1 if the operation is successful
= 0 if the specified name mate'is more than one name in the attached

nameset (selects the firs, ..rtial match)
= 1 if a name has illegal fors'
= 2 if the FIP number is wall 29 or 3
= 3 if the appropriate file type is not attached gr,.

if no name has ,4 sn selected in a nameset
= 4 if the file, dirtaory, or name does not exist
= 5 if the attached file is not the correct type for the requested

operation
= 6 if the codeword argument is oaitted or does not match the file

codeword
= 7 if the file or name already exists (duplicate name)
= 8 if sufficient disk space is not available for the operation
= 9 if a parameter has illegal value (e.g., out of range)
= 10 if space is not availible for more names (nameset or directory

is full)
= 11 if write access has not been granted
= 12 if the file is in use elsewhere nn the system
= 13 if the nameset or directory is not empty
= 14 if record numbers extend.out of range
= 15 if reservation request and reservation status conflict:

the file is reserved elsewhere (for -reserve-) ni_
the file is not reserved (for -release-)

= 16 if name positions extend beyond the end of the nameset or
directory

= 17 (system error) system crashed
= 18 if the directory has been altered
= 19 if the required directory is too large
= 50 (system error) illegal request
= 51 (systes error) lesson buffer space not available
= 52 (system error) physical disk space not available
= 53 (system error) disk read/write error

41

o

c\)

A

11 'it NAVA^
:tr-4:5Msi

or%

It..
1,...,1.,

"It 4

.L:r!

Preparation for respondino

JUDGING Jl

darrom (non-exmcutab!m) establishes a buffer (starting variable and number
of 8-bit bytes) for all subsequent -arrow- commands; if -darrow- is
omitted, the buffer oust be specified with the -arrow- command

. darrow STARTIN8 VARINUN 8-BIT BYTES (maximum of 150,bytes)

arrow places an arrow on the screen at the specified location and collects
keyset input in the specified blefer; indented commands which follow
-arrow- are executed before processing stops to wait for input;
non-indented commands which follow these indented commands are
executed each time a Judging key is pressed to initiate judging

arrow LOCATIONISTARTIN8 YAR,NUN 8-BIT BYTES (maxisum of 150 bytes;
LOCATION can be COARSE 2,c. FINEX,FINEY)

arrow LOCATION (buffer established by preceding -darrow-)

endarrom (no tag) must terminate response processing; if the response is
matched, indented commands following the matched response and indented
commands following -ifmatch- are executed; if the "wrong" response is
matched gr. if the response is not matched, ludgment is "no" and
processing stops until another response is entered; if Judgment is
wok', response processing is complete and commands following -endarrow-
are executed

long modifies the maximum number of character codes allowed at an arrow set
by -arrow- or by -darrow-; reset at each -arrow-

long NUN 8-BIT BYTES (maximum of 150 bytes)

45

force alters the input of a response as specified; cleared at each main unit

force caps (converts lower-case letters [a through zl to upper-
case letters [A through Z]; also affects a letter entered
at a -pause-)

force firsterase (erases an incorrect response and contingent
message when the user presses any key)

force font (displays characters in alternate font)
force long (initiates judging when the number of characters

entered reaches the limit set by -long-)
force left (writes response from right to left in alternate font)
force micro (substitutes microtable definition for each keypress)
f3rce full (displays characters which are 16 dots wide by

24 dots high)
force hira (displays hiragana characters)
force kata (displays katakana characters)
force (B) or ;orce clear (clears the current setting of

-force- in this unit)
force clear,font (can combine tags)

Note: Tags "full", "hira", and "kata" are available on stations
offering these features.

eraseu the specified unit is executed at all subsequent arrows in the unit
containing -eraseu- when the user erases all or part of a response
after receiving judgment; does nut alter default judge-process erasing;
remains in effect until reset or until a new unit is executed

eraseu UNIT NAME
eraseu q (clears -eraseu- setting for remainder of the unit)
eraseu EXPR,NAMEM,NAMEO,q,NAME2,x (example of conditional form;

argument q clears setting; argument x leaves setting
unchanged)

jkey specifies keys (in addition to NEXT) which initiate judging; cleared
at each -arrow-; a judging key which is not a function key appears as
the last key in the response buffer unless -inhibit jkeys- is in
effect; names listed in the -keylist- command are permitted, including
system-defined keylist names

jkey KEY1,KEY2,KEY3 (e.g., jkey back,=,a)

Note: -jkey touch- automatically sets -enable touch-.

copy activates COPY key and specifies a buffer containing rharacters to be
written on the screen one word at a time when COPY is pressed; loads
the string into the response buffer exactly as it appears on the .

screen; C:ared at each -arrow-

copy STARTING VAR OF COPY BUFFER,NUM B-BIT BYTES

Modification of the response

putd replaces a character string in the response buffer with another
character string; the first character in the tag is interpreted as
the delimiter between strings

. putd ISTRINSUSTRINBV (delimiter is !)
putd ,STRIN81,STRINE12, (delimiter is ,)

0 +

Note: zreturn = -1 if -putd- is xwcuted successfully
= 0 if the replacement string would cause the

response to be longer than the storage buffer

%1.

14

Modification of the judging procedure

specs modifies standard judging procedures for all subsequent answer
processing at that arrow; settings are cumulative at an arrow;
cleared at each -arrow- command

specs nomark (prevents default answer markup)
specs nookno (prevents appearance of "ok and 'no")
specs noops (prevents use of mathematical orators in a

numerical response)
specs nospell (turns off default spelling checks; no spelling

markup is done; "zspell* is not set)
specs okcap (allows capitalized word in the response to match a

non-capitalized word in the tag of a response-
matching command)

specs okextra (allows "extra' words in the response, i.e., words
not in the tag of the response-matching command)

specs okspell (allows any reasonable spelling of words in th .
response)

specs punc (allows only punctuation specified in the response-
matching comaand; without -specs punt-, specified
punctuation must be present, but additional
punctuation may also be present)

specs (B) (clears previous settings at this arrow)
specs nookno,okcappokspell (can combine tags)

4 8

Matching the response

NOTE: With the following commands (-keyword-, -answer-, -wrong-, -anseirc-,
-wrongc-, -exact-, -exactw-, -ansv-, -wrongv-) if the response matches
the tag or the required argument, subsequent indented commands are
executed up to the next non-indented command.

With -answer-, -wrong-, -inswerc-, -wrongc-:
The separator between words is a space.
Punctuation symbols are , . ? ! ; : /

Up to 40 required words are permitted in the tag. Up to 50 words can
be entered by the student.

Response markup symbols:

=== word is misspelled

t word is capitalized incorrectly
4 word is out of order (too far right)
A word is missing
xxx word is an extra word

keyword checks the response for words listed in the tag; if a mord is matched,
the variable is set to the relative position in the tag of the matched
word and judgment is "ok" ("zjudged" set to -1); if no word is matched,
the variable is set to -1, judgment is not made, and judging continues;
a maximum of 50 words can be specified in the tag

keyword VAR$WORDO$CWORD1 SYNONYMIMORD244WORD4

answer compares the response with the -answer- tag; checks for spelling,
capitalization, extra words, and punctuation unless altered by -specs-1
punctuation marks are treated as words; sets "zjudged" to -1 if the
response matches the tag

answer <EXTRA WORDS> EWORD1 SYNONYM] WORD2 WORD3
(blank tag matches a iesponse in which nothing is entered
or which contains only spaces and punctuation;
-allow blanks- must be in effect)

answer 4a,STARTIN8 VAR,NUM 8-BIT BYTES>

wrong similar to -answer- but for an incorrect response; sets "zjudged" to 0
if the response matches the tat,

wrong <EXTRA WORDS> EWORD1 SYNONYM] WORD2 WORD3
wrong 4a,STARTIN8 VARINUM 8-BIT BYTES>

4 9

Jo

answerc conditional form of -aliswer-; performs checks available with -anfwar-;
sets "zjudged" to -1 if the response matches the required argument

answerc EXPR$RESPONSEN$RESPONSEOMESPONSE2

wrongc similar to -answerc- but for an incorrect response; sets "zjudged' to 0
if the response latches the required argument

wrongc EXPR$RESPONSEN$RESPONSEO$RESPONSE1ORESPONSE3

exact compares the response with the tag for an exact character by character
match; sets "zjudged" to -1 if the response matches the tag

exact STRING (blank tag matches a response in which nothing is
entered; -allow blanks- must be in effect)

exact 4a,STARTING YARINUN 8-BIT BYTES)

exactw similar to -exact- but for an incorrect response; sets "zjudged" to 0
if the response matches the tag

exactw STRING
exactw 4a,STARTING YARINUN 8-BIT BYTES)

Insv checks a numerical response against the first argument in the tag,
with tolerance set by the optional second argument; sets
"zjudged" to -1 if the response matches the tag within the tolerance;
tolerance can be stated ai absolute deviation or percent deviation;
if tolerance is omitted, the response value must match the tag value

ansv EXPRITOLERAHCE

wrnngv sinilar to -ansv- but for an incorrect numerical response; sets
"zjudged" to 0 if the response matches the tag within the tolerance

wrongv EXPR,TOLERAHCE

or (no tag) placed on the line between response-matching commands to
provide alternative responses; if the tag of any command linked by
-or- is matched, indented commands following the last linked
response-matching command are executed

50

,

ok judges a response 'ok" and sets 'zjudged" to -1 if the rounded value
of the tag is negative; if the judgment is "ok", indented commands
following -ok- are executed

ok EXPR (blank tag is equivalent to negative value)

no judges a response 'no' and sets 'zjudged" to +1 if the rounded value
of the taq is negative; if the judgment is "no", indented commands
following -no- are executed

no EXPR (blank tag is equivalent to negative value)

ifmatch (no tag) indented commands following -ifmatch- are executed whenever
a response is matched, independent of judgment ("zjudged" equals -1,
0, or +1); only one -ifratch- can occur for each -arrow-1 -ifeatch-
must be the last non-indented command before -endarrow-

J8

Information on specific wordn in the response

getmark used after juOing a response to give markup information on
individual marls in the response

getmark POSNIMAMP

.!.

