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Abstract

This paper contains a review of the literature about item

response models for the subject and aggregated-level (group-

level).

After a short introduction on item response models on

subject-level, a comprehensive treatment is given of the

following estimation methods for subject-level parameters;

joint maximum likelihood, conditional maximum likelihood,

marginal maximum likelihood, logit based parameter

estimation, the Bayesian approach, and some less familiar

procedures.

k group-level item response model describes the

probability of a correct response from an examinee selected

at random from a specific group. The following group-level

models are described; the group fixed-effects model, the two-

and three-parameter normal-normal model, the normal-logistic

model and the Californian Assessment Program (CAP) model.

Finally, the analogies and differences between group-

level and subject-level item response models are discussed.
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Item Response Theory at Subject- and Group-Level

Introduction

Item response theory (IRT) can be seen as a reaction to the

well-documented shortcomings of classical test theory

(Fischer, 1974; Hambleton & Swaminathan, 1985).

An item response model specifies a relationship between

the observable item performance of an examinee.and the latent

trait or ability assumed to underlie the performance on that

item. Item characteristic curve (ICC) is a central construct

in item response theory. Generally, an ICC is a monotonically

increasing mathematical function ranging from eel-0 to one

that gives the probability of an examinee with a given

ability le.rel answering the item correctly. In the one-

parameter model, also called the Rasch model, sufficient

statistics are available: the relative item difficulty can be

estimated independent of the sample of examinees used, and

estimators of the relative examinee ability are independent

of the particular subset of items from a certain item domain.

This feature makes item response models particularly useful

in comparative studies, where performance of (groups of)

examinees are compared.

There has been an increasing interest among assessment

and evaluation researchers for models to analyse data at an

aggregated level. This interest has initiated the formulation

of item response models for groups of subjects, such as

7
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schools or sex (Bock, Mislevy & Woodson, 1982). These group-

level item response models are used in the United States of

America in large scale assessment programs like the National

Assessment of Educational Progress (NAEP) and the Californian

Assessment Program (CAP). In the Netherlands these models are

useful to the National Institute for Educational Measurement

(CITO), especially for the Dutch National Assessment Program

of Educational Achievement (PPON).

Item response models at subject-level

As mentioned in the introduction, the development of item

response theory started with models formulated at the level

of an individual subject. In this paragraph these item

response models and their estimation procedures will be

discussed.

The probability of a correct response Xvi=1 from an

examinee v selected at random from a certain population to

item i, can be written as a function of the examinees ability

03, and a. vector of item parameters

Pvi = P(Xvi=1) = Hi(evsli)

where Hi (8,1,1i) is a continuously differentiable function of

01/. Usually, Hi(811,1i) is either the normal-ogive or the

logistic curve. For the two-parameter normal-ogive model

(Lord & Novick, 1968) the probability that an examinee v with

ability level 01, passes item i is given by

O
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ai(ev-bi)

IPvi = P(Xvi=1) = (t) dt,

where bi is the item difficulty, ai is the discrimination

parameter and O(t) is the normal density function. The

normalogive has a point of inflexion at e=bi; at this point

the probability of a correct answer is 0.5, and the slope of

the curve is (2x)-1/2ai.

For the logistic function model the probability is:

Pvi = P(Xvi=1) = (1+exp(-D ai(8v bi))]-1,

D is an arbitrary constant. When D=1.7, the normal-ogive and

the logistic item response functions are almost equal. The

logistic model is often prfferred because of its mathematical

convenience.

The two - parameter models can be modified to take

guessing into account. If ci denotes the guessing parameter,

i.e. the lower asymptote, the three-parameter logistic model

becomes

Pvi = ci + (1- ci)(1 +exp { -D ai(ev - bi))]-1

Much attention has been paid to the one-parameter logistic

model, also called the Rasch model. In this model all items

have the same discriminating power,i.e. ai is a constant for

9
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all items in the test. The ICC's only differ in their

location, indicated by the item difficulty parameter bi. The

Rasch model is given by

Pvi = (exp(ev - bi))/(1 + exp(ev - bi))

The advantage of the Rasch model is that the total test score

is a sufficient statistic for the examinee's ability

(Fischer, 1974).

