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ABSTRACT

In recent years, there has been coasiderable interest in the
precise assessment of instructional outcomes. Tue inadequacy of
norm-referenced devices has been recognized. 1In addition, there
has been a movement toward gearing educational tests to the
specific educational outcomes that instructional programs are in-
tended to reflect. These tests are often referred to as
criterion-referenced, domain-referenced, or mastery tests.

A mastery test is typically designed to reflect specific
educational objectives and is normally used to make decisions
regarding student achievement. Such tests also form an integral
part of any program evaluation, where the focus is on the number
of students judged as competent in a given domain of performance.
Other situations in whick institutional decisions about individuals
arc required include: testing for certification in a profession;
testing for minimum competency, such as for high school graduation;
and the assessment of basic skills.

This study provides a basic technical framework for the
design and use of mastery tests. The topics discussed are (a)
appropriate ways to select test items, (b) practical methods for
extracting the best information from test data, ‘{c) efficient
procedures for using data to make decisions, and (d) means for
relating test scores to the instructional outcomes being evaluated.
Statistical procedures and computer programs have been developed
to help testing practitioners deal with these issues in a simple
and convenient way.

The solutions reported in this study are directed toward the

improvement of educational testing in the context of instruction.
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AN OVERVIEW OF THE MASTERY TESTING PROJECT

Huynh Huynh
Joseph C., Saunders

I. BACKGROUND

Recent developments and interest in adaptive instruction and
mastery learning call for new testing procedures focusing on the
evaluation of individual pecformance in terms of some competency
criterion. Given that a domain of behaviors is uniquely defined by
the mastery of some unit of instruction, a test is deliberately
constructed to produce scores that reflect the degree of competency
in those behaviors. At the end of the period of instruction, the
test is administered to the individual student, and on the basis of
the ohserved test score he or she is classified in orz of several
acnievement categories. In typical instructional situations there
are two such categories, usually labeled mastery and nonmastery.

Using test scores to make decisions about individual students
is a daily activity in any effort to evaluate instructional programs.
When the objectives are clearly specified, an obvious concern of
the evaluator is the number of students or trainees who have mas-
tered any or all the objectives as a result of participating in the
program. The classification of students actually serves a dual
purpose: first, it pinpoints the objectives that a disproportionate

number of students have failed to master, thus encouraging a closer

The Mastery Testing Project was supported by Grant NIE-G-78-0087
with the National Institute of Education, Department oS Education,
Huynh Huynh, Principal Investigator. Points of view or opinions
stated do not necessarily reflect NIE position or policy and nc
official endorsement should be inferred. Requests for reprints of
the papers described in the Publication Series in Mastery Testing
should be addressed to Huynh Huynh, College of Education, University
of South Carolina, Columbia, South Carolina, 29208.
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look at the instructional strategies for those objectives; second,
it identifies individual students who have not mastered some of the
objectives and for when special provisions need to be made to
facilitate their attainment of these objectives.

Thus, using test scores to make decisions is an integral part
of the educational enterprise. In various stages of educational
testing development, this effort has been known as criterion-

referenced, comain-referenced, or mastery testing. Though these

terms have different interpretations, it seems important to note
that they often refer tc different aspects of the same process.
Consider, for example, the case in which test items are deliber-
ately constructed (or selected from an item bank) to reflect
specific educational objectives; the resulting test scores are
referenced to these nbjectives for interpretation and are then used
to assess the competency or mastery of the individual student with

respect to each of the objectives.

Criterion-Referenced and Domain-Referenced Tecting

Though the term criterion-referenced is used by most testing

practitioners (e.g., those working at school districts), the term

domain~referenced has been used in the report to make it clear that

test items are referencea directly to specific educational objec-
tives. The term mastery, on the other hand, is used to draw atten-
tion to the fact that test scores are used to make certain decisions
regarding the irndividual student. It may also be noted that it
would be difficult to make meaningful decisions on the basis of

test scores unless the test items can be directly referenced to a
well-defined domain of performance. (This domain may be defined by
a single objective or by several objectives; in these cases the

test is typically labeled objective-referenced.) When a student is

judged to be a master on the basis of a high test score, what in
fact has bezn mastered? In order to answer this question, the
objectives or domain of performances on which the student is to be
judged must be specified in advance. If this line of reasoning js
correct, then the process of mastery testing embodies the concept

of domain-referenced testing.
4
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Minimum Compc*<ency Testing and Basic Skills Assessment

The procedures assoriated with mastery tesiing resemble those
used in minimum competency testing or in basic skills assessment.
In attempting to reverse the decline in the level of student
achievement over the last decade, several states have implemented
statewide programe testing for minimum competency in the basic
skills. Many of these programs aim to insure that high school
graduates possess a minimum level of academic achievement or have
acquired the skills required to function effectively as adults in
American society. Minimum competency testing, in this sense, acts
as a high school exit examination or what has been called a certi-
fication examination. When used in this manner, minimum competency
examinations do not have the positive connotation of some other
basic skills assessment programs. The latter programs are specifi-
cally designed for a continuous monitoring of the acquisition of
basic skills (namely, reading, writing, and mathematics) across
succeeding grade levels. The results of these continuous monitor-
ing programs are used to diagnose a student's deficiencies in the
basic skills and to provide for instructional remediation.

Although sometimes differing in their ultimate purposes, mas-
tery testing, minimum competency testing, and the monitoring of
basic skills are similar in many aspects of test development and
other technical problems. The selection or construction of test
items relies heavily on a thoughtful specification of the educa-
tional objectives or domain of skills to which scores are to be
referenced via performance on the test items. The specifications
for the items themselves must, in most instances, be worked out in
considerable detail so that there will be a high degree uf .on-
gruence between the test items and the corresponding educational
objectives. Technical aspects held in common include issues such
as setting passing scores (or performance standards), assessing
decision reliability, assessing errors of classification, determin-
ing test length, selecting items to maximize the accuracy of

classifications, referencing test items to segments of the

5
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curriculum or currently adopted textbooks, const~ucting alternate

forms, and studying bias in deci:ions based on le:: scores.

ITI. TECHNTCAL PROBLEMS IN MASTERY TESTING

For a period of two years (September 1, 1978, through August 31,
1980), the National Institute of Education provided financial sup-
port for the work of the principal investigator concerning some of
the above-mentioned technical issues in mastery testing. This
research has dealt with the following questions.

(1) What are some of the optimum ways to approach the issue of
setting test passing scores in both large testing programs and in
a typical classroom situation? How should passing score judgments
based on the content of the test items be processed?

(2) In which ways should the concept of reliability in mastery
testing be formulated? How can reliability indices be approximated
when repeated testing of the same examinees is not feasible? Which
inferential procedures are appropriate for studies regarding -sti-
mates of reliability?

(3) How should the rate of misclassification be assessed for
domain-referenced tests? Wh.. are the sampling characteristics of
the estimates?

(4) What approaches should be used to study the consequences of
making passing decisions on the basir of test scores? Which models
would be useful in forecasting the budgetary consequences associated
with the selection of a particular pass’ .g score?

(5) How should decisions based on test data be eval ated in
terrs of =fficiency ur cost-effectiveness?

(6) What are appropriate ways to assess the sensitivity oi a
test within the context of instruction?

(7) What are some of the scoring rules based on decision theory
which may be useful in the context of mastery testing?

(8) What are the appropriate procedures by which items can be
selected from ¢n item bank to form a test which must meet specific

requirements regaiaing reliability or decision .ccuracy?

(9) What procedures are appropriate in formulating decisions
based on multivariate test data?

13
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ITI. PUBLICATION SERIES IN MASTERY TES:ING

As the Mastery Testing Project concludes, seventeen [ipers
have been written. All have been distributed nationally through
the Publication Series in Mastery Testing and are abstracted as

follows.

Research Memorandum 78-1

Computation and Inference for Two Reliability
Indices in Mastery Testing Based on
the 3eca-Binomial Model

Huynh Huynh
Presented at the 17th Annual Southeastern Invitational Conference on

Measurement in Education, University of North Carolina at Greensbcro,
December 8, 1978. Journal of Educational Statistics, Fall, 1979.

Abstract: In mastery testing the raw agreement index and the kappa
index may be secured via one test administration when the test scores
follow beta-binomial distributions. This paper reports tables and a
computer program which facilitate the computation of those indices
and of their standard errors of estimate. Illustrations are provided
in the foim of confidence intervals, hypothesis testing, and minimum
sample sizes in reliability studies for mastery tests.

Research Memorandum 78-2

A Nonrandomized Minimax Solution for Passing Scores
in the Binomial Error Model

Huynh Huynh

Psychometrika, June 1980.

Abstract: A nonrandomized minimax solution is presented for mastery

scores i the binomial error model. The computation does not require
prior knowledge regarding an individual examinee or group test data
for a population of examinees. The optimum mastery score minimizes
the maximum risk which would be incurred by misclassification. A
closed-form solution is provided for the case of constant losses,

and tables are presented for a variety of situations including

linear and quadratic losses. A scheme which allows for correction
for guessing is also described.

~J
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Research Memorandum 79-1

Accuracy of Two Procedures for
Estimating Reliability of Mastery Tests

iuynh Huynh
Josenh C. Saunders
|

Presented at the annual conference of the Easte:.1 Educational
Research Association, Kiawah Island, South Carolina, February 22-24,
1979. A short version of this paper will appear in Journal of
Educational Measurement (in press).

Abstract: The beta-binomial estimates for the raw agreement index p
and the kappa index in mastery testing are compared with those based
on repeated testings in terms of bias and sampling stability. Across
a variety of test score distributions, test lengths, and mastery
scores, the beta-binomial estimates tend to underestimate the cor-
responding population values. The percent of bias, however, is
negligible (about 2.5%) for p and moderate (about 10%) for kappa.
Both beta-binomial estimates are almost twice as stable as those
based on repeated testings. Though the beta-binomial estimates
presume equality of item difficulty, the data presented indicate
that even gross departures from equality do not affect the perfor-
mance of the estimates.

Research Memorandum 7¢-2

Bayesian and Empirical Bayes Approaches
to Setting Test Passing Scores

Huynh Huynh
Joseph C. Saunders

Presented at the symposium "Psychometric approaches to domain-
referenced testing" sponscred jointly by the American Educational
Research Association and the National Council on Measurement in
Education at their annual meetings in San Francisco, April 8-12,
1979.

Abstract: The Bayesian mastery scores as proposed by Swaminathan
et al. and the empirical Bayes mastery sccres derived from Huynh's
decision-theoretic framework are compared on the basis of approxi-
mate beta-binomial and real CTBS test data. It is found that the
two sets of mastery scores are identical or almost identical as
long as the test score distribution is reasonably symmetric or when
the true criterion level is high. Large discrepancies tend to
occur when this level is low, especially "then th~ test scores con-
centrate at some extreme scores or are fairl, bhumpy. However, in
terms of mastery/nonmastery decision, the Huynh procedure provides
the same classifications as the Bayesian meti0d in practically all
situations. Moreover, the former may be used for tests of arbitrary
length and has hcen generalized to more complex testing situations.

8
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Research Memorandum 79-3

Budgetary Consideration in
Setving Mastery Scores

Huynh Huynh

Presented as part Of the symposium "Setting standards: Theory and
practice" sponsored jointly by the American Educational Research
Association and the National Council on Measurement in Education at
their annual meetings in San Francisco, April 8-12, 1979.

Abstract: A general model along with four illustrations is presented
for the consideration of budgetary constraints in the setting of
cutoff scores in instructional programs involving remedial actionms
regarding poor test performers., PBudgetary constraints normally put
an upper limit on any choice of cutoff score. Given relevant infor-
mation, this 1imit may be determined. Alternately, ways to assess
the budgetary consequences assoc?ated with a given cutoff score are
provided. Such information would be useful in any final decision
regarding the cutoff score.

Research Memorandum 79-4

A Class of Mastery Scores Based
on the Bivariate Normal Model

Huynh Huynh

Proceedings of the 1979 meeting of the American Statistical
Association (Social Statistics Section).

Abstract: This study touches some aspects of the determination of
mastery scores on the basis of the bivariate normal test model.

The loss ratio associated with classification errors is assumed to
be constant, and the referral success function ranges in the normal
ogive family. Alternately, the model also provides a fairly simple
way to assess the locs consequences associated with each mastery
score. Such information is deemed useful to the test user who may
wish to examine these consequences before making a final ¢ uice of
cutoff score. It is also notad that the model provides a latent
trait analysis for testing/measurement situations involving
instructed and noninstructed groups, or pretest and posttest data.
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Research Memorandum 79-5

An Approximatlon to the True Ability Distribution
in the Binomial Error Model and Applications

Huynh Huynh
Garrett K. Mandeville

Abstract: Assuming that the density p of the true ability 6 in

the binomial test score model is continuous in the closed interval
{0,1], a Bernstein polynomial can be used to uniformly approximate
P. Then via quadratic programming techniques, least-square esti-
miates may be obtained for the coefficients defining the polynomial.
The approximation, in turn, will yield estimates for any indices
based on the univariate and/or bivariate densitv funccion associatad
with the binomial test score model. Numerical illustrations are

provided for the projection of decision reliability and proportion
of success in mastery testing.

Research Memorandum 79-6

Statistical Inference for False Positive and
False Negative Error Rates in Mastery Testing

Huynh Huynh

Psychometrika, March 1980.

Abstract: This paper describes an asymptotic inferential procedure
for the estimates of the false positive and false negative error
rates. Formulae and tables are described for the computation of
the standard errors. A simulation study indicates that the asymp-
totic standard errors may be used even with samples of 25 cases as
long as the Kuder-Richardson Formula 21 reliability is reasonably
large. Otherwise, a large sample would be required.
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Regsearch Memorandum 79-7

An Empirical Bayes Approach to Decisions
Based on Multivariate Test Data

Huynh Huynh

Presented at the annual meeting of the Psychoretric Society, Iowa
City, Iowa, May 28-30, 1980.

Abstract: A general framework for making mastery/nonmastery
decisions based on multivariate test data is described in this
study. Over all, mastery is granted (or denied) if the posterior
expected loss associated with such action is swmaller than the one
incurred by the denial (or grant) of mastery. An explicit form for
the cutting contour which separates mastery :nd nonmastery states
in the test score space is given for multiveriate test scores which
follow a normal distribution with a constsat loss ratio. For the
case involving multiple cutting scores in the true ability space,
the test score cutting contour will resemble the boundary defined
by multiple test cutting scores when the test reliabili~ies are
reasonably close to unity. For tests with low reliabilities, deci-

sions may very well he based simply on a suitably chosen composite
score.

Regsearch Memorandum 80-1

A Comparison of Two Approaches to Setting Passing
Scores Based on the Nedelsky Procedure

Joseph C. Saunders
Joseph P. Ryan
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-3, 1980. Applied
Psychological Measurement (in press).

Abstract: The Nedelsky procedure has been proposed as a method for
setting minimum passing scores for multiple~choice tests, based on
an analysis of item content. Two versions of the procedure are
compared. Two groups of judges, one using each version, set passing
scores for a classroom test. Compariscns are based on (1) the
distributions of passing scores, (2) the consistency of pass-fail
decisions between the two versions, and (3) the consistency of pass-
fail decisions between each version and the passing score estab-
lished by the test designer. 1In addition, the relationship between
the passing scor set by a judge and that judge's level of achieve-
ment in the content area is investigated.
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Research Memorandum 80-2

Adequacy of Asymptotic Normal Theory in Estimating Reliability
for Mastery Tests Based on the Beta-Binomial Model

Huynh Huynh

Abstract: Simulated data based on five test score distributions
indicate that a slight modification of the asymptotic normal theory

for the estimation of the p and kappa indices in mastery testing
will provide results which are in close agreement with those based
on small samples. The modification is achieved through the multi-
plication of the asymptotic standard errors of estimate by the

constant l+m3/4 where m is the sample size.

Research Memorandum 80-3

Conciderations for Sample Size in Reliability
Studies for Mastery Tests

Joseph C. Saunders
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-8, 1980.

Abstract: In most reliability studies, the precision of a relia-

bility estimate varies inversely with the number of examinees
(sample size). Thus, to achieve a given level of accuracy, some
minimum sample size is required. An approximation for this minimum
size may be made if some reasonable assumptions regarding the mean
and standard deviation of the test score distribution can be made.
To facilitate the computations, tables are developed based on the
Comprehensive Tests of Basic Skills. The tables may be used for
tests ranging in length from five to “hirty items, with percent
cutoff scores of 60%, 70%, or 80%, and with examinee populations
for which the test difficulty can be described as low, moderate,
or high, and the test variability as low or moderate. The tables
also reveal that for a given degree of accuracy, an estimate of
kappa would require a considerably greater number of examinees
than would an estimaie of the raw agreement index.

19

12



AN OVERVIEW

Research Memorandum 80-4

A Note on Decision-Theoretic
Coefficients for Tests

Huynh Huynh

Abstract: A modification is suggested for the decision-theoretic
coefficient § proposed by van der Linden and Melleanbergh. Under
reasonable assumptions, the modified index varies from 0 to 1
inclusive. It is argued that in many practical applications of
mastery testing, coefficients such as § are not readily available,

and consistency of decisions may serve as evidence of the quality
of the decision-making process.

Research Memorandum 80-5

Assessing Efficiency of Decisiouns
in Mastery Testing

Huynh Huynh

Abstract: Two indices are proposed for assessing the efficiency of
decisions in mastery testing. The indices are generalizations of
the raw agreement index and the kappa index. Both express the
reduction in the proportion o average loss (or the gain in util-
ity) resulting from the use of test scores to make decisions.
Empirical data are presented which show little discrepancy between
estimates based on the beta-binomial and compound binomial models
for one index.

Research Memorandum 80-6

Selecting Items and Setting Passing Scores for Mastery Tests
Based on the Two-Parameter Logistic Model

Huynh Huynh

Presented at the Informal Meeting o:: Model-Based Psychological Measurement
sponsored by the (ffice of Naval Research, Iowa City, lowa, August 17-22, 1980.

Abstract: Three issues in mastery testing are considered, using a
minimax decision framework, based on the two-parameter logistic
model. The issues are: (1) setting passing scores, (2) assessing
decision efficiency, and (3) selecting items to maximize decision
efficiency. The losses or disutilities under consideration have a
constant or normal ogive form. It is found that, in the context of
minimax decisions, the item selection procedure based on maximum
information may not provide the best decision etficiency.
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Research Memorandum 80-7

Assessing Test Sensitivity in Mastery Testing
Huynh Huynh

A preliminary version of this paper was presented as part of the
symposium "Approaches to test design for the assessment of the
effectiveness of educational programs" sponsore. by the American
Educational Research Associatlion at its annual meeting 1n Boston,
April ,~11, 1980.

Abstract: This paper addresses the concept of test sensitivity
within the context of mastery testing. It is argued that
correlation-based indices may not be appropriate for the assessment
of test sensitivity. Global assessment of test sensitivity may be
carried out via indices such as p-max or 6-max. Local measures of
sensitivity may be described via a two-parameter logistic model.
Procedures are described to chack the tenability of test sensitivity
on the basis of observed test data.

Research Memorandum 80-8

Relationship between Decision Accuracy and
Decision Consistency in Mastery Testing

Huynh Huynh
Joseph C. Saunders

Abstract: In mastery testing, decision accuracy refers to the
proportion of examinees who are classified correctly, in one of
several achievement categories, by test data. Decision consistency
expresses the extent to which decisions agree across two test
administrations. Based on twelve cases involving a wide range of
a21 reliabilities, it was found that decision accuracy and decision

consistency were almost perfectly related.
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IV. CONCLUDING REMARKS

As the readers of this summary may note, the work of the
Mastery Testing Project has focused on the very basic technical
issues encountered in using test scores for making decisions
regardinug individual students. The work blended mathematical rigor
with the ambiguity typically encountered in the reality of testing.
Oftentimes, advanced mathematics was used, supplemented with com-
puter simulation based on real test data collected from the South
Carolina Statewide Testing Program. It is hoped that the many
results reported herein will contribute to the best use of testing

in the educational enterprise.
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SETTING PASSING SCORES
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A NONRANDOMIZED MINIMAX SOLUTION FOR PASSING SCORES
IN THE BINOMIAL ERROR MOD.L

Huynh Huynh

University of South Carolina

Psychometrika, June 1380.

ABSTRACT

A nonrandomized minimax solution is presented for passing
scores in the binomial error wmodel. The computation doe. not
require prior knowledge regarding an individual examinee or group
test data for a population of examinees. The nn+imum passing score
minimizes the maximum risk which would be incurred by misclassifi-
cations. A closed-form solution is provided for the case of con-
stant losses, and tables are presented for a variety of situations
including linear and quadratic losses. A scheme which allows for

correction for guessing is also described.

1. INTRODUCTION

Much interest has been generated in recent years on the setting
of passing (mastery or cutoff) scores. Situations in which passing
scores are needed include (a) entrance requirements for an instruc-
tional program, (b) advancement of students from one instructional

unit to the next, presumably more complex unit, (c) certification

This paper has been distributed separately as RM 78-2, December, 1978.
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for occupations and the professions, and (4) minimum competency
testing legislated in several states. Most procedures for setting
passing scores fall into three broad categories: comparisons with
the performance of other individuals (e.g., using norm-referenced
data), an examination of item content (e.g., sv~h procedures as the
Nedelsky scheme), and a consideration of the consequences incurred
by misclassifications. A fairly comprehensive review of some of
these procedures may be found in Meskauskas (1976) and in Hamblecton,
Swaminathan, Algina, and Coulson (1978).

Misclassifications may be characterized by their probabilities
of occurrence and losses. The papers by Fhanér (1974) and by
Wilcox (1976) consider the selection of passing scores and of test
length which would set maximum tclerable limits for the percents of
false positive and false negative errors in decision. Both papers
rely on the concept of indifference zones centered around the mini-
mum true ability for mastery, and the procedures so presented may
be generalized to include the case of arbitrary but constant losses.
As subsequently described, the Fhanér-Wilcox presentation may be
framed within the minimax context in statistical decision theory.

A simultaneous consideration of false positive errors, false
negative errors, and losses—--often referred to as the decision-
theoretic approach to setting passing scores~-~is presented in a
number of sources including Swaminathan, Hambleton, and Algina
(1975); Huynh (1976, 1977); and van der Linden and Mellenbergh
(1977). These papers take into account knowledge concerning the

true ability of the examinees, and therefore mayv be applicable when
passing scores are to be set for a group of examinees. The f.oce~-
dure advanced by Swaminathan et al. (1975) is based on the assump-
tion of exchangeability of prior information as described in Lindley
and Smith (1972) and implemented in Novick, Lewis, and Jackson

(1973). It requires specification of how much prior informatici is
exchangeable. On the other hand, solutions proposed by Huynh (1976,
1977) may be classified as Bayes or empirical Bayes. The first
qualifier applies to the case of the individual examinee, when the
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prior distribution regarding his anility must be availabie. This
distribution may be assessed via procedures described in Novick and
Jackson (1974) and implemented via the CADA system (Novick, Isaacs,
and DeKeyrel, 1977). The second category, empirical Bayes, may be
used when test data are available for a gruup of examinees.

The empirical Bayes approach seems appropriate where past data
or data collected in field testing are used for setting passing

scores for future examinees who will take the same test or alter-

nate forms of the same test. There are, however, situations in
which such group data or prior information avout the individual
examinee mey not be appropriate. This is the case of individualized
instructional programs. Here decisions regarding mastery or nor-

mastery for an individual examinee ought to be based solely on the

subject's test score, not on the performance of other examinees
who happen to be in the same situation.

The present paper focuses on a minimax approach to setting
passing scores. This procedure does not require specification of
prior information reg. rding the ability of an individual examinee
or group of examinees. Using this procedure, a passing score may
be established prior to any administratiun of the test. Section 2
of this paper presents the overall minimax framework for binary
classifications. 1In subsequent sections, various illustirations are

provided, based on the binomial error model.

2. BASIC ELEMENTS OF THE MINIMAX PROCEDURE

The true ability of a given examinee is defined as 6 with
range . For the binomial error mudel (Lord & Novick, 1968,
chap. 23), 6 is the proportion of items in a large item pool that
the examinee is expected to answer correctly, and § is the interval
{0,1). If a test is administered to the examinee, it is assumed
that his observed test score x is distributed according to a condi-
tional density f(x|6). In subsequent discussions, the notation
P(Ale) denotes the conditional probability that x is in A given
that the true ability is 6.
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A referral task (Huynh, 1976) shall be assumed to exist. The
task is operationally defined via a nondecreasing function s(8)
which specifies the probability that an examinee with true ability
6 will succeed in performing the task. The referral task may be

real or hypothetical. For example, if the test scores reflect

achievement in the current instructional unit, then the next, pre-
sumably more advanced, unit may serve as the referral task. This
may be the case, for example, if instructional units are hierarch-
ically sequenced according to the level of complexity (Huynh and
Perney, 1979). 1In other situations, such as minimum competency
testing, a consensus on what constitutes an acceptable level of
performance may be conceptualized as a referral task. To be spe-
cific, let it be agreed that in order to qualify as a true master,
an examinee must have a true ability of at least eo. The.. the
referral success function may be taken as s(8) = 0 for 8§ < eo and
s(8) =1 for 6 > 60. The constant 60 is referred to as a criterion
level by Hambleton and Novick (1973) and a true mastery score by
Huynh (1976).

The examinee will be classified in either the mastery status
(action al) or the nonmastery status (action a2) on the basis of
the test score x and by relying on some decision rule c. Given a
specific true ability score 0, test scores may take a variety of
values in a certain range. Hence, for each examinee, actions a,
and a, may both have positive probabilities of being chosen. These

2
probabilities sum to one since either a, or a, must be taken. The

performance of the examinee on the refeiral tzsk may be deemed
success (true state bl) or failure (true state b2). If the true
state 1is bl, then action a; should be taken. For b2, a, should be
selected. For these two cases, each .»urse of action taken is the
best, hence no (opportunity) losscs are involved. On the other
hand, the combination (al’bZ) constitutes a false positive decision,
and (aZ’bl) a false negative classification. Let the loss asso-
ciated with (al’bZ) be cf(e) and that incurred by (aZ’bl) be CS(O).
These losses are functic.s of a particular true ability 0. At this
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true ability, b1 occurs with probability s(8) s.d b2 with probability
1 - s(6). Hence, the loss is expected to be Cf(e)-(l—s(e)) for
taking action a5, and cs(e)-s(e) for taking action a,.
Consider the decision rule denoted by c. This rule partitions
the range of the test scores into two disjoint subsets: Al (for
action al), and A2 (for action 82)’ each with a conditional prubabil-
ity of P(Allﬁ) and P(Azle), respectively. For an examinee with true

ability 6, the expected loss associated with ¢ is

L(c,8) = C.(9)+(1-s(8))-P(A, |0) + C,(8) *s(8) (A, 0) . (1)

Let

M(c) = sup L(c,8). (2)
feq

Then .Ye minimax decision rule <, is the one which corresponds to
the minim - (if it exists) of M(c) when c ranges in the space con-
sisting of al. nossible decision rules. This paper, however, will
restrict itself to .“e case of nonrandomized decision rules.

More details regarding the minimax principle and its relation-
ship with Bayesian decision procedures (as implemented in Huynh
(1976), for example) may be found in Ferguson (1967). The reader
may note that, in a number of situations, there exists a (least
favorable) prior distribution on the true ability such that the
corresponding Bayes solution is exactly the same as the minimax

decision rule.

The remaining portion of this paper will deal only with the
binomial error model when it is used with a 0-1 form for the
referral success function. The binomial error model appears to be
applicable when the test given to each examinee can be thought of
as a random sample of items drawn from a large item pool. On the
other hand, the 0-1 form for s(8) implies a consensus on a minimum

level of mastery on the true abilitv continuum.

3. THE BINOMIAL ERROR MODEL WITH O-1 REFERRAL SUCCESS

Consider the case where s(8) = 0 for 6 < 60 and s(8) = 1 for

8 3_60. In the simple context of mastery testing, the inequality

23
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"g < eo" describes a true nonmastery state whereas the inequality

" > eo" indicates a true mastery state. In other words, €, is the
minimum true ability that an examinee must have in order to qualify
for true mastery in the domain of content under consideration. It
follows that the expected loss associated with the decision rule c
as specified in (1) becomes

C.(6)P(A,l8) 4if 6 < o
L(c,0) = © 1 0 3)

C (O)P(A,[0) if 6 > 8, -
Now let "
L (c) = sup C_(8)P(A,|6)
1 o<e I 1
(o]
and
L,(c) = sup cs(e)p(Azle);
6-6
- 0
then

M(c) = max {Ll(c)’LZ(c)}'

Suppose that for a fixed 6, the distribution of x follows the
binomial density function f(x) = (:)ex(l-e)“'x. This is called the
binomial error model (Lord & Novick, 1968). Such a distribution
belongs to the monotone likelihvod ratio family (Ferguson, 1967,
chap. 5). Under fairly general conditions regarding cf(e) and
cs(e), the search for a nonrandomized minimax rule c, may be con-
fined to the class of partitions of the test score range
A1 = {x;x < c -1} and A2 = {x;» > c} defined by a cutoff score c.
The cutoff score cy which corresponds to the minimax rule Cys will

be referrea to as the minimax passing score. There are two degen-

erate cases which correspond toc = 0 and ¢ = n+ 1. When c = 0,
Al is empty, and hence the examinee is declared a master regardless
of his test score. On the other hand, A2 is empty if ¢ = n + 1.
For this situation, mastery is always denied.

-t follows that the minimax passing score may be found by
minimizing the function M(c) = max {Ll(c),LZ(c)} where
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n
L (e) = sup c(8) & (D)o (1-0)" (4)
6<6 X=C
o
wnd
c-1 n, .X n-x
Lz(c) =sup C (8) (x)e (1-96) . (5)
q:eo s X=0

The following section will provide the detailed computations

for the case of constant losses.

4. THE BINOMIAL ERROR MODEL WITH 0-1
REFERRAL SUCCESS AND CONSTANT LOSSES

Let € and €y be two suitably chosen nonnegative constants
such that 0 < 60 e 60 +te,y < 1. Without loss of generalit-,

the case of constant }osses may be specified as follows:

1 1if 6 < eo g
cf(e) =

0 if 60 “g s 8 < 60,
and
Q if 6 + ¢, <8
c,(6) = °o 2
0 4f 8 <6 <H +¢,.
o— o 2
Thus the region 8¢ [60 - £ 60 + 92) is an indifference zone. For
an examinee with a true ability within this region, it does not
matter whether action a) or a, is taken. It may be noted that the
constant Q is the ratio of the loss caused by a false negative
decision to that incurred by a false positive decision (i.e.,
Q = C(8) : Cg(8)).
It can be verified that the functions Ll(c) and LZ(:) as
detailed in (4) and (5) are given as

L (c) = : () (8- ) (18 +e )" ™™ (6)
X=Cc
and
c-1 n X n-x
L (&) = Q@ I ()(65key) (1-0g-e)) " 7)
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For the general case where el and e2 are not zero, the search for
the minimax passing score ¢, may be accomplished by computing the
value of M(c) = max {Ll(c),Lz(c)} for each valuec =0, 1, 2,..., ntl,

and then selecting the value S at which M(c) is the smallest.

Numerical Example

Assume n = 5, 60 = ,80, € = .10, €y = .05, and Q = .80.
Tahle 1 reports the values of Ll’ L2’ and M at the passing scores
of 0, 1, 2, 3, 4, 5, and 6. Note that both 0 and 6 are degenerate

passing scores. The minimax passing score is ¢, = 5.
TABLE 1

Values of the Functions Ll’ LZ’ and M

Passing Score

Function 0 1 2 3 4 5 6
Ll(c) 1 .99757 .96922 .83692 .52822 .16807 0
Lz(c) 0 .00006 .00178 .02129 .13183 .44503 .80
M(c) 1 .99757 .96922 .83692 .52822 .44503 .80
The minimax passing score is ¢ = 5. All computations were carried

out with a table of cumulativeobinomial distributions.

The aforementioned discussion encompasses part of the presenta-
tion by Wilcox (1976) regarding the length and passing score of a
mastery test. Table I of the Wilcox paper provides minimax passing

scores for the following combinations: n = 8 (1) 20, 60 (Wilcox's
no) = ,70 (.05) .85, € = & (Wilcox's ¢) = .05, .10, and Q = 1.
The maximum expected loss, M(co), associated with the minimax
passing score is obtained by subtracting from one the minimum
probability of a correct decision as tabulated in Wilcox's Table I.
For examnle, with n - 10, 60 = ,75, el =€y = .05, and Q = 1, the
minima:: passing score is ¢, = b. The corresponding maximum expected
loss is M(co) =1 - .6172 = ,3828.

The remaining part of this paper will focus on the case

E

=g = 0. It follows from Equations (6) and (7) that

M(c) = max {Ll(c),Q‘(l'Ll(c))}

1
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where

3

Ll(C) =
X

n, X n-x
Qg™ 8)

If the test score x were continuous, the minimax passing score c
would be the one at which Ll(c) = Q'(l—Ll(c)). In other words, it
would satisfy the equation

n
n, . x n-x _ _
r (eX(-e )" ™ - 186' (9)

X=C
[0}

If this equation has an integer solution s then s is the minimax

passing score. Otherwise, let c; be the smallest integer such that

n

ny X.._ n-x __Q
xfc' (x)eo(l 90) < Q" (10)
o

The minimax passing score will be either c; or cg-l {or possibly

both), whichever mininizes the maximum expected loss M(c).

Numerical Example

Let n = 10, 90 = .70, and Q = .5. Then via a table of cumula-

tive binomial distributions, it may be found that cé = 9, At the

cutoff score 9, M(c) = 4253, and at the other cutoff score 8

(=c;—1), M(c) = .3828. Thus the minimax passing score is ¢, = 8.

Now let 1(p,q;t) denote the incomplete beta function as tabu-

lated in Pearson (1934) and implemented via computer routines such
as BDTR of the IBM Scientific Subroutine Package (1971) or MDBETA
of the International Mathematicol and Statistical Library (1977).

Inequation (10) may now be written as

— . Q_ )
I(co,n co + 1,90) < 149" (11)

This inequality is reminiscent of the one defining the Bayes

(or empirical Bayes) passing score for the beta-binomial model as

presented in Huynh (1976, p. 70-72). 1In fact, let us impose on the

true ability 6 the prior beta density with parameters o« and 8.

Then the Bayes (or empirical Bayes) passing score is the smallest
at which

integer c

1
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I(a+cl,n+8-cl;9°) 5_126. (12)

It appears from (11) and (12) that the minimax passing score <, and
the Bayes passing score c, do not differ by more than one unit if
B =1 and if o is sufficiently small.

A special note is due for the case Q = 1, +.e., when the conse-
quences associated with false positive decisions and false negative
decisions are weighted equally. Equation (9) or Inequation (.0)
indicates that the minimax passing score <, would be chosen such
that, for an examinec with true ability 90, chances are about equal
that he would be classified as a master or a nonmaster on the basis
of the test score.

Finally, a normal approximation is available for reasonably
large n and for 90 not too close to 0 or 1. Let § be the 100/(1+Q)
percentile of the unit normal distribution. The minimax passing

score may be approximated by the quantity

e, =no_ + g(neo(l—eo))%.

5. THE BINOMIAL ERROR MODEL WITH 0-1 REFERRAL SUCCESS
AND POWER LOSSES CENTERING AROUND 6,

Consider now the loss functions cf(e) = (90—8)pl for 8 < 60
and CS(S) = Q(S-eo) 2 for 6 > 90, where Py> Py and Q are positive
constants. Linear losses correspond to P TPy = 1 and squared
error losses are obtained by letting P =Py = 2. At the cutoff
score ¢, we have

pl n x n-x
Ly(e) =sup (8 -0) =~ £ (D)e*(1-0)
o X
0<0 Xx=c
o
and
p2 c-1 n, .X n-x
Lz(c) =sup Q(0-0) r (e (1-0) .
o X
0>0 X=0
ZV0 .
For the special case ¢ = 0, Ll(c) = OOJ and Lz(c) = 0, hence

P
M(c) = 901. Onpthe other band, when ¢ ; n+l, Ll(c) = 0 and

Lz(c) = Q(1-e°) 2, hence M(c) = Q(l—Oo) 2. For other situations

where 1 < ¢ < n, it may be shown that thece exist two values %
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and 62, 0 < 61 < 60 < 62 < 1 such that at each cutoff c,

L.(c) = (v -6 )pl ; Me*(-s )% (13)
1 o 1 x=cC x’ 71 1
and
L‘(c) = Q(8.,-6 )p2 cgl (M e¥(1-0, )% (14)
2 2 "o x=0 X 2 2 *

As in all previous discussions, M(c) = max {Ll(c),Lz(c)}. The
mininax passing score s is the one at which the maximum expected
loss M(c) is minimized.

The determination of 61 and 62 at each cutoff score c may be
carried out via numerical approximation procedures such as the

Newton-Raphson algorithm for solving nonlinear equa'ions.

5.1. Searching for ngcz

Consider now the function

n
n, X n-x
zl(e) = I (x)e (1-6) .

x=c
The first derivative Zi of zZ, with respect to 8 is given as
T o x-1 n-x X n-x-1
2y(0) = & () {x6""(1-0)"" - (n-x)6™(1-6) ).
x=c

Taking into account that

n-1

n
M= = a7

and
n n-1
(x)(n-x) = n( x )

it follows that

n-1

n n-1, .x-1 n-x n-1, .x n-x-1
Zi(e) = n[ z (x_l)e (1-8) - L ( x )67 (1-6)
X=c X=c
or
' = o(Mac=1l/q_ayn-c
zl(e) = c(c)e (1-8) .
Now let
29
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5]

Hl(e) = (90-6) zl(e).

Then the value 60 of 6 which maximizes Hl(e) satisfies the equation
1 -
H)(6,) = 0, where

-1

, P F1
Hl(e) =-P1(9°-9) Zl(e) + (eo-e)

' N
Zl(u, .

In other words, 6, satisfies the equation Dl(el) = 0, where

I 8 =

n, X n-x n c-1 n-c .
Dl(6)=-—p1 . (x)e (1-9) + c(c)(eo-e)e (1-90) =0, (15)

C

To solve this equation via the Newton-Raphson algorithm, the
derivative Di(e) is needed. 1It is given as

pi(6) = (M6 ?(1-0)" "¢ (o) (16)
where

G1(8) = -(p+1)6(1~8) + (8_-6) (c-1-(n-1)6) (17)
or

6,(6) = (m+p))6” — (p +et(n-1)6 )0 + (c-1)0_. (18)

Consider first the situation where ¢ > 1. It may be seen from
(17) that Gl(O) = (c-l)eo > 0 and Gl(eo) = -(p1+1)€°(1—6°) < S.
Hence it may be seen that Gl(e) vanishes at only one point, 6

*
between 0 and 60. The value of 9 1is given as

e* ) pl+c+(n—l)d0 - {(pl+c+(n-l)6°)2 - 4(n+pl)(c—l)6°}%
2(n+p,) ’

I: follows that Di(e) is positive when 0 < 0 < 6* and negative w:en
6 < 0 < 60. In oth:r words, Dl(e) is increasing when 0 < @ <*6 ,
is decreasing when 6 < 8 < 60, and reaches a maximum at 6 = ¢ .
Since Dl(O) = Q, Dl(el) > 0. On the other hand, Dl(eol < 0 as may
be seen from (15). Hence Dl(e) = 0 at only 91 where 6 < 61 < 60.
By entering ¢ = 1 directly in Equation (15), it may also be argued
that Dl(O) = 0 at only 01 somewhere hetween 0* = 0 and Oo.

The above discussior indicatcs that the value 01 may be obtained

via the Newton-Raphson iteration procedure with input data Dl(O) and
Di(O) computed via (15), (16), and (17). The iteration process has
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been found to converge if the suitably chosen starting value for 6

*
is somewhere between 8 and eo.

5.2. Searching for L,(8)

In the expression defining Lz(:) at the beginning of this
section, let Eo = 1-e°, £E=1-6, y = n-x, and d = n-c+1. It then
may be seen that

P n -
Ly =qsuwp (60 ¢ 1 () a-o".
A1 y=d
It follows that the search for 62, and hence L2(c), may be conducted
in the same way as in the locating of el.
6. A FRAMEWORK OF CORREC.LON FOR GUESSING

Consider now the case whe:e each test item has A alternatives,
and let us assume that an examinee without knowledge on a given item
will randomly choose one of the A alternatives as his response.
Thus the framework of knowledge-or-random-guessing is used in the
present section.

As in previous sections, let 6 be the true proportion of items
thet an examinee has knowledge of and would respond correctly to if
given. Since the examinee guesses randomly on the remaining items
(which account for a proportio~ 1-6), and since each item has A
alternatives, the proportion of items that would be answered cor-
rectly by pure guessing is (1-6)/A. Thus an examinee with true
ability 6 will actually have a probability of t = 6+(1-6)/A to
answer correctly each item of the pool of items from which the test
is assembled. It may be noted that since 0 < ) < 1, %’i t <1,

Now let 60, Py and Py have the same meaning as in the begin-
ning of Section 5, and let

t, = ed+(1—eo)/A.

Then it may be seen that
A

and hence
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P P, n
A "1 1 . -
Li(e) = G~ sup (£ -t) z (-6, (19)
X S
and

A.P2 Py c-1 n-— n-x N
Ly(e) = QT " sup (t-t ) © = (Je@-t)" 7. (20)

3t x=0

For the two degenerate cases ¢ = 0 and ¢ = n+l, the maximum

expected loss M(c) takes the values
P P
_,A "1 _ 172
M(0) = G (g, )
and
P P
_ A2, 2
M(n+l1) = Q(K:I (1 to) .

As for 1 < c < n, the search for Lz(c) of (20) may be conducted via
the: procedure described in Section 5.2. The value Ll(c) from (19),

A
the steps described in Section 5.1 to obtain the maximum of the

with the constraint é § t < to, may be obtained by going through

function

=]

P
(0 = (e 11 (HeR-nt
X=C

under the constraint t j_to and the value t* at which the maximum
occurs. If t* >‘%, then
P
= (A, *

On the other hand, if t* 5‘%, then

P
L (c) = (XiAT 1 g(%)-

As in other cases, M(c) = max {L1(c),L2(c)} and the minimax passing

score is the one at which M(c¢) is the smallest.

Numerical Example

et n = 15, 60 .60, A = 4, Py =P, = .5, and Q = .25. Tbhe

minimax passing score is 12. Without correction for guessing, the

minimax passing score would be 11.
32

a7




MINIMAX PASSING SCORES

7. RELATIONSHIP BETWEEN MINIMAX PASSING
SCORES AND OTHER PARAMETERS

Extensive computations as well as the examination of Appendix A
reported in Section 8 reveal that, other things being the same, the
minimax passing score is a nondecreasing function of n, eo, and P,
and a nonincreasing function of A, Pys and Q. These trends seem to
be justified intuitively. For example, a low Q or a high Py will
reduce the consequences incurred with a false negative error;
hence, a higher passing score might be needed to dampen the overail
expected loss associated with the decision problem. On the other
hand, high values of Py will reduce the consequences of a false
positive error, thus making a lower passing score tolerable. As
for the number A of alternatives, a low value for A will provide
opportunity for some extra probability of getting a correct answer
beyond the true ability of the examinee. Thus it would be sensible
to increase the passing score in order to offset this unwarranted
benefit.

8. TABLES OF MINIMAX PASSING SCORES

The computations described in Sections 5 and 6 may be imple-
mented where computer facilities are available. A FORTRAN IV
routine will be described in the next section. In a number of
instances, however, a passing score might be nceded quickly.
Appendix A presents a set of tables of passing scores for the case
of no correction for guessing (Section 5) only.

All computations were carried out via the FORTRAN program
described in Section 9. The tables are set up with the presumption
that the false-negative consequences are less serious than those
incurred by false positive errors. The parameter Q is set at .25,
.50, .75, and 1.00. Sixteen combinations of P and Py are used,
namely those in which these parameters vary from .50 to 2.00 in steps
of .50. The number of items is set at n = 3 (1) 20, and the crite-
rion level at eo = ,50 (.05) .90.

It is possible to get a passing score of n+l, especially whe\

eo is large and/or Q is small. Such a mastery score indicates that

33




HUYNH

nommastery is always declared regardless of test score. This
peculiarity is due 'o the discontinuous nature of the binomial
probability density and produces the seeming paradox noted in the
papers by Novick and Lewis (1974, p. 153-154) and by Wilcox (1976,
P. 362, footnote) and in Section 10 of this report. 1In a practical
sense, tke peculiarity may be avoided by (i) not allowing eo to be
unrealistically high, and (ii) not letting the loss associated with
one type of error in decision (false positive or false negative)
dominate that associated with the other type of error.

In a number of instances, it may be possible to deduce a passe-
ing score for nontabled entries by taking advantage of the relation-
ships described in Section 7.

Example 1

Let n = 10, Pp =P, = .5, and Q = .75. At eo = ,70 and .75,
the passing score is 8. Hence for all 6 between .70 and .75, it

may be assumed that the passing score is also 8.

Example 2
Let n = 10, P, = .5, eo = .70, and Q = .25. At both P, = .5

and 1.0, the passing score is 9. It may be assumed that the same

passing score holds for any P, between the two given values.

9. COMPUTER PROGRAM

A FORTRAN IV routine for passing score computations based on
Sections 5 and 6 is listed in Appendix B. The program requires
two packaged subroutines, DRTNI from the Scientific Subroutine

Package (1971) and MDBIN of the International Mathematical and
Statistical Library (1977).

The main part of the program contains an attempt to solve
Equation (15) iteratively at each ¢ via the Newton-Raphson procedure
for nonlinear equations, as implemented by DRTNI. A good starting

value for 6 is required for convergence; therefore, the following

steps are built into the program.

*
1. First, the value 6 of Section 5.1 is computed.
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2. The interval (e*,eo) will then be divided into N equal
intervals using (N-1) points. The value of Dl(e) of (15)
is computed at successive dividing points until two
points, ea and eb, are found such that the product
Dl(ea)Dl(eb) < 0.

3. Then the interval (ea,eb) will be subdivided in M equal
intervals in order to search for two successive dividing
points et, 8, such that Dl(et)Dl(es) < 0.

4. Finally, the starting value for DRTNI is set at
(6, +0.)/2.

In the construction of the tables of Section 8, the following
values were used: N = 20 and M = 50. The tolerance for § was set
at EPS = .0001. Subroutine DRINI converged in all cases listed in
the tables. For long tests along with ec very near 0 or 1, an M

larger than 50 might be needed for convergence.

10. A SEEMING PARADOX

Consider the mastery decision defined by the parameters n = 3,
8, = .8, P =Py = «5, and Q = .25. The nonrandomized minimax
passing score is 3, at which the maximum expected loss M(c) is .218.
low let us suppose that the decicion has been carried out on a
continuous random variable Y independent of the ability @ of the

examinee. Let ¢ be any cutoff score. Then

P
L,(c) = sup (8 -8) 1 P(y > ) = .89443 P(Y > ¢
<0
[o]

and

P2
Ly(c) = Qsup (6-6) “ P(Y < c) = .11180(1-P(Y > c)).
6>6
o
It follows the maximum expected loss M(c) is minimized when
Ll(c) = Lz(c) at which P(Y > c) = .111, and M(c) = .100. Thus, as
Judged by the minimax principle, tho decision rule of randomly
assigning mastery status with an 11.1 percent probability and
uonmastery status with an 88.9 percent probability is better than

that based on the test score!
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The apparent paradox is actually caused by the restriction of

the decision problem to the class of nonrandomized classifications

defined by the p: 'sing scores of 0, 1,..., n, ntl. A similar
contradiction is alsc displayed in a paper by Wilcox (1976) in
which the minimum probability of a correct decision is not an
increasing function of the number of test¢ items.

The paradox, however, may be resolved by a consideration of

the entire class of randomized decision rules. It is well known

(Ferguson, 1967, Section 2.8) that under fairly general conditions,
there always erists a randomized decision rule which is as good as
or better than a given nonrandomized decision rule. Randomized
minimax decisions, unfortunately, seem harder to approach than

nonrandomized decisions.
11. SUMMARY

In this re, 'rt solutions are provided for the setting of pass-—
ing scores within the context of nonrandomized decisions based on
the binomial test score model. No issumption is required regarding
the true ability Jdistribution of the individual examinee or of the
group of examinees under study. The model assumes that the test is
formed by a randum selection of items from a large (real or hypo-
thetical) pool of items. In . dition, it requires specification of
the minimum true ability for mastery and of consequences incurred
by misclassificatiun errors. A scheme for correction-for-guessing
within the minimax framework is also pres:-~ted. Tables and descrip-~
tions . a computer program are also provided to facilitate the

determination of passing scores.
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APPENDIX A

Tables of Minimax Passing Scores
in the Binomial Error Model

39 4.;




MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p2-0.5

80 (%)= 8 (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.25 «--cecccmaccacncccncccaaaa Q=0.50 ~ccceccan-
3 3 3 3 3 3 3 3 4 ¢4 3 2 3 3 3 3 3 3 3 &4
4 3 4 4 4 4 4 4 5 5 4 3 3 3 4 &4 & 4 4 4
5 4 4 4 5 5 5 5 5 6 5 3 4 4 4 4 5 5 5 5
6 4 5 5 5 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 5 6 % 6 7 71 7 17 7 5 556 6 6 7 171 17
8 6 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 7 8 8
9 6 727 7 7 8 8 9 9 9 9 6 6 6 7 7 8 8 9 9
10 7.7 8 6§ 9 9101010 10 6 7 7 8 8 9 91010
11 7 8 8 9 9101011 11 11 7 7 6 8 9 91010 11
12 3 8 91010 11 11 12 12 12 7 8 8 91010 11 11 12
13 8 910 10 11 11 12 13 13 13 8 8 9101011 12 12 13
14 9 10 10 11 12 12 13 13 14 14 8 91010 11 12 12 13 14
15 9 10 11 12 12 13 14 14 15 15 9 5101112 12 13 14 15
16 10 11 12 12 13 14 15 15 16 16 9 10 11 12 12 13 14 15 16
17 10 11 12 13 14 15 15 16 17 17 10 11 11 12 13 14 15 16 16
13 11 12 13 14 15 15 16 17 18 18 10 11 12 13 14 15 16 17 17
1 12 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 16 17 18
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

0o (%) 0o(%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 66 55 70 75 80 85 90
------------- Q=0.75 ==e--cmcccacccccccacacneaas Q=]1,00 ~mmememe--
3 22 2 3 3 3 3 3 3 3 22 23 33 3 3 3
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 &
5 3 3 4 4 4 5 5 5 5 5 3 3 4 4 4 &4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 4 5 5 5 6 6
7 4 55 5 6 6 6 7 7 7 4 4 55 5 6 6 7 7
8 55 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 7 8
9 5 6 6 7 7 8 8 8 9 9 55 6 6 7 7 8 8 9
10 6 6 7 7 8 8 9 910 10 5 6 7 7 8 8 9 910
11 6 7 7 & 9 91010 11 11 6 7 7 8 8 9 91011
12 7 7 8 9 91010 11 12 12 6 7 8 8 9101011 11
13 7 8 9 9101111 12 13 13 7 8 8 9101011 12 12
14 8 9 91011 11 12 13 13 14 7 & 910 10 11 12 13 13
15 8 910 11 11 12 13 14 14 15 8 91010 11 12 13 13 14
16 9 10 10 11 12 13 14 14 15 16 8 910 11 12 13 13 14 15
17 910 11 12 13 14 14 15 16 17 910 i1 12 12 13 14 15 16
18 10 11 12 13 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 1C 11 12 13 14 15 16 17 1¢ 19 10 11 12 13 14 15 16 17 18
10
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Table of Minimax Mastery Scores in the Binomial Error Model
with pl-O.S and p2-1.0

H

w
=
NHCOWVWVKRONNOULULIS S WW

90(70)=
65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Qu0.25 ~-mcemmcmemcamecee——————a- Q=0.50 =emmem—en-
3 3 4 4 4 ¢4 3 3 3 3 3 3 3 4 4 4
4 4 4 5 5 5 4 3 & 4 4 4 4 4 5 5
5 5 5 6 6 6 5 4 4 4 5 5 5 5 6 6
6 6 6 6 7 7 6 5555 6 6 6 6 7
7.7 7 7 8 8 7 5 56 6 7 7 7 7 8
7 8 8 8 9 9 8 6 6 6 7 7 8 8 8 9
8 8 9 9 910 9 6 7 7 8 8 8 9 910
9 910 10 10 11 10 7 7 8 8 9 91010 10
10 10 10 11 11 12 11 7 3 9 910101111 11
10 11 11 12 12 13 12 8 9 91010 11 11 12 12
11 12 12 13 13 14 13 9 910111112 12 13 13
12 12 13 14 14 14 14 9 10 11 11 12 13 13 14 14
12 13 14 14 15 15 15 10 10 11 12 13 13 14 15 15
13 14 15 15 16 16 16 10 11 12 13 13 14 15 16 16
14 15 15 16 17 17 17 11 12 13 13 14 15 16 16 17
15 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18
15 16 17 18 19 19 19 12 13 14 15 16 17 17 18 19
16 17 18 19 20 20 20 12 13 14 1516 17 18 19 20
65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.75 ~~=s-memacccmmeccecnnaen- Q=1.00 cmeemenen-
3 3 3 3 4 ¢4 3 2 3 3 3 3 3 3 3 &4
& 4 4 4 4 5 4 3 3 3 4 4 4 4 4 5
4 5 5 5 5 6 5 4 4 4 4 5 5 5 5 6
S 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
6 6 7 7 7 17 7 5 55 6 6 6 7 7 7
7 7 7 8 8 8 8 5 6 6 6 7 7 8 & 8
7 8 8 9 9 9 9 6 6 7 7 8 8 9 9 9
8 9 91010 10 10 6 7 7 8 8 9 91010
9 910 10 11 11 11 77 8 9 91010 11 11
10 10 11 11 12 12 12 7 8 9 91010 11 12 12
10 11 11 12 13 13 13 59 9101111 12 13 13
11 12 12 13 14 14 14 9 910111112 13 13 14
12 12 13 14 14 15 15 910 11 17 12 13 14 14 15
12 13 14 15 15 16 16 10 10 11 12 13 14 14 15 16
13 14 15 15 16 17 17 10 11 12 13 14 14 15 16 17
14 15 15 16 17 18 16 11 12 13 13 14 15 16 17 18
14 15 16 17 18 19 16 11 12 13 14 15 16 17 15 19
15 16 17 18 19 20 20 12 13 14 15 16 17 18 1v 20

20 12

TR O 0O O SIS U e 5 S0 S0 SP T e S5 T N P G 6 S S5 O = S5 S5 Wr S5 0 TP PSP S0 P O W 0P 6 ob TP S5 S5 W = T P = S @ @ LR R R R N PR T
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p2 =l,5

60(7")= 60(7:’ =
50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.25 =-=mmmememmmmmecemcccaac=an Qu0,50 ========a-
3 3 3 3 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4
4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 5 5 5
5 5 55 5 5 6 6 6 6 5 4 4 5 5 5 5 6 6 6
6 5 5 6 6 6 6 7 7 17 6 5 5 5 6 6 6 6 7 7
7 6 6 7 171 7 7 8 8 8 7 5 6 6 7 71 7 7 8 8
8 6 7 7 8 8 8 9 9 9 8 6 2 7 7 8 8 8 9 9
9 7 8 8 8 9 9 91010 9 7 7 8 8 8 9 91010
10 8 8 9 91010 10 11 11 10 7 8 8 9 91010 1011
11 8 9 910 10 11 11 12 12 11 § 9 91010 11 11 11 12
2 91010 i1 11 12 12 13 15 12 9 91010 11 11 212 12 13
13 10 10 11 11 12 13 13 13 14 13 9 10 10 11 12 12 13 13 14
14 10 11 12 12 13 13 14 14 15 14 10 10 11 12 12 13 14 14 15
15 11 12 12 13 14 14 15 15 16 15 10 11 12 13 13 14 15 15 16
16 11 12 13 14 14 15 16 16 17 16 11 12 13 13 14 15 15 16 17
17 12 13 14 15 15 16 17 17 18 17 12 12 13 14 15 16 16 17 18
13 13 14 14 15 16 17 18 18 19 18 12 13 14 15 16 16 17 18 18
19 13 14 15 16 17 18 18 19 20 19 13 14 15 16 16 17 18 19 19
20 14 15 16 17 18 19 19 20 21 20 13 14 15 16 17 18 19 20 20
8, (%)= 6o (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q0.75 =mmmmemcemmeemeesccecaaeas Q1,00 ==-a-ae=--
3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 4 4 4
4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 4 4 4 5 5
5 4 4 5 5 5 5 5 6 6 5 4 4 4 5 5 5 5 6 6
6 5 5 5 6 6 6 6 7 7 6 5 5 5 5 6 6 6 7 7
7 5 6 6 6 7 7 7 8 8 7 55 6 6 7 7 7 7 8
8 6 6 7 7 7 8 8 8 9 8 6 6 7 7 7 8 8 8 9
9 6 7 7 8 8 9 9 910 9 6 7 7 8 8 9 9 910
10 7 8 8 9 510101011 iv 7 7 8 8 9 9101011
11 8 8 9 9 10 10 11 11 12 11 8 8 9 910 10 11 11 12
12 8 910 i0 11 11 12 12 13 12 8 9 910 11 11 12 12 13
13 9 10 10 1i 11 12 13 13 14 13 9 910 11 11 12 12 13 13
14 910 11 12 12 13 14 14 15 14 9 10 11 11 12 13 13 14 14
15 10 11 12 12 13 14 14 15 15 15 10 11 11 12 13 14 14 15 15
16 11 11 12 13 14 15 15 16 16 16 10 11 12 13 14 14 15 16 16
17 11 12 13 14 15 15 16 17 17 17 11 12 13 14 14 15 16 17 17
18 12 13 14 15 15 16 17 18 18 18 12 12 13 14 15 16 17 138 18
19 12 13 14 15 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19
20 13 14 15 16 17 18 19 20 20 20 13 14 15 16 17 18 19 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p =2,0

2
8o(%)= 9o ()=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Qm0.25 ~memmcmmeemececccsmccceeee Q0,50 =e=mmemaas
3 3 3 3 4 &4 4 &4 4 4 3 3 3 3 3 4 4 4 4 4
4 4 4 4 4 5 5 5 5 5 & 4 4 4 4 4 5 5 5 5
5 5 55 5 6 6 6 6 6 5 4 5 5 5 5 6 6 6 6
6 5 6 6 6 6 72 7 71 17 6 5 56 6 6 6 7 171 7
7 6 6 72 7 7 8 8 8 8 7 6 6 €6 7 7 7 8 8 8
8 7 7 8 8 8 8 9 9 9 8 6 727 7 8 8 8 9 9 9
9 7 8 8 9 9 91010 1¢C 9 7 8 8 8 9 9 91010
10 8§ 9 91010 10 11 11 11 10 8 8 9 910 10 10 11 11
11 9 910 10 11 11 11 12 12 11 8 9 910 10 11 11 12 12
12 9 10 11 11 12 12 12 13 13 12 9 10 10 11 11 12 12 13 13
13 10 11 11 12 12 13 13 14 14 13 10 10 11 12 12 13 13 14 14
14 11 11 12 13 13 14 14 15 15 14 10 11 12 12 13 14 14 14 15
15 11 12 13 13 14 15 15 16 16 15 11 12 12 13 14 14 15 15 16
16 12 13 13 14 15 16 16 17 17 16 11 12 13 14 15 15 16 16 17
17 13 13 14 15 16 16 17 18 18 17 1213 14 15 15 16 17 17 18
18 13 14 15 16 17 17 18 18 19 18 13 14 15 15 16 17 18 18 19
19 14 15 16 17 17 18 19 19 20 19 13 14 15 16 17 18 19 19 20

20 14 15 16 17 18 19 20 20 21 26 141516 17 18 19 19 20 21

o, (%)= 8 (D)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.75 ===eemcececcceccaccecaiaace Qml, 00 =mmmmmme--m
3 333 3 4 4 & 4 & 3 33 3 3 3 4 4 4 4
4 & 4 & &4 4 5 5 5 5 4 3 4 4 4 4 & 5 5 5
5 4 55 5 5 5 6 6 6 5 4 4 5 5 5 5 6 6 6
6 5 56 6 6 6 7 7 7 6 555 6 6 6 7 7 7
7 66 6 7 7 7 71 8 8 7 56 6 7 7 1 71 8 8
5 6 7 7 7 8 8 8 9 9 8 6 7 7 7 8 8 8 9 9
9 7 7 8 8 9 9 91010 9 7 7 ¢ 8 9 9 91010
10 3 8 9 9 910101111 10 7 8 8 9 9 10 10 11 11
11 3 9 9101011111212 11 & 9 9 10 10 11 11 11 12
12 9 910111112121213 12 9 9 10 10 11 12 12 12 13
13 9101111 1212131314 13 91011 11 12 12 13 13 14
14 10 11 11 12 13 13 14 14 15 14 10 11 11 12 12 13 14 14 15
15 11 1112 13 14 14151516 15 10 11 12 13 13 14 15 15 16
16 11 12 13 14 14 15 16 16 17 16 11 12 13 13 14 15 16 16 17
17 12 13 14 14 15 16 17 17 18 17 12 12 13 14 15 16 16 17 18
18 12 13 14 1516 17 17 18 19 18 12 13 14 15 16 17 17 18 19
19 13 14 15 16 17 18 18 19 20 19 13 14 15 16 17 17 16 19 20
20 14 15 16 17 18 18 19 20 21 20 13 14 15 16 17 18 19 20 21
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2

=1,.0 and p =0.5

1

Table of Minimax Mastery Scores in the Binomial Error Model
with p

8, ()=
n 50 55 60 65 70 75 80 85 90

memeeeceecenc Q20,25 se=sceecccceccaccccacaacae Qm0.50 ~cmceaooas

o th=
n 50 55 60 65 70 75 80 85 90

345678990“
MNMITNOORONO
NMFTNNOMNOONO

— -

NI TNOONOANO
— -

NNNATNWNONMNOOND
— -

111 12 13 14
11 12 13 14 15
112 13 14 15 16
2 13 14 15 15 16
2 13 14 15 16 17
314 1516 17 18