POSH = relative position of the word in the response
(first word is 1, second word, 2, etc.)

MARKUP = variable containing markup information (must be
16-bit integer variable)

= -2 if the response is perfect or if no mane:: is
done with the response-matching command used

= -1 if the position of the word is out of bounds
(i.e., if POSH > "mount")

= 0 if there are no errors in the mord
> 0 bits in MARKUP are set according to the

error(s), starting at the right-most bit
(subscript "2" indicates binary notation):
(12) a word preceding this word is missing
(102) the word is out of order (too far right)
(1002) the word is capitalized incorrectly
(1 0002) the word is spelled incorrectly
(10 0002) (bit not set]
(100 0002) the word is an extra word
(1 000 0002) this word is the last word, and a

word which should follow is missing

getloc gives the screen position of the beginning (and end, if requested) cf
the specified word in the response

getloc POSN,X8E6,YBE6,XEND,YEND

POSN = relative position of the word in the response
(first word is 1, second word, 2, etc.)

XBE6 * variable for storing th- linex screen position of
the beginning of the word (= -1 if POSH > "zwcount")

YBE6 = variable for storing the finey screen position of
the beginning of the word

XEND = variable for storing the finex screen position of
the end of the word (optional)

VEND = variable for storing the finey screen position of
the end of the word (optional)

aelet

52
',as+

;v7

J9

Reference to other units during judging

iarrow specifies the unit to be executed immediately after each subsequent
-arrow- in a main unit; equivalent to indented -do- command after the
-arrow- command; cleared at each matn unit; later occurrence in the
unit overrides an earlier setting in the unit

iarrow UNIT NAME
iarrow q (clears previous setting in the unit)
iarrow EXPR,UNITM,UNITO,x,q,UNIT3 (example of conditional form;

argument q clears setting; argument x leaves setting
unchanged)

ijudge specifies the unit to be executed each time the usee presses a
judging key; equivalent to non-indented -do- command after -arrow-
following indented commands but preceding response-matching commands;
cleared at each main prat; later occurrence in the unit overrides an
earlier setting in the unit

ijudge UNIT NAME
ijudge q tclears previous setting in the unit)
ijudge EXPR,UNITM,UMIT001,UNIT20 (example of conditional fors;

argument q clears setting; argument x leaves setting
unchanged)

53

310

Alteration of judgment

judge alters the judgment rendered by judging commands

judge ok (sets Judgient to °WO; sets "zjudged" to -1;
executes subsequent commands up to the next Judging
or non-indented command before branching to -ifmatch-
[or -endarrow-7)

judge no (sets judgment to 'no" (unanticipated]; sets
"zJudged" to +1; executes subsequent commands up to
the next judging or non-indented command before
branching to -iimatch- (or -endarrow-3); returns to
the arrow for additional input)

judge wrong (sets Judgment to "no" (anticiOated3; sets
"zjudged" to 0; executes subsequent,commands up to
the next Judging or non-indented conmand before
branching to -ifmatch- (or -endarrow-3); returns to
the arrow for additional input)

judge okquit (sets iudgment to 'plc"; sets "zJudged" to -1;
branches to -ifmatch- (or -endarrow-3)

judge noquit (sets judgment to "no"; sets "zjudged" to +1;
branches to -ifmatch- tor -endarrow-3;
returns to the arrow for additional input)

judge quit (does not alter judgment or "zjudged"; branches to
-ihntch- [or -endarrom-3; does not return to the
arrow even if Judgment is not "ok" and allows the
student to leave the arrow)

judge exdent (sets "zjudged" to 2; branches to next non-indented
command Od continues looking for a match)

judge exit (sets "zjudged" to 2; returns to the arrow to wait
for additional input)

judge ignore (sets "zjudged" to 2; stops processing, erases
response, returns to the arrow for additional input)

judge unjudge (sets "zjudged" to 2; continues processing commands
at the same level of indentation)

judge rejudge (sets "zjudged" to 2; restores the original response
[unmodified by -putd-, etc.], initializes "zanscnt",
"zwcounti, and closest match pointer; performs
-judge exdent- and continues looking for a match to
the unmodified response)

judge x (leaves judgment unchanged; used in conditional form)
jddgr EXPR,no,ok,x,wrong (example of conditional form)

,

54

Jil

Alfne.mfinn n4 4ftmAhm,I.

okword changes "ok" message to the character string in the specified buffer
(if tag is blank, message does not appear)

okword STARTING VAR OF "OK" HESSAGE,NUM 8-BIT BYTES

noword changes °no' message to the character string in the specified buffer
(if tag is blank, messagc does not appear)

noword STARTING VAR OF "NO" MESSAGE, NUM 8-BIT BYTES

\

1

t.-

J12

System variables for judging

zanscnt number of response-eatching commands encountered at an arrow before
the response is matched; = -1 if no tag is matched

zcaps = -1 if there are no capitalization errors, = 0 otherwise

zentire = -1 if all required words are present in the response, = 0 otherwise

zextra -1 if there are no extra words in the response, = 0 otherwise

zjcount number of character codes in the response

zjudged = -1 for any "ok" judgment
= 0 for any "wrong" judgment (anticipated "no")
= 1 for any "no" judgment (unanticipated .no")
= 2 for a response which is not matched; also set by -judge exdent-,

-judge exit-, -judge ignore-, -judge unjudge-, -judge rejudge-

zntries number of attempts at the current arrow

7,0pcnt numW of arithmetic ooerations in a numerical response (set with
-ansv-, -wror v-, -compute-)

zorder = -1 if the word order is correct, = 0 otherwise

zspell = -1 if spelling is correct, = 0 otherwise

zwcount number of words in the response (maximum of 50); set by -answer-,
-wrong-, -answerc-, -wrongc-

56

1--1.t`f474.4.17T-Wfttv=5:.(41,k47,IN't

44,t's

e

, , , ..,_,e

PRESENTING P1

e........
..1%.5 ...Wu aaaw

coarse states the size (in dots) of a character on the screen and determines
the meaning of coarse-grid coordinates

fine

coarse NUMBER OF DOTS NIDE,NUMBER OF DOTS HIGH

states parameters of the screen for which the lesson was written; an
optional rectangular region can be specified by giving coordinates of
two opposite corners closest to and furthest from the screen origin;
if a region is not specified, it is identical to the entire screen

fine XDOTS,YDOTS,XINC,YINC,XMINIYMIN,XNAX,YHAX

XDOTS = horizontal size of the screen in dots
YDOTS = vertical size of the screen in dots
XINC = direction of horizontal increments

right if x increases from left to right;
left if x increases from right to left

YINC = direction of vertical increment:
Up if y increases from bottom to top;
down if y increases fro. top to bottom

XMIN = x coordinate of region corner closest to screen origin
YMIN = y coordinate of this corner
XMAX = x coordinate of region corner furthust from origin
YMAX = y coordinate of this corner

Note: zreturn = -1 if the _region fits on the screen on which the
lesson is executed

= 0 if the region does not fit

The region is centered on the screen on which the lesson is
executed.

Coarse-grid coordinates always increase from top to bottom and
in the direction of XINC.

Screen origin is at upper-left corner for XINC right, YINC down
lower-left corner for XINC right, YINC up
lower-right corner for XINC left, YINC up
upper-right corner for XINC left, YINC down

window establishes a rectangular window on the screen outside of which no
display is plotted; remains in effect until reset; LOCATION is the
screen location and can be COARSE 1: FINEX, FINEY; "zxmin", "zymin"
and "zxmax", "zymax" are fine-grid coordinates of opposite corners of
the window (closest to and furthest from the screen origin); if no
window is declared, these coordinates are identical to the corners of
the region established by a previous -fine- command

window CORNER LOCATION;OPPOSITE CORNER LOCATION
window ;CORNER LOCATION (opposite corner at "zwherex", "zwherey")
window (B) (resets to the region established by a previous -fine-)

62

,

,

=,

P2

Basic display

at

atna

specifies starting position of display on the screen; sets margin for
display of text

at COARSE
at FINEXIFINEY

like -at- but does not reset the margin

atne COARSE
atnm FINEX,FINEY

write displays text, including embeddld information

write MESSAGE, INCLUDING EMBEDDED INFORMATION

writec displays one of several messages, depending on the value of the
conditional expression; the conditional expression must conform to
restrictions on calculations

writec EXPReMESSAGEWESSA6EO$MESSAGEIWESSA8E3

NOTE: The following embed features are available. See descriptions of the
individual commands for definitions of the arguments.

show

4show,EXPR or

4showt,EXPR,LEFT,RIGHT1 or

4showb,EXPR,NUM BITS) or

4showo,EXPR,NUM PLACES) or
4showh,EXPR,NUM PLACES) or

4showa,STARTIN6 VAR,BYTE COUNT) or

4at,COARSE); 4at,FINEX,FINEY1
4atnm,COARSE); latnm,FINEX,FINEY)

4s,EXPRO
4t,EXPR,LEFT,RIGHT)
4b,EXPR,NUM BITS)
4o,EXPR,NUM PLACES)
4h,EXPR,NUM PLACES)
4a,STARTING VAR,BYTE COUNT)

displays a value in decimal notation; displays up to 3 digits to the
right of the decimal point and up to 10 digits total

show EXPR

showt displays a value in decimal notation in the specified format

showt EXPR,PLACES LEFT OF DECIMAL POIHT,PLACES RIGHT OF DECIMAL POIHT
(format, if omitted, is 4,3; if third argument is omitted,
no places are shown to the right of the decimal point)