Estimation

In this paragraph a short review of the available estimation

procedures for the item response theory models will be given.

Some of the advantages of these procedures will also be

discussed. First the most often used procedure, the joint

maximum likelihood estimation, will be described.

Joint Maximum Likelihood Estimation (JML)

Let the (Nxn) matrix U contain the responses of N examinees

on n items, in such a way that

U = (il X2.41).

where Av is a column vector which contains the responses xiv

of examinee v to all n items. Under local independence the

likelihood function is

10
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N
L(1.1101,02,..,8N,S1,S2,,Sn) = II L(gvlev) =

v=1

N n xvi (1-xvi)
II II Pvi (1-Pvi)

v=1. i=1

where gi is a vector containing the item parameters of item

i. To calculate the maximum likelihood estimates of

e=(81,02,...,eN) and gi (for i=1,..,n), the following

likelihood equations have to be solved

where

8 In L/8mk = 0,

mk is the k-th element of the vector

So for the three parametermodel m

contains N+3n elements and because of the indeterminacy in

the model, N+3n-2 parameters have to be estimated.

There are some problems limiting the use of JML; see

Hambleton 6 Swaminathan (1985, p. 135) for a discussion of

these. The main problems are that solving a system of so many

nonlinear equations takes a lot of computing time and that

the parameter estimates may take on values outside the

accepted range. A more fundamental problem with JML

estimation is that the item parameters are nct estimated

consistently. When simultaneous estimation of item and

ability parameters is attempted, the number of ability

parameters increases with the addition of each examinee.

Therefore the estimators of the (structural) item parameters
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will not always converge to their true value since tb number

of (incidental) ability parameters increases too.

Conditional Maximum Likelihood Estination (CHI)

Conditional Maximum Likelihood estimation is based on the

availability of a sufficient statistic for the ability

parameters. In the Rasch model the total test score is a

sufficient statistic for the ability parameter. Since the

Rasch model is a member of the exponential family (Fischer,

1974) the conditional probability of observing the response

vector Av does not depend on the ability parameter ev.

p(Xv=xv ITv=tv) = P(Xv=21v,Tv=tv)/P(Tv=ty) =

P(xv-Av)/P(Tv-tv) n texo-biivii

(alIxf.tv)
(exp(-biIvi]

where (xlExi=tv) is the set of all possible response patterns

a=[xi,x2,..,xn] w&th total sum score tv. It can easily be

seen that examinees with all items wrong or all items correct

have to be eliminated from the sample since in that case

there is only one (1.1Exi=tv).

The above obtained estimators of the item parameters are

consistent and have an asymptotic normal distribution

(Andersen, 1970).

After the estimation of the item parameters, the ability

parameters are commonly estimated by substitution of the item

1^
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parameter estimates in the Rasch model. The precise effect of

using the estimited parameters instead of the parameter

values is not known (Engelen, 19891.

nrsinal Maximum Likelihood Estimation OKRL1

In the marginal approach, it is assumed that there exists an

ability distribution F and that the ability of a randomly

selected examinee is a realization of this distribution F.

Tht' probability of observing any response pattern A, given

the population, can be evaluated by integrating over the

population density. So

SO

F(X=xIF,I) = IF(Xxxle,l) dF(0)

0

where 1=[11,12,..,1/0. Note that X and 11 are vectors with

random variables now.

There are 2n response patterns and if N
A

is the number

of examinees with response pattern 214 then the loglikelihood

fiction is given by (Hambleton & Swaminathan, 1985)

2n
ln(L) = N

A
E In x

A
+ constant.

x=1

There is no ability parameter anymore in this likelihood

function, so the maximum likelihood estimators are obtained

13
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by differentiating ln(L) with respect to the ite-t parameters,

setting them equal to zero and solving the equations.

Numerical issues can be a problem in so.ving these

equations. Another problem is the ability distribution F.

However, Engelen (1987a) showed for the Rasch model that one

can estimate the ability function jointly with the item

parameters, without making any assumption on the ability

distribution.

