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Abstract

The study explores the issue of power in exploratory single

group repeated measures analysis of variance under the condition

of heterogeneous correlations across the repeated measures

Trials. Tables developed from real and hypothetical data sets

show how well both univariate and multivariate power is

estimated under a variety of conditions of non-sphericity and

effect sizes. It was shown that a reasonable estimate of power

could be obtained based on the maan off-diagonal population

correlation and Cohen's estimate of effect size for a one-way

analysis of variance. It was recommended that researchers base

their estimate of this mean population correlation on what they

know about their instrument's test/retest reliability under

treatment condition.
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Power Analysis in Repeated Measures Analysis of

Variance with Heterogeneously Correlated Trials

Introduction

The study explores the issue of power in repeated measures

analysis of variance under the condition of heterogeneous

correlations between the repeated measures trials. Tables
developed from real and hypothetical data sets show how well
both univariate and multivariate power is estimated under a
variety of conditions of non-sphericity and effect sizes. The
question of interest is: How well is the repeated measures

effect size estimated when a single correlation coefficient is

used as a population parameter to represent the correlations

among the repeated measures when the correlation matrix is

heterogeneous in a Single group exploratory design? This
question breaks into two main points: If we use a single
estimate for p, will it provide a good estimate of population

power?, and (b) What should be used for the single estimate?

The paper continues with background perspectives on the

findings, methods, results, the development of the question of

interest, conclusions, the Importance of the study, and tables
supporting the findings.

Background and Perspectives

Power analysis has been studied for several statistical
procedures. However, the importance of a priori determination

of the probability that a statistical test will yield

statistically significant results has not been in evidence in
the literature (Cohen, 1988). Cohen's text gives many
examples of power calculations for various _search designs.

However, it does not include power computations and tables for

repeated measures analysis of variance designs except in its
most basic form, the dependent t test. This area has been
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explored in part (Barcikowski & Roboy, 1985, 1984a, 1984b, and
Robey & Barcikowski, 1984), yet the impact on power under the
specific condition of heterogeneity of the occasions
correlation matrix has not been throughly addressed. This
study will attempt to determine whether a single
representative estimate of a heterogeneous trials matrix will
be adequate for use with current power analysis methods.

Under valid assumptions (sphericity/circularity and more
stringently, under uniformity, or constant correlations among
the repeated measures trials) the exploratory single-group
univariate F test is always more powerful than the
multivariate F test, due to the greater number of denominator
degrees of freedom in the univariate test when epsilon, e, is
equal to one. Under most circumstances, in an exploratory
design, the assumption that sphericity is tenable is unlikely
to be upheld. In univariate repeated measures analyses, a
routine method to compensate for the violation of the
sphericity assumption is the use of an adjusted univariate F
test to control the risk of type I error. The adjustment
consists of estimating the sphericity parameter, e, and then

multiplying the numerator and denominator degrees of freedom
by the estimated e. The critical F value is then found using

the adjusted degrees of freedom. Of the two estimates of e, EA

recommended by Greenhouse and Geisser (1959), and e-

recommended by Huynh and Feldt (1976), e" is the more

conservative and therefore is well put to exploratory designs
in which the value of e is probably unknown.

When the sphericity assuiption is violated, then the power
of the adjusted univariate test varies from being more
powerful than the multivariate test to being severely less
powerful than the multivariate test (Barcikowski and Robey,
1984a; Jensen, 1982). Therefore, Barcikowski and Robey
recommend the use of both tests.

5
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Cohen (1965) describes power as a function of the

significance criterion, alpha; sample size, n; and effect

size, f, the degree to which a phenomenon is snecific and

nonzero in the population. Barcikowski & Robey (1985)

modified Cohen's effect size categories (small, medium,

large), based on an equation involving a single estimate of

the intercorrelat ions among repeated measures trials.

Barcikowski and Robey suggest when heterogeneous correlations

are found among the occasions in repeated measures designs,

that the intraclass correlation coefficient might be used to

represent the population trials correlation matrix in the

calculation of effect size to estimate power (1985, p. 7).

Stevens defines the intraclass correlation, p, as

dependence among observations, which increases type I error

rate (1.986, p. 202). Haggard (1958) defines p as the

correlation between every pair of members in the group.

Others similarly defining intraciass correlation are Pearson

(1901), Harris (1913), Fisher (1950), and Winer (1971).

Two other measures of a single estimate to represent the

trials mrrelation matrix are the mean of the off-diagonal of

the correlation matrix, and the median off-diagonal. While
not the same as an intraclass correlation, central tendency

measure3 are routinely used to represent sets of numbers.

Here, these two measures are determined from the correlations

between the occasions.

Development

Mean Vectors and Variance-Covariance Matrices

The development of the analysis began with contrived data

from Willhoft and Schafer (1989). They combined five patterns

of mean vectors, representing models of growth and learning

6--
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over time, with variance-covariance matrices with three levels
of sphericity: spherical (0 = 1.00), nearly spherical (0 =
0.95), and moderately spherical (c" = .75). Willhoft and
Schafer state that one factor affecting both univariate and
multivariate power in repeated measures designs is the
"interaction between the way in which the . . .

repeated-factor means are ranked, that is, the 'shape' of the
mean vector, 14, and the way in which the . . . elements of
[the variance-covariance matrix] are arranged" (p. 2).

