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Abstract

The study explores the issue of power in exploratory single
group repeated measures analysis of variance under the condition
of heterogenenus correlations across the repeated measures
trials. Tables developed fram real and hypothetical data sets
show how well both univariate and multivariate power is
estimated under a variety of conditions of non-sphericity and
effect sizes. It was shown that a reasonable estimate of power
could be obtained based on the imean off-diagonal pcoulation
correlation and Cohen's estimate of effect size for a one-way
analysis of variance. It was recommended that researchers base
their estimate of this mean population correlation on what they
know about their instrument's test/retest reliability under
treatment condition:
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Power Analysis in Repeated Measures Analysis of
Variance with Heterogeneously Correlated Trials

Introduction

The study explores the issue of power in repeated measures
analysis of variance under the condition of heterogeneous
correlations between the repeated measures trials. Tables
developed from real and hypothetical data sets show how well
both univariate and multivariate power is estimated under a
variety of conditions of non-sphericity and effect sizes. The
question of interest is: How well is the repeated measures
effect size estimated when a single correlation coefficient is
used as a population parameter to represent the correlations
among the repeated measures when the correlation matrix is
heterogeneous in a single group exploratory design? This
question breaks into two main points: (a) if we use a single
estimate for p, will it provide a good estimate of population
power?, and (b) What should be used for the cingle estimate?
The paper continues with background perspectives on the
findings, methods, results, the development of the question of
interest, conclusions, the !mportance of the study, and tables
supporting the findings.

Background and Perspectives

Power analysis has been studied for several statistical
Frocedures. However, the importance of a priori determination
of the probability that a statisticai test will yield
statistically significant results has not been in evidence in
the literature (Cohen, 1988). Cchen's text gives many
examples of power calculations for various - _search designs.
However, it does not include power computations and tables for
repeated measures analysis of variance designs except in its
most basic form, the dependent t test. This area has been
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explored in part (Barcikowski & Robvy, 1985, 1984a, 1984b, ard
Robey & Barcikowski, 1984), yet the impact on power under the
specific condition of heterogeneity of the occasions
correlation matrix has not been throughly addressed. This
study will attempt to determine whether a single
representative estimate of a heterogeneous trials matrix will
be adequate for use with current power analysis methods.

Under valid assumptions (sphericity/circularity and more
stringently, under uniformity, or constant correlations among
the repeated measures trials) the exploratory single-group
univariate F test is always more powerful than the
multivariate F test, due to the greater nunber of denominator
degrees of freedom in the univariate test when epsilon, g, is
equal to one. Under most circumstances, in an exploratory
design, the assumption that sphericity is tenable is unlikely
to be upheld. In univariate repeated measures analyses, a
routine method to compensate for the violation of the
sphericity assumption is the use of an adjusted univariate F
fest to control the risk of type I error. The adjustment
consists of estimating the sphericity parameter, g and then
multiplying the numerator and dencminator degrees of freedom
by the estimated e. The critical F value is then found using
the adjusted degrees of freedom. Of the two estimates of g, €
recommended by Greenhouse and Geisser (1959), and e~
recommended by Huynh and Feldt (1976), ¢ is the more
conservative and therefore is well put to exploratory designs
in which the value of e is probably unknown.

When the sphericity assumption is violated, then the power
of the adjusted univariate test varies from being more
powerful than the multivariate test to being severely less
powerful than the multivariate test (Barcikowski and Robey,
1984a; Jensen, 1982). Therefore, Barcikowski and Robey
recommend the use of both tests.

6}
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Cohen (1965) describes power as a function of the
significance criterion, alpha; sample size, n; and effect
size, f, the degree to which a phenomenon is smecific and
nonzero in the population. Barcikowski & Robey (1985)
modified Cohen's effect size categories (small, medium,
largej, based on an equation involving a single estimate of
the intercorrelations among repeated measures trisls.
Barcikowski and Robey suggest when heterogeneous correlations
are found among the occasions in repeated measures designs,
that the iatraclass correlation coefficient might be used to
represent the population trials correlation matrix in the
calculation of effect size to estimate power (1965, p. 7).

Stevens defines the intraclass correlation, p, as
dependence among observations, which increases type T error
rate (1986, p. 202). Haggard (1958) defines p as the
correletion between every pair of members in the group.
Others similarly defining intraciass correlation are Pearson
(1901), Harris (1913), Fisher (1950), and Winer (1971).

Two other measures of a single estimate to represent the
trials correlation matrix are the mean of the off-diagonal of
the correlation matrix, and the median off-diagonal. While
not the same as an intraclass correlation, central tendency
measure:s are routinely used to represent sets of numbers.
Here, these two measures are determined from the correlations
between the occasions.