62

P3

showb displays an integer value in binary notation; displays the specified
number of bits, counting from the right end of the value

showb EXPRINUM BITS

showo displays an integer value in octal notation; displays the specified
number of places, counting from the right end of the value

showo EXPR,NUM PLACES

showh displays an integer value in hexadecimal notation; displays the
specified number of places, counting from the right end of the value

showh EXPR,NUM PLACES

shame displays characters in the specified integer variable(s), reading from
the left end of the buffer; each character code is in an 8-bit byte

showa STARTING VAR,NUM 8-BIT BYTES

text displays contents of an alphanumeric buffer line by line; the end of
a line must be indicated by an 8-bit byte equal to 0; not affected by
-size- or -rotate-

text STARTING VAR,NUM 8-BIT BYTES TO DISPLAY

textn similar to -text- except lines of text are numbered to the left of
each line; not affected by -size- or -rotate-

textn BUFILEN,DISP,FNUMILNUM,MAX

BUF = starting variable of the buffer which contains text
LEN = total number of 8-bit bytes to display
DISP = variable far storing the number of 8-bit bytes

displayed plus 1 (not affected by the value of MAX)
FNUM = line number of the first line displayed (if equal to 0,

no text is displayed)
LNUM = line number of the last line displayed (maximum is 31)
MAX = maximum number of 8-bit bytes to display per line

(can be less than the number of bytes indicated by the
placement of the end-of-line marker, an 8-bit byte
equal to 0)

Note: zreturn = -1 if FNUM and LNUM are in the range 0 to 31
= 0 otherwise

NOTE: With -text- and -textn-, "zretinf" contains the number of lines
displayed on the screen.

63

P4

erase oracmc the
V aa 'Away WS immusiway

erase (B) (causes full-screen erase)
erase NUM CHARACTERS TO ERASE
erase NUN CHARACTERS PER LINE,NUM LINES

mode specifies display mode (see system variable "zmode")

mode write (normal writing state; writes selected dots)
mode erase (erases selected dots)
mode rewrite (erases and rewrites in one step)
mode inverse (displays dark characters on light background)
mode EXPR,eraseorite,xlinverse (example of conditional form;

argument x leaves writing mode unchanged)

Note: The mode is reset to *write' ;ins: any full-screen erase, in
particular at a main unit. However, the mode is unchanged if
the previous unit contained -inhibit erase-.

size specifies bold-face writing qr. sets size for relocatable commands
(-rdraw-, -rcircle-, etc.)

size SIZE (does not affect writing)
size SIZE IN X DIRECTION,SIZE IN Y DIRECTION
size bold (specifies bold-face writing)
size 0 2.1L size (8) (restores standard writing)

rotate sets angle for relocatable commands (-rdraw-, -rcircle-, etc.)

rotate ANGLE IN DEGREES (does not affect writing)
rotate 0 IL rotate (8) (restores normal display direction)

64

P5

NOTE; Default settings in each aain unit are; -inhibit blanks- and
-allow arrow,display,erase,keys,jkeys- . These settings are in effect
unless altered by -inhibit- and -allow-.

inhibit disables certain default actions in a unit; settings are cleared at
each main unit and default settings are restored; effect within a unit
is cumulative: i.e., later occurrence of -inhibit- is added to the
effect .of an earlier occurrence

inhibit arrow (prevents plotting of the responsa arrow)
inhibit blanks (prevents judging if a Judging key is pressed before

a response is entered; default setting)
inhibit display (prevents plotting of a display but updates screen

position "zwherex", "zwherey" as if plotting had
occurred)

inhibit erase (prevents full-screen erase when proceeding to a new
main unit; retains status of "zwherex", "zwherey",
"min", and -enable-)
(prevents a non-function "Jkey" from being stored as
the last key in the response buffer)
(prevents keyset input from breaking through -pause-)
(re-establishes the default settings in this main unit;
equivalent to: -inhibit blanks- and

-allow arrow,display,eraseOkeyslkeys-

inhibit jkeys

inhibit keys
inhibit (B)

allow permits actions which have been inhibited in the unit by -inhibit-;
effect within a unit is cumulative: i.e., later occurrence of -allow-
is added to the effect of.an. earlier occurrence

allow arrow (allows the response arrow to be plotted)
allow blanks (allows null input at a response arrow; default is

- inhibit blanks-)
allow display (allows normal plotting of display)
allow erase (allows a full-screen erase it a new main unit)
allow jkeys (allows a non-function mjkey" to be stored as the

last key in the response buffer)
allow keys (allows keyset input to break through -pause-)
allow (B) (establishes settings opposite to default settings;

equivalent to: -allow blanks- and

inhibit arrow,display,eraseOkeysokeys-

6 5

"'"'r '

PEI

Graphics

NOTE: With -dot-, -draw-, -box-, -vector-, LOCATION is the screen
location and can be COARSE ar_ FINEXIFINEY. Coarse-grid and fine-grid
coordinates can be mixed in tags with sore than one argument.

dot draws a dot at the specified screen location

dot LOCATION

draw draws a dot, line, or line-drawn figure; after execution, "zwherex"
and "zwherey" are set to the last point plotted

dram LOCATION (equivalent to -dot-)
draw LOCATION1;LOCAlION2 (draws a line)
draw LOCATION1;LOCATION2;LOCATION3 (draws connected lines)
draw ;LOCATION (draws a line from the current screen location to

the specified location)
draw LOCATIONI;LOCATION2;skip;LOCATION3;LOCATION4

("skip" moves to a new position without plotting)

box draws a rectangle with the specified corner locations and thickness;
after execution, "zwherex", wzwherey" are set to the corner of the
box (with thickness included) closest to the screen origin

box CORNER LOCATION;OPPOSITE CORNER LOCATION;DOTS THICK
box ;CORNER LOCATIUN;DOTS THICK (opposite corner at current

ezwherex", "zwherey")
box (B) (draws a rectangle with corners specified by previous

-window- command or -fine- command; equivalent to
-box zxminozymin;zxmax,zymax-)

Note: Thickness, if omitted, 0, 1, or -1, is 1 dot. Negative
thickness extends inward; positive thickness extends outward.

fill fills (-mode write- or -mode rewnte-) or erases (-mode erase- or
-mode inverse-) a rectangular area on the screen; does not affect the
setting of "zwherex", "zwherey"

fill CORNER LOCATION;OPPOSITE CORNER LOCATION
fill ;CORNER LOCATION (opposite corner at "zwherex", "zwherey")
fill (B) (fills in a rectangle with corners specified by previous

-window- command or -fine- command; equivalent to
-fill zxminlzysin;zxmax,zymax-)

66

P7

yectflr dr--s vectfir symbfll with spacifi.,1 4.41 Inc.tinns .nd
head size

vector TAIL LOCATION;HEAD LOCATION;SIZE
vector ;HEAD LOCATION;SIZE (tail at "zwherex", "zwherey")

NotN SIZE, if omitted, is 10 or 11 dots for moderate-length vectors.
Negative size indicates open arrowhead.
IsizeIal is absolute (in screen dots); Isizel<1 is relative
to the length of the vector.

circle draws a circle with the specified parameters; the center is at the
current "zwheree, azwheree; after execution, "zwheree, "zsh.rey"
ars set to the center for a one-argument tag and to the end of the
last line drawn for the three-argument tag

circle RADIUS IN DOTS,START AH6LE,END ANGLE
(second and third arguments are optional: if omitted,
START ANGLE is 00 and END ANGLE is 360°; degree symbol is
omitted; angles are measured in degrees from START ANGLE,
from positive x direction toward positive y direction;
counter-clockwise if screen origin is at lower-left corner
or upper-right corner of screen
clockwise if screen origin is at upper-left corner or
lower-right corner of screen

circleb same options as -circle- but draws a broken circle

circleb RADIUS IN DOTS,START ANDLE,EHD AH6LE

67

PB

Amlacat2hla graphirs

rorigin establishes a "relocatable" origin for use with -rat-, -ratne-,
-rdot-, -rdraw-, and -rcircle-; remains in effect across main unit
boundaries until reset; initially set to -rorigin 0,0- upon entry to
a lesson

rorigin FINEX,FINEY
rorigin (B) (sets relocatable origin to "zwherex", "zwherey")

NOTE: Subsequent relocatable commands are affected by preceding -rorigin-,
-size-, -rotate-, and XINC and YINC in the -fine- command.

rat similar to -at- but relative to the -rorigin- location; affected by
-size-, -rotate-, and -fine-

rat

rat
X-LOCATION,Y-LOCATION
(B) (equivalent to -rat 0,0-, i.e., the current -rorigin-

location)

ratnm similar to -rat- but does not reset the left margin (see -atnm-)

ratnm X-LOCATION,Y-LOCATION

rdot draws a dot at the specifiv4 position relative to the -rorigin-
location; affected by preceding -size-, -rotate-, and -fine-

rdat X-LOCATIONO-LOCATION

rdraw similar to -draw- but figure is relative to the -rorigin- location;
affected by preceding -size-, -rotate- and -fine-; "zwherex" and
"zwnerey" are set to the last point plotted

for example:

rdraw X1,Y1;X2,Y2 (draws a line relativi to -rorigin-)

rcircle same options as -circle-; sire and orientation are affected by -size-
and -rotate-; direction of plotting is affected by -fine-; gives an
ellipse if preceded bV two-argument -size- with unequal arguments; the
specified radius is the radius before being affected by -size-
(see -circle-)

rrircle RADIUS IN DOTS,START ANGLE,END ANGLE

68

rkr;

-*"

Drawing graphs

gorigin specifies location of the origin of the graph; all other display with
graphing comaands is relative to this origin; remains in effect across
aain unit boundaries until reset; initially set to -gorigin 0,0- upon
entry to a lesson

gorigin F1NEX,FINEY
gorigin (B) (sets graph origin to "zwherex", "zwherey")

axes specifies lengths of the axes and draws the axes; x and y values are
in dots relative to the -gorigin- location

axes NEGATIVE XINEGATIVE YIPOSITIVE X,POSITIVE Y
axes POSITIVE X,POSITIVE Y

Note: To draw one-quadrant axes (other than both positive axes) with
labeling on the outside of the axes, use four-argument fora of
the tag with arguments corresponding to sissing axes set to 0.

bounds specifies lengths of the axes but does not draw the axes (i.e., axes
are invisible); x and y values are in dots relative to the -gorigin-
location

bounds NEGATIVE X,NEGATIVE Y,POSITIVE X,POSITIVE Y
bounds POSITIVE X,POSITIVE Y

scalex specifies the eaximum value and the value at the origin on the x axis;
reset with each new -axes- or -bounds-; remains in effect across main
unit boundaries until reset

scalex MAXIMUM VALUE OF X,YALUE OF X AT ORIGIN
(value at origin, if omitted, is 0)

scaley same options as -scalex- but for the y axis

scaley MAXIMUM VALUE OF Y,YALUE OF Y AT ORIGIN
(value at origin, if omitted, is 0)

NOTE: All subsequent graphing commands are in appropriate scaled units.