Extending same of the examples of Willhoft and Schafer
(excluding the three "no growth" patterns of all zeros in the
mean vector), 58 other rattern combinations of mean vectors
and variance-covariance matrices, fram real and hypothetical
data sets ( Pppendix A) were examined. Those sets of raw data
were first analyzed using the Repeated Analyzer SAS language
program (SAS Institute Inc., 1985) created by Barcikowski and
Pobey (1990). From this program, mean vectors, u;

variance-covariance matrices, E; sample sizes, n; number of

trials, k; and the non-singular matrix of (k - 1) by k
contrast coefficients, C were catalogued. This information
was entered into the SAS language program Rho Effect (Appendix
B) based on equations in Barcikowski and Robey (1984a, 1985).

Effect Size

In their paper (1985), Barcikowski and Robey show that when

the condition of uniformity) is met, Cohen's effect size

index, f, may be written in both the univariate (fu) and

multivariate (fm) form as:

(1) fu = fm = fAil-777

p.4I
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where p is a population correlation, such as the intraclass

correlation coefficient. Specifically, the univariate and

multivariate effect sizes under uniformity are:

(2) fu =

K
E (pi ) 2

i=1

K am2 (1 p)

7

This equation is Cohen's (1988, p. 275) effect size for a

one-way analysis of variance with K independent groups divided

by 4]7:. For the purpose of repeated measures analysis of

variance, K equals the number of trials in a single group

design. The numerator of this formula can found as the sum of

squares between measures in a one-way analysis of variance.

In the denominator, am2 can be found as the population

variance for any given measure. In practice, 9m2 and p are

estimated from norm information or from past research/pilot

work.

In an exploratory analysis, p is an unknown quantity, and

difficult to estimate if homogeneity between the repeated

measures trials correlation matrix cannot be assumed. Under

the limitation of compound symmetry, formula (2) can be used

to calculate effect size which is used to calculate power.

Actual power is calculated using auxm2, the interaction of

units and measures, or the error, variance, which can be

estimated as the mean square within residual in a reliability

program analysis (e.g., SPSSx RELIABILITY). Under the

condition of circularity,

2 ,

(3) auxr12
_
am (I P)
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Formula (2) employs the estimate of 9m2 (1 p) in the

denominator. The effect size calculated may be over- or

underestimated using a single estimate of p. The answer to the

question of interest rests on the magnitude of the over- or
underestimation.

Methods

Data Sets

Seventy cells were catalogued from 13 data sets. Six data

sets came from published sources, some real, some
hypothetical. The remaining data sets were collected from

practitioners at Ohio University in Athens, OH, and were all
real data. The studies came from a wide variety of

disciplines, such as hearing and speech sciences, botany,

interpersonal communication, curriculum and instruction, and

osteopathy. While most of the practitioners' data sets were

exploratory, only two were single group designs. The analyses

were performed on each group separately, as if each were a
single group. The same procedure was followed when there was

more than one measure per occasion. Only one measure was

analyzed at a time. The hypothetical data sets were separated
the same way.

Procedure

The Rho Effect program was used to calculate the parameters of

interest. Using information from the Repeated Analyzer

program, among the measures that were calculated are the

following: (a) RBAR, the average of the lower triangular half

of the trials correlation matrix; (b) RMED, the median of the

lower triangular half of the trials correlation matrix;

(c) MES POP, the multivariate effect size in the population;

(d) UES POP, the population univariate effect size;
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ES MEAN, the effect size estimate based on RBAR;

(f) ES MED, the effect size estimate based on RMED;

(g) MPOP POW, multivariate population power; (h) UPOP POW,

univariate population power; (i) MEAN POW, multivariate power

estimated from RBAR; (j) NED POW, multivariate power estimated
from RMED; (k) UMEANPOW, univariate power estimated from RBAR;

and (1) UMED POW, univariate power estimated from RED.

Intraclass correlation coefficients were not included in

the final Rho Effect program. Several intraclass correlation

coefficient formulas were investigated (Harris, 1913; Fisher,

1950; and Winer, 1971), but the resulting effect sizes tended

to be so large, both in absolute terms and in comparison to

population values, as to be useless and so were discarded.

As there was a varied mixture of real and hypothetical data

sets, the analysis of how well power is estimated was

descriptive in nature. The Microsoft Tolorks for Apple

Macintosh Systems spreadsheet (Productivity Software Inc.,

1988) was used to build the database of the variables.

Comparisons were made of population parameters vs. derived

estimates for p, f, and power. Statpro (Penton Software Inc.,

1985) was used for graphics.

Results

Table 1 lists comparisons of p, f, and power. The

comparisons over tne 70 data set cells are: (a) ISUMI, the

sum of the absolute value of the differences to detect the

magnitude of the deviation; (b) g, the mean of the absolute

value of the deviations; (c) a, the standard deviation of the

absolute value of the deviations; (d) % OVER, the percentage

of analyses that overestimated the population parameter;

(e) % SAME, the percentage of analyses that exactly estimated

the population parameter; and, (f) % UNDER, the dercentage of

1(i
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analyses that underestimated the population parameter.