Development
Mean Vectors and Variance-Covariance Matrices

The development of the analysis began with contrived data
from Willhoft and Schafer (1989). They combined five patterns
of mean vectors, representing models of growth and learning

8”/,
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over time, with variance-covariance matrices with three levels
of sphericity: spherical (¢* = 1.00), rearly spherical (¢" =
0.95), and moderately spherical (" = .75). Willhoft and
Schafer state that one factor affecting both univariate and
nmultivariate power in repeated measures designs is the
"interaction between the way in which the . . .
repeated-factor means are ranked, that is, the 'shape' of the
mean vector, W, and the way in which the . . . elements of I
[the variance-covariance matrix] are arranged" (p. 2).

Extending some of the examples of Willhof: and Schafer
(excluding the three "no growth" patterns of all zeros in the
mean vector), 58 other pattern combinations of mean vectors
and variance-covariance matricez from real and hypothetical
data sets (Bppendix A) were examined. Those sets of raw data
were first analyzed using the Repeated Analyzer SAS language
program (SAS Institute Inc., 1985) created by Barcikowski and
Pobey (1990). From this program, mean vectors, TH
variance~covariance matrices, X; sample sizes, n; number of
trials, k; and the non-singular matrix of (k - 1) by k
contrast coefficients, C were catalogued. This information
was entered into the SAS language program Rho Effect (Appendix
B) based on equations in Barcikowski and Robey (1984a, 1985).

Effect Size

In their paper (1985), Barcikowski and Robey show that when
the concition of uniformity1 is met, Cohen's effect size
index, f, may be written in both the univariate (f,) and

multivariate (fm) forn as:

(1) £, =£f,=£fM1-p

~7
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whers p is a population correlation, such as the intraclass
correlation coefficient. Specifically, the univariate and
multivariate effect sizes under uniformity are:

K

@) £y =fpo T (i -p)?
i=1
Kom2 1 - p)

This equation is Cchen's (1988, p. 275) effect size for a
one-way analysis of variance with K independent groups divided
by y1 - p. For the purpose of repeated measures analysis of
variance, K equals the number of trials in a single group
design. The numerator of this formula can found as the sum of
squares between measures in a one-way analysis of variance.

In the denominator, °m2 can be found as the population

variance for any given measure. In practice, cmz and p are

estimated from nomm information or from past research/pilot
work.

In an exploratory analysis, p is an unknown quantity, and
difficult to estimate if hamogeneity between the repeated
measures trials correlation matrix cannot be assumed. Under
the limitation of compound symmetry, formvla (2) can be used
to calculate effect size which is used to calculate power.
Actual power is calculated using "uxmz' the interacticn of

units and measures, or the error, variance, which can be
estimated as the mean square within residual in a reliability
program analysis (e.g., SPSS* RELIABILITY). Under the
condition of circularity,

(3) auxmz = cmz (1-p)
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Formula (2) employs the estimate of cm2 (1 - p) in the

denominator. The effect size calculated may be over— or
underestimated using a single estimate of p. The answer to the
question of interest rests on the magnitude of the over— or
underestimation.

Methods

Data Sets

Seventy cells were cataiogued from 13 data sets. Six data
sets came from published sources, some real, some
hypothetical. The remaining data sets were collected from
practitioners at Ohio University in Athens, CH, and were all
real data. The studies came fram a wide variety of
disciplines, such as hearing and speech sciences, botany,
interpersonal cammunication, curricullm and instruction, and
osteopathy. While most of the practitioners' data sets were
exploratory, only two were single group designs. The analyses
were performed on each group separately, as if each were a
single group. The same procedure was followed when there was
more than one measure per occasion. Only one measure was
analyzed at a time. The hypothetical data sets were separated
the same way.

Procedure

The Rho Effect program was used to calculate the parameters of
interest. Using information from the Repeated Analyzer
program, among the measures that were calculated are the
following: (a) RBAR, the average of the lower triangular half
of the trials correlation matrix; (b) RMED, the median of the
lower triangular half of the trials correlation matrix;

(c) MES POP, the multivariate effect size in the population;
(d) UES POP, the population univariate effect size;
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(e) ES MEAN,the effect size estimate based on RBAR
(f) ES MED, the effect size estimate based on RMED
() MPOP_POW, multivariate population power; (h) UPOP_POW,
univariate population power; (i) MEAN POW, multivariate power
estimated from RBAR; (jj MED POW, multivariate power estimated
from RMED; (k) UMEANPOW, univariate power estimated from RBAR;
and (1) UMED POW, univariate power estimated from RMED.

.
’
.
’

Intraclass correlation <oefficients were not included in
the final Rho Effect program. Several intraclass correlation
coefficient formulas were investigated (Harris, 1913; Fisher,
1950; and Winer, 1971), but the resulting effect sizes tended
to be so large, both in absvlute temms and in comparison to
population values, as to be useless and so were discarded.