PIO

labelx specifies mark intervals, draws marks, and labels the x axis (with the
specified number of places to the left and right of the decimal point)

labelx MAJOR INTERVAL,MINOR INTERVAL,MARKSIZE,LEFT,RISHT

labely same options as -labelx- but for the y axis

labely MAJOR INTERVAL,MINOR INTERVAL,MARKSIZE,LEFT,RIGHT

markx specifies mark intervals; draws marks on the x axis with no labels

markx MAJOR INTERVAL,MINOR INTERVAL,HARKSIZE

marky same options as -markx- bait for the y axis

marky MAJOR INTERVAL,NIMOR INTERVAL,MARKSIZE

NOTE: With -labelx-, -labely-, -markx-, -marky-:
MINOR INTERVAL = 0 no minor marks (or can be omitted with -markx-,

-marky- if MARKSIZE is also omitted)
MARKSIZE = 0 normal marks (or can be omitted with -sarkx-, -marky-)

= 1 major marks extending to the bounds of the graph
= 2 all marks extending to the bounds of the graph

gat similar to -at- but specifiss the screen location relative to the
-gorigin- location and in scaled units

gat X-LOCATION,Y-LOCATION
gat (B) (equivalent to -gat 0,0-, i.e., the current -gorigin-

location)

gatnm similar to -gat- but does not reset the left margin (see -atnm-)

gatne X-LOCATION,Y-LOCATION

gdot draws a dot at the specified position relative to the -gorigin-
location and in scaled units

gdot X-LOCATION,Y-LOCATION

gdraw like -draw- but relative to the -gorigin- location and in scaled units;
after execution "zwherex", "zwherey" are set to the lest point plotted

for example:

gdraw X1,Y1;X2,Y2 (draws a line on the graph)

70

Pll

gbox same options as -box- but draws a rectangle relative to the -gorigin-
location; affected by preceding -scalex- and -scaley- (see -box-)

gbox CORNER X,CORNER Y;OPPOSITE CORNER X,OPPOSITE CORNER Y;
DOTS THICK

gbox ;CORNER X,CORNER Y;DOTS THICK (draws a box with opposite
corner at current 'zwherex", "zwherey")

gfill similar to -fill- but fills (-mode write- or -mode rewrite-) or
. erases (-mode erase- or -mode inverse-) a rectangle relative to the

-gorigin- location; affected by preceding -scalex- and -scaley-; not
affected by -size- or -rotate- (see -fill-)

gfill CORNER LOCATION;OPPOSITE CORNER LOCATION

gcircle same options as -circle- but is affected by preceding -scalex- and
-scaley-; draws an ellipse if the -scalex- and -scaley- settings are
different (see -circle-)

gcircle RADIUS IN DOTS,START AHOLE,END ANGLE
(specify basic radius before affected by -scalex-, -scaley-)

gvector same options as -vector-.except draws vector symbol relative to the
gorigin- location and in scaled units (see -vector-)

gvectar XTAIL,YTAIL;XHEAD,YHEAD;S/IE
gvector ;XHEAD,YHEAD;SIIE (tail at "zwherex",' "zwherey")

vbar draws a vertical bar at the specified location relative to the
-gorigin- location and in scaled units

vbar X-LOCATION,HEIGHT

hbar draws a horizontal bar at the specified location relative to the
gorigin- location and in scaled units

hbar LENGTH,Y-LOCATION

P12

Special display

tabset specifies 10 tabulator settings for use when the TAB key is pressed
at an arrow; each setting is an 8-bit byte which gives the horizontal
coarse-grid position on the screen; settings remain in effect until
reset by another -tabset- command

tabset STARTING R-BIT VAR CONTAINING TA8 SETTINGS
tabset (B) (clears previous -tabset- settings)

char permits specification of specially designed characters for display

char NAME,COL1,COL2,COL3,COL4,COL5,COL61COL7,COL8
char NAME,STARTINS 16-BIT VAR CONTAINING COLUMN PATTERNS

Note: In the 9-argument form, COLI throu4h COLS specify which of the
16 dots are lit in each of the 8 columns of the character. In
the 2-argument form, STARTING VAR is the first of 8 consecutive
16-bit veriables, each specifying the dots in each of the
8 column' , as in the 9-argument form.
NAME can be a number or a defined constant. NAME represents
the alternate font memory location and must be in the range
32 to 126 gjr_ 160 to 254.

plot displays the contents of the specified alternate font memory location

plot EXPR (EXPR gives the alternate font memory location)
plot NAME (NAME is a defined numerical constant which is the

alternate font memory location).

Note: Memory location must be in the range 32 to 126 or 160 to 254.

charset loads the specified character set into the station's memory

charset CHARSET NAME
charset (STARTING VAR) (variable name must be enclosed in parentheses)

Note: zreturn = -1 if the charset is loaded successfully
= 0 if the charset is not found
= +1 if an error occurs in reading the disk

getchar copies the pattern in the specified alternate font memory location
into the specified buffer (8 consecutive 16-bit integer variables or
16 consecutive 8-bit integer vari4bles); one column of the pattern is
stored in each 16 bits

getchar NAME,STARTING VAR

Note: NAME can be a number or a defined constant.

72

P13

micro loads the specified microtable into the station's memory

micro MICROTABLE NAME
micro (STARTIN8 VAR) (variable name must be enclosed in parentheses)
micro (B) (release memory space used by the microtable)

Note: zreturn = -1 'if the microtable is loaded successfully
= 0 if the microtable is not found
= +1 if an error occurs in reading the disk

73

ji!4

P14

Color display

These features are available only on a station with color display.

Definitions used in this subsection on color display:
primary colors: "zred", "zgreen*, "zblue
secondary colors: "zyellow" ("zred" + "zgreen")

"zcyan" ("zgreen" + "zblue")
Izmgenta" ("zred" + "zblue")

"zwhite": contains all primary colors ("zred" + "zgreen" + "zblue")
"zblack's contains no colors
character grid: the matrix of dots comprising the figure (1 bits or "s" dots)

and field (0 bits or 40* dots) of a character
00000000 0000000000000000 0000000000400000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 00000000aharestor.p. 000000
00000000 character 00000000

000000000000000 00000000000000 000000000000000 00000000000000 000000000000000 000000000000000 0000000000000000 00000000

screen color: color of the screen outside the rharacter grid (figure + field)
FOREGRND: foreground color
BACKSRND: background color
MASK: mask color; displays color component(s) common to the mask color and

any specified color (foreground, background, and screen); e.g., if mask
color is magenta and foreground dolor is cyan, display color is blue;
if mask color is white, display colors are the same as the specified colors

color specifies colors for display

color FORESRND,BACKSRND,MASK

Note: Colors are initially set to: -color zcyan,zblack,zwhite- .

A blank argument indicates color setting is unchanged. All
three argumcdts cannot be blank simultaneously.
A full-screen erase fills the screen with the masked background
color.

Screen color is initially black.

-4

1315

NOTE: Colors displayed by commands -erase- and -mode- are affected by MASK.

erase erases all or part of the color display

erase (B) (fills the screen with the masked background color)
erase NUM CHARACTERS (fills a rectangle NUM CHARACTERS long and

1 character high with the masked background color)
erase NUM CHARACTERS,NUM LINES (fills a rectangle NUM CHARACTERS

long and NUM LINES high with the masked background color)

mode specifies display mode

mode write (figure in the masked foreground color against the
masked screen color)

mode erase (figure in the masked background color against the
masked screen color)

mode rewrite (figure in the masked foreground color and field
in the masked background color against the masked
screen color)

mode inverse (figure in the 2asked background color and field
in the masked foreground color against the aasked
screen color)

75

Non-screen presentation

enable allows input from the touch panel and from external devices; disaMed
at each main unit

enable touch
enable ext
enable touch,ext (can combine tags)

Note: At the end of a unit containing -enable touch-, a touch input
is equivalent to pressing NEXT.
The touch panel is disabled at each main unit.

disable prevents input fros any device except the keyset; this is the normal
state of the station; the touch panel is disabled automatically at
the beginning of each main unit

disable touch
disable ext
disable touch,ext

xout sends data (in 8-bit bytes) contained in the specified variables to an
external device; data is read starting with the left-most byte

xout DEVICE NUMBER,STARTING VAR,NUM 8-BIT BYTES TO SEND

xin collects data (in 8-bit bytes) from an external device and stores.it
in the specified variables starting at the left-most 8-bit byte

xin DEVICE NUMBERISTARTING VAR,NUM 8-BIT BYTES TO STORE

beep (no tag) rings the sound device on the station

intrupt specifies a unit to execute (via -do-) when an interrupt is received
fres an external device

intrupt UNIT NAME

intrupt EXPRINAMEM,NAMEO,x,NAME2,q (example of conditional form;
argument q clears setting; argument x leaves setting
unchanged)

Note: External interrupts are automatically disabled when the
interrupt-handling unit is executed. The last command of this
unit should be -enable ext- to re-enable external interrupts.