The first entry in Table 1 compares the p (RPCP) of the

population (which was calculated from formula 4) with the mean
r of the correlation trials matrix. The second entry compares
p to the median r of the correlation matrix. The comparison
of these two entries shows that the mean r is a better

estimator of p, in that the difference of fp - rf has a
smaller mean and variance. Both the mean r and the median r
tend to overestimate p. Figure 1 depicts the range of

deviations of RBAR and RMED from RPCP. It is easy to see that
WED deviated from RPOP much more than did REAR. The range
bar plot for the mean r deviation shows it to be the more
accurate estimator of rho, with checkpoints at the minimum

deviation score, 25th percentile, median, and maximum
deviation score.

The third through sixth entries in Table 1 compare
univariate and multivariate population effect sizes with
estimates of effect size based on mean r and median r.

Comparison of the third and fourth entries show that
univariate effect size calculated using mean r is a closer

estimate of the population parameter than using median r. As

in estimating p, both estimates tend to overestimate the
population effect size. Visual support for these findings are
in Figures 2 and 3. These figures contain histogram frequency
categories with ten range intervals. The tenth interval on
Figure 2 and the eighth interval on Figure 3 contain zero
(indicating the closest estimation of a parameter). ES MEAN
(Figure 2) as an estimator falls into this "best fit" interval

surrounding zero 74% of the time compared to ES MED which fits

into the interval (Figure 3) 52.8% of the time. Both figures

are negatively skewed, indicating that both ES MEAN and ES MED
tend to overestimate UES POP.

11
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Entries five and six in Table 1 show first that mean r and

median r estimate univariate effect size at least 300% better

than they estimate multivariate effect size. In other words,

the deviations of ISUM1, g, and a, of mean and median effect

size fran multivariate population effect size are over three

times greater than the univariate comparisons. However,

within this category, the median r is the better estimator.

Again, both tend to overestimate the parameter.

Entry seven compares two population parameters, and

indicates which has more power: univariate or multivariate.

Forty-three percent of the time, univariate population power

is greater, compared to the 24% of the time that multivariate

power is greater.

Entries eight through 13 compare population power

parameters to estimated power. Entry eight vs. nine shows

that univariate power based on mean r deviates from population

power less than that based on median r. Univariate mean power

also over- and underestimates less often than univariate

median power. Figures 4 and 5 show the overestimation in the

negatively skewed histograms. In the univariate mode,

UMEANPOW fits into the interval containing zero 90% of the

time (Figure 4) compared to the UMED POW's 85.7% (Figure 5).

The deviations of the multivariate calculations tend to be

larger than the deviations of the univariate calculations.

Figures 6 and 7 show that while MEAN POW and MED PCW tend to

more equally over- and underestimate multivariate power, i.e.,

the frequency graphs show a more "normal" distributional

shape, that neither fits into the interval containing zero as

often as the univariate estimators do. That is, WAN POW fits

into the "zero" interval 75.5% of the time (Figure 6) and

MED PCW (Figure 7) fits into the interval 65.7% of the time.

In Table 1, the multivariate comparisons (entries 10 and 11)

likewise support the evidence that the mean r is a more

12
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accurate estimator than the median r in deriving power.

Deviations of the median r are several times greater than

deviations of the mean r. Entries 12 and 13 show that

crossovers botween univariate and multivariate parameters and

estimates fare less will than non-crossover deviations.

Entry 14 compares the multivariate and univariate mean r
power estimates. The sample shows univariate mean power as

the greater 63% of the time, and the lesser only 1% of the
time. This caparison echoes that of entry seven showing the
same balance of results as the population values.

Entries 15 and 16 compare the maximum population power per
cell (multivariate or univariate, whichever is greater) with

univariate mean power and multivariate mean power. UMEANPOW
appears to approximate maximum population values more closely.

Figures 8 and 9 show that 82.8% of the time UMEANPCW estimates

the parameter within the interval containing zero (Figure 8).
In Figure 9, UMED POW fits into that interval only 54% of the
time.

Conclusions

2.,miat.edly, a weakness of the analysis is that with 70

cells stemming fran 13 data sets, cells are related. However,

this exploratory analysis of the question of interest turned

up very consistent results, despite the wide variation in the

nature of the studies across data sets. The first malA point:

we use a single estimate for p, will it provide a good

estimate of population power?, can be answered affirmatively,

based on the small magnitude of many of the deviation scores

and other information in Table 1 and the corresponding

figures. As to the second main point: What should the

estimate be (e.g., mean r, median r)?, in this sample of

cells, it was shown that the mean r is the better estimator of

13
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p, f, and power, particularly in the univariate mode. A
caution !in the use of mean r as an estimator is that it tends

to overestimate the parameters. However, this single estimate

can be used with Barcikowski and Robey's (1983) sample size

tables for a single group repeated measures analysis of

variance.

Another option to the question of the second main point on

the choice of the estimate lies in the type of correlation

coefficient used. An applicable correlation coefficient for

the purpose of determining a single estimate of the

correlations among heterogeneous trials might be test/retest

reliability estimates. This type of correlation coefficient

is based on testing the same examinees twice with the same

test and then correlating the results. Repeated measures

designs and test/retest reliabilities share "hazards" such as

carry-over and practice effects, changes in subjects' degree

of information and /or ability between trials, and

time-interval effects (Allen and Yen, 1979).