As there was a varied mixture of real and hypothetical data
sets, the analysis of how well power is estimated was
descriptive in nature. The Microsoft Works for Apple
Macintosh Systems spreadsheet (Productivity Software Inc.,
1988) was used to build the database of the variables.
Comparisons were made of population parameters vs. derived

estimates for p, f, and power. Statpro (Penton Software Inc.,
1985) was used for graphics.

Results

Table 1 lists comparisons of p, £, and power. The
comparisons over tne 70 data set cells are: (a) |SUM|, the
sum of the absolute value of the differences to detect the
magnitude cf the deviation; (b) p, the mean of the absolute
value of the deviations; (c) ¢, the standard deviation of the
absolute value of the deviations; (d) % OVER, the percentage
of analyses that overestimated the population parameter;

(e) % SAM=, the percentage of analyses that exactly estimated
the population parameter; and, (f) % UNDER, the percentage of

10
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analyses that underestimated the population parameter.

The first entry in Table 1 compares the p (RPOP) of the
population (which was calculated fram formula 4) with the mean
r of the correlation trials matrix. The second entry compares
p to the median r of the correlation matrix. The camparison
of these two entries shows that the mean r is a better
estimator of p, in that the difference of |p - r| has a
smaller mean and variance. Both the mean r and the median r
tend to overestimate p. Fingure 1 depicts the range of
deviations of RBAR and RMED from RPOP. It is easy to see that
RMED deviated from RPOP much more than did RBAR. The range
bar plot for the mean r deviation shows it to be the more
accurate estimator of rho, with checkpoints at the minimm
deviation score, 25th percentile, median, and maximum
deviation score.

The third through sixth entries in Table 1 campare
univariate and multivariate population effect sizes with
estimates of effect size based on mean r and median r.
Comparison of the third and fourth entries show that
univariate effect size calculated using mean r is a closer
estimate of the population parameter than using median r. As
in estimating p, both estimates tend to overestimate the
population effect size. Visual support for these findings are
in Figures 2 and 3. These figures contain histogram frequency
categories with ten range intervals. The tenth interval on
Figure 2 and the eighth interval on Figure 3 contain zero
(indicating the closest estimation of a parameter). ES MEAN
(Figure 2) as an estimator falls into this "best fit" interval
surrounding zero 74% of the time compared to ES MED which fits
into the interval (Figure 3) 52.8% of the time. Both figures
are negatively skewed, indicating that both ES MEAN and ES MED
tend to overestimate UES POP.
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Entries five and six in Table 1 show first that mean r and
median r estimate univariate effect size at least 300% better
than they estimate multivariate effect size. In other words,
the deviations of |SWM|, u, and o, of mean and mecuian effect
size from multivariate population effect size are over three
times greater than the univariate comparisons. However,
within this category, the median r is the better estimator.
Again, both tend to overestimate the parameter.

Entry seven campares two population parameters, and
indicates which has more power: univariate or multivariate.
Forty-three percent of the time, univariate population power
is greater; compared to the 24% of the time that multivariate
power is greater.

Entries eight through 13 compare population power
parameters to estimated power. Entry eight vs. nine shows
that univariate power based on mean r deviates fram population
power less than that based on median r. Univariate mean power
also over- and underestimates less often than univariate
median power. Figures 4 and 5 show the overestimation in the
negatively skewed histograms. In the univariate mode,
UMEANPOW fits into the interval containing zero 90% of the
time (Figure 4) compared to the UMED POW's 85.7% (Figure 5).
The deviations of the multivariate calculations tend to be
larger than the deviations of the univariate calculations.
Figures 6 and 7 show that while MEAN POW and MED POW tend to
more equally over- and underestimate multivariate power, i.e.,
the frequency graphs show a more "nomal" distributional
shape, that neither fits into the interval containing zero as
often as the univariate estimators do. That is, MEAN POW fits
into the "zero" interval 75.5% of the time (Figure 6) and
MED POW (Figure 7) fits into the interval $5.7% of the time.
In Table 1, the multivariate comparisons (entries 10 and 11)
likewise support the evidence that the mean r is a more
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accurate estimator than the median r in deriving power.
Deviations of the median r are several times greater than
deviations of the mean r. Entries 12 and 13 show that
crossovers buotween univariate and multivariate parameters and
estimmates fare less will than non-crossover deviations.

Entry 14 compares the multivariate and univariate mean r
power estimates. The sample shows univariate mean power as
the greater 63% of the time, and the lesser only 1% of the
time. This comparison echoes that of entry seven showing the
same balance of rasults as the population values.