NMNMTTVNOWONMNOOOOO

—
NMTNONRNOANOANNTITNONOONO
e R e e N e e N N N
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el A~~~
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A - -
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A~ -
MTNNORNRVDWOANAOOFHNMNITINY
el - -
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A~~~
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e~ —
NNOTITNWNOONMNODON” DN
A=~
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el AA A A~
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50 55 60 65 70 75 80 85 90

¢

R, -

6o (‘Z,)=

n 50 55 60 65 70 75 80 85 90
~mesecmsneces Q=0.75 m=ceccmcmeeceeccacaccaaan Q1,00 cecmeenen-

n
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+.0

Table of Minimax Mastery Scores in the Binomial Error Model
with p =i.0 and p =
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Mcdel
with p1=1.0 and p2-1.5

6o()= 8o )=
n 50 55 60 65 70 75 80 85 90 n 50 55 €0 65 70 75 80 85 90
------------- Q=0.25 =m-=-ecc-eseececccceccaancs Q=0,50 ==---=c=s-
3 33 3 3 3 4 4 4 4 3 3 3 3 3 3 3 3 4 4
4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 & & & 5 5
5 4 & 5 5 5 5 5 6 6 5 4 4 & 5 5 5 5 5 6
6 5 5 5 6 6 6 6 7 7 6 4 5 5 5 6 6 6 6 7
7 5 6 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 7 8
8 6 6 7 7 7 3 8 8 9 8 5 6 6 7 7 7 8 8 9
9 6 7 7 8 8 9 9 910 9 6 6 7 7 8 8 9 9 9
10 7 7 8 8 9 9101011 10 7 7 8 8 9 9101010
11 8 8 9 910 10 11 11 12 11 7 8 8 9 910101111
12 8 9 910 11 11 12 12 12 12 8 8 91010 11 11 12 12
13 9 910 11 11 12 12 13 13 13 8 910 10 11 12 12 13 13
14 91011 1112131314614 14 9 91011 12 12 13 14 14
15 10 11 11 12 13 14 14 15 15 15 9 10 11 12 12 13 14 15 15
16 10 11 12 13 14 14 15 16 16 16 10 11 12 12 13 14 15 15 16
17 11 12 13 14 14 15 16 17 17 17 10 11 12 13 14 15 16 16 17
18 12 12 13 14 15 1€ 17 18 18 18 11 12 13 14 15 15 16 17 18

19 12 13 14 15 16 17 18 18 19 19 12 12 13 14 15 16 17 18 19

85 (B)= 0 ()=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.75 ~-mwemecmeemeemmcoeesmeeoe Qul,00 ====-cece=
3 2 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3 &
4 3 3 3 4 4 4 & 4 5 4 3 3 3 4 4 4 & & 5
S 4 4 4 4 5 5 5 5 6 S 3 4 4 4 5 5 5 5 6
6 4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 55 6 6 7 7 71 17 7 4 5 5 6 6 6 7 7 1
8 5 6 6 6 7 7 8 8 8 8 5 5 6 6 7 7 8 8 8
9 6 6 7 7 3 8 9 9 9 9 6 6 7 7 8 8 8 9 9
10 6 7 7 8 8 9 91010 10 6 7 7 8 8 9 910 10
11 7 7 8 9 9101011 11 11 7 7 8 8 91010 1111
12 7 8 9 91010 11 12 12 12 7 8 8 910 10 11 12 12
13 8 9 91011 i1 1z 13 13 13 8 8 91016 11 12 1z 13
14 8 910 11 11 12 13 13 14 14 8 910 10 11 12 13 13 14
15 9 10 11 11 12 15 14 14 15 15 9 10 10 11 12 13 13 14 15
16 10 10 11 12 13 14 14 15 16 16 9 10 11 12 13 13 14 15 1€
17 10 11 12 13 14 14 15 16 17 17 10 11 12 13 13 14 15 16 17
18 11 12 13 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19

20 12 13 14 15 16 17 18 19 20 20 11 13 14 15 16 17 18 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-1.0 and p =2.0
2

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.25 ==c-=cccmecccccmccccccaace Q0,50 =-=c=-=-=-
3 333 3 4 4 4 & & 3 33 33 3 4 4 4 &
& 4 &4 & & & 5 5 5 5 4 3 &4 4 & 4 & 5 5 5
5 4 55 5 556 6 6 5 4 4 5 5 5 5 5 6 6
6 556 6 6 6 1 7 7 6 5 5 5 6 6 6 6 7 7
7 6 6 6 7 7 7 71 8 8 7 56 6 6 7 7 171 8 8
8 6 7 7 7 8 8 8 9 9 8 6 6 7 7 7 8 8 8 9
9 7 7 8 8 9 9 91010 9 6 7 7 8 8 9 9 910

10 7 8 8 9 910101111 10 7 8 8 9 9 10 10 10 11

11 8 9 9101011111112 11 8 8 9 910 10 11 11 12

12 9 9101011 11121213 12 8 9 910 11 11 12 12 13

13 910101112 12131314 13 9 9 10 11 11 12 13 13 14

14 10 10 11 12 13 13 14 1415 14 9 10 11 11 12 13 13 14 15

15 10 11 12 13 13 14 151516 15 10 11 11 12 13 14 14 15 15

16 11 12 13 13 14 15 16 16 17 16 10 11 12 13 14 14 15 16 16

17 121213 14 15 16 16 17 18 17 11 12 13 14 14 15 16 17 17

18 12 13 14 1516 16 17 18 19 18 12 13 13 14 15 16 17 18 18

19 1314 1516 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19
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n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0,75 ===cemecccecccmcccccaccaae Qul, 00 ~ecmemmca-
3 333 3 3 3 4 4 4 3 23333 3 4 4 &4
& 3 3 &4 &4 & & & 5 5 & 3 3 4 4 4 & & 5 5
5 4 & 4 5 5 5 5 6 6 5 4 4 4 55 5 5 6 6
6 4 555 6 6 6 71 7 6 4 5 5 5 6 6 6 6 7
7 556 6 7 171 1 1 8 7 556 6 6 7 7 7 8
8 6 6 6 7 7 8 8 8 9 8 56 6 7 7 8 8 8 9
9 6 7 7 8 8 9 9 910 9 6 6 7 7 8 8 9 910
10 7 7 8 8 9 9101311 10 7 7 8 8 9 9 10 10 11
11 7 8 8 91010111112 11 7 8 8 9 9 16 11 11 11
12 8 9 910 10 11 12 12 12 2 8 8 91010 11 11 12 12
13 8§ 91011 1112121313 13 8 9 10 10 11 12 1z 13 13
14 910111112 13 13 1414 14 9 10 10 11 12 12 13 14 14
15 10 10 11 12 13 13 141515 15 9 10 11 12 13 13 14 15 15
16 10 11 12 13 13 14 1516 16 16 10 11 12 12 13 14 15 16 15
17 111213 13 14 15 16 17 17 17 11 11 12 13 14 15 16 16 17
18 1112 13 14 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18

19 1213 14 1516 17 18 18 19 19 12 13 14 15 16




MINIMAX PASSING SCORES
Table of MMinimax Mastery Scores in the Binomial FLrror Mo.cl

with pl-l.S and p2-0.5

8o (%)= Bo(h)=
n 50 55 €0 65 70 75 80 &5 90 n 50 55 60 65 70 75 80 35 90
------------- Q=0.25 ------m-ceccmcccnccccnncn =0,50 c-—-emmme-
3 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 3 4 4
5 3 3 3 4 4 4 4 5 5 5 2 3 3 3 4 4 4 4 5
6 3 4 4 4 5 5 5 6 6 6 3 3 4 4 &4 5 5 5 6
7 4 4 4 5 5 6 6 6 7 7 3 4 4 4 5 5 6 6 €
S 4 5 5 5 6 6 7 7 8 8 4 4 5 5 5 6 ¢ 7 7
9 5 5 6 6 6 7 7 8 8 9 4 5 5 6 6 7 7 8 8
10 5 6 6 7 7 8 8 9 9 10 5 5 6 6 7 7 8 8 9
11 5 6 7 7 8 8 91010 11 5 6 6 7 7 8 9 910
12 6 7 7 8 3 91010 11 12 5 6 7 7 8 9 91011
13 € 7 8 8 9101011 12 13 6 7 7 8 9 91011 11
14 7 & 6 91010 11 12 13 14 6 7 8 8 910111212
15 7 8 910 10 11 12 13 14 15 77 8 910111. "~ 13
16 6 6 91011 12 13 14 14 16 7 6 910101112 .. 14
17 d 910 11 12 13 13 14 15 17 8 3 9101112 13 14 15
3 91010 11 12 13 14 15 16 18 8 910 11 12 13 14 15 16
19 9 10 11 12 13 14 15 16 17 19 8 910 11 12 13 14 16 17
200 10 11 12 13 14 15 16 17 16 l 9 10 11 12 13 14 15 16 17

6000 = 60(70)"’

n 50 55 60 65 7C 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- (=0.75 -e-emcmmmccncccncneccceces =100 ~eecmeca—-
3 1 2 2 2 2 2 3 3 3 3 1 2 2 2 2 2 2 3 3
4 2 2 2 3 3 3 3 4 4 4 2 2 2 2 3 3 3 3 4
5 2 3 3 3 3 4 4 4 5 5 2 2 3 3 3 4 4 4 5
6 3 3 3 4 4 4 5 5 5 6 2 3 3 4 4 4 5 5 5
7 3 3 4 4 5 5 5 6 ¢ 7 3 3 4 4 4 5 5 6 6
8 3 4 4 5 5 €6 6 7 7 8 3 4 4 5 5 5 6 6 7
9 4 4 5 5 ¢ 7 7 8 9 4 4 5 5 6 6 7 7 8
10 4 5 5 ¢ 6 7 8 8 9 10 4 5 5 6 6 7 7 8 9
11 5 5 6 6 7 86 & 910 11 4 5 6 6 7 7 8 9 9
12 5 6 6 7 8 8 91010 12 5 6 6 7 7 8 91010
13 6 6 7 3 8 9101011 13 5 6 7 7 8 910 10 11
14 6 7 7 & 9 1010 11 12 14 6 6 7 8 9 910 11 12
15 6 7 8 9101011 12 15 15 6 7 8 9 91011 12 13
16 7 8 8 91011 12 13 14 16 7 7 8 9101112 13 14
17 7 8 91011 12 13 14 15 17 7 8 910111212 13 14
18 8§ 91010 11 12 13 14 15 18 7 8 910111213 14 15
19 S 910 11 12 13 14 15 16 19 8 91011 12 13 14 15 16
<0 9 1011 12 13 14 15 16 17 2 8 910 11 12 14 15 16 17

.---——-_.---m---—-——.---—------——-----------—--—---—----_----—-----—-
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-1.5 and p2-1.0

= A
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
............. Qm0.25 —e=emc-cmcecceccncacceesan Qu0,50 ~me---=ee=
3 2 2 3 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 3
4 3 3 3 3 4 4 & 4 4 4 2 3 3 3 3 4 4 4 4
5 3 4 4 4 & 5 5 5 5 5 3 3 4 &4 4 &4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 & 5 5 5 6 6
7 4 5 5 5 6 6 7 7 7 7 4 4 5 5 5 6 6 7 17
. 5 5 € 6 6 7 7 8 8 8 4 5 5 6 6 7 7 71 8
9 5 6 6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9
10 6 €6 7 7 8 8 9 910 10 5 6 6 7 7 8 9 910
11 6 7 7 8 9 9101011 11 6 6 7 8 8 9 91011
12 7 7 8 9 91011 11 12 12 6 7 8 8 9 9101111
13 7 8 ¢ 910111112 13 13 7 7 8 91010 11 12 12
14 8 8 910 11 11 12 13 13 14 7 8 9 91011 12 12 13
15 8 910 11 11 12 13 14 14 15 8§ 9 910111212 13 14
16 9 10 10 11 12 13 14 14 15 lé €€ 910111212 13 14 15
17 9 10 11 12 13 14 14 15 16 17 9 10 10 11 12 13 14 15 16
18 10 11 12 13 13 14 15 16 17 18 910 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18
20 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18
o ()= 9o (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 6G 65 70 75 80 85 90
------------- Q=0.75 ==e=meccmcccmeccecnmcaamee Qul, 00 =e-ceeeee=
3 2 2 2 2 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 4
5 3 3 3 4 4& 4 5 5 5 5 3 3 3 4 4 4 4 5 5
6 3 4 4 4 5 5 5 6 6 6 3 3 4 & ¢t 5 5 6 6
7 4 4 4 5 5 6 6 6 7 7 4 4 4 5 5 6 6 6 7
3 4 5 5 5 6 6 7 7 8 8 4 4 5 5 6 € 7 7 8
9 5 56 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8
1o 5 6 6 72 7 8 8 9 9 10 5 5 6 7 7 8 8 9 9
11 6 6 7 7 8 9 91010 11 S 6 7 7 8 8 91010
12 6 7 7 8 9 9101111 12 €6 6 7 8 8 9101011
13 6 7 86 9 9101111 12 13 6 7 3 8 910 10 11 12
14 7 8 8 91011 11 12 13 14 7 7 8 91010 11 12 13
15 7 8 91011 11 12 13 14 15 7 8 916 10 11 12 13 14
16 3 91010 11 12 13 14 15 16 8 9 9101112 13 14 15
17 83 910 11 12 13 14 15 16 17 8§ 910 11 12 13 14 15 15
18 9 10 11 12 13 14 15 16 16 18 2 10 10 11 12 13 14 15 16
12 910 11 12 13 14 15 16 17 19 910 1112 13 14 15 16 17
20 10 11 12 13 14 15 16 17 18 20 10 11 12 13 14 15 16 17 13




MINIMAX PASSING SCORES

Table of Minimax llastery Scores in the Bino ‘al Error Model
with p1=1.5 ani p2=1.5

AR 0 ()=
n 50 55 60 €5 70 75 80 85 90  n 50 55 £J 65 70 75 80 £5 90
------------- Q=0,25 ==m=emcemmcecccccaocclican Qm0,50 mmmmmman-
3023333 3 3 4 4 3 0223 33 33 3 4
& 3 3 4 4 & 4 & 5 5 & 3 3 3 4 4 & 4 & 5
5 4 4 4 4 5 5 5 5 6 5 3 4 4 4 & 5 5 5 5
€ 4 4 5 55 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5556 6 7 7 1 7 7 4 556 6 6 7 1 7
S 5 66 * 7 7 8 8 8 8 5 56 6 7 7 7 8 8
9 6 6 7 7/ 8 & 9 9 9 9 56 6 7 7 8 8 9 9
10 6 7 7 % 8 9 91010 10 6 6 7 8 8 9 9 10 10
1 7 7 3 © 910101111 11 6 7 8 8 9 9 10 10 11
12 7 3 ¢ 91010311212 12 7 8 8 91010 11 11 12
13 8 9 9101111121313 13 7 8 9 10 10 11 12 12 13
14 8 9101111321313 14 14 3 9 9 10 11 12 12 13 14
15 91011 111213141415 15 8 910 11 12 12 13 14 15
16 .0 10 11 12 13 14 14 1516 16 9 10 11 12 12 13 14 15 16
17 1011 12 13 14 14 15 1r 17 17 10 10 11 12 13 14 15 16 16
15 11 11 12 13 14 15 1€ 17 1§ 18 10 11 12 13 14 15 16 17 17
19 1112 13 14 1516 17 18 19 19 11 12 13 14 14 15 16 17 18

20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

8, (%)= 8, )=

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.75 ==cmccmcmcccccccccacccaaas Qm1,00 comccceee-
2 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 4
33 4 4 4 & & & 2 3 3 3 3 4 &4 & &
& 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
L 5 5 5 6 6 6 6 3 4 4 5 5 5 6 6 6
55 6 6 - 7 7 7 4 4 55 6 6 6 7 7
6 6 6 7 7 8 § 8 4 5 5 6 6 7 7 8 8
6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9
7 7 6 8 9 9719 10 5 6 7 7 8 8 a9 910
7 8 ¢ 910 10 11 11 6 7 7 8 & 9 10 10 11
8 9 910 11 11 12 12 6 7 & 8 910 10 11 12
9 910 11 11 12 13 13 7 8 8 91010 11 12 13
o 10 i1 11 12 13 14 14 7 8 91010 11 12 13 13
10 11 11 12 13 14 15 15 8 910 10 11 12 13 14 14
16 11 12 13 14 15 15 16 8 910 11 12 13 14 14 15
11 12 13 14 15 15 16 17 910 11 12 13 13 14 15 16
12 13 14 14 15 1€ 17 1& 910 1) 12 13 14 15 16 17
12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18

13 14 15 16 17 18 19 20 10 12 13 14 15 1€ 17 18 19
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1=1.5 and p2-2.0

8= 6 (%)=

n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 30 85 90

------------- Q=0.25 -=escccccccccccncnccanccen Q0,50 ~emmceaan-"
3 3 3 3 3 3 4 4 4 & 3 2 3 3 3 3 3 4 4 4

4 3 4 4 4 4 4L 5 5 5 4 3 3 4 4 4 4 4 5 5

5 4 4 4 5 5 5 5 6 6 5 4 4 4 4 5 5 5 5 6

6 4 5 5 5 6 6 6 7 7 6 4 4 5 5 6 6 6 6 7

7 55 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 71 8

o 6 6 6 7 7 8 8 8 9 8 5 6 6 7 7 7 8 8 9

9 6 7 7 3 8 9 9 910 9 6 €6 7 7 8 8 9 9 9

10 7 7 8 3 9 9101011 10 6 7 7 8 9 91010 10
11 7 8 8 9101011 11 12 il 7 8 8 9 9101011 11
12 3 9 9101011 12 12 12 12 7 8 9 910111112 12
13 8 91010111212 13 13 13 8 9 91011 11 12 13 13
14 910 10 11 12 13 13 14 14 14 9 91011 12 12 13 14 14
15 10 10 11 12 13 13 14 15 15 15 910 11 11 12 13 14 14 15
16 10 11 12 13 13 14 15 16 16 16 10 10 11 12 13 14 15 15 16
17 11 12 12 13 14 15 16 17 17 17 10 11 12 13 14 15 15 16 17
13 11 12 13 14 15 16 17 17 18 18 11 12 13 14 14 15 16 17 1%
19 12 13 14 15 16 17 17 18 19 19 11 12 13 14 15 16 17 18 19
20 12 13 14 15 1€ 17 18 19 20 20 12 13 14 15 16 17 18 19 20

8 (%)= 8,(%)=

n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.75 ~~===cccmmccccccccancncncs Qu]l,00 ~ccevemmn-
J 2 3 3 3 3 3 3 4 4 J 2 2 3 3 3 3 3 4 4

4 3 3 3 4 4 4 & 4 5 4 3 3 3 4 4 4 4 4 5

5 3 4 4 4 5 5 5 5 6 53 " 4 4 5 5 5 5 6

€ « & 5 5 5 6 6 6 7 6 4 4+ 5 5 5 6 6 6 7

7 5 5 5 6 6 6 7 7 8 7 4 5 5 6 6 6 7 7 7

3 5 6 6 6 7 7 8 8 8 8 5 3 6 6 7 7 &8 8 8

9 6 6 7 7 5 8 9 9 9 9 5 6 6 7 7 8 8 9 0

10 6 7 7 8 8 9 910 10 10 6 7 7 8 8 9 91010
11 7 7 8 8 9101011 11 1 7 7 8 38 9101011 11
127 8 9 2101011 12 12 12 7 8 & 91010 11 12 12
13 8 8 9101111 1213 13 13§ 8 9101011 12 12 13
14 3 9101111121313 14 14 8 910 10 11 12 13 13 4
15 91010 11 12 13 14 14 15 15 9 9101112 13 13 14 15
16 910 11 12 13 14 14 15 16 16 9 1011 12 13 13 14 15 16
17 10 11 12 13 13 14 15 16 17 17 10 11 12 12 13 14 15 16 17
15 10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19
13 14 15 16 17 18 19 20 20 11 12 13 14 15 17 18 19 20
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5, (=
n 50 55 60 65 70 75 80 85 90

=0.,5
1 2

Table of Minimax Mastery Scores in the Binomial Error Model
with p =2.0 and p

%ak

n 50 55 60 65 70 75 80 85 90
cmcememcmcmas Q=0.25 =e=mecmcccecccmcecmcacaman Qu0,50 -=em=aa-n-

MINIMAX PASSING SCORES
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Table of Minimax Mastery Scores in the Binowmial Lrror Model
with p =2.0 and p =1.0
1

3 2 2 2 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 ¢4
5 3 3 4 4 4 4 5 5 5 5 3 3 3 4 4 4 4 5 5
6 3 4 4 4 5 35 5 6 6 6 3 3 4 4 4 5 5 6 6
7 4 4 5 5 5 6 6 7 7 7 4 4 4 5 5 6 6 6 7
8 4 5 5 6 6 7 7 7 8 3 4 4 5 5 6 6 7 7 ¢
9 5 5 6 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8
10 5 6 6 7 7 8 8 910 10 5 5 6 6 7 8 8 9 9
11 6 6 7 7 86 9 91010 11 5 6 6 7 8 8 91010
12 6 7 7 8 9 91011 11 12 6 6 7 8 8 910 10 11
13 7 7 8 9 91011 11 12 13 6 7 8 8 910 10 11 12
14 7 86 9 910 11 12 12 13 1¢ 7 7 8 91010 11 12 13
15 8 8 91011 12 12 i3 14 15 7 8 9 9101112 13 14
16 8 91011 11 12 13 14 15 16 7 3 91011 12 13 14 14
17 6§ 91011 12 13 14 15 16 17 8§ 910 11 12 12 13 14 15
18 910 11 12 13 14 15 16 17 18 8 910 11 12 13 14 15 16
19 91011 12 13 14 15 16 17 19 9 10 11 12 13 14 15 16 17
20 10 11 12 13 14 15 16 17 18 20 9 10 11 12 14 15 16 17 18
eo(‘z’ = 60\70)=
n 50 55 €0 65 70 75 80 85 90 n 50 55 €0 65 70 75 80 85 90
------------- Q=0.75 =--mmmmemmceceececececmcee Qul,00 =---ooe-eee
3 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 3 3 3 3
4 2 2 3 3 3 3 4 4 4 4 2 2 2 3 3 3 3 4 ¢4
) 2 3 3 3 4 4 4 5 5 5 2 3 3 3 4 4 & 4 5
6 33 4 4 4 5 5 5 6 6 3 3 3 4 4 5 5 5 6
7 54 4 4 5 5 6 6 7 7 3 4 4 4 5 5 6 6 6
] 4 4 5 5 6 6 6 7 7 8 4 4 4 5 5 6 6 7 7
9 4 5 5 6 6 7 7 8 38 9 4 4 5 6 6 7 7 8 8
10 5 5 6 6 7 7 8 9 9 10 4 5 6 6 7 7 8 8 9
11 5 6 6 7 7 8 9 910 11 5 5 6 7 7 3 9 910
12 5 6 7 7 8 9 91011 12 5 6 7 7 8 9 91011
13 6 7 7 8 9 610 11 12 13 6 6 7 8 9 91011 12
14 6 7 8 9 910 11 12 13 14 6 7 3 8 91011 12 12
15 7 8 8 910 1i 12 13 13 15 7 7 ¢ 91011 11 12 13
16 7 3 91011 12 12 13 14 16 7 3 91010 11 12 13 14
17 3 9 91011 12 13 14 15 17 7 3 91011 12 13 14 15
2 8 91011 12 13 14 15 16 18 8 910 1112 13 14 15 16
19 910 11 12 13 14 15 16 17 19 3 91011 12 13 14 16 17
20 9101112 13 14 15 17 18 20 9 10 11 12 13 14 15 16 18

7 e 5 G5 e e S G5 e s S5 D Sn EP P EP EP P G P P P P @ S5 G G5 €5 EF P G En G5 G G5 @5 G0 G5 G e W w0 W G GF P & GF G S G P = G o W = @ @ &




MINIMAX PASSING SCOR':S

Table of M.inimax Mastery Scores in the Binomial Error Model
with p1-2.0 and p2-1.5
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1

with p =2,0 and p =2.0

Table of Minimax Mastery Scores in the Binomial Error Model
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MINIMAX PASSING SCORE

APPENDIX B
SUBROUTINE MIMAX

This subroutine computes the minimax passing (mastery) score

for the binomial error model in mastery testing.

Disclaimer: The computer program hereafter 1{isted has been written
with care and tesced extensively under a variety of conditions. The
author, however, makes no warranty as to its accuracy and function-

ing, nor shall the fact of its distribution imply such warranty.
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MINIMAX PASSING SCORES
SUBROUTINE MINAX(N,TA,IA,P1,P2,0,1I2)

C
Chdededededrdvdedededdedededede dededdededede dededede sedriededede e dede de dedededed e de dedeode s sedede sk de s desie e de e sk dedesdk s ek

THIS SUBROUTINE COMPUTES THE MINIMAX PASSING (MASTFRY) SCORE FOR
THE BINOMIAL ERROR MODEL IN MASTERY TESTING.

INPUT DATA ARE:

N..... NUMBER OF TEST ITEMS
TA .... CRITERION LEVEL (THETA ZERO)
IA .... NUMBER OF OPTIONS (ALTERNATIVES) FOR EACH MULTIPLE-

CHOICE ITEM, THIS INFORMATION 1S NEEDED IF CORRECTION
FOR GUESSING IS TO BE PERFORMED. IF O CORRECTION FOR
GUESSING IS REQUIRED, SET 1A = 0, ;

Pl .... EXPONENT FOR FALSE POSITIVL ERROR LOSS

P2 .... EXPONENT FOR FALSE NEGATIVE ERROR LOSS

qQ..... WEIGHTING CONSTANT FOR FALSE NEGATIVE ERROR LOSS
OUTPUT DATA 1S

12 .... MINIMAX PASSING (MASTERY) SCORE

SUBROUTINES REQUIRLD:
DRTNI FROM SSP (NEWTON-RALPHSON ITERATION PROCESS)
MDBIN FROM IMSL (BINOMIAL PROBABILITY)

oo dedededededededededede dededede dede sk s dedkedede e dedede dedede dekedeok de de i dede dede e de dede de e dededestedede e dede dedede dle desk deve dededede

OO0OO00OO0O00O0O0O0O000O00OO00OO0000

COMMON NKELP,IC,R,TT,KODE,IOPT
DOUBLE PRECISICN FL1,FL2 ,FMAX,FMAXL

WRITE (6.200) N,TA,IA,P1,P2,Q
200 FORMAT('1l',T4,'NUMBER OF ITEMS .', 14/

1 T4.'CRITERION LEVEL .',F10.5/
2 T4,'NUMBER OF OPTIORS',I14/
3 T4,'Pl ...t ool ',F10.5/
4 T4,'P2 ..ooiiiviinnn, ',Fi10.5/
5 T4,'LOSS RATIO Q ....',F10.5)
DMAX=AMIN1(1l.,Q)
NKEEP=il

DD=IA *1./(IA-1)
IF(IA.EQ.0) DD=1.
K1=DD**P1
X2=DD**P 2

TZ=TA

IF(IA.NE.0) TZ=TA*(l.-1./IA)+l./IA
I1Cl=0
FMAX1=1.D50

DO 10 ID=1,N

IC=1D
R=Pl
TT=T2
IOPT=IA

CALL LMAX(FLI)

FL1=FL1%*{1l

R=P2

TT=1.-TZ

IC=N-1ID+1

I0PT=-1

CALL LMAX(FL2)

FL2=FL2%*Q

FL2=FLZ%*X2
FMAX=DMAX1(FL1,FL2)
IF(FMAX.GE.FMAX1) GOTO 10
ICl=ID
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FMAX1=FMAX
CONTINUE

AMAX=TZ¥**p]
AMAY=AMAX*X1
B=Q*(1.-TZ)%**p2

B=B¥*X2

IX=0

IF(AMAX.LE.B) GOTO 13
I¥=N+1

AMAX=B

1Z=7Cl
IF(AMAY . LT.FMAX1) I1Z=I¥

WRITE(6.220) 1Z

FORMAT('0',2X, 'MINIMAX PASSING'/3X,'SCORE ........... ', 14)
RETURN

END

SUBROUTINE LMAX(FL)
COMMON N,IC,P,TZ,KODE,1A
DOUBLE PRECISION T,F,DERF,TS,FL,T1,Fl,DERF1

EXTERNAL FCT

ZX=0.

IF(IA.GT.0):X=1.0/1A
EPS=.0001

1END=200

KODE=0

NN=20

MM=50

H=P+IC+(N-1)*T2Z

Tl=(ki-SQRT (H*H-4* (K +P)*(IC-1)*TZ))/(2*(N+P))
IF(T1.LE.0.DO) Tl=1.D-20
DD=(TZ-T1) /NN

TS=T1

CALL FCT(T1,Fl,DERFl)

DO 5 I=1,NN

T=T1+I*DD

CALL FCT(T,F,DERF)
IF(F*F1.LE.0.0) GOTO 10

TS=T

Fl=F

CONTINUE

DD=(T=TS) /MM

CALL FCT(TS,Fl,DERF1)

Tl=7S

DO 15 I=1,MM

T=T1+I*DD

CALL FCT(T,F,DERF)
IF(F1*F.LE.0.) GOTO 20

TS=T

Fl=F

CONTINUE

TS=(TS+T)/2.0

UD=T-TS

IF(DD.LE.EPS) GOTO 25

KODE=1

CALL DRTNI(T,F.DERF,FCT,TS.EPS,IEND,IER)
IF(IER.NL.0) WRITE(6,200) IER
FORMAT('0','ERROR iN THE SSP SUBROUTIMNE DRTNI',I14)
éF(IA.GT.O.AND.T.LT.XX)T-XX
=T

CALL MDBIN(IC-I,N,S,D.TK,IER)
IF(IER.NL,0) WRITE(€E,~10) IER
FORMAT('0','ERROR IN THE IMSL SUBROUTINL MDBIN',14)
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10

15

FL=(TZ-T)**P*(l.-D)
RETURN
END

SUBROUTINE FCT(T,F,DERF)

COMMON N,IC,P,TZ,KODE

EXTERNAL BI

INTEGER Bl

DOUBLE PRECISION T,F,DERF,G

S=T

LL=RI(N,IC)

FeIC*LL* (TZ-T)*T**(IC-1)*(1.D0-T)** (N-IC)
CALL MDBIN(IC-1,N,S,D,PK,IER)
F=uP*(1.D0-D)+F

IF(KODE.EQ.0) RETURN

DER¥=0

IF(IC.EQ.N) GOTO 10
G=(1.D0-T)**(N-IC-1)

IF(IC.EQ.1l) GOTO 5

DEPF= (LC-1)*TZ*T**(1C-2)*G

DERF= ( (N+P)*T**IC- (P+IC+(N-1)*TZ) *T¥*¥%(IC-1))*G+DERF
DERF=DERF*IC*LL

RETURHN
DERF=N*T#* (Ij- 2) % (- ({HP) *T+(N- 1) *TZ)
RETURN

LJD

FUNCTION BI(N,M)
INTEGER BI

BI=1

IF (M*(N-M).EQ.0) RETURN
MH=N-1{

IF(QDM.GT.M)MM=M

DO 15 J=1,MM
LI=BI*(N-J+1)/J

END

//LKED.SYSLIB DD

DSN=ACAD. I11SL.DY.SUBLIB,DISP=SHR
DSN=ACAD. IMSL.SP.SUBLIB, D1SP=SHR
DSlI=SSP.SUBLIB, DISP=SIIR

// DD
// DD
// DD
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BAYESIAN AND EMPIRICAL BAYES APPROACHES TO SETTING
PASSING SCORES ON MASTERY TESTS

Huynh Huynh
Joseph C. Saunders

University of South Carolina

Presented at the symposium "Psychometric approaches to domain-
referenced testing” sponsored jointly by the American Educational
Research Association and the National Council on Measurement in
Education at their annual meetings in San Francisco, April §-12, 1979.

ABSTRACT

The Bayesian approach to setting passing s.ores as proposed by
Swaminathan, Hambleion, and Algina is compared with the empirical
Bayes approach to the same problem that is derived from Huynh's
decision-theoretic framework. Comparisons are based on simulated
data which follow an approximate beta-binomial distribution and on
real test data sampled from a statewide testing program. It is
found that the two procedures lead to setting identical or almost
identical passing scores as long as the test score distribution is
reasonably symmetric or when the minimum mastery level or criterion
level is high. Larger discrepancies tend to occur when this level
is low, especially when the distribution of test scores is concen-
trated at a few extreme scores or when the frequencies are irregu-
lar. However, in terms of mastery/nonmastery decisions, the two
procedures result in the same classifications in practically all
situations. However, the empirical Bayes procedure may be used for
tests of any length, while the Bayesian procedure is recommended

only for tests of 8 or more items. Additionally, the empirical

This paper has been distributed separately as RM 79-2, April, 1979.
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Bayes procedure can be generalized and applied to more complex

testing situations with less difficulty than the Bayesian procedure.

1. INTRODUCTION

Among the many decision-theoretic approaches to setting pass-
ing scores (or standards) for mastery tests, there are at leasc two
methods which rely on test data collected from a group of examinees.
The Bayesian procedure, as presented in Swaminathan, Hambleton, and
Algina (1975), assumes that prior knowledge regarding the examinees
is exchangeable (Novick, Lewis, & Jackson, 1973) and can be quanti-
fied in some appropriate manner. On the other hand, the empirical
Bayes approach, as formulated in Huynh (1976a), uses only the true
ability distribution of the examinees and makes no assumption re-
garding prior knowledge about the examinees. Both procedures use
test data collected from a group of examinees and establish passing
scores for mastery tests by minimizing certain loss functions. The
purpose of this paper is to present a comparison of the two sets of
standards (passing scores) formulated under a variety of conditions
which can be expected Lo be encountered in mastery testing or in
minimum competency testing. The comparison will be made first on
the basis of apprcximate beta-binomial test scores. Further com-
parisons will be made using the Comprehensi: : Tests of Basic Skills
(CTBS, 1973) data collected in the 1978 South Carolina Statewide
Testing Program.

2. AN OVERVIEW OF THE BAYESIAN AND
EMPIRICAL BAYES APPROACHES

Overall Framework

The Bayesian framework as presented by Swaminathau et al. and
the special empirical Bayes procedure described in Huynh (1976a,
p. 70-73) start with a typical four-corner setup used in decision
theory. (See Figure I, p. 78, for the basic elements of this setup.)

Let 6 (7 in the notation of Swaminathan et al.) be the true score (or
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true ability) of an examinee and x be the observed test score as
obtained from an n-item test. For the binomial error model adopted
1n both standard setting approaches, 6 is the proportio.. of items
in a real or hypothetical item nool that an examinee answers cor-
rectly. Let a person be called a master if that person's true
score 6 is such that 6 > 90 and a nonmaster if 6 < 6,- Here, 60 is
a given constant which defines the lower boundary of the mastery
level or the criterion level. Since a person's true score cannot
be observed directly, decisions about whether to call the person a
master must be based on an observed test sccre. What remains to be
determined is the cutoff score ¢ that will be in some sense optimal.

On the basis of the test score x, a person is called a master
if x > ¢ and a nonmaster if x < c. A correct decision is made
whenever either (a) 6 > 60 and x > ¢, or (b) 6 < 60 and x < c.
Otherwise, either a false positive error (8 < 60 and x > ¢) or a
false negative error (6 2_60 and x < c) is encountered.

In the case where the loss associated with each error is con-~
stant, generality is not diminished if we let the loss incurred by
a false positive error be equal to 1 and that associated with a
false negative error be equal to §. Here, Q expresses the ratio of
the false negative error loss to the false positive error loss.

(In the notation of Swaminathan et al., Q = 221/212.)

Bayesian Approach

Now let an n-item test be given to m examinees. In the Bayes-
ian procedure as implemented by Swaminathan et al., the prior in-
formation regarding the examinees is assumed to be exchangeable
(t.e., prior knowledge regarding one examinee can be interchanged
with that associated with another examinee without causing any dis-
turbance in the decision problem). The model requires knowledge
(prior belief) of the distribution of the variance of true scores
for the group. (In point of fact, an arcsine transformation of ©
is used.) This prior distribution is taken to be the inverse chi-
square distribution with parameter A and degrees of freedom v. A

recommended choice of v is 8 (Novick, EE.EEJP;4973)'
i
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To assess A, let t be the number of test items which would
need to be administered to a typical <xamine. in order to obtain as
much information about that examinee's 6 as we already have. Then,
A = 3/(2t+1l). Wang (1973) has tables to facilitate computation in
this procedure. In the setup of the Wang tables, A/v is chosen as
.01, .02, .03, .04, and .05. These ratios correspond to the t val-
ues of 18.25, 8.875, 5.75, 4.1875, and 3.25. Given the prior infor-
mation as revcaled through A and v and the test data of m subjects,
it is possible via the Wang tables to Ccompute the two _xpected
losses: Pr(6 < 90 | test data) and Q*Pr(6 2_60 | test data, at
each test score. A Bayesian passing score is then the smallest
score at which the first expectcd loss is smaller than the second
one. More details may be found in Swaminathan et al. (1975) and
in Novick et al. (1973).

Empirical Bayes Approach

The empirical Bayes solution assumes that the m examinees
constitute a random sample from a population for which the true
ability 6 follows a known distributional form such as the beta
density with parameters @ and B (Keats & Lord, 1962, page 68).
Sample test data are used to obtain the estimates & and é, and the
results are used to compute the probability of a false positive
decision Pr(6 < 60, x > c) and of a false negative decision
Q+Pr (6 3_60, X < c) at a given cutoff score c. The optimum passing
score (henceforth referred to simply as the Ppassic _-2) will be
the value of c at which the avrrage loss, Pr(6 < 60, x> c)

+ Q'Pr(6 28, x <c), is the smallest.

The procedure is implemented as follows. Let x and s be the
mean and standard deviation of the test scores, and let the Kuder-
Richardson reliability coefficient be defined as

%1 " oy [l'xn;x]'

ns
Then

@ = (-1+ 1/ay)%

and
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-~ -~ ~

£ = -3 + n/a n

Tor test scores with insufficifnt variability, ;21 may be negative.
If this occurs simply replace a21 by the smallest positive relia-
bility estimate which happens to be available. Let I denote the
incomplete beta functiou as tabulated in Pearson (1934) and imple-
mented “ia computer programs such as the IBM Scientific Subroutine
Fackage (1971) or the IMSL (1977). Then the passing score is the
smallest integer c, at which

I(ate,mtB-c;8 ) < Q/(1+Q). (1)

A normal approximation ‘s available if there is a sufficiently
large number of items and if 60 is not near 0 or 1. Let £ denote
the 100/ (14+Q) percentile of thLe unit normal dis* ibution. Then the

test passing score is nearly equal to
c = (n+a+B—1)6o + £ (n+ﬁt+B—-1)60(1—60)};2 - o+ .5, (2)

The data presented in Huynh (1976b) indicate that the passing score
crmputed from Equation (2) does not differ appreciably from the one
deduced from Inequa*ion (1) when the test consists of 20 items and
when 60 is within the range from .50 to .80.

3. A COMPARISON OF BAYESIAN AND EMPIRICAL BAYES

PASSING SCORES FOR APPROXIMATE
BETA-BINOMIAL TEST DATA

The passing score obtained via the empirical Bayes approach,
as revealed by Inequation (1), is based on test score data that
tollow a beta-binomial distribution. It may be of interest to
compare the Bayesian approach to setting a passing score with the
empirical Bayes approach, using test data which follow closely a
beta-binomial form.

Both the present comparison and the one detaileu in the next
section are based on tests with ten items. 1In these comparisons,
the criterion or minimum mastery level is set at 60 = ,60, .70, and
.80. The loss ratlo is chosen to be Q = .25, .50, 1.00, and 2.00.
(A 1>ss ratio smaller than one indicates that a false positive
error is less serious than a false negative error.) To compute a

assing score via the Bayesian approach, it is necessary to specify
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the ratio A/v or, equivalently, the quantity t as described in
Section 2. It may be recalled that t cay be interpreted as the
number of "test items" which are believed to be as informative as
the prior belief about the examinees. 1In practical situations in-
volving standard setting, it seems unreasonable to let the prior
belief v carry as much weight as the objective test data. In other
words, it is unl'kely that t is too close to n. Thus for the
comparisons based on 10~item tests reported in this section ana i-
Section 4 as well as the comparisons based on 20-item tests
described in Section 5, the t-values are chosen to be 8.875

(A/v = ,02), 5.75 (A/v = .03), 4.1875 (A/v = ,04), and 3.25

(A/v = .05).

The €irst five test score frequency distributions (labeled Al
through A5 in Table 1) serve as the data base for the comparison of
the passing scores computed by the two procedures using test score
distributions that are approximately beta-pinomial. Each is delib~-
erately chosen (i) to yield an sé value (variance of the arcsine-
square-root transformation of the test scores) conforming as closely
as possible to the tabulated s: values of the Wang tables (so that
no interpclation would be necessary) and (ii) to reflect several
degrees of skewness and variability thought to be typical of mas-
tery testing situations. (Also in Table 1, and explained below,
are distributions of actual test scores from the South Carolina
Statewide Testing Program.) It may be noted that in Table 1, the
quantity D(Z) represents the maximum percent difference between
the observed and beta-binomial-fitted cumulati s frequencies. A
small D-value indicates a good fit.

Table 2 reports the Bayesian passing scores and the corre-
sponding empirical Bayes passing scores (in italics) for geveral
combinations of 90, Q, and t. The data indicate that for the situa-
tions under consideration, the Bayesian and empirical Bayes passing
scores are identical, .r nearly so, as long as the test score dis-
tribution is reasonably symmetricai (Cases A2, A4, and AS). For
highly skewed distributions (Cases Al and A3) the two passing
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TABLE 1

Frequency Distributions of Test Scores Used
in Comparisons of Passing Scores

Data Source/ * + Skew- Frequency at score of
Set  Subtest m D(%) S.D. ness 0 1 2 3 4 5 6 7 8 910
Approximate Beta-Binomial

Al Fictitious 40 3.1 1.36 -0.61 1 3 6 81111
A2 Fictitious 80 1.0 1.87 -0.31 1 3 6101316 1511 5
A3 Fictitious 40 1.2 1.01 -1.51 1 2 41023
A4 Fictitious 40 1.6 2.01 -0.02 1 356 7 7 5 4 20
A5 Fictitious 40 1.0 2.15 0.12 1 3 5 6 7 6 5 4 2 1 O

Comprehensive Tests of Bas.c Skills
Bl Mathematics

concepts and

application. 20 6.7 1.28 -0.63 2 1 6 4 7
B2 Mathematics

computations 20 9.2 1.45 -0.24 3 4 3 4 6
B3 Spelling 20 6.1 1.76 -1.04 2 01 2 6 4 5
B4 Social

studies 40 6.2 2.11 0.27 1 459 5 5 6 311
B5 Language

expression 40 8.7 1.86 -0.53 1 1 5 3 41110 3 2
B6 Reading 40 4.1 1.22 -2.12 1 1 2 3 330
B7 Science 60 5.6 1.74 -0.22 2 610 814 812 O
B8 Reading

vocabulary 60 3.2 1.56 -1.7% 1 0 3 1 5 51629
B9 Reading

vocabulary 80 2.7 1.68 -1.49 2 1 2 5 611 23 30
B10 Spelling 80 2.1 1.50 -1.44 1 0 2 4 71216 38
*

m = total number of scoures in the distribution.

+D(Z) represents the maximum percent difference between the observed
and beta-binomial-fitted cumulative frequencies. All are not sig-
nificant at the ten percent level of significance.

scores rarely differ by more than one unit when the criterion level
60 is relatively high (.70 or .80) and when A/v is such that t is
not too close to n, say when A/v is at least .03. Large discrepan-
cies, however, may cccur at a low criterion level such as .60 ot

wher. t i8 close to n.
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TABLE 2
Empirical Bayes Passing Scores for Five

Approximate Beta-Binomial Test Score Distributions
Bayesian (at ‘/v = ,02,.03,.04,.05)
Data and empirical Bayes (in italics) at
Set 90 n-=.,25 Q= .50 Q=1.9 Q=2.00
Al .60 4, 5,6,6,¢ 3,4,5,5,2 2,3,4,4,1 1,2,3, 3,0
.70 7, 8,8,8,6 6,7,7,7,5 5,5,6,6,4 4,4, 5,5, 3
.80 10,10,10,10, 9 9, 9, 9, 9, 8 8, 8,8, 8,7 7,7,7,7,6
A2 .60 7,8,8,8,7 6,7,7,7,6 5,6, 6,6,5 4,4,5,5,4
.70 10,10, 9, 9, 9 9, 9, 9,9, 9 8,8,8,8,8 7,7,17,17,7
.80 10,10,10,10,10 10,10,10,10,20 10,10,10,10,10 9, 9, 9, 9, 9
A3 .60 1, 3, 4,4, 3 1, 2,3,3,2 0,1, 2,2,1 0,1,1, 2,0
.70 4,5,6,6,6 3,4,5,5,5 2,3, 4,4,4 1,2, 3,3, 3
.80 8,8, 9,9,8 7,7,8,8,7 5,4,7,7,6 4 5,6, 6,5
A4 .60 9,9,9,9,9 9.8,8,8,8 8,7,7,7,8 * 6, 6, 6, 6
.70 10,10,10,10,10 10, °,10,10,10 10, 9, 9, 9,10 9, 9, 8, 8, 9
.80 l0,10,10,10,10 10,10,10,10,10 10,10,10.10,10 10,10,10,10,10
A5 .6( 10,10, ., 9,10 9, 9,9, 9,9 8,8,8,8,8 7,7,7,17,7
..0 10,10,10,10,10 10,10,10,10,10 10,10, 9, 9,10 9, 9, 9, 9, 9
.80 10,10,10,10,10 10,10,10,10,10 10.10,10,10,10 10,10,10,10,10

4. A COMPARISON OF BAYESTAN AND EMPIRICAL

BAYES PASSING SCORES FOR CTBS TEST DATA

This phase of the study is based on a 10% systematic sample
of the entire third grade CTBS-Level C data file compiled during the
1978 South Carolina Statewide Testing Program. To obtain the fre-
quency distributions labeled as Bl to B10 (in Tables 1 and 3), the
following procedure was used. First, ten 10-item subtests were
assembled by random selection of items from each CTBS subtest.
Next, for each 10-item subtest, a frequency distribution was con-
structed for each schuol district which had at lea;t 20 students in
the systematic sample, and the corresponding 82 value was obtainnd.
(The 82 values were distributed as follows: .%0 te .50 (32%2), ..l
o .75 (38%), .76 to 1.00 (202), and more than 1.00 (10%).

sz values tended to associate with subtes:s dealing with reading

Large

comprehension (sentences or paragraphs), language expression, and
language mechanics.) Third, among the frequency d :tributions with

sz values included between .01 and .05, ten were finally selected
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and altered slightly so that the total number of examinees (m) was

exactly 20, 40, 60, or 80.

Table 3 lists the Bayecian and empirical Bayes passing scores

As in the previous section, the data

under a variety of conditions.

TABLE 3

Bayesian and Empirical Bayes Passing Scores
for Ten CTBS Test Score Distributions

.02,.03,.04,.05)

Bavesian (at A/v =

and empirical Bayes (in italics) at
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show that the two sets of passing scores are the same, or nearly
8o, ¢8 long as the test score distribution is reasonably symmetric
(see cases B4, BS5, and B7). Digcrepancies in these situations are
rarely larger than one unit. For most othe~ cituations, the dif-
ference between the two values for a passing score is seldom larger
than one unit when the criterion 60 is .70 or .C0 and when A/v is
at least .03. The same magnitude of difference, one unit, also
tends to hLold at 60 = .60 unless the test scores pile up at extreme

values (Case B6) or unless the frequencies are fairly irregular
(Case B1).

5. ADDITIONAL DA3A FOR MODERATELY
SKEWED DISTRIBUTIONS

Additional comparisons were made for ten 20-item tests with
distributions having skewness ranging from -1.109 to .117 (see
Table 4). These tests were assembled in the same way as the 10-
item tests described in Section 4. As in the previous sections,
the criterion level Bo was set at .60, .70, and .80, and the loss
ratio Q at .25, .50, 1.0G, and 2.00. The prior knowledge about the
examinees was assumed to be equivalent tv a number of items, t, of
8.875 (A/v = .02), 5.75 (A/v = .03), 4.1875 (A/v = .04), and 3.25
(A\/v = .05). For all the 480 combinatious under consideration, the

TABLE 4

Frequency Distribution nf Scorees on Ten CTBS Subtests
Mentioned in Section 5

Frequency at gcore of

Subtest 5 6 7 8 9101112 1314151617 18 19 20
Reading vocabulary 1 15 3 4 7 4 8 3 4
Spelling 11 2 3 2 3 812 8
Science 1113 34 319452111
Social studies 2 0 20 312 26 9 3 441 30
Social studies 1 25 3 3165 4 2 25001
Reading vocabulary 2.0 02 1 4 4 3 3 4 8 3 4 2
Mathematics concepts

and application 1 00 1 2 3 2 3 4077 2 6 2
Reading vocabulary 1 2 3 25 5 6 9 7
Social studies 1 31110253 6 3544 10
Science 1 1 4 2 2 2 4 2 4 2 3 4 35 0 1
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absolute value of the discrepancies between the two computed
passing scores are distributed as follows: 0 (35Z), 1 (37%), 2
(15%), 3 (5%), and 4 or more (8%). Hence in about three-fourths of
all situations, the Bayesian and empirical Bayes passing scores do

not differ from each other by more than one unit.

6. AGREEMENT OF MASTERY/NONMASTERY DECISIONS

As noted in Section 4, there are situations (such as some
cases associated with the Al, Bl, and B6 data sets) where the pass-—
ing scoree obtained from the two methods differ appreciably. This
may seem disheartening. However, the procedures provide mastery/
nonmastery classifications which are in high agreement for most
cases under consideration. For Data Set Al with 90 = .60 and .70,
for example, the combined proportions of students identically clas-~
sified in either the mastery or nonmastery category by the Bayesian
procedure (with A/u = ,05) and by the empirical Bayes procedure are
88%, 95%, 99%, and 100% for Q = .25, .50, 1.00, and 2.00 respect-
ively. Over the fifteen data se:cs of Table 1 and with the same
values for A/v and Q, the proportions of identical classifications
reach 94%, 96%Z, 98, and 97% respectively. As for the data of
Table 4, these proportions stand at 98%, 98%, 98%, and 97%.

Though the overall agreement for classifications is high for
the data considered in this study, some individual cases may show
less agreement than others. These cases include situations such as
A2 with 90 = .60, Q = .25, and A/v = .05 where the Bayesian passing
score of 8 and the empirical Bayes passing score of 7 are located
near the center of the test score distribution. The shift of only
one unit in test score in this case actually causes 1( students out
of a total of 80 to be classified differently by the two procedures.
Visible disagreement between the classifications defined by the
Bayesian and empirical Bayes proce:dures may occur in situations
where scores with high frequencies of occurrence are selected as
the passing scores. If this i{s the case, the proportion of stu—
dents clasgified in the mastery (or nonmastery) category is not
likely "o be close to either 0% or 10C%. 1In otu r situation: where
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most students are declared masters (Data Set Al with 60 = ,60,
A/v = .05, and Q = 2.00) or nonmasters (Data Set AS with 00 = .70,
A/v = .05, and Q = 1.00), the agreement in classifications is

almost perfect.

7. DISCUSSION AND CONCLUSION

The results described in previous sections may be summarized
as follows: (i) Bayesian passing scores and those computed via the
empirical Bayes procedure are identical or almost identical as long
as the test score frequency distribution is reasonably symmetric or
when the criterion level 00 1s sufficiently high (.70 or .80);

(11) large discrepancies in passing scores may occur at criterion
levels .60 (or below), especially when the test scores pile ap
at a fc / extreme values or when the frequency distribution is
irregular; (iii) however, mastery/nonmastery decisions derived from
the two procedures are most often identical. Overall, the ccmhined
proportion of students similarly classified by both procedures is
about 97%.

All in all, there 1is little difference between the Bayesian
approach as described by Swaminathan et al. and the Huynh empirical
Bayes procedure described here, either in terms of the resulting
passing szores or in terms of the masterv/nonmastery categorization.

It should be pointed out t: st the procedure by Swaminathan et
al. relies cn a normal arcsine-square-root transformation of the
test data and is therefore considered adequate only when the test
has at least 8 items. In addition, the scheme requires the evalua-
tion of certain posterior probabilities. This may be done via the
MARPRO computer program (mentioned in Wang, 1973) or via the Wang
tables. To the chagrin of the writers, many frequency distribu-
tions such as those derived from the CTBS test data of the South
Carolina Statewide Testing Program have s: values much larger than
the upper bound of .05 allowed in the above-~mentioned tables. In
addition, the constraint of having at least 8 items seems to be

quite severe in many practical situations involving objective-
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referenced testing. Such tests frequently have 5 or fewer items
per objective.

The empirical Bayes approach in its simplest form, as pre-
sented in Huynh (1976a), requires that the test scores follow a
beta-binomial distribution. There are indications (Keats & Lord,
1962; Duncan, 1974; Huynh & Saunders, 1979; also see Table 1) that
the model adequately fits many test score distributions. Moreover,
it is known (Subkoviak, 1978; Huynh & Saunders, 197°) that the
model is useful in the estimation of the reliability of mastery
classification based on one test administration. In addition,
using the empirical Bayes approach, passing scores may be computed
for tests of any length and can be approximated quickly via
Equation (2).

It may be noted that the Bayesian and empirical Bayes proce-
dures discussed in this paper deal with the setting of passing
scores for a particular test. Both procedures assume the availabil-
ity of a minimum mastery or criterion level 60 and the availability
of other information such as Q, the ratio of the loss incurred by
a false positive decision to that incurred by a false negative one.
In the context of testing for instructional purposes, 60 may be
based on the judgment of a curriculum specialist or a knowledgeable
teacher and Q may be assessed via the time losscs encountered by a
misdecision (Huynh, 1976a). The issue is much more involved for
end-of-program certification, such as high school graduation (mini-
mum competency) testing programs legislated in several states. The
reader is referred to Jaeger (1976) and Shepard (1976) for insight
regarding some of these issues.

The empirical Bayes approach with the availability of a pre-
determined criterion level, however, is only the simplest form of
the general framework of mastery evaluation as approached by Huynh

(1976a) . The essential component of this model is an external task

(real or hypothetical) that examinees are supposed to perform once
they are granted mastery of the objectives or content upon which a
test i1s based. Such an external task may be identified in the

context of instruction, especially when instructional units are
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sequenced in some logical order. If this requirement is fulfilled,
the specification of 00 is no longer necessary. Some suggestions
for solutions along this line have been presented elsewhere (Huynh,
1976a, p. 73-75; Huynh, 1977; Huynh & Perney, 1979). To the
knowledge of the writers, the Bayesian approach as presented by
Swaminathan et al. has not been generalized to situations other
than those involving constant losses and when a criterion level is
available. Although such a generalization may be made, the numer-
ical analysis would be more involved than can be expected from the
empirical Bayes approach.

As indicated previously, both standard setting procedures
studied in this paper are based on group data and therefore are
appropriate to the extent that minimization of loss is considered
for the entire group of examinees. This may be the case for mini-
mum competency testing where resources for remedial instruction are
limited. Procedures relating to standard setting in the absence of
group data are available (see, for example, Huynh, 1978).

In conclusion. the empirical Bayes approach yields mastery/
nonmastery decisions identical in most cases to those based on the
Bayesian approach. In sddition, the former approach is aimpler in
terms of corpatations, is applicable to any test length, and has

been generalized to more complex testing situations.
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ABSTRACT

This study touches some aspects of the determination of
passing (cutoff, mastery) scores on the basis of the bivariate
normal test model. The loss ratio associated with classification
errors is assumed to be constant, and the referral success function
is assumed to belong tc the normal ogive family. Alternately the
model also provides a fairly simple way to assess the loss conse-
quences associated with each passing score. Such information is
deemed useful to the test user who may wish to examine these con-

sequences before making a final choice of passing score.

1. INTRODUCTION

A general framework for setting passing (cutoff, mastery)
scores in binary classification (or mastery testing) has been pro-
vided recently (Huynh, 1976). Applications of the procedure to
test data distributed as tke beta-binomial model have also been

presented (Huynh, 1976, 1977). The framework assumes that the true

This paper has been distributed separately as RM 79-4, April, 1979.
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ability of a population cf subjects may be described by a random
variable 6 with probability density function p(6). If only one
subject is involved, then p(6) describes the prior information
regarding this subject's ability. A test is administered to the
subject and the resulting test score is denoted as x. The test
score is then compared to a passing (or cutoff) score equal to a
constant c. If x is equal to or greater than c, the subject
passes (or is declared a "master"). If x is less than c, the sub-
Ject does not pass (or is declared a "nommaster”). The problem is
to determine a value of ¢ which ig optimum in some sense.

The model, as proposed, postulates the availability of a
referral task which the subjects are expected to be able to perform
if they are classified as having mastered the competencies under-
lying the test scores. Performance on the referral task is cate-
gorized as success nr failure. The probability of a successful
performance on the task by a subject with true ability 6 is defined
via a nondecreasing function s(8), the referral task. Each referral
task corresponds to a unique function s{(6). Conversely, from a
purely mathematical point of view. any nondecreasing function s(p)
may be conceptualized as a referral task.

The referral task, thus, may be real or hypothetical. For
example, if an integer addition unit is to be followed by lessons
on integer multiplication, then performance on a multiplication
test may serve as a referral task for a test tapping the ability
to add integers. Othe illustrations of real referral tasks may also
be found in situations where the sequence of instructional units
forms a linear hierarchy. 1In a number of situations, a referral
task can be conceptualized. For example, in minimum competency
testing programs legislated in several states, a consensus on what
constitutes a minimum level of performance for mastery may serve as
a basis for a referral task. To be specific, let us agree that in
order to qualify for mastery, an examinee must have a true ability

of at least eo. Then the nondecreasing function s(8) which takes

the value of 0 if 6 < N and the value of 1 for 6 > 0 mathematically
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defines the referral task for this case. The special 0-1 form for
s(6) has been considered by a number of writers itcluding Hambleton
and Novick (1973).

Now let cf(e) represent the opportunity loss incurrei by
granting mastery status to a subject who will eventually fail in
performing the referral tas.. (a false positive error). Likewise,
let cs(e) be the loss associated with tie denial o mastery to a
subjec- whose performance on the task would be deemed successful (a
false negative error). Under these conditione, r~asonable choice
fer an optimum passing score would be the score c, at which the
average loss across all subjects in the population (or the Bayes
risk in the case of only one subject) is smallest. Details regard-
ing the computation of ¢, may be found ia Huynh (1976).

When test scores may be assumed to follow a beta-binomial
model and when the referral success function s(6) is of the 0-1,
linear, or cubic form, closed-form solutions exist for CR (Huynh,
1976, 1977). As is well known, the binomial error model is appro-
priate when each examinee is given an independent sample of items
(Lord and Novick, 1968, chap. 23). There are indications that
several test score distributions migh: fit the beta-binomial frame-
work even if examinees in each distribution respond to the same set
of items.

There are models other than the bet: -bincmial framework which
could be used to represent test data. For example, many frequency
distributions obtained from standardized tests are known to follow
closely a normal distribu.ion. Models using a bivariate normal
distributi~~ for the true score 6 and the observed score x are not
uncommon in educaticnal measurement and Bayesian statistical lit-
erature. Moreover, as an implication of the Central Limit Theorem.
the beta-binomial distribution will resemble a bivariate normal
distribution when the num>er of test items is sufficiently large.

The purpose of this paper is to provide the computation for
the optinur .ssing score (mastery score) fo. the bivariate normal

test score model with constant losses and 0-1 r normal ogive s(8).
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Since normal test scores form a continuous scale, the op timum
passing score <, satisfies the equation

[Q{(cs(e) + C.(8))s (o) - Ce(0) Ip(efc )do = 0. (1)

In the above expression, .} represents the sample space of §. For
the sake of completeness, a procedure will also be proposed for
approximating the referral success func:ion s(0).

2. PASSING SCORE COMPUTATION FOR THE BIVARIATE

NORMAL MODEL WITH CUNSTANT LOSSES
AND NORMAL OGIVE REFERRAL SUCCESS

Without any loss of generalfty, let C (6) = 1 and C (8) = Q.
Here Q expresses the ratio of the loss incurred by a false negative
error to that associated with a talse positive error. Now let the
referral success e defined as

6-6

(2)

where e and ¢ are two constants and F (.) denotes the cumulative

distribution function of a unit normal random variable. 1In aduition,

let x be in its standardized form (with zero mean and unit variance).

With p as the test reliability, the mean and variance of are
respectively 0 and p, and the correlatiow. between x and 6§ is .

It is now assumed that the vector (6,x) follows a bivariaze
normal distribution. It may e then verified that the conditional
density p(elc ) is giveu as a ncrmal density with mean pc and
variance p(l—p) Fruation (1) now becomes

+ +6,
{w (QH)F, 5 J - 1p(e]c )do = 0

+=  [6-0
[ Fy pofc ) = —5 (3

The integral in Equation (3) may be written as

or

. +o @ (t-6 )? o-pe )’ _l
A=——— 1 {] exp ~———|dt} exp| - de
/_2 @® > 262 2(p-p 2)
2movp-o -
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Thiz integral may be viewed as the probab .1ity of the joint event
{-» < 8 <o t < 8} associated with two independent random variszbles
t and 6. The random variable t has mean eo and variance 02; the
second random variable 9 lLias mean pc, and variance p - pz. Now the
difference t - 8 follows a normal distribution with mean e - pc

and variance p - 02 + 02. Siun~e the mentioned loint eventois °
equivalent to the condition t - & < 0, it follows that the value of
A is

FN[(pco~eo)/(p-pz+02)%]. Let £ be the 100/(14Q) percentile of the

unit normal distribution, e.g. FN(E) = 1/{14Q). Then <, is given as
60 + 5¢p-p2+02
—

Cc
[0}

(4)

If the test scores have mean My and a standard deviation Oys
then the test cutoff score is given as Co = ¥y + co~cx.