In practice, a researcher may have a priori access to a

mnasure of the test/retest reliability of an instrument.

There are two serious cautions to this suggestion, however.

First, these "hazards" may result in an over- or

underestimation of the true p. Second, actual test/retest

reliabilities are not subject to treatment effects as might be

applied in a repeated measures design. Any type of systemic

treatment employed between trials might have the effect of

lc ering p.2 The reported test/retest reliability might, a

priori, be viewed, conservatively as an upper bound of p, the

degree to which rests on the effects of the treatme,.:s on the

subjects.

14
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Recommendations

When a researcher is trying to determine a priori which r
to use to estimate power, there are three routes that may
assist:

1. Use Barcikowski and Robey (1985, Table 1, p. 7) effect
sizes alone. This route is best employed when the researcher
has little or no information about the characteristics of the
population from which the sample was drawn, such as in an
exploratory design. One can conservatively chose a small
effect size assuming a small correlation between measures, or
try any of eight other effect sizes based on small, medium,
and large correlations for use in Barcikowski and Robey's
sample size for power tables. When no other information is
available a priori, the most conservative effect size will
afford the largest sample size in order to detect significant
differences.

2. Use Formula (1) with Cohen's effect sizes and a
reliability estimate for p. This route works best when,
although the researcher may not know much about the actual
characteristics of the population, the researcher is cognizant
of issues that may affect the estimate of p. Perhaps the
researcher has a reliability coefficient from a test reviewer
reference, but plans to sample a very small group. Then the
researcher would consider the referenced reliability

coefficient as an upper bound for that sample. The researcher
would also need to assimilate information about administration
and sampling error into the determination of an estimate for

P

3. Use Formula (2) with norm information for 4q2 and p and

consider different mean patterns. This route requires

15
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knowledge about the population characteristics as well as
issues concerning reliabilities. In an exploratory analysis,

it would not be usual for the researcher to have this much

information prior to conducting the study.

For an exploratory single group repeated measures analysis

of variance design, when same knowledge about the instrument's

test/retest reliability under treatment conditions can be

obtained, the reseacher will have reasonable results

estimating power using route #2. For all the routes, a

researcher using a single estimate of p will also need to make

a knowledgeable decision about which degrees of freedom to

employ. This study shows that the univariate test using an

estimate of p is more powerful than the multivariate test.

Using the anivariate degrees of freedom with the univariate

test would give more accuracy in estimating population

univariate power. However, an informed researcher may choose

to use the multivariate denominator degrees of freedom, i.e.,

(N-K+1) vs. the univariate (N-1)(K-1), to arrive at a

conservative sample size.

Importance of the Study

The development of sample size/power tables in exploratory

single group repeated measures analysis of variance when the

trials correlation matrix is heterogeneous addresses an issue

not throughly researched. In exploratory designs it is most

likely the case that correlation matrices are heterogeneous

rather than uniform. A method for estimating effect size in

single group repeated measures analyses will assist

researchers and practitioners in estimating a priori the power

of their designs.

16
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Footnotes

'Using a single estimate of p is tantamount to assuming

uniformity. However, this does not change the basic question

of whether or not a reasonable estimate of power can be found

using a single representation of a heterogeneous correlation
trials matrix.

2However, if the treatment has a linear effect between

measures, i.e., no interaction betweeen treatments and

subjects, then the use of the reliability as an estimate seems

reasonable.
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Table 1

Summary Statistics for Selected Differences Scores

VAPIABLE ISUMI a QYEB 2ME UNDER

1) RPOP-RBAR* 2.4396 .0348 .0610 73 10 17

2) RPOP-RMED* 3.8711 .0553 .0681 70 06 24

3) LTESPOP-ESMEAN* 3.1506 .0450 .0968 71 17 12

4) UESPOP-ESMED* 3.8689 .0552 .0777 70 06 24

5) MESPOP-ESMEAN 12.9866 .1855 .2153 61 06 33

6) MESPOP-ESMED 12.517 .1788 .1991 61 06 33

7) MPOPPOW-UPOPPOW 5.4239 .0774 .1338 43 33 24

8) UPOPPOW-UMEANPOW* 1.3801 .0197 .0650 37 56 07

9) UPOPPOW-UMEDPOW* 2.0225 .0288 .0865 44 44 12

10) MPOPPOW-MEANPOW* 4.6416 .0663 .1283 38.5 38.5 23

11) MPOPPOW-MEDPOW* 22.0883 .3155 2.1465 38.5 38.5 23

12) UPOPPOW-MEANPOW 29.0947 .4156 2.079 8.5 38.5 53

13) MPOPPOW-UMEANPOW 5.6543 .0807 .1307 49 34 17

14) MEANPOW-UMEANPOW 3.0632 .0437 .0575 63 36 01

15) MAXPOPPOW-UMEANPOW* 2.5143 .0359 .1082 23 56 21

16) MAXPOPPOW-MEAI,Truvv" 4.4659 .0637 .1178 09 37 54

* See figures for more dot i1.