The advantages of MML over CML estimation are that no

examinees have to be eliminated from the data and that it is

also applicable to the tw:- or three-parameter logistic

model. A disadvantage of MML estimation is that no estimators

of the individual ability parameters are available, but only

information about the distribution of the ability is

obtained.

Lagit-Abased UNIXAMeterettinlatign

An important reason for investigating the possibilities of

logit-based parameter estimation is the expected low computer

costs of the procedures. Logit-based parameter estimation has

been explored by Verhelst and Molenaar (1988) for the Rasch

model and by Baker (1987) for the two-parameter logistic

model.

Verhelst and Molenaar (1988) transform an initial In-

consistent estimator into a asymptotically efficient one. Let

LN(0) be the log-likelihood function of parameter 0 and let

AN(e) . N-1/2 0LN(0)/00.

14
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Assume that BOO) is asymptotically normal distributed

N(0,I0), with Ie the Fisher-information matrix per single

observation. If eN(0) (the starting value) is any 4N-

consistent estimator then

001) - 000) + N-1/2 [I (0)1-1 AN(000))
eri

is asymptotically normal with

[4n(001)-0)) )N(0,10-1).

Since all persons with the same raw score will end up

with the same 0-estimate, they can be treated as having the

same ability value. This notion is used by Verhelst and

Molenaar (1988) and by Baker (1'187) to introduce least-

squares logit estimation.

In the case of the Rasch model the logit model is

logit pils = Os - bi,

in which pis denotes the probability of a person with score

s answering item i correctly and Os the ability of persons

with s item answers correctly. Verhelst and Molenaar (1988)

note that this model is not the same as the Rasch model,

because in regression models the observed variables are

functionally independent of the dependent variable while in

15
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the Rasch mock' they are completely dependent. Verhelst and

Molenaar (p. 288-292) compared weighted-least squares (WLS)

estimators with CML estimators in some data settings. The WLS

ability estimates sometimes failed to increase with total

score. However, for simulated (perfect) data the WLS

estimates multiplied by a constant came very close to the CML

estimates.

Baker (1987), organized the data for each iitem in a sx2

contingency table. Here s denotes the number of ability

groups with midpoirx ej, containing fj examinees. For the

two-parameter logistic model the logit (Pij) is given by

logit (Pij) = ai(bi-0j).

Baker used a two stage iterative procedure for the joint

estimation of item and ability parameters. In the first stage

tha ability parameters are substituted by their estimates and

X2 =
j

E
1

fjpiD(1-pij)(log[pij/(1-pij)]-(ai(bi-6j)]12
=

is minimized to estimate the item parameters. In the second

stage

x2 =
1E1

f jPij( I- Pij)(log(pij/(1-Pip]-[ai(bi-ej)]12
=

16
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is minimized to estimate ei for each ability group

separately, while the item parameters are substituted by

their estimates. Stage 1 and 2 are repeated until a

convergence criterion is reached. Baker performed a

simulation study in which the results improved as test length

and sample size increased as well as when the test difficulty

and the group ability were matched. Surprisingly, although

the item parameters were sometimes poorly estimated, the

ability estimates correlated high with the underlying ability

parameters.

In conclusion, though logit based parameter estimation

in item response theory is less expensive than ML estimation,

the precision of the estimates is also less.

Davesian approach

In the Bayesian approach prior distributions are imposed on

the parameters of interest. Then, after the data is obtained

Bayes' theorem is used to compute the posteri:r distribution.

Bayesian estimation starts with the specification of a

certain parametric prior distribution or with the

specification of empirical priors estimated from the data.

Hierarchical Bayesian estimation arises if a distribution i3

specified for the parameters in the prior distribution.

The hierarchical Bayesian estimation procedure will be

discussed in further detail because of its flexibility.

However, the objection againsc Bayes' procedures that no

empirical evidence for the choice of the priors is given

still applies to some extent. Here hierarchical Bayesian

17
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estimation will be illustrated considering the three

parameter model (as in Hambleton & Swaminathan, 1985)

Pvi = ci + (1- ci)(1+exp[-D ai(ev - bi))1-1.

