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Interpreting Repeated Measures Data
Through "Special" Mean Contrasts

Objectives

The purpose of this paper is to indicate how educational researchers can use
"special" mean contrasts and mean contrast variances to help interpret a wide
variety of repeated measures data.

Perspectives

Most statistics packages, e.g., BMDP4V (Dixon, 1985), SAS (GLM) (SAS Insti-
tute, 1985a), SPSSz (MANOVA) (SPSS Inc, 1986), allow educationai researchers to
test for differences across repeated measures using both the univariate mixed model
F test and a multivariate test. Davidson (1972) and Barcikowski and Robey (1984)
have shown that for a given data set it is possible for one or the other or both of
these tests to be significant (or nonsignificant). Therefore, in single group explora-
tory repeated measures analysis Barcikowski and Robey advocated the routine use
of both of these tests (where possible) to help discern differences among the re-
peated measures rr --ns. Looney and Stanley (1989) also emphasized using both
tests in discussing exploratory repeated measures analyses for two or more groups.

What is missing from the output provided by the latter statistical packages is a
means -f providing researchers with insights into why one or the other or both of
these modes of analysis provide significant or nonsignificant results. One means of
doing this is to provide researchers with further information on "special" orthonor-
mal mean contrasts, the variances of these mean contrasts, and the relationships of
these statistics to estimates of the univariate and multivariate noncentrality para-
meters.

Methods

Given any matrix Q of (Kg) rows of contrast coefficients (sieveloped for re-
peated measures means), it can be shown (Green and Carroll, 1976, Chapter 5) that
the rows of Q can be transformed into the same rows of orthonormal contrast coeffi-
cients in a matrix C, such that C.VC' is a diagonal matrix. Here, Z is the matrix of
variances and covariances among a given repeated measures data set. Further-
more, it can be shown that the diagonal elements of MC' will be the variances of
the mean contrasts in I. where y is a vector of orthonormal mean contrasts. These
properties of the contrasts is why they are described as "special" above.
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Barcikowski and Robey (1984) have shown that the mixed model (univariate)
repeated measures noncentrality parameter for the single group case can be written
as:

k-1 2

n(K-1)Evi
2 61

8u-
k-1 2

(1)

Where /O. is the univariate noncentrality parameter, n is the number of units, K
is the number of measures, iv, is the ith mean contrast ( i = 1, 2, ..., K) , and ally, is
the variance of the ith mean contrast. Barcikowski and Robey (1934) have also
shown that the multivariate noncentrality parameter&mfor the single group case
can be written as:

2
2 K-1 vi

81,A= nE (2)
1-1

2

0
VI

The relationship between the noncentrality parameter and Cohen's (1988) effect
size for power analysis is:

22
f = Q- (3)

nK

where 82u or 82M can be substituted for 82.

Given "special" mean contrasts and their contrast variances and equations (1)
and (2), researchers can better understand what is causing statistical significance
or nonsignificance to be found among single group repeated measures means.

An Example: Davidson', Three Cases

The data in Table 1 represent three different possible results. These data were
taken from Davidson (1972, p. 450, Cases B, C, and D) with the last measure, X3, in
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Table 1
Three Repeated Measures Data Sets Which
Yield Different Significance Test Results'

Subject
I CASE B
I X1 X2 X3 b X1

CASE C
X2 X3 X1

CASE D
X2 X3

1 1 49 53 91 52 50 71 51 51 92

2 153 49 111 56 46 91 55 47 112
3 1 63 65 65 66 62 45 65 63 66
4 1 37 33 35 40 30 15 39 31 36

5 1 39 39 59 42 36 39 41 37 60

6 1 43 51 87 46 48 67 45 49 88
7 1 43 47 25 46 44 5 45 45 26
8 1 49 45 47 52 42 27 51 43 48

9 I 65 65 105 68 62 85 67 63 106
10 I 59 53 75 62 50 55 61 51 76

Mean 1 50 50 70 53 47 50 52 48 71

'Taken from Davidson (1972, p. 450, Table 4).
tavidson's X3 - 9.

Case B modified here to dramatize the differences between the univariate and
multivariate tests. As in Davidson's article these data are treated as population
cases.