21
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rpoprbar 0.29110 0.03870 8.200000e-3 0.00000 0.07.'170rpoprmed 0.33630 0.07345 8.950000e-3 0.00000 0.15700
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Histogram Frequency Results for Field #25:13 - 14

Bar # Low High Number Percent

1 -0.5254 -0.4714 1.0000 1.4286
- -0.4714 -0.4174 1.0000 1.4286
3., -0.4174 -0.3634 0.0000 0.0000
4 -0.3634 -0.3094 1.0000 1.4286
5 -0.3094 -0.2554 0.0000 0.0000
6 -0.2=1 -0.2014 2.0000 2.8571
7 -0.2014 -0.1474 2.0000 2.8571
8 -0.1474 -0.0934 5.0000 7.1429
9 -0.0934 -0.0394 6.0000 8.5714
10 -0.0394 0.0146 52.0000 74.2857
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FIGURE 3
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Histooram Frequency Results for Field #26:13 - 15

Bar * Low High Number Percent

1 -0.3841 -0.3345 1.0000
2 -0.3345 -0.2850 0.0000
3 -0.2850 -0.2354 3.0000
4 -0.2354 -0.1859 0.0000
5 -0.1859 -0.1363 6.0000
6 -0.1363 -0.0868 7.0000
7 -0.0868 -0.0373 6.0000
8 -0.0373 0.0123 37.0000
9 0.0123 0.0618 5.0000
10 0.0618 0.1114 5.0000

1.4286
0.0000
4.2857
0.0000
8.5714
10.0000
8.5714
52.8571
7.1429
7.1429



Power Analysis

24

FIGURE 4
641 t 91

48 -- 69

32 1t 1 46

23
fI

1 2 3 4 5 6 7 9 9 1CUPOP_POW - UMEANPOW

F-r-,s.iclikrric::!,e s;tren,cur...Ea.rn

Histogram Frequency Results for Field #2019

Bar # LQW High Number

10

Per,:ent

1 -0.4330 -0.3895 1.0000 1.4226
--.- -0.3895 -0.3459 0.0000 0.0000
.:. -0.3459 -0.3024 0.0000 0.0000
4 -0.3024 -0.2588 0.0000 0.0000
5 -0.2588 -0.2153 1.0000 1.4286
6 -0.2153 -0.1718 1.0000 1.4286
7 -0.1748 -0.12R2 1.0000 1.4286
A -0.11-92 -0.0847 1.0000 1.4286

-0.0847 -0.0411 2.0000 2.8571
10 -0.0411 2.434600e-3 63.0000 90.0000

25
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FIGURE 5
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Histogram Frequency Results for Field #21:9 - 11

Bar # Low High Number Percent

1 -0.4953 -0.4432 1.0000 1.4286
-0.4432 -0.3910 1.0000 1.4286

3 -0.3910 -0.3388 0.0000 0.0000
4 -0.3388 -0.2867 0.0000 0.0000
5 -0.2867 -0.2345 2.0000 2.8571
6 -0.2345 -0.1823 0.0000 0.0000
7 -0.1t23 -0.1302 0.0000 0.0000
8 -0.130 -0.0780 1.0000 1.4286
9 -0.0790 -0.0258 5.0000 7.1429
10 -0o025e 0.0263 60.0000 85.7143
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v-4va. CA.& cy HiEstograa.m
Histogram Frequency Results for Field #16:6 - 7

Bar # Low High Number Percent
1 -0.4948 -0.3635 1.0000 1.42862 -0.3635 -0.2322 0.0000 0.00003 -0.2322 -0.1009 4.0000 5.71434 -0.1009 0.0304 53.0000 75.71435 0.0304 0.1617 6.0000 8.57146 0.1617 0.2931 4.0000 5.71437 0.2931 0.4244 1.0000 1.42868 0.4244 0.5557 0.0000 0.00009 0.5557 0.6870 0.0000 0.000010 0.6870 0.8183 1.1000 1.4286
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Histogram Frequency Results for Field #17:6 - 8

Bar #

t 69

-1 51

34

ti

3

Low High Number Percent

1 -0.4187 -0.3324 1.0000 1.4286
2 -0.3324 -0.2461 0.0000 0.0000
1.
_. -0.2461 -0.1598 1.0000 1.4286
4 -0.1598 -0.0735 8.0000 11.4286
5 -0.0735 0.0129 46.0000 65.7143
6 0.0129 0.0992 6.0000 8.5714
7 0.0992 0.1855 4.0000 5.7143
8 0.1855 0.2718 1.0000 1.4286
Q 0.2718 0.3581 2.0000 2.8571
10 0.3581 0.4444 1.0000 1.4286
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Histogram Frequency Results for Field #28:max-umean

Bar # Low High Number Percent

1 -0.1884 -0.0887 5.0000 7.1429
2 -0.0887 0.0109 59.0000 82.8571,3 0.0109 0.1106 2.0000 2.8571
4 0.1106 0.2103 3.0000 4.2857
5 0.2103 0.3100 1.0000 1.4286
6 O.:3100 0.4096 0.0000 0.0000
7 0.4Q96 0.5093 0.0000 0.0000
8 0.5093 0.6090 0.0000 0.0000
9 0.6090 0.7086 0.0000 0.0000

10 0.7086 0.8083 1.0000 1.4286

25
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Histogram Frequency Results for Field #27:max-mmean