Entries 15 and 16 compare the maximum population power per
cell (multivariate or univariate, whichever is greater) with
univariate mean power and multivariate mean power. UMEENPOW
appears to approximate maximum population values more closely.
Figures 8 and 9 show that 82.8% of the time UMEANPOW estimates
the parameter within the interval containing zero (Figure 8).
In Figure 9, WMED POW fits into that interval only 54% of the
time.

Conclusions

Lanittedly, a weakness of the analysis is that with 70
cells stemming fram 13 data sets, cells are related. However,
tiis exploratory analysis of the question of interest turmed
up very consistent results, despite the wide variation in the
nature of the studies across data sets. The first mal.: point:
-f we use a single estimate for p, will it provide a good
estimate of population power?, can be answered affimmatively,
based on the small magnitude of many of the deviation scores
and other information in Table 1 and the corresponding
figures. As to the second main point: What should the
estimate be (e.g., mean r, median r)?, in this sample of
cells, it was shown that the mean r is the better estimator of

15
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p, £, and power, particularly in the univariate mcde. A
caution in the use of mean r as an estimator is that it tends
to overestimate the parameters. However, this single estimate
can be used with Barcikowski and Robey's (1983) sample size
tables for a single group repeated measures analysis of
variance.

Another option to the question of the second main point on
the choice of the estimate lies in the type of correlation
coefficient used. An applicable correlation coefficient for
the purpose of detemmining a single =stimate of the
correlations among heterogeneous trials might be test/retest
reliability estimates. This type of correlation coefficient
is based on testing the same examinees twice with the same
test and then correlating the results. Repeated measures
designs and test/retest reliabilities share "hazards" such as
carry-over and practice effects, changes in subjects' degree
of information and/or ability between trials, and
time-interval effects (Allen and Yen, 1979).

In practice, a researcher may have a priori access to a
measure of the test/retest reliability of an instrument.
There are two serious cautions to this suggestion, however.
First, these "hazards" may result in an over- or
underestimation of the true p. Second, actual test/retest
reliabilities are not subject to treatment effects as might be
applied in a ‘epeated measures design. Any type of systemic
treatment employed between trials might have the effect of
1c' ering p.2 The reported test/retest reliability might, a
priori, be viewed, conservatively as an upper bound of p, the
degree to which rests on the effects of the treatme' s on the
subjects.



Power Analysis

14
Recamendations

When a researcher is trying to detemmine a priori which r
to use to estimate power, there are three routes that may
assist:

1. Use Barcikowski and Robey (1985, Table 1, p. 7) effect
sizes alone. This route is best employed when the researcher
has little or no information about the characteristics of the
population from which the sample was drawn, such as in an
exploratory design. One can conservatively chose a small
effect size assuming a small correlation between measures, or
try any of eight other effect sizes based on small, medium,
and large correlations for use in Barcikowski and Robey's
sample size for power tables. When no other information is
available a priori, the mist conservative effect size will
afford the largest sample size in order to detect significant
differences.

2. Use Formula (1) with Cohen's effect sizes and a
reliability estimate for p. This route works best when,
although the researcher may not know much about the actual
characteristics of the population, the researcher is cognizant
of issues that may affect the estimate of p. Perhaps the
researcher has a reliability coefficient from a test reviewer
reference, but plans to sample a very small group. Then the
researcher would consider the referenced reliability
coefficient as an upper bound for that sample. The researcher
would also reed to assimilate information about administration
and sampliing error into the determination of an estimate for

p.

3. Use Formula (2) with nom information for om? and p and
consider different mean patterns. This route requires

15
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knowledge ebout the population characteristics as well as
issues concerning reliabilities. In an exploratory analysis,
it would not be usual for the researcher to have this much
information prior to conducting the study.

For an exploratory single group repeated measures analysis
of variance design, when some knowledge about the instrument's
test/retest reliability under treatment conditions can be
obtained, the reseacher will have reasonable results
estimating power using route #2. For all the routes, a
researcher using a single estimate of p will also need to make
a knowledgeable decision about which degrees of freedom to
employ. This study shows that the univariate test using an
estimate of p is more powerful than the multivariate test.
Using the univariate degrees of freedom with the univariate
test would give more accuracy in estimating population
univariate power. However, an informed researcher may choose
to use the multivariate denominator degrees of freedom, i.e.,
(N-K+1) vs. the univariate (N-1) (K-1), to arrive at a
conservative sample size.

Importance of the Study

The development of sample size/power tables in exploratory
single group repeat=d measures analysis of variance when the
trials correlation matrix is heterogeneous addresses an issue
not throughly researched. In exploratory designs it is most
likely the case that correlation matrices are heterogeneous
rather than uniform. A method for estimating effect size in
single group repeated measures analyses will assist
researchers and practiticners in estimating a priori the power
of their designs.

