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Abstract

This paper contains a review of the literature about item
response models for the subject and aggregated-leves (group-
level).

After a short introduction on item response models on
subject-level, a comprehensive treatment is given of the
following estimation methods for subject-level parameters;
joint maximum 1likelihood, conditional maximum likelihood,
marginal maximum likelihood, logit based parameter
estimation, the Bayesian approach, and some less familiar
procedures.

A group-level item response model describes the
probability of a correct response from an examinee selected
at random from a specific group. The following group-level
models are described; the group fixed-effects model, the two-~
and three-parameter normal-normal model, the normal-logistic
model and the Californian Assessment Program (CAP) model.

Finally, the analogies and differences between group-

level and rubject-level item response models are discussed.
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Item Response Theory at Subject- and Group-Level

Introduction

Item response theory (IRT) can be seen as a reaction to the
well-documented shortcomings of <classical test theory
(Fischer, 1974; Hambleton & Swaminathan, 1985).

An item response model specifies a relationship between
the observable item performance of an examinee and the latent
trait or ability assumed to underlie the performaance on that
item. Item characteristic curve (ICC) is a central construct
in item response theory. Generally, an ICC is a monotonically
increasing mathematical function ranging from zeio to one
that gives the probability of an examinee with a given
ability 1level answering the item correctly. In the one-
parameter model, also called the Rasch nodel, sufficient
statistics are available: the relative item difficulty can be
estimated independent of the sample of examinees used, and
estimators of the relative examinee ability are independent
of the particular subset of items from a certain item doma.in.
This feature makes item response models particularly useful
in comparative studies, where performance of (groups of)
examinees are compared.

There has been an increasing interest among assessment
and evaluation researchers for models to analyse data at an
aggregated level. This interest has initiated the formulation

of item response models for groups of subjects, such as
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schools or sex (Bock, Mislevy & Woodson, 1982). These group-
level item response models are used in the United States of
America in large scale assessment programs like the National
Assessment of Educational Progress (NAEP) and the Californian
Assessment Program (CAP). In the Netherlands these models are
useful to the National Institute for Educational Measurement
(CITO), especially for the Dutch National Assessment Program

of Educational Achievement (PPON).

Item response models at subject-level

As mentioned in the introduction, the development of item

response theory started with models formulated at the level
of an individual subject. In this paragraph these item
response models and their estimation procedures will be
discussed.

The probability of a correct response Xyj=1 from an
examinee v selected at random from a certain population to
item i, can be written as a function of the examinees ability

0, and a vector of item parameters f%j:

Pyi = P(Xy3=1) = Hy(By,14)

where Hy(0,,%;j) is a continuously differentiable function of
0y. Usually, Hj(8y,Ij) is either the normal-ogive or the
logistic curve. For the two-parameter normal-ogive model
(Lord & Novick, 1968) the probability that an examinee v with

ability level 0, passes item i is given by
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ai(ev-bi)
Pyi = P(Xyy=1) = I o(t) at,

where bj 1s the item difficulty, aj is the discrimination
parameter and ®(t) 1is the normal density function. The
normal-ogive has a point of inflexion at @=bj; at this point
the probability of a correct answer is 0.5, and the slope of
the curve is (Zn)'l/zai.

For the logistic function model the probability is:

Pyj = P(Xy3=1) = [l+exp{-D ay (8, - by)}1~1,

D is an arbitrary constant. When D=1.,7, the normal-ogive and
the logistic item response functions are almost equal. The
logistic model is often pre¢ “erred because of its mathematical
convenience.

The two-paremeter models can be modifiec to take
guessing into account. If ¢j denotes the guessing parameter,
i.e. the lower asymptote, the three-parameter logistic model

becomes
Pyy = ¢4 + (1= cy) [1+exp{-D ay(8y - by)}]1-1
Much attention has been paid to the one-parameter logistic

model, also called the Rasch model. In this model all items

have the same discriminating power,i.e. aj; is a constant for
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all items in the test. The ICC’s only differ in their
location, indicated by the item difficulty parameter bj. The

Rasch model is given by
Pyj = [exp(By - bj)1/[1 + exp (8, - by)]

The advantage of the Rasch model is that the total test score
is a sufiicient statistic for the examinee’s ability

(Fischer, 1974).
Estimation

In this paragraph a short review of the available estimation
procedures for the item response theory models will be given.
Some of the advantages of these procedures will also be
discussed. First the most often used procedure, the joint

maximum likelihood estimation, will be described.