The following remarks may be made about Equation (4). First
by letting 02 = 0, the normal ogive s(68) will degenerate to a 0-1
form with the jump occurring at eo. Thus if true nonmastery status
is defined by 6 < 90 and true mastery by 6 > eo, ther the cutoff
score 1is c, = eo/p + &/1-p. Next, when misdecisions are weighted
equally in terms of losses (i.e., when Q = 1), <, and eo relate to
each other via the equation 60 = pc,. This expression is reminiscent
of the Kelly formula whick defines the regression of true score on
test score (Lord and Novick, 1968, p. 65). Finally, when the rela-
tionship between the ability 6 and the referral task is fuzzy, 1i.e.,
whenr 02 is large, the cutoff acore <, will shoot sharply abov= the
"central value" eolp if Q < 1 and will locate appreciably below
this central value if Q > 1.

It may be noted that the unstandardized passing score Co may
be written as

6 o
o X

2
+ €¢?1~o)o§ + ozo;ipz.

Co = v +
Let oz be the squared standard error of measurement. ‘rhen

2 2
g (l-p)ox and
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6 o
O

Co=u + +Eo +oo/p (5)

Numerical Example 1

Let wo= 100, o, = 15, p = .90, 60 =1, 0=.5 and Q =
Then § = .432, -.d c, = 1.391. The raw (unstandardized) cutoff
score is found ., be Co = 120.86.

~.___ESTIMATION PROCEDURE FOR
NORMAL OGIVE REFERRAL SUCCESS

Now let g(x,l) be the proportion of subjects who have a test
score of x and succeed in performing the referral task. Then from
Equation {13) of Huynh (1976, p. 74), it may be seen that

o
g(x,1) = [ h(x,8)s(6)de

vhere 1.(x,6) is the bivariate normal demsity of x and 6. It follow -

that
+ g-"
g(x,1) = £ (x)] Fgl—5|p(elx)do

where fN(.) is the unit normal density. Hence from the derivations
in the middle part of the previous section,
g(x,1) _ F PPy

£ (x) N|
N /b-p +0

The ratio p(x) = g(x,l)/fN(x) represents the (corditional) propor-
tion of students who, at the test score x, will succeed in perform-

ing the referral task. Now let

2%

a = p/(p—pz+o ) (6)

and

B = —60/(0-02+02)8.
then

p(x) = FN(ax+-B).
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If £(x) denotes the 100p(x) rercentile of the unit normal distribu-
tisn, then

£(x) = ax + 8 . )]

Now let ;(x), é(x) be the observed values of p(x) and £(x). Let
w(x) be a sultably chosen weight function at tb- score x. Then via
the least squares technique, the estimates for a and B are given as
a = s()r(x,8) (8)
and

B=E,, (9)
where E‘ and s(é) are the mean and standard deviation of the %(x)
values, and r(x,é) is the correlation between the x and E(x) values,
cach pair being weighted by w(x). The computation. of course, is
carried out only over the x values at which the sample valies ;(x)
are available. The reader may recali that the test scores x are in
standardized form.

It may be noted that p(x) is an increasing function of x.
Hence it seems reasonable to require that the sample value p(x) be
a nondecreasing function of x. Thas may be done by applying the
Pool-Adjacent-Violator algorithm (Barlow, Bartholomew, Bremner, and
Brunk, 1972, p. 13) using w(x) as the w. ght function. In addition,
since all p(x) values must be included strictly between 0 and i,
the algorithm must be cuaducted such that the adjusted values ;(x)
conform to this requirement. (See Table 1 for an illustration.)

As in any least square procedure, the weight function w(x) may
be chosen in a variety of ways. It appears to the author that the
number of subjects at each test score might serve as a .:2asonable
choice for this function.

Once the estimates ; an? é have been determined, the estimates
for 6  and 02 may be derived from Equatibgs (5) and (6). Tliese are

60 = -pB/a (10)

and

A

2

02 - pZ/&2 -p+p°. an
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In the case where Equation (11) yields a negative value, a reasonable

choice for 02 would be 0.

Numerical Example 2

Table 1 presents the basic data for this example. The test
reliability is taken to be p = .90. The summary data are E. =
-.2280, s(£) = .8668, and r(x, £ = .9723. It follows that a =

.8427 and B = -,2280, hence 9 = 244 and o = 1.050.

4. ASSESSING THE CONSEQUJENCES
OF SELECTING A MASTERY SCORE

Section 2 providesn the computation of mastery scores when the
loss ratio Q is known. In ¢ number of applications, however, the
test user may not be willing to specify in advance a value for Q.
Instead the user may wish to look at the consequences associated
with each cutoff score before making a final choice. Such a prac-
tice is not uncommon in real testing situations. Both Jaeger (1976)
and Shepard (13976) have advocated an iterative process for setting
cutoff scores in testing programs such as high school graduation
or minimum competency testing.

As in Section 2, let FN(.) denote the cumulative distribution
fuuction of the unit normal variable. Given the loss ratio Q, the

mastery score c_ is given by the equation

[(pc ~6.)/(p-p +oz)”] SR

Alternately tte selection of :, 88 the cutoff score would indicate
that the weights (or losses) accorded to a false negative er.ur a-4i

to a false positive error are in the ratio of Q te 1 where
Q=1/F ((pc -6,)/(p-p 24 )!’J - 1.

Q will degenerate to 0 when <, goes to +» (i.e., when all subjects
are denied mastery) and to = when ¢, Boes t> -=» (i.e., when mastery

is granted regardless of test score).

5. SUMMARY AND CONCLUSION

This study touches some aspects of the determination of pass-

ing scores on the basis of the bivariate normal test wodel. The
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TABLE 1

Basic Data for Numerical Example 2

Raw Test Score

1 2 3 4 5 6 7 8 9 10

Frequency of examinees 1 4 10 21 16 23 21 16 8 5
Frequency of referral-
successful examinees 0 0 1 3 4 8 15 10 7
tnadjusted ﬁ(x) 0 0 .100 143 .250 .348 .714 .6z5 .875
Pool-Adjacent-Violator-
Adjusted p(x) .067 .067 .067 143  .250 .348 .676 .676 .923  .923

E(x) -1.450 -1.%50 =1.450 -1.067 -.675 -.391 .457 .457 1.426 1.426

&8




HUYNH

loss ratio associated with classification errors Is assumed ¢c be
constant, and the referral success function is assumed to be in the
normal ogive family. Alternately, the model also provides a fairly
simple way to assess the loss consequences associated with each
mastery score. Such information is deemed useful to the test user
who may wish to examine these consequences before making a final
choice of cutoff score.

It shouid be mentionmed that the paper deals with group test
data for a population of exariinees. Thus the various results
would be useful to the extent that loss consequences are consiaered
jointly for the entire population. A procedure for setting passing
scores on tests in the absence of group data is discussed elsewhere
(Huynh, 1978; also in press).
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ABSTRACT

A general framework for making mastery/nommastery decisions
based on multivariate test data is described in this study. Over
all, mastery is granted (or denied) if the posterior expecied loss
associated with such action is smaller than the one incurred by the
denial (or grant) of masters. An explicit form for the cutting
contour which separates mastery and nonmastery states in the test
score space is given for multivariate ’ ast scores which follow a
normal distribution with a constant loss ratio. For the case
involving multiple cutting scores in the true ability space, the
test score cutting contour will resemtle the boundary dufined by
multiple test cutting scores when the test reliabilities are reason-
ably close to unity. For tests with low reliabiliies, decisions

may very well be based simply on a suitably cnosen composite score

1. INTRODUCTION

Application of mental measurement to selection or certification

problems often involves the use of more than one test score. For

This paper has been distributed separately ac RN 79-7, December,
1979.
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example, the selection of students for an advanced program in some
subject area may be based on several traits (variables), such as
prior achievement, aptitude, interest, etc. Ideally, selection
should be based on the subject's true measures on these traits; in
reality, however, decisions are typically based on observed test
scores which are contaminated with errors of measurement. Thas,
misclassifications are bound to occur, and rules for decisions
based on test data are typically formuiated in such a way as to
minimize the risks incurred by misclassification.

Decision problems based on one variable have been considered
at length in the literature. Statistical issues involved in estab-
lishing a single cutoff (cutting, passing, or mastery) score are
described in detail in & number rf sources including Swaminathan,
Hambleton, and Algina (1975); Huynh (1976, 1977, 1979, 1980);
Wilcox (1976); and van der Linden and Mellenbergh (1977). Huynh
(1979, 1980) also provides an explicit relationship awong test
cutting score, losses incurred by misclassification, and errors of
measurement. In general, within the minimax or empirical Bayes
decision framework, it is found that errors in measurement will
reduce the test cucting score when a false negative error is more
serious than a false positive error. Converscly, the test cutting
score will increase when a false negative error is less serious
than a false positive error.

The effect of errors of measurement in selection zitwations
involving multiple true cutting scc es has been considered by Lord
(1962). The selection framework used involves the regression line
expressing the amount of "desirabilicy" assignel to different
examinees as a furction of the .bserved test scores. Using the
multivariate norril distribution to describe the true and observed
scores, lLord was able to plot the contour line in the observed
test score plane which separates the subjects deemed acceptable
(masters) from those judged as vnacceptable (normasters). Lord's
paper, however, does not appear to come naturally from decision
theory as formulated by Wald (1950) or as prescribed in Ferguson
(1767).
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The purpose of this paper is twofold. First it will describe
a general empirical Bayes solution to the "plotting" of a cutting
contour in selection situations involving multiple test scores.
Second, it will explove the influence of the loss ratio on the
cutting contour and will reexamine the distortion caused by errors
of measurement (Lord, 1962), using an empirical Bayes decision-
theoretic framework. Examples based on the multivariat : normal
distribution with constant losses for misdecisions are .rovided to

illuminate various points or procedures put forward in the paper.

2. EMPIRICAL BAYES APPROACH TO CUTTING CONTOUR

Now let the vector 6 = (61,62,...,6k)' denote the true scores
(measures) of an individual subject on k traits (or selection
variables). Let Q represent the region in the true score space
where a subject must be located in order to qualify for the true
state of mastery. Thus a subject 1s defined as a true master if
8 € 0. Let q° be the complement of {i. Then a subject is declared
a true nonmaster when 6 ¢ Q°.

Now let the vector x = (xl,xz,...,xk)' represent the observed
test scores of the subject. On the basis of x and other p:-ior
information regarding 6, a decision may be made concerning the sub-
ject: either to grant mastery (action a]) or to deny mastery
(action az). When 6 ¢ R, the best course of action is as and no
loss wiil be encountered. Similarly, action a, is best when 6 ¢ 9°.
For other situations, classification errors occur. To e specific,
the choice of action a, when 6 € @ constitutes a false ragative
error, whereas the selection of a, when 6 € o° produce, a false
rositive error.

Let cs(e) be the loss associated with a false negative error
and cf(e) be the loss encounterad bv a4 false positive error. Let

p(elx) be the posterior probability density of 6 given that the

rost score vector i has been observed. Given x, the posterior
expected loss encountered in taking action a, is given by the
integral R(a, |x) = fgc Cf(e)p(elx)de.
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Similarly, cthe posterior loss associated with the choice of

= (
action a, is R(azlx) jQ Cs(e)p(elx)de.

It follows from Bayes (or empirical Bayes) decision theory as
expressed, for example, in Ferguson (1967) that, in the test score
space generated by the test score vector X, the cutting contour S
scparating the two actions a, (granting mastery) and a, (denying
mastery) is defined by the equality R(allx) = R(azlx). In other
words, the line (or surface) S consists of all points x at which

Jo Cs(eIp(o|x)de = ]gc Ce(8)p(o[x)de. (1)

The following section explores in detail the implications of
Equation (1) for the case involving constant losses and multiple

true cutting scores.

3. CUTTING CONTOUR FOR CONSTANT LOSSES
AND MULTIPLE TRUE CUTTING SCORES

Let losses be constant and expressed as cf(e) =1 and Cs(e) = Q
in the region where they do not vanish. In other words, Q is the
ratio of the false negative loss to the false positive loss. In
addition, let o be the "upper .ight" corner defined by the true

* % *
cutting scores el,ez,...,ek. In other words,

* * *
2= {650720150,<6,s+++,0,<6,).
With constant losses Equation (1) may now be written as
Qf ple|x)de = [Qc p(e|x)de.
Since U Qc spans the entire space for g, it follows that
Jq plo|x)de + [Qc p(e|x)de = 1.

With this relztionship, Equation (1) becomes

1
Joplelxdo = 735, (2)
which may be written, using the given multip’e true cutting scores,
as
* * * 1
Pr(el_<_91,92_<_92,...,Bkiek]x) = T (3)

The line consisting of the points of coordinate x which satisfy
FEquation (2) or (3) defines the boundary between granting and deny-

ing mastery ir the test score space. This boundary line will be

referred to as a cutting contour.
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4. CUTTING CONTOUR IN MULTIVARIATE NORMAL TEST SCORES

For illustrative purposes, let it be assumed that the true
score vector 6 for a population of subjects follows a multivr+iate
normal distribution with mean vector u = (u,,uz,...,uk)' and with
covariance matrix Ze - [oij)' In the term . ‘ogy of empirical
Bayes statistics, this statement is equivalent ty the requirement
that the prior distribution c¢f the true score vector 6 be the same
for all subjects in the population under study. This common prior
distribution may be estimated from historical test score data or by
procedures which are consistent with classical measurement theory
and practice.

The difference vector e = x - @ represents the errors of
measurement. It will Le assumed that the k omponents of e are
normally and independent.ly distributed, each with a mean of zero
and a variance of €40 i=1,2,...,k, free of 8. 1In addition, it
will be assumed that the two vectors e and 6 are stochastically
independent. To simplify the notation, let Ze be the diagonal
matrix with elements £i4"

It follows from classical measurement theory and from known
properties of multivariate normal di tributions that the joint
distrj .ation of x and 6 is multivariate normal with a mean vector

of u for both x and 6 and with a covariance matrix defined as

where Zx =T, + Ze. Hence the posterior distribution of 6 giveu

]
the test score x is multivariate normal with mean vecter £(x) -

(51.52,...,£k)' = u+ (x—u)'Zez;l and with covariance matrix

=)=zt - 511
A (Aij' Tg = BgI, Ly The vector E(x) is a function of the

test score vector x. On the other hand, the matrix A is free of x.
Now let us consider the standardized variables YysYpsr ooV
where

ye= (0 =~ @)/, 1= 1,2,.0,k.
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Each of these variables has zero mean and unit variance. Let T be
the correlation matrix associated with A (i.e., T is the covariance
matrix of the ¥y variables). 1In addition, let

* * —
vy = (8 - AL, 1= 1,200 k. (4)
Then the cutting contour separating the two actions a, and a, in

the test score space is defined by the equality

Pr(y:fyl’y;fyz"'"yzfyk) - E%E (5)
where the random vector y = (yl,yz,...,yk)' follows a multivariate
normal distribution with zero means, unit variances, and correlation
mactrix T free of x.

Consider now the set Yy consisting of the points with coordi-
nates (y;,y;,...,y;) which satisfy Equation (5). Tihansky (1970)
refers to this set as an equidistributional contour and provides
ways to construct contours of this type for bivariate normal dis-
tributions. The contour y depends only on T which does not involve
the observed test score ve~ntor x. Once it has been constructed,
the cutting contour C in the test score space may be plotted via
the system of linear equations represented by

1

mt ew'L L= g, (6)
where
* *
£ = 6 - yinii, i=1,2,...,k.

Where computer facilities are available, equidistributional
contours may be drawn v.a the Newton-Raphson iteration process for
nonlinear equaticns. For example, let (yl,yz)' follow a standard-
ized bivariate normal distribution with correlation p. Let a be
any number between O and 1, and u be such that Pr(u < yl) <o, We
will search for the value v at which G(v) = O, where

G(v) = Pr(y >u,y,>v) - a,

= Pr(yljfu,yzfrv) - a. N

The derivative of G(v) with respect to v is given as

2
6'(v) = -(20) exp (- ) Bly <-uly, = V). ®
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Here the conditlonal distribution of Yq given Y,

= -v is a normal
distribution with a mean of -pv and a gtandard deviation of (1_02)8_
Hence

2
' - v -u+
G' (V) = -(2m) Pexp (- L) (2 :——Qfg) (9)
2 (1-92)

where Z is the standardized normal varisble. The values of G(v)
and G'(v) may be obtained via computer programs such as MDBNOR
(IMSL, 1977) and the Fortran IV library function ERFC. Both G(v)
and G'(v) are needed in the Newton-Raphson iteration process. This
procedure has been found to converge when u is not too close to the
upper bound u_ at which P(uo j.yl) = a. (It may be noted that the
bivariate equidistributional contour has two asymptotes defined as
u=u and v = u,. Thus small variations in a u value near u, will
tend to associate with substantial changes in the v values; because
of this, the iteration process may fail. However, since P(yI.Z u,
Yy >vVv) = P(y1 2 vy, 2> u), the contour is symmetric with respect
to the first diagonal in the (u,v)-plane. Thus it is necessary to
iterate the v value for each u sufficiently smaller than the upper
bound u s and then to resort to symmetry to complete the drawing of
the contour.)

The drawing of an equidistributional contour for any k-variate
normal distribution may be accomplished in the same way via the
Newton-Raphson iteration process previously described. The details
are straightforward and therefore are not presented here. Multi-
viriate normal probabilities of the form P(y; j,yl,y; < Yoreres
Yy =2 yk) may be evaluated via computer programs such as the one
described in Milton (1972).

It may be noted that the contour y does not depend on the two
vectors e* and u. In addition, in the transformation from Yy to C
as defined by (6), these two —7ectors act only to indlcate the new

locatior of the transformed curve. It feilows that the sbape of

the cutting contour C does not depend on either the vector u or the
*
vector 8 .
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5. AN ILLUSTRATION OF CUTTING CONTOUR

Consider now a selection based on two variables defined by the
true scores 61 and 62. and by the observed test data 3 and X It
will be assumed, as in Lord (1962), that both X and X, are in their
standardized form and have a common reliability coefficient of .90.
In addition, let the correlation betwaen X, and X, be .60. 1t fol-

lows that the matrices Zx and I, are defined as

9
1.00 .60
I =
* | .60 1.00
and
(.90 .60
I = .
® l.60 .90
With
)
Sl 1.00 -.60
»
x  -641_.60 1.00]

it foilows that
41 [.54 .06] [‘84375 .09375]

LI = ——

Yx -84l 06 .54) |.00375 .84375
and
.90 .60 1 [-522 .378 [.086375» . 009375
A= -L - :
.60 .90) €4 378 .522) |.009375 084375

Thus the posterior distribution of § = (61,62)' given the test data
x = (xl,xz)' is bivariate normal with mean vector £(x) = (51,52)'
where 51 = .84375x1 + .09375x2 and 52 = .09375x1 + .84375x2. The
posterior standard deviations are (.084375)!i = .29047 for both 6

1 and 02 is

1
and 6,» and the posterior correlation between 6

.00375/.084375 = .11111.

It may then be deduced from the equations represented by (4)
that

vy = (6] - (.84375x; + .09375x,)) /29047
and

y5 = (65 - (.09375x, + .84375x,))/.29047.
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*
To draw the (xl,xz) contour line, let us suppose that 91 = g

= 0. The two equations represented by (6) can be written as

N

®x
-84375%) + .09375x, = -.29047y,

.09375x. + .84375x, = ~. 25047y,
1 2 2
or equivalently

® ®
x, = -.34857y1 + .03873y2

873y 857y "
x, = .03 vy - .34 Yo -

In the above equations, the point at coordinate (yl,yz) Zelongs
to the equidistributional contour line defined by P(y1 < ¥psY,
= 1/(1+Q), where (yl,yz) follows a standardized bivariate normal
distribution with correlation .11111. It may be recalled that Q is

<v,)

the ratio of the false negative error loss to the false positive
error losc.

For purposes of illustration, the sf.eps previously described
were implemented in drawing the cutting contours associated with

the loss ratios Q = 1/3, 1, and 4. These contours are depicted in
Figure 1.

6. EFFECT OF LOSS RATIO ON CUTTING CONTOUR

In Figure I, the upper right region bounded by each cutting
contour consists of the test score points at which masteiy is
granted. It may be observed that the mastery region expands as the
loss ratio Q increases. This conclusion is to be expected. If the
consequences due to a false negative error become more serious (i.e.,
Q increases), then the classification (or selection) procedure
should be so designed as to reduce the probability of this error.
Thus the size of the nommastery set must be reduced, and as a
consequence, it becomes more likely that mastery will be granted.

In general let the set A (Ql) con st of all points y =
(yl,yz,...,yk) for which

] ] ]
P(7) £ 91Y5 S 3psee oy 2 3) > 1/(14Q)) (10)
99
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FIGURE 1
Multivariate Cutting Contour
for three Q Values
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and let A(Ql) be the correspondiug region in the test score space.
It may be verified that in A(Ql) the expected posterior losses
associated with the *wo actions a, (granting mastery) and a, (deny-
ing mastery) satisfy the inequality R(a1|x) < R(azlx). Thus the
set A(Ql) consists of test score points at which the subject is
declared a master. Now let Q2 be a second loss ratio such that

Q; <Q, This is equivalent to 1/(1+Q1) > 1/(1+Q2). Let A(Q,) have
the same meaning as above. Then any test score points which belong
to A(Ql) must also belong to A(Qz). In other words, the inequality
Q, <Q, impl-es that A(Ql) c A(Qz). Thus, as the loss ratio Q
increases, the mastery region in the test score space will expand.
By the same line of reasoning, when Q decreases, the mastery region

will be reduced in size.

7. EFFECT OI' ERRORS OF MEASUREMENT ON CUTTING CONTOUR

To illustrate the effect of errors of measurement on the cut-
ting contour in :the test score space, let it be assumed as in the
previous section that the test scores X, and x, are in their
standardized forms and have a correlation of .60. In addition, let
it be assumed that x, and X, are equally reliable with common relia-

1

* *
bility coefficient 5, and that 91 = 92 = 0,

It rollows from the equations represented by (6) that
*

l.25(p—.36)xl + .75(l—p)x2 = (92-1.36p+.36);2yl

(11)
*

75(1-p)x, + 1.25(p=.36)x, = (p’-1.360+.36) %, .

x %
In these expressions, the point (yl,yz) belongs to an appropriate
equidistributioanal contour associited with the standardized bi-
variate normal distribution with correlation § = ,6(1-p)/(p-.36).

It may be deduced from the positive semidefiniteness of the
covariance matrix of (91.92) that the common reliability p must be
between .60 and 1.00. As a function of p, the posterior correla-
tion 6§ is a decreasing function, assuming the value of 1.00 when

p = .60 and having the limit of 0 when p tends to 1.00.
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When p approaches the upper iimit 1.00, the posterior distri-
bution of (61,92) will degenerate at the point (xl,xz). (It may
be noted that when p = 1, the posterior covariance matrix A as
defined in Section 4, i.e., ze - Zeleze, will vanish.) Given the
test score vector x = (xl,xz)', formally, the posterior expected
loss for taking action a5, R(allx), is equal to 0 when £ ¢ Q and
1 when x ¢ a°. Similarly, R(azlx) is equal to Q when x ¢ 9 and
0 when x € 2°. Thus, mastery is granted when X; 2 0 and Xy 2 0.
When either X <0or Xy <0 (or both), mastery is denied. In
summary, when p tends to unity, the cutting contour line in the
test score space will approach the cutting contour line defined
in the true score spuce.

Consider now the other limiting situation where p tends to .60
and & goes to 1.00. The entire bivariate probability of (xl,xz)'
is now conceitrated on the diagonal X} = x,. Let Yo be tne point
at which P(y°.5 yl) = 1/(14Q) where ¥y as previously defined, is a
standardized normal cariable. The equidistributional contour line
is now comprised of the two half lines defined by (i) y1 =Y, and
y2 Y0 and (ii) y2 =Y, and y1 <y, Both half lines start at
the point (yo,yo) and extend to -«», one vertically and the other
horizontally.

The equations (11) now become

+ x

2 *
X 2 -3 Y1

*
X, + Xy = —.32y2.
It follows that the cutting contour in the observed test score
space is the straight line defined by the equation xl-ﬁx2-=- 32y

The decision regarding granting or denying mastery in this case 15
actually based on the composite scure M + Xy although separate
cutting scores have been set in the true score space!

For purposes of illustration, cutting contours are drawn for .
the reliability coefficients of p = .95, .80, and .65, and with the

loss ratio Q = 1. The contours are thown in Figure II.
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8. SUMMARY

A general framework for making mastery/normastery decisions
based on multivariate test Jdata i{s described in this study. Over
all, mastery is granted (or denied) if the posterior expected loss
associated with such action is smaller than the one incurred by che
denial (or grant) of mastery. An expiicit form for the cutting
contour which separates mastery and normastery states in the test
score space is given for multivariate test scores which follow a
normal distribution with a constant loss ratio.

For the case involving aultiple cutting scores in the true
ability space, the test score cutting contour will resemble the
boundary defined by mu1tiple test cutting scores when the test
reliabilities are reasonably close to unity. For tests with low

reliabilities, decisions may very well be based simply on a suitably

chosen composite score.
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ABSTRACT

Two versions of tbe Nedelsky procedure for setting minimum
passing scores are compared. Two groups of judges, one using each
version, set passing scores for a classroom test. Comparisons of
the resulting sets of passing scores are made on the basis of (1)
the raw distributions of passing scores, (2) the consistency of
pass-fail decisions between the two versions, and (3) the con-
sistency of pass-fail decisions between each version and the pass-
ing score established by the test designer. The two versions of
the procedure are found to produce essentially equivalent results.
In addition, a significant relationship is observed between the
passing score set by a judge and that judge's level of achievement

in the content area of the test.

This paper has been distributed separately as RM 80-1, March, 1980.
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1. INTRODUCTION

Passing scores are needed in a broad variety of situations,
including (a) entrance examinations, (b) tests for advancement of
students from unit to unit in individually pre-rribed instruc-
tional programs, (c) minimum Competency testing, and (d) certifi-
cation or licensing examinations. Though writers such as Glass
(1978) charge that passing scores for minimum competency iesting
are usually selected arbitrarily and frequently used unwisely,
others (Hambleton, 1978; Shepard, 1976) have documented the need
for cutoff scores in such areas as objectives-based programs and
individualized instruction. This paper presumes the practical
necessity of passing scores and explores ways in which they can
be established more objectively.

Procedures for Setting Passing Scores

Various procedures for setting passing scores or "standards"
have been developed (see Meskauskas, 1976). Most can be placed
into one of three broad categories: (a) comparisons with the per-
formance of others, (b) considerations of the consequences of
misclagsification, and (c) examinations of item content.
Standard-setting procedures in the first two categories generally
require actual student response data or assume a theoretical,
statistical distribution of such data; content-based methods use
Judgements of content experts. Content-based methods frequently
are used with tests when student performance data are not avail-
able.

Methcds for determining passing scores by analyzing test con-
tent require a judge or group of judges to estimate the probable
score of a hypothetical examinee responding at the level of mini-
mum acceptable performance. Three of the best-known content-based
procedures are those proposed by Angoff (1971), Ebel (1972), and
Nedelsky (1954). 1In using the Angoff method, each judge estimates,
the probability that the "minimally acceptable person' would
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respond correctly to each item; the passing score is determinec .y
suming the estimated item probabilities (Angoff, 1971; Zieky and .
Livingston, 1977). 1In the Ebel procedure, judges gort items into
categories of "relevance" and "difficulty." Each judge then esti-
mates the proportion of correct answers in each category expected
of a "minimally qualified" examinee. The passing score is the
weighted sum of these proportions, with the weight for each cate-
gory being the number of items it contains (Ebel, 1972). The
Nedelsky method is restricted to multiple-choice tests. Every re-
sponse option 1s considered by each judge, who decides which op—-
tions could be rejected as incorrect by an examinee performing at
the mininum passing level. The probability that somenne at this
level would respond correctly to the item is t.“en to be th: re-
ciprocal of the number of remaining options (i.e., one divided by
the number of options that the minimally performing examinee
should not be able to reject). The passing score is the sum of
these reciprocals for all items. (In the original formulation,
Nedelsky (1954) offera further refinements, such as, estimatiug
the stundard deviation of the chance distribution of scores and
using it in :onjunction with setting the passing score. These
reficements are not considered in this payrer.) In all cases, the
pasaing score can be expressed as a fraction or percentage of the

total number of items.

omparisons of e ication he

The metnods discussed above, though operational.y quite
different, have strong logical similarities. It might seem that
they could be expected to produce equivalent passing scores. Re-
search reported in the literature indicates that this equivalence
is not always observed. In a study comparing the Ebel and Nedelsky
Procedures, Andrew and Hecht (1976) found that the two standard-
setting methods produced significantly different passing scores.

Perhaps an even more important consideration was that 45 percent
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of the examinees being tested were claisified differently by the
two passing scores (Glass, 1978). 1In research utilizing the
Nedelsky and Angoff procedures, Bremnan and Lockwood (1979) also ‘
reported a substantial difference in the resulting passing scores.
When several judges are used, the variation among judges’
individual passing scores also can become an issue. A certain
degree of variation might be expected. It is usually suggested
that the different passing scores be reconciled either by
averaging the scores or by requiring judges to reach a consensus
passing score. Andrew and Hecht (1976) found that passing scores
obtained by consensus and by averaging did not differ significantly.
In at least one reported case, however, the amount of variation
among passing scores set by a group of judges using the Nedelsky
procedure was substantial, and the procedure was rejected as un-
feasible (Meskauskas and Webster, 1975). The averaging process
treats the variation in passing scores as random or "error'" varia-
tion. It might be, however, that differences in passing scores
are related systematically to characteristics of the judges. If
passing scores are to be useful, they should not depend too much
on the characteristics of a particular judge or group of judges.
Such characteristics, once idencified, pcssibly could be con-
trolled to prevent them from exerting an undue influence on the
standard-setting process. One characteristic which intuitively
might be expected to show such a relationship is the judge's own

1 vel of achievement in the relevant area.

Tycus of this Paper

This paper deals only with the Nedelsky procedure. Two ver-
sions of the procedure appear to he in use. In the first version,
judges must classify response options into two categories: (a)
thos.:: which should be rejected as incorrect by the minimally per-
forming examinee, and (b) those which should not. 1In the alter-

native version, a third category, '"undecided," also is used when
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the judge is unable to classify the response option as one that
either shoulc¢ ur should not be rejected. Decisions between the
two versions seem to be based on the preferences of the judges,
rather than any theoretical consideration (e.g., Paiva and Vu,
1979; Smilansky and Guerin, 1976). Nedelsky (1954) discussed the
use of the alternative procedure; he apparently felt the two ver-
slons were equivalent.

The purpose of this paper is twofold. First, a comparison
is made between the two versions of the Nedelsky procedure.
Second, the relationship between the achievement levels of judges

and the passing scores they set will be assessed.
2. METHOD

Subjects

In order to compare the two versions of the Nedelsky pro-
cedure, subj2cts acting as judges were divided into two groups.
Group A used the two-category version of the procedure to set
passing scores on an achievement test, while Group B used the
three-category version. The results were compared using the dis-
tributions of passing scores, as well as the consistency of
decisions based upon the scores. Also, to determine the relation-
ship between judges' achievement and passing score, the correlation
between measures of the two variables was calculated.

Data for the study were obtained from students in an intro-
ductory course in educational research and measurement. The course
was conducted via videotape at a number of regional campuses of a
large state university. Ali subjects were graduate students; many

were experienced teachers.
Instrument

The instrument for which passing scores were set, and by
which judges' achievement levels were determined, was the course

midterm examination, a 40-iter, four-option, multiple-choice test,
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constructed by the course instructor (the second author). The
test covered such topics as the nature of the research process,
observation and measurement, sampling, and item analysis. The
exam has been revised over several years to reach a high degree
of content validity, and in its most recent administration showed
an internal consistency (KR20) reliability index of .82. Thus,
scores on the test are taken to be valid and reliable measures

of achievement.

Treatment Groups

All students enrolled in the course wrote the midterm exam-
ination a3 a regular course requirement. The exams routinely were
graded and returned to the students for discussion in class. The
students then were asked to participate in an exercise involving
the use of the Nedelsky procedure to determine a passing score for
the test. While participation in the exercise was voluntary, more
than 95% of the students chose to participate. Of the 148 students
agreeang to participate, 30 were deleted from the study due to
failure to follow instructions, missing identification codes, or
missing achievement data, leaving 118 students as the sample used
in the experiment. Subjects were assigned randomly to groups,
stratified by course section to control for possible differences
among regional campuses. Then they were given copies of the test,
along witn detailed instructions on the Nedelsky procedure. In-
structions for the two groups differed only with respect to the

version of the procedure used.

Definition of Minimum Competence

Minimum acceptable performance was defined for the subjects
as the lowest level of performance on the test for which a grade
of "B" would be awarded. This level was chosen as appropriate,
since one of the requirements of the subjects' degree programs is
that a "B" average be maintained. For each incorrect response

option on the test, the subjects were instructed to respond to the
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question "Should the student performing at the minimum acceptable

level (as defined above) be able to reject this option as

incorrect?" Spaces were provided for that purpose beside each

option. For the two-category version (Group A) of the procedure,

the possible responses were "yes" and "no." The three-category

version (Grov) B) also allowed "undecided" as a possible choice.

In order to minimize any possible confounding effect produced by

the subjects' knowledge of previously existing course standards,

the subjects were not required to calculate their resulting

Nedelsky passing scores; this was done by the authcrs. Each sub-

Ject responded individually; no attempt was made to determine con-

sensu8 passing scores.

Comparison Procedures

The frequency distribntions of passing scores produced by
the two groups were compared using the Kolmogorov-Smirnov two-

sample test, a broad test sensitive to any difference in the two

distributions. The distributions of passing scores are given in
Table 1. All passing scores were rounded upward to the nearest
whole number, that is, the number of correctly-answered items
necessary for an examinee to be classified as passing. Decision
consistency was assessed via comparisons of the proportions of
students writing the exam who were classified similarly by the two
versions. Both the mean and median passing scores for each group
were used in the comparisons. The results are shown in Table 2.
Also, decisions based or the groups' passing scores were compared

with those based on the standard established by the course in-

structor, as shown in Table 3. Finally, to assess the re'ation-
ship between judges' achievement and passing score, the Pearson
product-moment correlation coefficient was determined for the
subjects' examination grades and their Nedelsky passing scores.

For this calculation, the two groups were combined.
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TABLE 1

.istributions of Passing Scores from Two Versions
of the Nedelsky Procedure

Passirg Freguency Passing Frequency
Score Group A Group B Score Group A  Group B
13 0 1 26 2 4
14 1 0 27 - 0
15 0 0 28 5 2
16 2 1 29 4 4
17 0 1 30 0 1
18 1 0 31 3 5
19 0 0 32 5 3
20 3 1 33 2 3
21 1 0 34 6 10
22 1 0 35 6 5
23 2 2 36 3 2
24 2 4 37 3 5
25 1 2 38 5 3

N MEAN  MEDIAN  S.D.
Group A 59  29.88 31.17  6.38
Group B 59  30.51 31.37 5.79

Kolmogorov-Smirnov D = .170 (p = .36)

3. RESULTS

The overall passing score distributions for the two groups,
displayed in Table 1, showed no significant difference (p = .36).
As can be seen in Table 2, the two forms also produced highly
consistent classification decisions. If the mean passing score
for cach group is used as a standard, only 7 of 185 students taking
the test would have been classified differently, a percentage of
agreemert of 96%. The exact median passing scores from the two
groups ate 31.17 and 31.37, respectively. Rounding upward, both
these valuves become 32. Thus, use of the median passing score

produced the surprising result of complete agreement in classifi-

cation.
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The fact that the two versions produce passing scores - =1ding
consistent decisions does not, in itself, mean that the scores are
useful in practice. But further comparisons of decisions based on
the Nedelsky passing scores with those based on standards previous-
ly established by the course instructor (32 correct answers for a
grade of B) also show a high degree of agreement (Table 3). Using
the group mean passing score as the standard, 11 of 185 students
were classified differently by Group A (the two-category version)
and the course instructor's pre-set standard (percentage agreement
= 94%). For Group B (the three-category versions), this percentage
was 98% (7 students classified differently). The group medians,
rounded up to 32, coincide exactly with the course instructor's
standard. Here again, use of the group medians produced ( >mplete
agreement.

As was noted previously, subjects in both groups were com-
bined to consider the relationship between judges' achievement and
passing score. Such a relationship, if it exists, might be expect-
ed to hold across methods; in any event, the demonstrated equiva-
lence of the two forms suggests the reasonableness of combining the
two groups. The linear correlation between achievement and passing
score for the subjects of the study was .30 (p = .001). Thus
achievement in the subject matter area accounted for 9% of the ob-

served variation in passing scores.

4. DISCUSSION

From the results of this study, the two- and three-category
versions of the Nedelsky procedure yield equivalent results.
The finding holds both in terms of the empirical distributions of
passing scores, and of consistency in classification decisions.
Additionally, there was a close correspondence both in distribu-
tions of passing scores and in classification decisions between
passing scores set by the subjects and the pre-set standard es-

tablished by the course instructor.
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TABLE 2

Decision Consistency of Passing Scores
Two Versions of the Nedelsky Procedure

Case I: Using the mean of geveral judges.

Group A
fail pass
fail 44 7 51
Group B
pass 0 134 134

44 141 185
134 + 44 _

Proportion of consistent decisions = 185 .96
Case II: Using the median of several judges.
Group A
fail pass
fail 55 0 55
Group B
pass 0 134 134
55 134 185
Proportion of consistent decisions = léﬁiggéé = 1.00
116 1.”;
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While either the mean or median of several judges' passing scores
could be used to set the final passing standards the median, rather
than the mean, might be more appropriate. The median's resistance
to the influence of extreme scores would seem to reduce some of the
effect of variability in passing scores from a group of judges.

Some variation wac observed in the scores from both groups of
judges. The slightly smaller standard deviation of passing scores
from Group B, using the three-category version of the procedure,
might be a point in favor of the use of that version. The signi-
ficant poritive correlation between judges' achievement and pass-
ing score indicates that at least a small portion of the observed
variation in passing scores was related systematically to a
characteristic of the judges. Other relevant characteristics might
be identified which also relate systematically to judges' passing
scores. Knowledge of these characteristics and their relationship
to passing scores could lead to their elimination, control, or
utilization in the standard-setting process. This knowledge would
make the setting of passing scores on the basis of expert judgement
a more objective process.

In conclusion, this study has shown that the two versions of
the Nedelsky procedure considered here produce equivalent passing
scores. Also, it was shown that the passing scores set by differ-
ent judges were related positively to the judges' own achievement.
It should be noted that the study involved the setting of passing
scores for a single test, using as judges students who took the
test but who were not responsible for constructing it. Further,
such judges are not likely to have the broad knowledge of other
students, of how such tested content fits into the total curri-
culum, and of the subject-matter itself which, say, faculty
members might have. It is an open question whether faculty
members would tend to show the same pattern of consistenc, in
applying the two Nedelsky methods. Thus the observed results must

be seen as suggestive rather than conclusive. However, given the
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Decision Consistency of Course Instructor's Standard with
Passing Scores from Two Versions of the Nedelsky Procedure

Case I: Using the mean of several judges.

Group A
fail pass
Instructor's fail 44 11 55
Pre-set
Standard pass 0 130 130

44 141 185
Proportions of consistent decisions =

130 + 44 _ o,
185

Group B

fail pass

51 4 55

0 130 130

51 134 185

130 + 51 _ o4
185

Case II: Using the mediau of several judges.

Group A
fail pass
Instructor's fail 55 0 55
Pre-set
Standard pass 0 130 130

55 130 185
Proportions of consistent decisions =

130 + 55 _
=222 = 1.00

Group B
fail pass

55 0 55

0 130 130

55 130 185

130 + 55 . .00
185
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results of this study, a choice between the two versions justifi-

ably could be made on practical grounds, such as the preference of
the judges.
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ABSTRACT

A general model along with four illustrations is presented for
the consideration of budgetary constraints in the setting of passing
scores in instructional programs involving remedial action for poor
test performers. Budgetary constraints normally put an upper limit
on any choice of passing score. Given relevant information, this
limit may be determined. Alternately, ways o assess the budgetary
consequences associated with a given passing score are provided.

Such information would be useful in any final decision regarding the
passing score.

1. INTRODUCTION

In many instructional programs, such as Individually Prescribed
Instruction (Glaser, 1968) or others of a similar nature (Atkinson,
1968; Flanagan, 1967), testing is conducted at the end of every
instructional unit to provide feedback to the student and/or teacher
in order that appropriate action can be taken. If a student's test

score is high, it may be reasonable to grant that student mastery

This paper has been distributed separately as RM 79~3, %pril, 1979,
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of the current unit and to allow him to proceed to a subsequent
unit. On the other hand, a low score may indicate that the student
might benefit from some remedial action. This is also the case for
certification testing such as high school graduation or for minimum
competency testing as legislated in several strtes. Funds are
usually allocated for remediation for students whose scores are too
low to warrant mastery of the competencies under consideration.

The statistical issues relating to granting or denying mastery
status have been approached by several writers, including Huynh
(1976, 1977, 1978). Most proposed schemes are by and large quota-
free, i.e., the mastery/nomnmastery decision process considered by
the writers does not take into account the budgetary consequences
associated with the denial of mastery status. If funds provided
for remediation are limited, then a conotraint will have to be
imposed on the number of students declared as failures (nonmasters).

The purpose of this paper is to demonstrate how budgetary
restrictions may be taken into account in the process of setting
passing (mastery) scores or performance standards. Alternately,
the presentation provides ways to assess the budgetary consequences
associated with an arbitrary passing score. Section 2 describes
the overall framework. Illustrations based on the beta-binomial
and normal-normal test score models will be provided in subsequent

sections.

2. OVERALL FRAMEWORK

It is now assumed that the true ability of a population of
subjects may be described by a random variable 6 which ranges in
the sample space Q. For the beta-binomial model, 6 ir the propor-
tion of items that : subject answers correctly in an item pool and
2 is the interval _.rom O to 1. For the norma” test score model, 6
is the traditional true score (Lord & Novick, 1968) and Q is the
entire real line. Let the probability density function (pdf) of 6
be p(6).




BUDGFTARY CONSIDERATION

Let x be the score obtained from the administration of an n-
item test and let f(x) and f(x|6) denote its marginal and condi-
tional probability density functions with respect to 6.

It shall be assumed that all subjects with test scores smaller
than a passing (mastery) score c will be denied mastery for the
irstructional objectives covered by the test and that these subjects
will be provided with appropriate remedial learning activities.

The remediation is assumed to be so devised that its conclusion
will coincide with the mastery status which was previously denied
the student. The cost of remediation will be assumed to be a non-
increasing function of 6 and will be denoted as 6(6). Thus,
remediation will cost less for more able students than it willifor
less able ones.

Consider now a subject with true ability 6. The probability
thal this person will be declared in need of remediation is given
as the sum If(x|6) or the integral [ f(x|6)dx, with x < c. For the
purposes of this section, the summation notation will be used. It
follows that the (conditional) expected remediation cost for this
subject is

I f(x|6)s(e).
X<c

Hence the (unconditional or marginal) expected remediation cost for
a subject drawn randomly from the population is

v(e) = [o T £(x|6)s(8)p(o)do. (1)
x<c

This function is nondecreasing with respect to its argument c. Its
lowest limit is zero (when all subjects are granted mastery status)
and its maximum value, Yoax = fg 6(0)p(6)de, is reached when
remediation is provided to all subjects regardless of their test
scores.

Let us suppose, furthermore, that testing is to be conducted
for a total of m subjects and the total cost of possible remediation
cannot exceed the value B. If the passing score c is selected, then
the total expected remediation cost will be my(c). Hence any choice
for c must satisfy the budgetary constraint my(c) < B. If Ypax < B

&y
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any cutoff score will be acceptable. However, if B < Ypax® then

the passing score ¢ must be less than or equal to Cy» where <y is
the highest score satisfying the inequality
Y(cl) < B/m. (2)

For discrete test scores, such as those of the uinomial error model,
Inequation (2) may be solved by computing the values of y(c) one by
one, starting with ¢ as the smallest test score, and stopping when
the value <, is reached. For continuous test data, numerical pro-
cedures for solving the nonlinear equation y(cl) = B/m might be
needed.

3. THE BETA-BINOMIAL MODEL WITH CONSTANT COSTS

Consider now the beta-binomial model as defined by the follow-
ing pdf's:

fx[o) = (6" (1-8)"™, x = 0,1,...,n
and

ea—l(l_e)e-l
B(a, B) ’

The two parameters a and B may be estimated from sample data via

p(e) = 0<pc<l.

one of several estimation techniques such as the moment procedure

or the maximum likelihood procedure. Let x and s be the sample

-

test score mean and standard deviation. In addition, let a., be

21
the KR21 reliability coefficient as defined by
o, x(n-x)
21 = n-lll 2 ] (3
ns

(In the case of a negative yqs simply replace the value computed
from Equation (3) by any positive reliability estimate.) The moment
estimates for o and 8 are given as

a= (-1 + l/a21);' (4)
and

B= —-a+ n/a21 - n. (5)

We will now focus on the simple case where a single true pass-

ing score (or criterion level) eo, separating true masters from
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true nonmasters, has been specified. Let the remediation cost be
constant and equal to Yo for a true nommaster and Y1 for a true
master. Thus the cost function is of the form

Y if e <@
8(8) = ©
Y1 if o> eo.
The nonincreasing nature of §(6) is satisfied whenever Y, > Yy
The expected remediation cost per student as shown by Equa-
tion (1) is now given as
1 c-1

1
n atx-1 nHB-x-1
Y©) = 5igy =z (x)[vl Ieo 0% (1-0) de

0
o otx-1 nHg-x-1
v, [, ® (1-0) de]

or

1 c-1 n
Y(c) = 3o, B) xfo (x)[YlB(G+x,n+B-X)

)
_ o qofx-1 .  nbB-x~1
+ -y [0 e (1-6) de].
It may be noted that the marginal beta-binomial pdf of x is glven as
£(x) = (3)B(atx,n+8-x) /B(a,B) (6)

and that the incomplete beta function I(a+x,n+8-x;eo) is defined as
0
I(a+x,m+B-x;0 ) = ]o° ea+x_l(l-e)n+8—x-lde/B(a+x,n+B-x).
It follows that

c-1
v(e) = I f(x)(Yl + (Yo-vl)l(a+x,n+8-x;eo))- (7)
X=0

The values of f(x) may be computed via the following inductive

formulae:
T i
HOY = 1 mebe1 ®
i=1
and
f(x+l) = f(x) ° (n=x) (a+x) x=0,1,...,n-1. (9)

(x+1) (n+B-x~1) ’

5 ogn -
PN
| R V!
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The following recurrence formula, on the other hand, will quicken
the evaluation of the incomplete beta functions:
™% (1-gy+E-x-1

1(c+x+1,n+8—x-l;eo) == (ot+x) B ( obx, 0+ B-X)

+ I(a+x,n+8—x;60).

(10)

Finally, as in Section 2, let B be the maximum funds allocated

for possible remediation involving a group of m subjects. Then the

passing score cannot exceed the highest integer ¢
v(c,) < B/m.

1 at which

Numerical Example 1

A maximum sum of B = $4000 has been allocated for remediation
in an instructional program with m = 100 students. Thus B/m = $40.
For the program under study, assume that eo = ,60 and the remedia-
tion costs are Y, = $150 for each student with true ability 6 < ,60
and Y = $50 for students with 8 > .60. Now suppose a Sjitem test
is administered and the test scores yield the estimates o = 3 and
é = 2. At the passing scores ¢ =1, 2, 3, 4, and 5, the expected
remediation costs y(c) are $7.02, $19.06, $31.83, $41.25, and
$47.19, respectively. Since y(cl) < $40, it follows that ¢y = 3.
The budget constraint imposes an upper limit of 3 on the passing
score. If 3 is used, the expected cost of remediation amounts to
$3183. If the next higher passing score, 4, were used, the expected
remediation cost would be $4125, over the maximum budgeted sum of
$4000.

4. THE BETA-BINOMIAL MODEL WITH LINEAR COSTS

Let us suppose now that the cost functicn may be written as
6(6) = (YO-Yl)(l-e) + Yls (11)

in which Yy < Yo Thus the cost is a linear function of 6. It is
equal to Yo when 6 = 0 and Y1 when 6 = 1.
Under the beta-binomial model as described in the first para-

graph of Section 3, the expected cost per student is given as
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I S 1 atx-1,. . mExtl-l
v(e) = B(a, B) x:; (x)((yb-yl) I; o (1-6) dé
- Ii eahc—l(l_e)trl-s—x—lde}

1 e-1 n
= B(as 8) XEO (x) [(YO-Y].)B(M"H.B-HI) + YlB(aPX9n+B‘X)] .

By noting that

B(otx, n+B-x+l) = %:;—’é B(atx, n+B-x)

it may be deduced that
c-1 (v,-v;) (n+B-x)

Y(c) = © f(x) e
X=0

c-1 ao(n+8—x) + yl(a+x)

= I f(x) .
%= ot

+ Yl

(12)

As in the previous section, the values of f(x) may be computed
inductively via Equations (8) and (9).

Numerical Example 2

Consider the basic data of the first numerical example, namely
B/m = $40, Y, = $150, Y = $50, a = 3, B =2, and n = 5 items. At
the passing scores of 1, 2, 3, 4, and 5, the expected remediation
costs y(c) are $5.71, $18.81, $37.86, $59.29, and $78.33. Hence
the passing score cannot exceed 3, where the maximum value of the
expected cost of remediation would amount to $3786. Had a score
of 4 been selected, the expected cost would have amounted to as
much as $5929,

To close this section, it should be mentioned that simple
expressions for y(c) such as the one of Equation (12) may be worked
out for all cost functions 8(6) which can be represented as inte-

gral polynomials of 6.

5. THE BIVARIATE NORMAL MODEL WITH CONSTANT COSTS

Now consider the case where the true score 6 and the observed
score x are jointly distributed according to a bivariate normal
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distribution. Without any loss of generality, it may be assumed
that x is in its standardized form with zero mean and unit variance.
Let p be the reliability of the test for the normal population of
subjects under consideration. The true score 0 has a mean of zero,
a staxdard deviation of vp, and a correlation o” vp with the test
score x. The joint pdf of x and 0 is

2

1 1 2 0

f(x,0) = ———— exp [- — (x" - 2x6 + -——)] . (13)
21/ (1=p) 2(1-p) P

As 1n Section 2, it will be assumed that the coust function
8(0) 1is constant, taking the values of Yo for 6 < 80 and the value
of y, for 8 > 8 . It follows from Equation (1) that at any passing
score c, the remediation v:ost for a subject drawvn randomly from

the population is expected to be

0
v(e) = v, [ ° £(x,0)dedx + v, [© [{ £(x,9)dedx
-0 =00 . .} (o]
0
=y Prix <o) + (v~v)) [ [© £(x,0)dedx. (14)

The maximum passing score <1 satisfies the equation Y(cl) = B/m.

This value of ¢, exists as long as B < y where
1 max

Ypax = YoPr(e < 80) + YlPr(e 3'90).

Solutions may be found via numerical procedures such as the
Newton iterative solution for nonlinear equations. To apply this
technique, it may be noted that the derivative of y(c) with respect
to ¢ 1s

]

y' () = ylfN(c) + (Yo-Yl) {a? f(c,0)de
where fN(.) denotes the pdf of x (the unit normal variable). 1In
other words,

L e-c2/2‘
27
It may also be noted that

fN(c) =
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eo-pc
N

_]i° £(c,0)d6 = £ (c) - F
p=p
where FN(.) is the (cumulative) distribution function of the unit
normal variable.
In summary,
6 -pc
Y'(e) = f(c) |y, + (=Y Fy —=—1]. (15)
p—p
Both y(c) and y'(c) may be evaluated via computer programs such as
those described in the IMSL (1977). They may also be obtained by
use of appropriate tables for the univariate and bivariate normal
distributions.

Numerical Example 3

Let the parameters defining the problem be p = .64, eo =1,
Y, = $150, Y= $50, and B/m = $40. Numerical procedure yields the
maximum standardized passing score ¢, = -.475. If the test scores
have a mean of 50 and a standard deviation ¢f 20, then the passing
score cdannot exceed 40.5.

6. THE BIVARIATE NORMAL MODEL
WITH NORMAL-OGIVE COST

Now consider the case where the cost function §(8) is of the

form

6-8
8(8) = (v -v;) [l - FN[—O—Q]] +v (16)
where, as before, FN(.) represents the distribution function of the
unit normal variable. In che context of decision theory, expres-
sions similar to those of Equation (16) have been proposed as
utility functions (e.g., Lindley, 1976, and Novick and Lindley,
1978). As 1in the case of the beta-binomial model with linear costs,
Yo and Y, represent the remediation costs associated with the least
able (8 = -«) and the most able (8 = +x) subjects. On the other

hand, the parameter eo is the location at which the cost is
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(yo+yl)/2 and 1/0 indicates the extent to which §(8) decreases at
this location.

The expected remediation cost y(c) may now be written as

c 4o
Ye) = | [ f(x,8)8(6)dedx

-0 =00

Cc
= Y Prlx <) - (y,-v)) L $(x) £ (x)dx (17)

where

+o0 6-0
o(x) = | £8|x)F,, Olde.

g
-

The conditional pdf £(8]¥) is given as

2
1 (6-px)
f(elx) S ————— exp [" ] .
,2170(1-0) 29(1"9)

It follows that

2
+o 0 (t-8)
1 Se-gxz (o}
¢(x) = ———— {exp l- ] exp (- ———(dt}de.
2navp (1-p) -~ 20 (1-p) {w 202

It should be noted that the expression

4 2
(e-px)? _ (678
e P {7 20(1-p) 2
2n0vp(1-p) 20
acts as the joint pdf of two independent normal random variables 6

and t with means px and eo, and with variances p(l-p) and 02.

Now let us introduce the new random variable u = § - t for
which the mean is px - eo and the variance is p - p2 + 02. Since
the condition t < 6 is equivalent to u > 0, it follows that ¢ (x)
may be expressed simply as

o(x) = Io f 8eu(e,u)dedu,

where geu(e,u) is the bivariate normal pdf of # and u. Hence

$(x) = Pr(u > 0) =1 - Pr(u < 0)
or
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Bo—px
o(x) =1 - Pl /——|- (18)

VO‘OZ+°2
With this new expression for ¢(x), the expected remediation
cost as defined in Equation (17) may be written as

c 8 -px
v(e) = v,Pr(x <¢) + (y-v,) [ F |— £ (x)dx. (19)
1 o 1”7 °N 3 N
p=p +0
The integral found in Equation (19) may be written as
c h(x)
z(c) = f | fN(w)fN(x)dwdx,

where h(x) = (-px+60)/ﬂr-pz+02, and fN(.) is again the pdf of a unit
normal variable. Let

v=w-hx) =w+ (px—eo)//p—p2+02.

Then x and v follow a joint bivariate normal pdf, ng(x,v), with
means, variances, and correlation given, respectively, as

u =0,

X
'90/10'92+°29

h =3
]

v

2 .

o, = 1, (20)
03 = (p+02)/(p—92+02) R

and
Py = o/ v'o+02 .

Hence the integral Z(c) takes a simpler form given as

c o
2(c) = [ [ g (x,v)dvdx,

- 00 =0

and the expected remediation cost y(c) may be written as
c o
v(e) = v Pr(x <c) + (y,-v,) _J_m !m 8y (Xs V) dvdx . (21)

The numerical v-Zues of y(c) may be computed via tables or

computer programs dealing with the univariate and bivariate normal

distributions.
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Numerical procedures such as the Newton iteration process may
be used to solve the equation y(c) = B/m. The derivative of y(e)
with respect to ¢, from Equation (19), is found to be

Y'(e) = £ (e)fy, + (YO-YI)FN[—EQ—BE-;J (22)
p=p +o

It may be noted that by taking o2 = 0, Equations (19) and (22)
of this section will reduce to Equations (14) and (15) of Section 5.
This 1s expccted since the normal-ogive cost function §(6) as
defined in (16) will degenerate into the constant cos: function of
Section 5 when 02 tende to zero. Finally, the maximum expected
remediation cost (per random subject) may be deduced from Equation
(21) by letting ¢ = +=. It 1s

6
= - -
Yo = Y1 F (g Fy =5 (23)
pto
Numerical Example 4
Let the parameters of the problem be p = ,64, eo =1, 0 =2,

Y, = $150, Y = $50, and B/m = $40. The Newton iteration procedure
for solving the equation y(cl) = B/m yields the solution ¢, = ~.362.
If the test scores have a mean of 50 and a standard deviation of 20,

then the test passing score cannot exceed 42.76.

7. SOME CONCLUDING REMARKS

In this paper a general model along with four separate illus-

trations is provided for the consideration of budgetary constraints
“in the setting of passing scores in instructional programs involv-
ing remediation for subjects with poor test performince. The
1llustrations are not meant to be exhaustive. Budgetary constraints
normally impose a limit on the number of students allowed to take
remedial learning activities and, hence, restrict the range in
which a choice for the passing score is to be made. The paper also

provides ways to assess the budgetary requirement associated with

each passing score. This information would be a factor in deci-

sions regarding passing scores and budgets for remediation.
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ABSTRACT

In mastery testing the raw agreement index and the kappa index
may be secured via one test administration when the test scores
follow beta-binomial distributions. This paper reports tables and
a computer program which facilitate the computation of those indi-
ces and of their standard errors of estimate. Illustrations are
provided in the form of confidence intervals, hypothesis testing,

and minimum sample sizes in reliability studies for mastery tests.

1. INTRODUCTION

As indicated by several writers including Carver (1970) and
Hambleton and Novick (1973), one of the uses of criterion-referenced
testing is to classify examinees in two or more achievement cate-

gories. 1In this context, referred to here as mastery testing,

reliability would be most appropriately viewed as classification
(or decision) consistency across repeated test administrations

using the same form or two equivalent forms. Decision consistency

This paper has been distributed separately as RM 78-1, December, 1379.
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may be quantified by the raw agreement index p which expresses the
proportion of examinees classified in the same category by both
testings. When the two test admiristrations yield equivalent (or
. «changeable) test data, p is bounded from below by P, the propor

tion of consistent dacisions which would be exprcted if no rela-
tionship existed between the two sets of data (Huynh, 1976, 1978).
In other words, P.LP < 1. In a number of instances, for example
when decision consistency is to be compared for two testing situa-
tions involving different pc values, it would be suitable to scale
p so that it forms an index with a range from 0 to 1. The kappa
coefficient (Cohen, 1960), as defined by k = (p-pc)/(l-pc), is
such an index. This coefficient represents the extent of improve-
ment in decision consistency which is reflected by the dependency
between two equivalent sets of data.

The definitions of both p and kappa include the notion of
repeated testings. However, there are at least two procedures by
which p and kappa may be approximated via test data collected from
one test administration (Huynh, 1976; Subkoviak, 1976). The
Subkoviak prucedure relies on the estimation of the true score for
each individual examinee. When combined with the binomial or com-
pound binomial error model, the estimated true score will yield a
consistency ° Jex for each examinee. The average of th.s index
over a population of examinees is the Subkoviak estimate for p.

The Huynh method, on the other hand, assumes that test scores
on one form follow a beta-binomial model and test scores on both
forms distribute jointly as a bivariate beta-binomial distribution.
Both p and kappa (and other similar indices) may then be computed
via the univariate and bivariate distributions. In a simulation
study based on real test data, Subkoviak (1978) concluded that "all
things considered, the Huynh approach seems worthy of recommenda-
tion. It is mathematically sound, requires only one testing, and
provides reasonably accurate estimates, which appear to be slightly
conservative for short tests" (p. 115).

This paper will consider only the Huynh procedure for the

approximation of p and kappa. Section 2 will provide a review of
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the computation of p and kappa. Section 3 will present formulae
for computing the asymptotic standard errors of their estimates.
Section 4 will describe the arrangement of the tables regarding p
and kappa and their standard errors. Section 5 describes the
interpolation process for nontabulated entries. Some applications
of the tables will be presented in Section 6. The last two sec-
tions deal with a computer program for the estimates and their

standard errors.

2. COMPUTATIONS FOR p AND k

Consider now the administration of an n-item test to a popula-
tion of examinees with true ability distributed according to the
beta density with parameters a and B. The frequency distribution
of the observed test score x is given by the beta-binomial (or
negative hypergeometri~' density

£x) = () B(a + x, m + B - x)/B(a,B). ey

In this formula as well as in all other subsequent ones, the
notation B denotes the beta function. The density f(x) may be com-
puted via any of the following inductive formulae

n
£(0) = I
i=1

n+B+1i
nta+pf-1
(2)

(n-x) (a+x)
(x+1) (n+B-x-1) °*

f(x+l) = f(x) - x=0,1,...,n-1;

or

nta-1i

n
fla) = 1 rotb-1

i=1 (3)

x (n+B-x)
(n-x+1) (a+x-1) °

The first recurrence scheme is more efficient for small test scores

f(x-1) = f(x) -

x=1,...,n.

whereas the second set works better for large test scores.

Let x and y be the test scores obtained by administering two
equivaient n-item tests to each examinee in the population. Under
local independence with respect to true ability, x and y follow the
biv.riate beta-binomial (or negative hypergeometric) density
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Q O
f(x,y) = Wa,% B(a+x+y, 2n+B-x-y) .
This density is symmetric in the sense that f(x,y) = f(y,x).
For values of x and y near 0, f(x,y) may be evaluated induc-
tively via the following formulae:

2n n

i=] im]

and

, . . —(0-%) (a+xty)
EGetley) = £069) * 33Y 2mbBoxmy-1)

For values of x and y near n, it is more efficient to use the fol-

lowing formulae:

2n n
nta-1 2nta—-1
f(a,n) = 1 2§+a+8-i =f(n) « M S BT’
i=1 i=1

and

x(2n+B-x-y)
(n-x+1) (¢ "xty-1) °

Consider now the case where it is desired to place examinees

f(x-1,y) = f(x,y) *

into k classifications or categories defined by k-1 cutoff scores
denoted by the intagers cj, J=1,2,...,k-1 with 0 < ¢y < ... < -1
< n. The first category consists of all test scores between 0 and
cl-l inclusive. For the second categorv, the test score: .ange
between ¢y and cz-l inclusive, and sc on. Finally, for the kth
category, the test score limits are ck-l and n. For binary classi-
fication, k=2 and the cutoff score c is traditionally referred to
as a mastery or passing score. These two categories are represented
as {x: 0 < x < c-1} and {x: ¢ < x < n}. Por k classifications as
defined above, the raw agreement index is expressed as
AR
p= I L £(x,y)]| .