16
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Footnotes

lUsing a single estimate of p is tantamount to assuming
uniformity. However, this does not change the basic question
of whether or not a reasonable estimate of power can be found
using a single representation of a heterogeneous correlation
trials matrix.

2However, if the treatment has a linear effect between
measures, i.e., no interaction betweeen treatments and
subjects, then the use of the reliability as an estimate seems
reasonable.

20)
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Table 1
- 5 {st for Selected Diff :
% % %
VARTABLE 15| U g QVER  SAME  UNDER
1) RPOP-KBAR* 2.4396 .0348 .0610 73 10 17
2) RPOP-RMED* 3.8711 .0553 .0681 70 06 24
3) UESPOP-ESMEAN* 3.1506 .0450 .0¢968 71 17 12
4) UESPOP-ESMED* 3.8689 .0552 .0777 70 06 24
5) MESPOP-ESMEAN 12.9866 .1855 .2153 61 06 33
6) MESPOP-ESMED 12.517 .1788 .1991 61 06 33
7) MPOPPOW-UPOPPOW 5.4229 .0774 .1338 43 33 24
8) UPOPPOW-UMEANPOW* 1.3801 .0197 .0650 37 56 07
9) UPOPPOW-UMEDPOW* 2.0225 .0288 .0865 44 44 12

10) MPOPPOW-MEANPOW* 4.6416 .0663 .1283 38.5 38.5 23

11) MPOPPOW-MEDPOW* 22.0883 .3155 2.1465 38.5 38.5 23

12) UPOPPOW-MEANPOW 29.0947 .4156 2.079 8.5 38.5 53
13) MPOPPOW-UMEANPOW 5.6543 .0807 .1307 49 34 17
14) MEANPOW-UMEANPOW 3.0632 .0437 .0575 63 36 01
15) MAXPOPPOW-UMEANPOW* 2.5143 .0359 .1082 23 56 21
16) MAXPOPPOW-MEAivruw" 4.4659 .0637 .1178 09 37 54

* See figures for more det=a:il.
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FIGURE 1
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FIGURE 2
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Histearam Fregquency Results for Field #26:13 - 1S

Bar # Low High Number Fercent
1 -0.3841 -0.3345 1.0000 1.4286
2 =0.3345 -0.28%0 0.0000 0.0000
3 -0.28%50 -0.2354 2. 0000 44,2857
4 -0.235%54 -0.13%9% 0.0000 0. 0000
S -0.18%59 =0.13463 4. 0000 8.5714
6 =0.13463 -0.0848 7.0000 10.0000
7 -0.0866 -0.0373 &.0000 8.5714
2 -0.0373 0.0123 37.0000 52.38571
@ 0.0123 0.0618 5.0000 7.1429
10 0.0618 0.1114 5.0000 7.1429
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Histogram Frequency Results for Field #2019 — 10
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1 =0, 4330 =0. 3895 1.0000 1.4224
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S -0. 2528 -0.2152 1.0000 1.42324
& -0.2153 =0.1712 1.0000 1.4234
7 =-0.1A418 -0.1282 1.0000 1.4234
2 -0.1282 -0.0847 1.0000 1.4234
2 -0.0847 -0.0411 2.0000 2.3571
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Histogram Frequency Results for Field #21:9 - 11

Bar # Low High Mumber FPercent
1 =0,49%53 =0.44322 1.0000 1.4226
2 =0.4432 -0.3910 1. 0000 1.4286
4 -0.3388 -0,2867 0.0000 0.0000
b =0.2867 =0, 234% 2.0000 2.8571
& =0.234% -0.1823 Q. 0000 0. 0000
7 -0.1823 -0.1302 0.0000 0. 0000
S -0.1302 -0.0780 1.0000 1.4286
4 -0,0780 -0.0258 9. 0000 7.1429
10 -0.0238 0.0263 60,0000 85.7143
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Histogram Frequency Results for Field #1626 - 7

Bar # Low High Number Percent
1 -0.4948 -0.363% 1.0000 1.4286
2 =0.3639 -0.2322 0.0000 0. 0000
3 -0.2322 =0. 1009 4, 0000 S5.7142
4 -0.1009 0.0304 53,0000 75.7142
S 0. 0304 0.1617 6.0000 8.5714
& 0.1617 0.2931 4,.0000 5.7143
7 0.2931 0.4244 1.0000 1.4284
] 0.4244 0.35557 0.0000 0. 0000
9 0.338%7 0. 4370 0. 0000 Q. 0000
10 0.6870 0.8183 1. 7000 1.4284
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Histogram Frequency Results for Field #17:4 -