System variables for presenting

zdevice gives information on the most recent input to the station
= 0 if most recent input is from the tweet
= 1 if most recent input is from the touch panel
= 2 through 7 if most recent input is from an external device

zmode = -1 with -mode erase-
= 0 with -mode rewrite-
= 1 with -mode write-
= 2 with -mode inverse-

P17

zretinf set by executior of -text-, -textn-; contains the number of lines
of text displayed

zwherex current value of the fine-grid x location

xwherey current value of the fine-grid y location

zxmin fine-grid x location of the corner closest to the screen origin of the
rectangle established by the -window- command or the -fine- command

zymin fine-grid y location of the corner closest to the screen origin of the
rectangle establiLhed by the -window- command or the -fine- command

zxmax fine-grid x location of the corner furthest from the screen origin of
the rectangle established by the -window- command or the -fine-
command

zymax fine-grid y location of the corner furthest from the screen origin of
the rectangle established by the -window- command or the -fine-
command

zblack
zred

zgreen
zyellow
zblue
zagenta
zcyan
zwhite

available on color terminals

77

'7,,,ge.f., :;,t

ROUTING RI

Router lesson and curriculum information

router

lesson

declares that the specified lesson is the router lesson in use

router NAME
router (STARTING VAR) (variable name must be enclosed in parentheses)

sets the system variable "zldone" to indicate *whether a lesson is
considered complete

lctson complete (sets °z1done to -1)

lesson incomplete (sets "z1done' to 0)
lesson no end (sets 'zldone' to +I)
lesson EXPR,complete,incomplete,x,no end (example of conditional

form; argument x leaves 'zldooe' unchanged)

score places the value of the tag, rounded to the nearest integer, into the
systea variable 'zscore"

score EXPR (value from 0 to 100)
score (B) or score NEGATIVE VALUE (sets 'zscore' to -1)

status reads the status area in memory and stores c value in the specifieJ
buffer or writes into the status area and changes its value to the
value contained in the specified buf4er; status area has length of
64 8-bit bytes

status reaQ;STARTING VAR,NUM 8-BIT BYTES (7ends status and stores
its value in the buffer)

status write;STARTING VAR,NUM 8-BTT BYTES (changes the status to
thE valun in the buffer)

Note: The status buffer is preserved during -jumpout- from an
instructional lesson to the router lesson. The router can then
store the status information on disk and recover it later to
establish a status upon re-entering the lesson.

83

R2

System variables for routing

zldone = -1 if the user has encountered -lesson complete-
= 0 if the user has encountered -lesson incomplete-
= +1 if the user has encountered -lesson no end-

zscore rounded value of the tag of the -score- command (value from 0 to 100);
can be set to -1 with -score (8)- or -score NEGATIVE VALUE-

zrouten indicates entry conditions to the router lesson:
= 0 if this is the first entry to the router lesson
= 1 if this entry to the router is via -aumpout-
= 2 if the router is returned to when the end of the instructional

lesson is reached
= 3 if the router is returned to when the instructional lesson is

terminated by STOP1 keypress
= 4 if the router is returned to when an execution error occurs in

the inEtructional lesson

zstatl length of status area tn memory; 64 8-bit bytes

84

...;

,

a t:

,

1!

,
,

*.V
'',38244111,,55,6

,

SEQUENCING 81

Nailing a unit

unit nases and initiates a section of a lesson (called a unit) which can be
referred to by other sequencing commands

unit NAME (maximum of 8 characters in NAME)
unit NAME(VVARIOVAR2OVAR3;AYAR1,AVAR2) (form with "value"

arguments and "address" argumients; value arguments can be
constants or variables; address arguments must be variables)

unit NAME(VVAR1OVAR2) (valve arguments only)
unit NAME(OVAR1tAVAR2,AVAR3) (address arguments only)

Note: Maximum length of a condensed unit is about 3000 8-bit bytes.
No unit can be named "q" or "x".
A maximum of 10 arguments total can be accepted by a unit.

89

:

..

.,

Automatic sequencing

NOTE: Commands -do-, -goto-, -jumpn-, and -jump- can have the conditional form:

goto EXPR,NAMEM,NAMEOINA1IE10,NAML3,q
do EXPRINAMEM,NAMEO,x,q,NAME3

Argument x is equivalent to absence of the command; argument q is
equivalent to a branch to an eepty unit. Special case is -do q-,
which is equivalent to -goto q-. Argument q is not valid with -jump-.

These commands can pass up to 10 values to a unit with arguments, e.g.:

goto NAME(VALUE1,VALUE2VALUE4) (values can be ecpressions)

unit NAME(VAR1IVAR2IVAR3,VAR4) (VAR3 is uncharged)
or

do NAME(VALUE1,VALUE2;VAR1,VAR2,VAR3) (only -do- can pass
address arguments)

unit NAME(VVAR1,VVAR2;AVAR1,AVAR2,AVAR3)

examples of passing arguments:

passing value arguments

unit give
f:value

calc value4sin(65°)
goto take(value) $$ caa also pass the function itself
**

unit take(pass)
f:pass

* argument defined in local define set--same type as passed parameter
show r ass

passing value arguments and &duress arguments

unit give

f:result
do take(25;result)
show result

* value argueent--value or variable; address argument--variable only
**

unit take(val;addr)
f:addr

* defined arguments have same types as passed parameters
calc addr4log(val) $$ "result" in unit "given is set to same value

core examples on the n*xt page

90

niin n t..raw n4 ennri4in4 lonnfit

83

unit give
1,8:array(10)

zero array(1),10 $$ zero array before packing information
pack array(1),$sin(65°)
do take(10;array) $$ pass entire array as address argument
**

unit take(len;fun)
i,8:lenfun(10)
firesult

compute result,fun(1) ,len
show result

passing an array of length determined by program

unit give
1,8:array(10)Inuschr

pack array(1),nuschr$sin(65°)
do take(numchr;array)
**

unit take(len;fun)
i18:len,fun(*)
f:result

compute result,fun(1),len
show result

do causes execution of the specified unit, without screen erase or
change of main unit; returns to the original *mit to execute commands
following -do-

do UNIT NAME

goto causes execution of the speci4ied unit, without changing main unit and
without main-unit initializations (including screen erase); does not
return to the original unit to execute commands following -goto-; does
not clear the -do- stack

goto UNIT NAME

jumpn jumps to the specified unit but does not do any initializations, such
as main unit, screen erase, etc.; clears the -do- stack

jumpn UNIT NAME

jump causes execution of the specified unit, with a full-screen erase
(unless the erase is prevented: see -inhibit erase-) and change of
main unit; performs initializations associated with entering a main
unit; does not alter base-unit setting

*,.

S4

imain specifies a unit to execute at the start of every main unit in the
lesson; later occurrence of the command overrides an earlier setting;
equivalent to -do- at the beginning of each main unit

imain UNIT NAME
imain q (turns off -imain- setting for remainder of lesson or

until reset)
imain EXPR,NAMEM,NAME00,NAME2,q (example of conditional form;

argument q clears setting; argument x leaves setting
unchanged)

NOTE: The following two commands (-branch-, -doto-) permit branching or
looping within a unit to a line with a statement label. The line with
the statement label must be in the same unit as -branch- or -doto-.
The statement label must start with a digit and can contain a maximum
of 7 characters, consisting of digits and letters only.

branch causes a branch to the line with the specified statement label

for example:

5a VAR4EXPR
do someu
write some sessage

branch EXPR,5a,x (argument x causes fall-through to the next line
in the unit)

doto causes iterative execution of lines of the program between -doto- and
the line with the specified statement label while changing a counter;
the labeled line must have a blank tag

for example:

doto 2sync,VAR4INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR
do someu
write sone message

2sync (S)

Note: Stepsize, if omitted, is +1. Stepsize can be negative.
The loop variable must be an integer variable. Its value is
undefined after completion of the loop.

92

65

NOTE: The following four commands (-if-, -elseif-, -else-, and -endif-) permit
branching within a unit. Logical value of an expression is "true" if
its rounded valLe is -1 and *false' if its rounded value is O.
(In generpl, a value < 0 is "true" and a value k 0 is "false.)

if performs a branch based on the logical value of the tag expression;
value of "true" causes fall-through to the next line; value of "false"
causes branch to the next -elseif-, -else-, or -endif- at the same
level; code following -if- must be indented (up to the next -elseif-,
else-, or -endif- at the same level) and marked with the "indent"

symbol; range of -if- must be terminated by -endif- at the same level

if LOGICAL EXPR

elseif provides an alternative brlIch within the range of the preceding -if-
at the same level; subsequent code follows same indenting rules as -if-

else

elseif LOGICAL EXPR

(no tag) provides a branch if the logical value of the tag of the
preceding -if- or -elseif- at the same level is "false"; subsequent
code follows same indenting rules as -if-

endif (no tag) marks the end of the range of the preceding -if- at the same
level

NOTE: Following is an example demonstrating placement of these commands and
the form of the "indent symbol". The indent symbol is a *.* followed
by at least one space.

if a<4

write first branch
calc

e lseif a=4

write second branch
do someunit

else
write default branch
if a>6

write

endif

endif

$$ executed if a<4
$$ executed if a<4
$$_executed if ak4
$$ executed if a=4
$$ executed if a=4
$$ executed if a>4
$$ executed if a>4
$$ executed if a>4

special branch $$ executed if a>6
$$ end of range of -if a>6-
$$ end of ranpe of -if a<4-

93

' -
, - J.% .:5441

S6

NOTE: The following four commands (-loop-, -endloop-, -outloop-, and -reloop-)
perait looping within a unit. Logical value of an expression is "true"
if its rounded value is -1 and "false" if its rounded value is O.
(In general, a value < 0 is "true" and a value a 0 is "false".)