Joint Maximum Likelihood Estimation (JML)
Let the (Nxn) matrix U contain the responses of N examinees

on n items, in such a way that
0 = [X7 %2.-%y].
where Xy is a column vector which contains the responses xy,

of examinee v to all n items. Under local independence the

likelihood function is

10
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N
L(Ulel,OZ,..,GerlrIZI--rIn) = nl L(Kvlev) =
v=

N n Xy i (1-xy4)
I N Py (1-Pyy) '
v=l i=1

where I 1s a vector containing the item parameters of item
i. To calculate the maximum 1likelihood estimates of
0=(0,,02,...,8y) and %3 (for i=1,..,n), the following

likelihood equations have to be solved
8 1n L/8my = 0,

where  mp is the k-th  element of the vector
n=(9,%1,%2/...,55). So for the three parametermodel p
contains N+3n elements and because of the indeterminacy in
the model, N+3n-2 parameters have to be estimated.

There are some probler.s limiting the use of JML; see
Harbleton & Swaminathan (1985, p. 135) for a discussion of
these. The main problems are that svlving a system of so many
nonlinear equations takes a lot of computing time and that
the parameter estimates may take on values outside the
accepted range. A more fundamental problein with JML
estimation is that the item parameters are nct estimated
consistently. When simultaneous estimation of item and
ability parameters 1is attempted, the number of ability
parameters incCreases with the addition of each examinee.

Therefore the estimators of the (structural) item parameters

1¢
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will not always converge to their true value since th2 number

of (incidental) ability parameters increases too.

Conditional Maximum Likelihood Estination (CML)

Conditional Maximum Likelihood estimation is based on the
availability of a sufficient statistic for the ability
parameters. In the Rasch model the total test score is a
sufficient statistic for the ability parameter. Since the
Rasch model is a member of the exponential family (Fischer,
1974) the .conditional probability of observing the response

vector Xy does not depend on the ability parameter OV.

P (Xy=Zy |Ty=ty) = P (Xy=8ys Ty=ty) /P (Ty=ty) =

P (Xy=xy) /P (Ty=ty) = Il exp (-by)V! )

X.
T n -by)Vi
{xll'-xi=tv) i [exp(-by) "]

where {lexi=tv} is the set of all possible response patterns
Z=[x1,%2,..,%p] with total sum score t,. It can easily be
seen that examinees with all items wrong or all items correct
have to be eliminated from the sample since in that case
there is only one {lexi=tv}.

The above obtained estimators of the item parameters are
consistent and have an asymptotic normal distribution
(Andersen, 1970).

After the estimation of the item parameters, the ability

parameters are commonly estimated by substitution of the item
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parameter estimates in the Rasch model. The precise effect of
using the estimited parameters instead of the parameter

values is not known (Engelen, 1989,

Maraginal Maximum Likelihood Estimation (MML)

In the marginal approach, it is assumed that there exists an
ability distribution F and that the ability of a randomly
selected examinee is a realization of this distribution F.
The probability of observing any response pattern x, given
the population, can be evaluated by integrating over the

population density. So

P(X=xIF,1) = fp(x=x|ﬁ,:) dF(B) = x,
0

where 2=(%71,22,..,3,). Note that X and f are vectors with
random variables now.

There are 207 response patterns and if Nx is the number
of examinees with response pattern x, then the loglikelihood

.ction is given by (Hambleton & 3waminathan, 1985)

21‘1
In(L) = + .
(L) Nx xfl 1n nx constant

There is no ability parameter anymore in this 1likelihood

function, so the maximum likelihood estimators are obtained

i
€D
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by differentiating 1ln(L) with respect to the ite~ parameters,
setting them equal to zero and solving the equations.