Bar it LOW High Number Percent

1 -0.1988 -0.0971 3.0000 4.2837
2 -0.0971 4.551120e -3 3E1.0000 54.2857
3 4.551120e-3 0.1062 20.0000 28.5714
4 0.1062 0.2079 3.0000 4.2857
5 0.2079 0.3096 3.0000 4.2857
6 0.3096 0.4113 1.0000 1.4286
7 0.4113 0.5130 0.0000 0.0000
8 0.5130 0.6146 1.0000 1.4286
9 0.6146 0.7163 0.0000 0.0000
10 0.7163 0.8180 1.0000 1.4286

:i (;
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Appendix A

Data Sets

Davidson, M. L. (1972). Univariate versus multivariate tests
in repeated-measurements experiments. Psychological

Bulletin, 22, pp. 446-452.

Ricci, D., Petrosino, L., Harris, D., Randolph-Tyler, E., &

Wagner, S. (1989). Lingual vibrotactile threshold shift

during magnitude-estimation responses and scaling behavior.

Perception and Psychopilysics, AL, pp. 275-279.

Looney, S. W. & Stanley, W. B. (1989). Exploratory repeated

measures analysis of variance for two or more groups. The

Americanstatistician, AI pp. 220-225.

Nellessen, J. E. (1989). Population differentiation in
andropogon virginicus 1. between abandoned coal strip mine

spoil and old field habitats in Ohio. Unpublished doctoral

dissertation, Ohio University, Athens, OH.

Papa, M. J., & Graham, E. E. (1989). Gender and

function-oriented behavior in small groups: An examination

of problem-solving processes and outcomes. Manuscript

submitted for publication.

Rich, C. E. (1983). Repeated measures designs. In R. S.

Barcikowski (Ed.), Computer packages and research designs.

with annotations of input and output from the BMDP, SAS.

ZPSS, and SPSSx statistical packages, Vol. 1 BMDP, Vol. 2

SAS, Vol. 3 SPSSx. Lanham, MD: University Press of America.
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Reven, L. (1989). Cognitive capacity usage as it relates to a
subject's functional reading levels. Unpublished doctoral

dissertation, Ohio University, Athens, OH.

Scuitto, M. (1988). Efficacy of a range of motion warm water

exercise program for women with osteoporosis. Paper

presented at the meeting of the Ohio University College of

Osteopathic Medicine, Athens, OH.

Taylor, R. Y. (1988). An examination of comprehension

competence in narrative and expository material using an

informal reading inventory with probed and free recall

questioning. Unpublished doctoral dissertation, Ohio

University, Athens, OH.

Timm, N. H. (1975). Multivariate analysis with_aoclications in

education and psychology. Monterey, CA: Brooks/Cole, pp.

232-233, 509-510.

Walkowski, S. (1988). The effect of examination stress on the

cellular irrmunocanipetencies of medical students and their

spouses. Paper presented at the meeting of the Ohio

University College of Osteopathic Medicine, Athens, OH.

Willhoft, J. L., & Schafer, W. D. (1989). The effects of mean

pattern and non-sphericity on univariate and multivariate
analyses for a two-factor repeated measures design. Paper

presented at the meeting of the American Educational Research

Association, San Francisco, CA.
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Appendix B

Rho Effect

*

THE FOLLOWING PROGRAM WAS WRITTEN BY ROBERT S. BARCIKOWSKI AND

SUZY A. GREEN DURING FALL 1989 AND WINTER 1990. IT IS BASED ON

EQUATIONS IN BARCIKOWSKI AND ROBEY (1984, 1985);
*

*

*

*

*

DATA FISHER;

* FISHER IS AN ITERATIVE SEQUENCE OF STATEMENTS THAT RETURNS

THE F VALUE REQUIRED FOR SIGNIFICANCE GIVEN, D1, D2, AND

ALPHA.

ALPHA = .05; * THE LEVEL OF SIGNIFICANCE;

N = 25; * NUMBER OF UNITS;

K = 5; * NUMBER OF MEASURES;

F = 1; * STARTING NUMBER FOR F;

D1 = K-1; * NUMERATOR DEGREES OF FFEEDCM;

UD2 = (N-1)*(K-1); * UNIVARIATE DEGREES OF FREEDOM;

MD2 = N-K+1; * MULTIVARIATE DEGREES OF

* THE FOLLOWING LOOP DETERMINES THE F VALUES

MU,

DO J = 1 TO 2;

IF (J EQ 1) THEN D2 = UD2;

RISE D2 = MD2;

PDIF = 1.00;

DO I = 1 BY 1;

P = 1 - PROBF(F,D1,D2);

33
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DIF = ABS (P - ALPHA) ;

IF (DIF GT PDIF) THEN GO TO A;

PDIF = DIF;

F = F + .001;

END;

F = F .001;

IF (J EQ 1) THEN UF = F;

FLSE ME = F;

END;

KEEP NF UF ALPHA N K;

OUTPUT;

PRDC PRINT;

PROC MATRIX PRINT FUZZ;

FETCH FS DATA = FISHER;

UF = FS(1,4);

ME = FS(1,5);

ALPHA = FS(1,1);

Nf= FS(1,2);