=1 x,yﬂcj_l

Here c, = 0 and Cp - ntl. The lower limit for decision consistency

is given as
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Kk cJ-l

p = L f(x)
¢ i=l ‘*x=

cj_1
As previously mentioned, the kappa index is defined as k = (p-pc)
/(~p.).

The formulae become somewhat simpler for binary classifica-
tions. For the use of c near 0, let

c-1
= I f(x)

° x=0

c~-1
P = X f(x’Y) .
00 x,y=0

Then
P = 1-2(ny-p,q)
and
€ = (poo-P2) (py-p2) .

On the other hand, for values of ¢ near n, let

n
P = E f(x)
x=c
and
n
Py = r f(x,y, .
X,y=c
Then
p = 1-2(91-911)
and

< = (py;p2)/ (py-p3) .

3. ASYMPTOTIC SAMPLING DISTRIBUTION
OF THE ESTIMATES

The estimation for p and « may be carried out by replacing o
and B by their estimates in the appropriate formulae of Section ?.
There are at least two ways to estimate o and £, namely the maximum
likeiihood (ML) principle and the moment method. Let x and s be
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the mean and standard deviation of the test scores of m examinees,
and let the estimated KR21 reliability be defined as

~ __n [, x(n-x)
%21 = m=l [1 2 ]'
ns

The moment estimates of @ and B are given as
a = (-1 + l/u )x

and
B= -q+ n/u.21 - n. R

These estimates are positive (thus acceptable) only when O<a__<1.

When the test scores do not show sufficient variability, the iim—
puted value for &21 may be zero or negative. If this happens,
replace this computed value by the smallest positive estimate for
test reliability which happens to be available.

Maximum likelihood estimations for a and B have been consid-
ered by Gritfiths (1973). A fairly efficient algorithm has been
provided by Huynh (1977). Starting with the moment estimates, the
Newton-Raphson procedure as implemented by Huynh has been found to
converge very quickly in practicu.ily all cases considered by the
author. It has been found that the ML estimates, in most cases, do
not differ appreciably from the moment estimates a and B hence
general sampling properties appropriate for the ML estimates would
be applicable to @ and B For example, agymptotically, /_(a-u B 8)

follows a bivariate normal distribution with zero mean and covari-

ance matrix I = (oij) = ||b "-l where
n
x=0
_ 5 3f(x) | af(x)
127 7 P Tha /£(x)

and

n 8"x 2
x=0

Now let p = p(a,B) and « = ¢ (a,B) be the functions of (a, B) defin—

ing the two reliability indices. By replacing a and B by and B

~

respectively, the moment estimates p and " may be obtained for p
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and k. It may be noted that both p and k are continuous with
respect to (a,8). It follows from Rao (1973, p. 386-7), that as m
goes to infinity, JE(;-p) and A;(;-K) converge to two normal dis-
tributions with zero means and with variances

2 _ 3 , 3
v 11( )2 * 2,5 % " 38 t 922Gp)

P
and

2 oK, 2 oK oK oK, 2

Vim0 Ga) 2, 5 9t 9 GR) s

respectively. Thus, it may be said that p has an approximate nor-
mal distribution with mean p and standard deviation (standard
error) of o (p) = V_ //m when m is sufficiently large. An estimated
standard error for p, namely s, (p), may be obtained by replacing a
and 8 by their estimated values & and B. The discussion also holds
for K. Thus < has an approximate normal distribution with mean «
andﬁstandard error °u(;) = Vk//;. The estim?ted standard error
8,(k) may be obtained in the same way as s (p).

4. TABLES FOR p, V,, K, AND V
FOR SHORT STS

Appendix A presents tables which facilitate the computations
for the reliability indices p and « and their standard errors for
the case of tests having 5 to 10 items. All computations were car-
ried out via the IBM 370/168 syste.: at the University of South
Carolina, using the double precision mode.

Input data to the tables are (1) number of test items, n,

(2) mastery or passing score, ¢, (3) test mean, x, and (4) the KR21
reliability estimate, a 2" It may be noted that if a and 8 are any
estimates of the parameters a and B other than the moment estimates,
then the entries for test mean and KR21 ‘re simply na/(a+8) and
n/(n+0+8), respectively.

For ?ach en}ry of (n,c;;,&ZI), four values may be read out.
They are p, Vb, K, and Vk respectively. Both V and Vk are enclosed

in parentheses.
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The tables are constructed for n = 5 (1) 10 and &21 =
.10 (.10) .90. For each n, the mastery score c is set equal to
Ny *tl,...,n-1,n vhere n_ is the smallest integer such that n, > n/2
and with x = n times a decimal which ranges from .10 to .90 in steps
of .10. To read the values of B, Vp, ;. and V|< for a mastery score
of ¢ < n,s simply enter the tables with a mastery score of n-c+l

and a test mean of n-x.

Numerical Example 1

Let n = 10, X = 6, &21 = .50, and ¢ = 7. Then p = .680,
Vp = ,278, k= .347, and V'< = ,582. If the data are obtained from
a random sample of m = 36 examinees, then the estimated standard
errors are sw(;) = ,278/6 = .046 for ; and sm(;) = ,582/6 = .097
for «x.

Numerical Example 2

Let n = 8, ;;= 6.4, ;21 = .30, and ¢ = 3. Here n, = 4, The
Zalues of p, Vp, Ky and V|< may be obtained by using the entry n = 8,
x = 8-6.4 = 1.6, ¥y = .30, and ¢ = 8-3+1 = 6. The results are

p = .988, Vp = .075, ¢ = .050, and V'< = 448, AWith m = 25, for
exanle, the estimated standard errors are sm(p) = .015 and

Sm(K) = ,090.

5. INTERPOLATION

~

As revealed thrrugh the tables, p, Vp, K, and V. are not

~

monoto?ically increasing or decreasing functions of x at each Ggps
or of @, at each x. Hence interpolation shouldhnot be carried out
indiscriminately. However, in situations where %1 x/n, and ¢/n
are not too extreme, for example when all these quantities are
between .20 and .80, the monotonicity property usually holds. If
so, bivariate linear interpolation may be safely carried out to
approximate tbe values of ;, Vp’ ;, and VK.

Suppose @7 and x represent tbe computed values of KR21 and
the test mean. In general, let f(a21,x) be any one of the quanti-

ties p, Vp, K, Or VK that are needed but not found in the tables.

Let u, and u, (where u; < a5y < u,) be the two tabulated values
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closest to the computed a5 -value. Also, let v, and v, (where
vy 2 x < VZ) be the two tabulated values closest to the computed
x-value. Define the following:

(a21 l)
(u2 l)

r=
and
_ (x-v,)
(vy-vy)
Then the linearly interpolated value for f(a21,;) is given as
f(u,v) = (l-r)(l-s)f(ul,vl) + r(l-s)f(uz,vl)
+ s(l-r)f(ul,vz) + rsf(uz,vz)
(see Abramowitz & Stegun, 1968, Formula 25,2.66).

Numerical Example

~

Let n = 10. @y = .56 (=u), and x = 4.77 (=v). Here u, = .50,

u, = .60, r = .60, v, = 4.00, v, = 5.00, and s = ,77. Aththe
mastery or passing score ¢ = 7, it may be found that the p-values
are f(ul,vl) = ,839, f(uz,vl) = ,836, f(ul’VZ) = ,742, and )
f(uz,vz) = .761. Hence the linearly interpolated value for p at
@yy = .36 and x = 4.77 is given as .40 x .23 x .839 + .60 x .23 x
-836 + .77 x .40 x ,742 + .60 x .77 x ,761 = ,773. In the same
way, other linearly interpolated valueb are Vp = ,205, ; = ,365,
and VK = .574. The exact values for p, Vp, K, and VK computed
directly from the formulae of Section 3 are .771, .201, .364, and
.574, respectively.

6. APPLICATIONS

Besides easing the computations for ;, ;, and their tandard
errors in the case of short tests, the tables may be used to
establish confidence intervals for p and k, to test the equality
of two or several independent p or k's, and to answer questions

regarding sample size in reliability studies for mastery tests.

id,
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6.1. Inferance for One Sample

Let a 5-item test be administered to 100 students and let the
summary test data be x = 3.500 and ;21 = ,400. At tha mastery score
¢ = 4, the tables yield the values p = .650, Vp = .389, K= ,293,
and v = .769. The estimated standard errors a.e s_(p) = .386/10 =
.039 and s_(x) = .763/10 = .076. The 90% confidence intervals are
.650 + 1.645 x ,039 or (.581,.714) for the parameter p, and
.293 + 1.645 x .076 or (.168,.418) for the parameter k.

Hypothesis testing may also be conducted for the one-sample
case. To test the null hypothesis that p is equal to a specified
value Py against an appropriate alternative, simply compare the
Student-like ratio tp = (p-pH)/s (p) with suitably chosen critical
value(s) read from the unit normal distribution. For k, use the
ratio t = (K-KH)/S (K) With the data provided in this section,
the null hypothesis Py = .50 corresponds to the Student-like ratio
tp = (.650-.500)/.039 = 3.846. The null hypothesis Ky = .350 1is
associated with the ratio t = (.293-.350)/.076 = -.75. If the
alternatives are two-sided and if the level of significance is 10%
(at which the critical values are + 1.645), the null hypothesis for

Py is rejected, whereas the one for Ky is accepted.

6.2. Inference for Two Independent Samples

Any infererce for the case of two independent samples may be
carried out by noting that the standard error of P;~Py» where Py
and p, are two independent sample p-values, is

8,(P;7Py) = [s (pl) +s (pz)]

~ -~

For two independent Kl and Kz, the standard errer of Ky7Ky

2
18

given as
s (; —x ) = 32(; ) + 8 (; ) %
’ 12 2 *
For example, let the data for the first sample be n = 5 c =4,

% = 4.000, Gy = .600, and m = 100. It follows that pl .785,

Sw(pl) = ,0289, k) = .464, and s (K ) = .0675. For the second

sample, chosen independently from the first one, let n =8, ¢ = 6,
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= 4.8 ay, = 300 and m = 64. It may be verified that p2 .633,
sm(pz) = ,0398, Ky = .196, and s (KZ) = .093. It follows that

Sm(Pl‘Pz) = 049

and

~

s (K

1~ 2) .115.

These standard errors will allow the formulation of confidence
intervals for the parameters PP, and K ~Kye For example, at the
90% confidence level, the confidence intervals are (.785-.633) +
1.645 x .049 or (.071,.233) for P17Pys and (.464-.196) + 1.645 x
.115 or (.079,.457) for Ky ~Kge
computed to test the equality hypothesis for Py and Pys and for

Student-like ratios may also be

Kl and KZ' For | p2’ the mentioned ratio is tpl_pz =

(.785-.633)/.048 = 3.'67 and for K] = Koy the corresponding ratio
is (.464-.196)/.115 = 2.330. With two-sided alternatives aznd with
a level of significance of 10% (at which the critical values are
+ 1.645), both equality hypotheses are rejected.

6.3. Testing Equality of Several Independent p or x's

The mechanism by which equality of several p (or k) values is
to be tested is similar to the one by which several independent
corfelations are compared (Rao, 1973, page 434). Let ;i and
sm(pi), i=1,,2,...,I, be the estimated raw agreement index and

its standard error associated with the i-th sample. Let u, =

~ i
l/si(pi) be the reciprocal of the e ror variance, and let
I ~
T, = I u,p,,
1 i=1 ivi
I ~
T, = I u,p.,
2 {=1 ivi
and
I
B= ¥ u,.
i=1 1

Then the statistic for testing homogeneity of the p-values is




2
H = T2 - (Tl/B) ’

which can be used as xz with I-1 degrees of freedom. Table 1
presents the data and various computations for the statistic H.
With the value H = 1.738 and I-1 = 3 degrees of freedom (at which
the 5% critical value is 7.815), it may be concluded that the four
independent ; values do not differ significantly from each other at
the 5% level of significance.

TABLE 1

An Illustration of Homogeneity Testing for p

n ¢ m X o ' 8 (;) u ; u ; u ;2
21 P © i i i1 i1
4 64 3,0 .60 .269 .033625 884.454 .730 645.652 471.326
8 7 25 4.8 .40 .239 .,047800 437.667 .776 339.63G 263.553
10 6 100 5.0 .70 .206 .029600 2356.490 .765 1802.715 1379.077

9 6 49 6.3 .50 .267 .038143 687.337 .721 495.570 357.306

Total 4365.948 3283.567 2471,262
Summary data: B = 4365.948
T, = 3283.567
T, = 2471.262

Test statistic: H = 1.738 iith df = 4-1 = 3

6.4. Sample Size Determination

In some reliability studies for mastery tests, it may be neces-
sary to determine in advance the minimum number of examinees needed
to acaieve a given degree of accuracy. For example, if a standard
error sm(;) of no more than 100y%Z of the parameter p is acceptable,
then how many examinees should be tested? The question, of course,
may not have an answer unless there are some indications about the
mean and variability of the test scores. In a number of situations
involving an n-item test with a options for each item, it may not
be unreasonable to assume that the test mean is about halfway

between the chiance score n/a and the maximum score n and that the

standard deviation s is about one-fourth of the difference between
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these two scores. In other words, the "guessed-at" values for X, 8,

and a,, are given as

x = (n + n/a)/2,

s = (n - n/a)/4,
and

;21=FI-IT [1-4—lx “;‘].

ns

By entering these values of x and a21, along with n and ¢, those of
p and V = /o s (p) may be deduced Then m may be approximated by
noting that the ratio of Vp/#ﬁ-to p cannot exceed y In other
words, the minimum number of examinees is (V /(yp))
8, a=15,c=25, and y = 0.05.
Then x = 4.8, s = 1. 6, and a21 = .29. From the tables, it may be
.615 and Vp = .369. The minimum number
of examinees is 144. If y is .10, then only 36 examinees would be

As in illustration, let n

found that approximately p

needed.

7. COMPUTER PROGRAM

Appendix B lie-s a FORTRAN IV program which computes the
values of p, s (p), x, and s (K) for situations with k classifica-
tions. The input data are to be keypunched on three cards detailed

as follows.
First Card

This contains the title of the problem, keypunched anywhere

between columns 1 and 80.
Second Card

This provides data on number of items (n), number of exami-
nees (m), number of classifications (k), the test mean (x), and
the test standard deviations (s). These must be keypunched accord-
ing to the format (3I5, 2F10.5).

Third Card

This contains the (k-1) cutoff scores, keypunched with the
format (16I5). Thus reliability problems with 17 classifications
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TABLE II

An Output of the Computer Program

%%k

ESTIMATES OF DECISION RELIABILITY

AND THEIR STANDARD ERRORS IN

MASTERY TESTING BASED ON THE BETA-
BINOMIAL MODEL

TITLE OF THIS JOB IS:

AN EXAMPLE OF RELIABILITY COMPUTATION

INPUT DATA ARE:

NUMBER OF iTEMS .. = 8

NUMBER OF SUBJECTS = 25

MEAN OF TEST SCORE ...ccvennnaee ®
STANDARD DEVIATION OF TEST SCORE =
NUMBER OF CATEGORIES = 2

CUTOFF SCORE :seccee = 5

OUTPUT DATA ARE:

ALPHA = 2.05710
BETA = 1.37140
KR21 = 0.70000

RAW AGREEMENT INDEX P = 0.77095
STANDARD ERROR OF P.. = 0.04345

KAPPA INDEX ® 66 6000 00 00 = 0.53165
STANDARD ERROR OF KAPPA = (.08871

NORMAL END FOR THIS JOB **
PROGRAM WRITTEN BY HUYNH HUYNH
COLLEGE OF EDUCATION
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
REVISED, DECEMBER 1979

4.80000
2.22596
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may be implemented via this FORTRAN program,

~

The computer program starts with the computation of L If

%5 is zero or negative, the following message will be printed:
NON-POSITIVE ESTIMATE KR21.
MIMENT ESTIMATES FOR ALPHA AND BETA DO NOT EXIST.
\ JMPUTATIONS DISCONTINUED FOR THIS CASE.

Otherwise, the estimates o and 8 will be obtained. These, in turn,
will be used as input in a subroutine which computes Py, S (p), K,
and s (K)
For example, let the input cards be as follows:
1 1 2 2 3 3
Column : 1...5....0....5....0....5....0....5
First Card : AN EXAMPLE OF RELIABILITY COMPUTATION

Second Card : 8§ 25 2 4.8 2.22596
Third Card : 5

In other words, n =8, m =25, k=2, x = 4.8, s = 2,2259, c = 5.
The output is printed in Table 2. It may be read that p = .77095,
s (p) .04345, ¢ = .53165, and s (K) .08871.

Several problems may be performed in one run by stacking the

input cards together.

8. DISCLAIMER

The computer program presented in this report has been written
with care and tested extensively under a variety of conditions
using tests with 60 or fewer items. The author, however, makes no
warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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APPENDIX A

Tables of the Raw Agreement Index and Its Standard Error
Times the Square Roo! of m, the Kappa Index and Its
Standard Error Times the Square Root of m,

When the Beta-Binomial Model is Assumed

(m = Number of Subjects)

Input data to the tables are (i) number of test items (n),
(i1) mastery score (c), (iii) test mean (x), and (iv) the KR21
reliability (321). ONote that if ; and é are any estimates of the
parameters a and B other than the moment estimates, then the entries
for test mean and KR21 are simply na/(a+8) and n/(n+u+8),
respectively.]

For ?ach enEry of (n, c,';, &21), four values may be read out.
They are p, Vp, K, and VK, respectively. Both Vp and VK are en-

clused in parentheses.

Example

Let n=5,¢=3, x= 1.5, and a21 = .400. The tables provide
the values p = ,755, Vp = ,267, « = .268, and VK = ,784. With
m = 100, for example, the estimated standard errors are s(p, = .0267

azd s(x) = .0784.
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Table of the Raw Agreement _ndex and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = §
Mastery score C = 3
Test KR2l=
Mean .100 .200 . 300 «400 .500 . 600 .700 .800 + 900
0.5 0.975 0.966 0.957 0.949 0.942 0.939 0.940 0.948 0.966
(0.157)(0.172)(0.177)(0.172)(0.157)(0.138)(0.118)(0.105)(0.089)
0.022 0.062 0,122 0.198 0.288 0.392 0.5i0 0.643 0.798
(0.477)(0.734)(0.928)(1.048)(1.091)(1.063)(0.969)(0.808)(0.570)

1.0 0.879 0.869 0.842 0.858 0.858 0.864 0.877 0.901 0.938
(0.297)(0.276)(0.252)(0.226)(0.202)(0.180)(0.162)(0.146)(0.119)
0.042 0.096 0.162 0.239 0.325 0.421 0.529 0.652 0.800
(0.706)(0.808)20.858)(0.863)(0.831)(0.769)(0.680)(0.563)(0.405)

1.5 0.729 0.734 0.743 0.755 0.772 0.795 0.824 0.364 0.918
(0.338)(0.313)(0.289)(0.267)(0.245)(0.223)(0.201)(0.175)(0.137)
0.057 0.122 0.192 0.268 0.351 0.441 0.542 0.659 0,801
(0.874)(0.865)(0.833)(0.734)(0.720)(0.646)(0.561)(0.463)(0.339)

2.0 0.591 0.617 0.645 9.675 0.709 0.746 0.789 0.340 0.906
(0.431)(0.397)(0.365)(0.332)(0.299)(0.266)(0.232)(0.195)(0.147)
0.067 0.137 0.209 0.285 0.365 0.453 0.550 0.662 0.802
(0.973)(0.898)(0.821)(0.744)(0.666)(0.587)(0.505)(0.417)(0.309)

2.5 0,325 0,571 0.607 0.645 0.685 0.728 0.776 1.832 0.901
(0.503,(0.454)(0.409)(0.366)(0.325)(0.284)(0.244)(0.201)(0.150)
0.070 0.142 0,215 0.290 0.370 0.457 0.552 n.664 0.803
(1.006)(0.909)(0.818)(0.732)(0.649)(0.569)(0.488)(0.403)(0.300)

3.0 0.591 0.617 0.645 0.675 0.709 0.746 0.789 0.840 0.906
(0.631)(0.397)(0.365)(0.332)(0.299)(0.266)(0.232)(0.195)(0.147)
0.067 0.137 0.209 0.285 0.365 0.453 0.550 0.662 0.802
(0.973)(0.893)(0.821)(0.744)(C.666)(0.587)(0.505)(0.417)(0.309)

3.5 0.729 0.734 0.743 0.755 0.772 0.795 0.824 0.864 0.918
(0.338)(0.313)(0.289){0.267)(0.245)(0.223)(0.201)(0.175)(0.137)
0.057 0.122 0.192 0.268 0.351 0.441 0.542 0.659 0,301
(0.874)(0.865)(0.833)(0.784)(0.720)(0.646)(0.561)(0.463)(0.339)

4.0 0.879 0.869 0.862 0.358 0.858 0.864 0.877 0.901 0.938
(0.297)(0.276)(0.252)(0.226)(0.202)(0.180)(0.162)(0.146)(0.119)
0.042 0.096 0.162 0,239 9.325 0.421 0.529 0.652 0.800
(0.706)(0.808)(0.858)(0.863)(0.831)(0.769)(0.680)(0.563)(0.405)

4.5 0.975 0.966 0.957 0.949 0.942 0.939 0.940 0.948 0.966

(0.157)(0.172)(0.177)(0.172)(0.157)(0.138)(0.118)(0.105)(0.089)
0.022 0.062 0.122 0.198 0.288 0.392 0.510 0.643 0.798
(0.477)(0.734)(0.928)(1.048)(1.091)(1.063)(0.969)(0.808)(0.570)
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 5
Mastery score C = 4

Test KR2l=

Mean . 100 . 200 . 300 400 .500 . 600 .700 .800 .900

0.5 0.998 0.996 0.992 0.987 0.981 0.974 0.968 0.964 0,971
(0.028)(0.045)(0.064)(0.084)(0.101)(0.108)(0.102)(0.083)(0.068)
0.005 0.021 0.055 0.111 0.192 0.297 0.427 0.583 0.768
(0.142)(0.355)(0.611)(0.855)(1.041)(1.136)(1.118)(0.971)(0.682)

1.0 0.980 0.973 0.963 0.953 0.942 0.932 °.925 0.926 0.925
(0.120)(0.140)(0.157)(0.167)(0.167)(0.156)\0.133)(0.108)(0.094)
0.014 0,042 0.088 0.152 0.235 0.338 0.459 0.603 0.775
(0.300)(0.491)(0.661)(0.787)(0.854)(0.857)(0.796)(0.670)(0.473)

1.5 0.928 0.916 0.903 0.891 0.882 0.376 0.876 0.389 0.923
(0.242)(0.243)(0.237)(0.223)(0.202)(0.175)(0.148)(0.127)(0.114)
0.027 0,067 0.123 0.192 0.276 0.374 0.487 0.620 0.782
(0.483)(0.620)(0.715)(0.764)(0.767)(0.727)(0.650)(0.537)(0.384)

2.0 0.830 0.820 0.8!3 0.808 0.809 0.815 0.830 0.858 (.90C7
(0.316)(0:292)(0.266)(0.238)(0.211)(0.186)(0.166)(0.150)(0.131)
0.041 0.C¢93 0.155 0.228 0.311 0.404 0.511 0.635 0.787
(0.666)(0.729)(0.755)(0.747)(0.710)(0.648)(0.565)(0.464)(0.337)

2.5 9.697 0.701 ©.709 0.721 0.738 0.761 0.793 0.836 0.899
(0.323)(0.299)(0.277)(0.256)(0.237)(0.218)(0.199)(0.178)(0.146)
0.055 0.116 0.184 0.258 0.339 0.429 0.530 0.647 0.792
(0.827)(0.817)(0.785)(0.737)(0.674)(0.600)(0.517)(0.424)(0.313)

3.0 0.576 0.601 0.628 0.658 0.692 0.730 0.775 0.829 0.898
(0.401)(0.377)(0.352)(0.325)(0.298)(0.269)(0.238)(0.203)(0.156)
0.065 0.134 0.205 0.280 0.361 0.448 0.545 0.657 0.796
(0.952)(0.884)(0.812)(0.737)(0.660)(0.581)(0.499)(0.412)(0.308)

3.5 0.538 0.574 0.612 0.650 0.691 0.735 0.784 0.839 0.908
(0.521)(0.473)(0.429)(0.386)(0.345)(0.304)(0.262)(0.216)(0.159)
0.071 0.144 0.217 0.293 0.374 0.460 0.555 0.664 0.800
(1.027)(0.932)(0.844)(0.760)(0.678)(0.598)(0.516)(0.429)(0.323)

4.0 0.636 0.662 0.689 0.718 0.750 0.785 %.825 0.871 0.927
(0.464)(0.428)(0.392)(0.358)(0.324)(0.289)(0.252)(0.208)(0.150)
0.070 0.142 0.217 0.294 0.376 0.464 0.560 0.669 0.803
(1.035)(0.969)(0.900}(0.829)(0.754)(0.675)(0.590)(0.492)(0.370)

b.5 0.845 0.844 0.847 0.853 0.864 0.879 0.899 0.925 0.958
(0.317)(0.291)(0.267)(0.247)(0.231)(0.214)(0.195)(0.167)(0.121)
0.057 0.124 0.198 0.279 0.365 0.458 0.559 0.671 0.805
(0.952)(1.028)(1.052)(1.036)(0.988)(0.913)(0.810)(0.677)(0.502)

------—---—--------------------------u------------------------—------

For the mastery score = 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 5
Mastery score C = 5
Test RR21=
Mean . 100 .200 .300 .400 . 500 .600 .700 . 800 .900
0.5 1.000 1.000 0.999 0.998 0.996 0.993 0.938 9.980 0.975
(0.002)(0.005)(0.010)(0.019)(0.032)(0.051)(0.072)(0.031)(0.062)
0.000 0.004 0.015 0.040 0.088 0.168 0.288 0.458 0.687
(0.019)(0.089)(0.231)(0.443)(0.699)(0.949)(1.125)(1.139)(0.893)

1.0 0.999 0.997 0.995 0.992 0.986 0.978 0.966 0.954 0.950
(0.015)(0.024)(0.037)(0.055)(0.077)(0.100)(0.116)(0.111)(0.080)
0.002 0.010 0.028 0.062 0.119 0.205 0.326 0.488 0.702
(0.059)(0.158)(0.303)(0.476)(0.649)(0.787)(0.853)(0.807)(0.613)

1.5 0.992 0.988 0.983 0.975 0.964 0.951 0.935 0.922 0.925
(0.053)(0.070)(0.091)(0.112)(0.133)(0.148)(0.149)(0.125)(0.092)
0.006 0.019 0.046 0.089 0.154 0.244 0.363 0.517 0.716
(0.130)(0.252)(0.393)(0.534)(0.651)(0.723)(0.729)(0.655)(0.488)

2,0 0.973 0.965 0.954 0.942 0.927 0.911 0.895 0.887 0.904
(0.127)(0.147)(0.165)(0.180)(0.188)(0.184)(0.164)(0.127)(0.105)
0.012 0.034 0.070 0.122 0.192 0.284 0.400 0.545 0.729
(0.236)(0.364)(0.487)(0.591)(0.660)(0.682)(0.651)(0.562)(0.416)

2.5 0.928 0.915 0.%01 0.886 0.870 0.857 0.849 0.853 0.888
(0.228)(0.236)(0.239)(0.235)(0.221)(0.196)(0.161)(0.128)(0.125)
0.021 0.053 0.098 0.158 0.233 0.325 0.437 0.572 0.741
(0.376)(0.488)(0.579)(0.641)(0.667)(0.652)(0.595)(0.500)(0.371)

3.0 0.843 0.830 0.817 0.806 0.799 0.796 0.803 0.826 0.880
(0.311)(0.296)(0.275)(0.248)(0.218)(0.185)(0.158)(0.148)(0.151)
0.033 0.076 0.131 0.197 0.275 0.366 0.47? 0.597 0.753
(0.544)(0.620)(0.668)(0.686)(0.673)(0.629)(0.557,’0.461)(0.347)

3.5 0.714 0.711 0.711 0.715 0.725 0.742 0.770 0.813 0,883
(0.314)(0.285)(0.257)(0.234)(0.216)(0.205)(0.201)(0.197)(0.173)
0.047 0.102 0.166 0.237 0.316 0 405 0.505 0.621 0.764
(0.734)(0.758)(0.757)(0.732)(0.686)(0.621)(0.539)(0.445)(0.342)

4.0 0.576 0.597 0.621 0.649 0.683 0.722 0.759 0.827 0.901
(0.349)(0.346)(0.343)(0.337)(0.328)(0.313)(0.291)(0.256)(0.196)
0.063 0,130 0.201 0.277 0.357 0.443 0.537 0.643 0.775
(0.945)(0.910)(0.861)(0.799)(0.727)(0.646)(0.558)(0.464)(0.366)

4.5 0.560 0.603 0.647 0.691 0.737 0.783 0.832 0.883 0.938
(0.672)(0.632)(0.587)(0.537)(0.482)(0.422)(0.354)(0.277)(0.183)
0.080 0.458 0.237 0.316 0.396 0.479 0.567 0.664 0.785
(1.202)(1.127)(1.046)(0.960)(0.870)(0.776)(0.677)(0.574)(0.464)

D e - D D - - - - - - - - - - - .- - D D - - - - - - - - T e . - -

For the mastery score = 1 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Nunber of subjecis
Number of items N = 6
Mastery score C = 3

Mean .100 .200 .,300 .40C .500 .600 .70C .800 .900
0.6 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207)(0.201)(0.188)(0.169)(0.14/)(0.128)(0.114)(0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771)(0.918)(0.995)(1.008)(0.964)(0.869)(0.724)(0.517)

1.2 0.815 0,811 0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320) (0.293) (0.267) (0.242) (0.220) (0.199) (0.179) (0.157) (0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0.793)(0.837)(0.842)(0.816)(0.766)(0.697)(0.611)(0.506)(0.368)

1.8 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395)(0.366)(0.337)(0.309)(0.279)(0.250)(0.218)(0.183)(0.137)
0.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793
(0.930)(0.873)(0.810)(0.741)(0.668)(0.592)(0.510)(0.421)(0.311)

2.4 0.538 0.573 0.609 0.646 0.685 0,727 0.774 0.829 0.898
(0.487)(0.440)(0.396)(0.354)(0.314)(0.274)(0.235)(0.193)(0.143)
0.069 0.140 0,212 0.286 0.365 0.450 0.544 0.654 0.792
(0.973)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384)(0.353)(0.321)(0.289)(0.257)(0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.353 0.444 0.539 0.650 0.791
(0.933)(0.858)(0.783)(0.706)(0.629)(0.550)(0.470)(0.385)(0.285)

3.6 0.708 0.713 0,721 0.734 ©,750 0.773 0.803 0.844 0.903
(0.328)(0.304)(0.281)(0.258)(U.236)(0.214)(0.191)(0.166)(0.132)
0.055 0.117 0,185 0.259 0.340 0.428 0.528 0.643 0.788
(0.820)(0.307)(0.774)(0.724)(0.660)(0.586)(0.503)(i.411)(0.300)

4.2 0.857 0.846 0.838 0.833 0.832 0.837 0.449 0.874 0.918
(0.305)(0.284)(0.260)(0.234)(0.208)(0.182)(0.160)(0.141)(0.118)
G.040 0.091 0,154 0.227 0.311 0.404 0.5.0 0.633 0.785
(0.645)(0.724)(0.760)(0.757)(0.721)(0.659)(0.573)(0.470)(0.337)

4.8  0.957 0.946 0 934 0.923 0.913 0.906 0.905 0.913 0.940
(0.192)(0.203)(0.206)(0.200)(0.185)(0.163)(0.137)(0.115)(0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0.429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

.4 0,995 0.991 0.986 0.979 0.971 0.964 0.558 0.957 0.968
(0.052)(0.074)(0.095)(0.113)(0.123)(0.121)(0.107)(0.086)(0.072)
0.008 0.030 0.073 0.137 0.223 0.329 0.455 0.602 0.775
(0.210)(0.448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

For the Mastery score = &4 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 6
Mastery score C = 4
Test KR21l=
Mean .100 200 .300 .400 .500 .600 .700 . 800 . 900
0.6 0.995 O 991 0. 986 0. 979 0.971 0.964 0.958 0.957 0,968
(0.052)(0.07¢4) (0.095) (0. 113)(0 123)(0.121)(0.107) (0.086) (0.072)
0.008 0.030 0.073 0.°37 0.223 0.329 0.455 0.602 0.775
(0.210) (0. 448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

1.2 0.957 0.946 0.934 0.923 0.913 0.906 0.905 0.° * 0,940
(0.192) (0.203) (0.206) (0.200) (0.185)(0.163) (0.137)(0.1 ,) (0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0. 429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

1.8 0.857 0.846 0.838 0.833 0.832 0.837 0.849 0.874 0.918
(0.305) (0.284) (0.269)(0.234) (0.208)(0.182)(0.160)(0.141)(0.118)
0.040 0.091 0.154 0.227 0.311 0.404 0.510 0.633 0.785
(0.645)(0.724) (0.760)(0.757) (0.721)(0.659) (0.575)(0.470) (0.337)

2.4 0.708 0.713 0.721 0.734 0.750 0.773 0.803 0.844 0.903
(0.328) (0.304) (0.281)(0.258) (0.236)(0.214)(0.191)(0.166) (0.132)
0.055 0.117 0.185 0.259 0.340 0.428 0.528 0.643 0.788
(0. 820)(0.807)(0.774)(0.724)(0.660)(0.586)(0.503)(0.611)(0.300)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384) (0.353)(0.321) (0.289)(0.257) (0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.358 O0.444 0.539 0.650 0.791
(0.933) (0.858) (0.783) (0.706) (0.629)(0.550) (0.470)(0.385) (0.285)

3.6 0.538 0.573 0.609 0.646 0.685 0.727 0.774 0.829 0.898
(0.487)(0.440) (0.396)(0.354) (0.314)(0.274)(0.235) (0.193) (0.143)
0.069 0.140 0.212 0.286 0.365 0.450 0.544 0.654 0,792
(O.f/3)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

4.2 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395) (0.366) (0.337)(0.309) (0.279)(0.250) (0.218)(0.183)(0.137)
7.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793
(0.930) (0.873) (0.810)(0.741) (0.668)(0.592)(0.510)(0.421) (0.311)

4.8 v.815 0.811 o0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320) (0.293) (0.267)(0.242) (0.220)(0.199)(0.179)(0.157) (0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0. 793)(0.837)(0.842)(0.816)(0.766)(0.697)(0‘611)(0.506)(0.358)

5.4 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207) (0.201)(0.188)(0.169)(0.147)(0.128) (0.114) (0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771) (0.918)(0.995) (L. 008)(0 964) (0. d69)(0 724)(0 517)

For the mastery score = 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number uf items N = 6
Mastery score C = 5

Test KR21=

Mean .100 200 « 300 .400 .500 .000 .700 .800 .900

0.6 1.000 0.999 0.998 O. 996 0. 992 0.986 ¢©. 979 0.972 0.973
(0.006)(0.013) (0.024)(0.039) (0. 058) (0.0,7)(0.088)(0.081) (0.059)
0.001 0.009 0.029 0.069 0.137 0.235 0.366 0.532 0.737
(0.048) (0.175)(0.381)(0.631)(0.871)(1.045)(1.101)(1.001) (0.714)

1.2 0.994 0.991 0.985 0.978 0.969 0.958 0.946 0.939 0.946
(0.047) (0.065) (0.086) (0.107)(0.125)(0.135)(0.129) (0.105) (0 080)
0.006 0.022 0.054 0.106 0.181 0.280 0.406 0.559 0.748
(0.143) (0.302)(0.482)(0.650)(0.773)(0.829)(0.804) (0.693) (0.488)

1.8 0.971 0.962 0.951 0.938 0.925 ~.912 0.902 0.902 0.923
(0.142)(0.16)(0.176)(0.185)(0.184) (0.172)(0.147)(0.116)(0.097)
0.015 0.042 0.086 0.147 0.226 0.324 0.442 0.583 0.757
(0.291) (0.446) (0.582)(0.681) (0.730) (0.724) (0.663) (0.552) (0.389)

2.4 0.909 0.895 0.882 0.869 0.859 0.852 0.853 0.866 0.905
(0.261) (0.258)(0.249)(0.233)(0.211)(0.182)(0.152)(0.128)(0.114)
0.028 0.063 0.121 0.188 0.269 0.364 0.474 0.604 0.766
(0. 472)(0.584)(0.661)(0.698)(0.694)(0.651)(0.575)(0.469)(0.335)

3.0 0.795 0.787 0.781 0.779 0.781 0.789 0.807 0.838 0.893
(0.320) (C¢.293)(0.266)(0.239)(0.212)(0.188)(0.167)(0.150)(0.131)
0.042 0.095 0.156 0.227 0.307 0.398 0.502 0.623 0.773
(0. 661)(0.706)(0.719)(0.704)(0.662)(0.599)(0.517)(0.420)(0.305)

3.6 0.649 0.659 0.673 0.690 0.712 0.739 0.775 0.323 0.890
(0.321) (0.301) (0.282)(0.264) (0.246)(0.227) (0.206) (0.181) (0.146)
0.057 0,119 0.187 0.260 0.339 0.426 0.524 9.638 0.780
(0.831) (0. 805)(0.763)(0.708)(0.642)(0.568)(0.486)(0.397)(0.294)

4.2 0.543 0.575 0.608 0.643 0.681 0.723 0.771 0.827 0.898
(0.447) (0.415) (0.383) (0.351)(0.318) (0.284)(0.248)(0.207) (0.155)
0.063 0.137 0.208 0.283 0.362 0.447 0.541 3.652 0.786
(o. 959)(0.880)(0.802)(0.724)(0.647)(0.569)(0.488)(0.403)(0.303)

4.8 0.581 0.614 0.647 0.683 0.720 0.761 0.805 0.856 0.918
(0.509) (0.463) (0.420)(0.379)(0.339)(0.300) (0.258) (0.212) (0.152)
0.071 0.144 0.217 0.293 0.373 0.458 0.551 0.658 0.791
(1. 017)(0.935)(0.855)(0.778)(0.702)(0.625)(0.544)(0.454)(0.343)

5.4 0.798 0.803 0.811 0.323 0.839 0.859 0.883 0.914 0.952
(0.344) (0.318) (0.295)(0.274)(0.255) (0.234) (0.210)(0.177) {0.126)
0.062 0.130 0.204 0.283 0.367 0.457 0.554 0.663 0.795
(C.967) (0.996) (0.990) (0. 957)(0 903) (0.829) (0.736) (0. 617)(0 462)




RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 6
Mastery score C = {

Test KR21=
Mean .100 . 200 «+300 . 400 500 .600 .700 . 800 .900

0.6 1,000 1.000 1.000 0.999 0.999 0.997 0.993 0.986 0.978
(0.000)(0.001)(0.003)(0.007)(0.014)(0.028)(0.049)(0.070)(0.063)
0.000 0.001 0.007 0.022 0.056 0.121 0.231 0.399 0.644
(0.005)(0.035)(0.119)(0.275)(0.503)(0.771)(1.010)(1.109)(0.918)

1.2 1.000 0.999 0.998 0.997 0.994 0.988 0.979 0.965 0.953
(0.004)(0.008)(0.015)(0.026)(0.042)(0.065)(0.091)(0.105)(0.031)
0.001 0.004 0.014 0.038 0.082 0.156 0.270 0.434 0.663
(0-022)(0.078)(0.182)(0.332)(0.509)(0.680)(0.797)(0.801)(r.628)

1.8 0.997 0.996 0.993 0.988 0.981 0.970 0.955 0.937 0.929
(0.022)(0.032)(0.047)(0.066)(0.089)(0.113)(0.131)(0.127)(0.088)
0.002 0.010 0.027 0.060 0.113 0.195 0.311 0.469 0.681
(0.063)(0.148)(0.268)(0.409)(0.548)(0.656)(0.703)(0.658)(0.496)

2.4 0.988 0.983 0.976 0.967 0.954 0.939 0.920 0.903 0.905
(0.068)(0.086)(0.106)(0.128)(0.148)(0.162)(0.161)(0.135)(0.094)
0.006 0.021 0.047 0.089 0.151 0.238 0.353 0.503 0.698
(0.137)(0.245)(0.368)(0.488)(0.586)(0.643)(0.641)(0.567)(0.418)

3.0 0.961 0.951 0.939 0.925 0.908 0.890 0.874 0.866 0.885
(0.154)(0.172)(0.188)(0.200)(0.203)(0.195)(0.171)(0.129)(0.106)
0.014 0.037 0.073 0.125 0.194 0.283 0.395 0.535 0.715
(0.253)(0.366)(0.474)(0.561)(0.616)(0.628)(0.591)(0.503)(0.368)

3.6 0.898 0.884 0.869 0.854 0.839 0.827 0.822 0.831 0.873
(0.263)(0.265)(0.260)(0.248)(0.227)(0.196)(0.159)(0.130)(0.131)
0.024 0.059 0.106 0.166 0.240 0.330 0.437 0.567 0.730
(0.410)(0.505)(0.579)(0.625)(0.637)(0.613)(0.552)(0.458)(0.338)

4.2 0.781 0.770 0.762 0.756 0.755 0.760 0.776 0.809 0.872
(0-323)(0-297)(0-269)(0-239)(0.209)(0.184)(0.169)(0.166)(0.163)
0.039 0.087 0.144 0.211 0.288 0.377 0.478 0.597 0.745
(0.606)(0.658)(0.684)(0.683)(0.656)(0.604)(0.528)(0.433)(0.327)

4.3 0.620 0.630 0.644 0.662 0.687 0.718 0.759 0.814 0.889
(0.297)(0.285)(0.277:(0.272)(0.268)(0.264)(0.254)(0.235)(0.190)
0.056 0.118 0.185 0.258 0.337 0.423 0.517 0.625 0.758
(0.836)(0.825)(0.797)(0.751)(0.691)(0.618)(0.534)(0.441)(0.343)

5.4 0.542 0.583 0.625 0.668 0.714 0.761 0.812 0.867 0.928
(0.596)(0.570)(0.538)(0.500)(0.457)(0.408)(0.349)(0.279)(0.188)
0.076 0.151 0.228 0.305 0.385 0.467 0.554 0.651 0.771
(1.114)(1.047)(0.974)(0.895)(0.812)(0.724)(0.631)(0.532)(0.428)

.---..--—-u-------------------------------------------------—--—

For the mastery score = ] enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial) Model
M = Number of subjects
Number of items N = 7
Maastery score C = 4

Test KR2l=
Mean .100 .200 . 300 <400 . 500 .600 .700 .800 .900

0.7 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.081)(0.104)(0.123)\0.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0.775
(0.274)(0.516)(0.738)(0.901)(0.986)(0.992)(0.919)(0.772)(0.541)

1.4 0.923 0.911 0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251)(0.247)(0.235)(0.217)(0.195)(0.169)(0.145)(0.124)(0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 ©.779
(0.537)(0.675)(0.760)(0.793)(0.780)(0.728)(0.644)(0.529)(0.376)

2.1 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296)(0.270)(0.245)(0.221)(0.199)(0.176)(0.152)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782
(0.758)(0.779)(0.768)(0.733)(0.678)(0.607)(0.524)(0.428)(0.309)

2.8 0.603 0.630 0.654 0.680 0.710 0.744 0.784 0.832 0.897
(0.387)(0.359)(0.331)(0.302)(0.272)(0.241)(0.209)(0.174)(0.131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784
(0.897)(0.835)(0.768)(0.697)(0.623)(0.546)(0.466)(0.379)(0.278)

3.5 0.534 0.569 0.604 0.641 0.680 0.722 0.768 0.823 0.892
(0.472)(0.426)(0.383)(0.342)(0.303)(0.263)(0.224)(0.182)(0.134)
0.008 0.138 0.209 0.282 0.360 0.443 0.537 0.645 0.784
(0.945)(0.853)(0.767)(0.685)(0.605)(0.527)(0.448)(0.365)(0.269)

4.2 0.608 0.630 0.654 0.680 0.710 0.744 0.784 0.832 0.897
(0.387)(0.359)(0.331)(0.302)(0.272)(0.241)(0.209)(0.174)(0.131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784
(0.897)(0.835)(0.768) (0.697)(0.623)(0.546) (0.466) (0.379)(0.278)

4.9 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296) (0.270) (0.245) (0.221)(0.199)(0.176) (0.1.2)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782
(0.758)(0.779)(0.768) (0.733)(0.678) (0.607) (0.524) (0.428) (0.309)

5.6 0.923 0.911 ©0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251)(0.247)(0.235)(0.217) (0.195)(0.169) (0.145)(0.124) (0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 0.779
(0.537)(0.675)(0.760)(0.793)(0.780)(0.728)(0.644)(0.529)(0.376)

6.3 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.031)(0.104)(0.123)(0.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0N.775
(0.274)(0.516)(0.738)(0.901)(0.986)(0.992)(0.919)(0.772)(0.541)




RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
©3:5.E.%SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
- OEM.:JNunbetigf subjects .
. nLrgoNumber of ftems N w-7c - - '
. toni Mastery score?C w75t

R A

0,999 0.998 "0.996 "0.992 "0.987" 0980 ‘07972
(0.014) (0.025) (0.041) (0.060) (0.080)
..9.003 0,014 6,041 0.092 0.168
(0.082)(0.249)10.479) {0.721) (0.918) ¢

0.986 0.979

“0.966°°0:970
(0.095)(0.098) (0.083)(0.062)
0.272 0.403 0.561 0.751
1.028)(1.025) (0.895)(0.625)
0.971°'0.961 -0.949 7.938

(0;993)(9.115)(9.135)§0:150)(0.156)(0;152)(
"0.011 0.035 0.077 °0.138 *03220 +0:321

(9.237)(0.412)(0:588)(0.719)(0.79;)(0.?96)(

0.929 0.926 0.942
0.133) (0.105) (0.084)
0.443 0.586 -0.760
0.736)(0.613) (0.427)
ey A L - R . . .

0.932 1.920 '0.907 ‘0.894" 0.884 0.376  0.875 0.886° 0.918
(0.230) (0.234) (0%231) (0.220) (0.201) (0.176) (0.147) (G.121) (0.102)
0.025 0.064 0.118 0.186 0.268 0,365 0.476 0.607 0.767

(0.443)(9.577) (0.672) (0.719) (0.719) (0.677) (0.597) (0. 486) (0. 342)
0.815 0,807 '0.801 '0.,98 0.799 0.807 0.823 )

(£.316) (0.291) (02255) (07238 (0.212) (0.186) (0.163) (0-142) (0.118)
0.042 0.095 07157 ° 04228 0.309 0.400 0,503  9.623 ' 0.774
(0.653) (0.795) (0.721) (0.706) (0.663) (9.598) (0.515) (0.416) (0. 297)

0,851 0.901

LT
0.657 0.668 0.682
(0.330) (0.308) (0. 287)
0.057" 0.120° 0,188
(0.826) (0.795) (0.749)

0.544 0.575 0609
(0.444) (0.407) (0-.370)
0.067 0.136"°0.206

'0.699 1 0.721 - 0.748 0.783 0.828 0.892
(0-266) (0.244) (0.221) (0.196) (0.167) (0.131)
"0.261° 0,339 - 0,426 0.523 0.635 0.778
(0.692) (0.624) (0.549) (0.468) (0.379) /0.276)

“0.643 0,681 (0,722 0.767 0.827 - 0. 892
(0.334) (0.299) (0.263) (0.225) (0.186) (0. 138)
"0.280 ' 0.357 ' 0.441 D535 D.644 0.782

(0.932)(0.848)(q.768)(0.@?9)(0,611)(0.533)

(0.454) (0.370) (6. 274)

0.573 0.603 0.634 0.668 0.703
(0.456) (0.415) (0.376) (0.338) (0.302
0.068 0.137 0,209 0.283 0.361
(0.948)(0.867)(0.788) (0.710) (0.634)

0.749 0.754 0.702 0.773 0.789
(0.339)(0.313) (0.288) (0..264) (0.241)

0.742 0.786 - 0.837 ' 0.902
) (0.265)(0.227) (0.187) (0.137)

0.446 0.539 0.648 0,785
(0.557)(0.478)(0.394) (0.292)

0.1t 0,838 0.874 0,924
(0.218)(0.194) (0.166) (0.126)

0.057 0.121 0.191
(0.851)(0.849) (0.823)

0.938 0.927 0.918
(0.238)(0.233) (0.220)
0.034 0.084 0,149
(0.616)(0.794) (0.903)

For the mastery score = 3

0.267 0.348 0.437 0.535 0.647 0.786
(0.777)(0.717)(0.646)(0.563)(0.466)(0.343)

0.911 0.908 0,909 0.916 0.931 0.957
(0.200)(0.178)(0;157)(0.138)(0.122)(0.098)
0.227 J.315 0.412 0.520 0.642 0.787
(0.948)(0.941)(0.889)(0.797)(0.665)(0.479)

. enter N-xbar in ‘the test mean -colunmn
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HUYNH

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 7
Mastery score C = 6

Test KR2l1l=

Mean . 100 .200 « 300 »400 .500 .600 .700 .800 .900

0.7 1.000 1.000 0.999 0.998 0.997 0.993 0.987 0.979 0.975
(0.001)(0.003)(0.008)(0.016)(0.030)(0.04))(0.069)(0.077)(0.057)
0.000 0,003 0.015 0.042 0.096 0.133 0.311 0.484 0.706
(0.015)(0.081)(0.226)(0.446)(0.703)(0.934)(1.064)(1.021)(0.747)

1.4 0.998 0.997 0.994 0.990 0.984 0.975 0.963 0.951 0.949
(0.016)(0.027)(0.042)(0.061)(0.083)(0.104)(0.115)(0.105)(0.074)
0.002 0.011 0.032 0.072 0.136 0.230 0.356 0.518 0.721
(0.064)(0.175)(0.334)(0.515)(0.678)(0.785)(0.804)(0.715)(0.506)

2.1 0.989 0.983 0.976 0.966 0.954 0.940 0.925 0.916 0.925
(0.072)(0.092)(0.113)(0.133)(0.149)(0.155)(0.146)(0.117)(0.086)
0.008 0.025 ©.058 0.109 0.182 0.278 0.399 0.54% 0.734
(0.166)(0.305)(0.455)(0.588)(0.680)(0.712)(0.676)(0.571)(0.399)

2.8 0.953 0.942 0.929 0.915 0.909 0.887 0.877 0.878 0.904
(0.181)(0.196)(0.205)(0.208)(0.201)(0.183)(0.155)(0.120)(0.100)
0.018 0.047 0.092 0.152 0.229 0.324 0.439 0.575 0.746
(0.322)(0.454)(0.565)(0.641)(0.672)(0.654)(0.589)(0.482)(0.338)

3.5 0.869 0.356 0.843 0.832 0.824 0.8:.1 0.826 0.844 0.890
(0.292)(0.231)(0.264)(0.241)(0.214)(0.134)(0.155)(0.132)(0.117)
0.032 0.075 0.130 0.196 0.275 0.367 0.474 0.599 0.756
(0.513)(0.599)(0.652)(0.670)(0.653)(0.604)(0.526)(0.424)(0.302)

4.2 0.728 0.726 0.727 0.731 9.741 0.757 0.783 0.321 0.884%
(0.315)(0.287)(0.262)(0.238)(0.217)(0.197)(0.179)(0.161)(0.136)
0.048 0.103 0.166 0.237 0.316 0.404 0.504 0.620 0.766
(0.712)(0.727)(0.717)(0.685)(0.634)(0.566)(0.485)(0.392)(0.286)

4.9 0.578 0.600 0.625 0. 53 0.684 0.721 0.765 0.818 0.889
(0.362)(0.344)(0.325)(0.304)(0.282)(0.257)(0.229)(0.196)(0.150)
0.062 0.128 0.197 0.270 0.348 0.433 0.527 0.636 0.774
(0.884)(0.829)(0.767)(0.700)(0.629)(0.554)(0.474)(0.388)(0.290)

5.6 0.548 0.584 0.621 0.659 0.699 0.742 0.789 0.843 0.909
(0.513)(0.467)(0.423)(0.382)(0.341)(0.301)(0.259)(0.213)(0.153)
0.071 0.142 0.215 0.289 0.368 0.451 0.543 0.649 0.781
(0.990)(0.904)(0.822)(0.744)(0.668)(0.592)(0.513)(0.427)(0.323)

6.3 0.753 0.764 0.777 0.794 0.815 0.839 0.368 0.903 0.946
(0.376)(0.349)(0.324)(0.300)(0.276)(0.251)(0.222)(0.185)(0.131)
0.065 0.135 0.209 0.286 0.368 0.456 0.551 0.657 0.786
(0.977)(0.972)(0.944)(0.900)(0.841)(0.769)(0.681)(0.573)(0.433)

--—-----------------------------------------------------------—------

For the mastery score = 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta~binomial Model
M = Number of sublects
Number of items N = 7
Mastery score C = 7

Test KR21=
Mean .100 . 200 . 300 400 « 500 .600 . 700 . 800 . 900

0.7 1.000 1.000 1,000 1.000 1.000 0.999 0.996 0.990 0.981
(0-000)(0.000)(0.001)(0-002)(0.006)(0.01:)(0.031)(0.057)(0.064)
0.000 0.000 0.003 0.012 0.036 0.088 0.184 0.347 0.604
(0.001)(0.014)(0.060)(0.168)(0.356)(0.616)(0.893)(1.068)(0.940)

1.4 1.000 1.000 0.999 0.999 0.997 0.994 0.987 0.974 0.958
(0.001)(0.003)(0.006)(0.011)(0.022)(0.040)(0.066)(0.093)(0.084)
0.000 0.002 0.007 0.023 0.056 O0.118 0.223 0.386 0.627
(0.008)(0.038)(0.107)(0.227)(0.392)(0.578)(0.736)(0.790)(0.644)

2.1 0.999 0.998 0.997 0.994 0.990 0.982 0.969 0.950 0.934
(0.009)(0.014)(0.023)(0.036)(0.055)(0.080)(0.108)(0.122)(0.091)
0.001 0.005 0.016 0.040 0.083 0.155 0.265 0.425 0.649
(0.030)(0.085)(0.179)(0.307)(0.453)(0.5&8)(0.672)(0.660)(0.508)

2.3 0.995 0.992 0.988 0.982 0.972Z 0.959 0.94C €c.919 0.909
(0.035)(0.048)(0.064)(0.085)(0.109)(o.'32)(0.148)(0.139)(0.092)
0.003 0.013 0.031 0.064 C.118 0.198 0.311 0.464 0.670
(0.078)(0.162)(0.272)(0.396)(0.514)(2.600)(0.628)(0.574)(0.425)

3.5 0.979 0.972 0.963 0.951 0.936 0.918 0.898 0.880 0.886
(0.098)(0.117)(0.137)(0.157)(0.173)(0.181)(0.172)(0.138)(0.096)
0.009 0.025 0.054 0.098 0.160 0.246 0.358 0.502 0.690
(0.168)(0.271)(0.382)(0.486)(0.566)(0.604)(0.589)(0.510)(0.370)

4.2 0.935 0.922 0.908 0.892 0.875 0.857 0.844 0.841 0.870
(0.205)(0-213)(0.227)(0-229)(0.222)(0.203)(0.170)(0.128)(0.114)
0.018 0.045 0.085 0.139 0.209 0.297 0.406 0.539 0.709
(0.308)(0.410)(0.500)(0.568)(0.604)(0.600)(0.552)(0.461)(0.335)

4.9 0.835 0.821 0.308 0.796 0.787 0.783 0.788 0.810 0.865
(0.309)(0.295)(0.275)(0.250)(0.219)(0.186)(0.157)(0.144)(0.148)
0.032 0.073 0.124 0.187 0.262 0.350 0.453 0.575 0.728
(0.501)(0.572)(0.620)(0.641)(0.632)(0.593)(0.524)(0.430)(0.318)

3.6 0.667 0.668 0.673 0.683 0,699 0.722 0.755 0.804 0.878
(0.297)(0.271)(0.251)(0.237)(0.228)(0.224)(0.221)(00213)(0.184)
0.050 0.106 0.170 0.240 0.318 0.404 0.493 0.609 0.745
(0.743)(0.754)(0.744)(0.715)(0.666)(0.601)(0.521)(0.428)(0.328)

6.3 0.536 0.573 . 511 0.653 0.697 0.744 0.796 0.853 0.919
(0.517)(0.504)(0.485)(0.459)(0.428)(0.389)(0.341)(0.278)(0.193)
0.072 0.145 0.219 0.295 0.374 0.456 0.543 0.641 0.761
(1.043)(0-985)(0-920)(0-843)(0.770)(0.687)(0.599)(




1.6

2.4

4.0

4.8

5.6

6.4

For the mastery score = 5

HUYNH

Table of the Raw Agreement Index ind its
S.E.*SQRT{H), the Kappa Index and its
S.E,*SQRT(M) 1in the Beta-binomial Model
M = Number of subjects
Number of items N = 8
Mustary score C = 4

.300 .400 +500
0.984 0.977 0.968 0.959 0,950 0.943 0.940 0.944 0.961
(0.112)(0.133)(0.149)(0.155)(0.152)(0.1,3)(0.118)(0.G97)(0.080)
0.015 0.043 0.100 0.171 0.259 0.363 0.431 0.615 0.773
(0.334)(0.568) (0.763) (0.892) (0.947)(0.931) (0.852)(0.712)(0.502)

0.881 0.871 0.862 0.856 0.854 0.858 0.869 0.890 0.928
(0.290) (0.273) (0.251) (0.227)(0.202) (0.177)(0.154) (0.133)(0.10/)
0.039 0.090 0.153 0.227 0.311 0.404 0.509 0.629 0.776
(0.627)(0.724) (0.770)(0.773)(0.741) (0.680) (0.595) (0.488) (0.350)

0.693 0.703 0.715 v.731 0.751 0.776 0.807 0.848 0.905
(0.342)(0.317)(0.293)(0.268) (0.244)(0.218)(0.191)(0.161)(0.123)
0.058 0.122 0.190 0.264 0.343 0.429 0.525 0.637 0.778
(0.833)(0.8067)(0.765)(0.709) (0.643) (0.570) (0.488) (0.398) (0.290)

0.549 0.581 0.615 0.649 0.686 0.726 0.771 0.824 0.892
(0.451) (0.409) (0.369)(6.331) (0.293)(0.256)(0.217)(0.177)(0.130)
0.067 0.136 0.206 0.279 0.356 0.439 0.532 0.640 0.778
(0.923)(0.838) (0.756)(0.677) (0.600) (0.522) (0.444) (0.360) (0.264)

0.564 0.592 0.622 0.653 0.688 0.726 0.769 0.821 0.889
(0.414)(0.381)(0.348)(0.315)(0.281)(0.247)(0.212)(0.173)(0.128)
0.065 0,133 0,202 0.275 0,352 0.436 0.529 0.637 0.777
(0.901) (0.825) (0.749)(0.673) (0.597) (0.520) (0.440) (0.356) (0.260)

0.714 0,717 0.724 0.735 0.751 0.771 0.799 0.833 0.896
(0.324)(0.299) (0.275) (0.252) (0.229) (0.206) (0.181) (0.154) (0.120)
0.054 0.114 0.180 0.253 0.332 0.419 0.516 0.630 0.774
(0.777)(0.769) (0.739)(0.691) (0.630) (0.557) (0.474)(0.382)(0.275)

0.878 0.866 0.855 0.847 0.843 0.844 0.852 0.872 0.913
(0.290)(0.275) (0.255)(0.232) (0.206)(0.179)(0.153)(0.130) (0.107)
0.035 0.083 0.143 0.215 0.297 0.339 0.495 0.617 0.770
(0.572)(0.665) (0.713)(0.720)(0.691)(0.631)(0.547)(0.442)(0.313)

0.971 0.962 0.951 0.939 0,928 0.918 0.912 0.915 0.937
(0.147)(0.165)(0.177)(0.181)(0.176)(0.161) (0.137)(0.109) (0.088)
0.017 0.049 0.098 0.164 0,248 0.348 0.464 0.600 0.764
(0.330)(0.507) (0.652) (0.745) (0.778)(0.753)(0.678) (0.557) (0.388)

0.998 0.996 0.992 0.987 0.981 0.973 0.965 0.961 0.967
(0.025) (0.040) (0.059) (0.080) (0.298) (0.108) (0.104) (0.085) (0.065)
0.004 0.019 0,053 0.109 0.191 0.296 0.425 0.576 0.756
(0.119)(0.312)(0.548)(0.767)(0.924)(0.990)(0.955)(0.817)(0.568)

enterr N-xbar in the test mean column
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RELIABILITY IN MASTRERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 3
Mastery score C = §

Mean . 100 .200 .300 +400 «500 . 600 . 700 .800 +900
0.8 0.996 0.996 0.992 0.987 0.981 0.973 0.965 0.961 0.967
(0.325)(0.060)(0.059)(0.080)(0.098)(0.108)(0.104)(0.085)(0.065)
0.004 0.019 0.053 0.109 0.191 0.296 0.425 0.576 0.756
(0.119)(0.312)(0.548)(0.767)(0.924)(0.990)(0.955)(0.817)(0.568)

1.6 0.971 0.962 0.951 0.93?2 0.928 0.918 0.912 0.915 0.937
(0.147)(0.165)(0.177)(0.181)(0.176)(0.161)(0.137)(0.109)(0.0&8)
0.017 0,049 0.098 0.164 0.248 ..348 0.464 0.600 0.764
(0.330)(0.507)(0.652)(0.745)(0.778)(0.753)(0.678)(0.557)(0.388)