Let f(ev) be the prior believe about the ability of examinee

v (7=1,2,..,N) and let f(ai), f(bi) and f(ci) be the prior

believes about the parameters of item i (1=1,2,..,n). The

joint posterior density of the parameters fiva,12 and is

f (11, &alb CIA) oc

n N
L IQ, n f (ai) f (bi ) f (ci) n f (ev) .

1=1 v=1

It is necessary to take into account the restrictions of the

parameter considered when specifying the prior. For example,

since ai is generally positive, an appropriate prior for ai

would be the chi-square distribution. The next stage is to

specify the distributions of the parameters of the prior

distribution. Once these distributions are specified, the

values of the parameters 11,114)2 and that maximize the joint

posterior distribution can be obtained.

The hierarchical Hayes' procedure yields good results,

even in cases where maximum likelihood estimation performs

rather badly (Hambleton & Swaminathan, 1985; Engelen, 1987b).

16



Subject- and Group IRT

14

Other estimation procedures

Under the assumption that the two-parameter model fits the

data and the ability is N(0,1) distributed, one may consider

the procedure described by Lord & Novick (1968, ch. 16.10)

using point biserial correlation coefficients.

For the Rasch model other procedures are available.

Minimum chi - square estimation is such a procedure, proposed

by Fischer (1974). Let Nij denote the number of examinees

that answers item i correct and item j wrong and let Nji be

the number of examinees that ansers item j correct but item i

wrong. If the Rasch model fits the data

Nil/Nil. = exp(-bi)/exp(-bj) = exp(bj-bi).

Let 8i=exp(bi), then

i
(nij8i - nji8j) /bibj(nij +nji)I

j

is the quantity to be minimized.

The Rasch model rewritten as a model for paired

comparisons with ties, resulted in estimation by paired

comparison. Here the responses of an examinee v to a pair of

items are compared. These response patterns give information

about the relative difficulty of the two items for examinee

v. For more details, see Engelen (1987b).

19
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Item response theory for aggregated data

Introduction

According to Mislevy and Reiser (1983), there are two

dimensions along which an application of IRT to large-

assessment settings can vary: (1) the level at which an item

response model is defined and (2) the level at which ability

estimates are produced. The marginal maximum likelihood

estimation procedure maintains the subject-level definition

of an item response model, but just gives information about

the ability distribution in the sample. In this chapter the

focus will be on the group-level definition of item response

models and their relationship to the more familiar subject-

level models.

In contrast to item response models for the subject-

level, a group-level item response model does not describe

the probability of a response to an item from a specific

examinee, but describes the probability of a response from an

examinee selected at random from a specific group. By groups

are meant salient groups, segments of a population

(subpopulations) that can easily be identified such as sex,

race, social economical class and urbanity. Salient groups

make it possible to decide on curriculum issues concerning

certain subpopulations. Furthermore, the items are classified

in narrowly defined skill domains.

20
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Item response models for groups

The probability of a correct response xvgi to item i by an

examinee v, selected at random from a subpopulation g can be

written as a function of 0w the "ability" level of that

subpopulation and the item parameters si:

Pgj = P(Xvgi=1) = Hi(eg,Si).

Hi(eg,si) is a (with respect to eg) continuously differential

and generally monotonically increasing function ranging from

0 to 1. Furthermore, Ngi is the frequency of attempts to

answer item i by members from group g, out of which Rgi were

correct responses. The probability of observing the vector

Egm(Rg1PRg2,..PRgn) correct responses among

Ne(Ng1,Ng2,..,Ngn) attempts can be written as

n
n
i=1

Ngi
( )

Rgi
Pgj Rgi (1_pgj)Ngi-Rgi.

It is assumed that the responses of different examinees given

the attainment level of the subpopulation g, are independent.

The following part is heavily based on Mislevy (1983),

who shows under what conditions group-level item response

models with Hi(eg,li) are implied by subject-level item

response models with Hi(evg,li).