K = FS(1,3);

U = -.3108 /

-.2004 /

-.0524 /

-.0564 /

-.0536; * GENERATED DATA, 5 TRIALS, ONE GROUP,

COLUMN VFC'DOR OF THE REP. NEAS. SAMPLE MEANS

MK = * K - #/2; * THE NUMBER OF CORRELATIONS TO BE PLACED

IN TRIAL

* WE MUST FIRST PLACE ELEMENTS IN TRIAG BEFORE IT CAN APPEAR ON

THE LEFT HAND SIDE OF AN = SIGN

TRIAG = J(MK,1,1); * PLACE MK ONE'S IN TRIAG
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SIGMA = 1.2852 1.0553 .9928 1.0284 .682 /

1.0553 1.1904 1.0677 1.098 .6788 /
. 9928 1.0677 1.0922 1.0315 .6786 /

1.0284 1.098 1.0315 1.1795 .6921 /

. 682 .6788 .6786 .6921 .7122 :

VAR = DIAG(SIGNOL);

STD = SQRTOWO;
STDINV = INV(STD);

OOR = STDINV * SIGMA * STDINV;

* PLACE THE LOWER TRIANGULAR HALF OF COR INTO A VFCTOR ( TRIAG)

CNT = 0;

DO I = 1 TO K;

DO J = 1 TO I;

IF (I EQ J) THEN GO TO B;

CNT = CNT + 1;

TRIAG(CNT,1) = CDR(I,J);

B: END;

END;

* RANK ORDER THE CORRELATIONS IN TRIAG

R TRIAG = TRIAG;

ATRIAG = RANK (TRIAG) ;

TRIAG (RANK (TRIAG) , ) = R TRIAG;

OTRIAG = TRIAG

* FIND THE MEDIAN OF THE VALUES IN TRIAG

MID = ENT(AK #/ 2);

MID1 =MID + 1;

RMED = (TRIAG(MID,1) + TRIAG(MID1,1)) #/ 2;

IF MDD(AK,2) EQ 0 THEN RMED = RMED;

F.T.SE RMED TRIAG(MID1,1); * THE MEDIAN CORRELATION

* FIND THE AVERAGE CORRELATION IN TRIAG

3 5
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RBAR = SUM(TRING) If/ MK; * THE AVERAGE CORRELATION;

C = 1 00 0 -1 /
0 1 0 0 -1 /

0 O1 0 -1 /

0 0 0 1 -1;

* NONSINaJLAR MATRIX OF K 1 BY K CONTRAST COEFFICIENTS

* REDEFINE THE TRANSFORMATION MATRIX C BY CRTHONORMALIZING THE

COEFFICIENTS, GRAN-SCHMIDT ORTHONORMALIZATION

C = C';

GS CTEMP T LINDEP C;

C = CTEMP'; * ROW ORTHONORMALIZED CONTRAST COEFFICIENTS

SIG - C * SIGMA * C';

EIGEN EVALS EVECS SIG;

DETERM = DET(SIG);

C = EVECS' * C; * THE RESULTANT C CONTAINS ORTHONORMALIZED

CONTRAST COEFFICIENTS SUCH THAT C * SIGMA *

C' IS A DIAGONAL MATRIX

CONTRAST =C * * ORTHONORMALIZED CONTRASTS ON THE REPEATED

MEASURES MEANS

01\72 = CONTRAST ##2; * SQUARED CONTRASTS, NEEDED FOR EFFECT

SIZES

SUM 00N2 = SUM(CCN2); * SUM OF THE SQUARED CONTRASTS

00N VAR = C * SIGMA * C'; * A DIAGONAL MATRP;. WITH THE CONTRAST

VARIANCES ON THE DIAGONAL
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CON VAR2 = CON VAR * CON VAR; * DIAGONAL MATRIX WITH SQUARED

VARIANCES ON THE DIAGONAL, USED

10 CALCULATE GGI

SSB = N * (U' * C' * C * U) ; * SUM OF SQUARES BETWEEN MEASURES

SSE = TRKE(CON VAR) ; * THE SUM OF THE CONTRAST VARIANCES IS

THE SIN OF SQUARES ERROR

SSE2 = TRAJCE(CON VAR2) ; * SITICF THE SQUARED VARIANCES, U5 h1) TO

CALCULATE GGI

VAR UXM = SSE #i (K-1); * THE 1NTERP.CTION VARIANCE, ALSO THE

ERROR VARIANCE (EQ 3, 84)

VAR NE = TRACE(SIGNPO #11{; * THE -ESTIMATE (POOLED ACROSS

MEASURES) OF THE VARIANCE OF A

SINGLE MEASURE

GGI = (SSE * SSE) #/ ((K-1) * SSE2); * 1HE GREENHOUSE GEISSER

ESTIMATE OF SPHERICITY

(EPSILON, ER 1, 84)

SSWRES = SSE * (Ni) -;

SSWP = SSB + SSWRES;

SSTCT = SSB + OTARM

SSBP = SST SSWP;