2.4 0.878 0.866 0.855 0.847 0.843 0.844 0.852 0.872 0.913
(0.290)(0.275)(0.255)(0.232)(0.206)(0.179)(0.153)(0.130)(0.107)
0.035 0.083 0.143 0.”°5 0.297 0.389 0.495 0.617 0.770
(0.572)(0.665)(0.713)(0.720)(0.691)(0.631)(0.547)(0.442)(0.313)

3.2 0.714 0.717 0.724 0.735 0.751 0.771 0.799 0.833 0.896
(0.324)(0.299)(0.275)(0.252)(0.229)(0.206)(0.181)(0.154)(0.120)
G.C54 0,114 0.180 0.253 0.332 0.419 0.516 0.630 0.774
(0.777)(0.769)(0.739)(0.691)(0.630)(0.557)(0.474)(0.382)(0.275)

4.0 0.564 0.592 0.622 0.653 0.688 0.726 0.769 0.821 0.889
(0.414)(0.381)(0.348)(0.315)(0.281)(0.247)(0.212)(0.173)(0.128)
0.065 0.133 0.202 0.275 0.352 0.436 0.529 0.637 0.777
(0.901)(0.825)(0.749)(0.673)(0.597)(0.520)(Qﬂ440)(0.356)(0.260)

4.8 0.549 0.581 0.615 0.649 0.686 0.726 0.771 0.824 0.892
(0.451)(0.409)(0.369)(0.331)(0.293)(0.256)(0.217)(0.177)(0.130)
0.067 0.136 0.206 0.279 0.356 0.439 0.532 0.640 0.778
(0.923)(0.838)(0.756)(0.677)(0.600)(0.522)(0.444)(0.360)(0.264)

5.6 0.693 €.703 0.715 0.731 0.751 0.776 0.807 0.8i8 0.905
(0.342)(0.317)(0.293)(0.268)(0.244)(0.218)(0.191)(0.161)(0.123)
0.058 0.122 0.190 0.264 0.343 0.429 0.525 0.637 0.778
(0.833)(0.807)(0.765)(0.709)(0.643)(0.570)(0.488)(0.398)(0.290)

6.4 0.381 0.871 0.862 0.856 0.854 0.858 0.869 0.890 0.928
(0.290)(0.273)(0.251)(0.227)(4.202)(0,177)(0.154)(0.133)(0.107)
0.039 0.090 0.153 0.227 0.311 0.404 0.509 0.629 0.776
(0.627)(0.724)(0.770)(0.773)(3.741)(0.680)(0.595)(0.488)(0.350)

7.2 0.984 0.977 0.968 0.959 0.950 0.943 0.940 0.944 : .361
(0.112)(0.133)(0.149)(0.155)(0.152)(0.139)(0.118)(0.097)('.080)
0.015 0.048 0.100 0.171 0.259 0.363 0.481 0.615 o 773
(0.334)(0.568)(0.763)(0.892)(0.947)(0.931)(0.852)(0 712)(uv.502)

------------------—---------.-'l---—--II--‘--—--—--------.'~“ Y e en e e - -

For the mastery score = 4 enter N-xbar in the tzst .ean column
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Table of the Raw Agreement Index and 1its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta~binomial Model
M = Number of subjects
Number of items N = 8
Mastery score C = 6
Test KR21=
Mean .100 .200 .300 .400 500 .600 .700 .800 .900
0.8 1.000 0.999 0.992 0.997 0.994 0.989 0.982 (6.974 0,972
(0.003)(0.008) (0.016)(0.028)(0.046) (0.06C) (0.082)(0.080) (0.057)
0.001 o©.n06 0,023 0,060 0.124 0.222 0.354 0.521 0.727
(0.029)(0.128)(0.312)(0.552)(0.791)(0.967)(1.025)(0.930) (0.656)

1.6 0.996 0.992 0.988 0.931 0.972 0.9¢6. 0.948 0.939 0.945
(0.038)(0.055)(0.075)(0.097)(0.116) (0.1.3)(0.126)(0.105) (0.075)
0.005 0.019 0.050 0.100 0.175 ©0.275 0,400 0.553 6,740
(0.121)(0.270)(0.448) (0.615)(0.737)(0.788)(0.757) (0.642) (0.444)

2.4 0.970 0.960 0.949 0.936 0.923 0.910 92.900 0.899 0.920
(0.143)(0.162)(0.176) (0.184) (0.183) (0.171)(9.147)(0.115) (0.090)
0.015 0.043 0,087 0.148 0.227 0.325 0.442 0.580 0.750
(0.286)(0.438)(0.572)(0.664)(0.705)¢0.690)(0.622) (0.507) (0.350)

3.2 0.392 0.879 0.866 0.855 0.846 0.842 0.845 0.861 0.901
(0.275)(0.268) (0.254) (0.235) (0.210) (0.182)(0.153)(0.127) (0.106)
0.030 0.073 0.128 0.196 0.276 0.369 0.477 0.602 0.759
(0.497)(0.597)(0.659) (0.682) (0.665) (0.614) (0.533) (0.428) (0.299)

4.0 0.747 0.744 0.745 0.749 0.758 0.772 (,796 0.831 0.889
(0.317)(9.290) (0.265) (0.240) (0.217)(0.195)(0.173)(0.150) (9.121)
0.048 0.103 0.167 0.238 0.317 0.405 0.504 0.620 0.767
(0.706) (0.723)(0.713)(0.679) (0.627) (0.557) (0.475) (0.381) (0.272)

4.8 0.588 0.60¢ 0.633 0.660 0.691 0.726 0.767 0.818 0.886
(0.365)(0.342)(0.313) (0.294){0.268)(0.240)(0.210)(0.175) (0.133)
0.062 0.127 0.196 0.208 0.346 0.430 0.523 0.633 0.772
(0.866)(0.308) (0.744)(%.675)(0.603)(0.527)(0.447)(0.362) (0.265)

5.6 0.540 0.574 0.610 0.646 0.685 0.727 0.773 0.827 0.895
(0.476) (0.430) (0.388)(0.%47)(0.308) (0.269)(0.229)(0.187)(0.137)
0.069 0.138 0.209 0.232 0,359 0.442 0.534 0.641 0.777
(0.940)(0.852)(0.769)(0.689) (0.612)(0.536) (0.458) (0.375) (0.278)

6.4 0.(37 0.701 0.717 0.737 0.760 0.738 0.821 0.863 0.917
(0.370)(0.343)(0.316){0.289) (0.263)(0.235)(0.206) (0.174) (0.129)
0.062 0.1z9 0.199 0.274 0.353 0.439 0.534 0.643 0.780
(0.389) (0.853) (0.805) (0.746) (0.680) (0.608) (0.528) (0.437) (0.323)

7.2 0.s15 0.904 0.896 0.891 0.8°0 0.894 0.904 0.923 0.952
(0.267)(0.253}(0.233)(0.211)(0.133)(0.166)(0.148)(n.130)(0.102)
0.039 0.093 0.159 0.237 0.323 0.418 0.522 0.640 0.781
(0.668)(0.809) (0.836)(0.9C8) (0.887)(0.830) (0.741) (0.619) (0.450)

For the mastery score = 3 enter N~-xbar in the test mean colurn
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Iidex and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in tie Beta-binomial Model
M = Number ol subjects
Number of fteme N = 8
Mastery score C = 7

Test KR21=

Mean .100 «200 .300 400 .500 .600 .700 .800 . 900

0.8 1.000 1.000 1,000 1.000 0.999 0.997 0.992 G.)85 0,977
(0.000)(0.00I)(0.003)(0.006)(0.014)(0.029)(0.050)(0.068)(0.057)
0.000 0.001 0.007 0.025 0.066 0.142 0.264 0.440 0.677
(0.005)(0.036)(0.129)(0.305)(0.551)(0.815)(1.009)(1.031)(0.780)

1.6 1.000 0.999 0.998 0.996 0.992 0.985 0.975 0.961 0.953
(0.00S)(0.0IO)(0.019)(0.031)(0.0SO)(0.073)(0.096)(0.102)(0.073)
0.001 0.005 0.018 0.048 G.101 0.187 0.311 0.478 0.695
(0.027)(0.097)(0.222)(0.394)(0.577)(0.726)(0.792)(0.734)(0.527)

2.4 0.596 0.993 0.989 0.982 0.973 0.960 0.945 0.929 0.978
(0.034)(0.068)(0.066)(0.088)(0.110)(0.129)(0.136)(0.119)(0.081)
0.004 0.015 0.038 0.080 0.144 0.236 0.358 0.514 0.712
(0.091)(0.201)(0.363)(0.493)(0.618)(0.690)(0.684)(0.591)(0.612)

0.977 0.969 0.959 0.947 0.932 0.916 0.900 0.891 0.905
(0.112)(0.133)(0.152)(0.168)(0.177)(0.175)(0.157)(0.122)(0.090)
0.011 0.032 0.068 0.121 0.193 0.287 0.404 0.547 0.727
(0.212)(0.362)(0.670)(0.576)(0.661)(0.652)(0.604)(0.499)(0.365)

(93]
.
[ )

4.0 0.920 0.907 0.892 0.878 0.864 0.852 0.847 0.854 0.888
(0.237)(0.262)(0.241)(0.232)(0.215)(0.189)(0.156)(0.126)(0.106)
0.023 0.058 0.105 0.167 0.244 0.336 0.446 0.576 0.740
(0.389)(0.499)(0.583)(0.632)(0.641)(0.610)(0.539)(0.635)(0.303)

4.8 u.798 0.788 0.731 0.776 0.775 0.780 0.795 0.824 0.879
(0.317)(0.293)(0.266)(0.239)(0.211)(0.185)(0.162)(0.146)(0.126)
0.039 0.088 0.146 0.714 0.292 0.381 0.483 0.602 0.752
(0.599)(0.650)(0.671)(0.663)(0.628)(0.570)(0.690)(0.396)(0.282)

5.6 0.628 0.640 0.655 0.673 0.697 0,726 0.763 0.813 0.882
(0.313)(0.295)(0.279)(0.263)(0.267)(0.229)(0.208)(0.183)(0.145)
0.056 0.118 0.184 0,256 0.333 0.418 0.513 0.623 0.763
(0.805)(0.777)(0.736)(0.682)(0.619)(0.567)(0.468)(0.380)(0.280)

6.4 0.535 0.570 0.606 0.644 0.685 0.728 0.776 0.832 0.901
(0.482)(0.664)(0.606)(0.369)(0.332)(0.295)(0.256)(0.211)(0.154)
0.069 0.13% 0.210 0.284 0.361 0.444 0.535 0.640 0.772
(0.956)(0.874)(0.795)(0.719)(0.665)(0.570)(0.693)(0.4,8)(0.309)

7.2 0.710 0.727 0.746 0.768 0.793 0.821 0.854 0.893 0.940
(O.llO)(0.379)(0.351)(0.322)(0.296)(0.265)(0.233)(0.193)(0.136)
0.067 0.138 0.211 0,288 0.369 0.454 0.547 0.651 0.779
(0,981)(0.952)(0.909)(0.855)(0.796)(0'723)(0.640)(0.560)(0.610)

For the mastery score = 2 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 8
Mastery score C = §

-—— 0 b Y T G T e D e T O I S I I T s S R I G 0 G I G G G G e G G GD G R R e T S S e

Test KR21=

Mean .100 .200 . 300 .400 «500 .600 .700 .800 + 900

0.8 1.000 1,000 1,000 1,000 1,000 O0.%29 0.998 0.994 0.984
(0.0¢0) (0.€00) (0.000) (0.001) (0.002) (0.0C7)(0.019)(0.043) (D.063)
0.000 0.000 0.001 O0.0C7 0.023 0.063 0.147 0.302 0.566
(0.000) (0.005) (0.030)(0.101)(0.249)(0.486) (0.780)(1.018) (0.959)

1.6 1,000 1,000 1,000 1,000 0.999 0.997 0.992 0.982 0.963
(0.000) {0.001) (0.002) (0.005) (0.011) (0.023) (0.04&) (0.578) (0.086)
0.000 0.001 0.004 O0.014 0.038 0.089 0.184 0.343 J.593
(0.003)(0.018>(0.062) (0.152) (0.297)(0.485) (0.671)(0.772) (0.660)

2.4 1,000 0.999 0.999 0.997 0.995 0.990 0.980 0.962 0.940
(0.003)(0.006) (0.011)(0.019) (0.033) (0.055) (0.0845(0.111)(0.096)
0.000 0.003 0,0lv 0,026 C 060 O0.123 0.226 0.385 0.619
(0.014) (0.048) (0.117)(0.226) (L 368)(0.519) (0.636) (0.658) (0.521)

3.2 0.998 0.996 0.994 0.990 0.982 0.973 0.956 0.933 0.914
(0.017) (0.025)(0.037)(0.054) (0.076)(0.103) (0.128)(0.137)(0.096)
0.002 0,007 0.02¢ 0.046 0,091 9Q.164 0.273 0.427 0.644
(0.044)(0.105)(0.198)(0.317)(0.444) (0.554)(0.611)(0.581) (0.435)

4.0 0.989 0.984 0©0.978 0.969 0.957 0.940 0.918 0.895 0.889
(0.060) (0.076) (0.096) (0.118) (0.140) (0.159)(0.166) (0.145) (0.093)
0.005 0.017 0.039 0,076 0.132 0.212 0.323 0.471 0.668
(0.110)(0.199)(0.305)(0.416) (0.514)(0.577) (0.585)(0.519) (0.376)

4.5 J.959 0.949 0.936 0.922 0.904 0.884 0.865 0.853 0.869
(0.152)(0.170)(0.187) (0.200) (0.206) (0.200) (0.177)(0.134)(0.,102)
0.013 0.035 0.068 0.1:6 0.181 0.267 0.376 0.513 0.691
(0.230){0.331)(0.429)(0.513)(0.570) (0.586) (0.554) (0.463) (0.335)

5.6 f.378 6.863 0.848 0.38333 0.813 0.807 0.803 0.814 0.859
(0.277)(0.276)(0.268)(C.252) (0.228)(0.196)(9.159)(0.131)(0.133)
0.025 0.061 O0.107 0.166 0.238 0.326 0.430 0.555 0.712
(0.413)(0.497)(0.562)(0.601) (0.610) (0.585) (0.525)(0.431)(N.313)

6.4 2.713 0 708 0.706 0.703 0.715 0.730 0.756 0.798 0.869
(0.310) (0.:31)(0.253)(0.228) (0.209)(0.197)(0.194)(0.193>(0.176)
0.044 0.096 0.156 0.224 0.300 0.386 0.483 0.594 0.733
(0.661) (0.691) (0.699)(0.684)(0.647) (0.590) (0.513) (0.420)(0.317)

7.2 0.539 0.571 0.606 0.643 0.635 0.731 0.782 0.841 0,911
(0.344)(0.440)(0.431)(0.417)(0.396) (0.367) (0.329)(0.275)(0.195)
0.068 0.138 0.211 0.286 0.364 0.446 0.534 0.631 0.752
(0.981) (0.934)(0.877)(0.8 ) (0.739)(0.660)(0.575)(0.482) (0.382)

For the mastery score = 1 cnter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table o
S.E.*S
S.E.*SQ

Test KR21=

Mean . 100 .200

0.9 0.996 0.993 0
(0.039)(0.058) (0
0.006 0.025 0O
(0.159)(0.367)(0

1.8 0.951 0.939 o
(0.199)(0.209) (0
0.023 0.061 0
(0.418) (0.577) (0

2.7 0.312 0.805 0
{0.315) (0.290) (0
0.045 0.099 o0
(0.676)(0.722) (0

3.6 0.625 0.643 0
(0.362) (0.336) (0
0.061 0.126 O
(0.852) (0.300) (0

4.5 0.534 0.568 0
(0.457)(0.412) (0
0.067 wv.136 0
(0.913)(0.824) (0

5.4 0.625 0.643 0
(0.362) (0.336) (0
0.061 0.126 0
(0.352) (0.800) (0

6.3 0.812 0.805 0
(0.315) (0.290) (0
0.045 0.099 o0
(0.676) (0.722) (0

7.2 0.951 0.939 o
(0.199) (0.209) (0
0.023 0.061 0
(0.418)(0.577) (0

8.1 6.996 0.993 0
(0.039) (0.058) (0
0.006 0.025 0
(0.159)(0.367) (0

f the Raw Agreement Index and its
QRT(M), the Kappa Index and its
RT(M) in the Beta-binomial Model
M = Number of subjects

Number of jitems N = 9

Mastery score C = 5

«300 «400 « 500 .600 .700 .800 «900
-988 0.982 0.974 0.966 0.958 0.955 0.964
.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)
«063 0.124 0.208 0.314 0.440 0.585 0.758
.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)

+927 0.915 0.905 0.898 0.896 0.905 0.932
.210)(0.204)(0.189)(0.167)(0.140)(0.114)(0.093)
«146 0.185 0.269 0.367 0.479 0.607 0.764
.691)(0.750)(0.755)(0.712)(0.631)(0.515)(0.361)

-801 0.801 0.805 0.814 0.831 0.860 0.907
.264)(0.238)(0.213)(0.188)(0.164)(0.139)(0.110)
-163 0.235 0.316 0.405 0.506 0.622 0.769
.730)(0.708)(0.660)(0.593)(0.509)(0.411)(0.293)

-663 0.687 0.714 0.745 0.782 0.828 0.892
.311)(0.284)(0.257)(0.228)(0.197)(0.163)(0.121)
«194 0.267 0.344 0.428 0.522 0.631 0.771
.740)(0.674)(0.603)(0.527)(0.447)(0.360)(0.260)

-603 0,639 0.677 0.718 0.764 0.817 0.886
.370)(0.331)(0.292)(0.253)(0.214)(0.172)(0.125)
<205 0.278 0.354 0.436 0.527 0.634 0.772
.741)(0.661)(0.583)(0.506)(0.428)(0.345)(0.251)

<663 0.687 0.714 0.745 0.782 0.828 0.892
.311)(0.284)(0.257)(0.228)(0.197)(u.163)(0.121)
«194 0.267 0.344 0.428 0.522 0.631 0.771
.740)(0.674)(0.603)(0.527)(0.447)(0.360)(0.260)

-801 0.801 0.805 0.814 0.831 0.360 0.907
.264)(0.238)(0.213)(0.188)(0.164)(0.139)(0.110)
«163 0.235 0.316 0.405 0.506 0.622 0.769
.730)(0.708)(0.660)(0.593)(0.509)(0.411)(0.293)

«927 0.915 0.905 0.89¢ 0.896 0.905 0.932
.210)(0.204)(0.189)(0.167)(0.140)(0.114)(0.093)
«116 0,185 0.259 0.367 0.479 ~.607 0.764
.691)(0.750)(0.755)(0.732)(0.631)(0.515)(0.261)

-988 0.982 0.974 0.966 0.958 0.955 0.964
.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)
-0€3 0.124 0.208 0.314 0,440 0.585 0.758
.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)




HUYNH

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta=-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = 6
Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900
0.9 1.000 0.999 0.998 0.995 0.9°21 0.985 0.977 0.969 0.970
(0.007)(0.014) (0.025)(0.041)(0.061) (0.021)(0.091)(0.082)(0.058)
0.001 0.009 0.031 0.075 O0.146 9.248 0.381 0.542 0.737
(0.047)(0.174)(0.380)(C.620)(0.831)(0.9€1)(0.975)(0.857)(0.598)

1.8 0.990 0.985 0.978 0.968 0.957 0.945 0.934 0.929 0.940
(0.070)(0.091)(0.112)(0.131)(0.143) (0.145)(0.132)(0.105) (0.079)
0.008 0.029 0.C67 0.125 0.205 0.306 0.428 0.572 0.748
(0.186)(0.356) (0.530)(0.671)(0.754)(0.766) (0.708)(0.587) (0.404)

2.7 0.939 0.927 0.914 0.901 7.882 0.380 0.877 0.885 0.815
(0.215)(0.223)(0.223)(0.215)+0.199)(0.176) (0.148)(0.118) (0.095)
0.023 0.060 0.£!2 0.179 0.260 0.356 0.467 0.596 0.756
(0.405)(0.542)(0.641) (0.693)(0.696) (0.654) (0.574)(0.462) (0.320)

3.6 0.811 $.302 0.796 0.794 0.796 0.304 0.819 0.847 0.396
(0.314)(0.290) (0.264) (0.233)(0.212)(0.186)(0.162)(0.137) (0.110)
0.042 0.094 0.156 0.227 0.307 0.396 0.497 O0.615 0.763
(0.640)(0.688)(0.702)(0.684) (0.640) (0.574) (0.490)(0.392) (0.276)

4.5 0.633 0.648 0.665 0.°86 0.711 0.740 0.776 0.822 0.886
(0.339)(0.317) (0.295)(0.272)(0.248) (0.222) (0.193)(0.161) (0.122)
0.059 0.122 0.189 0,261 0.339 0.423 0.517 0.627 0.768
(0.824)(0.782)(0.729)(0.567)(0.599) (0.524) (0.443)(0.355) (0.256)

5.4 0.534 0.568 0.603 ©.639 0.677 0.718 0.764 0.318 0.887
(0.455)(0.412)(0.371) (0.332)(0.293) (0.255)(0.216)(0.175) (0.128)
0.667 0.135 0.205 0.278 0.354 0.436 0.527 0.634 0.772
(0.913)(0.826)(0.743)(0.664) (0.587) (0.510) (0.432)(0.349) (0.255)

6.3 0.624 0.644 0.667 0.692 0.721 0.753 0.791 0.837 0.899
(0.335)(0.356) (0.326) (0.297)(0.267) (0.236) (0.203)(0.168) (0.125)
0.063 0.130 0.199 0.272 0.350 0.433 0.527 0.635 0.773
(0.878)(0.820)(0.756) (0.689)(0.617) (0.542) (0 463)(0.377) (0.276)

7.2 2.834 n 827 0.822 0.822 0.326 0.336 0.852 0.879 0.923
(0.311) (0.286) (0.261) (0.236)(0.211) (0.187) (0.164)(0.141) (0.111)
0.045 0.102 0.167 0.241 0.323 0.413 0.514 0.630 0.773
(0.700) (0.756) (0.771)(0.752) (0.707) (0.640) (0.557)(0.457) (0.330)

81 0.976 0.967 0.957 0.947 0.933 0.932 0.931 G.%237 0.957
(0.144)(0.161)(0.171)(0.172)(0.163)(0.145)(0.123)(0.102) (0.083)
0.012 0.056 0.111 0.184 0.272 0.373 0.483 0.617 0.771
(0.389)(0.6190)(0.778)(0.878) (0.909) (0.880) (0.798)(0.666) (0.473)

For the mastery score = 4 enter N-xbar in the test wmean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = 7
Test KR2lw
Mean . 100 .200 .300 . 400 + 500 .600 .700 .800 .900
0.9 1.000 1.000 1.000 0.999 0.997 0.994 0.989 0.980 0.975
(0.001)(0.002)(0.005)(0.012)(0.024)(0.042)(0.063)(0.074)(0.056)
0.000 0.003 0.012 0.038 0.091 0.179 0.309 0.483 0.704
(0.010)(0.062)(0.193)(0.405)(0.659)(0.886)(1.007)(0.956)(0.688)

1.8 0.999 0.997 0.995 0.991 0.985 0.975 0.963 0.951 0.948
(0.014)(0.024)(0.038)(0.057)(0.079)(0.100)(0.112)(0.104)(0.071)
0.002 0,010 0.031 0.071 0.137 0.232 0.360 0.520 0.720
(0.058)(0.165)(0.324)(0.506)(0.666)(0.764)(0.769)(0.669)(0.463)

2,7 0.987 0.981 0.973 0.963 0.951 0.936 0.922 0.913 0.923
(0.078)(0.098)(0.119)(0.139)(0.152)(O.l-u)(0.145)(0.116)(0.083)
0.008 0.027 0.062 0.115 0.190 0.287 0.407 0.553 0.733
(0.175)(0.318)(O.&68)(0.596)(0.676)(0.694)(0.644)(0.530)(0.351)

3.6 0.940 0.928 0.914 0.900 0.886 0.875 0.868 0.873 0.901
(0.207)(0.218)(0.221)(0.217)(0.205)(0.183)(0.153)(0.120)(0.096)
0.021 0.054 0.102 0,165 0,244 0.338 0.449 0.581 0.745
(0.363)(0.490)(0.589)(0.648)(0.661)(0.628)(0.554)(0.444)(0.304)

4.5 0.824 0.814 0.805 0.799 0.797 0.800 0.812 0.837 0,887
(0.311)(0.289)(0.265)(0.239)(0.211)(0.184)(0.159)(0.136)(0.112)
0.038 0.087 0.145 0.214 0,293 0.382 0.484 0.604 0.755
(0.585)(0.644)(0.671)(0.665)(0.630)(0.570)(0.488)(0.388)(0.272)

5.4 0.651 0.660 0.673 0.690 0.711 0.737 0.771 0.817 0.882
(0.317)(0.297)(0.277)(0.257)(0.237)(0.216)(0.192)(0.164)(0.127)
0.056 0.116 0.182 0.254 0.331 0.416 0.511 0.622 0.763
(0.787)(0.761)(0.720)(0.666)(0.602)(0.529)(0.449)(0.360)(0.260)

6.3 0.535 0.569 0.603 0.639 0.677 0.718 0.765 0.819 0.889
(0.448)(0.409)(0.372)(0.336)(0.300)(0.263)(0.226)(0.185)(0.136)
0.067 0.135 0.205 0.277 0.354 0.436 0.5286 0.634 0.770
(0.914)(0.831)(0.752)(0.675)(0.599)(0.523)(0.446)(0.364)(0.268)

7.2 0.634 0.656 0.680 0.706 0.735 0.768 0.806 0.852 0.911
(0.410)(0.377)(0.345)(0.313)(0.281)(0.249)(0.216)(0.179)(0.131)
0.065 0.133 0.204 0.278 0.356 0.440 0.533 0.630 0.774
(0.911)(0.852)(0.788)(0.722)(0.652)(0.579)(0.502)(0.415)(0.308)

8.1 0.8868 0,879 0.873 0.871 0.873 0.880 0.893 0.915 0.948
(0.288)(0.267)(0.244)(0.220)(0.197)(0.176)(0.157)(C.137)(0.106)
0.043 0.100 0.168 0.245 0.329 0.422 0.524 0.638 0.777
(0.712)(0.820)(0.870)(0.874)(0.842)(0.782)(0.696)(0.583)(0.427)

For the mastery gcore = 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
Z.E.*SQRT(M), the Kappa Iandex and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = §

Test KR21l=

Mean .100 .20C .300 .400 .500 .600 .700 .800 .900

0.9 1.000 1.000 1.000 1.000 0.999 0.998 0.956 0.8% 0.980
(0.000)(0.000)(0.001)(0.002)(0.007)(0.016)(0.034)(0.057)(0.058)
0.000 0.000 0.004 0.015 0.045 0.i09 0.222 0.398 0.643
(0.001)(0.015)(0.071)(0.203)(0.422)(0.697)(0.942)(1.029)(0.812)

1.8 1.000 1.000 0.999 0.998 0.996 0.992 0.984 0.970 0.957
(0.002)(0.004)(0.008)(0.016)(0.029)(0.049)(0.075)(0.094)(0.074)
0.000 0.002 0n.010 0.031 0.074 0.159 0.270 0.440 0.670
(0.011)(0.051)(0.143)(0.292)(0.479)(0.659)(0.770)(0.749)(0.548)

2.7 0.998 0.997 0.995 0.991 0,984 0.974 0.960 0.942 0.932
(0.015)(0.024)(0.037)(0.054)(0.076)(0.101}(0.120)(0.118)(0.081)
0.002 0.008 0.025 0.057 0.113 0.199 0.320 0.481 0.690
(0.048)(0.127)(0.251)(0.402)(0.549)(0.656)(0.685)(0.611)(0.427)

3.6 0.989 0.984 0.977 0.967 0.955 0.939 0.921 0.905 0.908
(0.065)(0.084)(0.105)(0.126)(0.145)(0.157)(0.153)(0.127)(0.085)
0.006 0.021 0.049 0.094 0.161 0.252 0.370 0.519 0.708
(0.135)(0.250)(0.381)(0.507)(0.601)(0.642)(0.616)(0.517)(0.354)

4.5 0.952 0.941 0.928 0.913 0.897 0.881 0.868 0.365 0.888
(0.175)(0.191)(0.203)(0.203)(0.205)(0.189)(0.161)(0.124)(0.096)
0.016 0.043 0.084 0.141 0.214 0.307 0.419 0.554 0.725
(0.288)(0.407)(0.512)(0.588)(0.624)(0.613)(0.553)(0.448)(0.307)

5.4 0.855 0.842 0.829 0.818 0.809 0.806 0.810 0.829 0.876
(0.297)(0.285‘f0.267)(0.244)(0.216)(0.186)(0.156)(0.132)(0.116)
0.032 0.074 92.127 0.192 0.269 0.358 0.462 0.535 0.740
(0.497)(0.574)(0.622)(0.639)(0.623)(0.575)(0.500)(0.400)(0.280)

6.3 0.634 0.686 0.692 0.701 0.716 0.737 0.767 0.810 0.876
(0.305)(0.281)(0.259)(0.239)(0.222)(0.206)(0.189)(0.169)(0.139)
0.050 0,107 0.170 0.240 0.318 0.403 0.499 0.611 0.753
(0.725)(0.726)(0.705)(0.667)(0,614)(0.546)(0.467)(0.377)(0.274)

7.2 0.539 0.570 0.603 0.639 0.677 0.719 0.767 0.823 0.894
(0.432)(0.406)(0.375)(0.366)(0.316)(0.233)(0.268)(0.207)(0.153)
0.066 0.134 0.204 0.277 0.354 0.436 0.527 0.632 0.764
(0.917)(0.845)(0.773)(0.701)(0.628)(0.555)(0.678)(0.395)(0.297)

8.1 0.671 G.694 0.718 0.744 0.773 0.305 0.841 0.883 0.934
(0.462)(0.407)(0.376)(0.342)(0.310)(0.277)(0.241)(0.199)(0.140)
0.069 0.140 0.213 0.289 0.368 0.452 0.544 0.647 0.773
(0.982)(0.935)(0.880)(0.821)(0.757)(0.686)(0.607)(0.513)(0“391)

For the mastery score = 2 enter N-xbar in the test mean column
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RELTABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and it
S.E.*SORT(M), the Kappa Index and its
“+E.*SQRT(M) in the Beta-binomial liodel
N = Number of subjects
Number of items N = 9
Mastery score C = 9
Test KR21=
Mean .100 «200 . 300 . 400 . 500 . 600 .700
0.9 1.000 1.000 1.000 1.000 1.000 1.000 0.999
(0.000)(0.000)(0.000)(0.000)(0.001)(0.003)(0.011
0.000 0.000 0.001 0.004 0.015 0.045 0,117
(0.000)(0.002)(0.015)(0.060)(0.172)(0.380)(0.675

1.8 1.000 1.000 1.000 1.000 J.999 0.998 0.995
(0.000)(0.000)(0.001)(0.002)(0.005)(0.013)(0.031
0.000 0.000 0.002 0.008 0.026 0.067 0.151
(0.001)(0.003)(0.035)(0.100)(0.222)(0.401)(0.605

2.7 1.000 1.000 0.999 0.999 0.997 0.994 0.987
(0.001)(0.003)(0.005)(0.010)(0.019)(0.036)(0.063
0.000 0.001 0.006 0.017 0.044 0.097 0.192
(0.006)(0.026)(0.075)(0.164)(0.295)(0.452)(0.595

3.6 0.999 0.998 0.9.7 0.994 0.990 0.93? 0.968
(0.003)(0.013)(0.021)(0.033)(0.052)(0.077)(0.107
0.001 0.004 0.013 0.033 0.071 0.135 0.239
(0.024)(0.067)(0.142)(0.249)(0.379)(0.505)(0.590

4.5 0.994 0.991 0.987 0.981 0.971 0.956 0.936
(0.035)(0.043)(0.064)(0.085)(0.109)(0.134)(0.153
0.003 0.012 0.028 0.059 0.108 0.183 0.291
(0.072)(0.143)(0.240)(0.352)(0.462)(0.547)(0.573

5.4 0.974 0.966 0.956 0.944 0.927 0.908 0.885
(0.108)(0.128)(0.148)(0.167\(0.183)(0.189)(0.179
0.609 0.026 0.054 0,096 0.157 0.239 0.348
(0.170)(0.264)(0.365)(0.461)(0.534)(0.571)(0.555

6.3 0.910 0.896 0.831 0.864 0.847 0.831 0.819
(0.237)(0.246)(0.249)(0.244)(0.230)(0.204)(0.167
0.020 0.051 0.092 0.147 0.216 0.30° 0.407
(0-339)(0.430)(0.508)(0.563)(0.538)(0.578)(0.527

7.2 0.757 0.747 0.739 0.735 0.735 0.742 0.760
(0.319)(0.292)(0.263)(0.233)(0.206)(0.134)(0.174
0.039 0.086 0.143 0.208 0.283 0.369 0.467
(0.539)(0.635)(0.658)(0.656)(0.631)(0.582)(0.509

8.1 0.549 0.576 0.605 0.639 0.677 0.721 0.771
(0.381)(0.383)(0.381)(0.375)(0.363)(0.344)(0.315
0.065 0.132 0.203 0.277 0.354 0.436 0.524
(0.927)(0.890)(0.341)(0.782)(0.715)(0.640)(0.557

—-.-——-——-—--—--—--..--——-—---——n----—---_-------—--—- -

g

. 300 «900
0.996 0.987
)(6.032)(0.060C)
0.263 0.530
)(0.962)(0.972)

0.987 0.969
)(0.063)(0.085)
0.394 0.561
)(0.749)(0.675)

0.971 0.946
)(0.097)(0.099)
0.343 ©€.590
)(0.653) (0.535)

0.946 0.920
)(0.129)(0.101)
0.394 0.619
)(0.585) (0.446)

0.910 0.893
)(0.147)(0.095)
0.441 0.646
)(0.525) (0.383)

0.365 0.870
)(0.142)(0.095)
0.489 0.673
)(0.477)(0.339)

0.821 0.856
)(0.127)(0,120)
0.535 0.0698
)(0.435) (0.311)

0.795 0.862
)(0.174)(0.167)
0.580 0.722
)(0.417) (0. 309)

0.820 0.903
)(0.270)(0.197)
0.623 0.744
)(0.466)(0.367)

For the mastery score = 1 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-lLinomial Model
M = Number of subjects
Number of items N =1)
Mastery score C = 5
Test KR21=
Mean .100 . 200 . 300 . 400 300 .600 .700 . 800 . 900
1.0 0.994 0.98> 0.983 0.976 0.967 0.958 0.951 0.950 0.961
(0.056)(0.077)(0.099)(0.117)(0.128)(0.12/)(0.114)(0.091)(0.071)
0.008 0.031 0.073 0.138 0.223 0.328 0.451 0.591 0.758
(0.199)(0.416)(0.634)(0.803)(0.897)(0.910)(0.846)(0.710)(0.497)

2.0 0.924 0.912 0.900 0.889 0.882 0.878 0.881 0.395 0.927
(0.245)(0.243)(0.234)(0.218)(0.196)(0.171)(0.145)(0.120)(0.096)
0.029 0.073 0.132 0.203 0.286 0.381 0.489 0.612 0.764
(0.499)(0.632)(0.714)(0.745)(0.730)(0.676)(0.592)(0.482)(0.341)

3.0 0.743 0.744 0.749 0.757 0.770 0.788 0.813 0.849 0.902
(0.324)(0.298)(0.273)(0.249)(0.225)(0.201)(0.175)(0.148)(0.113)
0.052 0.112 0.178 0.250 0.329 0.416 0.513 0.625 0.767
(0.756)(0.759)(0.736)(0.693)(0.633)(0.562)(0.480)(0.388)(0.278)

4.0 0.563 0.592 0.623 0.655 0.689 0.727 0.770 0.821 0.887
(0.421)(0.384)(0.349)(0.313)(0.278)(0.243)(0.206)(0.161)(0.122)
0.066 0,133 0.202 0.274 0.350 0.432 0.523 0.630 0.768
(0.889)(0.811)(0.735)(0.660)(0.535)(0.508)(0.430)(0.346)(0.250)

5.0 V.553 0.587 0.617 0.649 0.684 9.722 0.765 0.816 0.884
(0.413)(0.378)(0.344)(0.311)(0.277)(0.242)(0.206)(0.167)(0.121) ‘
0.065 0.132 0.201 0.272 0.348 0.431 0.522 0.629 0.767
(0.882)(0.806)(0.730)(0.655)(0.580)(0.503)(0.424)(0.340)(0.245)

€.0 0.722 0.724 0./30 0.739 0.753 0.772 0.798 0.835 0.892
(O.320)(0.295)(0.271)(0.243)(0.224)(0.201)(0.175)(0.147)(0.113)
0.052 0.111 Q.176 0.248 0.326 0.412 0.509 0.621 0.764
(0.747)(0.744)(0.718)(0.673)(0.614)(0.541)(0.459)(0.367)(0.260)

7.0 0.897 0.884 0.872 0.862 0.855 0.852 0.857 0.873 0.910
(0.272)(0.264)(0.249)(0.229)(0.206)(0.179)(0.151)(0.124)(0.099)
0.032 0.076 0.134 0.204 0.285 0.373 0.483 0.606 0.759
(0.515)(0.620)(0.681)(0.698)(0.676)(0.619)(0.535)(0.429)(0.299)

3.0 0.981 0."74 0.964 0.953 0.941 0.929 0.920 0.9)9 0.936
(0.109)(0.130)(0.149)(0.161)(0.164)(0.156)(0.136)(0.108)(0.082)
0.012 0.039 0.083 0.146 0.228 0.329 0.447 0.584 0.751
(0.256)(0.432)(0.590)(0.701)(0.751)(0.737)(0.665)(0.544)(0.375)

9.0 0.999 0.998 (.996 0.993 0.987 0.980 0.971 0.964 0.967
(0.011)(0.021)(0.036)(0.055)(0.075)(0.092)(0.098)(0.085)(0.060)
0.002 0.012 0.038 0.083 0.164 0.268 0.399 0.555 0.742
(0.068)(0.218)(0.436)(0.665)(0.847)(0.941)(0.926)(0.799)(0.555)

For the mastery score = 6 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(}M) in the Beta-binomial Model
M = Number of subjects
Number of items N =10
Mastery score C = 6
Test KR21=
Mean «100 .200 .300 .400 .500 .600 . 700 .800 .900
1.0 0.999 0.998 0.996 0.993 0.987 0.980 0.971 0.964 0.967
(0.011)(0.021)(0.036)(0.055)(0.075)(0.092)(0.098)(0.085)(0.060)
0.002 o0.012 0.038 0.088 0.164 0.268 0.399 0.555 0.742
(0.068)(0,218)(0.436)(0.665)(0.8347) (0.941)(0.926)(0.799)(0.555)

2.0 0.931 0.974 0.964 0.953 0.941 0.929 0.920 0.919 0.936
(0.109)(0.130)(0.149)(0.161)(0.164) (0.156)(0.136)(0.108)(0.082)
0.012 0.039 0.083 0.146 0.228 0.329 0.447 0.584 0,751
(0.256)(0.432)(0.590) (0.701)(0.751) (0.737)€0.665) (0.544) (0.375)

3.0 0.897 0.684 0.872 0.362 0.855 0.352 ° 857 0.873 0.910
(0.272)(0.264) (0.249)¢0.229)(0.206)(0.179) .51)(0.124)(0.099)
0.032 0.076 0.134 0.204 0.285 0.378 0.483 0.606 0.759
(0.515)(0.629) (0.681) (0.698) (0.676) (0.619)(0.535)(0.429) (0.299)

4.0 0.722 0.724 0.730 0.739 0.753 0.772 0.798 0.835 0.892
(0.320)(0.295)(0.271)(0.248) (0.224) (0.201)(0.175)(0.147)(0.113)
0.052 0.111 0.176 0.248 0.326 0.412 0.509 0.621 0.764
(0.747) (0.744)(0.718)(0.673)(0.614) (0.541)(0.459)(0.367)(N.260)

5.0 0.558 0.587 0.617 0.649 0.684 0.722 0.765 0.516 0.884
(0.413)(0.373)(0.344)(0.311)(0.277)(0.242)(0.206)(0.167)(0.121)
0.065 0.132 0.201 «272 0.348 0.431 0.522 0.629 0.767
(0.832)(0.506)(0.730)(0.655) (0.580) (0.593)(0.424)(0.340) (0.245)

6.0 0.563 0.592 0.623 0.655 0.689 0.727 0.770 0.821 0.887
(5.421)(0.384) (0. 349)(0 313)(0.278)(0.243)(0.206)(0.167) (0.122)
0.066 0.133 0.202 0.274 0.350 0.432 0.523 0.630 0.768
(0. 889)(0.811)(0.735)(0.660)(0.585)(0.508)(0.630)(0.346)(0.250)

7.0 0.743 0,744 0.749 0.757 0.770 0.783 0.813 0.8549 0.302
(0.324)(0.298)(0.273)(0.249)(0.225)(0.20')(0.175)(0.148)(0.113)
0.052 0.112 0.173 0.250 0.329 0.416 0.513 0.625 0.767
(0.756)(0.759)(0.736)(0.693) (0.633)(0.562) (0.480)(0.388)(0.278)

3.0 <924 0.912 0.900 0.389 0.882 0.378 0.831 0,395 0.927
(0 245)(0.243) (0.234) (0. 218)(0 196) (0,171) (0.145) (0.120) (0.096)
0.029 0.073 0.132 0.203 0.206 0.38% 0.489 0.612 0.764
(0.499)(0.632)(0.714)(0.745)(0.730)(0.676)(0.592)(0.482) (0.341)

9.0 0.994 0.939 0.933 0.976 0.967 0.953 0.951 0.950 0,961
(0.056) (0.077)(0.099)(0.117)(0.128)(0.127)(0.114)(0.091) (0.071)
0.608 0.031 0,073 0.138 0.223 0.328 0.451 0.591 0.758
(0.199) (0.416) (0. 634)(0 803) (0.897)(0.910) (0.546) (0.710) (0.497)

For the mastery score = 5 enter N-xbar in the test mean colunn
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E,*SQRT(M) in the Beta-Yinomial Model
M = Number of subjects
Number of items N =10
Maatery score C = 7

R D mm mm e 0 R R S em S G Sh SR SR En G D D SR e R R P D G e R S D SR SR S U S D G G D G G D G S D E e e e G S OB MR .

Test KR21=

Mean

4.0

. 100 .200 . 300 . 400 + 500 . 600 .700 .800 . 900
1.000 1.000 0.999 0,998 0.996 0.992 0.985 0.976 0.972
(0.002)(0.004)(0.010)(0.019)(0.034)(0.054)(0.073)(0.078)(0.056)
0.000 0.004 0.017 0.050 0.110 0.206 0.339 0.508 0.717
(0.017)(0.091)(0.251)(0.480)(0.722)(0.908)(0.977)(0.891)(0.627)
0.997 0.994 0.990 0.984 0.976 0.964 0.952 0.941 0.944
(0.030)(0.044)(0.063)(0.085)(0.105)(0.121)(0.123)(0.105)(0.073)
0.004 0,016 0.044 0.092 0.166 0.265 0.391 0.544 0.731
(0.098)(0.235)(0.410)(0.581)(0.709)(0.764)(0.732)(0.616)(0.421)
0.972 0.962 0.951 0.938 0.925 0.911 0.901 0.899 0.918
(0.136)(0.156)(0.171)(0.180)(0.181)(O.170)(0.147)(0.115)(O.J86)
0.014 0.041 0.084 0.145 0.225 0.322 0.438 0.575 0.743

(0.271)(0.422)(0.556)(0.650)(0.689)(0.672)(0.601)(0.485)(0.329)

0.833 0.870 0.858 0.847 0.839 0.836 0.841 0.857 0.897
(0.231)(0.271)(0.256)(0.235)(0.210)(0.182)(0.153)(0.126)(0.101)
0.032 0,075 0.131 0.199 0.279 0.37! 0.476 0.599 0.753
(0.506)(0.599)(0.654)(0.670)(0.648)(0.593)(0.510)(O=4OS)(O.279)

0.714 0,716 0.720 0.729 0.742 0.761 0.788 0.826 0.885
(0.316)(0.291)(0.267)(0.244)(0.222)(O.199)(0.176)(0.149)(0.115)
0.051 0.109 0.173 0.244 0.322 0.408 0.504 ©.616 0.760

(0.730)(0.729)(0.705)(0.663)(0.605)(0.534)(0.452)(0.359)(0.254)

0.555 0.553 0.613 0.645 0.630 0.713 0.762 0.814 0.S83
(0.405)(0.373)(0.341)(0.310)(0.278)(0.246)(0.209)(0.170)(0.125)
0.065 0.131 0.200 0.271 0.347 0.432 0.521 0.628 0.765
(0.378)(0.804)(0.730)(0.656)(0.582)(0.506)(0.427)(0.343)(0.248)

0.573 0,602 0,632 0.664 0.698 0.736 0.778 0.828 0.893
(0.431)(0.392)(0.355)(0.319)(0.284)(0.2*3)(0.211)(O.172)(0.125)
0.066 0.134 0,203 0.276 0.352 0.435 0.526 0.532 0.768
(0.900)(0.823)(0.747)(0.672)(0.598)(0.523)(0.446)(0.362)(0.265)

0,783 0.781 0.783 0.789 0.799 0.815 0.837 0.869 0.917
(0.323)(0.296)(0.271)(0.246)(0.222)(0.198)(0.174)(0.148)(0.114)
0.051 0.111 0,178 0.252 0.332 0.420 0.517 0.629 0.770
(0.758)(0.779)(0.768)(0.732)(0.677)(0.609)(0.527)(0.433)(0.315)

0.965 0.955 0.944 0.935 0.92¢ 0.922 0.922 0.931 0.953
(0.175)(0.187)(0.191)(0.185)(0.171)(0.151)(0.128)(0.107)(0.087)
0.023 0.063 0.121 0.195 0,232 0.382 0.493 0.618 0.768
(0.441)(0.643)(0.786)(0.862)(0.875)(0.836)(0.753)(0.628)(0.449)

For the mastery score = 4

enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta=-binomial Model
M = Number of subjects
Number of items N =10
Mastery score C = §
Test KR21=
Mean .100 .200 . 300 .400 . 500 .600 .700 . 500 . 900
1.0 1,000 1.000 1.000 1.000 0,999 0.997 0.993 0.985 0.978
(0.000)(0.001)(0.002)(0.005)(0.012)(0.025)(0.046)(0.065)(0.056)
0.000 0.001 0,006 0.024 0.065 0.143 0.268 0.446 0.681
(0.003)(0.029)(0.115)(0.289)(0.535)(0.794)(0.973)(0.974)(0.719)

2.0 1.000 0.999 0.998 0.996 0.992 0.985 0.975 0.961 0.952
(0.005)(0.010)(0.018)(0.031)(0.050)(0.073)(0.094)(0.100)(0.071)
0.001 0.005 0.019 0.049 0.105 0.1% 0.321 0.488 0.700
(0.026)(0.096)(0.226)(0.402)(0.586)(0.725)(0.771)(0.693)(0.482)

3.0 0.995 0.991 0.987 0.979 0.969 0.956 0.940 0.926 0.927
(0.039)(0.055)(0.074)(0.096)(0.118)(0.134)(0.137)(0.117)(0.079)
0.0%4 0.017 0.043 0,087 0.156 0.250 0.373 0.526 0.717
(0.102)(0.221)(0.370)(0.519)(0.634)(0.687)(0.661)(0.554)(0.374)

4.0 0.968 0.958 0.947 0.933 0.918 0.903 0.890 0.885 0.904
(0.141)(0.160)(0.176}(0.186)(0.188)(0.178)(0.155)(0.120)(0.089)
0.014 0.039 0.079 0.136 0.212 0.307 0.422 0.560 0.731
(0.255)(0.389)(0.512)(0.604)(0.648)(0.638)(0.574)(0.462)(0.311)

5.0 0.833 0.869 0.356 0.844 0.834 0.829 0.831 0.846 0.886
(0.278)(0.271)(0.258)(0.238)(0.214)(0.185)\0.155)(0.127)(0.104)
0.029 0.071 0.124 0.189 0.267 0.358 0.464 0.588 0.744
(0.472)(0.564)(0.623)(0.646)(0.632)(0.583)(0.503)(0.399)(0.274)

6.0 0.718 0.717 0.720 0.726 0.737 0.754 0.780 0.818 0.879
(0.312)(0.286)(0.262)(0.239)(0.217)(0.197)(0.175)(0.152)(0.121)
0.049 0.104 0.1A7 0.237 0.315 0.400 0.497 (.610 0.754
(0.701)(0.709)(0.693)(0.657)(0.604)(0.536)(0.454)(0.362)(0.257)

7.0 0.554 0.581 0.611 " 643 0.677 0.716 0.760 0.814 0.834
(0.394)(0.367)(0.340)(0.312)(0.282)(0.251)(0.218)(0.180)(0.134)
0.064 0.130 0.199 0.271 0.347 0.429 0.520 0.627 0.763
(0.875)(0.306)(0.736)(0.664)(0.591)(0.517)(0.439)(0.356)(0.261)

8.0 0.591 0.619 0.649 0.680 0.714 0.751 0.793 0.842 0.905
(0.445)(0.405)(0.368)(0.331)(0.295)(0.259)(0.223)(0.183)(0.133)
0.067 0.13¢ 0.206 0.280 0.357 0.439 0.530 0.636 0.769
(0.921)(0.8&7)(0.774)(0.702)(0.630)(0.557)(0.482)(0.399)(0.296)

9.0 0.660 0.853 0.850 0.851 0.856 0.866 0.882 0.907 0.944
(0.303)(0.279)(0.254)(0.230)(0.207)(0.186)(0.166)(0.144)(0.110)
0.048 0.107 0.175 0.251 0.335 0.425 0.525 0.637 0.773
(0.749)(0.827)(0.855)(0.844)(0.805)(0.742)(0.660)(0.553)(0.409)

For the mastery score = 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E,*SQRT(M) 1in the Beta-binomial Model
M = Number of subjects
Number of items N =10
Mastery score C = 9

Test KR21=

Mean .100 .200 «300 400 « 500 .600 .700 .800 . 900

1.0 1,000 1.000 1.000 1,000 1.000 0.999 0.997 0.993 0.983
(0.000)(0.000)(0.000)(0.001)(ﬂ.003)(0.009)(0.022)(0.0é6)(0.058)
0.000 0.000 0.002 0.009 0.031 0.083 0.186 0.359 0.620
(0.000)(0.006)(0.039)(0.132)(0.317)(0.586)(0.867)(1.017)(0.860)

2.0 1,000 1.000 1.000 0.999 0.998 0.995 0.989 0.977 0.962
(0.001)(0,001)(0.003)(0.007)(0.016)(0.031)(0.056)(0.083)(0.076)
0.000 0.001 0.006 0.020 0.054 0.120 0.233 0.404 0.646
(0.004)(0.027)(0.090)(0.212)(0.389)(0.587)(0.737)(0.757)(0.570)

3.0 0.999 0.999 0.998 0.995 0.991 0.984 0.971 0.953 ).937
(0.006)(0.011)(0.019)(0.032)(0.050)(0.075)(0.101)(0.113)(0.083)
0.001 0.005 0.016 0.040 0.088 0.166 0.284 0.449 0.669
(0.026)(0.079)(0.178)(0.319)(0.478)(0.614)(0.677)(0.627)(0.443)

4.0 0.995 0.992 0.987 0.980 0.970 0.956 0.938 0.918 0.912
(0.u36)(0.050)(0.068)(0.090)(0.113)(0.133)(0.143)(0.129)(0.084)
0.004 0.014 0.035 0.073 0.133 0.220 0.338 0.492 0.691
(0.084)(0.178)(0.302)(0.637)(0.554)(0.625)(0.623)(0.535)(0.365)

5.0 0.972 G.963 0.953 0.939 0.923 0,906 0.888 0.877 0.890
(0.122)(0.142)(0.161)(0.176)(0.185)(0.182)(0.164)(0.127)(0.090)
0.011 0.032 0.066 0.117 0.187 0.278 0.392 0.532 0.710
(0.208)(0.325)(0.442)(0.540)(0.601)(0.612)(0.566)(0.463)(0.313)

6.0 0.398 0.834 0.870 0.855 0.842 0.831 0.827 0.836 0.374
(0.259)(0.260)(0.254)(0.241)(0.219)(0.191)(0.158)(0.126)(0.108)
0.025 0.061 0.109 0.170 0.245 0.335 0.442 0.568 0.728
(0.405)(0.501)(0.572)(0.612)(0.615)(0.581)(0.511)(0.408)(0.282)

7.0 0.739 0.733 0.731 0.732 0.739 0.751 0.773 0.809 0.872
(0.313)(0.286)(0.259)(0.234)(0.211)(0.191)(0.173)(0.157)(0.133)
0.044 0.096 0.156 0.225 0.301 0.387 0.485 0.599 0.743
(0.648)(0.673)(0.675)(0.653)(0.610)(0.568)(0.670)(0.377)(0.270)

3.0 0.555 0.531 0.609 0.641 0.675 0.714 0.760 0.815 0.888
(0.377)(0.359)(0.339)(0.317)(0.296)(0.268)(0.238)(0.202)(0.152)
0.063 0.129 0.198 0.269 0,346 0.428 0.519 0.624 0.757
(0.874)(0.815)(0.752)(0.686)(0.617)(0.545)(0.669)(0.336)(0.288)

9.1 0.637 0.664 0.692 0.722 0.755 0.790 0.829 0.§574 0,928
(0.470)(0.430)(0.393)(0.337)(0.322)(0.286)(0.243)(0.204)(0.143)
0.070 0.141 0.214 0.289 0.367 0.450 0.540 0.642 0.768
(0.980)(0.919)(0.857)(0.793)(0.727)(0.657)(0.581)(0.491)(0.375)
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Table cf th~ law Agreement Index and its
S<E.*SQRT(M), the Kappu Index and its
S.E.*3QRT(M) 4in the Beta-binomial Model
M = Humber of subjects
Number of items N =10
Mastery score C =10

.-------—-----’------------—-----a---Mnﬁ‘-_-------n - m S en an en an Gn Gn U an an @B an e

Mean . 100 .200 «300 .400 « 500 . 600 .700 .800 . 900
1.0 1.009 1,400 1,000 1.000 1.000 1.C00 0.999 0.997 0.989
(0.000)(0.000)(0.000)(0.000}fb.OOO)(0.00Z)(0.006)(0.023)(0.055)
0.000 0.000 0.000 0.002 92.009 0.032 0.093 0.229 0.497
(0.000)(0.001)(0.007)(0.036)(0.118)(0.294)(0.579)(0.901)(0.981)

2.0 1.000 1.€90 1,000 1.0° +.000 0.999 0.997 0.991 0.973
(0.000)(0.000)(0.000)(0.001)(0.003)(0.007)(0.020)(0.049)(0.082)
0.000 0.000 (.001 0.005 0.017 0.050 0.124 0.269 0.530
(0.000)(0.004)(0.020)(0.066)(0.164)(0.329)(0.541)(0.721)(0.687)

3.0 1.000 1.000 1.000 0.35¢ 0.999 0.997 0.991 0.978 0.952
(0.000)(0.001)(0.002)(0.005)(0.011)(0.023)(0.046)(0.082)(0.100)
0.000 0.001 0.003 0.011 0.032 0.075 0.162 0n.314 0.563
(0.003)(0.014)(0.047)(0.117)(0.234)(0.350)(0.551)(0.642)(0.548)

4.0 1.000 0.999 0.998 0.9¥7 0.994 0.989 0.9,7 0.957 0.927
(0.004)(0.007)(0.012)(0.020)(0.034)(0.056)(0.087)(0.118)(0.106)
0.000 0.003 0.009 0.023 ©.054 O0.111 0.209 0.363 0.595
(0.013)(0.042)(0.100)(0.194)(0.319)(0.456)(0.565)(0.58"'(0.458)

5.0 0.997 0.995 0.992 0.983 0.930 0.969 0.°50 0.923 0.899
(0.021)(0.030)(0.042)(0.060)(0.082)(0.109)(0.136)(0.145)(0.101)
0.002 0.003 0.020 0.045 0.088 0.157 0.2€2 0.413 0.626
(0.046)(0v102)(0.187)(0.295)(0.412)(0.513)(0.567)(0.535)(0.393‘

6.0 0.954 0.978 0.97¢ 0.960 C.946 0.927 0.903 0.879 0.872
(0.076)(0.093)(0.134)(0.136)(0.157)(0.173)(0.175)(0.149)(0.093)
0.006 0.019 0.043 0.080 0.135 0.214 0.322 0.465 0.656
(0.124)(0.209)(0.30&)(0.410)(0.498)(0.553)(0.554)(0.486)(0.344)

7.0 0.935 0.922 0.908 0.891 0.8,3 0.853 0.836 0.829 0.854
(0.197)(0.212)(0.223)(0.228)(0.224)(0.208)(0.175)(0.130)(0.109)
0.016 0.042 0.079 0.129 0.195 0.280 0.386 0.517 0.685
(0.277)(0.371)(0.457)(0.526)(0.566)(0.570\(0.529)(0.441)(0.312)

8.9 0.795 0.783 0.771 0.762 0,756 0.757 0.767 0.7+5 0.856
(0.317)(0.297)(0.272)(0.243)(0.212)(0.182)(0.162)(0.157)(0.158)
0.034 0.078 0.130 0.193 0.267 0.352 C.451 0.567 v.712
(0.524)(0.582)(6.619)(0-631)(0.617)(0.576)(0.508)(0.416)(0.304)

9.0 0.564 0.585 0.610 0.¢%9 0.673 0.714 0.762 0.821 0.896
(0.333)(0.335)(0.337)(0.336)(0.331)(0.320)(0.299)(0.263)(0.198)
0.061 0.126 0.195 0.268 0.345 0.427 0.516 0.615 0.737
(0.877)(0.850)(0.810)(0.758)(0.696)(0.624)(0.544)(0.454)(0.354)

-----------—--------n--u-------------—-"---——----—-------------

For the mastery score = 1 enter N-xbar in the test mean column
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APPENDIX B

A Couputer Program To Compute the Reliability Indices
for Decisicn in Mastery Testing and Their Standard

Errors of Estimate Based on the Beta-2inomial Model
Disclaimer: The computer program hereafter listed has been written
with care and tested extensively under a variety of conditions using
tests with §0 or fewer items. The author, however, makes no warranty
as to .ts accuracy and functioning, nor shall the fact of its dis-
tribution I ply euch warranty.
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RELIABILITY IN MASTERY TESTING

z
f

A COMPUTER PROGRAM TO COMPUTE THE RELIABILITY INDICES
FOR DECISTON IN MASTERY TESTING AND THEIR STANDARD
ERRORS OF ESTIMATE BASED ON THE BETA-~BINOMIAL MODEL.

INPUT DATA ARE:
FIRST CARD: TITLE CARD. ENTER ANYTHING YOU WANT.

SECOND CARD: MUST CONTAIN THE FOLLOWING INFORMATION

N......NUMBER OF ITEMS
M......NUMBER OF SUBJECTS CR EXAMINEES
K......NUMBER OF CLASSIFICATION CATEGORIES

XBAR...MEAN OI' TEST SCORES
ST.....STANDARD DEVIATION OF TEST SCORES
FURMAT FOR SECOND CARD IS (315,2F10.5).