The population variance-covariance matrix of the measures, and the correlation
matrix, is shown in Table 2. These matrices are the same across cases, however,
each case has different differences between its repeated measures means. The
goncircularity of the variance-covariance matrix could occur in studying persons
with some degenerative clinical disorder where the variances become larger across
time. That is, as the disorder advances, the subjects become more heterogeneous on
the dependent variable. The Greenhouse-Geisser estimate of circularity for each
case in the examples is .5247 and the Huynh-Feldt estimate is .5342.

The orthonormalized contrasts for each case, the rows of matrix C, are shown in
Table 3. These contrasts remain the same regardless of your initial set of con-
trasts, e.g., Helmert, polynomial, etc.. From Table 3 we see that tha first contrast is
basically a comparison between the first two conditions and the last condition, and
the second contrast is basically a comparison between the first and second condi-
tions.

5
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Table 2
Population Variance- Covariance Matrix
(Upper Triangle) and Correlation Matrix

(Lower Triangle) Tor The Cases In Table 1

Condition 1 2 3

1 87.4 80.2 140.2
2 .90 91.4 147.0
3 .54 .55 758.6

Cases B, C and D were analyzed using a computer program that is described in
the next section. The results of these analyses are shown in Table 4.

Case B. In Case B we have a large contrast (16.33) coupled with a large con-
trast variance (412.02) and a small contrast (-0.13) coupled with a small contrast
variance ki.0.20). Given the noncircularity condition, this pattern might occur in
studies with an extended baseline. This situation yields a univariate noncentrality
parameter, Equation (1), and effect size (.65) which is larger than the multivariate
noncentrality parameter, Equation (2), and effect size (.47). These results are re-
flected in the analysis of Case B, where the Greenhouse-Geisser adjusted univariate
test was significant (F = 6.32;p < .0309) and the multivariate test was not signifi-
cant (F = 2.88; p < .1140).

The calculations of the univariate and multivariate noncentrality parameters
are considered in more detail below. In these calculations the contributions of the
orthonormalized contrasts are placed in brackets. In Case B, it can be seen that the
contributions made by the orthonormalized contrasts are similar (.6316 verses
.7589) but that the contribution made to the univariate noncentrality parameter is
multiplied by the sample size and the numberof contrasts, whereas the multivariate

Table 3
Orthonormalized Contrast Coefficients Based
On The Variance-Covariance Matrix In Table 2

Condition

Contrast 1 2 3

1 -0.413655 -0.402818 0.816473
2 -0.703958 0.710215 -0.006257
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Table 4
Power Parameters And FStttistics (With Probabilities)

For The Three Zxample Data Sets In Table 1

Case Mean Univariate Multivariate
Contrasts'

Effect F Statistic Effect
Size (Probability' Size

F Statistic
(Probability)

v1 12 fu

B 16.33 -0.13 .65 6.32 .47 2.88

(.0084) ( 1140)

(.0309)

C -0.03 -4.24 .17 0.43 .77 7.84

(.6593) (.0130)

(.5389)

D 17.12 -2.96 .69 7.15 .72 6.98

(.0052) (.0176)

(.0235)

Note. The contrast wriances were 412.C2 and 10.20 for ortho-
normalized contrasts one and two, respectively.

'The contrasts, ly = d' C' were found such that CE C' was a di-
agonal matrix, where M' was a row vector of the three means,
C' was the (3 X 2) matrix of orthonormalized contrast coeffi-
cients, and E was the variance-covariance matrix.

bThe first probability value is for the unaijusted E test and
tlie second probability value is for the Greenhouse-Geisser
adjusted r test. The probability for the Huynh-Feldt adjusted
r would be between or equal to the latter probabilities.

contribution W the norwentrality parameter is multiplied by only the sample size.
This results in the univariate test having a larger noncentrality parameter which
combined with the univariate test's larger denominator degrees of freedom yields
greater power.

7
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Case B: Univariate

2 = 10(2i(16.33? + (-.13?8u
412.02 + 10.20

Su = 10(21.6316 I

88 =12.63

Case B: Multivariate

4.i4(16.33?
(-0.13?