Let Hi(evg,li) be the subject-level item response curve

of item i. Let Ei be a continuous random nuisance variable

21
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with mean zero and density function fi. The value of the

response of a randomly selected member v of group g, xvgi, is

assumed to depend on the fixed item threshold value pi and

the person's ability evg. The possible values of this

response are defined as follows

xvgi=1 if evg + Ei > pi or equivalently

if hi Ei + (9vg - eg) > pi-eg

xvgi =0 otherwise.

Let di be the density function of hi. The probability of

a correct answer to item i by a random member v from group g

is then given as

00

p(cni.ileg, pi) . di(h)dh Hi(e0ii) = Hi(0400,

'1i4g

where si, again, is the vector containing the item parameter

of item i.

Since ability only appears in the form of the mean group

ability, it is assumed that all populations have the same

ability distribution except for location. This assumption of

homoscedasticity is a strong one and needs to be tested.

To test the assumption of homoscedasticity, the item

parameters of the subject-level item response model need to

be known or estimated. This means that at least two responses

have to be elicited from each examinee. All the within-group

22
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ability distributions should belong to the same known

parametric distribution. The group ability parameters too,

should follow a known parametric distribution. For more

details about procedures and tests a 2 Mislevy (1984).

So, recapitulating, Hi(eg,Si) is a group-level item

response curve for item i under the assumption of the

subject-level item response curve Hi(evg,Si) and equal

ability distributions within groups except for location.

Except in some special cases no simple closed form

expression may exist for di and Hi(eg,Si). These exceptions

are: (1) the group fixed effects model, (2) the two and three

parameter normal-normal model, (3) normal logistic models and

(4) the CAP model. These models will be discussed in the

following paragraphs.

The group fixed-effects model

Reiser (1980, 1983) suggests the group fixed effects model,

where it is assumed that grouping accounts for all variation

among examinees. So, evg = Og for v=1,2,..,N and g=1,2,..,m.

Because it is assumed that each examinee responds to only one

item in the item domain, variability at the subject-level is

considered as independent within-group error. The model is

formulated as a logit model where

P(Xvgi=1) P(Xvgi=1)
z i= log = log

P(Xvgi=0) 1-P(Xvgi=1)

and
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zgi= bi + kg' Q ai.

Here bi and ai are the item parameters, kg' is a lxm row

vector from a designmatrix K and Q is a mxl vector of

contrasts to be estimated among the sampled groups. The

product kgqi specifies a weighted combination of effects from

Q to produce the relative scale position of group g

The log likelihood for the given data is

m n
log L = E E (Rgilog P(Xvgi=l1fisaisbi) +

g=1 3=1

(Ngi - Rgi) log (1-P(Xvqi=11fLai,b0]) + const.,

where Rgi is the number of correct responses in group g on

item J. and Ngi is the number of examinees in group g wYo

respond to item i. Parameters are estimated by an iterative

procedure using Fisher's efficient scoring method, i.e.:

81/8h
t(12,A,E) 1-1 81/8A

81/0

where t is the iteration step. If It(11,A,f1) is not of full

rank, the method does not converge. Asymptotic standard

24
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errors of the estimators are available as functions of the

diagonal elements of (It(h,A,e)]-1.

Goodness of fit of the model can be assessed using the

Pearson's chi-square or the likelihood ratio statistic.

Two- and threebarameter_narmalnormal model

Normal-normal indicates that both the subject-level itclm

response density function and the tiubpopulation ability

density function gg are normal, in which case the group-level

item response density functions are normal as well (Mislevy,

1983) .

Let ci be the guessing parameter, pi the item threshold

and Oi the standard deviation of item i in a subject-level

normal-ogive three parameter model. The probability of

observing a correct response to item i by an examinee with

ability Ovg is given as

P(Xvgi) ci (1-ci) 4P((evg 110/0i)

Within the groups, Ovg is normally distributed with mean Og

and variance 0 g 2 The probability of observing a correct

answer of a randomly selected person from group g is then

equal to

2r
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J.

co

P(Xgi=1 leg,ci,iii,ai) '' Pi(0) gi(0)de

- ..