Numerical issues can be a problem in so.ving these
equations. Another problem is the ability distribution F.
However, Engelen (1987a) showed for the Rasch model that one
can estimate the ability function Jjointly with the item
parameters, without making any assumption on the ability
distribution.

The advantages of MML over CML estimation are that no
examinees have to be eliminated from the data and that it is
also applicable to the twi- or three-parameter 1logistic
. model. A disadvantage of MML estimation is that no estimators
of the individual ability parameters are available, but only
information about the distribution o€ the ability is

obtained.

Logit-based parameter estimation
An important reason for investigating the possibilities of
logit-based parameter estimation it the expected low computer
costs of the procedures. Logit-based parameter estimation has
been explored by Verhelst and Molenaar (1988) for the Rasch
model and by Baker (1987) for the two-parameter 1logistic
model.

Verhelst and Molenaar (1988) transform an initial Vn-
consistent estimator into a asymptotically efficient one. Let

Ly(0) be the log-likelihood function of parameter 6 and let

Ay (8) = N"1/2 §1(0)/80.

14
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Assume that Ay(0) is asymptotically normal distributed
N(O,Ie), with IO the Fisher-information matrix per single
observation. If Oy{0) (the starting value) is any VN-

consistent estimator then

QN(l) - ON(O) + N-1/2 [IQN(O)]-I AN(GN(O))

is asymptotically normal with
(Vn(@y(1)-0)] -N(0,1g7Y).

Since all persons with the same raw score will end up
with the same 0O-estimate, they can be treated as having the
same ability value. This notion is used by Verhelst and
Molenaar (1988) and by Baker (1787) to introduce least-
squares logit estimation.

In the case of the Rasch model the logit model is
logit py|g = Os - by,

in which pj|g denotes the vrobability of a person with score
s answering item i correctly and Og the ability of persons
with s item answers correctly. Verhelst and Molenaar (1988)
note that this model is not the same as the Rasch model,
because in regression models the observed variables are

functionally independent of the dependent variable while in

15
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the Rasch model they are completely dependent. Verhelst and
Molenaar (p. 288-292) compared weighted-least squares (WLS)
estimators with CML estimators in some data settings. The WLS
ability estimates sometimes failed to increase with total
score. However, for simulated (perfect) data the WLS
estimates multiplied by a constant came very close to the CML
estimates.

Baker (1987), organized the data for each iitem in a sx2
contingency table. Here s denotes the number of ability
groups with midpoirnc Oj, containing fj examinees. For the

two-parameter logistic model the logit (Pij) is given by
logit (Pij) = ai(bi-ej).
Baker used a twc stage iterative procedure for the joint

estimation of item and ability parameters. In the first stage

tha ability parameters are substituted by their estimates and
2 s
X =j21fjpi,(1-pij){1og[pij/(1-pij)l-tai(bi-ej)l}z

is minimized to estimate the item parameters. In the second

stage

n
x2 =izlfjpij('-pij){1og[pij/(1-pij)1-[ai(bi-ej>1}2

16
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is minimized to estimate Oj for each ability group
separately, while the item parameters are substituted by
their estimates. Stage 1 and 2 are repeated until a
convergence Criterion 1is reached. Baker performed a
simulation study in which the results improved as test length
and sample size increased as well as when the test difficulty
and the group abkility were matched. Surprisingly, although
the item parameters were somecimes poorly estimated, the
ability estimates correlated high with the underlying ability
parameters.

In conclusion, though logit based parameter estimation
. in item response theory is less expensive than ML estimation,

the precision of the estimates is also less.

Bayesian approach

In the Bayesian approach prior distributions are imposed on
the parameters of interest. Then; after the data is obtained
Bayes’ theorem is used to compute the posteri.r distribution.

Bayesian estimation starts with the specification of a
Certain parametric prior distribution or with the
specification of empirical priors estimated from the data.
Hierarchical Bayesian estimation arises if a distribution is
specified for the parameters in the prior distribution.

The hierarchical Bayesian estimation procedure will be
discussed in further detail because of its flexibility.
However, the objection agains: Bayes’ procedures that no
empirical evidence for the choice of the priors is given

still applies to some exteni. Here hierarchical Bayesian
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estimation will be illustrated <considering the three

parameter model (as in Hambleton & Swaminathan, 1985)
Pyy = cf + (1= cy){l+exp[-D az (8, - by)1}~L1.