412.02 11 20

81,4= 10[.6472 + .1117]

81,4= 10[.7589]

8M =6.49

Case C. In Case C we have a small contrast (-0.03) coupled with a large con-
trast variance (412.02) and a small contrast (-4.24) coupled with a small contrast
variance (10.20). Given the noncircularity condition, this situation might occur with
periods of no treatment for baseline and extinction. In this case the change affected
by the treatment condition showns only slight deteriorization. Davidson (1972)
referred to this case as one where "small but reliable effects are present with effects
highly variable but averaging to zero over subjects" (p. 452). Davidson indicated
that in such cases the multivariate test is clearly preferable to the univariate test.
In the analysis of Case C, the Greenhouse-Geisseradjusted univariate test was not
significant (F = .43; p < .5389) and the multivariate test was significant (F = 7.84;
p < .0130).

The calculations of the univariate and multivariate noncentrality parameters
for Case C are considered in more detail below. In these calculations the contribu-
tions of the orthonormalized contrasts were again placed in brackets. In Case C, it
can be seen that the contributions made by the orthonormalized contrasts are very
different (.0426 verses 1.7625). Here the significantly larger contribution made to
the multivariate noncentrality parameter causes the multivariate noncentrality
parameter to be much larger than its univariate conterpart. This results in the
multivariate test having greater power.

8
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Case C: Univariate

, 3)2 (4.1024)2 1

88 -Hy(-'v-i 4102.02 + .20

86 =10(2X.0426 ]

66 =.85

Case C: Multivariate

,-

id
1.

(.03)2 (4.24)2
412.02 10.20 1

4 . l0[.0000 + 1.7625]

gi = 10[1.7625]

4.17.63

Case D. In the analysis of Case D, both the Greenhouse-Geisser adjusted uni-
variate (F= 7.15; p < .0235) and the multivariate (F= 6.98; p < .0176) tests were
significkult. Given the noncircularity condition, this case might also occur in a
baseline-treatment-withdrawl design, but where the criterion measure shows
marked deteriorization upon withdraw' of the treatment, perhaps due to the ad-
vancing disorder. This case is representative of cases between the extremes repre-
sented by cases B and C. In case D the univariate test is sensitive to the large
contrast (17.12) and the multivariate test is equally sensitive to both contrasts.
Therefore, for different reasons, both tests yield approximately the same effect sizes
(fu = .69; fa = .72).

The calculations of the univariate and multivariate noncentrality parameters
for Case D are considered in more detail below. In these calculatione the contribu-
tions of the orthonormalized contrasts were again placed in brackets. In Case D, it
can be seen that the contributions made by the orthonormalized contrasts are differ-
ent (.7149 verses 1.5704). Here the larger contribution made to the multivariate
noncearality parameter causes the multivariate test to overcome the larger num-
ber of degrees of freedom of the univariate test and the two test have approximately
the same power.
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Case D: Univariate

.96
Su = 10(2

(17

412.4
(-2

20
? 1

02 + 10.

au= 10(21.7149 ]

= 14.30

Case D: Multivariate

2 10[(17.12)2
(-2.96)21

412.02 10.20 ,

4,4= 10[.7114 + .8590]

4.10[1.5704]

8F.A= 15.70

Program: Repeated Analyzer

Using SAS PROC MATRIX (SAS Institute, 1985b) a program, referred to as
"Repeated Analyzer" was developed which reports the original contrast coefficients,
the original mum contrasts, the orthonormalized contraet coefficients, their mean
contrasts, each mean contrast variance, the ratio of each mean contrast to its vari-
ance, the univariate and multivariate noncentrality parameters, and Cohen's (1988)
univariate and multivariate effect sizes. A copy of Repeated Analyzer is given in
appendix A. For more complex designs, the latter results can be examined on a per
group basis. The program also reports all of what might be called "traditional"
output found in a statistical package such as BMDP4V, e.g., the overall and univari-
ate statistical tests and the Greenhouse-Geisser and Huynh-Feldt estimates of
sphericity.

