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A number of researchers have proposed extensions of the common

factor model to treat longitudinal multivariate data, Cattell (1963),
Corballis and Traub (1970), Hakstian (1973), Joreskog and Sorbom (1977),
McDonald (1984,, Swaninathan (1984), and Tisak (1984) being a tew
examples. A different factor analytic tradition that is also applicable
to such data is represented by the work in three-mode factor analysis
begun by Tucker (1963, 1964, 1966) And continued by Kroonerburg and De
Leeuw (1980), Sands and Young (1980), and Harshman and Berenbaum (19981),
among others. Finally, we have more recent developments, whose roots
lie in earlier work by Tucker (1958) and Rao (1958), that combine factor
analytic methods with models of individual growth curves. Meredith and
Tisak (1984) and McArdle (1986) are actively developing these methods,
and Molenaar's (1985) work in dynamic factor analysis is similar in
spirit.

It these diverse methods have anything in common, it is that they
begin by assuming rather strong models, at least with respect to the
covariance structure in the data. For example, the common factor
approach assumes the common factor model at each occasion, typically
with an identical number of factors at each occasion. Further
assumptions are made concerning the covariance structure o¢f the unique
tactors over occasions. With additional distributional assumotions,
large sample tests of tit are available. If the basic model provides an
adequate fit, we can proceed to test more restrictive models in a nested
fashion. These turther restrictions usually involve stationarity
constraints on portions of the model, such as the factor pattern

matrices. The ultimate goal is usually to discover whicn aspects of the




mode! can be taken as stationary over occasions, leading to conclusions

about stability in factor structure.

In what follows, I will present a component analytic method for
analysing multivariate longitudinal data that does not make strong
assumptions about the structure of the data. Altaough no structural
assumptions are required, the method derives components under a variety
of stationarity constraints as explained below. An advantage of the
method for researchers studying change at the individual level is that
scores on the derived components are uniquely calculable and have clear
properties. The method might therefore be usefully applied as a
precursor to ‘he application of strong models for change in the
~omponent scores at the individual level. The method can easily be
generalized to encompass data measured longitudinally in multiple
groups, although I will not explore this extension in this vaper.

The "assumption free" nature of the component method to ba
prese;ited can be a virtue or a vice, depending upon our timidity in
making assumptions about the data at hand. I share the sentiments
expressedl by Rogosa and others (Rogosa, Brandt, & Zimowski, 1982; Rogosa
& Willett, 1985) concerning the need for strong models of change at the
individual level. when we are unable or unwilling to formulate such
models however, the method to be presented is a useful data-analytic
strategy.

The Component Method

The view of component analysis which underlies the method proposed

here was given in a recent paper by Meredith: 8 Millsap (1985). A key

idea is that components are derived as linear composites of the cbserved




or manifest variables, and that the components must provide an adequate

I'epresentation of the observed variables. Specifically, the components
are derived so as to minimize the sum of squared errors in the linear
regression of observed on component variables. Let X be an nx1 vector
of observable random variables and define a mx1 vector of component
score variahbles Z = W'X, where W is an nxm matrix of compositing
weights. Assume €(X) = O and €XXK ) = E The paper by
Meredith and Millsap demonstrated that all forms of component analysis,
weighted or unweighted, can be formulated in terms of finding the
compositing matrix W which maximizes the function
F(W;5G) = trw Saww'sw)~13. (1)

The matrix G is an nxn nonsingular weighting matrix that can be used to
differentially weight the elements of X in deriving the components, as
discussed for example in Mulaik (1972). The matrix G might Dbe used to
adjust the metric of X, or to weight the elements of X in proportion to
their reliability. There are many other possibilities.

The multiple-occasion case. Consider a more general function
similar to F in (1)

H(U;A,B) = triU AUCU'BU)-13 )

with A and B both qxq matrices, and U a qxs matrix. Let V be a gsx1

supervector containing the s colums of U in concatenated form,

beginning with the first column. Thus if U = [u,, u, ..., ugl, then
v's I:ui, ué. ceey u;]. Now let V be subject to r linear constraints
of the form

C’V > M 3

with C an qsxr matrix and M an rxi vector, both chosen a priori. Some




of the r equations in (3) may be equalities. In what follows, we will
assume that we have an algorithm for finding a matrix U that maximizes H
In (2), subject to the constraints in (3), for given matrices A and B.
Clearly, the function F in (1) is a special case of H in (2) in which U
1s unconstrained, A = 2GZ, and B = =. The constraints in
(3) could be used to set upper and-or lower bounds on the zlements of U,
to fix various elements of U to selected values, or to equate elements
of U. More complex linear constraints are possible as well.

To return to the multiple-occasion case now let X be a
supervector composed of n random variables observable on each uf p

4 ’
occasions: X' = (Xy, Xz .. Xpl Let €X) = 0 and

e(xx’) = Z, a supermatrix of the fc'm

11 512 ... Zyp
Ly Zp ..

= (4)
21 Fp2 -+ Tpp

We can define an mx1i vector of component scores at the ith occasion as
Z, = w;xl. with W; an nxm compesiting weight matrix to
be applied to the observable variables X;. Let Dy Dbe an npxmp

block diagonal matrix whose diagonal submatrices are the matrices Wy

W, 00 ...0
0W>00..0
Dy = (5)
000 W
We can now write the supervector of component scores Z as
/ /
Z = 12y, Z3 .. Zp) with Z : DyK. It also follows

that &(ZZ’) = DD, and e(k2’) = .