Let £(0,) be the prior believe about the ability of examinee
v (v=1,2,..,N) and let f(ay), f(bjy) and f(cy) be the prior
believes about the parameters of item i (i=1,2,..,n). The

joint posterior density of the parameters 0,a,b and ¢ is

£ (ﬂrﬁlth'X) o

n N
L(xl8,a,b,0) T f(ay) £(by)£lcy) M £(8y).
i=1 v=1

It is necessary to take into account the restrictions of the
parameter considered when specifying the prior. For example,
since aj is generally positive, an appropriate prior for aj
would be the chi-square distribution. The next stage is to
specify the distributions of the parameters of the prior
distribution. Once these distributions are specified, the
values of the parameters @,a,b and ¢ that maximize the joint
posterior distribution can be obtained.

The hierarchical Bayes’ procedure yields good results,
even in cases where maximum likelihood estimation performs

rather badly (Hambleton & Swaminathan, 1985; Engelen, 1987b).

16
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Other estimation procedures

Under the assumption that the two-parameter model fits the
data and the ability is N(0,1) distributed, one may consider
the procedure described by Lord & Novick (1968, ch. 16.10)
using point biserial correlation coefficients.

For the Rasch model other procedures are available.
Minimum chi-square estimation is such a procedure, proposed
by Fischer (1974). Let Njj denote the number of examinees
that answers item i correct and item J wrong and let Ny; be
the number of examinees that ansers item j correct but item i

wrong. If the Rasch model fits the data
Nij/Nji = exp(-bi)/exp(-bj) = exp(bj-bi).
Let §;=exp(bj), then

igj(nijai - n4384) /biby(ny4+nyy)
is the quantity to be minimized.

The Rasch model rewritten as a model for paired
comparisons with ties, resulted in estimation by paired
comparison. Here the responses of an examinee v to a pair of
items are compared. These response patterns give information
about the relative difficulty of the two items for examinee

v. For more details, see Engelen (1987b).

19
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Item response theory for aggregated data

Introduction
According to Mislevy and Reiser (1983), there are two

dimensions along which an application of IRT to large-
assessment settings can vary: (1) the level at which an item
response model is defined and (2) the levei at which ability
estimates are produced. The marginal maximum 1likelihood
estimation procedure maintains the subject-level definition
of an item response model, but just gives information about
the ability distribution in the sample. In this chapter the
focus will be on the group-level definition of item response
models and their relationship to the more familiar subject-
level models.

In contrast to item response models for the subject-
level, a group-level item response model does not describe
the probability of a response to an item from a specific
examinee, but describes the probability of a response from an
examinee selncted at random from a specific group. By groups
are meant salient groups, segments of a population
(subpopulations) that can easily be identified such as sex,
race, soclial economical class and urbanity. Salient groups
make it possible to decide on curriculum issues concerning
certain subpopulations. Furthermore, the items are classified

in narrowly defined skill domains.

20



Subject- and Group IRT
16

Item response models for groups

The probability of a correct response Xygy to item i by an
examinee v, selected at random from a subpopulation g can be
written as a function of Og, the "ability" level of that

subpopulation and the item parameters fi:

ng = P(xvgial) = Hi (eglIi) .

Hi(Og,:i) is a (with respect to Og) continuously differential
and generally monotonically increasing function ranging from
0 to 1. Furthermore, Ngi is the frequency of attempts to
answer item i by members from group g, out of which Rgi were
correct responses. The probability of observing the vector
Bg=(Rgl,R92,..,Rgn) correct responses among
Ng=(Ng1,Ng2,..,Ngpn) attempts can be written as

n
P ( ) ng Rgi (1_ng)Ngi-Rgi.