Bar # Low High Number Fercent
1 -0.4187 -0,.32324 1.0000 1.4284
2 -0.3324 =0.2461 0, 0000 0.0000
= =0.2461 -0. 1598 1.0000 1.428&
4 -0.15%8 =-0.073%5 8. 0000 11.4284
S =-0.0735 0.0129 44, 0000 4£5.7143
& 0.012%9 0.0992 6, 0000 2.5714
7 0.0992 0.18%55 4, 0000 S5.7143
8 0, 1855 0.271%& 1, 0000 1.42864
@ 0.2718 0.3581 2, 0000 2.8571
10 0.3981 0.4444 1.0000 1.428¢
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Bar # Low
1 -0.1324
2 =0,0287
3 0.0109
4 0.11046
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7 0.49Q96
] 0.3093
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High Number Percent
=0.03887 S.0000 7.142%
0.0109 32. 0000 £82.8571
0.1106 2.0000 2.2%571
0.2103 2.0000 84,2257
0.3100 1.0000 1.4236
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0.6090 0.0000 0. 0000
0.7086 0.0000 0. 0000
0.8083 1.0000 1.4284
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Histogram Frequency Results for Field #27:max—mmean

Bar # Low High Number Percent
1 -0.1938 -0.0971 3.0000 4.2857
2 =0.0971 4.551120e-3 38.0000 54, 2857
3 4,.551120e-3 0.1062 20.0000 28.5714
4 0.1062 0.2079 2.0000 4, 2357
S 0. 2079 0. 3094 3.0000 4, 2857
[ 0. 33094 0.4113 1.0000 1.4286
7 0.4113 0.5130 0.0000 0. 0000
8 0.3130 0.6146 1.0000 1.42864
? 0.6146 0.7163 0.0000 0. 0000
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Appendix B
Rho Effect

*

THE FOLLOWING PROGRAM WAS WRITTEN BY ROBERT S. BARCIKOWSKI AND
SUZY A. GREEN DURING FALL 1989 AND WINTER 1990. IT IS BASED ON
EQUATIONS IN BARCIKOWSKI AND ROBEY (1984, 1985);

* Ok * * *

DATA FISHER;

* FISHER IS AN ITERATIVE SEQUENCE OF STATEMENTS THAT RETURNS
THE F VALUE REQUIRED FOR SIGNIFICANCE GIVEN, D1, D2, AND
AILPHA.

AILPHA = .05; * THE LEVEL OF SIGNIFICANCE;

N = 25; * NUMBER OF UNITS;

K =5; * NUMBER CF MEASURES;

F = 1; * STARTING NUMBER FCR F;

D1 = K-1; * NUMERATOR DEGREES OF FREEDOM;

UD2 = (N-1)*(K-1); * UNIVARIATE DEGREES OF FREEDOM;

MD2 = N-K+1; * MULTIVARIATE DEGREES OF FREIDOM

.
’

* THE FOLLOWING IOOP DETERMINES THE F VALUES
DOJ=1T02;
IF (J EQ 1) THEN D2 = UD2;
ELSE D2 = MD2;
PDIF = 1.00;
DOI =1BY1;
P =1 - PROBF(F,D1,D2);

o
(O XY ]
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DIF = ABS(P - ALPHA);
IF (DIF GT PDIF) THEN GO TO A;

PDIF = DIF;
F=F+ .001;
END;

A: F=F - .001;
IF (J EQ 1) THEN UF = F;

ELSE MF = F;
END;
KEEP MF UF ALPHA N K;
OUTPUT;
PROC PRINT;

PROC MATRIX PRINT FUZZ;
FETCH FS DATA = FISHER;

UF = FS(1,4);
MF = FS(1,5);
AIPHA = FS(1,1);
N =FS(1,2);
K=FS(1,3):
U=-.3108 /
-.2004 /
-.0524 /
-.0564 /

-.0536; * GENERATED DATA, 5 TRIALS, ONE GROUP,
COLUMN VFZIOR OF THE REP. MEAS. SAMPLE MEANS

.
’

MK = (K* K~ K) #/2; * THE NIMBER OF CORRELATIONS TO BE PLACED
IN TRIAC

* WE MUST FIRST PIACE ELEMENTS IN TRIAG BEFORE IT CAN APPEAR ON
THE LEFT HAND SIDE OF AN = SIGN

TRIAG = J(MK,1,1); * PLACE MK ONE'S IN TRIAG

’
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SIGA = 1.2852 1.0553 .9928 1.0284 .682 /
1.0553 1.1904 1.0677 1.098 .6788 /
.9928 1.0677 1.0922 1.0315 .6786 /
1.0284 1.098 1.0315 1.1795 .6921 /
.682  .6788 .6786 .6921 .7122 :
VAR = DIAG(SIGMR) ;
STD = SCRT (VAR) ;
STDINV = INV(STD);
OOR = STDINV * SIGQMA * SIDINV;
* PIACE THE LOWER TRIANGULAR HALF OF COR INTO A V<CIOR (TRIAG)