THIRD CARD: MUST CONTAIN TRE (K-1) CUTOFF SCORES.
FORMAT IS (1615).

oo OOOOO0O0OO0O0O0O0O0O0

c 230
c REMARK: THIS PROGRAM IS SET UP FOR TESTS WITH 240
c UP TO 60 ITEMS. FOR LONGER TESTS USE THE FOLLOWING 250
c DIMENSION MODIFICATIONS IN SUBROUTINE KAPPA. %gg
c
c LET N BE THE NUMBER OF TEST ITEMS. 280
c THEN THE DIMENSION OF F(.), XA(.) ¥B(.) AND CF(.) IS N+l. ggg
c
c 310
c ALSN UP TO 17 CLASSIFICATION CATEGORIES CAN BE ACCOMMODATED. 320
c FOR MORE CATEGORIES CHANGE L(17) TO L(K) IN THE MAIN 330
c PROGRAM, K BEING THE NUMBER OF CATEGORIES. ggg
c
c 370
DIMENSION TITLE(20),L(17) 380
DOUBLE PRECISION A,B,F 390
1 READ{5,100,ZlID=99) T1TLE 400
100  FORMAT(20A4) 410
WRITE(€,200) TITLE 420
200 FORMAT('1' //////T10, 'ESTIMATES OF DECISION RELIABILITY'/ 430
* T10, 'AND THEIR STANDARD ERRORS IN'/ 440
* T10, '"MASTERY TESTING BASED ON THE BETA-'/ 450
* T10, ' BINOMIAL MODEL'/ 460
* T10, 'TITLE OF THIS JOB IS:'/ 470
%* T10,20A4/) 480
READ(S5,105)N,M.K, XBAR, SD 490
105 FORMAT(315,2F10.5) . 500
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READ(5,110) (L(I),I=1,KMl)
110  FORMAT(1615)

WRITE(6,205) N,M,XBAR,SD,K
205  FORMAT(T10, 'INPLT DATA ARE:'//

* T10, 'NUMBER OF ITEMS .. = ', I4/
* T10, 'NUMBER OF SUBJECTS =~ ',1l4/
* T10, 'MEAN OF TEST SCORE .... ........ = ',F10.5/ 580
* T10, ' STANDARD DEVIATION OF 'rzs‘ SCORE = '.F10.5/ 590
* T10, 'NUMBEK OF CATEGORIES = ',I4) 600
IF (K.EQ.2) WRITE(6,206) L(1) 610
206 FORMAT(T10, 'CUTOFF SCORE ....... = ',I4) 620
IF(K.GT.2) WRITE(6,207) (L(1),I=1 nn) 630
207  FORMAT(T10.'CUTOFF SCORES ...... = ',I4,1615) 640
FeN/ (N-1.)*(1.<XBAR* (N-XBAR) / (N*SD**2)) 650
IF(F.CT.0.) GOTO § 660
1™ATE(6, 210) 670
210 FOKMAT(/T10, 'NON-POSTTIVE ESTIMATE KR21.'/ 680
* T10, 'MOMENT ESTIMATES FOR ALPHA AND BETA DO NOT EXIST.'/ 690
* T10, ' COMPUTATIONS DISCONTINUED .OR THIS CASE.') 700
G091 710
S A=(-1.+1./F)*XBAR 720
Bu-AN/F-N 730
CALL KAPPA/N,A,B,K,L,M,XP,§ XK,SDK) 740
WRITF (6,215) A,B,F.XP,SDP,XK,SDK 750
215 rom‘(/'no, ' OUTPUT mm ARE:'// 760
* T10, 'ALPHA = ' ,F10.5/ 770
* T10.'BETA = '.F10.5/ 780
* T10, 'KR21 = '.F10.5// 790
* T10, 'RAW AGREEMENT mnnx P="',F8.5/ 800
* T10, 'STANDARD ERROR OF P., = ' F8.5// 810
* T10, 'KAPPA INDEX ........ ... = ' F8.5/ 820
* T10, 'STAKDARD ERROR OF KAPPA = '.F8.5) 830
WRITE (6, 220) 840
220 FORMAT('0',//.T7,'** NORMAL END FOR THIS JOB **'/ 850
* T10, 'PROGRAM WRITTEN BY HUYNH HUYNH'/ 860
* T10.'COLLEGE OF EDUCATION'/ 870
* T10. 'UNIVERSITY OF SOUTH CARCLINA'/ 880
* T10.'COLUMBIA, SOUTH CAROLINA 29208'/ 390
* T10, 'REVISED, DECEMEER 1979') 900
GoTO 1 910
99 STOP 920
END 930
SUBROUTINE KAPPA(N,A,B I(.L .xr S. ,XK,SDK) 940
DIMENSION F(61),CF(61).XA(61),x (51) L(1) 950

DOUBLE PRECISION A,B,F,CF M .XB,P,P .Al A2,A3,VA VB, VAB,TWO,VKP, 960
* VP DP ,DPB, PCA ,D. CB.BI"Z.DBFA.DBFB.DSA.DSB.SUHBF 970

TWC=2.D0 980
c 940
L{K)=N+1 1000

188

[ J
¥ ¢
')




RELIABILITY IN MASTERY TESTING

c 1010
CALL NEHY(N,A,B,F,CF) 1020
CALL VLRAB(N,A,B,VA,VB,” aB,M,F,XA,XB) 1030
CALL ZERLAB(N,A,B,XA,XB,F) 1040
c 1050
PC=CF (L(1)Y**2 1060
DPCA=TWO*CF (L (1) )*XA(L(1)) 1070
DPCB=TWO*CF (L(1) }*XB(L(1)) 1080
c 1090
DO 5 I=2,K 1100
IMl=I-1 1110
Ai=CF(L(1))-CF(L(IM1)) 1120
PC=PC+AL*Al 1130
DPCA=DPCA+TWO*AL* (XA(L(I))-XA(L(IML))) 1140
5 DPCB=DPCB+TWO*Al*(XB(L(1))-XR(L(IML))) %%28

c
IF(K.GT.2) GOTO 9 1170
c 1180
c OTHERWISE THERE ARE TWO CATEGORIES. %%gg

c
ICUT=L(1)-1 1210
IF(2*L(1) .LE.N) GOTO 6 122¢
ICUT=N-L(1) 1230
CALL BF(N,0,ICUT,B,A,BFZ,DBFB,DBFA,DSB,DSA, SUMBF) 1240
Al=CF(L(2))-CF (L(1)) 1250
P=1.D0-2. 0% (Al-SUMBF) 1260
DPA=-2. DO (XA (L (2) Y-XA (L (1)) -DSA) 1270
DPB=-2, DO* (XB (L (2))~XB(L(1) )-DOB) 1280
GOTO 15 1290
c 1300
6 CALL BF(N,0,ICUT,A,B,” ‘Z,DBFA,DBFB,DSA,DSB,SUMBF) 1310
Al=CF(L(1)) 1320
P=1,D0-2.D0%(Al-SUMEBF) 1330
DPA=-2.DO* (XA (L (1) ) -DSA) 1340
DPB« - 2, DO* (XB (L (1)) -DSB) 1350
GoTO 15 1360
c 1370
9 DPA=0.DO 1380
DPB=0.D0 1390
P=0.D0 1400
c 1410
DO 10 I=1,K 1420
LL=0 1430
IF(1.GT.1) LLeL(I-1) 1440
LUsL(I)-1 1450
CALL BF(N,LL,LU,A,B,BFZ,DBFA,DBFB,DSA,DSB, SUMBY) 1460
P=P+SUMBF 1470
DPA=DPA+DSA 1480
10 DPB=DPB+DSB 1490
c 1500

15
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20
25

15 Al=1.D0-PC

A2=1.D0-P

Ad=Al*Al

DKA= (DPA*A1-DPCA*A2) /A3
DKB= (DPB*A1-DPCB*A2) /A3

VKP=VAXDKA**2+VB*DKB¥*2+2* VAB*DKAXDKB
VPwVARDPAY*2+VBXDPB#*24+2¥VABXDPA*DPB
SDR=VKP**. 5

Xp=P

SDP=VP**. )

XK=(P-P~) /Al

i
)
SUBROU™ "NE NEHY(N,A,B,F,CF)

DIMEN_.0N F(1),CF(1)

DOUBLE PRECILSION A,B,F,CF,21,Z2
Z1=DFLOAT (N)+B

Z2=Z1+A

K=0

F(1)=1.D0

DO 5 I=1,N

F(1)=F (1)*(Z1-DFLOAT (1)) / (22-DFLOAT(1))
KPl=K+1

KP2=K+2

F (KP2)=F (KP1) *DFLOAT (N-K) * (A+DFLOAT (K))/
*R 1 (DFLOAT (KP1) *(Z1-DFLOAT (KP1)))

IF{K-N) 10,15,15

CF(1)=7(1)

DO 20 I=1,N

1P1=1+1

CF(IP1)=CF (I)+F (IP1)

RETURN

END

SUBROUTINE BF(N,LL.LU.A.B,BFZ.DBFA,DBFB.DSA,DSB.SM?)

*DOUBLE PRECISION A,B,Z1,22,BFZ,SUMBF,AA,T,X,Y ,DBFA,DBFB, DEA,

DSB,ZIM1, XA, XB, DN ,AAHOLD, XAHOLD , XBHOLD, DLL
N2=N+N
IR=LU-L7+1
DN=DFLOAT (N)
Z1=DFLOAT(N2)+2
Z1M1=Z1-1.D0
Z2=Z1+A
DLL=DFLOAT /LL)

IF(LL.NE.0) GOTO 10
AA=1.D0
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XA=0.D0 2010
XB=0.D0 2020
c 2030
DO 5 Is1,N2 2040
T=DFLOAT(1) 2050
AA=AA*(Z1-T)/ (22-T) . 2060
XA=XA-1.D0/(22-T) 2070
5 XB=XB+1.D0/(Z1-T) 2080
C 2090
XB=XB+XA 2100
2110
GOTO 15 2120
2130
10 X=DLL-1.D0 2140
Y=DLL-1.D0 2150
AA-BFZ*(DN-X)*(A+X+Y)/((X+1.DO)*(ZIH1-X-Y)) 2160
XA=DBFA+1.D0/ (A+X+Y) 2170
XB=DBFB-1.D0/ (Z1M1-X-Y) 2180
c 2190
X=LL 2200
AA!AA*(DN-Y)*(A+X+Y)/((Y+1.DO)*(21M1-X-Y)) 2210
XA=XA+1,D0/ (A+X+Y) 2220
XB=XB-1.D0/ (Z1M1-X-Y) 2230
c 2249
15 SUMBF=AA 2250
CSA=XA*AA 2260
DSB=XB*AA 2270
C 2280
IF(IR.EQ.1) GOTO 90 2290
C 2300
AAHOLD=AA 2310
XAHOLD=XA 2320
XBHOLD=XB 2330
c 2340
DO 50 I=2,IR 2350
X=DLI+DFLOAT (I-2) 2360
Y=DLL 2370
AAFAAHOLD*(DN-X)*(A+X+Y)/((x+1.DO)*(ZlM1-X-Y)) 2380
XA=XAHOLD+1.D0/ (A+X+Y) 2390
XB=XBHOLD-1.D0/ (Z1M1-X-Y) gzgg

C
DSA=DSA+2 . DO*XA*AA 2420
DSB=DS 3+2 . DO*XB*AA 2430
SUMBF=SUMBF+2 . D)%*AA 2440
C 2450
AAHOLDwAA 2460
XLHOLD=XA 2470
XBHOLD=XB 2480
c 2490
¥=3+1.D0 2500
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10

30

50
90

DO 50 J=2,1
Y=DLL+DFLOAT(J)~2.D0

AA=AA* (DN-Y) * (A+X+Y) / ((Y+1.D0) *(Z1M1-X-Y))
XA=XA+1.D0/ (A+X4+Y)
XB=XB-1.D0/(Z1M1-X-Y)

IF(I.EQ.J) GOTO 40
SUMBF=SUMLF+2 . DO*AA
DSA=DSA+2 . DO*XA*AA
DSB=DSL+2, DO¥XB*AA
GOTO 50

SUMBF=SUMBF+AA
DSA=DSA+XA*AA
DSB=DSB+XB*AA
CONTINUE

BFZ=AA
DBFA=XA
DBFB=XB

RETURN

END

SUBROUTINE ZERLAB(N,A,B,XA,XB,F)
DIMENSION XA(l),XB(1),F(1)

DOUBLE PRECISION A,B,Zl1,Z2,XA,XB,F,ONE
ONE=1.D0

YA(1)=0.D0

XB(1)=0.D0

Z1=DFLOAT(N)+B

Z2=21+A

NP1=N+1

DO 5 I=1,N

XA(1)=XA(1)-ONE/ (Z2-DFLOAT (1))
XB(1)=XB(1)+0ONE/(Z1-DFLOAT (1))
£B(1)=XB(1)+XA(1)

DO 10 I=1,N

IP1=]+1

1X=]I-1

XA (TP1)=XA(1)+ONE/ (A+DFLOAT (1X))
XB (IP1)=XB{I)«ONE/(Z1-DFLOAT(I))
XA(1)=XA(1)*F(1)
XB(1)=XB(1)*F(1)

DO 30 I=2,NP]1

IMl=].]
XA(T)=XA(TMLY+XA (L) %X (1)
ZB(D)=XB IML)+XB(I) *F (1)

RETURN

END

SUBROUTI} 2 VARAB(N,A,B,VA,VB,VAB,M,F,DA,DB)
DIMENSION F(1),DA(1),DB(1)

DOUBLE PRECISION A,B,DA,DB,F,BII,BIZ,BZZ,D,VA,VB,VAB
CALL DE:LAB (N,A,B,DA,DB)

Bll=y,

B12=0.
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B22=0.DC

NPl=N+1

DO 15 I=1,NPl
Bll=Bl1+DA(I)*DA(T)*F(1)
B12=B12+DA(I)*DB(I *F([)
B22=B22+DB(I)*DB(I)*F(I)
Bll=R11*M

B12=B12*M

B22=P22*M
D=B11#B22-B12*B12
VA=B22/D

VB=B11./D

VAB=~B12/D

RETURN

END

SUBROUTINE DERLAR(N,A,B,DA,DB)
DIMENSION DA/1),DB(1)
DOUBLE PRECISTON A,B,DA,DB,21.2Z2
DOUBLE PRECISTON NNE
ONE=1.00

DA(1)=0.D0

DB(1)=0.D0

Z1=DFLOAT (N)+B

Z2=Z1+A

NPl=lH1

DO 5 I=1,3
DA(1)=DA(1) -ONE/ (Z2-DFLOAT(I))
DB(1)=DB(1)+ONE/(21-DFLOAT(I))
DB(1)~DB(1)+DAr1)

DO 10 I=1,N
IP1=1I+1

IX=I-1

DA(IP1)=DA(T)+ONE/ (A+DFLOAT/IX))
DB(IP1)=DB(1)-ONE/(Z1-DFLOAT(I))
RETURN

END
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ACCURACY OF TWO PROCEDURES FOR ESTIMATING
RWELIABILITY OF MASTERY TESTS

Huynh Huynh
Joseph C. Saunders

University of South Carolina

Presented at the annual conference of the Eastern Educational
Recearch Association, Kiawah Island, South Carolina, February 22-24,
1979. A short version of this paper will appear in Journal of
Educational Measurement (in press).

ABSTRACT

Single administration (beta-binomial) estimates for the raw
agreemeat index p and the corrected-for-chance kappa index in
mastery testing are compared with those based on repeated test
administrations in terms of est'mation bias and sampling variabil-
ity. Across a variety ¢~ test score distributions, test lengths,
and mastery (cutoff) scores. the beta-binomisl estimates tend to
underestimate the corresponding popula.ion values. The percent of
bias is small (about 2.5%) and p and somewhat larger (about 10%)
for kappa. Both beta-binomial estirates have standard errors about
one-half the size of the standard errors of estimateg based on
repeated test administrations. Though *he beta-binomial estfjates
presume equality of item difficulty, the data presented indicate
that even gross departures from equality of item difficulty de not

affect the amount of bias of the estimates,

This raper has been distributed Separately as RM 79-1, February,
1979,
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1. INTRODUCTION

In mastery testing reliability is .rten viewed as the consis-
tency of mastery-nonmastery decisions across repeatad test adminis-
trations (Huynh, 1976, 1978a; Subkoviak, 1976). Two reliability
indices have been proposed and studied for mastery tests. They are
the raw agreement index p and the corrected-for-chance kappa index
(x). The first index represents the proportion of examinees
consistently classified in the same (mastery or nonmastery) category
over two test administrations using the same form or two equivalent
forms. It is assumed, of course, that the first testing does not
induce any lasting change in the examinees. The second index,
kappa, is defined as «k = (p-pc)/(l-pc), where P, is the proportion
of consistent classification expected under complete random assign-
ment. Thus kappa reflects the extent to which test scores will
improve the consistency of decisious beyond the level expected 'y
random classification. The relationship between kappa and nther
parameters such as cutoff score and classical test reliability may
be found in Huynh (1978a).

The definitions of both p .nd kappa assume the feasibility of
repeated te<t administrations. This may not be practical in many
instances. Under some conditions, p and kappa may be approximated
from a single test administration. There are at least two proce-
dures to accomplish this, namely, those described in Huynh (1976)
and Subkoviak (1976). The Huynh procedure assumes that the test
scores are distributed as predicted by a univariate or bivariate
beta-binomial model. On the other hand, the Subkoviak technique,
it its simplest form, assumes that test scores are distributed as
predicted by a binomial distribution and that the regression of
true score on observed test score is linear.

Subkoviak (1978) has provided a comparison of these two
procedures using simulations with fifty repetitions. The data
reported in Table 2 of his paper clearly indicate that both proce-
dures act almost identically ir teims of estimation bias and

standard error. This is an expe.ted result. Linear regression of
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true score on observed score in the binomial error model automatically

implies that the test score distribution under study must belong to
the negative hypergeometric (beta-binomial) fumily (Lord & Novick,
1968, p. 516). Hence it appears that the conditions underlying the
Subkoviak procedure are those of the beta-binomial distributio
assumed in Huynh's paper (1976). For t}is reason and for inherent
complexities in formulating inferentfal techniques ascociated with
the Subkoviak procedure, this paper will be restricted to the beta-
binonial model in the estimation of reliability for mastery tests.
The purpose of this paper is to compare th. accuracy of two
procedures for estimating reliability of decisions in mastery test-
ing. One procedure is based on two test administrations; the other
procedure relies on only one test administration and performs all
computations assuming the appropriateness of the beta~binomial model
for the test data under study. Sections 2, 3, and 4 dea' wi*h the
asymptotic (large sample of examinees) nature of the estimates.

Section 5 reports a simulation study for the case of small samples.

2. ASYMPTOTIC BIAS AND STANDARD ERRORS

Though the number of classification categories may be arbitrary,
we will consider only the .ase of two categories, labeled mastery
ard nonmastery. The lowest score for which an examinee v;i11l be
classified as a master will be referred to as the mastery (or pass-
ing) score in subsequent discussion.

First let us consider estimating p and « by testing a sample
of m examinees twice. Let pij be the proportion of examinees clas-
sified in the i-th category on the first testing and in the j-th
category in the esecond iesting. Here let i = 0 for a uonmaster and
1= 1 for a master. Let the dot (.) bear the regular summation
meaning. For example, tae marginal proportion of masters on the
first testing is P = P10 + Pyp-

The observed proportion* of consistent classifications in the

sample at hand is BR = Poo + Py, and the kappa index for this sample is

*
The subscript R means repeated testings.}
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kg = (Pgp)/(1-p ) w
where P. =P, P, + PPy Under random sampling, BR is an effi-
cient statistic for the parameter p (Hogg & Craig, 1970, p. 372).
In other words, ﬁR is unbiased and its standard error is equal to
the Rao-Cramér lower bound. This standard errnr is (p(l-p)/m]%.
It may also be roted that ﬁR is also the maximum likelihood (ML)
estimate of the population value of p and that ER is an ML estimate
of the population value of k. Its asymptotic (large sample) prop-
erties are well known. For example, ER follows an =pproximate
normal distribution with mean x and with a variance of

1 [PQA-p)  2(1-p) (2pp _-a) (l-p)z(b-4p§]

1 + + (2)

" la-ep? -’ a-p)* |
where

a= poo(po. tp )+ P11(P1. +p ) 3)
and

2
b= I p..(p, +p ) %)
1, i3\Fy. .4

(Bishop et al., 1974, p. 396). In these formulae, all quantities
listed are population values. Wnen sample proportions are used in
(2), the resulting value is an estimate for the variance of Kg*
Finally, since the asymptotic mean of ER is «, ER is asymptotically
an unbiased estimate for this parameter.

Consider now estimating p and x from a single test administra-
tion. The estimates*, ﬁB and ;B’ are described in Jdetail in Huynh
(1976) ; the asymptotic standard errors of both estimates may be
obtained via the formulae, tables, or computer program described
elsewhere (Huynh, 1978b). 1In the latter paper it is also shown
that ﬁB and ;B are asymptotically unbiased estimates of p and «.

3. A COMPARISON OF THE ASYMPTOTIC STANDARD ERRORS
OF ESTIMATE FOR BETA-BINOMIAL TEST DATA

Whether estimation is based on repecated or single testings,
vm times the standard error (S.E.) of the estimate is (or is

*
The subscript B refers to the beta-binomial model.
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asymptotically) not a function of ttre sample size m. Thus m is not
a significant factor in any comparison of the estimates as long as
sufficiently large samples are to be considerd. In this section
and most subsequent ones, onlv the quantity G = /m x S.E. will be
considered.

The comparisons described in this section are limited to test
score distributions that follow the beta~binomial distribution.
Strictly speaking, the procedure for estimating from a single
administration (Huynh, 1976) is formulated only for this type of
data.

The comparison was made for selected situations with n = 5,
10, 20, and 30 test items. 7T™e test mean (yu) and KR21 reliability
(a21) were chosen such that the resulting test score distribution
would be one of the following types: (i) U-shaped with the higher-
density mode at the upper end of the score range, (ii) Symaetric,
(111) unimodal with a mode somewhere between u and n, 2r (iv) J-
shaped. The passing score c was chosen such that the ratio c¢/n
would be 60, 70, or 80%. The G-values for QR were computed via
Equations (2), (3), and (4) vith the pij proportions generatfd by
the bivariate beta-binomial model. The G-values for Py and kg were
obtained via the computer program described in Huynh (1978b).

Table 1 reports the obtained G-values wien the two procedures
for estimating p and k are used. The G-vaiues in the table clearly
demonstrate that the standard error associated with the single
administration (beta-binomial) procedure is uniformly smaller than
that encoun.ered with the procedure using two test administrations.
Over the thirteen situations reported in Table 1, the staadard
errors for the single administration procedure average 59.3% of
those from repeated administrations for the p index and 53.2% for
the kappa index.

4. A COMPARISON OF THE ASYMPTOTIC BIAS AND
STANDARD ERRORS OF ESTIMATE FOR CTBS TEST DATA

This phase of the study is motivated by the fact that real
test data rarely conform exsctly to a well-specified model such as
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TABLE 1

G-Values for Beta-Binomial Test Data

Index p Kappa
a g Shape n " o c P G(pB) G(pR) K G(KB) G(KR)
5.0 3.0 Unimoaal 5 3.125 1.301 3 . 687 .320 .464 .270 .763 1.021
4 .645 .350 479 .273 .752 .970
2.0 .5 J-Shaped 5 4.000 1.309 3 .872 .168 .334 492 713 1.226
4 .811 .265 .391 .526 .619 .953
.5 .2 U-Shaped 5 3.571 1.850 3 .907 . 145 .291 .765 .379 .727
6.0 .0 Symmetric 5 2.500 1.279 3 . 605 412 .489 .210 .823 .978
10.0 Unimodal 10 6.667 1.863 7 . 644 .331 .479 277 .663 .966
8 . 661 . 280 .473 .262 .660 . 966
8.0 2.0 Unimodal 10 8.000 1.706 7 .799 .222 401 .332 .677 1.175
8 .714 .295 452 .357 .630 .984
4.5 J-Shaped 10 9.000 1.500 7 .921 .135 .269 454 .785 1.637
12.0 £.0 Unimodal 20 12.000 3.024 12 .678 .269 467 .342 .550 . 949
14 . 704 .235 .456 .326 .561 . 998
12.0 3.0 Unimodal 20 16.000 2.646 12 .918 .169 .275 .304 .677 1.796
14 .821 .192 .383 .370 .591 1.201
3.0 .5 J-Shaped 20 17.143 3.576 12 .940 .087 .237 .637 478 1.369
16.0 14.0 Unim dal 30 16.000 3.801 20 .787 .212 .409 .290 .585 1.178
24 . 964 .123 .185 142 .557 2.448
18.0 2.0 Unimodal 30 27.000 2.535 20 .982 .081 .133 .246 775 3.716
24 .888 .169 .315 .373 .650 1.496
19.5 .5 J=-Shaped 30 29.250 1.319 24 . 990 .062 .099 .273 1 105 5.038
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the beta-binomial distribution. It is based on a portion of the
Comprehensive Tests of Basic Skills (CTBS) test data collected in
the 1978 South Carolina Statewide Testing Program. Table 2
describes the various tests artificially assembled from CTES sub-
tests or from the entire battery. For each test in the listing,

two alternate (hopefully equivalent) forms were created by pairing
items on the basis of content and/or difficulty and randomly assign-
ing th2 items in each pair to the alternate forms. For reasons
which will be obvious later on, a number of tests were deliberately
constructed of items of similar difficulty.

The number of items (n) was set at 5, 10, 15, and 20. The
number of students, selected by taking every tenth case from the
entire South Carolina file, ranged from m = 1684 to 6035. For each
test, the value Dmax represents the maximum discrepancy between the
observed relative cumulative frequency and the corresponding ex-
pected frequency from the beta-binomial model. A significance level
(P-value) of more than .20 indicates that the test data follow
closely the beta-binomial distribution. On the other hand, P-values
of less than .05 or .0l reveal substantial departures from the
theoretical distribution.

For each test described in Table 2, the population values Pp»
G(pR), Kp and G(K ) were computed using the bivariate frequency
distribution generated by the alternate forms. The corresponding
parameters p, G(pB), Kp» and G(KB) were obtained by imposing the
beta-binomial model on each of the two alternate forms and averag-
ing the two sets of results. Now both ;B and ;B are asymptot%c
unbiased estimates of Py and Ky (Huynh, 1978b). Also, since Pr is
an unbiased estimate of Pgs and Kp is an nszgptotica ly unbiased

estimate of Kp? only the aoymptotic bias of P, and k, 1n estimating

B
and k, vas explored. Thus, it follows that the percent asymp-

P

tgtic bigs for Pp and Kp is lOO(pB - pR)/pR and lOO(KB ~ KR)/KR,
respectively. A negative bias indicates underestimation whereas a
positive bias documents an overestimation. (We focused on Pp and
Kr because tost reii:bility is typically approached from the stand-
point of equivalevnt feems.) All computations reported in this

section were ca.rizd ut as in the previous section.
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TABLE 2

Description of the CTBS Data Used in Sections 4 and 5

Dmax
Case n M diff () P-value Grade Description
5.1 5 1684 .056 1.80 >.20 3 Peading comprehension
(paragraph)
5.2 5 1684 .107 0.68 >.20 3 Language expression
3 5 5543 .003 0.50 >.20 3 Total battery
JO.1 10 1684 .060 2.24 >.20 3 Reading comprehension
(senterces)
10.2 1C 6035 .081 1.54 >.15 6 Reading vocabulary
10.3 10 5543 .007 2.02 <.05 3 Total battery
15.1 15 1684 .175 1.72 >.20 3 Science
15.4 15 1335 .022 3.85 <.05 6 Total battery
20.1 20 1684 .099 4.01 <.01 3 Mathematice
20.3 20 5543 .015 7.65 <.01 3 Total battery

Table 3 details the results of the various estimates fof PR
?nd Kp* The data indicate that the beta-binomial estimates (pB and
KB) tend to underestimate the alternate-form population values.
For the p index, the percent of bias ranges from -4.2 to 0.1 with
an average of -2.3. A larger degree of bias, however, occurs in

the estimation of kappa via « The percent ¢f bias for this esti-

mate ranges from -17.5 to 0. 9Bwith an average of about -7.8.

The larger bias of Kp as compared with that of pB is to be
expected. With the factor 1 - p (which cannot exceed .50) in the
denominator of Equation (1) definiug kappa, tbe bias of ;B is at
least twice as large as that associated with Pg- For situations in
which a high proportion of examinees are to be classified either as
masters or nonmasters, 1 - P. is close to zero. As a consequence,
the bias of Kp will beccme more pronounced in those cases.

The beta-binomial model assumes that test items are equally
difficult (Huynh, 1976). It would be natural to expect that the
bias of the beta~binomial estimates would bear a positive {or
direct) relationship with variation in item difficulty. This is
not the case, however. The values of Dmax in Table 2 clearly
indicate that departures from the beta-binomial distribution show

no resemblance to the standard deviation (¢ ) of item difficulty.

diff
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TABLE 3

Percent Asymptotic Bias and G-Values for CTBS Test Data

Index p Kappa

Cutoff A ” ‘ % 8 .
Case n Score Bias G(pB) G(pR) Bias G(KB) G(KR)
5.1 5 3 -1.5 174 .331 -7.1 <540 .403
4 -3.5 .236 .350 -9.2 .485 774
5.2 5 3 -2.6 .192 . 348 -13.7 . 664 1.064
4 ~4.7 .287 .391 -14.1 .593 .856
5.3 5 3 -2.8 .211 .364 ~17.5 734 1.148
4 ~-3.4 <325 .429 -11.3 .667 .921
10.1 10 t -2.9 .113 .256 -10.2 .329 .668
8 ~4.,2 147 .281 -9.7 .294 .604
10.2 10 6 -1.3 .130 .330 -5.3 .384 .832
8 -3.6 .176 . 347 -8.7 <345 .707
10.3 10 6 0.7 .136 .332 2.5 «537 1.165
8 ~1.2 .208 .385 =4.4 441 .862
15.1 15 9 -2.6 .203 .403 -8.1 407 .809
13 -3.7 .164 .317 -7.6 .530 1.300
15.2 15 9 -1.9 .168 .393 =4.0 .351 .881
13 ~0.4 . 141 . 295 -7.1 .506 1.313
20.1 20 12 -2.7 .098 . 7241 ~12.9 412 1.040
14 -2.8 .115 .292 -7.7 .353 .880
20.2 20 12 0.1 .132 .370 0.9 . 267 .751
14 -0.7 .121 .355 0.0 .283 .805

>

The same observation holds for the bias of ;B and kg as displayed
ir Table 3.

The G-values of Table 3 clearly show that the estimates based
on the teta-binomial model have a smaller standard error of esti-
mate than those based on alternate forms Over all the situations
considered, the standard error of pB is about 50. 4% of that of pR,

~

the standard ercor of Kp is about 50.2% of that of KR These

results are consistent with those of Section 3.

5. A COMPARISON OF I'INITE-SA' LE BIAS AND STANDARD
ERRORS OF ESTIMATE FOR CTBS TEST DATA

A simulation was conducted to study the sampling fluctuations
of the estimates pB, KB, and KR when cample sizes are of small or
moderate size. This was dcne for samples of size m = 20, 40, and
60. For each test, one thousand replications weire used to obtain

the observed percent of bias and G-value for kg As for estimates
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based on the beta-binomial model, one thousand replications were
s.nulated for each alternate form and the averages of the two sets

of results were used to de.ermine the bias and G-value for 5 nd

a Ba
Kg*

Table 4 presents a summary of the results of simulation. The
adequacy of the random number generator (more specifically, the
IMSL (1977) subroutine GGUB) is documented by the near zero bias
of ﬁR and the small fluctuation of the G(ﬁR) values for various
sample sizes around the corresponding true values (enclosed in
parentheses). The data reported in the table clearly show that,
as in the case of large samples, the beta-binomial model tends to
underestimate the parameters PR and KR. The bias of ﬁB in estimat-
ing Pg averages ~-2.6%. For kappa, the bias of Kp fluctuates around
-11.0%. It is also interesting to note that the alternate form

estimate, ;R’ also tends to have a small negative bias.
TABLE 4

Percent Finite-Sample Bias and G-Values for CTBS Test Data

Py Pp “B R
Cutorf % . % . % . % "
Case n Score m Bias G(pB) Bias G(pR) Bias G(KB) Bias G(KR)

5.1 5 3 20 -0.5 .18 -.4 .325 -8.6 .617 +1.5 1.005

40 -0.1 .184 -.1 .335 -7.7 .569 -1.3 .936
60 -1.1 188 ~-.1 .334 -7.4 .553 -0.3 .930

(Exact value 0 .331)
10.1 10 7 20 -3.6 .141 -.1 .225 -11.9 .376 -1.3 .678
40 -3.9 ,146 i .269 -11.6 .327 -1.2 . 644
60 -4.0 .145 -.1 .268 -11.4 .304 -0.4 .625

(Exact value 0 ,259)
15.1 15 11 20 -3.4 .210 -.4 .395 -15.1 .543 -2.4 .949
40 -3.8 .,206 3 402 -13.4 .525 -2.2 .927
60 -3.7 .203 -.2 .397 -13.0 .523 -0.1 .927

(Exact value 0 .392)
20.1 20 14 20 -0.7 .141 -.2 .293 -12.7 .585 =~5.0 1.017
40 -2.6 ,137 0 .306 -10.2 .519 -1.3 .961
o0 -2.6 .142 2 .312 -9.2 .499 -2.2 .942

(Exact value 0 .292)
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The data in Table 4 show that the beta-binomial estimates have
smaller sampling fluctuations than the alternate form estimates.
For all situations reported in this table, the standard error of pB
is about 51.4% of that of Pgs and the standard error of k. is about

B

56.9% of the standard error of KR These trends are very similar

to those reported in the previous section.

6. DISCUSSION AND CONCLUSTON

In this study the performance of a single administration esti-
mate of reliability for mastery tests is compared with the behavior
of the estimate based on two test administrations. The results
clearly indicate that the single administration (beta-binomial)
estimate for the raw agreement index p behaves very well. Not only
does it show a negligible amount of negative pias, its sampling
error is about half of that of the test-retest procedure. As for
the kappa index, a moderate degree of negative bias (about ten per-
cent) is displayed by the .eta-binomisl estimatc. This estimate of
kappa also has a standar.) error that is about one-half the corre-
sponding value for the alternate form estimate. Though the beta-
binomial estimates are originally derived for tests with items of
equal difficulty, the data presented indicate that the bias of
these estimates does not depend on the assumption of equal diffi-
culty for test items. Our conclusion is that for testing situa-
tions involving tests like the CTBS (with items of a wide range of
difficulty), the estimation for consistency of decisions in mastery
tests may be safely carried out via one test administration with

the beta-binomial model as a veiicle for computation.
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AN APPROXIMATION TO THE TRUE ABILITY
DISTRIBUTTON IN THE BINOMIAL ERKOR MODEL
AND APPLICAT IONS

Huynh Huynh
Garrett K. Mandeville

Urniversity of South Carolins

ABSTRACT

Assuming that the density p of the true ability 6 in the
binomial test score model 1s continuous in the closad interval
f0,11, a Bernstein polynomial can be~used to uniformly approximate
p. Then via quadratic programming techniques, least-square esti-
mates may b obtained for the voefficients defining the polynomial.
The approximation, in turn will yleld estimates for any indices
based on the univariate and/or bivariate density function associa-
ted with the binomial test score model. Numeriecal illustratio-s
are provided for the projection of decision reliability and pro-
portion of success in mastery testing.,

i. INTRODUCTION

The binomial error model (Lord and Novick, 1968) has been used
extensi' ely in analyses of mental test data. The model is deemed

suitable in computer-assisted testing in which each examinee is

This paper has been distributed Separately as RM 79-5, June, 1979.
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given a random sample of items drawn from a large item univarse.
When the same test is given to all examinees, the binomial distri-
bution implies that all items share the same difficulty level.,
There are indications (Keatsand Lord, 1962; Duncan, 1974) that
several test score distributions based on the same test fit the
binomial (or more specifically the beta-binomial) model quite well,
especially when similarity of item difficulty holds strictly or
nearly. Let x dencte the test score obtained from the administra-
tion of an n-item test to an examinee with true ability o (the pro-
portion of items in the universe that he/she knows, or the probabi-

lity of answering each item correctly). Then the conditional density
of x given 6 ig

£(x[o) = () 87 (1 - )", x = 0,1,...,n.

Let p(6) be the density of the true ahility for a population of
examinees. The marginal density of x for this population is given

as
£x) = () [é 6% (1 - 8)"% p(e) qo.

As indicated in Lord and Novick (1968; Chapter 23), the knowledge
of f£(x) implies the knowledge of the first n moments of the distri-
bution of 8. Any distribution sharing these n moments will yield
the same rmarginal density f(x), hence the solution for p(8) given
f(x) is not unique. We will seek an approximation for p(8) via a
polynomial and wil® show how such approximation is useful in the
projection of decision reliability and proportion of successes in
mastery testing.

2. A SOLUTION BASED ON THE BERNSTEIN POLYNOMIAL

We shall assume that p(g) is contimious in the closed interval
(0,1]. Then (Feller, 1966, p. 220) p(s) can te uniformly approxi-

mated by a Bernstein polynomial of the form
m
Bm(e) = i

k m-k
z, (M) e (1 - 9)™ K,
1m0 Kk 'k

(IR
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Thus given any arbitrarily small and positive e, there exists an
iuteger m and (m + 1) constants z, such that IB (8) - ple) | < ¢
for all 6 ¢ [0,1]. We propose to use B (6) to approximate p(8).

Procedures will be presented for the dftermination of the constants

III zo, zl,-.., zml

It may first be noted that the zk constants must be non-nega-
tive and satisfy the constraint f B (6) d6 = 1 in order fur B (9)
to be a density. Hence

m

Loz, M -6k .
or equivalently

m
I z
k=0

K =m+ 1,

The Bernstein approximated value for the marginal density of x is
now given as

m
£p(x) = (:)kfo z, (;‘) J(n + m; x + k)

#here
Jn + mg x + k) = fé ¥tk (1 - g)tm-(xtk) 4

The J integrals may be computed inductively by noting that
J(p:0) = 1/(p + 1)

and
Jsy + 1) = (y + 1) I(p3y)/(p - y).

Now let
clk,x) = () ()I(x + k)

and
alk,x) = c(k,x) - c(0,x).
Then the approximated marzinal density of x becomes

m
fa(x) = I a(k,x) z_ + (m+ 1) c(0,x)
k=1 k

where the Z k=1 2,..., mare nonnegativ~ and sum up to no more
than m + 1,
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To determine the constants m, zl, z2,..., zm, we focus on the
least-square criterion with the weight function w(x)

n

Hzps Zgpeees z5m) = E w(x) [£5(x) - £601°. (1)
x=0

In other words, we will seek these constants i. such a way that the
H criterion is minimized. This may be done by first considering

m as fixed and computing the z constants along with the minimum Hm
of the criterion H. This process will be repeated many times
starting with m = 0 [p(¢) and fB(x) are constant]}, 1, 2, etc. until
an integer m can be located at which Hm is minimlzed. Following
are the detaiis for the algorithm,

2.1 Minimizing H at Each Integer m. Let

g(x) = (m+ 1) c(0,x) - £(x).
Then (1) becomes

n m 2
H= [ [w(x) & a(k,x)zk + 8(x)1". (2)
x=0 k=1

At each given integer ‘m, the nonnegative zl, zz..... zm may be
obtained by minimizing H under the constraint Iz, <m+ 1. Since
H is continuous and the z's are located in a closed region, the
solution for z always exists. To obtain such solution, standard
routines for quadratic programming may be called upon. In this
paper, Algorithm 431 (Ravindran, 1972) was used.

To enter into Algorithm 431, we note that the criterion H of
(2) may be written as

H=2'DZ + 2BZ + C.

In this formula, Z is the vector (zl, Zysenes zm)', D= (dkk') is
the matrix defined by

n 2
d. = I w(x) [a(k,x)]
kk x=0

n
d = I w(x) a(k,x) a(k',x)
k! x=0

210 i
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and B = (bk) is a vactor with components
n

bk = ¥ w(x) atk,w) B(x).
xu=(

The remaining quantity C is the constant

n 2
C= & wx) [B(x)].
x=0

2,2 Searching the Least Square Solution. We note that when m = (
the minimum value Ho of H is simply

n

Hy= I wix) [£(x) - F12
x=0

where

f=pwix) f(x)/zw(x).

As for other m values, the minimum may be deduced from the quadratic
programming. Thus the least gquare solution for the Bernstein poly-
nomial may be obtained by computing HO’ Hl’ Hz,... for several con-
secutive values of m, and locating the value of m at which Hm is the
smallest. Since the criterion for minimization H is non-negative,
all computations shall stop whenever Hm = 0. In other situations,

a tolerance difference between Hm and Hm-l might have to be set up

in order to end the approximation process.

3. NUMERICAL ILLUSTRATION

To illustrate the computaticnal algorithm described in the
previous section, three score frequency distributions based on
n = 10 test items are used. For Data Set 1, almost all frequencies
are concentrated at the upper end of the score range. Data Set 2
is slightly asymmetric and Data Set 3 has two modes, one near each
end of the score range. Details regarding these data sets are

presented in Table 1.

It appears from Table I that the goodness of fit via the
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Bernsteln polynomial improve: when the degree of the polynomial
incresses. For unimodal distributions, the algorithm tends to put

all the weights at only a few terms which correspond to zJme

Observed and Fitted Frequency Distributions
for Three Data Sets

Test Score Data Set 1 Data Set 2

Data Set 3

Observed Fitted Observed Fitted

Observed Fitted

0 0 .00 0 .06 4 6.09
1 0 .00 0 .37 10 10.28
2 0 .01 1 1.26 13 10.16
3 0 .07 3 3.07 2 8.68
4 1 .23 6 5.97 6 9.16
5 1 .69 10 9.66 10 12,64
6 3 1.82 13 13.28 20 17.49
7 5 4.42 16 15.47 25 20,22
8 8 9.93 15 14.88 15 17.89
9 15 20.96 11 11.00 10 10.89
10 47 41,91 5 4,97 4 3.50
Degree of the Bernste‘n
polynom:al: 10 10 24
‘ Minimum Hm: .0106 .0001 .0052
]
'fhe positive z constants:
Z40 = 11,0000 z, = 9.891" z, = 6.2830
z2g = 1.1088 Z; = 1.3349
z, " 14.4010
2.8 3.9830

consecutive z; values. On the other hand, for a bimodal discribu-

tion such as Data Set 3, the algorithm puts the total weight on

two blocks, each being formed by some conszcucive 2 values,

212013




ABILITY DISTRIBUTION

4. PROJECTION OF DECISION RELIABILITY

Consider nuw two equivalent tests X and Y, each with n items.
If the test score distributions are binomial, then the bivariate
density is given as

Eny) = Q) [ o™ (1 - )P O ) g,

Let the density p be approximated from the data collected with one
test as m
Bm(“) = I z

(m) ek a - e)uhk.
k=0 k 'k

Then f(x,y) will be given by the expression

m
fplny) = Q) =

(E) J(2n + m; x + y + k)
k=0

“k
where the function J is defined as previously ia Section 2. The
expressions for fB(x) and fB(x.y) may now be used to project prac-
tically all agreement indices for decisions in mastery testing.
Let the examinees now be classified in k categories Ai defined by

Ai = {X;ci-l-i X < ci} where ¢, = 0 and ¢, = n + 1, For binary

0 k
classifications k = 2, 1In this case c is usually referred to as

the cutoff (mastery) score. The raw agreement index

m
P = 151 P [(X,Y) € Ai x Ai]

can be computed by the formula

k
P= 1 [c D) fB(x.y)J.
i=1 1-1_<_x,y<ci
On the other hand, the corrected-for-chance kappa index is given as
k= (P - Pc)/(l - Pc) where
k

2
P = ¢ [ L £ (x)]%,
¢ a1 °1-15_x<ci B

b} -~
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4.1 Numerical Example. Consider the case where n = 5, v = 4 and

zg = 1.0, z = 1.5, z, = 2.0, z, = 0 and Z, = +5. The Bernstein
polynomial generates the marginal frequency density of .20040,

+21230, .20040, .16865, .12698 and .09127 at the test scores of
0, 1, 2, 3, 4,and 5. For the binary classifications with cutoff

score 4, the raw agreement index is .8197 and the kappa index is
.4716.

5. PROJECTION OF TEST SCORE DISTRIBUTIONS
FOR LENGTHENED TESTS

There are situations in which a test needs to be lengthened in
order to accomodate new conditions and data are available for the
short version of the test. If the binomial model holds, then it is
possible to project the test score distribution for a lengthened
test, assuming that the ability distribution of the examinees re-
mains unchanged. From the data for the short form, it may be possi-

ble to approximate the true ability distribution via the Bernstein
polynomial

= n k m-k
Bm(e) = I )

k=0

(1 -9 .

zk(E)e

For a lengthened test consisting of & items, the projected density

function for the test score is given as
2, rl 2-
£(x) = () fo 6* (1 - 8)""* p(e) do

m
= () Iz

™ J(2 +m, x+ k)
oo 'k g

5. 1 Numerical Example. Consider the case where the fitting via a

4th degree Bernstein polynomial (m = 4) yields the constants

0" 1.0, z, = 1.5, z, = 2.0, 2y = 0 and z, = +5. For a test with
2 = 10 items, the projected density is .10406, .11372, .11888,
.11905, .11422, ,10489, .09207, .07726, .06244 and 05012 at the
test scores of 0, 1, 2, 3, 4, 5, 6, 7, 8. 9 and 10.
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ADEQUACY OF ASYMPTOTIC NORMAL THEORY IN ESTIMATING RELIABILITY

FOR MASTERY TESTS BASED ON THE BETA-BINOMIAL MODEL

Huyph Huynh

University of South Carolina

ABSTRACT

Simulated data based on five test score distributions indicate
that a elight modification of the asymptotic normal theory for the
estimation of the p and kappa indices in mastery testing will pro-
vide results which are in close agreement with those based on small
samples. The modification is achieved through the multiplication
of the asymptotic standard errors of estimate by the constaut

1+m3/4 where m is the sample size.

1. INTRODUCTION

A primary purpose of mastery testing is to classify examinees
in several achievement (or ability) categories. Typically, there
are two such categories, mastery and nonmastery. The reliability
of mastery tests is often viewed as the consistency of the various
classifications across two test administrations; this consistency

may be quantified via *the raw agreement index (p) or the kappa

This paper has been distributed separately as RM 80-2, July, 1980.
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index (k). The raw agreement index is simply the combined pre-
portion of examinees classified consistently as masters or non-
masters (if there are only two categories) on the two test ad-
ministrations. The kappa index, on the other hand, expresses the
extent to which the test scores improve the consistency of de-
cisions beyond what would be expected by chance. Details regard-
ing the nature and use of these indices may be found in
Swaminathan, Hambleton, and Algina (1974), Huynh (1976, 1978a),
and Subkoviak (1976, 1980).

Although p and k are defined in terms of repeated testing,
practical considerations often necessitate their estimation on the
basis of test data collected from a single test administration.
This may be done, for example, via the beta-binomial model (Huynh,
1976, 1979). The data reported in Subkoviak (1978), and by Huynh
and Saunders (in press) tend to indicate that the beta-binomial
model yields reasonably accurate estimates for p and k in situa-
tions invelving educational tests such as the Scholastic Aptitude
Test and the Comprehensive Tests of Basic Skills.

The beta-binomial model also provides a convenient way to
study the asymptotic sampling characteristics of the e.*imates.

Let ; and ; denote the (moment or maximum likelihood) estimates

for p and k, and let m be the number of examinees. Then vm (; - p)
and v/m (; - k) follow asymptotically two normal distributions, each
with a mean of zero and a standard deviation of G(p) or G(x) (Huynh,
1978b, 1979). The constants G(p) and G(x) depend only on the
number of items (n), the mean (u) and standard deviation (o) of the
test scores, and the cutoff score (c). They are not functions of
the sample size m, and may be computed via formulae, tables, or
computer program (Huynh, 1978b, 1979).

The asymptotic considerations just summarized indicate that
the estimates ; and ; follow approximately normal distributions
with means of zero and standard deviations of o (p) G(p)/Ym and
o (K) = G(x)//h when the sample size m is sufficiently large.

21
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The extent to which these "asymptotic" standard errors rzveal
adequately the corresponding values in small samples appears to be
unknown. Further, if sw(;) and sw(;) represent the asymptotic
standard errors computed from the sample data, asymptotic theory
h?lds that the sampling distributions of the two ratios, z(;) =

(p - P)/Sm(;) and 2(;) = (; - K)/Sm(;), are approximately normal
distributions with zero means and unit variances. The degree with
which this asymptotic normality is true for small samples has yet
to be investigated.

The purpose of this paper is threefold. It will first assess
the adequacy of using the asymptotic standard errors to approximate
the actual values encountered in small samples. Then, it will look
at the degree to which asymptotic normal distributions can be used
to describe the actual sampling distributions of the ratios z(p)
and Z(K) when small samples are used. Finally, the paper also
suggests a slight adjustment to the results of the asymptotic
theory so that they will resemble more closely the results associ-

ated with small or moderate samples.

2. PROCEDURES

Let om(;), and om(;) be the actual standard errors associate
with a sample of size m. The closeness of the asymptotic approxi-
mations to these actual standard errore, when small samples are
employed, may be assessed by computing the relative errors of
approximation e(p) = (o (P) -0 (p)1/o (p) and E(K)
lo (K) -0 (K)]/O (x), respectively Approximations are said to
be good when the ratios, e(p) and E(K), are close to zero. 1In
most practical situations, a ratio falling between *+5% should pro-
bably be considered as evidence of acceptable approximation.

As stated in the introduction, the asymptotic standard errors

ow(;) and ow(;) may be computed for a given test score distribu-
tion. Since no simple formulae appeared available for the compu-
tation of the small sample standard errors om(;) and om(;), com~-

puter simulation with 5000 replications was used in order to
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estimate their values as well as the relative errors of approxi-
mation e(;) and e(;).

Computer simulation with 5000 replications was also used to
assess the adequacy of using the unit normal distribution to de-
scribe the sampling distributions of the ratios z(;) and z(;).

The proportions of the simulated z-ratios which fell within
selezted (two-sided) critical values were computed and compared
with the corresponding values expected from a normal distribu-
tion. The extent to which the proportions from the computer
simulated distributions resembled the corresponding normal dis-
tribution probabilities was used to assess the adequacy of the
asymptotic normal distribution. For this study, (two-sided)
critical values were selected so that the central portion of the
unit normal distribution was covered corresponding to probabilities
of 80%, 90%, 95%, and 99%.

Both the moment and maximum likelihood (ML) estimates were
used in this study. Moment estimates exist when the sample reli-
ability index, KR21, is positive. When this was not the case, it
was then assumed (as in Wilcox, 1977) that the beta-binomial model
degenerated to a binomial distribution with an estimated success
probability of A = x/n where x is the test mean. Under these con-
ditions, the estimate for x was taken as zero, and that for p was

~

computed via the expression p = pg + (1 - po)2 where

p

c
n,.x n-x
0 = z (x)k (1-2) .

x=0

In addition, following the intuitive reasoning that degenerate
cases only represent extreme situations, both the z(;) and z(;)
ratios were taken as extremely large whenever the degenerate case
occurred.

Although the moment estimates are considerably easier to com-
pute than the corresponding ML estimates, ML estimates often have
been considered better than the moment estimates. (The asymptotic

sampling distributions of the moment and ML estimates are the same

220
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however.) Because of this, the comparisons previously described
for the moment estimates were also made for ML estimates. The ML
estimates were obtained via a Newton-Raphson itzration scheme de-
scribed elsewhere (Huynh, 1977). 1In the rare instances where the
ML iteration did not converge, the moment estimates were used.)

The data base for this study consisted of five beta-binomial
distributions. Four tests consisting of n = 5, 10, 15, and 20
items each were assembled by random selection of items from the
Comprehensive Tests of Basic Skills, Form S, Level 1, which had
been vsed in the South Carolina 1978 Statewide Testing Program.
The actual frequency distribution for each of these tests was
altered slightly so that the resulting distribution would conform
almost exactly to a (marginal) beta-bimomial distribution.
Another beta-binomial distribution, with a = 8.970 and B = 1.994,
was patterned after the one used in the Wilcox (1977) study.
Details regarding these distributions and the selected cutoff
scores c¢c may be found in Table 1. For each case listed in this
table, five thousand replications were simulated to estimate
various standard errors and sampling distributions. The sample
size m was selected to be 25, 50, 100, 200, and 400.

TABLE 1
Descriptions of the Five Tests used in the Simulation

Case Source n Mean SD (V] g KR21
1 CTBS 5 3.7066 1.5445 1.2512 0.4367 .7476

2 CTBS 10 7.4702 2.9435 1.1285 0.3822 .8688
3 Wilcox 10 8.1814 1.6147 8.9703 1.9940 .4770
4 CTBS 15 8.8630 3.3588 3.3273 2.3039 .7271
5 CTBS 20 11.1811 5.1115 1.9115 1.5077 .8540 12

O o o W|in

Preliminary simulations indicated that the asymptet'c stan-
dard errors tended to underestimate the smaller sample standard
elrors, and that an adjustment via the multiplicative constant,

h=14+ l/m3/4, would substantially improve the adequacy of the




HUYNH

results deduced from the asymptotic theory. Hence, adjusted
asymptotic standard errors of the form o: =g (1+ 1/m3/4) and
adjusted z ratios of the type z* =2/(1 + 1/m /4) were also in-
corporated in the study.

3. RESULTS

Table 2 reports the relative errors of approximation, e(;)
and e(;), for the asymptotic standard errors of the moment and ML
estimates. Values associated with the adjusted asymptotic stan-
dard errors are enclosed within parentheses. The table reveals
the following points. (a) The unadjusted asymptotic standard
errors for both p and k are slightly closer to the finite-sample
standard errors of the ML estimates than to those associated with
the moment estimates. This result does not appear unexpected:
Strictly speaking, asymptotic theory deals mainly vith ML esti-
mates which are asymptctically efficient (i.e., unbiased with
minimum variance). The asymptotic results, however, may be
applied to the less; efficient moment estimates because these are
asymptotically equivalent to the ML estimates. Hence, the
asymptotic standard error should more accurately depict the
sampling variability of the ML than those of the moment ¢3timates.
However, the difference in accuracy is minimal when sample sizes
as small as 25 or 50 are used. (b) The unadjusted asymptotic
standard errors underrepresent the corresponding finite-sample
standard errors; the extent of underrepresentation is less for
om(s) than for om(;). As seen in the last four rows of Table 2,
the absolute relative errors of approximation e(;) average 8.3,
4.9, 3.3, 2.9, and 3.0 percent for sample sizes of 25, 0, 100,
200, and 400, respectively. For ;, these percentages are 13.8,
7.6, 4.6, 4.0, and 2.9%. (c) As mentioned in the last section,
the multiplicative adjustment via the constant 1 + 1/m3/4 pro-
duced adjusted asymptotic standard errors o: which were substan-

tially closer to their finite-sample values om. For these

222
24




TNN NN NN PN SN PN NN AN NN oo~ NN N~
MM W OO N WO Nr= O N MO I~~~ ! VOV O™~ o
L] L] L] L] . . . . L] . L] . . L] . - L]
(/)] T Y N i e e i el o W e N st t o N 2
.M \rﬂ AN OM ON WO NN NN FWO OO T 003 . Ownrn oo o
¢ . . . . . . » . . . . . . . . . . . . . . .
H..H m =l O NO MO NO M~ N N NO &NO ' MO «NO .m
(o] (3 TN NN NN SN SN SN NN NN NN o NN s~ &
M.d ﬂ OW N HW AN O OW ON ON O3 o m ] OO NI~ m
mu (=¥ o O.ﬂ OO o~ 20_ SO MO O ey .I.O_ N O [} O NO -
n =] o A d (Im\ (Im\ = Nt (Im\ Nt Nt e Nl N N Nt ot Nt ] i 4 m
[ =} kal NI O Orl OV N VO 0O Om Orm NI T N NO O™ -
of o e a e o o " e . o " o e 0 e o o« 0 * o t " . . [« 5
.M“ — O NHA NO Ird Nmel TN NN e M= TN . N~ I Mur
& [«] NN IONN NN SN NS PN AN AN NN o NN NN
._n.m __u N ON N NN =N 0OM Oml OO -~ O~ [} AW OO cm
tm. e= o 17_. 0_7_. 2]_.. el =] O.ﬂ N~ 0_1 — - O.I.. .I.O. 1 (=B I ]
.mr. =] o /m\( Nl el N o Nl N Nt s (/m\ Nt el Nt Nt ] o et Nt ot m
= O H|H v MmOy NN N N M INO NO NI OO N T O~ [«} ) -
dmo od . - o . « o LY e « o " e e o o e « o t .« o . [ [
WS tu HO NO NM WM - N NN FF Vel 3N | Ne= TN ﬂ .
o m NN NN NN SN SN SN NN NN NN N o NN N~ ‘.,.v
o~ dd ..v.n. NW Or N WO =3 00W 0 TN LN w0 O ] NO ™~ W
L] . L] . . . L) . . L] . . .
N o9 o =g M oM NN Hd o PP - oq ~Ho oN o~ - ¢
M [ /] [« % O " (/m\ Nt Nt Nt Nt Nt "t Nt Nl Nl ol N ot t o el Nt ot [ ] o~
o9 2 =] N NWOW O NN IO O O TN YN O~ O - D= O~ -
[l oy « o« o . . . . * . . . t * . .« o [\
m.mua v VN N0 N~ m-I T W 3T OO TN YVIN ) TN N -
[o] &
| o) .W. CNLN NN NN SNIN SN SN NN NN NN t NN NN =]
> ﬂ‘m M WO MO T OF TN NT OFT NN e O v ' NO M~ “
. . o . . . . . o .
[~ Low NO NM OF MO N N O N O OIN ~ = O O [H]
o e o U " [ ] — - [ | [ B} [ | [} 1)
€3] Qo W o AN| Yo Wy i i e e s N’ - o e N N N o o
m H....m OWN =0 0F T OO NO OWIN AN e ~en .M NN O mm
. . o . . . . . . o« o . . o
m QW N INT O O WO 00 FIN NI~ alsa} I » oo~ NN 7]
(& o] — ~ - N - ] - 13 ~ - 0w 3
b-d - o [ 1] 1]
B X «© (23]
o o [ }] 1 o U -~
= N 0 & & & & & & & & & & & & & & =
& 25 | 2 59 5o 59 59 59 g 59 59 S0 5o 'Z Bg 8 e
o L -~ mm mm mm mm mm mm mm mm m\m.. mm t o mm mm v &
wn o] & (=] (=] O (=] o] (] (] (] (] (=] 2] (] (] - o
< v o 0 = = = = = = = = = = t 0 = = g o
» 3] < a8
<N - T ] Fuy
o &M = Uy S m
o U (=} ¥4 (=% }%4 (= ¥4 (= ¥4 (=5 }%4 | © (= ¥4 - 3
5 3T |E ‘g 3%
] o o L] &0 U «
=3 & I «© =]
(=4 [} [H] 1 - U
= ] - ™~ o ~ N 1 o o Lo
w 3 4 P>
[ &) )1 < «




HUYNH

adjusted asymptotic standard errors, the absolute relative errors
of approximation of ; average 1.3, 0.9, 0.9, 1.6 and 1.9 percert
for m = 25, 50, 100, 200, .nd 400, respectively. As for ;, these
average absolute relative errors stand at 6.7, 2.7, 1.9, 2.2, and
1.8%. (d) As expected, the asymptotic standard errors resemble
more closely those estimated for finite samples as the sample size
m becomes larger. Sampling errors associated with the simulation
probably account for the erratic variation behavior of the esti-
mated finite-sample standard errors found at a few places in Table
2.

Table 3 reports the empirical percentages of simulated z and
z* values which fall around zers with a nominzl normal probability
of 80%, 90%, 95%, and 992 (The results are reported only for the
moment estimates, which differ only slightly from those associated
with the ML estimates.) Two major points may be inferred from the
reported data. (a) The use of unadjusted asymptotic standard
errors produces z ratios which show less concentration around O
than that predicted from a unit normal distribution. This is con-
sistent with the results previously reported regarding the under-
approximution associated with the unadjusted asymptotic standard
arrors. This under approximation produces z ratios with a stan-
dard deviation slightly larger than one; hence the corresponding
distribution for these z ratios would show less probability around
the central value of zero than that of a unit normal distribution.
(b) Adjustment via the factor 1 + 1/m3/4 results in adjusted z*
ratios which cluster around zero with (empirical) probabilities
very close to the nominal values predicted from the asymptotic
normal theory. The degree of similarity between the empirical
and nominal probabilities is quite adequate even with samples of
size m = 25. The empirical and nominal probabilities are, within
sampling error, nearly identical when the sample size is larger,

say when m is 50 or higher.
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TABLE 3

Empirical percentages of unadjusted (and adjusted) z(p) values
which fall around zero with selected nominal probabilities

Nom- Empirical percentage at m =
inal
Prob. 25 50 100 200 400
Case (%)
1 80 75.1(79.6) 77.0(79.4) 79.1(80.1) 78.8(79.7) 78.9(79.4)
90 86.4(89.5) 87.0(88.8) 88.8(89.9) 89.2(89.8) 89.3(89.8)
95 92.0(94.0) 92.9(94.6) 94.7(95.3) 94.3(94.8) 95.0(95.3)
99  97.4(98.1) 98.1(98.7) 98.8(99.0) 98.7(98.9) 78.9(99.0)
2 80 74.7(78.6) 75.9(78.7) 76.3(78.0) 77.2(78.0) 77.0(77.5)
90 85.4(88.5) 86.6(88.5) 87.2(88.6) 87.7(88.4) 87.8(88.3)
95  91.3(93.1) 92.2(93.4) 92.9(93.€) 93.2(93.7) 93.8(94.1)
99  96.2(97.3) 97.7(98.0) 98.0(98.2) 98.2(98.4) 98.3(98.3)
3 80 75.7(79.8) 78.1(80.6) 79.2(80.6) 78.8(79.6) 78.7(79.3)
90 85.4(87.6) 89.0(90.6) 89.4(90.6) 89.2(89.7) 88.7(89.2)
95 89.7(91.0) 93.5(94.7) 94.5(95.3) 94.6(95.0) 94.4(94.6)
99  93.8(94.5) 97.8(98.2) 98.5(98.8) 98.7(98.8) 98.7(98.8)
4 80 77.4(81.3) 78.5(8129LJHK3?§0?Q) 78.6(79.6) 79.3(79.9)
90 87.9(90.7) 88.5790.2) 89.2(90.0) 88.9(89.5) 89.1(89.5)
—~==95  93.3(95/4) 93.8(95.4) 94.1(94.9)\39.4(94.8) 94.4(94.6)
P9 98;9196.8) 98.7(99.0) 98.5(98.8) 98:5(98.7) 98.7(98.7)
5 éo _/}538(79.9) 78.0(80.1) 78.3(80.0) 78.7(7§?6) 19.1(79.7)
/ 90~ 86.6(89.7) 88.2(89.9) 88.6(89.6) 88.5(89.1) 89.3(89.6)
{ 95  92.3(94.7) 93.7(94.7) 94.2(95.0) 93.7(94.3) 94.5(94.7)
99 98.0(95.7) 98.3(98.8) 98.7(89.9) 98.5(98.6) 98.7(98.8)

with

is predicted by a normal distribution.

as small as 25 cases.

4. SUMMARY AND CONCLUSION

The study indicates that the asymptotic normal theory for the

estimation of p and x via the estimates P and x produces asymptotic
) standard errors which are slightly smaller than the actual standard

} errors associated with small samples.

As a result, the sampling

/ distribution of the z type ratios has fewer cases around zero than

However, multiplication of

the asymptotic standard errors by the constant 1 + 1/m3/4 results

in adjusted asymptotic standard errors which show close agreement

the actual finite-sample standard errors, even with samples

In addition, the adjustment produces z
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ratios which follow very closely a normal distribution, at least
with respect to the combined tail probabilities. This conclusion

also holds for samples as small as 25 cases.

All in all, it appears that, with the multiplicative adjust-

/4

ment factor of 1 + l/m3 imposed on the asymptotic standard
errors, the asymptotic normal theory for the estimation of de-
cision reliability in mastery testing (Huynh, 1978b, 1979) can be
used safely with samples with as few as 25 cases. This con-
clusion, of course, is restricted to situaticns similar to these

considered here.
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CONSIDERATIONS FOR SAMPLE SIZE IN RELIABILITY
STUDIES FOR MASTERY TESTS
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ABSTRACT

In most reliability studies, the precision of a reliability
estimate varies inversely with the number of examinees (sample
size). Thus, to achieve a given level of accuracy, some minimum
sample size is required. An approximation for this minimum size
may be made if gsome reasonable assumptions regarding the mean and
standard deviation of the test score distribution can be made.