Data

Real data found at Ohio University and textbook data found in the social sci-
ence literature were analyzed using the preceding progrant. The data represented
the following four types of designs: 1) five designs with one within factor (denoted
by the notation [0,1], where the first number refers to the number of between fac-
tors and the second number refers to the number of within factors); 2) six designs
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with one between and one within factor, [1,1]; 3) one design with one between and
two within factors, [1,2]; 4) one design with two between and one within factor,
[2,1]. Of the [0,1] designs, four had a single repeated measure per occassion and one
had four measures per occasion. Of the [1,1] designs one had one measu:s per
occasion, three had two measures, one had three measures and one had six meas-
ures. The [1,21 design had one measure and the [2,1] had two measures per occa-
sion. These 13 designs were each analyzed in their original form using BMDP4V
and then each cell was analyzed using the Repeated Analyzer Program as a single
group design. The final analysis included 70 cells.

Results

Of the 70 cells analyzed, 30 cells (43%) had univariate tests with more power
than the multivariate testa; 23 cells (33%) yielded tests of equal power; and 17 cells
(24%) had multivariate tests with more power than their univariate tests. Further-
more, 39 cells (56%) had their univariate effect size larger than their multivariate
effect size, and 31 cells (44%) had their multivariate effect size larger than their
univariate effect size.

In Table 5 are three cases where the univariate test was more powerful than
the multivariate test of the omnibus repeated measures mean differences. In Case
1 the univariate effect size is smaller than the multivariate effect size (.65 versus
.76). This is caused by the small first contrast (1.27) and its large variance (138.65),
but the larger denominator degrees of freedom found wit i the univariate test make
it more powerful (.95 versus .85). In Case 2 the slightly larger effect size of the
univariate test assures it (because of its denominator degree of freedom advantage)
of having more power than the multivariate test (.85 versus .64). In this case and in
Case 3 no unusually small squared contrast to contrast variance ratio is present. In
Case 3 the small sample size yielded small power values, but with a larger sample
size the univariate test would enjoy a distinct power advantage because of its larger
effect size (.42 versus .35).

In Table 6 are three cases where the multivariate test was more powerful than
the univariate test. The largest power difference in the data sets occured in Case 1
of Table 6 (.04 versus 1.00). In Case 1 the small squared first contrast (.05) com-
bined with its very large contrast variance (7511.44) caused the univariate test to
have little power, however, the multivariate test was able to detect the effect of the
second contrast. Small squared contrasts with large contrast variances also allowed
the multivariate test to have a power advantage in Cases 2 and 3.

In the more complex designs we examined the patterns ofmean contrasts and
contrast variances across groups and variables. We found similar patterns in the
cases of no interaction between the groups and the repeated measures variable and
different patterns across groups in the cases ofan interaction. Looney and Stanley
(1989) present data for a [1,1] design where there is a trial by group interaction,

11
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Table 5
Output Prom Three Cases Where the Onivariate

Tast Is More Powerful Than The Multivariate Test

Case Contrast
Squared

'P'

Contrast
Variance

n 2

Ratio
4"

Effect Size Power

UPa

1 1.27 138.65 .00 .65 .76 .95 .85
115.32 76.58 1.51
15.12 50.78 .30
16.00 14.45 1.11

2 .19 2.54 .08 .43 .40 .85 .64
1.04 2.07 .51
.18 1.23 .15
.03 .52 .05

3 3.30 12.77 .26 .42 .35 .36 .16
.65 3.27 .20
.03 1.12 .02

aU = value based on the univariate test statistic; M = value based
on the multivariate test statistic
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Table 6
Output ?rob, Three Cases Where The Multivariate
Test Is More Powerful Than The Univariate Test

Case Contrast
Squared

Contrast
Variance

awe-

Ratio
IF'

Effect Size Power

Us

1 .05 7511.44 .00 .04 .3E .09 1.00
17.43 20.78 .84

.01 4.38 .00

.00 3.25 .00

.01 1.83 .00

2 3.83 237.98 .02 .27 .43 .32 .53
16.49 150.85 .11

22.82 39.98 .57

3 3.33 1702.84 .00 .55 1.00 .70 .98
895.34 301.31 2.97

'U = value based on the univariate test statistic; M = value based
on the mu.Ltivariate test statistic
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the results from Repeated Analyzer for them data are shown in Table 7. The re-
sults in Table 7 are supported by the graph of the group means over trials shown in
Figure 1. Here, the large effect caused by the difference between trials 1 and 2
verses trial 3 in groups and 2 is detected by the first contrast for these groups in
Table 7. This effect is most easily detected by the univariate test (but with suffi-
cient sample size both tests would able to discern it). The small but reliable effects
found across the means ofgroup two are most easily detected by the multivariate
test.