It is assumed that the responses of different examinees given
the attainment level of the subpopulation g, are independent.
The following part is heavily based on Mislevy (1983),
who shows under what conditions group-level item response
models with Hi(Og,Ii) are implied by subject-level item
response models with Hj (0yg,%4).
Let Hi(ng,ji) be the subject-level item response curve

of item i. Let E; be a continuous random nuisance variable

21
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with mean zero and density function f£;. The value of the
response of a randomly selected member v of group g, Xygis is
assumed to depend on the fixed item threshold value PB; and
the person’s ability ng. The possible values of this

response are defined as follows

Xygi=1 if Oyg + E; > By or equivalently
if hy = Ej + (evg - Og) > Bi-eg

Xygi=0 otherwise.

Let dj be the density function of hj. The probability of
a correct answer to .tem i by a random member v from group g

is then given as

p(xvgi=1leg, By) =J dj(h)dh = Hy (85-By) = Hy(04,34),
'ﬂi'eg

where Ij, again, is the vector containing the item parameter
of item i.

Since ability only appears in the form of the mean group
ability, it is assumed that all populations have the same
abilily distribution except for location. This assumption of
homoscedasticity is a strong one and needs to be tested.

To test the assumption of homoscedasticity, the item
parameters of the subject-level item response model need to
be known or estimated. This means that at least two responses

have to be elicited from each examinee. All the within-group

22
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ability distributions should belong to the same known
perametric distribution. The group ability parameters too,
should follow a known parametric distribution. For more
details about procedures and tests & > Mislevy (1984).

So, recapitulating, Hj(0g,Zj) is a group-level item
response curve for item 1 wunder the assumptiorn of the
subject-level item response curve Hj(0yq,Zj) and equal
ability distributions within groups except for location.

Except in some special ceses no simple closed form
expression may exist for dj and Hy(04,%j). These exceptions
are: (1) the group fixed effects model, (2) the two and three
parameter normal-normal model, (3) normal logistic models and
(4) the CAP model. These models will be discussed in the

following paragraphs.

Ihe group fixed-effects model

Reiser (1980, 1983) suggests the group fixed effects model,
where it is assumed that grouping accounts for all variation
among examinees. So, ng = Og for v=1,2,..,N and g=1,2,..,m.
Because it is assumed that each examinee responds to only one
item in the item domain, variability at the subject-level is
considered as independent within-group error. The model is

formulated as a logit model where

P(xvgi-l) - 1og P(xvgi=1)

2gi= log ————— —_—
P (Xygy=0) 1-P (Xygy=1)

and
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Zgy= by + kg’ 0 ay.

Here by and aj are the item parameters, kg’ is a 1xm row
vector from a designmatrix K and 8 is a mxl vector of
contrasts to be estimated among the sampled groups. The
product kg'ﬂ specifies a weighted combination of effects from
@ to produce the relative scale position of group g
{(g=1,2,..,m).

The log likelihood for the given data is

m n
logL=2% i}: {Rg110g P(Xygy=118,a4,by) +
g=1 i=1

(Ngi - Rgy) log [l'P(xvqi‘llﬂraj'bi)]} + const.,

where Rgi is the number of correct responses in group g on
item 1 and Ngi ie the number of examinees in group g wtro
respond to item i. Parameters are estimated by an itera*ive

procedure using Fisher’s efficient scoring method, i.e.:

| t+1 t

| o] o] 81/8b
a = Ja| + (1 (2,2,© 171 | 81/8a
('} ('] 51/88

where t is the iteration step. If I(b,a,f) is not of full

rank, the method does not converge. Asymptotic standard

24
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\

errors of the estimators are available as functions of the
diagonal elements of [It(h,alﬂ)]'l.
Goodness of fit of the model can be assessed using the

Pearson’s chi-square or the likelihood ratio statistic.

Two- and three-parameter normal-normal model
Normal-normal indicates that both the subject-level item

response density function and the subpopulation ability
density function gq are normal, in which case the group-level
item response density functions are normal as well (Mislevy,
1983).

Let ci be the guessing parameter, P; the item threshold
and O6y the standard deviation of item i in a sukject-level
normal-ogive three parameter model. The probability of
observing a correct response to item i by an examinee with

ability ng is given as
P(Xygi) = ¢4 + (1l-cy) <I>[(0vg - By) /04}

within the groups, ng is normally distributed with mean Og
and variance 092. The probability of observing a correct
answer of a randomly selected person from group g is then

equal to
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[

=cy + (1-cy} @[(8g-By) /(052 + 6g?)]