= ci + (1 -ci) 40((egli)/4(012 + 042)]

Results for the two-parameter normal ogive model at group-

level follow as a special case of the three-parameter model

in which ci=0.

Normal-logistic model

Mislevy (1983) shows how homoscedastic normal groups and a

subject-level two- or three-parameter normal ogive item

response model imply the existence of a corresponding group-

level item response model. There is no similar result for

logistic item response models, because the convolution of a

logistic density with another logistic or normal distribution

does not result in either a logistic or a normal density.

There is, however, a possibility of approximating the

logistic density with a normal one by 41(z)=W(1.7 z). In that

case a logistic subject-level item response model is assumed

to fit with item parameters Pioli and ci. This subject-level

item response model is approximated by a normal subject-level

item response model with item parameters pi, 1.70i and ci. If

ability is assumed to be normally distributed in the

subpopulations, then the procedure in the previous paragraph

can be followed, resulting in a approximate group-level item

response model.

26



Subject- and Group IRT

22

Californian Assessment Program model

Finally, the basic model in the Californian Assessment

Program (Mislevy 4 Bock, 1984). This model is formulated at

the level of detail necessary for diagnosing curricular

effects: school level and skill element. Again the design

permits every examinee to answer only one item on each skill

domain. The probability of a random examinee v from school g

answering item i correctly is equal to

expf(8g-Pi)/ail
P(Xvgi=1) =

1 + exp((9g-14)/ai)

- (eg-iii) /ail .

Here 0g is the average ability level of examinees in school g

for the skill element of interest. Item parameters pi and Gi

are the item threshold and dispersion, respectivily. The

probability of a school pattern of numbers correct attemps

lig=(Rgi,Rgi,..,Rgn), given the total numbers of attemps

lie[Ng1,Ng2,..,Ngn] is

Ngi( ) pni Rgi (1_pgi)Ngi-Rgi.
1-81 Rgi

This equation is essential in the parameter estimation

procedure. If this equation is employed in a de in, lob rein

an examinee might sometimes respond to more than one item,
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the school and item estimates are consistent but the

resulting standard error of estimation would Lend to be a

little too small (Mislevy 4 Bock, 1984, p. 7).

The estimation procedure needs the assumption that the

distribution of school scores in the sample is approximately

normal, but it need not be assumed that the distribution is

approximately normal in the population itself. Furthermore,

the estimation procedure is based on the assumption that the

model holds and uses the marginal maximum likelihood

approach. After the calibration of the items a goodness-of-

fit test is applied to evaluate this assumption.

The relation between group-level and

subject-level item response models

Group-level item response models may be justified as

aggregate descriptions of item response models on subject-

level and interpreted analogously. Group-level item response

models are Implied by subject-level item response models only

when within -grot- ability distributions are identical except

for location (Mislevy, 1983).

In the context associated with the previous described

models, every examinee answers only one item of each skill

domain; hence individual ability levels can not be estimated.

Even if some distinguished skill domains can be considered as

one latent trait, there are still too few observations of

each examinee, and ability estimates will have a considerable
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measurement error. A more complex design with each examinee

taking a few items per skill domain would provide more

reliable estimates. In this design only one observation of

each examinee will be used to estimate the group ability

parameter.

Both at subject and group level, parameters are

undetermined in their scale and in order to eliminate these

indeterminacies some parameters (the number depends on the

item response model) could be fixed aloitrarily. However,

there is an important difference too. For the subject-level

the addition of an examinee increases the number of

'ncidental (ability) parameters. For the group-level,

however, the number of ability parameters does not increase.

If a test indicates that the homoscedasticity assumption

is not realistic, the detection of aberrant response patterns

will become very interesting. But if only one observation is

available, procedures used on subject-level as described by

Kogut (1987a,1987b,1988) are not applicable.

So future research should try and find closed form

expressions for a group-level item response model with less

severe restrictions on the ability distribution within

groups. Homoscedasticity tests and methods for detecting

aberrant response patterns should be refined and adapted.

29
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