To facilitate the computations, tables are developed based on the
Comprehensive Tests of Basic Skills. The tables may be used for
tests ranging in length from five to thirty items, with percent
cutoff scores of 60%, 70%, or 80%, and with examinee populations
for which the test difficulty can be described as low, moderate,
or high, and the test variability as low or moderate. The tables
also reveal that for a given degree of accuracy, an estimate of
kappa would require a considerably greater number of examinees

than would an estimate of the raw agreement index.

This paper has been distributed Separately as RM 80-3, March, 1980.
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1. INTRODUCTION

In many applications of educational and psychological testing,
an empirical demonstration of the reliability of the measuring in-
strument is desirable. Such demonstration is most meaningful when
the estimate for the reliability has been obtained with a reason-
able degree of accuracy. That is, the standard error of estimate
must be within some acceptable limit. In most instances, the
standard error is a decreasing function of the number of examinees
(sample size) to be included in the reliability study. Thus, some
minimum sample size is needed to achieve a given level of precis.on.
The purpose of this paper is to illustrate how this sample size can
be assessed in estimating the reliability of mastery tests.

The paper consists of three major parts. The first part pre-
sents an overview of the procedures for estimating two reliability
indices for mastery tests by using data collected from one test ad-
ministration. The use of the estimation process to determine the
minimum sample size is illustrated in the second part. Finally, a
set of tables is developed to facilitate the determination of the
minimum sample size in reliability studies for mastery tests.

2. OGOVERVIEW OF SINGLE-ADMINISTRATION
ESTIMATES FOR RELIABILITY

Mastery tests are commonly used to classify examinees into two
achievement cuategories, usually referred to as mastery and non-
mastery. The reliability of such tests is often viewed as the con-
‘1 toncy of mastery-nonmastery decisions. It may be quantified via
the raw agreement index (p) or the kappa index (k). The p index is
simply the combined proportion of examinees classified consistently
as masters or nonmasters by two repeated testings using the same
form or two equivalent forms of a mastery test. The kappa index,
on the other hand, takes into account the level of decision con-
sistency which would result from random category assignment. It
expresses the extent to which the test scores improve the con-

sistency of decisions beyond the chance level.
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Though both p and « are defined in terms of repeated testings,
there are many practical situations in which they may be estimated
from the scores collected from a single test administration (Huynh,
197€). The estimation process assumes that the test scores con-
form to a beta-binomial (negative hypergeometric) model, and may be
carried out via formulae, tables, and a computer program reported
elsewhere (Huynh, 1978; 1979). The data reported by Subkoviak
(1978) and by Huynh and Saunders (1979) tend to indicate that the
beta-binomial model yields reasonably accurate estimates for p and
k in situations involving educational tests such as the Scholastic
Aptitude Test and the Comprehensive Test of Basic Skills.

The beta-binomial model also provides asymptotic (large sample)
standard errors for the estimates. Simulation studies indicate that

the asymptotic standard errors tend to underestimate the actual

standard errors when the sample size is small (Huynh, 1980). The
degree of underestimation is not substantial when the sample has
sixty or more examinees. Since the beta-binomial model will be
used throughout the remaining part of this paper, a minimum sample

size of sixty examinees will be assumed to hold uniformly for all

cases under consideration.

3. TILLUSTRATIONS FOR SAMPLE SIZE
DETERMINATION

The standard error (s.e.) of estimates for p and for k are
functions of sample size m. The quantity G = s.e. x vm is
asymptotically (i.e., in large samples) a constant, however. This
constant depends only on the number of items (n), the mean (u)
and standard deviation (¢) of the test scores, and the cutoff score
(c). Given the availability of these parameters, the value of G
may be determined via the tables or the computer program presented
elsewhere (Huynh, 1978). Once G is determined, a minimum sample
size m can be calculated which will restrict the standard error of
estimate to whatever tolerable range is required.

Suppose, for example, that an estimate of « is needed for a
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short (n = 6 items) test to be used with a particular population of
students. Passing or mastery on the test is to be granted if an
examinee attains a score of 5 or 6. Further, suppose that we want
the standard error of this estimate to be smaller than 10% of «,
that is, s.e. (x) < .10«.

What sample size would be needed to obtain the specified
degree of accuracy in the estimate? To answer this question using
the above mentioned Huynh procedure, a preliminary knowledge of
the test mean and standard deviation is needed. Suppose past data
suggest that the students are generally well-prepared on the con-
tent of the test in question and can be expected to be fairly
homogeneous in achievement. We might suppose that in the population
the mean will be 5.0 and the standard deviation will be 1.2. Using
these values, and the cutoff sgcore of 5, a value of G can be read
from the tables (or computed): G(x) = .7390. If the population
mean and standard deviation are as given, then, assuming the beta-
binomial model, the population value of kis .3778. These results
are then used to estimate the sample size needed to bring the
standard error of estimate with the desired limits (i.e. less than
.10k).

Since the standard error of estimate is approximately G/v/m ,

the standard error must be such that

G(k)
Vm

< .10k

or., equivalently,
m 3_[G(K)/.10KJ2.

For this example, then,
m > I.7390/(.10)(.3778)7,2 = 382.62.

fhus, to have no more than 10% relative error requires that at
lease 383 examinees be tested to estimate «.
A similar computation can be made for s.e. (p) < .10p when the

above assumed population values hold. Thus, using the tables,
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G(p) = .3210,

P = .7532,

and

m Z_[C(p)/-lOp]2 = 18.16.

Because of the previously mentioned problems of underestimation in
small samples, a sample size of at least sixty is recommended re-
gardless of the above computation.

It might be disheartening to note that a much larger sample
size is needed to keep the standard error of the k estimate within
the desired limits than is required when an estimate of p is used.
However, the standard error for k is much larger than that of p
(Huynh, 1978). Thus, for the same relative size of errors of es-
timation, larger samples are needed to estimate k than to estimate
P. It could be argued that the same degree of accuracy of esti-
mation is not required. If so, then a less accurate estimate of «
would allow a smaller sample size.

The above illustration presumes that the mean and standard de-
viation of the test scores can be projected prior to the real test
administration. In a number of instances involving the use of
standardized tests fora heterogeneous group of students, reasonable
assumptions may be made, which will yield projected values for both
b and 0. For example, when an n-item multiple-choice is built to
maximize the discrimination among individual examinees, it is not
unreasonable to assume that the test mean is half way between the
expected chance score ind the maximum score n, and that the stand-
ard deviation is about one-sixth of the test score range from 0
to n. (If there are A options per item, the expected chance score

is n/A.) 1In other words, it is not unreasonable to presume that

u = (atn/A) /2

and g = n/6.

For exampie, consider a test consisting of 10 four-option items.

Then A = 4, and the projected mean and standard deviation are
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UW=26.25 and 0 = 1.66667. Presuming a cutoff score of ¢ = 6, it
may be found that p = .6140, G(p) = ,3661, « = .1118, and G(x) =
.8213. If a relative error of 5% is acceptable for p, then a
sample of at least [.3661/(.05><.6140)]2 = 143 students would be
needed. On the other hand, a relative error of 25% for kappa
would require [.8213/(.25*.1118)]2- 864 students.

4. PRACTICAL CONSIDERATIONS IN SETTING SAMPLE
SIZE IN BASIC SKILLS TESTING

Some general formulae are given for expressing the relation-
ships among s.e., G, m, p, k, and the proportion of sampling error
desired in an estimate. These general expressions will then be
used in a series of simulations designed to explore their typical
numerical values for real tests. Tables are developed to help the
practitioner decide on the sample size needed to obtain estimates

of p and k for various degrees of precision.

General expressious

Since G = s.e. X ¥m is a constanc for large samples, this ex-
pression forms the basis for thz formulations in this section. 1In
the previous section .10 and .05 were used as examples of desired
degrees of precision for a sample estimate of p. In general, we
will call this quantity vy, using Yp and Y to distinguish precisions
desired for p and k, respectively. Thus, the general expressions

for minimum sample size are:

42
mlﬂp_l
YpP )
and
G(k) 12
s | S0

A further simplification is to let R(p) = [G(p)/p]2 and

R(k) = [G(p)/k] 2, The above expressions for minimum sample size,

m, become
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2
m > R(p)/(vp)

and
2
m Z_R(K)/(YK) .

These expressions will allow minimum sample size to be determined

from knowledge of two quantities, R and y.

Determining typical values of R(p) and R(k)

In practical applications, the values R(p) and R(k) depend on
a test score distribution which is not yet available. So, as in the
previous section, conjectures must be made regarding the mean and
standard deviation of the test scdre in order to project the minimum
sample size.

In this section, typical values for R(p) and R(k) will be re-
ported for practical testing situations involving the assessment of
basic skills. Several combination of test length, difficulty,
variability, and cutoff scores will be used. To arrive at the
values of R(p) and R(k) reported in Tables 1-5, the following series
of steps was taken.

First, a series of subtests was developed, using items found
in the Comprehensive Test of Basic Skills (CTBS), Form S, Level 1.
The items composing each subtest were randomly selected from one of
five CTBS content areas, to reflect a variety of subjects and
skills. For each content area, subtests were constructed with 5,
10, 15, 20, 25, and 30 items, producing a total of 30 subtests.

Second, the administration of the subtests was simulated
using actual student responses. Data for the simulation came from
5,543 students, comprising a systematic sample (every tenth case)
of the third grade students tested ucing Level 1 of the CTBS by
the 1978 South Carolina Statewide Testing Program. From the
students' responses to each item in the CTBS, raw scores were gen-
erated for each student on all 30 subtests.

Third, values of the mean and standard devlation of raw scores

DYy, ~
235 "JA),()




SAUNDERS & HUYNH

on each test were obtained. District means and standard deviations
were calculated for each school district with 40 or more students
in the sample. For each of the 30 subtests, means and standard
deviations were plotted in a bivariate scatter diagram. The
scatter-plots were divided into areas representing different cate-
gories of test difficulty and variability. Then districts were
selected with means and standcrd deviatioas considered to be typical
of six categories of difficulty and variability. These six cate-
gories (tests of low, moderate, and high difficulty, with low and
moderate variability) were chosen to represent types of test score
distributions typically ercountered in mastery testing.

Fourth, the typical values obtained in the previous step were
used to determine R(p) and R(k). For each of the 30 subtests, the
computer program described elsewhere (Huynh, 1978) was used to
obtain estimates of G(p), p, G(x), and k when the cutoff scores
were equivalent to 60%, 70%, and 80%. These data were used to
calculate R(p) and R(k) in each case.

Finally, the values of R(p) and R(K) obtained above were
averaged over the five CTBS content areas and the resulting values
were compiled in tabular form. Tables 1, 2, and 3 provide values
of R(p) and R(k) for percent cutoff scores of 60%, 70%, and 80%,
respectively,

The data needed to enter the tables are: (1) test length
(n), (2) an idea of test difficulty (high, moderate, or low), (3)
test variability (low or moderate), and (4) percentage cutoff
score (60%, 70%, or 80%Z). The minimum sample size needed ‘s simply
R/Yz, that is, the value of R obtained from the tables divided by
the square of the acceptable proportion of sampling error in the

estimate.

Numerical example

Suppose a study is planned to assess the reliability of a
twenty-item test (n = 20) using the kappa index when a cutoff score

of 14 (c = 70%) is employed. The students for whom the test is




MINIMUM SAMPLE SIZE

TABLE 1

Values of R for p and k for Six Categories of
Tests at the Percent Cutoff Score of 60%

Test Category Number of Items
(diff) (var) 5 10 15 20 25 30

High Low (p) 0.219 0.075 0.050 0.031 0.023 0.018
(v) 5.349 1.623 0.666 0.391 0.307 0.209

High Mod (p) 0.164 0.061 0.036 0.025 0.018 0.014
(¢) 2.589 0.908 0.327 0.280 0.209 0.139

Mod Low (p) 0.244 0.085 0.056 0.032 0.025 0.020
(¢) 5.809 1.485 0.613 0.367 0.269 0.200

Mod Mod (p) 0.148 0.068 0.036 0.027 0.021 0.015
(¢) 2.215 0.838 0.312 0.266 0.198 0.126

Low Low (p) 0.199 C.095 0.044 0.031 0.025 0.020
(¢) 5.502 1.345 0.560 0.365 0.247 0.186

Low Mod (p) 0.142 0.068 0.032 0.024 0.020 0.016
(¢) 2,371 0.770 0.298 0.249 ©6.176 0.128

intended are known to be a homogeneous gioup of relatively high
ability. Thus, it might be expe~ted that the test would be of low
difficulty (i.e.,easy), with low variability. Let us say tlat a
fairly precise estimate of « 1s desired, so Y: is set at .05.
Entering Table 2, in the row corresponding to low difficulty and
low variability, it if found that R(x) for n = 20 items is .362.
The minimum sample size needed to estimate kappa with 5% allowable
error 1s then computed as m = R(K)/YKZ - .362/(.05)2 = 144.8.
Thus, a sample of at least 145 students is necessary to achieve the
desired degree of precision. If reliability is to be determined
via the raw agreement index p, a similar procedure is followed
using R(p) and yp. Again, at least 60 students should be used in
the sample, ev n 1if it is found that m < 40.
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TABLE 2

Values of R for p and «k for Six Categeries of
Tests at the Percent Cutoff Score of 70%

Test Category Number of Items
(diff) (var) 5 10 15 20 25 30

High Low (p) 0.219 0.075 0.046 0.029 0.022 0.017
(¢) 5.349 1.623 0.776 0.455 0.410 0.272

High Mod (p, 0.164 0.061 0.033 0.023 0.017 0.013
(v) 2.589 0.908 0.360 0.324 0.276 0.178

Mod T (p) 0.244 0.085 0.053 0.031 0.023 0.019
(¢) 5.809 1.485 0.646 0.396 0.322 0.242

Mod Mod (p) 0.148 0.068 0.035 0.026 0.019 0.014
(¢) 2.215 0.838 0.321 0.289 0.237 0.149
Low Low (p) 0.199 0.095 0.050 0.031 0.024 0.019
(¢) 5.502 1.345 0.512 0.362 0.265 0.203
Low Mod (p) 0.142 0.068 0.036 0.023 0.019 G.015
(x) 2.371 0.770 0.280 0.254 0.190 0.137

Some observations on the tabled values

In every case R(x) > R(p). This fact implies that the sample

size necessary to estimate kappa wiil be larger than that needed to
estimate p, for any fixed degree of precisien, y. As noted previous-
ly, practical limitations may require that larger proportions of
error be tolerated when estimating kappa than when estimating p.
R-values for the case of low variability are larger than those

for moderate variabilicy. 1If there is doubt about the expected

degree of variability, the value of R for the low variability case
would produce the more conservative estimate of m.

R decreases as the number of test items increases. The re-

lationship between R and n is not linear, however. Hence, linear

interpolation would not be appropriate for determining R for non-
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TABLE 3

Values of R and p and x for Six Categories of
Tests at the Percent Cutoff Score of 80%

Test Category Number ~f Items
(diff) (var) 5 10 15 20 25 30

High Low (p) 0.132 0.063 0.332 0.021 0.018 0.013
(k) 7.076 2.805 1.494 1.055 0.887 0.660

High Mod (p) 0.098 0.045 0.024 0.018 0.015 0.011
(k) 3.510 1.678 0.608 0.717 0.568 0.404

Mod Low (p) 0.174 0.064 0.038 0.025 0.020 0.015
(<) 6.831 2.283 1.087 0.812 0.640 0.558

Mod Mod  (p) 0.113 0.047 0.026
(x) 2.633 1.337 0.484

.021  0.017 0.012
571  0.458 0.311

[=N =)

.029  0.022 0.017

Low Low (p) 0.189 0.060 0.044
1 .611 0.471 0.417

(x) 5.849 .906 0.652

(==}

Low Mod (p) 0.122 0.046 0.029
(k) 2.675 1.113 0.348

.023  0.018 0.014
.630  0.325 0.248

oo

tabled values of n. The valu: of R listed for the largest tabled
n less than the actual number of items should yield a conservative
estimate for m. For example, suppose the test considered in the
numerical example above actually contained 22 items. The tabled
value of R corresponding to n = 25 would produce an underestimate
of m, and the resulting proportion of error in estimating kappa
would exceed Y, The R-value for n = 20 would overestimate m, and
the observed proportion of error would then be less than Y

The relationships between R and test difficulty or cutoff scores

are more complex. No simple trends can be observed in the tables.

In many testing situations, the cutoff score typically ranges from
60% to 80% correct. For cutoff scores falling Yetween the values
in the tables, find R for both bracketing values and use the larger.

Again, consider the situation in the numerical example above.
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Suppose the cutoff score was 13 (65% correct). From Tables 1 and
2, the values of R corresponding to ¢ = 60% and 70% are .365 and

-362, respectively. The larger of these (corresponding to c¢ = 60%)
should provide a reasonable value for R.

4. CONCLUSIONS

In this paper, an approximation method has been presented for
determining the minimum sample size necessary to achieve a speci-
fied degree of precision in estimating raw agreement (p) and kappa
(x) indices of reliability for mastery tests. The method uses the
quantity R which can be calculated for known test score distri-
butions. Tables of R have been constructed for test score dis-
tributions typically found in mastery testing, for a variety of
test lengths and cutoff scores. In addition, sugeestions have been
made for obtaining reasonable estimates of R for situations not
directly covered by the tables.

Of course, precision is only one of the factors that must be
considered in any study. Feasibility, cost, and classroom manage-
ment considerations also play important roles. However, knowledge
of necessary sample sizes should facilitate and simplify the
planning of reliability studies. The tables presented here should
be particularly useful for tests involving the basic skills, and

perhaps other testsof similar construction.
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STATISTICAL INFERENCE FOR FALSE POSITIVE AND
FALSE NEGATIVE ERROR RATES IN MASTERY TESTING
(COMPUTER PROGRAMS AND TABLES ADDED)

Huynh Huynh

University of South Carolina

Psychometrika, March 1980.

ABSTRACT

This paper describes an asymptotic inferential procedure <or
the estimates of the ".:lse positive and false negative error rates.
Formulae and tables are described for the computations of the stan-
dard errors. A simulation study indicates that the asymptotic
standard errors may be used even with samples of 25 cases as long
as the Kuder-Richardson Formula 21 reliability is reasonably large.

Otherwise, a large sample would be required.

1. INTRODUCTION

A primary purpose of mastery testing is to use test data in
order to classity an examinee in one of severa’ achievement (or
ability) categories. Typically there are two such categories,
mastery and nonmastery. For example, let 6 be the true ability of
a person. Then true nonmastery status is defined by the condition
8 < 60 and crue mastery by 6 3_00, 60 being a given constant often
referred to as a criterion level. 1In the reality of testing,

This paper has been distributed separately as RM 79-6, July, 1979.
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however, decisions are normally made on the basis of the observed
test data. Let x be the test score and c an appropriately chosen
passing (or mastery) score. Then nonmastery status is declared if
X < ¢ and mastery status is granted if x > c. A correct decision ;
on the basis of test data is made when 6 < 60 and x < ¢ or when i
9 > 90 and x > c. The other two situations represent errors in ‘

classification: a false positive 2rror is committed when 6 < eo

and x > c; a false negative error is encountered when 6 > 60 and
X < c.

The likelihood (or rate) of false positive and false negative
errors may be assessed via several schemes. For example, using the

binomial error model and the notion of an indifference zone, it is

possible to compute the maximum error rates in classification for
an individual (Wilcox, 1976). On the other hand, the error rates
for a group of examinees m.y be assessed if a reasonable form for
the (group) distribution of 6 is available. Such is the case of
the beta-binomial model (Keats & .ord, 1962) explored by Huynh
(1976a, 1976b, 1977a, 1978) and Wilcox (1977) in several technical
problems regarding mastery testing.

The beta-binomial model requires that test items be exchange-
able, i.e., they can replace each other without changing “he
distribution of test scores. Item exchangeability implies that the
items are equally difficult. This condition can be considered only
as approximately satisfied in most testing situations. However,
there are indications (Keats & Lord, 1962; Duncan, 1974) that
soveral test score distributions fit into the beta-binomial model
adequately. There are more complex models (Lord, 1965, 1969) which
take into account variation in item difficulty. However, as far as
estimation of error rates is concerned, the data in Wilcox (1977)

seem to suggest that the more complex models do not increase sub

stantially the accuracy of the estimates.
The purpose of this paper is to dcscribe an ac™mptotic infer-
ential procedure for false positive and false negative error rates.

The beta-binomial model is used as a vehicle for computation.
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2. COMPUTATIONS FOR ERROR RATES

Let n be the number of test items randomly selected from an
item pool, 6 (true ability) be the true proportion of items in the
total item pool that would be answered correctly by an examinee,
and x be the examinee's observed test score. Then the conditional
density of x is given as

£(x|o) = )e*(1-0)", x = 0,1,...,n.

Let the density p of 6 be of the beta form with parameters o and 8,

i.e.,
a=-1 -1
=58 "(1-9)
p(9) = B(o. B) » 0 <08 <1, )
- Both a and B are positive constants. The Joint density of (x,8) is
given as
(x,8) = (n) G*x-l(i_e)n+B-XMl
& B(3,8) .

With the criterion level eo and passing score c, the false positive

error rate is given as

Fp = P(x > ¢c,0 < 60)

I S T n (0 qotx=-1, o nif-x-1
“Bom L G, ¢ T de.

Let
eo u 1
Muyvie)) = [T e (-0
Then

F =

n
D —7 T ( ) D{a+x, n+B~x;6 )

=C

As foi the likelihood Fn of a false negative error, it may be
noted that

Fo = P(x <c-1,0 > 8 )

c-1 1 ——
——B(i 5 L« ) I 6% %™ (1-9)MHEX"1yq

(Y oy 7~y
“‘"‘l)
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Let £ = 1-9, Eo = 1-eo, Yy = n-x, and d = n-c+l. Then it may be
verified that

1 n n Eo gty-1 n+a-y=-1

From this it may be seen that Fn may be computed in exactly the

same way as Fp'

The computations of Fp can be carried out with some degree of

efficiency by noting that
u v-1 .
D(u+l,v-1;0.) = (-6 (1-0 )" " + ub(u,v;6,))/(v-1)

and that
D(u,V;eo) = B(u,v) I(u,v;eo).

In this formula, I(u,v;eo) denotes the incomplete beta function as
tabulated in Pearson (1934) and implemented via the IBM subroutine
BDTR (1970) or the IMSL subroutine MDBETA (1977).

3. _ASYMPTOTIC STATIS"YCAL INFERENCE FOR ESTIMATES

Maximum likelihood estimation for o and B has been considered
by several authors including Griffiths (1973). A fairly efficient
computer routine is described in Huynk (1977b). The data generated
by Huynh indicate that the maximum litelihood estimates o and B and
the moment estimates a and B do not differ markedly from each other
when the number m of examinees is reasonably large Hence, for the
numerical examples described in this paper, only a and B shall be
used. They are to be computed as follows. Let x and s be the mean

and standard deviation of the test score, and let

4 =D (l _ ;(nJE))

21 n-1 2

ns

be the estimated KR21 reliability. Then the moment estimates are

~

a= (14 l/a21);

~

B = -a + n/a21 -n.
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The estimaEes are positive when 0 < ;21 <1l. (If the computed
value for g is zero or negative, replace it by the smallest posi-
tive estimate of reliability which happens to be available.)

For reasons previously mentioned, general sampling properties
appropriate for the maximum likelihood estimates would be applicable
to o and 8 For example, A;(a-a,ﬂ—e) follows asymptotically a

bivariate normal distribution with zero mean and covariance matrix

£= (o) = lIb

-1
pqll where

n
bll = z [_fil()‘] /f(X) s
X=0
_ 0 W) af()
by = £ 5 “/f(),
X=0
and
n
X=0

Now let F = Z(a,B) be the function of (a¢,B) defining the
false positive error rate. Let Fp = Z(a e) be the estimate of F
computed on the basis of (a,B) Then it may be deducei (Rao, 1973,
p. 386-387) that ﬁi(Fp - Fp) asymptotically follows a normal dis-
tribution with zero mean and with variance

2 8F aF oF oF

Vep = o1 GaD’ + 20y, et °22(—“R)

It may then be said that the estimate F has an approximate normal
distribution with mean Fp and standard deviation (standard error)
of O (F ) = V /V/m. An estimated standard error for Fp, name}yA
s_( Fp), may be obtained by replacfng (a,B) by the estimates (a,B)
in the above formula defining ow(Fp).

The computations described abov; also apply to the rate of
false negative error. Let F and F be the true and estimated
values for this error rate. Then /—(F - Fn) asymptotically follows
a normal distribution with zero mean and with variance
oF oF oF oF

2 n,2 n n n,2
Ven = 01Ga )t B3 5 oG
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In addition, let p be the correlation between the estimated false
positive and false negative error rates. Then it may be noted that

p = cov(Fp,Fn)/prVfn where
. - 3F  oF aF aFn aF_ oF_ _ER aF
cov(FL.F) = 0y 5550 + 9,6 38 * s 32 * %22 3B 38

4. COMPUTATIONS FOR THE PARTIAL DERIVATIVES

The computation of pr, an, and p requires the partial deriva-
tives of Z(a,B) with respect to a and B. These derivatives, in
turn, are based on the partial derivatives of D(a+x,n+8-x;eo) and
B(a,B) with respect to a and B.

4.1. Partial Derivatives of B(a,B)

With
B(a,B) = fi % 11-t) B Lae
it may be deduced that
%% = Ii 2 (1-1)8L 10g ¢ at
and that
EE - [1 1168 10g (1-t) dt.

Let Y be the Euler psi function as defined and tabled in Abramowitz
and Stegun (1968, p. 258, Section 6.3 and Table 6.1). Ther accord-
ing to Gradshteyn and Ryzhik (1965, p. 538, Section 4.253, Formula 1),

2 = B(a,6 V(o) - ¥(aB)
and

3B

35 = B(a:8) (¥(B) - ¥(atB)).

Formulae are also available in these texts which are useful in
computer programming the psi function. For the present paper, the
following steps have been adopted.

1. First the argument of ¥(.) is reduced to a value in the

half closed interval [1,2) by using the formula
Y(z+1) = v(2) + 1/=.
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If z = 1, then ¥(1) = -.5772156649.

For 1 < z < 1.75, the following series expansion is used

¥(1+z) = ¥(1) + § (-1)"(n)2?!
n=2

where £(.) is the Riemann zeta function tabulated in
Abramowitz and Stegun (1968, p. 811, Table 23.3). If the
series is stopped at the term zN-l, the error cannot exceed
g(N)zN_1 < l.leN-l, (N > 4). For this paper, ten signifi-
cant decimals are adopted for ¥. The value for N is
-23.21647129/10g z + 1 which cannot exceed 82.

<. For 1.75 < z < 2, the four-point Lagrange interpolation is

used to compute Y on the basis of tabled values of ¥ for
z = 1.745 (.005) 2.010. Let ¥_y» Wo, Wl, and ¥, be four
consecutive tabled values of ¥ with Wo corresponding to z .

Then for any p, 0 < p <1,

- “p(p-1)(p-2) -1) (p-2
‘l’(zo + .005p) = 3 Y+ 3 ¥,

2
p(p+l) (p-2) plp -1)
- 7 YW =%y,

(Abramowitz and Stegun, p. 879, Section 25.2.13). Accord-
ing to these authors (p. 270), this procedure yields ten
significant decimals for the psi function.

4.2. Partial Derivatives of D(a+x,n+B—x;eol

With

)
D(ata,mtB-x;0.) = f © e5F (1o)X g,
it may be deduced that
0
3D f° ta+x—l(l—t)n+8-x-llog t dt
da o
and
0
g_g = [0 ) ™B Xl 00 (1-t) .

With x > ¢c > 1 and 0 < eo < 1, the integrating functions for both

partial derivatives are continuous with respect to t provided they
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are taken as zero at t = 0. Hence, the process of differentiation

under the integral sign is legitimate. Let

6
6w,vi0) = f ° " -6)" log £ at, u>1, v > o0

Then

aD
S

To compute the partial derivative 3D/38, let z = 1 - t in the

= G(otx,n+B~x; 6 )

previous integral defining this derivative. It follows that

@ = l MB‘x-l(l_z)Q‘!’x-l

38 1- 2 log z dz
0

= fi zn+6-x-l(l-z)°+x-llog 2 dz - G(n+B-x,a+x;l—eo).

From Section 4.1, it may then be deduced that

%g- = B(n+B-x, orkx) (V(rtB-x) - ¥(ntartp)) - G(n+B-x, ortx;1-9 ) .

The computation of G(u,v;eo) is carried out as follows.

1. For L <u<2and 0<v<2, the 32-print Gaussian-Hermite
quadrature is used to integrate th< functicn t:u-]‘(l-t:)v"1
log t on the interval (o,eo), then on the two interval;
(0,60/2) and (60/2,60). If the relative change between
the two resulting G integrals is less than a tolerance
error EPS, then the numerical quadrature ste s. Otlerwise,
it will be carried out on the four subintervals (0,6 /4),
(6 /4,8 /2), (e /2.38 /4), and (36 14,8 ) and the result-
ing integral will be compared with the one obtained via
two subintervals. The orocess continues until the rela-
tive change between these integrals is less than EPS. The
tolerance error EPS is set a* .00005 in this paper.

2. For other values of u and v, the following lemma is used
to reduce u and v to two values u' and v' such that
1 <u" <2and 0 <v' <2,

Lemma. We have
G(u,v-l;eo) + G(u+l,v;6°) = G(u,v;eo)

and
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uG(u,v+1;eo) - vG(u+1,v;eo) = H
where

H = eg(l—eo)v((log eo-l)/(u+v))'-vD(u,v;eo)/(u+v).

Proof. The proof for the first formula is as follows.

% u v-1
Glutl,vie) = [ “t"(1-t)" log t dt

eo —1
= -(1-t)t 1- t) log t dt
Nt e *1)(

eo v -1
=-f, £ -0)"10g t at

% u-1,, w1
+1°7 970" 0g ¢ ae

= -G(u,v+1;eo) + G(u,v;eo).

As for + second formula, let us integrate in parts the
integral

e

G(u,v+1;eo) = foo e 1(l-t) log t dt.

Let
Y = tu-l(l-t)v

and
dZ = log t dt.
Then
Y = ((u-1)t" "2 (1-t) %t - vtu'l(l—t)v'l)dt
and
Z=tlogt-t.
Hence 6 0
Glu,v+1;8 ) = YZ t:o - f,° zay

u v
eo(l-eo) (log eo 1)
% u-1 v
- -1 f 7 977 1-0)"10g ¢ dt

6
+ v[°° £ (1-6)""l10g ¢ at
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% u-1
+ (-1 ° 710 Vae

eo u v-1
- vjo t (1-t)" “dt.

Algebraic manipulations will yield
G(u,v+158 ) = -(u-1)G(u,v+1;6 ) + vG(utl,v;6 ) +H

where H is defined in the lemma. The second formula of the
lemma is just proved.
The reduction of the range of u and/or v may now be
accomplished by using the following recurrence formulae:
G(u+l,v;6°) = (uG(u,v;eo) - H)/(u + v)
and
G(u,v+l;6°) = (vG(u,v;eo) + H)/(u + v).

4.3. Partia) Derivatives of F (a,B)

From the expression

n
n
Ec (x)D(a-Px,tH-B—x, eO)

1
F o= —0
p B(a,B) x

it follows that

§§E==[xgc (:)an(u+x,n+s-x;eo)/aa - Fpan(a,e)/aa]/B(a.B)
rn
=l (:)G(a+x,L+B-X;9°)]/B(G:B) - FP(W(G) - ¥(a+8))
and e
2 - xzc () (B(o#x,mtB~x) = G(n+B-x,a+x,0 ))/B(a,B)

- F (Y - v(et))
The computations may be simplified by noting that
. = (_p Ot%x.. o (nFB-x-1
D(ortxrl,m+B-x-1;0 ) = (-6_°" (1-0 )

+ (a+x)D(otx, n#p-x;6 ) )/ (n+B-x-1) ,

and hence
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Glotxtl,mB-x-1;0) = (-8 **(1-0 )™F X115 ¢

+ D(u+x,n+B-x;eo)
+ (o) Gobx, m+B-x30 ) ) / (mr+B-x-1) .
Also,
nt+p-x-1 otx
G(n+B-x-1,a+x+1;eo) = (eo B (1-90) log 8

- D(n+B~x-1, atx+1; 6,)
+ (eh0)G(n+B-x, a+x;06 ) ) / (n+B-x-1) .

4.4. Partial Derivatives of F (a,B)

From the e.:pression of F in Section 2, namely

F (a,8) = z o I e ™Y1y,

B(fb B)

it follows that

n

F (a,B) B(P ) Z (;)D(B+y,n+a-y;£o).
Hence
BFn
- z ( )c(e+y,n+a-y £,)|/B(asB) - F_(¥(B) - ¥(a+p))
y—
and
aFn n
3a = I () (B(B+y,mra-y) - Glata-y,B4y36 ) /B(a,B)
y=d 7Y

- F_(¥(a) - ¥(a+B)).

5. NUMERICAL ILLUSTRATION

Suppose that on a five-item test, the number of students
having scores of 0, 1, 2, 3, 4, and 5 are 4, 14, 9, 17, 21, and 26
respectively. Altogether there are m = 91 students. It follows
that x = 3.264 and 8 = 1.562. The moment estimates for « and B are
a = 1.611 and B .857. The estimated covariance matrix of (;,é)

-~

is defined by the elements 0 = .18859, 09 = .08318, and
Typ = .05035. Let e = .80 and ¢ = 4. The estimated error rates

are then Fp = ,180 and F = .031. The values of the partial

n .
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derivatives evaluated at (;,é) are an/aa = 02281, an/ae = 06926,
oF /3u = 01229, and oF /38 = -,01464. Thus, the estimated standard
errors for Fp and F are s (F ) = .025 and s (F ) = .003 respective~
ly. The estimated correlation between Fp and Fn is p = ,597. These
data may be of use in estimating other paramet.rs. For example,
let y be the proportion of examinees classified correctly by the
test scores. Then an estimate for y is ; =] - (F + F ) = 789
which 1s associated with an estimated standard error of s (y) =
(s2GF) + s2(F) + 208 (F )s (F )T = ((.025)2 + (.003)2
+ 2x. 597x 025x. 003j .061.

6. TABLES FOR Fp;_ypr_FnL_anl_égg_g

Tables are presented in Appendix A which facilitate the compu-
tations for the false positive and false n ‘ilve error rates, their
standard errors of estimate, and their corre.uction. As indicated
previously, this information may serve as the basis for the compu-
tation of statistics such as the proportion of correct decisions
and its standard error. All computations were carivied out via the
Amdahl V-6 System with the double precision mode in use whenever
feasible.

Input to the tables are (i) number of test items n, (ii) cri-
terion level 8 o (1ii) passing score ¢, (iv) test mean x, and
(v) the KR21 reliability a,;- It may be noted that if a and B are
estimates of the parameters a and B other than the moment estimates,
then the entries for test mean and KR21 are simply n&/(; + é) and
n/(n + o+ é) respectively.

~

For each entry (n, eo, c, X, u21), five values may be read

a

out. They are Fp, v, , F, an, and p.

The tables are ignst:ucted for n = 5(1)10 and d21 = ,10(.10).90.
For each n, the test mean is chosen such that x/n = .10(.10).90.
The criterion level is set at eo = .60, .70, and .80, and the pass-
ing score is one or two values approximately equal to or larger

than neo.
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Numerical Example 1

Let n = 10, 60 .6, and c=6. For x =5.0 andA;21 = .60,
the tables yield the values F = ,1667, pr = ,1858, Fn = ,0504,
an .0548, and p = ,2941. If the data are obtained from 100
examinees, then the estimated standard errors are s (F ) =

.158/10 = .0186 and s (F ) = .0055. It may be deduced that the
proportion of correct decision is .7829 for which the standard
error is estimated as .0241.

It may be observed from these tables that the relationship of
each of the quantities F 0’ Vf . Fn, an, and p with respect to
either x or @y is rather unpredictable. Hence interpolation for
nontabulated entries should be carried out with care since the
relationship is obviously not linear. For such a case it is
recommended that Lagrange interpolations with three or four points
be used whenever possible. Details regarding interpolations of
this type may be found in Abramowitz and Stegun (1968, Section 25.2).
The four-point Lagrange interpolation has been described in
Section 4.1.

Numerical Example 2

R Let n = 10, 60 = .6, and ¢ = 6, along with X = 4.0 and

a21 = .22. Using th four-point Lagrange interpolation for tune
false positive error, we have W_l = ,1784, Wo = ,1883, ¥ = -1886,
and WZ = .1799. With p = (.22-,20)/.1 = .2, 1t may be found that
the interpolated false positive error is .1891.

7. FINITE-SAMPLE PERFORMANCE OF THE
ASYMPTOTIC STANDARD ERRORS

So far only an asymptotic treatment has been presented for
the estimates of the false positive and false negative errc. rates
Fp and F « An obvious question which needs to be answered is, at
what minimum sample size m will the asymptotic standard errors
s (F ) = pr/ﬁi'and sw(Fn) = an/vm -epresent adequately the actual
standard errors? A theoretical consideration of this issue is

rather complex since it involver a Joint examination of the spee.
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at which W = 4;2&-0.5-8) converges to its asymptotic bivariate
normal distribution and of the adequacy of representing the
functions Fp(u,B) and Fn(u,B) by their Taylor expansions based on
the first partial derivatives. Some work regarding the convergence
speed of univariate maximum likelihood estimat~s are summarized in
Kendall and Stuart (1967, Vol. 2, p. 46-48). An extension of this
work would be needed for any theoretical consideration of the
finite-sample behavior of the asymptotic errors.

For this report, sim lations emploving the IMSL random genera-
tor GGUB were used to assess the performance of sm(fp) and.sw(én):
An additional issue under study was the degree of bias of Fp and Fn
as estimates of the parameters Fp and Fn' (It may be recalled that
both estimates are asymptotically unbiased.)

Five teta-binomial distributiers (summarized in Table 1) were
used in the simulation study. Four tests consisting of n = 5, 10,
15, and 20 items each were formed by random selection of items “rom
the Comprehensive Tests of Basic Skills, Form £, Level 1, which had
been used in a large statewide testing program. The frequency dis-
tribution for each of these tests was then altered slightly so that
the resulting distribution would conform to almost exactly that of
a (marginal) beta-biiom "al distribution. Relevant information
regarding these discributions 1s listed in Table 1. The other
beta-binomial distribution, with a = 8.970 and 8 = 1.994, is
similar to the one used in the Wilcox study (1977).

TABLE 1

Descriptions of the Five Test Nata u.ed in the Simulation

Case Source n Mean SD a B8 a4y eo
1 CTBS 5 3.7066 1.5445 1.2515 0.4367 .7476 ]
2 CTBS 10 7.4702 2.9435 1.1285 0.3822 .8688 .6 6
3 CTBS 15 8.8630 3.3588 3.3273 2.3039 .7271 .8 12
4 CTBS 20 11.1811 5.1115 1.9115 1.5077 .8540 .6 12
5 Wilcox 10 8.1814 1.6147 8.9703 1.9940 .4770 .8 8
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The criterion levels 60 were chosen to be .5, .6, and .8 and
the passing score c is nut at neo. The sample size m is set at 25,
50, 100, 200, 400, and 800.

For each situation listed in Table 1, two thousand r Iications
were used to estimate the means of Fp and F 0’ and their finite-
sample standard errors of estimate S, (F ) and s, (F ) The moment
estimates were used when a21 was positive For a21 negative or
zero. the procedure used by Wilcox (1977, p. 295) was adopted. 1In
other words, for these situations, the beta-binomial is considered
to have degenerated to a binomial distribution (n,}1) where A = x/n.
If 2 > 60, only false negative errors may be committed, for which
the likelihnod is

- c-1 n, X n~x
Fn = I (x)A (1-2)
X=0

When ) < 60, only false positive errors may occur with a rate of

- n

Fo= 2 (V-0

x=c

The moment estimates receive more attention than the ML esvimates in
this discussion because (i) they are likelv to be used in practical
situations, especially where computer facilities are not available,
(11) they are asymptoticall equivalent to the maximum likelihood
(ML) estimates, and (iii) iteration for ML astimates (which are the
best asymptotically normal estimat.s) is time consuming and may not
converge in small samples. (See Zacks (1971, Section 5.2) for
additional remarks akh~st ML estimates.) However, simulations for
the ML estimates were also conducted to provide comparative data
for the ML and moment estimates. (In the rare instances where the
ML iteration did not converse, the moment estimates were used.)
. Table 2 reports the empirical mneans of the estimates ﬁp and
Fn. Enclosed within parentheses are the empirical means based on
the ML estimates. The data indicate that the means of the moment
estimates and the corresponding means of the ML estimates are
almost identical when m is at least 50. The degree of bias (as

meacured by the discrepancy between the empirical means and their

259 240




TABLE 2

Empirical Means of the Estimates Fy and Fy
(and of their Maximum Likelihood Counterparts)

Pop. Empirical mean at m =
Case Error Value 25 50 100 200 400 800
1 F .040 .037  .038  .039  .040  .040 _ .040
P (.037) (.039) (.039) (.040) (.040) (.040)
F .061 .059 .060 .060 .060  .060 .06l
(.062) (.061) (.061) (.061) (.061) (.061)
2 F .051 .049 .050 .051  .051 .G51 .05l
P (.050) (.051) (.051) (.051) (.051) (.051)
F . .027  .027  .027  .027  .027  .027  .027
(.028) (.028) (.027) (.027) (.027) (.027)
3 F .120  .118  .119  .119  .119  .119  .119
P (.120) (.119) (.120) (.119) (.120) (.120)
F, .026 .023 .02  .024  .024  .024  .024
(.022) (.023) (.023) (.024) (.024) (.024)
4 F .078 .078 .078 .078 .078  .078  .078
P (.081) (.079) (.079) (.078) (.078) (.078)
F .04l 041  .041  .041  .041  .041 .04l
(.042) (.042) (.042) (.041) (.041) (.041)
5 F .157  .151  .153  .156  .156  .157  .157
P (.149)  (.154) (.157) (.156) (.157) (.157)
F, .072  .078  .076  .073  .073  .072  .072

(.080) (.077) (.074) (.073) (.072) (.072)

population values) appears noticeable only in some instances when

m = 25. 1In practically all instances, the bias seems negligible.
Table 3 reports the empirical values or ﬁi'sm(ﬁp) and ﬁE'sm(fn)

along with che corresponding values simulated for the ML estimates.

The data indicate that for the situations under study, the moment

estimates and the ML estimates behave almost identically in terms

of sampling variability. The data also show that the asymptotic

values pr and Vf tend to underestimate the finite-sample values

ﬁ;'sm(ﬁp) and ME':m(Fn). The reader may deduce from the line

A, = .80 of Table II of Wilcox (1977) that Ai'sm(pp) = .130xv10

= .411 for m = 10, and = .072xv30 = .39 for m = 30. The asymptotic
value is .212. Thus the asymptotic standard error tends to be
smaller than the actual error. The magnitude of underestimation

is substantial when m is small and ayy is moderate. (See Case 5

260




INFERUNCE FOR ERROR RATES

TABLE 3

Empirical Values of /m %n(ﬁp) and /m sm(fn)
(and of their Maximum Likelihood Counterparts)

Asymp-

totic Empirical values at m =
Case Error Value 25 50 106 200 400 800
1 F .052 .060  .057 .054 .053 .053 .054
P (.059) (.056) (.055) (.054) ( 052) (.052)
F .088 .092  .091 .091 .092 .090  .091
(.092) (.089) (.089) (.088) (.088) (.091)
2 F .058 .063 .061  .060  .060 .060  .060
P (.063) (.059) (.058) (.057) (.058) (.058)
F .03 .03  .035 .035  .035 .035 .035
(.036) (.035) (.034) (.033) (.034) (.034)
3 F .102 117 .109 .105 .103 .101 .103
P (.122) (.104) (.106) (.105) (.104) (.102)
F . .040 .03¢ .04l .039 .041 .040  .040
(.043) (.042) (.041) (.040) (.042) (.041)
4 F .065 .072  .070 .070  .071 .072 .070
P (.07€) (.070) (.069) (.069) (.068) (.068)
F .041 .rs8 .03 ,035 .036  .036  .036
(.039) (.035) (.036) (.036) (.035) (.035)
5 F .212 .375  .287 .233 .221 .218 .211
P (.375) (.264) (.234) (.215) (.205) (.216)
F .105 .177 .156  .125 .115 111 .108

(.192) (.168) (.123) (.115) (.111) (.108)

with m = 25 or 50.) 1In other situations where %5 is reasonably
large, the degree of underestimation is not large even with

samples of size 25.
8. SUMMARY

This paper describes an asymptotic inferential procedure for
the estimates of the false positive and false negative error rates.
Formulae and tables are described for the computations of the
standard errors. A simulation study indicates that the asymptotic
standard errors may be used even with samples of 25 cases as long
as the Kuder-Richardson Formula 21 reliability is reasonably large.

Othervise, a large sample would be requ.red.

-
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APPENDIX A

Tables of the False Positive Error and Its Standard
Error (times AB the False Negative Error and Its Standard
Error (times Aﬁ » and the Correlation Beiween Fp and Fn

(M = number of subjects, denoted by m in the text)

Input to the tables are (i) number of test items n, (ii) cri-
terion level 8, (iii) mastery (passing) score c, (iv) test * :an X,
and (v) the KR2l1 reliability estimate. It may be noted that i.f «
and é are estimates of the parameters a and 8 other than the moment
estimates, then the entries for test mean and KR21 are simply
n;/(; + é) and n/(n + ; + é), respectively.

For each e?try (n, ?o’ c, X, &21), five values may be read

out. They are Fp, pr, Fn’ an, and p, respectively.

Numerical Example

Let n = 10, 6_= .60, and c = 6. For X = 5.0 and &21 - .60,
the tables yield the values Fp = .1667, V_ = ,1858, Fn = .0504,

an = ,0548, and p = .2941.

fp

(%)
-J
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.,*SQRT(M), and the Correlation between FP and FN
Number of Items: 5, Theta Zero: .60, Mastery Score: 3

Test KR21l=
Mean . 100 .200 .300 400 .500 .600 .700 . 800 .900
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Table of the False¢ Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 5, Theta Zero: .60, Mastery Score: &4

Test KR21l=
Mean .100 .200 . 300 . 400 .500 .600 .700 .800 .900
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 5, Theta Zero: .70, Mastery Score: 4

Mean ,100 200 .300 .400 .500 .600 700 .800

.2374 (1814 .1647 1539 1378 1182 .0967 .0733
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Itenms: 5, Theta Zero: .80, Mastery Score: 4

Test KR21l=
Mean .100 ,200 .300 .400 .500 .600 .700 .800 .900

.2148 .1987 .1514 .1152 .0887 .0684 .0517 .0371 .0228
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Table of the False Posi‘ive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .60, Mastery Score: 4
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Rumber of Items: 6, Theta Zern: .60, Mastery Score: 5

BECOODW@EES @SSt e S S e S S ) D e U D S S G e D S Sh e e SR D e

Test KR2l=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.8 .0150 .0201 .0245 .0269 .0272 ,0256 .0224 0175 .0106
.0783 ,0824 .0653 .0476 .0367 .0305 .0260 ,0218 0163
.0000 .0010 .0073 .0204 .0375 .0551 .0690 .0736 .0588
.0005 .0376 .1168 .1697 .1828 ,1662 .1318 .0937 .0744
.8980 .8985 .8351 .6929 .4995 .3486 .3333 .5516 .9180
2.4 .0490 ,0526 .0508 .0465 .0410 .0350 .0284 ,0211 .0123
.1431 .0843 ,0701 .06l .0521 0425 ,0337 ,0257 .0178
.0011 .0168 .0431 .0694 .090% .1054 .1106 .1026 .0733
.0834  ,3049 .3369 .2926 .2335 ,1780 ,1325 .1026 .0887
-.1119 ,0531 .3291 .6943 ,9529

3.0 .1022  ,0831 ,0686 .0572 .0476 .0390 .0308 ,0224 .0129
.3036 .2075 .1374 ,0957 .0692 .0510 .0377 .0274 .0184

.0500 .1103 1442 .1618 .1681 .1648 .1518 ,1266 .0826

1.1073 .6619 .4181 ,2925 ,2207 .1755 .1453 .1239 ,1032
~.8525 -.7564 -.5606 -.3021 -,0058 .3041 .5992 .8376 .9721

3.6 .0808 .0679 .0583 .,0502 .0428 .0353 .0288 .0212 .0123
.2768 .i584 ,1080 .0789 .0596 .0456 .0349 ,0251 .0179

3413 3169 ,2936 .2697 .2438 .2149 ,1812 ,1399 0850

.35G8 ,5560 .4181 .3333 ,2731 ,2265 .1878 .1531 .1158

-.1869 -.0187 .1411 ,3005 .4609 .6199 .7708 .8988 ,9803

4,2 .0114 ,0237 ,0288 .0301 .0292 .0267 .0229 .0177 .0107
2502 ,1281 ,0725 .0500 .0393 .0327 .0273 .0223 .0l64

3224 (4406 .3770 3242 ,2769 .2318 ,1862 1371 .0791

1.2797 .8958 .6313 .4711 3647 .2876 .2271 1752 ,1230
-.9352 -.8121 -.5234 -,1289 .2399 .53G63 .7472 .8983 ,9813

4.8 .0001 .0027 .0072 .0113 .0140 .0152 .0l48 ,0125 .0079

.0121 .0546 .0600 .0490 .0364 .0267 .0207 .0173 .0140

3439 3315 .3050 .2718 .2356 .1975 .1574 .1137 .0636

3972 .4 "7 4159 ,3795 .3288 .2765 .2259 1758 .1200
.3588 -.1550 1634 5439 .8421 9765
. . .0020 .0038 .0055 .0065 .0063 .0043
.0000 .0031 ,0136 .0225 .0247 .0214 .0l161 .0121 .0l01
1224 1300 .1347 ,1335 1256 .1117 .,0922 .0676 .0374
.2811 ,2805 ,2542 ,2241 .2041 1887 .1699 .1419 .0989
.5333 .5686 .4862 .3261 .1900 1754 .3584 .7284 .9650
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Table of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .70, Mastery Score: 5

Mean ,100 .200  .300 .400 .500 .600 .700 .800 .900

3.0 .1214 1258 .1202 .1095 0966 .0825 .0671 .0500 .0293

3.6 .2172 1793 |1¢4c 1256 .1051 .0864 .0685 .0499 .0287

4.2 .1559 1341 1170 .1020 .0879 0740 .0596 .0440 (0254

.2759 12313 .2060 .1921 1748 1529 1276 .0989 0646




Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .80, Mastery Score: 5

Test KR21l=
Mean .100 .200 .300 . 400 .500 .600 . 100 . 800 .900

- En am G2 G S G5 Gn Wh Gn Gn G5 Gn G G5 G5 £ G5 G G0 S5 G GE G5 G5 WD W5 Gn G5 G5 G G5 G S0 S T Gn W T WS G5 @ 5 W5 T G Gn G5 YD G2 G G G5 G2 ) G5 Gn G5 G5 Gn Gn W5 Gn G5 Gn Gn 45 e

.0000 .0000 .0000 .NPOO2 .0010 .0033 .0074 .0122 ,0137
.0000 .0000 .0004 ,0037 ,0127 .,0243 ,0315 ,0278 .0166
.9990 .9058 .9093 .9165 .9069 .8692 .7719 .5908 .7653
2.4 .0494 0597 .0726 ,0848 .0950 .0997 .0966 ,0832 ,0550
.1686 .1383 ,2003 ,1884 .1576 .124) ,0992
.0000 .0000 .0002 .0012 .0041 .008Y .0147 ,0193 .0180
.0000 .0002 .0050 ,0185 .0340 .0425 .0401 ,0282 ,0186
.9990 .8443 .8550 .8341 .7672 .6368 .4591 4111 8560

3.0 .1219 ,1360 .1482 ,1540 .1518 .1418 .1242 .0n982 ,0605
.2787 .2800 ,2378 .1886 .1572 .1382 ,1222 .1042 .0806
.0000 .0002 .0019 .0063 .Cl28 ,0196 .0251 ,0269 .0215
.0000 .0080 .0346 .0569 .0631 .0557 .0409 .0264 .0223
.8464 .7519 .6711 .4851 .2617 .117%9 .1436 .4732 .9341

3.6 .2466 .2520 .2421 ,2227 .1980 .1700 .1390 .1038 ,0609
.3604 2757 .2645 ,2527 ,2252 .1912 1563 .1222 ,0867

.0001 .0041 .0128 .0224 ,0304 .0355 .0370 .0336 .0233

.0129 .0893 .1145 ,1005 .0758 .0526 .0363 .0292 .0275

.3758 .1153 -,2963 -,3877 -,3160 -.1010 ,2977 ,7586 ,9726

4.2 .3979  .3379 .2862 ,2427 .2043 ,1686 .1336 ,0970 .0553
.8441 7126 5174 .3332 ,2908 .2237 ,1720 ,1290 ,0878

.0133 .0356 .0484 .0542 ,0552 .0525 .0466 .0372 ,0229

3740 .2439 1396 .0866 .0620 ,0511 .0454 ,0404 .02..

