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A number of researchers have proposed extensions of the common

factor model to treat longitudinal multivariate data, Cattell (1963),

Corbel lis and Traub (1970), Hakstian (1973), Joreskog and Sorbom (1977),

McDonald (1984,, Swaninathan (1984), and Tisak (1984) being a few

examples. A different factor analytic tradition that is also applicable

to such data is represented by the work in three-mode factor analysis

begun by Tucker (1963, 1964, 1966) and continued by Krooner:burg and De

Leeuw (1980), Sands and Young (1980), and Harshman and Berenbaum (1981),

among others. Finally, we have more recent developments, whose roots

lie in earlier work by Tucker (1958) and Rao (1958), that combine factor

analytic methods with models of individual growth curves. Meredith and

Tisak (1984) and McArdle (1986) are actively developing these methods,

and Molenaar's (1985) work in dynamic factor analysis is similar in
spirit.

It these diverse methods have anything in common, it is that they

begin by assuming rather strong models, at least with respect to the

covariance structure in the data. For example, the common factor

approach assumes the common factor model at each occasion, typically

with an identical number of !actors at each occasion. Further

assumptions are made concerning the covariance structure of the unique

factors over occasions. With additional distributional assumptions,

large sample tests of fit are available. If the basic model provides an

adequate fit, we can proceed to test more restrictive models in a nested

fashion. These further restrictions usually involve stationarity

constraints on portions of the model, such as the factor pattern
matrices. The ultimate goal is usually to discover which aspects of the
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mode: can be taken as stationary over occasions, leading to conclusions

about stability in factor structure.

In what follows, I will present a component analytic method for

analysing multivariate longitudinal data that does not make strong

assumptions about the structure of the data. Altnough no structural

assumptions are required, the method derives components under a variety

of stationarity constraints as explained below. An advantage of the

method for researchers studying change at the individual level is that

scores on the derived components are uniquely calCulable and have clear

properties. The method might therefore be usefully applied as a

precursor to the application of strong models for change in the

,,omponent scores at the individual level. The method can easily be

generalized to encompass data measured longitudinally in multiple

groups, although I will not explore this extension in this raper.

The "assumption free" nature of the component method to be

presented can be a virtue or a vice, depending upon our timidity in

making assumptions about the data at hand. I share the sentiments

expressed by Rogosa and others (Rogosa, Brandt, & Zimowski, 1982; Rogosa

& Willett, 1985) concerning the need for strong models of change at the
individual level. When we are unable or unwilling to formulate such

models however, the method to be presented is a useful data-analytic

strategy.

The Component Method

The view of component analysis which underlies the method proposed

here was given in a recent paper by Meredith & Millsap (1985). A key

idea is that components are derived as linear composites of the observed
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or manifest variables, and that the components must provide an adequate

representation of the observed variables. Specifically, the components

are derived so as to minimize the sum of squared errors in the linear

regression of observed on component variables. Let X be an nxl vector

of observable random variables and define a mxl vector of component

score variables Z = W X, where W is an nxm matrix of compositing

weights. Assume e(X) = 0 and c(XX' ) = E. The paper by

Meredith and Millsap demonstrated that all forms of component analysis,

weighted or unweighted, can be formulated in terms of finding the

compositing matrix W which maximizes the function

F(W; A G) = tr gilICONWEIV)-1). (1)

The matrix G is an nxn nonsingular weighting matrix that can be used to

differentially weight the elements of X in deriving the components, as

discussed for example in Mulaik (1972). The matrix G might be used to

adjust the metric of X, or to weight the elements of X in proportion to

their reliability. There are many other possibilities.

The multiple-occasion case. Consider a more general function

similar to F in (1)
, ..

H(T; A, B) = tr {II
.,

MO 1317)-1) (2)

with A and B both qxq matrices, and 11 a qxs matrix. Let V be a qsxl

supervector containing the s columns of 13 in concatenated form,

beginning with the first column. Thus if II = Cul, 112, ..., us], then
I / I

V = Cu1, u2, ..., 41. Now let V be subject to r linear constraints
of the form

,
C V (3)

with C an qsxr matrix and N an rxl vector, both chosen a priori. Some
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of the r equations in (3) may be equalities. In what follows, we will

assume that we have an algorithm for finding a matrix 17 that maximizes H

in (2), subject to the constraints in (3), for given matrices A and B.

Clearly, the function F in (1) is a special case of H in (2) in which II
is unconstrained, A = EGE, and B = E. The constraints in

(3) could be used to set upper and/or lower bounds on the 31ements of II,

to fix various elements of II to selected values, or to equate elements

of II. More complex linear constraints are possible as well.