Results for the two-parameter normal ogive model at group-
level follow as a special case of the three-parameter model

in which c4=0.

Normal-logistic model
' Mislevy (1983) shows how homoscedastic normal groups and a
subject~level two- or three-parameter normal ogive item
response model imply the existence of a corresponding group-
level item response model. There is no similar résult for
logistic item response models, because the convolution of a
logistic density with another logistic or normal distribution
does not result in either a logistic or a normal density.
There is, however, a possibility of approximating the
logistic density with a normal one by ®(z)=y(1.7 z). In that
case a logistic subject-level item response model is assumed
to fit with item parameters B;,06; and cy. This subject-level
item response model is approximated by a normal Subject-level
item response model with item parameters By, 1.70; and cy. If
ability 1is assumed to be normally distributed in the
subpopulations, then the procedure in the previous paragraph
can be followed, resulting in a approximate group-level item

response model.

28
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Californian Assesement Program model

Finally, the basic model in the Californian Assessment
Program (Mislevy & Bock, 1984). This model is formulated at
the level of detail necessary for diagnosing curricular
effects: school level and skill element. Again the design
permits every examinee to answer only one item on each skill
domain. The probability of a random examinee v from school g

answerirg item i co.rectly is equal to

exp((06g-P1)/04)

P (Xygi=1) =
Ve 1 + exp[(84-By) /0y)

= \I’[ (eg'ﬂi) /ci] .

Here Og is the average ability level of examinees in school g
for the skill element of interest. Item parameters f; and oy
are the item threshold and dispersion, respectivily. The
probability of a school pattern of numbers correct attemps

Bg=[Rg1/Rg1/++/Rgn), given the total numbers of attemps

ug-[NglpugZ' e 'Ngn] iS

n Ngi
P (Rg g, 05, 8,0 = e R; ) Bgy RIL (1-pgy)Ngi-Rgi,

This equation 1is e¢ssential in the parameter estimation

procedure. If this equation is employed in a de 4n, vb rein

an examinee might sometimes respond to more than one item,

27
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the school and item estimates are consistent but the
resulting standard error of estimation would ‘end to be a
little too small (Mislevy & Bock, 1984, p. 7).

The estimation procedure needs the assumption that the
distribution of school scores in the sample is approximately
normal, but it need not be assumed that the distribution is
approximately normal in the population itself. Furthermore,
the estimation procedure is based on the assumption that the
model holds and uses the marginal maximum 1likelihood
approach. After the calibration of the items a goodness-of-

fit test is applied to evaluate this assumption.

The relation between group-level and

subject-level item response models

Group-level item response models may be Jjustified as
aggregate descriptiones of item response models on subject-
level and interpreted analogouslv. Group-level item response
models are lmplied by subject-level item response models only
when within-grov= ability distributions are identical except
for location (Mislevy, 1983).

In the context associated with the previous described
models, every examinee answers only one item of each skill
domain; hence individual ability levels can not be estimated.
Even if some distinguished skill domains can be considered as
one latent trait, there are still too few observations of

each examinee, and ability estimates will have a considerable
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measurement error. A more complex design with each examinee
taking a few items per skill domain would provide more
reliable estimates. In this design only one observation of
each examinee will be used to estimate the group ability
parameter.

Both at subject and group 1level, parameters are
undetermined in their scale and in order to eliminate these
indeterminacies some parameters (the numb2r depends on the
item response model) could be fixed a:rpitrarily. However,
there is an important difference too. For the subject-level
the addition of an examinee increases the number of
‘ncidental (ability) parameters. For the group-level,
however, the number of ability parameters does not increase.

If a test indicates that the homoscedasticity assumption
is not realistic, the detection of aberrant response patterns
will become very interesting. But if only ore observation is
available, procedures usea on subject-level as described by
Kogut (1987a,1987b,1988) are not applicable.

So future research should try and find closed form
expressions for a group-level item response model with less
severe restrictions on the ability distribution within
groups. Homoscedasticity tests and methods for detecting

aberrant response patterns should be refined and adapted.
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