loop initiates a loop based on the logical value Of the tag expression;
value of "true" causes execution of subsequent commands in the loop;
value of 'false' causes execution of the first command after -endloop-
at the same level of indentation as -loop-; code following -loop- must
be indented (up to the next -outloop-, -reloop-, or -endloop- at the
same level) and marked with the "indent" symbol; range of -loop- is
marked by -endloop- at the same level

loop LOGICAL EXPR (blank tag is equivalent to "true" value)

endloop (no tag) marks the end of a loop initiated by the previous -loop-
command at the same level of indentation; causes a branch back to
the previous -loop- command at the same level

outloop based on the logical value of the tag, causes exit from the range of
-loop- at the sane level of indentation; value of "true' causes
execution of the first command after -endloop- at the same level;
value of 'false' causes execution of subsequent commands within the
loop, which follow the same indenting rules as -loop-

outloop LOGICAL EXPR (blank tag is equivalent to 'true" value)

reloop based on the logical value of the tag expression, causes branch back
to the previous -loop- command at the same level of indentation
without terminating the loop; value of "true" causes branch to the
previous -loop- at the same level; value of 'false causes execution
of subsequent commands within the loop, which follow the same
indenting rules as -loop-

reloop LCSICAL EXPR (blank tag is equivalent to "true" value)

NOTE: Following is an example demonstrating placement of these commands and
the form of the "indent symbol". The indent symbol is a "." followed
by at least one space.

loop a<10
write within loop $$ executed if a<10
calc a4a-1 $$ executed if a<10

reloop a5 $$ executeu if a<10
write still within loop $$ executed if a<5
do someunit $$ executed if a<5

outloop a<3 $$ executed if a<5
write still within loop $$ executed if 3.1a<5

endloop
write outside of loop $$ executed if aal0 or a<3

94

97

Knyini+iatod etaqnsbnring

NOTE: Commands -next- through -lablop- can have the conditional form, where
argument x leaves the pointer unchanged, and argument q clears the
pointer and renders the key inactive. The conditional expression is
evaluated when the command is executed, not when the key is pressed.
A full-screen erase is performed at the beginning of a main unit unless
the unit is an 'op' unit or the previous unit contained -inhibit erase-.

next, nextl, back, backl, stop specifies the unit executed when the user
presses the appropriate key (with -next- the user must be at the end
of the unit before the specified unit is executed); the specified unit
is a main unit

next UNIT NAME
back! q (clears backl pointer; disables SHIFT BACK key)

nextop, nextlop, backop, backlop, stopop specifies the unit executed when the

user presses tk appropriate key; there is no full-screen erase and
additional plotting is on the same display (on-the-page); the
specified unit is a main unit

nextlop UNIT NAME
backop q (clears the back pointer; disables BACK key)

help, helpl, data, datal, lab, labl. specifies ths unit executed when the user
presses the appropriate key; initiates a help sequence and sets the
base pointer to the unit containing the help-type command (unless the
base pointer is already set); the base unit is executed after the help
sequence is completed or if the user presses BACK or BACK1; units in a
help sequence are main units but not base units; a help sequence ends
with a unit that does not contain a -next- command

help UNIT NAME
lab q (clears lab pointer; disables LAB key)

helpop, helplop, dataop, datalop, labop, lablop specifies the unit executed
when the user presses the appropriate key; there is no full-screen
erase and additional plotting is on the same display (on-the-page);
the unit executed is neither a main unit nor a base unit; aft::
execution, control is returned to the unit containing -helpop- at the
-arrow-, -pause-, or end-of-unit where the user pressed the key

helpop UNIT NAME
dataop q (clears the data pointer; disables the DATA key)

base clears the base pointer in order to alter help-type sequencing

base (B)

95

SS

Osom;..$umwa.y urmasyy

keylist (non-executable) forms a set of keys with the specified name for use
with -pause-, -keytype-, and -jkey- commands

keylist NAME,KEYI,KEY2,KEY3,... (from 2 to 7 enaracters in NAME)
keylist NAME,NAME1,NAME2,... (keylists Can be combined)

Note: System-defined keylists are:

alpha (letters: a to z and A to 1)
numeric (digits: 0 to 9)
funct (function keys)
keyset (any keyset input)
touch (input from touch panel)
ext (input from external device other than touch panels
all (input from keyset, touch panel, or external device)

In addition to alpha, numeric, and function keys, nases given
in the tables in the appendix can be used. These names can
also be used with -press-, -jkey-, -pause-, -keytype-, and
'zk(KEYNAME)'.

pause delays execution of subsequent commands by the specified interval (Ind
then presses TIMEUP key) or until one of,the specified keys is pressed

pause EXPR GIVING NUM SECONDS
pause 0 (causes no pausa)
pause (B) or pause NESATIVE VALUE (interrupts processing until

any key or allowed input comes in)
pause keys=KEY1,KEY2,KEYLIST NAME,... (interrupts processing dntil

a specified key is pressed; all keynames are typed without
quote marks and function keys are typed in lower case)

pause NUM SECONDS,keys=KEY1,KEY2,KEYLIST NAME,... (interrupts
processing for the specified interval (and then presses the
TIMEUP key] or until a specified key is pressed)

Note: If a function key oth than next, such as help, is specified
and there is a preceding -help- command specifying a unit, this
unit is executed rather than the command following the -pause-.
If next is specified, the NEXT key just breaks the -pause-,
even if there is a preceding -next- coemand.
The statements -pause keys=touch- and -pause keys=ext- set the
appropriate -enable-; -pause keys=a11- does not set -enable-.
Keycode of the input (including TIMEUP) is stored in "zkey",

96

a

S9

keytype sets a variable according to the position in a list of the input by
the user; if the input action is nut listed, the variable is set to -1

keytype VAR,ARMARSI,ARS21...

arguaents ARGO, ARS1, ARS2,... can bn any of the following:

KEYNAME (any keyname; no quotation marks are used;
function keys are in lower case)

KEYLIST NAME (name of a system-defined keylist or of a list
set up by the -keylist- command)

ext (any external input)
touch(COARSE,NIDTN IN CHARACTERSIHEIOHT IN LINES)
touch(FINEX,FINEY,NIDTH IN DOTS,NEIGHT IN DOTS)

(COARSE or. FINEX,FINEY is the screen position of the corner
closest to the screen origin (as defined by the -fine-
command) of a rectangle with specified width and height;
width and height are optional and have mlue 1 if oritted).

Note: Up to 97 keys can be specified; keyIists count as one key.

press puts the specified key into the student input buffer

press zk(KEYNAME) (e.g., press zk(b) or press zk(back) or

press zk(super))

press "KEYNAME* (e.g., press "b* ; function keys not allowed)

press EXPR GIVING KEYCODE
press zk(touch)+X (touch input at screen coordinates X,Y;
press zk(touch)+Y both lines of code must be given)
press zk(ext)+D (input of data D from an external device)

getkey (no tag) reads the next key from the key buffer (which contains up to
12 keys pressed by the user or by -press-), removes the key from the
buffer, and sets "zkey" to the value of the key (sets "zkey" to -1 if
the buffer is empty)

clrkey (no tag) clears the key buffer

SIO

Lesson connections and sections

use (non-executablo) inserts into the file being condensed the specified
block(s) from ,the file specified in the tog of -use-; al/ contiguous
blocks with the same name are taken

use FILE NAME,BLOCK NAME

jumpout causes execution of the specified lesson

jumpout FILE NAME
jumeout FILE NAME(VALUE1,VALUE2) (example of form with arguments;

up to 10 values can be passed to the first unit in the
lesson; first unit if specified with arguments)

jumpout (STARTING VAR) (variable name must be enclosed in parentheses)
jumpout (STARTING VAR)(VALUE1,VALUE2) (variable name, arguments)
jumpout q or jumpout (B) (returns to the router lesson)

cstart (non-executable) (no tag) indicates subsequent code is to.be condensed
(used after a preceding -cstop-)

cstop (non-executable) (no tag) indicates subsequent code is not to be
condensed; in effect up to the next -cstart-, if any

cstop* (non-executable) (no tag) indicates none of the subsequent code is to
be condensed, independent of subsequent -cstart- commands

98

Lesson annotation and debugging

fer,

911

imlicates the statement on that line is a commwnt only and is to be
ignored by the cooputer

*This is a comment.

$$ (not a command) when placed on the same line with a ATUTOR statement
indicates that subsequent material on that line is a comment

COMMAND TAO $$this is a comment

Note: Spaces preceding the 'I are distarded.

step allows a user to step through a lesson command by command; information
about execution is displayed at the bottom of the screen

step EXPR (value=-1 turns step mode on;
value=0 turns V.:ep mode off)

99

S12

Signing off

finish specifies the unit which will be executed when the user leaves the
lesson by pressing STOP!

finish 'UNIT MANE
finish q (clears -finish- setting)
finish EXPR,NANEN,NANE00,NANE20 (example of conditional fore;

argument q clears setting; argument x leaves setting
unchanged)

protect prevents the lesson from being interrupted by STOP1 keypress; if STOP1
is pressed during execution of program code after protection is turned
cn, execution continues until the lesson ends or until protpction is
turned off; the finish unit (if any) is executed before the user
leaves the lesson

protect EXPR (value=-1 turns protection on;
value=0 turns protection off)

100

System variables fer sequencing

zargs number of values passed at the previous execution of a unit with
arguments or -jumpout- with arguments

zclock number of seconds (to the nearest millisecond) since midnight
(floating-point number)

zday number of days between the current day and midnight Sunday,'
December 31, 1972 to the nearest 10-6 day (approximately .1 second)
(floating-point number)

zenvir = 1 if the terminal is running on a Cluster network
= 2 if the terminal is running independent of a Cluster network

zkey contains information on the last input (updated after -arrow-,
-pause-, -getkey-, and at the beginning of a sain unit);
counting from the left end of the I6-bit word (28 Ossskkkkdddddddd):
1 bit: always 0
3 bits (sss): source of input: 000 keyset; 001 touch panel;