To return to the multiple-occasion case now let X be a

supervector composed of n random variables observable on each of p
. . .

occasions: X = (Xi, X2, ..., Xpi. Let e(X) = 0 and

e(XX' ) = E, a supermatrix of the !cm

E_

z 1 1 ; 2 . . . rip
E21 E22 rep

(4)

Epl Ep2 Epp

We can define an mxl vector of component scores at the ith occasion as

Zi = WfiXi, with Wi an nxm compositing weight matrix to

be applied to the observable variables Xi. Let Dw be an npxmp

block diagonal matrix whose diagonal submatrices are the matrices Wi

Dw =

Wi. 0 0 ...0
O W2 0 0..0

O 0 0
WP

We can now write the supervector of component scores Z as

(5)

. . . IZ .% CZ1., 22, ..., Zp3, with Z = DwX. It also follows

that z(22') = AIVEDif arxt e(XZ) = Mw

As in the single occasion case, we want to choose the compositing
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weights Dw so that the resulting components provide an adequate

representation of the observed variables. Consider the linear

regression of observed on component variables

e(X1Z) = PZ = X (6)

with ? an npxmp component pattern matrix. At this point we must make a

choice. We can regress each Xi on all elements of Z, or we can
reatrict the regression to be "within occasion", regressing Xi on

Zi. I will term the first alternative the "tun information" case,

since we use all component information in the regression. I will term

the second alternative the "limited information" case, because only

"within occasion" information is utilized. This choice is significant

because the solutions for Dw in the two cases need not be identical.

The full information case. In this case we take P to be a full

matrix, and we can consider the matrix P which will minimize the

weighted risk !unction

RF = ef (X - }{)'G(X - g)) = eCtrfG(X - i)(X - ich) )] (7)

In (7), G is a matrix of weights to be applied in the regression of X on

Z, and has a role analogous to G in the single occasion case in (1).

The matrix P which minimizes RF is

P = Thw(lwEDw) -1 ( 6)

Clearly P is a function of Dw, and we can choose Dw to minimize

RF or .o maximize

HA?: Man E) = tr fl);,Eansw(DiPw) -1) (9)

The algorithm for raolving H in (2) can utilize the linear

constraints in (3) to force II to have a block diagonal form Dw.

Further constraints can be used to identity Dw and to impose
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stationarity constraints over occasions. In the extreme case, we might

require Wi = W for all 1, resulting in stationary compositing

weights. Less restrictive terms of stationarity can be required,

equating selected elements of the compositing matrices Wi across

occasions. We can also place lower bounds on the compositing weights,

forcing all weights to be nonr paative, for example.

In all cases, the effect of imposing additional constraints can be

judged by comparing the resulting value of RF in (7) to it's value

under a "just - identified" model. It the increase in RF produced by

imposing stationarity constraints is acceptably small, we can proceed

with stationary components.

The limited information case. The limited information case can

also be treated in terms of a function of the form in (2). We begin by

taking the pattern matrix in (6) to be block diagonal, with nxm block

diagonal matrices Pi being the regression weights in the ith

occasion

P 1 0 0 . . . 0
O P2 0 0 ..0

P= (10)

O 0 0 Pp

The risk !unction simplifies in this case (restricting G to be block

diagonal) to

RL = E tr(Gi(Xi-ii)(Xi-Xi) ) (11)
1

The pattern matrices Pi which minimize RL are of the torn

Pi= Ei iWi (WiEi Oh) -1 (12)

and again we can choose the Wi to minimize RL. Without further

constraints, the solution here is simply the usual "within- occasion"



principal component solution.

We can formulate the problem in terms of a function H by defining

DG to be the block diagonal

to be a block diagonal matrix

F 1 1 0 0 . . . 0
0 E22 0 0 . . 0

D =

weighting matrix, and the matrix Ds

(12)

0 0 EPP

Then RL is minimized by choosing Dw to maximize

H(Dw; DSDGDS Dw) = tr IDDSDDOw(D:130w) -1, (13)

We can again use our algorithm to impose constrafrtts on Dw.

All of the constraints considered in the full information case are

applicable here. The effect of imposing various constraints can again

be evaluated by comparing the resulting value of RI. to the value

given by the "just-identified" principal component solution.

Discussion

In general, the full information solution will provide a better
approximation to X in that RI. ). RF. However, the limited

inlormation solution is closer in spirit to the traditional principal

component solution. Furthermore, a solution may not exist in the full

Information case if the components are highly correlated across

occasions. Both sol utions yield component scores which are correlated,

both within and act on occasions.

The foregoing development has focused upon the compositing weight

matrix Dw, the weights used to derive the component scores from the

observed variables. But we need not restrict our attention to the

compositing weights, as either (9) or (13) can be written in terms of
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the component pattern or component structure matrices. In the full

information case, the pattern matrix P is given in (8), and the

structure watrix is R = EDw. We can write H in (9) in terms of
either P or R

H(P;G,E-1) = tr{PdaP(P'E-1P) -1)

H(R; G, E-1) = tr {12/GR(RiE-1R) -1}

Similarly, in the limited information case, we can express the block

diagonal pattern and structure matrices as Dp = DsDw(D;DsDw)-1

and DR = DSDw. The ;unction H in (13) can be written in

either of the following ways

H(Dp;DG,Ds -1) = tr(E;AGDp(D;Ds -1Dp) -1) (16)

(14)

(15)

IRDR;DGDs-1) = tr (D;tDcponfps-1D0-1)

The point of this development is that we may apply constraints of the

form in (3) to the component pattern or structure matrices, using our

algorithm to maximize H. For example, we can impose stationarity

constraints on the pattern or structure matrices. Naturally, we might

employ such constraints to achieve si:nple structure as well.

To conclude, the component analysis method presented in this paper

provides a flexible alternative to currently available approaches for

the analysis of multivariate longitudinal data. I have written a

program in FORTRAN to perform the analysis, although the program is not

"exportable" at this time. An example of an application of the

component method in the limited information case will appear this Year

in Psychology and Aging (Haan, Millsap, & Hartka, 1986).
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