* SUM OF SQUARES WITHIN PEOPLE RESIDUAL

AS FOUND IN RELIABILITY PROGRAM

* SUM OF SQUARES WITHIN PEOPLE AS FOUND IN

RELIABILITY PROGRAM

* ((N * K)-K)); * SUM OF SQUARES 112,73._

* SUM OF SQUARES BETWEEN PEOPLE AS FOUND

IN RELIABILITY PROGRAM

KINV = 1 #1 K; * ONE OVER K

37
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INV CV = INV (00N VAR) ; * DIAGONAL MATRIX WITH ONE OVER THE

CONTRAST VARIANCES ON THE DIAGONAL

RATIO = INV CV * CON2; * VECTOR CONTAINING THE RATIOS OF THE

CONTRASTS SQUARED TO THE CONTRAST

VARIANCES

NES POP = SQPT (KINV * SUM(RATIO)); * MULTIVARIATE EFFECT SIZE,

ODNSIDERED AS THE GOLD

STANDARD (EQ 7, 85)

UES POP = SQRT (((K -1) * SUM 0%12) #/ (K * SSE)); * UNIVARIATE

EFFECT SIZE

GOLD STANDARD

6, 85)

MDELTA = N * K * NES POP * MES POP; * MULTIVARIATE

NONCENTRALITY PARAMETER,

GOLD STANDARD

(IQ 4, 85)

UDELTA = N * K * UES PCP * UES POP; * UNrVARIATE NONCENTRALITY

PARAMETER, GOLD STANDARD

(EQ 4, 85)

ONE REAR = 1 - RBAR; * CIE MINUS THE MEAN CORRELATION

ONE RMED = 1 - RMED; * CIE MINUS THE MEDIAN CORRELATION

ES MEAN = SQRT ((SSB #/ #/ (K * VAR M * CNE RBAR)); * EFFECT

SIZE

BASED

ON THE

MEAN

CORRELATION

(EQ11,85)

3S
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ES MED = SQRT ((SSB #/ N) #/ * VAR M * ONE RMED)); * EFFECT

SIZE
BASED

ON THE

MEDIAN

CORRELATION

(EQ 11,85)

MEAN DEL = N * K * ES MEAN * ES NEAN; * ASSUMING UNIFORMITY,

THE NCNCENTRALITY

PARAMETER BASED ON THE

AVERAGE CORRELATION

(EQ 4, 85)

MED DEL = N * K * ES MED * FS MED; * ASSUMING UNIFORMITY, THE

NONCENTRALITY PARAMETER

BASED ON THE MEDIAN

CORRELATION

(EQ 4, 85)

DF1 = K-1; * BOTH UNIVARIATE AND MULTIVARIATE NUMERATOR DEGREES

OF FREEDOM

UDF2 = (K-1) * (N-1); * UNIVARIATE DENOMINATOR DEGREES OF

FREEDOM

M)F2 = N - K + 1; * MULTIVARIATE DENOMINATOR DEGREES OF FREEDOM

*

POWER FOR ALL EFFECT SIZES BASED ON THE

MJLTIVARIATE DEGREES OF FREEDOM

39
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D1 = DF1;

D2 = MDF2 ;

F = MF;

UT = DF1;

V = MDF2 ;

RLAM = MDELTA;

LINK SEVZEL;

MPOP POW = PROBNORM (P(741) ; * MJLTIVARIATE POWER FOR THE GOLD

STANDARD

RLAM = MEAN DEL;

LINK SEVZEL;

MEAN POW = PROBNORM (POW' ) ; * POWER BASED ON THE AVERAGE

CORRELATION

RLAM = MED DEL;

LINK SEVZEL;

MED POW = PROBNORM (NMI) ; * POWER BASED ON THE MEDIAN

CORRELATION

*

;

PCWER FOR ALL EFFECT SIZES BASED ON THE

UNIVARIATE DEGREE' S OF FREEDOM

D1 = DF1;

D2 = TJDF2 ;

F UF;

UT = DF1;

V = UDF2 ;

RLAM = UDELTA;

LINK SEVZEL;

UPOP PCW = PROBNORM (POWI ) ; * UNIVARIATE POWER FOR THE GOLD

STANDARD

4O
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REAM = MEAN DEL;

LINK SEVZEL;

UMEANPCW = PROBNORM(PCW1); * PCWER BASED ON THE AVERAGE

CORRELATION

REAM = MED DEL;

LINK SEVZFI;

JMED POW = PROBNORM(PCW1); * POWER BASED ON THE MEDIAN

CORRELATION

STOP;
*

40

SEVZEL:

UT----DEGREES OF FREEDOM FOR THE NUMERATOR OF THE F-TEST
V DEC EES OF FREEDOM FOR THE DFENOVINATOR OF THE F-TEST

RLAM NONCENTRALITY PARAMETER
F F VALUE REQUIRED FOR SIGNIFICANCE WITH UT AND V

PCW1 SOCRE RETURNED TO MAIN PROGRAM WHICH WHEN SENT TO

PROBNORM DETERMINES THE POWER

TEMPI = SQRT(2*(UT+RLAM)-(UT+2*RLAM) #/ (UT+RIPP));
TEMP2 = SQRT(((2n *.)*UT*F) #/V);

TEMP3 = SQRTUT*FWV+(UT+2*RLAM)#/(UT+RIAM));
POW1 (TEMP1-TEMP2)#/TEMP3;

RETURN;

41