010 external device
4 bits (kkkk): set if source is keyset: 0000 displayable character;

0001 function key; 0010 Japanese function key
8 bits (dddddddd): ASCII code for Ltaracter if source is keyset;

value of data if source is external device;
0 if source is touch panel (see "ztouchx", "ztouchy")

znumpad = -1 if the most recent input is from the number pad
= 0 otherwise (or if the keyset does not have a number pad)

zport identification number of the port on the Cluster System

:return set by many commands according to the results of execution; set by:
addfile-, -addname-, -charset-, -chgfile-, -chgname-, -compute-,

-detain-, -dataout-, -delfile-, -delname-, -getfile-, -getname-,
- putd-, -micro-, -names-, -reserve-, -release-, -setdir-, -setfile-,
-sitneme-, -textn-

ztouchx fine-grid x location of the center of the touch square touched
(set to 0 if source of input is not touch panel)

ztouchy fine-grid y location of the center of the touch square touched
(set to 0 if source of input is not touch panel)

iOi

ztstype gives information on the tereinal's subtype
if the value of "zttype" is 341
= 0 if the terminal is an IST-2
= 1 if the tereinal is an I91-3
= 2 if the terminal is a Viking

if the value of 'zttype" is 42:
= 0 if the terminal is an NEC-8601
= 1 if the terminal is an NEC-9801
= 2 if the terminal is an NEC-9801 running under local operating

system using floppy disks

zttype gives information on the user's terminal type
= 34 if the terminal is an IST or Viking (512x512 monochrome screen)
= 42 if the terminal is an NEC (640x400 8-color screen)

102

_

0'

vie . ,

,4-f ""!';jrz'

Cr-14

rx,mt

CD
7C
1.4
C.)

1.1.1

7.3

07
L-J

C

CO

4

.1
4.

5
,

,

1.2,SV
ekrcvsr

ccT
4

APPENDIX

r..mamma. sywnunua Ot uhe Appendix

Page

IST Keyset
TDK Keyset AS

Control Codes and Character Codes A4

Codes far Function Keys A6
Characters and SYMBOL Characters A7

Charactei's and MICRO Characters A7
Definition of Hexadecimal Symbols AS
Conversion between Decimal and

Hexadecimal Numbers AS
Powers of 2 A9

107

AI

SJ

la)

!)

9 pi
th N1

h

(SUPER)

DATA I

[LAB)

all
caps

revs
4.

0

hcr

CR

TAB

hbks

hoove

norm

(t 4

2

VIACIVe

I: .,

bold

1 S

rev

(33

SHIFT

(15

1ST Keysert

S

s 8

A

C ®
c

V

V f iBb :)
N L

n h

i

vt

1,

If

ERASE

roman

FONT

MICRO

[NEXT)

space

hsp

EDI;

SHIFT

I.

[BACK

MICRO
Upper Case

Upper SYMBOL
Case Upper

Case

Lower SYMBOL
Case Lower

Case

MICRO
Lower Case

STOP

WILL

FULL

sue
0 0,1qi If

EATAIGNA

E

b

MINNA

L.5

R

r "1'
T

t p

A E S I O F T 6 13

il I s d d f $ 9

SHIFT

Legend

MICRO
Upper Case

Upper
Case

Lower
Case

SYMBOL
Upper
Cue

SYMBOL
Lower
Case

MICRO
Lower Case

110

7

TDK Keyset

TING

177ti

1 ririnnEys4i1o fit 4111 t 4

Iff11

Ohlbkk It lz

IMOD

TEM

FUSE s-i.
kiksp

NEIT

ftYS

LJx X ic

@I L..1
g g v«

N t
n b

inri)
, SNIFT

space

ksp

NM

1 WW1

INN

FONT

Olaf liL

COPY

EM171
Nat Fl

STW

1.11

1

Li

2

4,4y,

OUT

A4

Control Codes

rnnfrn1

C

rnAna

H

AnA

CH

Ch.rarf.r

Character

C.finc

Codes

CH CH CHCH
space 20 0 30 40 P 50 60 p 70

! 21 1 31 A 41 Q 51 a 61 q 71

' 22 2 32 B 42 R 52 b 62 r 72

a 23 3 33 C 43 S 53 c 63 s 73

$ 24 4 34 D 44 T 54 d 64 t 74

X 25 5 35 E 45 U 55 65 u 75

& 26 6 36 F 46 V 56 f 66 v 76

' 27 7 37 8 47 W 57 g 67 m 77

bksp 08 (28 8 38 H 48 X 58 h 68 x 78

kata 19) 29 9 39 I 49 Y 59 i 69 y 79

If Oa * 2a : 3a .7 4a 5a J 6a z 7a

vt Ob escape lb + 26 ; 3b K 4b 5b k 6b C lb

cr

hira

Od

Oe

,

-

2c

2d

2e

<

=

>

3c

3d

3e

L

M

N

4c

4d

4e

\

A

5c

5d

I

n

6c

6d

6e

1

}

7c

7d

7e

roman Of / 2f ? 3f 0 4f 5f o 6f

Control Codes Character Codes

C H CHCHCH CHCH
rev BO full 90 o b0 c0 - dO Q e0 K 40

revs 81 kanji 91 al ± bl cl S dl E el a fl

bold 82 hmove 92 a2 b2 c2 d2 B e2 d f2

norm 83 vmove 93 a3 b3 A c3 @ d3 e3 6 f3

sfull 84) a4 x b4 4 c4 d4 N e4 f4

half 85 * a5 p b5 e5 d5 * e5 1 f5

std 86 4 a6 b6 c6 d6 e6 f6

vert 87 § a7 b7 c7 d7 e7 47

hbksp BB a8 + c8 d8 e8 I 48

hsp 89 a9 ' b9 / c9 d9 0 e9 1 f9

subl Ba aa " ba Ca 4 da E ea e fa

super!

hcr

Bb

Bc

(ab

ac

) bb cb

CC z
db

dc D

eb

ec

8

p

fb

fc

n1 Bd t ad bd cd x dd I ed fd

skanji Be 4 ae ce co de 0 ee V3 fe

font Bf 4 af bf cf df h ef

C E control or character
H E ASCII code in hexadecimal notation

The system variable "zkey" contains the code value of the previous input.
The function "zk" gives the values in these tables: zk(hsp)=89h; zk(next)=101h.
With some characters, special names must be used wi.th "zk":

textsep (for *); lembed (for 4); rembed (for)); comma (for ,).

112

4
,

Explanation of Control Names

[Names in dark type indicate features available only on Japanese keysets.1

bksp backspace
If lint feed (move down one line; distance moved is determined by the size

of the characters in use)
vt vertical tab (move up one Iine; distance moved is determined by the size

of the characters in use),
cr carriage return with lin,1= feed whose height is detereined by the size of

the characters in use
hire hiragana characters
roman standard roman alphabet
kata katakana characters
escape escape code
rev writing right to left in alternate font from current screen location
revs writing right to left in alternate font from right edge of window
bold bold writing
nore norsal writing (left to right, standard size)
sfull short full-size characters (16 dots x 16 dots)
half half-size characters (8 dots x 24 dots)
std standard-size characters (8 dots x 16 dots)
vert vertical writing (upward)
hbksp half backspace
hsp half space
subl locked subscript (characters are written 5 dots below line of text)
superl locked superscript (characters are written 5 dots above line of text)
hcr half carriage return
n1 new line; similar to cr but restores display conditions (bold, font, etc.)

present at the beginning of the text (beginning of the -write- command);
automatically inserted by the'condensor for each new line of text

skanJi short kanji characters (16 dots x 16 dots)
font alternate font characters
full full-size charc:ters (16 dots x 24 dots)
kardi kanji characters (16 dots x 24 dots)
hmove horizontal movement of 1 dot (right if writing is left to right, left if

writing is right to left)
vmove vertical movement of 1 dot upward

Characters and controls can be embedded in text, for example:
4crD, 4romanD, 4fonU, 4hira).1 4kata, lskanji), 4norm)

113

Codes for Function Keys

timeup 100
(Japanese

next 101 next! 11.1 trans 201
back 102 backl 112 wordd 202
help 103 helpl 113 kanjid 203
lab 104 labl 114
data 105 datal 115
stop 106 stopl 116
ans 107

ters 108

erase 109 erase! 119
edit 10a edits Ila
copy 10b copyl llb

symbol 10c letter Ilc
print 10d sub Ild
tab 10e super Ile
micro 10f

zk(touch) = 1000h
zk(ext) = 2000h

114

A7

Characters and SYMBOL Characters

C 9+C I C 8+C C 8+C C 8+C C 8+C C 8+C

0 I 0 P IT P

! 1 A a a 1
Ol

2 B R TM

3
A

C S I c Si 8

$ * 4 D B) d 4 t p
5 E 4 u t e 6 U

&) 6 F T v 4, f V +

7 6 13 g g

8 H N X h 6 X X

) 9 I 0: Y E i 1 Y
* X 3 J u j
+ K E 4 k K

(< L t \ / 1 t s
= * ti 3) m p)
> > N

A
n

/ ? 0 o 0

C a ch,racter with ASCII code between 32 and 127
S+C E SYMBOL+C s character with ASCII code between 160 and 255

s Epress SYMBOL key and release; press character key <03

See table below Characters and MICRO Characters for exceptions with the HT.

Characters and MICRO Characters MICRO Characters and Display Functions

C M+C C M+C C M+C C M+C

a @ $ 0 space hsp x bold
/ \ s / uksp hbksp + norm
C A d sub! If rev

6 %
. super! vt < revs

I 1

_
i

8

S

"

font

Cr

roman
hcr

1

2

heave
vmove

C E character
M+C E MICRO+C E character not

accesiible directly
or with SYMBOL on
the IST keyset

C a character or control
M+t E MICRO+C a Jisplay function not

marked on the keyset

M+C s [press MICRO key and.release; press character key or control key (C)3

Note: These MICRO characters may not be available if a user-defined microtable
is in effect.