Conclusions

The results indicate the usefulness of reporting the per group "special" mean con-
trasts and contrast variances to understanding what is causing statistical signifi-
cance (or nonsignificance) in simple aid complex repeated measures designs.
Analysis of the single groups found in real ( and some fabricated) repeated meas-
ures data supported the recommendation to use both the univariate and the multi-
variate test when considering such designs in exploratory analyses. In more com-
plex designs, such as [la] or [2,1], it is recommended that the patterns of mean
contrasts and contrast variances be observed in each of the groups across each
variable. Such patterns would be expected to remain stable when no interaction is
present, but differ when an interaction is found. It should also be noted that if
the orthonomal contrasts that are found are similar to contrasts the researcher is
interested in, then the contrast output provides information on whether the con-
trasts would be worth pursuing in a post hoc testing analysis.

Educational importance of the Study

In several reviews of social science research journals, it has been found that the use
of repeated measures designs has ranged from approximately 25% (Edgington,
1974) to approximately 50% (Robey, 1983). Unfortunately, for an analysis that is
used so frequently, the latter review authors also reported that nearly every article
they reviewed contained misuses of the repeated measures analysis. Indeed, in
recognizing the large use and misuse of repeated measures analyses, the editors of
Psychnphysiology recently announced an editorial policy (Jennings, Cohen,
Ruchkin, and Fridlund, 1987) prohibiting the publication of any paper making use
of a repeated measures research design reporting only the traditional uncorrected
mixed model analysis. This paper directly addresses a procedure for systematically
upgrading the analysis of repeated measures data in the behavioral sciences.

14



Interpreting Repeated Measures Data

14

Table 7
Group Output From A Three Groups By Three Trials

Data Set Presented By Looney And Stanley

Case Contrast
Squared

12

Contrast
Variance

rt. 2-

Ratio
tin

Effect Size Power

ay2

1 1942.86 1580.60 1.23 .83 .64 .97 .74
1.14 308.59 .00

2 3.33 1702.84 .00 .55 1.00 .70 .98
895.34 301.31 2.97

3 5635.82 1648.10 3.42 1.50 1.21 1.00 1.00
38.84 40.79 .95

bU = value based on the univariate test statistic; M = value based
on the multivariate test statistic
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/GROUP 3

/// GROUP I

3

Figure 1. Interaction Plot for the data provided by Looney and
Stanley (copied from their article, 1989, Figure 1, p. 223).
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Appendix A
The SAS Program
Repeated Analyzer

DESIGN: A SPLIT PLOT (2 X 6) 2- BETWEEN 6m..WITHIN

TEST: OMNIBUS INTERACTION EFFECT

THE DATA SET COLX CONTAINS THE TOTAL NUMBER OF VARIABLES FOUND
IN THE DATA SET ALLVAR WHICH ARE TO APPEAR IN THE X MATRIX,
I.E., INDEPENDENT VARIABLE(S) AND COVARIATE(S).

DATA COLX;
INPUT CX;
CARDS;

1

*

THE DATA SET COLY CONTAINS THE TOTAL NUMBER OY VARIABLES FOUND
IN THE DATA SET ALLVAR WHICH ARE TO APPEAR IN THE Y MATRIX,
I.E., DEPENDENT VARIABLE(S).

DATA COLY;
INPUT CY;
CARDS;

6

*

THE DATA SET ALLVAR CONTAINS ALL OF THE VARIABLES IN THE DESIGN.
COLUMNS WHICH CONTAIN INFORMATION TO APPEAR IN THE X MATRIX MUST
PRECEDE THOSE COLUMNS CONTAINING INFORMATION TO APPEAR IN THE
Y MATRIX. COLUMNS CONTAINING COVARIATES, IF THERE ARE ANY,
MUST FOLLOW THE LAST INDEPENDENT VARIABLE AND PRECEDE THE
FIRST DEPENDENT VARIABLE. WARNING: INDEPENDENT AND DEPENDENT
VARIABLES ARE TESTED IN THE ORDER WHICH THEY APPEAR IN THE
DNI 4 SET ALLVAR. THE VARIABLE ORDER CAN BE EASILY MANIPULATED
BY USING COLUMN INPUT.