As in the single occasion case, we want to choose the compositing




weights Dy, so0 that the resulting components provide an adequate

representation of the observed variables. Consider the linear
regression ot observed on component variables
€(XiZ) = PZ = X (6)

with 2 an npxmp component pattern matrix. At this point we must make a
choice. We can regress each X; on all elements of Z, or we can
restrict the regression to be “within occasion®, regressing X; on
Z. 1 will term the first alternative the “full information" case,
since we use all component information in the regression. I will term
the second alternative the "limited information" case, because only
“within-occasion® information 1is utilized. This choice is significant
because the solutions for Dy, in the two cases need not be identical.

The full information case. In this case we take P to be a full
natrix, and we can consider the matrix P which will minimize the
weighted risk tunction

Rp = €£(X - B)'G(X - D} = ectriGx - Dk - H (N
In (7), G is a matrix of weights to be applied in the regression ot X on
Z, and has a role analegous to G in the single occasion case in (1).
The matrix P which minimizes Rp is
P = DDy, (8
Clearly P is a function ot Dy. and we can choose Dy to minimize
Rp or .0 maximize
H(D 365, £) = tr (D DarD,(DysDy) ~13 (9

The algorithm for solving H in (2) can utilize the linear

constraints in (3) to force U to have a block diagonal form Dy.

Further constraints can be used to identity Dy and tn impose




stationarity constraints over occasions. In the extreme case, we might

require Wy = W for all i, resulting in stationary compositing
'7eights. Less restrictive forms of stationarity can be required,
equating selected elements of the compositing matrices W; across
occasions. We can also place lower bounds on the compositing weights,
forcing all weights to be nonr :gative, for example.

In all cases, the effect of imposing additional constraints can be
Judged by comparing the resulting value of Rp in (7) to it's value
under a “just-identitied® model. If the increase in Rp produced Dby
imposing stationarity constraints is acceptably small, we can proceed
with stationary components.

The limited information case. The 1limited information case can

also be treated in terms of a function of the form in (2. We begin by
taking the pattern matrix in (6) to be block diagonal, with nxm block
diagonal matrices P; being the regression weights in the ith
occasion

Pp00 ...

0P,00 ..
P:=

(10)
000 Pp

The risk function simplifies in this case (restricting G to be block

diagonal) to

RL = B triGy (Ky-Ky) (g -R) 3 (11)
1

The pattern matrices P; which minimize R; are of the form
4
Py= EyyWi(WyE1wy) 1 (12)
and again we can choose the W; to minimize Rj. Without further

constraints, the solution hera is simply the usual “within-occasion®




principal component solution.

We can formulate the problem in terms of a function H by defining
DG to Dbe the block diagonal weighting matrix, and tne matrix Dg

to bt a block diagonal matrix

2100 ...0
0 3200 ..0
Ds = (12)
00 ..... Zpp
Then R; 1s minimized by choosing Dy to Jaximize
’
H(Dy; DsDGDs, Dy) = tr iD,DsDGDsD(DDsDy) 13 (13)

We can again use our algorithm to impose constrajnts on Dy,
All ot the constraints considered in the full information case are
applicadle here. The effect of imposing various constraints can again
be evaluated by comparing the resulting value of Ry to the value
given by the "just-identitied" principal component solution.

Discussion

In general, the tull information solution will provide a better
approximation to X in that Ry ) Rp. However, the 1limited
injormation solution is closer in spirit to the traditional principal
component solution. Furthermore, a solution may not exist in the full
information case if ‘he components are highly correlated across
occasions. Both solutiorns yield component scores which are correlated,
both within and across occasions.

The toregoing development has focused upon the compositing weight
matrix Dy, the weights used to derive the component scores from the
observed variables. But we need not restrict our attention to the

compositing weights, as either (9) or (13) can be written in terms of




the component pattern or component structure matrices. In the full

information case, the pattern matrix P is given in (8), and the
structure watrix is R =z IDy, We can write H in (9) in terms of
either P or R

s ’
H(P;G, Z1) = treP GP(P = 1p)1; (14)

H(R:G, 1) = trR'RR = IR)~13 (15)

Similarly, in the limited information case, we can express the block
diagonal pattern and structure matrices as Dp = DgD\,(DyDsDy) ~1
and DR = DgDy. The lunction H in (13) can be written in
either of the following ways
H(Dp:Dg. Dg™1) = tr {DDDp(DpDs~1Dp) 13 (16)
H(DR; DG, Ds™?) = tr {DRDGDR(NRDs ~1DR) 13 an
The point of this development is that we may apply constraints of the

torm in (3) to the component pattern or structure matrices, using our
algorithm to maximize H. For example, we can impose stationarity
ccnstraints on the pattern or structure matrices. Naturally, we might
employ such constraints to achieve siple structure as well.

To conclude, the component analysis method presented in this paper
provides a flexible alternative to currently available approaches for
the analysis of multivariate longitudinal data. I have written a
program in FORTRAN to perform the analysis, although the program is not ‘
“exportable” at this time. An example of an application of the
component method in the limited information case will appear this year

in Psvchology and Aging (Haan, Millsap, & Hartka, 1986).
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