CNT = 0;
DOI =1TOK;
DOJd=1T01I;
IF (I EQ J) THEN GO TO B;
CNT = CNT + 1;
TRIAG(CNT,1) = COR(I,J);
B: END;

END;
* RANK CRDER THE CORRELATIONS IN TRIAG
R TRIAG = TRIAG;

ATRIAG = RANK (TRIAG) ;
TRIAG (RANK (TRIAG) ,} = R TRIAG;

OTRIAG = TRIAG

.
14

* FIND THE MEDIAN CF THE VALUES IN TRIAG

MID = INT (MK #/ 2);
MID1 = MID + 1;
RMED = (TRIAG(MID,1) + TRIAG(MID1,1)) #/ 2;
IF MDD (MK,2) EQ 0 THEN RMED = RMED;
ELSE RMED = TRIAG(MID1,1); * THE MEDIAN CORRELATION

* FIND THE AVERAGE CORRELATION IN TRIAG
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RBAR = SUM(TRIAG) #/ MK; * THE AVERAGE CORRELATION;

0-1/

-1/

-1/

-1;

* NONSINGULAR MATRIX OF K - 1 BY K CONTRAST COEFFICIENTS

* REDEFINE THE TRANSFORMATION MATRIX C BY ORTHONORMALIZING THE
COEFFICIENTS, GRAM-SCHMIDT ORTHONORMALIZATION

C=100
0100
0010
0001

cC=2¢C";
GS CTEMP T LINDEP C;
C =CTEMP'; * ROW ORTHONORMALIZED CONTRAST COEFFICIENTS

SIG=C * s1@A * C';
EIGEN EVALS EVECS SIG;
DETERM = DET (SIG);
C = EVECS' * C; * THE RESULTANT C CONTAINS ORTHONORMALIZED
CONTRAST COEFFICIENTS SUCH THAT C * SIQVA *
C' IS A DIAGCNAL MATRIX

.
’

QONTRAST = C * U; * ORTHONORMALIZED CONTRASTS ON THE REPEATED
MEASURES MEANS

CON2 = CONTRAST ##2; * SQUARED CONTRASTS, NEEDED FOR EFFECT
SIZES

SUM OON2 = SUM(CONZ2); * SUM OF THE SQUARED CONTRASTS

OON VAR = C * SIQMA * C'; * A DIAGONAL MATRIX WITH THE CONTRAST
VARIANCES ON THE DIAGONAL

36
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CON_VARZ = CON VAR * CON VAR; * DIAGONAL MATRIX WITH SQUARED
VARTANCES ON THE DIAGONAL, USED
10 CALCULATE GGI

SSB=N* (U' *C' *C *U); * SUMOF SQUARES BETWEEN MEASURES

SSE = TRACE (CON VAR); * THE SUM OF THE CONTRAST VARIANCES IS
THE SIM OF SQUARES ERROR

SSE2 = TRACE(OON VAR2); * SIM OF THE SQUARED VARIANCES, USED TO
CALCULATE GGI

VAR UXM = SSE #/ (K-1); * THE INTERF.CTION VARIANCE, ALSO THE
ERROR VARIANCE (EQ 3, 84)

VAR M = TRACE (SIQVA) #/K; * THE nSTIMATE (POOLED ACROSS
MEASURES) OF THE VARIANCE OF A
SINGLE MEASURE
GGI = (SSE * SSE) #/ ((K-1) * SSE2); * 1HE GREENHOUSE GEISSER
ESTIMATE OF SPHERICITY
(EPSIION, ER 1, 84)

SSWRES = SSE * (N-1); * SUM OF SQUARES WITHIN PEOPLE RESIDUAL
AS FOUND IN RELIABILITY PROGRAM

SSWP = SSB + SSWRES; * SUM OF SQUARES WITHIN PECPLE AS FOUND IN
RELIABILITY PROGRAM

SSTOT = SSB + (VAR M * ((N * K)-K)); * SUM OF SQUARES T(¥/"T

SSBP = SSTOT - SSWP; * SUM OF SQUARES BETWEEN PEOPLE AS FOUND
IN RELIABILITY PROGRAM

KINV=1 #/ K; * ONE OVER K

.
[4
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INV CV = INV(CON VAR); * DIAGONAL MATRIX WITH ONE OVER THE
CONTRAST VARIANCES ON THE DIAGONAL
RATIO = INV CV * CON2; * VECTOR CONTAINING THE RATIOS OF THE
CONTRASTS SQUARED TO THE CONTRAST
VARIANCES
MES POP = SQPT (KINV * SUM(RATIO)); * MULTIVARIATE EFFECT SIZE,
OONSIDERED AS THE GOLD
STANDARD (EQ 7, 85)
UES POP = SQRT(((K-1) * SUM CON2) #/ (K * SSE)); * UNIVARIATE
EFFECT SIZE
GOLD STANDARD
(EQ 6, 83)