DATA ALLVAR;

INPUT CELL OCC1 -OCC6;
CARDS;

1 54.50 46.00 53.91 53.32 54.15 54.98
1 71.90 60.51 56.74 56.03 57.73 58.51
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1 45.45 43.93 52.26 53.62 55.00 56.09
1 44.82 54.22 51.51 52.75 51.07 49.56
1 64.16 57.38 56.33 56.63 53.59 56.52
1 65.55 45.09 53.89 54.58 55.34 54.45
1 54.03 43.93 54.54 54.67 52.07 52.87

78.81 65.18 57.32 56.83 54.77 57.36
1 52.50 59.26 55.38 57.34 57.45 55.41
1 42.65 62.39 53.58 53.39 52.33 54.32
1 22.56 50.88 50.65 50.05 52.04 49.90
2 13.35 16.40 47.11 46.64 47.10 47.19
2 56.75 81.68 55.62 58.25 57.07 57.06
2 56.50 25.00 52.77 52.42 54.05 56.32
2 83.12 91.54 61.23 58.80 58.77 61.20
2 8.62 31.91 50.07 49.22 49.15 48.15
2 21.69 41.67 50.98 51.33 50.15 51.00
2 59.90 72.84 57.97 55.42 57.14 57.15
2 58.89 51.30 53.54 54.82 52.11 52.37
2 54.20 66.47 56.49 55.59 57.15 55.58

IN REPEATED MEASURES DESIGNS, THE A MATRIX DEFINES THE HYPOTHESIS TO
BE TESTED FOR GROUP DIFFERENCES. IT MUST CONFORM TO THE RULES FOR
CONSTRUCTING AN A MATRIX DESCRIBED IN THE TEXT.

DATA A;
INPUT Cl C2;
CARDS;

1 -1

*

IN REPEATED MEASURES DESIGNS, THE C MATRIX DEFINES THE HYPOTHESIS
TO BE TESTED FOR DIFFERENCES AMOUNG THE MEASURES. CONSTRUCTION
OF THE C MATRIX MUST FOLLOW THE SAME GENERAL RULES FOR
CONTSTRUCTING AN A MATRIX.

DATA C;
INPUT OCC1-OCC6;
CARDS;

1 0 0 0 0 -1

0 1 0 0 0 -1

0 0 1 0 0 -1

0 0 0 1 0 -1

0 0 0 0 1 -1

PROC SORT DATA-ALLVAR;
BY CELL;

PROC PRINT DATA=ALLVAR;
BY CELL;

TITLES 'RAW SCORES';
PROC PRINT DATA..A;

TITLES THE MATRIX A';
PROC PRINT DATA=C;
TITLES THE MATRIX C';

PROC MEANS MAXDEC=3;
VAR OCC1-OCC6;

19



Interpreting Repeated Measures Data

19

TITLES 'DESCRIPTIVE STATISTICS';
PROC STANDARD DATAALLVAR MEAN0.0 STD=1.0 OUTZTAB;
PROC PRINT DATAZTAB;
TITLES 'Z SCORES';

PROC CORR NOSIMPLE DATAALLVAR;
VAR OCC1-OCC6;
TITLES 'CORRELATION MATRIX';

PROC MATRIX PRINT FLOW FUZZ;
TITLES ";
*

FETCH MATRICES

FETCH CX DATA=COLX;
FETCH CY DATA=COLY;
FETCH ALL DATAALLVAR;
FETCH A DATAA;
FETCH C DATA -C;
*

REDEFINE THE TRANSFORMATION MATRIX C BY ORTHONORMALIZING THE
COEFFICIENTS

C = C';
GS CTEMP T LINDEP C;
C = CTEMP';
*

DEFINE THE X MATRIX

GRP ALL(,CX);
X = DESIGN(GRP);
*

DEFINE THE Y MATRIX

FY = CX+1;
LY = CX+CY;
Y = ALL(,FY:LY);
*

DEFINE N, Q, AND QH

N NROW(X);
Q NCOL(X)-1;
QH NROW(A);
*

CALCULATE THE SUM OF SQUARES DUE TO ERROR

B INV(X' *X) *(X' *Y);