-

AS

Definition of Hexadecimal Symbols

decimal

o
1

binary

0000
0001

hexadecimal

o
1

2 0010 2
3 0011 3
4 0100 4
s 0101 5
0 0110 6
7
8

0111
l000

7
8

9 1001 9
10 1010 a
II 1011 b
12 1100 c
13 1101 d
14 1110 e
15 1111 f

DH

Conversion

DM

between

DH

Decimal

DH

(D) and Hexadecimal

DH

(H) Numbers

D HI DH DH
0 00 32 20 64 40 96 60 128 80 160 a0 192 c0 224 e0
1 01 33 21 65 41 97 61 129 81 161 al 193 cl 225 el
2 02 34 22 66 42 98 62 130 82 162 a2 194 c2 226 e2
3 03 35 23 67 43 99 63 131 83 163 a3 195 c3 227 e3
4 04 36 24 68 44 100 64 132 84 164 a4 196 c4 228 e4
5 05 37 23 69 45 101 65. 133 85 165 :5 197 0 229 eS
6 06 38 26 70 46 102 66 134 86 166 a6 198 c6 230 6
7 07 39 27 71 47 103 67 135 87 167 ai 199 c7 231 e7
8 08 40 28 72 48 104 68 136 88 168 a8 200 cEl 232 e8
9 09 41 29 73 49 105 4? 137 89 169 a9 201 c9 233 e9

10 Oa 42 2a 74 4a 106 6a 138 Ba 170 aa 202 ca 234 ea
11 Ob 43 2b 75 4b 107 6b 139 Bb 171 ab 203 cb 235 eb
12 Oc 44 2c 76 4c 108 6c 140 Bc 172 ac 204 cc 236 ec
13 Od 45 2d 77 4d 109 6d 141 Bd 173 ad 205 cd 237 ed
14 Om 46 2e 78 4e 110 60 142 8e 174 an 206 ce 238 ee
15 Of 47 2f 79 4f 111 6f 143 Bf 175 af 207 cf 239 ef
16 10 48 30 80 50 112 70 144 90 176 b0 208 dO 240 #0
17 11 49 31 81 51 113 71 145 91 177 bl 209 dl 241 fl
18 12 50 32 82 52 114 72 146 92 178 b2 210 d2 242 f2
19 13 51 33 83 53 115 73 147 93 179 b3 211 d3 243 f3
20 14 52 34 84 54 116 74 148 94 180 b4 212 d4 244 f4
21 15 53 35 85 55 117 75 149 95 181 125 213 (15 245 f5
22 16 54 36 86 56 118 76 150 96 182 b6 214 d6 246 f6
23 17 55 37 87 57 119 77 151 97 183 b7 215 d7 247 f7
24 18 56 38 88 58 120 78 152 98 184 be 216 de 248 f8
25 19 57 39 89 59 121 79 153 99 185 b9 217 d9 249 f9
26 la 58 3a 90 5a 122 7a 154 9a 186 ba 218 da 250 fa
27 lb 59 3b 91 5b 123 7b 155 9b 187 bb 219 db 251 fb
28 lc 60 3c 92 5c 124 7c 156 9c 188 bc 220 dc 252 fc
29 ld 61 3d 93 5d 125 7d 157 9d 189 bd 221 dd 253 fd
30 le 62 3e 94 5e 126 7e 158 9e 190 be 222 de 254 fe
31 If 63 3f 95 5f 127 7f 159 9f 191 bf 223 df 255 ff

; 116

A9

2n

Powers of 2

n 2n

0 1 30 1 073 741 824
1 2 31 2 147 483 648
2 4 32 4 294 967 296
3 8 33 8 389 934 592
4 16 34 17 179 869 184

5 32 33 34 359 738 368
6 64 36 68 719 476 736
7 128 37 137 438 953 472
8 256 38 274 877 906 944
9 512 39 549 755 813 888

10 1 024 40 1 099 511 627 776
11 2 048 41 2 199 023 255 552
12 4 096 42 4 398 046 511 104
13 8 192 43 8 796 093 022 208
14 16 384 44 17 592 186 044 416

15 32 768 45 35 184 372 088 832
16 65 536 46 70 368 744 177 664
17 131 072 47 140 737 488 355 328
18 262 144 48 281 474 976 710 656
19 524 288 49 562 949 953 421 312

20 1 048 576 30 1 125 899 906 842 624
21 2 097 152 51 2 251 799 813 685 248
22 4 194 304 32 4 503 599 627 370 496
23 8 388 608 53 9 007 199 254 740 992
24 16 777 216 54 18 014 398 509 481 984

25 33 554 432 55 36 028 797 018 963 968
26 67 108 864 56 72 057 594 037 927 936
27 134 217 728 57 144 115 188 075 855 872
28 268 435 456 58 288 230 376 -151 711 744
29 536 870 912 59 576 460 752 303 423 488

117

;;1-

Additional notes on Keysets aril Characters

118

li,

C
\1

ct.4.

INDEX

Alpheaettcal index to systea variables

System variables can be used wherever expressions are accepted.

Word Page Word Page

zanscnt 312 zntries 3I2
zargs S13 znumpad S13
zblack P17 zopcnt 312
zblue P17 zorder 312
zcaps 312 zport S13
zclock S13 zrecs F2
zcyan P17 zred P17
zday S13 zretinf C11,F9,P17
zdevice P17 zreturn F1O,S13
zentire 312 zrouten R2
zenvir 913 zscore R2
zextra 3I2 zspell 312
zfauth F9 zstatl R2
zfbpi F9 ztouchx S13
zfbpn F9 ztouchy S13
zfbpr F9 ztstype 914
zfmaxn F9 zttype 914
zfnams F9 zwcount 312
zfrecs F9 zwherex PI7
zftype F9 zwherey P17
zgreen P17 zwhite P17
zjcount 312 zxmax P17
zjudged 312 zxmin P17
zkey 913 zyellow P17
zldone R2 zymax P17
zmgenta
znode

P17
P17

zymin P17

Alphabetical list of system functions and operations

These functions are.described on pages C4 to C6.

abs cls In $union$
alog comp loq zk
and cos $1sh$ zlength
arccos cot $mask$ zvloc
arccot csc not =
arccsc $diff$ Sort #
arcsec $divr$ rsh <
arcsin $divt$ sec k
arctan exp si6 (

ars frac sqrt)

bitcnt int tan

121

_;111

Alphabetical index to commands and related directive:

Command Page

addfile

addname

addrecs

allow

ansv

answer

answerc

argument

arrow

at

atm"

axes

back

backl

backop

backlop

base

beep .

block

bounds

box

I/
branch

calc

calcc

calcs

E3 char

charset

chgfile

chgname

circle

Fl,F3,F7

F5

F5

P5

J6

35

36

Sl,S2,S3

Jl

P2

P2

P9

S7

S7

S7.

S7

S7

P16

C3

P9

P6

94

C2

C2

C2

P12

P12

F2,F4,F7

F5

P7

Command Page

circleb

clrkey

coarse

color

compute

copy

cstart

cstop

cstop*

darrow

data

datal

dataop

datalop

datain

dltaout

define

delfile

delname

delrecs

disable

do

dot

doto

draw

else

elseif

embed

enable

P7

89

PI

P14

C3

32

910

SIO

510

31

S7

97

57

S7

F2,F6

F2,F6

CI

F2,F3,F7

F5

F5

P16

S3

P6

S4

P6

S5

85

P2

P16

endarrow 31

Command Page

endif S5

endloop 96

erase P4,P15

eraseu 32

exact 36

xactw 36

fill P6

find C10

fine P1

finish 912

force 32

gat PlO

gatnm P10

gbox Pll

gcircle Pll

gdot P10

gdraw P10

getchar P12

getfile F21F4,F8

getkey S9

getloc J8

getmark 38

getname F5

gfill PI1

gorigin P9

goto S3

gvector Pll

hbar Pll

help .S7

helpl 97

122

Command Page

helpcip

hejplop

iarrow

if

ifmatch

iJudge

imain

inhibit

intrupt

jkey

judge

jump

junpn

jumpout

keylist

keytype

keyword

lab

labl

labop

lablop

labelx

labely

lesson

long

loop

markx

marky

micro

mode

S7

S7

39

55

37

J9

94

P5

P16

J2

310

83

S3

SIO

S8

S9

35

97

57

S7

S7

P10

P10

RI

Jl

S6

PIO

P10

P13

P4,P15

Alphabetical index to commands and related directives (cont.)

Command Fage Command Page Command Page

names F4,F8 rorigin P8 vbar Pll

next S7 rotate P4 vector P7

next! S7 router R1 window PI

nextop 57 scalex P9 write P2

nextlop S7 scaley P9 writec P2

no J7 score R1 wrong a
noword J11 search CEI wrongc J6

ok J7 searchf C9 wrongv J6

okword J11 set C2 xin P16

or J6 setdir F8 xout P16

outloop S6 setfilt Fl,F3,F7 zero C2

pack CS setname F4 * Sll

packc CS setperm C7 SS Sll

pause S8 show P2

plot P12 showa P3

press 59 showb P3

protect S12 showh P3

putd J3 showo r3

randp C7 showt P2

randu C7 size P4

rat PS specs J4

ratnm P3 status R1

rcircle PS step Sll

rdot P8 stop S7

rdraw PS stopop 97

release F2,F6,F8 tabset P12

reloop S6 text P3

remove C7 textn P3

reserve F2,F6,F8 unit S1

restore C7 use S10

123

;7,

scr

6.4

0 rzi P4

1.4
E-s

0

ss