MDELTA = N * K * MES POP * MES POP; * MULTIVARIATE
NONCENTRALITY PARAMETER,
GOLD STANDARD

(EQ 4, 85)

UDELTA = N * K * UES POP * UES POP; * UNIVARIATE NONCENTRALITY
PARAMETER, GOLD STANDARD
(EQ 4, 85)

* ONE MINUS THE MEAN CORRELATION

3
;
:

* ONE MINUS THE MEDIAN CORRELATION

2
;
:

ES MEAN = SORT ((SSB #/ N) #/ (K * VAR M * ONE RBAR)); * EFFECT
SIZE

BASED

ON THE
MEAN

CORRELATION

(EQ11, 85)

35
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ES MED = SQRT ((SSB #/ N) #/ (K * VAR M * ONE RVED)); * EFFECT
SIZE
BASED
ON THE
MEDIAN
CORRELATION
(EQ 11, 85)
MEAN DFL = N * K * ES MEAN * ES MEAN; * ASSUMING UNIFORMITY,
THE NONCENTRALITY
PARAMETER BASED ON THE
AVERAGE CORRELATION
(EQ 4, 85)
MED DEL = N * K * ES MED * ES MED; * ASSUMING UNIFORMITY, THE
NONCENTRALITY PARAMETER
BASED ON THE MEDIAN
CORRELATION
(EQ 4, 85)
DF1 = K-1; * BOTH UNIVARIATE AND MULTIVARIATE NUMERATOR DEGREES
COF FREEDOM

UDEF2

(K-1) * (N-1); * UNIVARIATE DENOMINATCR DEGREES OF
FREEDOM

~e

MF2 =N - K+ 1; * MULTIVARIATE DENOMINATOR DEGREES OF FREEDOM

% e

POWER FOR ALL EFFECT SIZES BASED ON THE
MULTIVARTATE DEGREES OF FREEDOM

~e
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D1 = DF1;

D2 = MDF2;

F = M;

UT = UF1;

V = MDF2;
RLAM = MDELTA;
LINK SEVZEL;

MPCP_POW = PROBNORM(PCW1); * MILTIVARIATE POWER FOR THE GOLD

STANDARD

RIAM = MEAN DEL;

LINK SEVZEL;

MEAN POW = PROBNORM(POW1); * POWER BASED ON THE AVERAGE

QORRELATION

RIAM = MED DEL;

LINK SEVZEL;

MED PON = PROBNORM(POW1); * POWER BASED ON THE MEDIAN
CORRELATION

X% e

X e

POWER FOR ALL EFFECT SIZES BASED ON THE
UNIVARIATE DEGREES OF FREEDOM

D1 = DF1;

D2 = TDF2;

F = UF;

UT = DF1;

V = UDF2;

RLAM = UDELTA;

LINK SEVZEL;

UPOP_POW = PROBNORM(POW1) ; * UNIVARIATE POWER FOR THE GOLD

STANDARD

.
’
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RLAM = MEAN DEL;

LINK SEVZEL;

UMEANPOW = PROBNORM(POW1) ; * POWER BASED ON THE AVERAGE
CORRELATTON

RLAM = MED DEL;

LINK SEVZEL;

MED_POW = PROBNORM(POW1) ; * POWER BASED ON THE MEDIAN
CORRELATION

STOP;

*

SEVZEL:

* UT----DEGREES OF FREEDOM FOR THE NUMERATOR OF THE F-TEST
V---—-DEC" gES OF FREEDOM FOR THE DFENOMINATOR OF THE F-TEST
KLAM--NONCENTRALITY PARAMETER
Frm——- F VALUE REQUIRED FOR SIGNIFICANCE WITH UT AND V
POWN1--SCORE RETURNED TO MAIN PROGRAM WHICH WHEN SENT TO
PROBNORM DETERMINES THE POWER

TEMP1 = SQRT (2* (UT+RLAM) - (UT+2*RLAM) #/ (UT+RLAM));
TEMP2 = SQRT (((2*V ) *UT*F) #/V) ;

TEMP3 = SQRT ( (UT*F) #/V+ (UT+2*RLAM) #/ (UT+RLAM) ) ;
POW1 =- (TEMP1-TEMP2) #/TEMP3;

RETURN;