YHAT X*B;
E Y-YHAT;
VARCOV g* (E'*E) #1 (N-0-1);
SIGMA = C*VARCOV*C';
EIGEN EVALS EVECS SIGMA;
C EVECS' * C;
SSE in C*(E'*E)*C';

SIGMA C*VARCOV*C';
*
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CALCULATE THE SUM OF SQUARES DUE TO THE HYPOTHESIS

G = A*B*C';
V = A*INV(X'*X)*A';

SSH = G'*INV(V)*G;

H = (G'*INV(V)*G) #1 QH;
*

DECISION REGARDING A UNIVARIATE ONLY ANALYSIS IF P=1

P = NCOL(SIGMA);

IF P = 1 THEN GO TO UNIVAR;
*

CALCULATE WILKS' LAMBDA

LAMBDA = DET(SSE)#/DET(SSE+SSH);
LAM_DF1 = P;
LAM_DF2 = QH;

LAM_DF3 = N -0 -1;
*

CALCULATE THE MULTIVARIATE F TEST

M = (N-Q-1)-((P+1-QH)#/2);
IF P*QH > 2 THEN S = SORTMP**2)*(QH**2)-4)#/((P**2)+(QH**2)-5));
ELSE S = 1;
EXP = 1#/S;
MULTI_F = ((1-(LAMBDA##EXP))#/(LAMBDA##EXP))*(((M*S)+1-(QH*(P#/2)))#/(QH*P));
MF_DF1 = QH*P;
MF_DF2 = (M*S)+1-(QH*P#/2);
SIG_MF = 1-PROBF(MULTI_F,MFDF1,MF_DF2);

CALCULATE THE F TEST(S) ON EACH OF THE CONTRASTS

UNIVAR: MSH = VECDIAG(H);
MSE = VECDIAG(SIGMA);
UNI_F = MSH#/MSE;
OF DF1 = QH;
UF_DF2 = N-Q -1;

SIG_UF = 1-PROBF(UNI_F,UF_DF1,UF_DF2);

CALCULATE DELTA SQUARES AND EFFECT SIZS

UDELT = (N*P*G*G') #1 TRACE(SIGMA);
UESIZE = SQRT(UDELT) #1 SQRT(N*(QH*P+1));
IF P = 1 THEN GO TO MIXMOD;
MDELT = N * G * INV(SIGMA) * G';
MESIZE = SQRT(MDELT) #1 SQRT(N*(QH*P+1));
*

CALCULATE THE MIXED MODEL F STATISTIC

MIXMOD: MMSSE = TRACE(SSE);
MMMSE = MMSSE #1 ((N-0-1)*P);
MMSSH = TRACE(SSH);

MMMSH = MMSSH #1 (QH *P);
MMF = MMMSH#/MMMSE;
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MMDF1 QH*P;
MMDF2 (N-Q-1)*P;
SIG MMF 1-PROZF(MMF,MMDF1,MMDF2);
*

CALCULATE THE GREENHOUSE-GEISSER-IMHOF EPSILON ANS ITS ADJUSTED
DEGREES OF FREEDOM AND CALCULATED PROBABILITY

GGI is (SUM (EVALS) **2) #/ (P* (SUM (EVALS##2) ) ) ;

GGIMMDF1 MMDF1*GGI;
GGIMMDF2 MMDF2*GGI;
GGISIG 1 -PROBF(MMF,GGIMMDF1,GGIMMDF2);
*

CALCULATE THE HUYNH-FELDT EPSILON AND ITS ADJUSTED DEGREES OF
FREEDOM AND CALCULATED PROBABILITY

HF (N*P*GGI-2)#/(P*(N-(Q +1)-P*GGI));
IF HF GT 1.00 THEN HF 1.00;
HFMMDF1 MMDF1*HF;
HFMMDF2 MMDF2*HF;
HFSIG 1 -PROBF(MMF,'TMMDF1,HFMMDF2);