-.8941 -.8488 -,6809 ~.3649 .0691 .4753 .7553 .9154 ,98k%

4.8 .2585 .2273 .2014 177/ ,1539 1300 .1047 .0765 .0434
.7921 4988 ,3665 .2862 .2300 ,1870 ,1513 ,11&2 .0816

.1302 .1121 .0975 .0846 .0724 .0603 ,0480 .0347 .0194

3959 ,2419 (1742 .1339 .1060 ,0850 .0677 .052 .0360

0162 ,2124 ,3780 ,5258 .6592 .7770 .8756¢ .948Y .9904

5.4 .0108 .0381 .0564 .0657 .0678 .0D644 0561 (431 .0249
4112 3768 .2574 ,1799 .1367 .1142 .100" ,0870 .0641

.1152 ,0997 .0836 .0693 .0566 .0450 .0.3% ,0u231 ,0121

.2438 ,2497 ,1986 .1546 .1209 0944 0724 ,0527 .0329

-.4671 -.5964 -.4193 ~,1209 ,244% 5805
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Table of the False Positivs Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(MY, and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .60, Mastery Score: 5

Mean  .100 .200 .300 .400 .500 .600 .700 .800 .900




Table of the False Positive Error and its
S.E.*SQRT(M), the Falsec Negative Error and its
S.E.*SQRT(M), and th: Correlation between FP and FN
Number of Items: 7, Theta Zero: .60, Mastery Score: 6

Test KR21=
Mean .100 .200 .300 .400 .500 . 600 .700 .800  ,900

THRR AT EEmE S-S oSS eSS e




S.E.*3QRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .70, Magtery Score: 5

e etk e el e dl Rl g ey

Test KR21l=
Mean 100 .200 .300 400 .500 .600 .700 .300 .900
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Test KR21l=
Mean .100

1.4 .0008

2.1 .0058

2.8 .0243

(W
wn
o
~
N
(=)}

4.2 .1542

4.9 .1184

5.6 .0090

Table of the False Positive Error and its

.1008
. 2230
. 2667
4712
.0072

.0249
.1839
.3391
.6877
-.76838
.0019
.0302
. 1606
.2748
.3216

0539  .0565
1565 .1451
2456 .2287

<0749 -.0445 -,

ChEERERTEED R o w5 T e T I e ST e T I T D S S e S G SO e G D D D P SR ED W TR GO DS W

S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .70, Mastery Score: 6

S-S eSS o G L D I A S e o W

1372 .1127
.2582 .5796
0547 .0441
.0698 .0540
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Table of the False Positive Error and its
S.E,*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Nunber of Items: 7, Theta Zero: .80, Mastery Score: 6

Test KR21l=
Mean .100 .200 .300 . 400 .500 .600 . 700 . 800 .900

1.4 -0008 ,0015 .0029 .0052 .0092 .0152 .0225 .0281 .0253

2.1 .0058 .0027 .0130 .0192 .0275 .0368 .0445 .0466 .0365

2.8 .0243 0314 .0405 .0512 ,0617 .0693 .0713 .0648 .0453

3.5 -0727 .0849 .0974 ,1066 .1100 .1069 .0969 .0792 .0506

4,2 -1724 1828 ,1820 .1720 .1561 .1364 .1132 .0859 ,0515
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5.6 2225 ,1942 1711 ,1502 .1300 .1098 .0886 .0651 .0373

6.3 .0065 ,0274 ,0433 ,0521 .0551 .0532 0470 ,0366 .0215

2805 ,2955 2444 .1943 1540 1217 .0944 0696 ,0441
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .60, Mastery Score: 5

Test KR21l=
Mean .100 .200 .300 .400 .500 . 600 .700 .800 .900
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Tahle of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .60, Mastery Score: 6

Test KR21l=
.100 .200 .300 .400 .500 . 600 .700 .800 .900
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.C. ‘SQRT(M), and the Correlation between FP and FN
Number nf Items: 8, Theta Zero: .60, Mastery Score: 7

Test KR21l=~
Mean . 100 .200 .300 . 400 .500 .600 .700 . 800 .900
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: «79, Mastery Score. 6

Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

--------------------------------ra-----------------------------------

1.6  .0022 .0039 .0065 .0107 .0166 023 .0298 .0322 .025€

2.4 0155 .0211 .0285 .0375 .0466 .0534 .0557 .0512 ,0361
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4,0 1574 1664 ,1647 1549 1403 .1224 .1018 ,0777 .0473
3006 ,2283 ,1883 .1714 ,1517 .1286 .1044 .0806 .0563
-0001 .0037 .0132 ,0249 .0355 .0433 .G468 0444 0325
-C087 .0874 .1294 .1249 ,1021 .0764 .0545 .0400 ,0328
6774 4312 ,0392 -.1386 -.1322 .0056 .2768 .6571 ,9439

4.3 .3037 ,2600 ,2211 .1881 ,1590 .1321 .1059 .0785 .0467
5837 5190 ,3782 .2779 .2080 .1571 .1181 .0865 ,0581

0148 0431 .0607 .0698 .0728 .0710 .0647 .0534 .,0348

4356  .3147 1947 1283 ,0927 .0727 .0599 .0497 ,0391

-.8272 -.7993 -.6354 -.3670 -.0233 .3267 .6243 .8429 ,9697

3.6 2163 .1902 .1688 .1493 .1306 .1116 .0915 .0690 .0413
-6392  .3932 2827 .2157 .1690 .1336 .1050 .0802 .,0557

1765 .1552 .1377 .1217 .1062 .0907 .0743 .L339 .0334

4995 .3058 .2197 .1678 .1317 .1043 .0821 .0628 ,0440

-.1046 .0726 .2289 .3758 .517% .6543 .7840 .8982 ,9777

6.4 .0120 ,0395 0578 .0675 .0708 .0689 .0621 .0502 ,0314
-4015 .3366 .2249 .1572 ,1178 .0937 .0773 .0641 ,0486

1993 1725 1466 .1240 ,1040 .0854 .0673 .0486 .0276

.3767 .3574 ,2705 ,2031 .1546 .1187 .0907 0673 ,0447

-.6497 -.6773 -.4938 -,2202 .0976 .4098 .6764 .8702 ,9757

7.2 0000 .0011 ,0056 .0126 .0198 .0252 .0276 .0255 .0173
-0011 ,0362 .0815 .0982 .0921 .0752 .0570 .0443 ,0359

0466 .0548 .0593 .0592 .0554 .0489 .0402 .0296 ,0166
17741624 1247 1003 .0871 .0773 .067. .0547 ,0377

-8033 .7707 .6163 .4106 .2788 .2913 .4740 7722 . 9653
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Table of the False Positive Error and its
S.E.,*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and tue Correlation between FP and FN
Number of Items: 8, Theta Zero: .70, Mastery Score: 7

Test KR21=
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Table of the False Positive Error and its
5.L.*SQRT(M), the False Negative Lrror and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .80, Mastery Score: 7

Test KR21=
.100




Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 9, Theta Zero: .60, Mastery Score: 6

Test KR21l= )
Mean .100 .200 .300 .400 .500 .600 .700 . 800
6.9 0002 0005 0013 .0027 0051 0086 0123 0145

.0000 .0032 .0240 .0533 .0726 .0759 .0652 .0465
.9990 .8697 .8600 .8060 .7067 .58l4 .4928 5599
. . . . . .0933 .0781 0600
.2556 .1930 .1534 .1337 .1169 .0953 .0802 .0613
.0001 .0035 .0133 .0259 .0379 .0469 .0515 .0494
.0073 .0865 .1371 .1384 1177 .0913 .0670 .0487
7300 .5630 .2302 .0269 -.0013 .0998 .3191 .6438

4.5 2466 .2115 1798 .1529 .1293 1076 .0864 .0645
4724 4206 3063 .2241 1667 .1250 .0931 .0673

.0162 ,04C2 ,0687 .0797 .0838 .0823 .0757 .0633

4812 .3605 ,2305 .1565 ,1148 .0896 .0722 .0581

=.7792 -.7624 -.5941 -.3363 -.0234 .2951 .5797 .8087

5.4 <1872 (1640 ,1452 ,1284 .1122 .0961 .0792 .0603
5497 3338  ,2375 .1794 .1390 .1085 .C839 .0629

.2077 .1843 1648 .1468 .1292 .1113 ,0922 .0706

.5763 .3552 .2559 .1956 .1534 .1210 .0945 .0715

-.1406 .0285 .1791 3226 .4631 .6023 .7392 .8679

6.3 0124 .6385 ,0552 .0639 .06€8 .0651 .0592 .0486
3379 .3026 ,.1962 .1352 .1006 .0792 .0640 .0515

2616 .2256 ,1922 .1636 .1383 .1148 .0918 .0679

L4835 L4445 3291 2429 1835 .1392 ,1050 .0771

=.73038 -.5454 -,2716 .0433 .3497 .6172 .8294

7.2 .0000 .0018 .0079 .01€5 .0245 .0311 .0340 .0321
.0027 .05C8 .0940 .1024 0911 .0729 .0546 .C408
.0964 1057 .1086 .104% .0967 .0852 .0710 .0537
.2452 2078 .1621 .1375 .01 .1033 .0862 .0685
L71€2 0264 .3892 1985 .1440 2166 .4119 7090
€.1 .0000 .0000 .0003 .0016 .0044 .0085 .0125 .0147
.0000 .0005 .0078 .0239 .0396 .0466 .0427 .0316
0125 0179 .0244 .0309 .0356 .0374 .0355 .0294
0796 .0985 .1099 .1042 .0874 .0696 .0565 .0480
.62€1 . . .6506
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1LFERENCE FOR ERROR TATES

Table of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and its
S.L.*SQRT(}), and the Correlation between FP and FN
wumber of Items: 9, Theta Zero: .60, Mastery Score: 7

Test I'R21=
Mean .100 .200 . 300 . 400 .500 .600 . 700 .800 .900

1.8 0007 .,0014 ,0026 .,0045 .0070 0024 ,0110 .0110 0081

2.7 0065 .0096 .0136 .0173 .0199 .0208 ,0199 .0170 ,0113

3.6 0315 ,0376 .0401 .0396 .0369 .0329 ,0278 ,0216 .0133

4.5 0920 .0793 0672 .0569 0478 .0396  ,0317 ,0235 .0l4l

5.4 0007 .0680 .0586 .0507 .0435 .0366 .0298 0224

8577 .5539 4148 3287 2670 2104 1772 1399 .1019

=.2255 -.0679 .0821 .2324 .3858 .5423 6993 8481 .9635

6.3 -0056 .0168 ,0234 .0263 .0268 .0255 ,0227 .0183 .0116
-1726  .1254 0767 .0514 .0383 0304 0247 ,0197 0144

<2077 4417 ,3821 ,3301 .2330 -2381  ,1929 1444 0865

-8679  .7774 .5858 4457 3454 2699 ,2098 ,1584 ,1089

=.3715 -.5128 -.6168 -.3108 .0380 .3589 .6249 .8311 .9636

7.2 -0000 .0008 .0034 ,0070 .0102 .0125 .0133 0123 .0085
0012 ,0225 ,0399 .0416 0355 ,0275 ,0203 .n153 .0120

<2676 ,27C0 ,2621 .2445 2202 .1910 1573 1130 .0696

3643 3346 3085 ,2875 .2591 .2250 ,1883 ,1496 1049

3547 1980 -.0314 -,1168 -.0674 .0945 3694 7119 9495

6.1 .0C00 ,0000 ,0001 .0007 0019 ,0035 .0050 .0057 .0045
0000 .0002 .0034 .0102 .0l62 .0183 0161 .0117 .0086

0623 ,0722 0824 ,(G908 .0949 .0930 .0841 ,0671 .0406

.2049 2192 2216 2027 1733 ,1464 1263 .1100 .0839

=.3332 7761 .7781 .7411 6564 .5413 4717 60292 .9196




HUYNH

Table of the False Positive Error and its
S.E,*SQRT(M), the Falece Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 9, Theta Zero: .70, M..tery Score: 7

Test KR21=
Meen .100 .200 . 300 400 .500 600 .700 .600 .900
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1.8  .0007 .00l4 .7026 .0043 .0085 .0135 .0189 .0223 .0192

.0000 ,0000 .0000 ,0005 ,0026 .0076 .,0156 .0245 .0274
.0000 .0000 ,CO014 0101 .0284 .0484 ,0589 .0518 .0314
<9517 .9203 ,9340 .9366 .9238 .8875 .8086 .6779 .7758
3.6 .0315 .0397 .0491 .0574 .,0626 .2636 .0599 .N506 .0337
.1231 1404 ,1400 .1192 ,0939 .u735 .0593 .0483 .0370
.0000 .0000 ,0011 ,0050 .0125 ,0228 ,N334 ,0404 ,0366
.0000 .0023 ,0237 .0563 .,0800 .0859 .u749 .0531 ,0348
.8773 .8733 .3673 .8175 7177 5736 4611 ,4961. .8504

4.5 .101¢ .1129 1151 1114 ,1030 .,0914 .0771 .,0""7 ,0370
<2441 1946 1451 ,1237 ,1090 .0932 .(l764 .0.». .0414
.0000 .0030 .0129 ,0266 .0404 ,0517 .0582 .,0573 .0438
.0051 .0806 .1410 ,1496 ,1306 ,1022 ,0741 ,0525 .0412
.7618 .6407 .3272 .0712 -.0114 ,0492 ,72472 ,5920 .9246

5.4 .2299 .2001 .1 10 ,1458 .,1233 .,1026 .0824 ,0613 .03..3
.3390 .3822 ..s75 ,2133 ,15°% ,1203 ,0899 .065Z ,0433

.Cl42 .0474 .0707 .0843 ,0904 ,0903 ,0841 0710 0475

4631 .3365 .2547 ,1723 ,1239 ,0951 .0766 .0630 .0497

-.7029 -.7606 -.6249 -,3979 -,0959 .2409 .5571 .8079 .9616

6.3 1,51 1531 ,1348 ,1185 ,1031 .G878 .0719 .0543 .0327
.5347  ,3228 ,2287 .,1723 1334 ,1042 ,0808 .0609 .0418

.2199 1966 .1767 1575 .1394 ,1202 ,0995 .0759 .0462

.5916 .3684 2682 ,2074 ,1646 1317 .1046 .0806 ,0569

-.1419 ,0338 ,1908 .3400 .4847 .6259 .7615 .3839 .9732

7.2 .0076 .0283 .0431 .0514 ,0544 ,0533 ,0484 .n394 ,0249
.2774 .2600 ,1775 .123¢ .,0920 .,0724 .0590 .0483 .0364

.2569 .2259 ,1940 ,1655 ,1397 ,1155 .0916 .0668 .0385

4220 4275 .3345 ,2559 ,1970 ,1524 ,1172 ,03874 .0585

-.6166 -,6837 -,518. -.2581 ,0551 .3794 ,A459 ,3530 .9713

8.1 .0000 .0005 .0034 ,0034 ,0139 ,0135 .0203 .,0197 0137
.0003 .nN197 .0534 .0703 .0693 .0533 .0443 ,0335 .0268

.0623 ,9715 ,0772 .0777 .0736 .0653 .05483 .04108 ,0232

2046 .1961 .1583 .1291 ,1113 ,0985 ,0358 .0707 .0496

<7613 7473 .626> .4490 3159 .3020 ,4491 ,.7395 .9583




INFERENCE FOR ERROR RATES

Table of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and ics
S.E.*SQRT(M), and the Correlation between FP and FN
Humber of Items: 9, Theta Zero: .60, Mastery Score: 8

-----——--—--——-—---—-—--—--------———- et Yy ey

Mean ,100 ,200 .300 .400 .5Q0 .600 700 800 .90n

1.8 .0001 ,0002 .0004 .0008 .0014 .0020 0024 ,0025 ,0019
0008 ,0019 .0938 .0057 .0066 0062 .0049
.0000 ,0000 .0001 ,0009 .0048 .0l4é 0514 ,0534 ,0655
.0000 ,0000 .0026 ,0191 .0566 .1050
L9557 ,9724 9618 ,9815 .9738 .9524  ,8961 .7567 .7222

2.7 .0008 ,0015 ,0025 .0035 .0042 .0046 . 0045 .003% 0027
.0C75 . 0lle ,0134 ,0120 .0094 .0070 .0053 .0042 ,0n32
.0000 ,0001 .0022 .0104 .0265 .0500 ,0773 .1008 .1004
.0000 ,0062 .9502 .'""4 1808 .2127 .2097 .1697 .1109
9340 9614 9574 9317 .8730 .7638 .6111 5129 7588
3.6 .0056 .0076 .J086 .0038 .0084 y
.0327 .0263 .0169 .0122 .0099 .0083
.0001 0070 .0282 .0586 0917
L0139 (1777 3083 3462 .3317
9225 .8743 .6980 .4398 2524 .1862 ,2351 .4402 8437

4.5 0217 ,0190 .061 .0136 .0115 .0095 .0076 .0056 0034
0415 ,0399 ,0294 ,0213 0156 .0115

0315 1014 ,155i .1931 2185 .2370 ,2318 .2120 .1536

9750 .8416 ,6204 4726 ,3708 .9938 i

=.3596 -.6190 -.5216 -.3695 -.1882 .0258 .2898 6. ,9134

5.4 0220 ,0179 ,0151 .0128 .0103 .0099 .0073 ,0054 ,0032
L0624 0441 ,0287 .0202 ,0148 .0110 .0081 .0058 .C039

L4467 4327 (4169 ,3932 3750 .3

1.0688 .7287 .5614 .4557 .3788 3179 ,2665 .2207 .1737
-.3446 -.2305 -.1100 .0268 .1339 .3649

6.3 0016 ,0046 .0063 .C069 .0069 0064 .0056 ,0045 ,0028
0405 ,0328 ,0191 .0126 .0095 .0076 .0062 ,0049 0035

-7€20 6781 ,6020 .5341 4702 .4063 .3383 ,2602 1602

1.0840 .9830 .7677 .6081 4932 L4051
=.9503 -.3953 -.718% -.4094 -.0472 2859

7.2 .0000 ,0002 ,0009 .0019 .0nn27
.0004 ,0053 ,0107 .0107 .0089 0067 . 0049

5532 5374 5086 4677 .4182 3617 2977 ,2237 .1321

(4318 4563 (4851 4802 .4463 .3967 .3392 2750 1964

=.2196 -.3339 - 4381 -,4165 -.2916 =.0601 .2874 6845 9437

8.1 .0000 ,0000 .00C0 ,0002 0005 .0009 .0013 ,0014 0011
0000 ,0001 .0009 .0027 .004< .0046 ,0039 ,0028 0021

2286 .2319 2336 ,2315 2224 .2043

3515 .3529  .347: 3288 3047 .2812

—-——--—-"-—————-------—-—-—---—---——--——-----.,—---—-----------——-—-—




Table of the Fal.: Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and EN
Number of Items: 9, Theta Zero: .70, Mastery Score:

Test KR21=
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Test KR21=
Mean .100

3.6 .0056

3.4 .0813

Table of the False Positive Frror and its
S.E.*SQRT(M), the False legative Error and is
S.L.*SORT(M), and rhe Correlation between FP and F!
Number of Items: 9, Theta lero: .80, Mastery Score: &

.3698

. 3270

.2703

Ll A R R i

. 0254
.0386
.0156
.0525

.8741
.0385
.0393
.0292
.0636
.6765

.0505
. 0448
0471
V637
<4122

.0377
.0565
0667
.0581
.4859
.0570
0645
. 0816
.0702
.8092

.0462
.0602
L0324
.0987
.9126
.0259
. 0429
.0580
.1055




HUYNH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Err.r and its
S.E,*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .60, Mastery Score: 6

i'ean  ,100 ,200 300 .400 ,500 ,600 ,700 .800 .900

----------------------—---------------n-------\u-------—--—---—-------

-9026 .8234 .8222 ,7769 .6888 .5768 .4961 .5553 .3684
4.0 -1784 1883 1886 .1799 .1650 .1457 .1225 .0948 .0590
3181 .2673 .2195 ,1957 .1736 .1484 1214 .0939 .0652
.0000 .0017 .0072 .0148 ,0222 .0279 .0308 .0297 .022
-0026 .0447 ,0791 ,0833 ,0717 .0557 .0406 .0292 .0220
-6275 .4821 .1798 -.0055 -.0269 .0796 .3046 .6317 .9244

5.0 -3643 3170 .2724 ,2337 ,1990 ,1667 .1349 .1014 .0619
6066 .5753 ,4330 .3235 2446 .1858 ,139° .101S .0676

009G ,0290 .C.22 .0491 ,0515 .0504 .046 .0383 .0254

.2868 . 2234 1450 ,0968 0704 .0543 0441 .0350 .0259

~.7948 -.7867 -.6245 -,3606 -.0333 .2941 5772 .8017 .9543

6.0 .2603  .2335 ,2106 .1891 ,1677 .1455 .1215 .0939 .0586
-7163 4484 3267 ,2518 ,1986 .1575 .1234 .0935 .0647

1381 .1195 ,1049 .0921 ,0800 .0682 .0560 .0427 .0263

L4124 2454 1720 ,1283 ,0983 ,0759 .0580 .0429 .0250

-.1455 .0183 .1650 .3055 4440 .5824 .7206 .8538 .9624

7.0 L0134, 0475 .0725 .0874 .0943 .0944 .0881 .0743 .0456
4589 4162 ,2889 ,2053 ,1535 ,1196 .0353 .0760 .Gu72

1523 1338 .1146 .0976 .0824 ,0684 .0547 .0406 .0242

2589 .2580 ,1969 .1468 .1101 .0829 .0619 .0450 .0297

=.5209 -,6531 -,5067 -.2767 -.0616 .2859 .5594 .7947 .9550

L0 .0000 ,0016 .0086 .0197 .0318 ,0421 .0484 .0477 .0357
0015 .0508 1124 1361 ,1%03 ,1099 .0846 .0619 0468
0607 ,0490 0541 ,0550 .0526 .0476 .0406 .G313 .0190
1539 1401 ,1046 .0810 .0673 .7570 .0477 .0382 .0272
.L419 8060 .6662 ,4768 3450 .3232 .4265 .6678 . 9315
9.0 0000 ,0000 ,0002 .0015 ,0049 .0103 .0166 .0210 .0186
0000 . 0003 ,0066 .n252 ,0430 .0629 .0630 .0491 .0327
0031 ,0055 .00838 ,0128 0165 .0138 .0190 .0166 .01l08
0290 .0424 ,0550 .0563 ,052). .0413 .0323 .0261 .0206




INFERENCE FOR ERROR RATES

Talle of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and ite
S.E.*SQRT(M), and the Lorrelation between FP and FN
Humber of Items:10, Theta Zero: .60, Mastery Score: 7

Mean .100 ,200 .300 .400 .500 .600 ,700 .800 .900




HUYNH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .60, lastery Scoze: 8

Test KR21=
llean ,100 .200 . 300 .400 .500 .600 .700 .800 .900

.0001 .0000 .0000 .0004 .0044 ,01.86 .0445 .0667 .0536
<9751 .9725 .9831 .2907 .9912 ,9484 .9780 .9360 .8101
2.0 .0002 ,0005 .0010 .00.9 .0035 .0051 .0065 .0068 .0054
.0025 .0050 .0092 .014C .0169 .0165 .0134 ,0096 .0070
.0000 .0000 .0000 .0005 .0028 .0093 .0214 ,0373 .0458
.0000 .0000 .0011 .0103 .0354 .0710 .1005 .1026 .0677
.9459 .9559 .9754 .9773 .9718 .9549 .9113 ,8027 .7683

3.0 .0027 .0043 .0067 .0093 .0114 ,0125 .0124 ,0110 ,0075
.0260 .0285 .0335 .0313 .0253 .,0192 .0145 .0113 .0086
.0000 .0000 .0012 .0065 .0179 .0351 .0552 .0719 .0704
.0000 .0023 .0295 .0805 .1284 1541 ,1508 .1183 .0760
.9131 .9470 .9473 .9261 .8758 .783% .6553 .5751 .8008
4.0 .0165 .0210 .0226 .0242 ,0232 ,0211 .,0181 .0143 .0090
.0762 ,0651 .0443 .0328 .,0263 .0224 ,0183 .0142 .0099
.0001 .0042 .0193 .0423 .0677 .0911 .1082 .1130 .0923
.0062 1165 .2252 .2612 .2497 ,2142 .1679 .1206 .0871
.8923 .8513 .6873 .4490 .2748 2220 ,2925 .5167 .8756

5.0 .0587 .05183 .0443 .0377 .03is .0264 .0212 .0158 .0096
.1014 1013 .0771 .0568 .0420 .0312 .0229 .0!63 .0106

.0223 .0779 .1212 ,1507 .1685 .1756 .1713 .1522 .1083

.7386 .6762 .4903 .3614 .2745 ,2129 .1lo69 .1318 .1032

-.3679 -.6326 -.5306 -.3579 -.1414 ,1122 .3981 .6951 .9310

. . .0345 ,0295 .0248 .,0201 .0151 .0092
.1933 .1081 .0724 .0521 .0387 .0291 ,0217 .0157 .0104

.3810 ,3591 .3373 .3141 .,2884 2587 ,2231 ,1780 .1148

L9402 6141 4641 .3707 .3034 .2501 2047 ,1629 .1197

=.2712 -,1257 .0171 .1652 .3209 .4846 .6537 .8194 .9543

7.0 .0032 .0105 .0151 .0173 ,0178 .0170 .0152 .0123 .J079
.1060 ,0844 .0525 .0350 .0258 .0203 .0163 .0129 .0094

.5877 .5191 .4538 .3955 .3417 ,2897 .236/ .1790 .1088

.8574 .8293 6457 .5014 .3945 .3123 2454 ,1869 ,1295

-.8737 -.8331 -.6537 -.3704 -.0252 .3032 .5820 .8048 .9555

8.0 .0000 .0004 .0019 .0041 .0063 .0030 .0087 .0081 0058
.0004 ,0116 .0238 .0265 .0235 ‘1.5 .0136 .0101 .0077
.3251 .3254 3161 .2964 .2686 .2346 ,1946 .1 73 ,0880
.3852 .3673 .3461 .3267 .2984 ,2621 .22i4 1774 1255
. . -.1278 -,0891 .0580 .3191 .6683 .9380
9.0 .0000 .0000 .0000 ,0003 .0010 .0020 ,0031 .0037 .0031
.C000 - ,0001 .0015 .0053 .0095 .0115 .0107 .0078 .0055
L0759 .,0903  ,100C .1099 1143 ,1132 .1034 .0837 .O515
2296 .2423 2471 .2328 (2044 .1744 .1504 .1301 .1004
.9990 .7549 .7425 .7206 .6541 .5540 .4777 .5722 .9003
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .70, Mastery Score: 7

Yean .100 .200 .300 .400 .500 .600 .700 ,800




HUYNH

Table of the False Positive Error and its
S.E,*SQRT(M), the False Negative Error and its
S.E,*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .70, Mastery Score: 8

Test KR21=
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Table of the False Positive Error and its
S.E,*SQRT(M), the False Negative Error and its
S.E.*SQRT(M), and the Correlation hetween FP and FN
Number of Items:10, Theta Zero: .80, Mastery Score: 8

fean .100 ,200 .300 .,400 ,5., ,600 .700 .800 .900

4.0 .0165 .0221 .0297 .0400 .0526 .0856 0734 0767 0803

(1734 1360 .1222 .1031 .0845 0683 0540 .0408 .0267
.4953 -.1424 -,2467 -.1395 0673 .3393 .6279 .8561 9745




HUYNH

Table of the False Positive Error and its
S.E,*SQRT(M), the False Negative Error and its
S.E,*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .80, Mastery Score: 9

Test KR21l=
Mean .,100 .200 .300 .400 .500 .600 .700 .800 .900

.8402 .8179 .6903 .4538 ,2225 ,1089 .1527 .4256 .8863
7.0 1579 .1458 .1281 ,1108 .0945 .0789 .0635 .0472 .C283
.2010 .2300 .1977 .1561 ,1210 .0930 .0704 .0516 .0344
.0078 .0401 .0708 .0931 .1071 .1130 .1104 .0972 .0676
.3395 .4360 ,3341 ,2393 ,1709 .1249 .0963 .0502 .0683
-.6418 ~-,6135 -,4787 -,2593 .0509 .4250 .764]1 .9588

.1169 .1016 .c884 .0761 ,0642 .0519 .0386 .0227
.2615 .1332 ,1370 .1056 .0824 .0641 .0484 ,0329
.2459 .2247 ,2036 ,1817 ,1582 ,1313 .1007 .0609
.4299  ,3206 .25345 .2082 .1723 ,1421 1140 .(828
-.0050 .1674 .3327 .,4918 ,6430 .7817 .8987 .9776
.0100 .0192 .0255 .0286 .0290 .0266 .0215 .,0132
L1401 .1174 0872 ,0645 .0497 .0406 .0341 .0259
.2435 ,2153 ,.1861 .1576 .1296 .1014 .0721 .0397
.3936 .3626 .3052 .,2512 .,2042 .1628 .1237 .0814
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APPENDIX B
SUBROUTINE ERRFPN

This subroutine computes the false positive error estimate and
its standard error, the false negative error estimate and 1-
standard error, and the correlation b~tween the two estimate . The

beta-binomial distribution is used at¢ the vehicle for computations.

Disclaimer: The computer program hereaiter listed has been written

with care and tested extensivelv under a variety of conditions
using tests with 60 or fewer items. The author, however, makes no
warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.

280

299
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SUBROUTINL ERRFPH(N,A,B,M,TT,IM,FP,SEFP,FH,SEFN,RHO) Iy
g ....................................................................... 20
30
c THIS SUBROUTIRE COMPUTES THE FALSE POSITIVE ERROR ESTIMATE AND ITS 40
C STANDARD ERROR, THL FALSE NEGATIVE ERROR ESTIMATE AND ITS STAUDARD 50
c ERROR, AND THE CORRELATION BETWEEN THE IWO ESTIMATES. THE BETA- 60
c BINOMIAL DISTRIBUTION IS USED AS THE VEHICLE FOR COMPUTATIONS. 70
c 30
c INPUT DATA ARE: 90
C loc
c N....NUMBER OF ITEMS 110 .
C A....ALPHA OF THE BETA DISTRIBUTION 120
c B....BETA OF THL BETA DISTRIBUTIOY 130
C il....JUMBER OF LXAMINELS 140
c TI...THETA ZERO, THE CRITERION LEVEL SET IN THE TRUE SCORE 150
c IM...TEST CUTOFF SCORE (MASTLRY SCORE) }go
C 0
c A, B, AliD TT ARE IN TEE DOUBLE PRECISION FORMAT. %gg
C
C OUTPUT DATA ARE: 2?0
c 210
c FP... .FALSE POSITIVE KRROR LSTIMATE 220
c SEFP..STANDARD ERROR OF FP 230
c Fil....FALSE NEGATIVE ERROR ESTIMATE 240
c SLFN. . STANDARD ERROR OF FN 250
c RHO. ..CORRELATION BETWEEN FP AND FN %63
c 27
C ALL OUTPUT DATA ARE IN THE DOUBLE PRECISION FORMAT. %gg
C
c THE SUBROUTINE IS SET UP FOR TESTS WITH UP TO 60 ITEMS, 300
c FOR LONGER TESTS, SIMPLY CHANGE THI DIMENSIONS OF DF(.), DA(.), 31¢C
s c AND DE(.) TO DF(M+1), DA(N+1), Aru DB (N+1). ggg
c
c EXTERNAL SUBROUTINES REQUIRED: DQG32 QF ssp 340
c MDBETA OF IMSL 350
C 360
R 370
DOUBLE PRECISION A,B,TZ,BETA,GFCT,DFCT,U,V,DX,ONE,F.PSI,GA,GB,YI, 380
*YZ,Y3,Yé,VMONE.Zl,ZZ,BB,DF(GI),DA(61),DB(61),FP,SEFP,Z3,FN,SEFN, 390
* HI,HZ,H3,E(2),S(2),TT,PI,BA,PA,BI,WI,WZ,RHO 400
EXTERNAL BETA,BI,GFCT,DFCT,PSI 2%8
c
HE=1.D0 430
Y1=BLTA(A,B) 440
Y2=PSI (A+B) 450
Y3=PSI(A)-Y2 460
Y4=PSI(B)-Y2 470
P1l=PSI (DFLOAT(N)+A+B) 480
CALL NCHY2(i,A,B,DF) 450
CALL VARAB(N,A,B,HI,HZ,HS,E,DF,DA,DB) ggg
C
c SET UP FOR FALSE PJSITIVLC ERRORS 520
TZ=TT 530
IC=11 54C
U=A+DFLOAT (IC) 550
V=B+DFLOAT (}i-IC) 560
WisQ, 570
W2=0. 580

DO 40 1=1,2 600

F=0NE-TZ 620
DX=DFCT (u,V,TZ) 630
GA=GFCT (U,V,TZ) 640

GB=GFCT(V,U,F)
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BB=BI(N,IC)
E(L)=DX*BE
DFPA=GA*BB

BA=BETA (U, V)
PA=PSI(V)
DFPB=(BA*(PA-P1)-GB)*BB

IF(IC.EQ.N) GO TO 30

1Z=N-IC

DO 15 I=1,12

IX=1C+1

VMONE=V-0OHlE

Zlm- (TZ%*) *F**VMONE
Z2=Z1*DLOG(TZ)

Z3= (F**VMONE) * (TZ**U) *I LOG (F)

Ca= (Z2+DX+U*GA) /VMONE

DX= (Z1+U*DX) /VMONE
BB=BR*(N-IZ+l)/1IX

\=V-0ONC
3A=BARU/V

GB= (Z3~ (BA~DX)+U*GB)/VMONE

U=U+ONE
PA=PA-ONE/V

E(L)=E(L)+BB*DX

DF. A=DFPA+BB*GA
DFPB=DFPB+BB*(BA*(PA-P1)-GB)
CONTINUE

IF(L.FEQ.1) GOTO 35

INTERCHANGE DFPA AND DFPB FOR FALSE NEGATIVE ERROR

FeDFPA
DFPA=DFP2S
DFPL=F

E(L)=E(L)/Y1
DFPA=DFPA/Y1-E(L)*Y3
DFPB=DFPB/Y1-E (L)*Y4
W1=W1+DFPA
1i2=W2+DFPB

S (L) = (H1*DF DA% 2+}| 2*DFPB*> 242 *HI*DFPA*XDFPR ) ** 5D0

SET UP FOR FALSE NEGATIVL. L{RRORS
TZ=0NE~-TT
IC=N-TM]
U=B+DFLOAT (IC)
V=A+DFLOAT (1N-1C)

FP=E (1)
TN=Z(2)
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670
680
690
700
710
720
730
74C
750
760
770
780
790
800
810
820
830
840
850
360
870
880
890
ano
910
920
930
940
950
$60
970
9¢&0
99¢
1000
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1020
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1060
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1080
1090
1100
1110
1120
1130
1140
1150
1160
1179
1180
1190
2.200
121C
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15

15

15

SEFP=§ (1)
SEFN=S (2)

1330

1340
RHO -(Hl*Wl**2+H2*W2**2+2.*H3*H1*W2-S(1)**2-5(2)**2)/(8(1)*5(2)*2)1350
1360

RETURN

END

DOU?LE PRECISION FUNCTION BI(N,M)
BI=

IF (M¥(N-M) .EQ.0) GOTO 20

MM=MIN (N, N-M)

DO 15 J=1,MM

BI=BI*(N-J+1) /J

20 RETURN

END

SUBROUTINE NEHY2(il,A,B,F)
DOUBLE PRECISION A,B,F(l),z1,Zz2
Z1=DFLOAT(N)+B

22=Z1-FA

K=0

F(1)=1.D0

DO 5 I=1,N
F(1)=F(1)*(Z1-DFLOAT(I))/ (Z2-DFLOAT(I))
KP1l=K+1

KP 2=K+2

*F(KPZ)-F(KPl)*DFLOAT(N-K)*(A+DFLOAI(K))/

(DFLOAT (KP1) * (21-DFLOAT (:21)))
K=K+1
IF(K-N) 10,15.15
RETURN
END
SUBROUTINE VARAB(N,A,B,VA,VB,VAB,M,F,DA,DB)
DIMENSION F(1),DA(1),DB(1)
DOUBLE PRECISION A,B,DA,DB,F,B11,B12,B22,D,VA,VB,VAB
CALL DERLAB (N,A,B,DA,DB)
Bll=0.DO :
Bl12=0.D0
B22+0.D0
NP1=N+1
D0 15 I=1 NP1
Bll=B11+DA(I)*DA(I)*F(I)
B12=B12+DA(I)*DB(I)*F(I)
B22=B22+DB (I} *DB(I)*F(I)
Bll=Bll#*}
B12=B12*M
B22=B22*M
D=Bl1*B22-B12*B12
VA=B22/D
VB=B11/D
VAB=-B12/D
RETURN
END
SUBROUTINE DERLAB(N,A,B,DA,DB)
DIMENSION DA(1l),DB(1)
DOUBLE PRECISION A,B,DA,DB,Z1,Z2
DOUBLE PRECISION ONE
ONE=1.DO
DA(1)=0.D0
DB(1)=0.D0
Z1=DFLOAT (M)+B
Z2=Z1+A
NPl=f+1

DO 5 I=1,N

DA(1)=DA(1)-ONE/(22-DFLOAT (I))
DB(1)=DB(1)+ONE/(Z1-DFLOAT (I))
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DB(1)=DB(1)+DA(1)
DO 1C I=1,N

IP1=1+1
I¥=]1-1

DA(IP1)=DA(I)+0JE/ (A+DFLOAT (IX))
DB(IP1)=DB(I)-ONE/(Z1-DFLOAT(I))

RETURN
END

DOUBLE PRECISION FUNCTION PSI(X)

DOUBLE PRECISION I,A,P,ZETA(99),Y(54),PSI1,PM1,PP1,PM2,P2M]

ZETA(2) =1,
ZETA(3) =1.
ZETA(4) =1.
ZETA(5) =1.
ZETA(6) =1.
ZETA(7) =1.
ZETA(8) =1.
ZETA(9) =1.
ZETA(10)=1.
ZETA(11)=1.
ZETA(12)=1.
ZETA(13)=1.
ZETA(14)=1.
ZETA(15)=1.
ZETA(16)=1.
ZETA(17)=1.
ZETA(18)=1.
ZETA(19)=1.
ZETA(20)=1.
ZETA(21)=1.
ZETA(22)=1.
ZETA(23)=1.
ZETA(24)=1.
ZETA(25)=1.
ZETA(26)=1.
ZETA(27)=1.
ZETA(28)=1.
ZETA(29)=1.
ZETA(30)=1.
ZETA(31)=1.
ZETA(32)=1.
ZETA(33)=1.
ZETA(34)=1.
ZETA(35)=1.

ZETA(36)=1

64493406684822643647D0
20205690315959428540D0
03232323371113819152D0
03692775514336992633D0
01734306198444913971D0
00834927738192282684D0
00407725619794433938D0
00200839282608221442D0
00099457512781808534D0
00049418860411946456D0
000246086553308034830D0
00012271334757848915D0
00006124813505870483D0
00003058823630702049D0
00001528225940865187D0
0000C7637.976378997600
00000381729326499984D0
00000190821271655394D0
00000095396203387280D0
00000047693298678781D0
00000023845050272773D0
00000011921992596531D0
00000005960818905126D0
00000002980350351465D0
00000001490155482837D0
00000000745071178984D0
00000000372533402479D0
00000000186265972351D0
00000000093132743242D0
00000000046566290650D0
09000000023283118337D0
0000(:000011641550173D0
00000000005820772088D0
00000000002910385044D0

.00000000001455192189D0
SETA(37)=1.
ZETA(38)=1.
ZETA(39)=1.
ZETA(40)=1.
ZETA(41)=1,
ZETA(42)=1.

00000000000727595984D0
00000000000363797955D0
0000000600161898965D0
00000002000090949478D0
0000000000004547475810
000000000000227373€8D0

Y(1)
Y(2)
Y(3)
Y (4)
Y(5)
Y (&)
Y(7)
(&)
Y(9)
Y{10)=.
Y(‘Ll)--
Y(12)=.

.2436449038D0
.2474724535D0
.2512359559D0
.2550855103D0
.2588712154D0
.2626431686D0
.2664014664D0
.2701462043D0
.27338774769D0

277595377600
28:29%99¢°2n0
284991433300
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Y(13)=.
Y(li)=,
Y(15)=,
Y(16)=.
Y(17)=.
Y(1lC)=.
Y(19)=.
Y(20)=.
Y(21)=.
Y(22)=.
Y(23)=.
Y(24)=.
Y(25)=.
V(2¢)m,
Y(2/)=.
Y(28)=,
Y(29)=.
1(30)=.
Y(3L)=.
Y(32)=.
Y(33)=.
Y(34)=.
Y(35)=.
Y (35)=.
Y(37)=.
Y(3E)=.
Y(39)=,
Y(40)=.
Y(41)~.
Y(42)=.
Y(43).
Y(&4)=.
Y(45)=.
Y (46)=.
Y{(47)=.
Y(40)=.
Y (49)=.
Y(50)=.
Y(51)=.
Y152)=,
Y(53)=.
Y(34)=.

A=3

IF(X.LT.1.D0) A= +]1,
PSIlm=-,

IF(A.GT.1.D0)GO TO 5

INFERENCE FOR ERROR RATES

288€697707D0
2923351012D0
2959875138D0
2996270966D0
30325393C7D0
506865120500
310469733500
31405585C2DC
3176355646D0
3211939895D0
3247521572D3
328292159109
331620105600
3353360466778
3388400713090
342332257700
345612683500
3492851425500
352738559¢D0
356164161200
3596183049DC
3630410646D0
36€43525136D0
3698527244D0
3732417688DC
376619717¢D0
3799666424D0
383342611900
3366£76959D0
3900219¢27DG
3933454805DC
3%60(583163D0
3999605371D0
403252208800
4065353970D0
4£0°8041664DJ
4130G645n16D0
41€3147050D0
4195546030D0
4227843351D0
426003964300
429213552000

577215564920

PSI=PSI1

RETURN

PSI=0.D0

IF(A.LT.2.D0)GO TO 20

A=A-1.D0
PSI=PSI+1.DG/A

IF(A.LT.2.D0)GO TO 20

GO TO 10

IF(A.GT.1.75D0)G0 TO 35
IF(A.GT.1.D0) GOTO 21

PSI=PSI+PS11

RETURRN
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40

A=4-1.D0
L=-23,2164+7129D0/DLOG(A)+1
IF(L.LT.2)L=2

M=MIIC(L,42)

DO 25 ii=2,H
PSI1=PSI+(-1)**N*ZETA ({l) *A%* ((I1-1)
PS1=PSI+PSI1

IF(M.EQ.L) GOTC 40

Mlelitl

DO 30 N=M1,L
ZETA(N)=(ZETA(N-1)+1.D0)*.5D0
PSI=PSI+(=~1)**N*ZETA () *A%¥* (N 1)
GOTC 40

P=(A-1.745D0)*200.D0
1Z=DIWT(P+1.D-10)
IF(1Z.LT.1) 1Z=1

P=P-DFLOAT (12)
12=12+1

IF(P.NL.0.D0) GOTC 37

PSI=Y(1Z)
GOTO 40

PMl=P~1.D0
PPl=p+1.D0C
P}{2=P-2.D0
P2M1=PM1*2Pl

PSI=-P*PMI*PM2/6.DO%*Y (17.-1)+P2M1*PM2/2. DO*Y(1Z) -
&P*PP1*P}2/2.DO*Y (17+1)+P*P2M1/6.DO*Y (12+2)+PS1

IF(X.LT.1.0) PSI=PSI-1.DO/X
RETURI
END

DOUBLE PRECCISION FUNCTION GFCT(U,V,TZ)

EXTERNAL FCT,DFCT

DOUELE PRECISION U,V,TZ,VP,UP,DFCT,ONE,H,XL,XU,FCT

DOULLE PRECISION DX,TWO
COMMON UF,VP
T0=2.D0

<ER=0
l=0.D0

XU=TZ

LC=1.D0
EPS=,00005

KL=15

1U=1-TWO
IF(U.LE.TWO) 1U=0
UP=U-DFLOAT (IU)
IV=V-TVO
IF(V.LE.TUQ) 1V=0
VP=V-DFLOAT (1V}

DX=DFCT(UP,VP,TZ)
IF(L.LT.ONE) UP=UP+ONE
CALL DQG32(¥L,XUL,FCT,YHOLD)

DO 6 J=2,KL

N4

Y1,Yi0LD,EPS

331¢C
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>380
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35€0
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367C
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3710
3720
%730
374C
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Y=0.D0 3976
MLm2%%J 3980
H= 7Z/DFLOAT (ML) 3990
(o 4000
DO 5 I=1,ML 4010
XL=DFLOAT(I-1)*H 4020
XUs=XL+H 4030
CALL DQG32(XL,XU,FCT,Y1) 4040
5 Y=Y+Y1 4050
IF (DABS ((Y-YHOLD) /YHOLD) .LE.EPS) GOTO 7 4060
6 YUOLDsY 4070
(o 4080
IER=1 4090
c 4100
7 GFCT=Y 4110
c 4120
IF(IER.NE.O)WRITE(G,IOO)U.V,TZ,ML,EPS 4130
100 FORMAT(' ERROR IM GFCT AT U,V,THETA ZERO = ' »3F10.5/ 4140
*' AFTZR',I9,' PARTITIONS, A TOLERANCE ERROR OF' ,F9.6,' CANNOT BE R4150
c *EACHED' /' COMPUTATIOLNS CONTINUED') 2%93
IF(U.GE.ONE) GOTO 9 4180
UP=UP-ONE 4190
YHOWTZ**UP*(ONE-TZ)**W 4200
H=YHOLD*(DLOG (TZ) =CNE/ (UP+VP)) -DX*VP/ (UP+VP) 4210
c GFCT=(UP+VP) *GFCT/UP+{/UP 2%%8
9 IF(IU.EQ.0) GC TO 20 4240
c 4250
DO 10 I=1,IU 4260
YHOLD=TZ**jP* (ONE-TZ) **VP 4270
H=YHOLD* (DLOG (TZ) -ONE/ (UP+VP) ) =DX*VP/ (UP+VP) 4280
GFCT=(UP*GFCT-R) / (UP+VP) 4290
DX=(-YHOLD+UP*DX) / (UP+VP) 4300
10 UP=UP+ONE 4310
c : : 4320
20 IF(IV.EQ.0) RETURN 4330

c 4340 -
DO 30 I=1,1v 4350
YHOLD=TZ*** (ONE-TZ) **Vp 4360
H=YHOLL*(DLOG(TZ) -O:ilE/ (U+VP) ) ~DX*VP/ (U+VP) 4370
GFCT=(GFCT*VP+H) / (U+VP) 4380
DX= (YHOLD+VP*DX) / (U+VP) 4390
30 VP=VP+ONE 4400
c 4410
RETURN 4420
END 4430
JOUBLE PRECISION FUNCTION DFCT (A,B,T2) 4440
ZXTERNAL BETA 4450
DOUSLE PRECISION A,B,TZ .BETA 4460
(o 4470
AA=A 4480
BB=B 4490
7ZZ=72Z 4500
CALL MDBETA(TZZ,AA,B3,P,IER) 25%8

C 5
IF(LZR.1IE.0) YRITE(6,100)A,B,TZ, IER 4530
100 FORMAT('0',' ERROR IN BDIR, A B TZ IER ARE ', 3F20. 10,15) 4340
DFCT=DBLE (P) *BETA (A, B) 4550
RETURN 4560
END 4570
DOUBLE PRECISION FU.ICTION BETA X, Y) 4560
DOUBLE PRECISIOKW A,B,CON,X,Y,F 4590
F=5.D0 4600
A=X 4610
B=Y 4620
(9}
hw 9 q}
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CON=1.D0
IF(A.LE.7) GOTO 2

1 A=A-1.D0
COllmCON*A/ (A+B)
IF(A.LL.F) GOTO 2
GCTC 1

2 IF(B.LE.F) GOTO 4

3 B=B-1.D0
COl=CON*B/ (A+B)
IF(B.LE.F) GOTO 4
GOTO 3

4 BETA=DGAMMA (A) *DGAMMA (B) / DGAMMA (A+B) *CON
RETURN

END

DOUBLE PRECISION FUWCTION FCT(T)
comMon u, v

DOUBLE PRECISION T,U,V

FCI=0.D0

IF(T.EQ.0.D0) RETIURN
IF(T.EQ.1.D0) RETURN

FCT=T**(U-1.D0)*(1.D0-T)**(V-1.00)*DLOG(T)
RETURN
END
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RELATIONSHIP BETWEEN DECISION ACCURACY AND
DECISION CONSISTENCY IN MASTERY TESTING

Huynh Huynh
Joseph C. Saunders

University of South Carolina

ABSTRACT

In mastery testing, decision accuracy refers to the proportion
of examinees who are classified correctly, in one of several
achievement categories, by test data. Decision consistency express-~
es the extent to which decisions agree across two test administra-
tions. Based on twelve cases involving a wide range of @yq reli-~
abilities, it was found that decision accuracy and decision con-

sistency were almost perfectly related.

1. INTRODUCTION

In classical measurement theory and practice, the reliability
of a set of measurements (often, albeit unfortunately, refe:red to
as the reliability of a test) is typically defined as the ratio of
true-score variance to observed-score variance. The assumptions
of classical test theory imply reliability can also be viewed as

the correlation between two sets of parallel measurements

This paper has been distributed separately as RM 80-8, August, 1980.
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(Lord & Novick, 1968). Capitalizing upon this property, several
writers (Carver, 1970; Hambleton & Novick, 1973; Huynh, 1976c;
Subkoviak, 1976) have proposed that reliability (of decisions) in
mastery testing be considered from the standpoint of decision
consistency (i.e., consistency of individual decisions across two
test administrations). It has also been argued (Huynh, 1976b,

[for the case of Q=1]; Livingstor. & Wingersky, 1979; van der Linden &
Mellenbergh, 1978; Subkoviak & Wilcox, 1978; Wilcox, 1977) that the
quality of the decision-making process would be more appropriately
assessed via the agreement between decisions based on test data

and those based on true scores, had these been known. Such agree-
ment, in its simplest form, may be expressed as the proportion of
examinees who are correctly classified by the test scores. This

quantity will be referred to as decision accuracy in subsequent

sections of this paper. 1In a slightly different form, it has been
called a validity coefficient by Berk (1976). Decision accuracy,

in this context, presumes that false positive and false negative
errors are weighted equally. When the weights (losses or utilities)
are not equal, then coefficients b.sed on decision theory, such as e
(Huynh, 1976b), & (van der Linden & Mellenbergh, 1978), or y (Wilcox,
1978) may be more appropriate. However, decision consistency re-
gards both types of inconsistent decision as being of equal severity.
Thus, only the case involving equal (and constant) losses will be
considered in this paper, so that comparisons might be anchored in
the same framework.

The purpose of this paper is to study the relationship between
decision consistency and decision accuracy for a variety of situva-
tions involving mastery tests. Fovr reason of computational sim-
plicity, the study is restricted to test score distributions which
follow a beta-binomial form.

2. COMPUTATIONAL PROCEDURES

Let x and 0 deuote the observed and true score for a subject,

310
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and let c and eo denote the corresponding passing scores for
mastery classification. in addition, let y be the observed score
for the same subject on a second (parallel) test administration.
The raw index of decision consistency is defined as pxy =
Pr(x<c,y<c) + Pr(x>c,y>c), and an index of decision accuracy may
be taken as Pyg = Pr(x<c,e<6°) + Pr(xgp,ezﬁo). (Other indices
similar to Cohen's kappa may also be used; however, since the
marginal probabilities of the mastery and nonmastery categories as
defined by the test scores x and y, and by the true score 8 are
identical or almost identical, any relationship between the p
indices would hold for the kappa indices.)

When the test data can be described via a beta-binomial model,
both indices pxy and pxe may be computed via formulae, tables, and
computer programs reported in Huynh (1979a, 1979b, 1380L, 1980c).
Additionally, in the context of decision-making, it seems logical
-0 select a (test) passing score ¢ which reflects the true cutoff
score 60 and the two (equal and comstant) losses under consideration.
When the beta-binomial model holds, the value ¢ may be obtained via
the incomplete beta functions (Huynh, 1976a). Let n be the number
of items, and « and B be the two parameters of the beta distri-
bution. Then the Bayesian passing score is the smallest integer ¢
at which the incomplete beta function I(a+c,n+8-c;60) is less than
or equal tec .5. 1In most instances involving minimax decisicns
(Huynh, 1980b), the value of ¢ is very close to neo; this simple
expression will be used throughout this paper.

3. DATA BASC

Two sets of test data were used in this study, one fictitious
and the other derived from responses to the Science Research
Associates Mastery Tests (SRA, 1974, 1975). The fictitious data
set consists of eight beta-binomial distributions, each of which
was selected to yield a testing situation in which the @, re-
liability was low or moderate. Table 1 contains descriptions

of these cases.

0y ¢y -
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TABLE 1

A Comparison of Decision Accuracy and
Decision Ccnsistency based on
Moderately Reliable Beta-Binomial Test Scores

Case “Shape n o o 8y 60 C Py pgy
1 Unimodal 5 3.125 1.301 .385 .5 3 .768 .687
2 Symmetric 5 2.500 1.279 .2%4 .5 3 .693 .605
3 Unimodal 10 8.000 1.706 500 .7 7 .845 .799
4 J-Shaped 10 9.000 1.500 .667 .7 7 .941 .921
5 Unimodal 20 12.000 3.024 .500 .7 14 .773 .678
6 Unimodal 20 16.000 2.646 .571 .7 14 .868 .821
7 Unimodal 30 16.000 3.801 .500 .8 24 .979 .964
8 J-Shaped 30 29.250 1.319 .600 .8 24 .993 .990

Table 2 describes the second data set which consists of four
SRA-compiled tests. The SRA data were obtained from the South
Carolina State Department of Education. The data, consisting of
the item responses of approximately 3000 sixth grade students for
the SRA Mathematics (form X) and SOBAK Reading (form L) cests,
were collected in a field testing conducted in the spring of 1978.
Artificial subtests of 10, 20, 30, and 40 items were created from
the SRA data by random selection of items from sets of homogeneous

objectives.
TABLE 2

Description of the SRA Mastery Tests Data

Case Subject Number of Mean S.D. a.

Area Items <1
9 Reading 10 7.016 2.391 .704
10 Reading 20 12.268 4.787 .835
11 Math 30 15.666 3.901 .812
12 Math 40 19.552 7.439 .840

4. RESULTS AND DISCUSSION

The data regarding decision accuracy and decision consistency

are reported in the right side on Table 1 for the fictitious data
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set and in Table 3 for the SRA-compiled tests. In all situations
under consideration, pxy is smaller than P g the ratio of pxy to
P, averages about .96. However, the correlation between the two
indices is .993, which represents an almost perfect linear re-
lationship. For the 12 cases under study, decision accuracy
relates to decision consistency via the empirical formula

Pyg = .25 + '75pxy'

TABLE 3

A Comparison of Decision Jccuracy and
Decision Consistency Based on leal Data

Case True Test Decision Decision
Cutoff eo Cutoff ¢ Accuracy Consistency

9 .50 5 .894 .858
.70 7 .828 .780
10 \o 10 .892 .852
.70 14 .870 .826
11 .50 15 .863 .812
.70 21 .893 .853
12 .50 20 .872 .823
.70 28 .922 .892

This study indicates that there is little difference between
the indices of decision accuracy and decision consistency in terms
of ranking the quality of different test-based decision-making
processes. Decision accuracy can be predicted with very little
error from decision consistency. The relationship between the two
indices thus parallels that of the two approaches to classical re-
liability discussed in the introduction to this paper.

The basic result of this study casts doubt on the conjecture
by Mellenbergh and van der Linden (1979, p. 263) that "the con-
sistency of decisions is not related in the same way to the
association between decisions and true states as consistency of
measurements as related to the reliability coefficient." The very

basic assumption which underlies our conclusion is that the test
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passing score must reflect in some way the true cutoff score and
the varlous losses which are incorporated in the decision-making
Process. If this assumption is tenable, any comparison betw=en
decision accuracy and decision consistency would have no useful
meaning if the test passing score and the true cutoff score were
selected independently of each other. The counterexample pre-
sented by Mellenbergh and van der Linden (1979, p. 263) seems to
reflect this type of selection. 1In addition, the above conjecture
appears to be contradicted by the theoretical results reported by
Huynh (1976c, 1978a), namely the fact that under fairly general
assumptions, the raw agreement index and the kappa index for
decision consistency are increasing functions of the classical

re .iability. Thus, both these indices of decision consistency
acress two test administrations reflect the nature of the relation-
ship between true scores and observed scores.

It should be pointed out that the indices of decision accuracy
and of decision consistency are defired for a set of test scores
collected from the administration of a test to a group of examinees.
Both indices thus represent internal characteristics of the data.
As may be recallec, the decision accuracy index considered in this
paper presumes that losses associated with incorrect decisions are
equal (and constant); it should be replaced by appropriate effi-
clency indices when losses do n. t have this simple form. 1In this
case, the Huynh efficiency indices (Huynh, 1975, 1976b, 1980a), the
8 index proposed by van der Linden and Mellenbergh (1978), or the
Wilcox y index (1978) might be used. Because losses are often de-
fined as a function of the true ability (which is typically esti-
mated from test data), all these indices actually represent the
internal characteristics of the data; they do not appear to be re-
flective of any other trait which might relate to the test itself.
Decision accuracy and other similar efficiency indices seem to act
as counterparts of reliability in classical test theory.

Finally, it may be noted that in many practical situations,
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losses are very hard to assess, and loss-based coefficients may
not be useful. For example, procedurus for setting passing scores
are often based on an examination of the test items or on a con-
sideration of the objectives underlying the test. For situations
in which these procedures sre appropriate, only the test passing
score is available for the evaluation of the internal character-
istics of the test data; hence decision consistency may very well
be the only characteristic of the data which could feasibly be
used to assess reliability. The argument seems convincing that
decisions based on test data would not be acceptable if they
could not be replicated to a satisfactory degree by use of the
data collected from another test administration. The practical
Implications of this study seemly contradict the assertion by
Yellenbergh and van der Linden that "decision consistency and
reliability are not equivalent concepts" (1979, p. 270). Based
on the results of this study, it appears that decision consistency

acts very much like a counterpart of classical test reliability.
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A NOTE ON DECISION-THEORETIC
COEFFICIENTS FOR TESTS

Huynh Huynh

University of South Carolina

ABSTRACT

A modification is suggested for the decision-theoretic co-
efficient § proposed by van der Linden and Mellenbergh. Under
reasonable assumptions, the modified index varies from 0 to 1 in-
clusive. It is argued that in many practical applications of
mastery testing, coefficients such as § are not readily available,
and consistency of decisions may serve as evidence of the quality

cf the decision-making process.

1. INTRODUCTION

Coefficients for tests (or strictly speaking, for a set of
measurements) derived from decision theory have been formulated
in a variety of ways (Huynh, 1975, 1976; van der Linden &
Mellenbergh, 1978). These coefficients are based on the reduction
in the proportion of expected loss (or Bayes risk) which would
result from using test scores in the decision-making process.
The efficiency coefficient proposed by Huynh is defined as ¢ =
(R* - Ro)/R* where R, is the expected opportunity loss associated

This paper has been distributed separateiy as RM 80-4, July, 1980.
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with the best use of test scores. The denominator R* is the
minimum of a similar loss whict would be incurred if decisions
were based on information having no relationship to the irue
ability of the individual subject. (It may be noted that the
opportunity losses associated with perfect information, i.e.,
when decisions are always correct, are zero.) Using the notion
of monotone decisions along with the assumption of monotone like-
lihood ratio for the test score density, Huynh was able to prove
that the efficiency index ¢ ranges between 0 and 1 inclusive.

The lowest value 0 occurs when test information is unrelated to
the ability of the subject, and the upper bound 1 is reached when
test scores reveal faithfully the ability of the subject.

The decision-theoretic coefficient proposed by van der Linden
and Mellenbergh (1978) is defined as & = (Rn - RB)/(Rn - Rc)'
where RB represents the expected loss associated with the use of
test scores. Rc and Rn’ on the other hand, are the expected
losses for situations in which the test contains cemplete and no
information about the true scores, respectively. These losses
are not necessarily opportunity losses. As defined, the coeffi-
cient § is O when test scores are unrelated to true ability, and
reaches the value 1 when test scores contain complete information
about true ability. However, as noted by van der Linden and
Meilenbergh (1978), the coefficient § may not always lie within
the interval defined by O and 1. To overcome this deficiency,
Wilcox (1978) proposed that Rn and Rc be replaced with the upper
and lower bounds of the expected loss RB. His index y, then,
will range between 0 and 1. However, it is not known if these
bounds have direct interpretations in terms of the degree of re-
lationship between test score and true ability.

The purpose of this note is to modify the index § slightly,
and to describe the situations in which the resulting index falls
between 0 and 1. The assumptions are presented only for the case
of binary (mastery versus nonmastery) classification; however,

they may be generalized in a fairly simple manner to situations
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involving more than two classification categories.

2. GENERAL CONSIDERATIONS

Consider a popvlation of subjects for whom the true ability
8 is distributed accordiag to the density p(8) with Q as range.
If there is only one subject in the population, then p(8) repre-
seats the prior density in the context of Bayesian statistics.
Let x represent the observed test score and f(xle) be its condi-~
tional density with the real line as the range. Let a, be the
action of denying mastery status (the nonmaster: category) and a2
be the action of granting mastery (the mastery category). Follow-
ing the notation used 1in Ferguson (1967, chapter 6), let L(8,a )
and L(0,a ) be the losses associated with the actions a, and a,.

In most formulations of mastery testing, it is usually assumed
that there exists a true cutoff ability eo such that action a, is
better than action a, when 8 < eo and the reverse 1s true when

6 > eo. To be consistent with these assumptions, the losses would
have to satisfy the following inequalities: L(e,al) §_L(e,az)

for 6 < 60 and L(e,al) 3_L(e,a2) for © 3_60. Under these con-
ditions, the binary decision problem involving the actions a1 and
a, 18 said to be monotone.

In practical situations, however, mastery/nonmastery decisions
are usually based on observed test data. In general, it seems
reasonable that mastery should be granted if the test score x is
high, and nomnmastery should be presumed if the test score is low.
In order that this type of classification be optimum in most
decision-theoretic contexts, it is traditionally assumed that the

conditional density f(xle) has monotone likelihood ratio. This

condition is fulfilled for test models involving the exponential,
Poisson, normal, negative binomial, gamma, and beta distributions,
and in general, distributions belonging to the one-parameter ex-
ponential family (Ferguson, 1967, p. 208-209). 1In addition, the
assumption of monotone likelihood ratio for f(xle) implies
(Lehmann, 1966; Dykstra, Hewett, & Thompson, 1973, p. 679,
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definition) that x is positive likelihood ratio dependent upon 6.
This result, in turn, implies that x and 6 are stochastically

increasing in sequence (Dykstra et al., Theorem 2); that is, the

conditional distribution of x, F(x|6) is nonincreasing in 6.
Thus, when the monotone likelihood ratio assumption is fulfilled,
the probability that a subject achieves a test score of x or lower
is greater for subjects with lower ability.

When f(x|6) has monotone likelihood ratio, it is best to de-
clare mastery if the test score x is at least c, and declare non-
mastery 1f the test score x is smaller than c. The expected loss

(or Bayes risk) associated with the cutoff test score c is
= c
R = [, [, 1,(6,a))£(x|6)p(6)dxde

+ /g f: L,(8,a,) £ (x|6)p(6)dxde,
or
R = IQ Ll(a,al) Pr(x<c|8)p(8)de
(1)
+ [ Ly(8,a,) Pr(x>c|o)p(e)de.

Consider now the first extreme case where x carries no in-
formation about 6, i.e., when x and 6 are independent. For this
situation, the two probabilities Pr(x<c|6) and Pr(x39|6) are free

of 6, and the expected loss may be written as

R = [IQ L, (8,a,)d81Pr(x<c) 2
+ [, L,(8,a,)d01Pr (x2c).

The relationship between R and R, may be stated as follows.

Theorem 1. Let Ll(e,al) be nondecreasing in 6 and Lz(e,az) be

nonincreasing in 6. 1In addition, let f(xle) have monotone like-

lihood ratio. Then R S-Rn'

Proof. Equation (1) may be written as

-R = E;[-L (6,a,) Pr(x<c|8) ]

+ EglL,(8,a,) {-Pr(x>c|8}].
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All the functions -L,(8,a,), Pr(x<c|e), L,(8,a,), and -Pr(x>c|6)
are nonincreasing in 6, hence (Dykstra et al., 1973, p. 678)

"R > - [EL (8,a,)] EPr(x<c|6)

- [EgL,(8,a,)] EPr(x>c|e),
or
-R > -R . Q.E.D.

The assumptions regarding the variations of Ll(e,al) and
Lz(e,az) with respect ¢o a and a, seem intuitively justified.

The denial of mastery status probably should cause less harm to a
subject with lower ability than to someone with higher ability.
Granting mastery status, on the other hand, should entail lesser
consequences for a bigh ability subject than to someone with
lower ability.

Consider now the second extreme case where the test score x
reveals fully the ability 6 of the subject. It appears rea-
sonable to impose a strictly increasing function relating x to 6.
Lev ec be the image of the test cutoff score c on the true ability
scale 8. Then it may be deduced that P(x<c|6) = 1 when § < 6, and
0 when 6 > Gc. On the other hand, P(xicle) = 0 when 6 < ec and 1
otherwise. Thus, under the assumption of complete information,

the expected loss as expressed in (1) will be equal to

ec
J o1 (8,a))p(0)do + f;: L,(0,3,)p(8)do.

Under the monotone-decision conditions imposed previously on the
loss functions, it may be shown that this loss is minimized when
ec = eo. Hence the minimum complete-information expected loss may
be taken as

0
R, = [_o L (8,a,)p(6)do + Ieo L,(6,a,)p(6)de. (3)

Theorem 2. Under the monotone-decision assumptions, the expected

loss R, computed at any test cutoff score, and the minimum
complete-information expected loss, Rc, satisfy the inequality
R <R,
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Proof. Consider the expected loss R of (1) which caa be written

as

8 8
R=J_0 L (8,a) Pr(e<c|6)p(erde + [ ° L,(8,a,) Pr(e>:]6)p(6)de
+ f: L (8,a,) Pr(e<c|o)p(e)de + f¢ L,(8,a,) ™r(e>c|e)p(e)de.
(o] (o]

When 6 < 90, Ll(e,al) §_L2(9,a2) and when 6 > 90, Lz(e,al) <
L,(8,a,). By noting that Pr(x<c|®) + Pr(x>c|68) *= 1, it may then
be verified that R 2R.. Q.E.D.

The following corollary is immediate.
Corollary. Let the loss Ll(al,e) be nondecreasing in 6, the loss
Lz(az,e) be nonincreasing in 6, and let the graphs of these
functions cross at a given point ' ithin the positive-probability
range of 6. 1In addition, let f(xle) have monotone likelihood ratio.
Then the index 6§ = (R - Rc)/(Rn - Rc) in which R, is the minimum

complete information expected loss will be between 0 and 1 in-

clusive.

3. RATIONALE FOR THE USE OF MINIMUM EXPECTED LOSS

The use of the minimum expected loss for the case of a strict-
ly increasing relationship between x and 6 guards against the seem-
ing contradiction in which the use of perfectly reliable test data
would cause more harm than the use of less-than-perfectly reliable
test data.

The bounds Rn and Rc for the expected loss R have fairly
straight-forward psychometric interpretations. The lower limit
Rn would occur if nonmastery and mastery status were randomly
assigned to examinees regardless of the test scores, keeping the
proportion of nonmasters equal to that of examinees having test
scores smaller than c, and the proportion of masters equal to that
of »>xamlnees having a test score of c or greater. The upper limit
Rc corresponds to the best use of completely reliable test data.

It may be noted that both bounds (Rn and Rc) are easy to com-
pute, given the quantities p(8), f(x|6), Ll(e,al) and Lz(e,az).
Thus, the index § as defined in this note may be estimated in a
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fairly straight-forward manner for most situations involving the

use of test data to make decisions. This represents an advantage
over the Wilcox y (Wilcox, 1978, p. 610) which seems to involve

rather complex calculations.

4. SOME ADDITIONAL REMARKS

As additional remarks regarding the index & proposed by van
der Linden and Mellenbergh (1978), some departures appear apparent
between its formulation and the various illustrations. The
authors argued that their index & seemed more realistic than the
coefficient ¢ defined in Huyr.h (1976) because § was defined on
any chosen cutoff score while the € index relied on the optimum
cutoff score. But, in both illustrations based on squared-error
and linear losses, the optimum cutoff score was us.l in order to
reach the conclusion that the § index was equal to the classical
reliability index. 1In addition, § was presented as a coefficient
that represented the optimality of decisions (p. 133). Thus the

use of a less-than-optimal cutoff score in the formulation of §
seemed to contradict the very characteristic which § was thought
to embrace.

Finally, the use of any decision-theoretic coefficient for
tests presumes the availability of the losses (or utilities)
asgociated with the various actions. In a number of practical
situations, however, decisions regarding cutoff scores are not
based on losses because they are not readily quantified or be-
cauge the decision-maker is not willing to use them. In many in-
stances, for example, cutoff scores are derived from an exami-
nation of item content or a conside:ration of the educational
objectives. For these cases, the decision-thzoretic coefficients
as described in this paper are not available and the consistency
of various decisions across two test administrations may serve as

evidence of the quality of the decision-making process. It may

be argued that decisions regarding success or failure for each

subject may not be acceptable If they cannot be replicated to a
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reasonable extent on a second test administration. It is
cautioned, of course, that test-retest consistency for decisions
does not necessarily imply that the corresponding decisions are

reflective of the purposes that the decision-maker nas in mind.

This line of reasoning is reminiscent of the well-accepted fact

that in measurement, reliability is a necessary but not a

sufficient condition for validity.
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ASSESSING EFFICIENCY OF DECISIONS
IN MASTERY TESTING

Huynh Huynh

University of South Carolina

ABSTRACT

Two indices are proposed for assessing the efficiency of
decisions in mastery testing. The indices are generalizations of
the raw agreement index and the kappa index. Both express the
reduction in the proportion of average loss (or the fFain in utility)
resulting from the use of test scores to make decisions. Empirical
data are presented which show little discrepancy between estimates
based on the beta-binomial and compound binomial models for one

index.

1. INTRODUCTION

A primary purpose of mastery testing is to classify examinees
in several achievement or ability categories. Typically, there are
two such categories, which are often referred to as mastery (reau),
competent, or instructed) and nonmastery (nonready, incompetent, or
uninstructed) groups. Ideally, these categories are defined on the

basis of the true ability (8) of the subjects; however, in reality,

This paper has been distributed separately as RM 80-5, July, 1980.
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observed test scores are used to make mastery/nonmastery decisions.
Since observed test data are often fallible, decisions hased there-
upon are less than completely accurate or efficient.

In the simplest formulation of mastery testing (Hambleton &
Novick, 1973; Huynh, 1976a), the categories of true mastery and

true nonmastery are defined respectively by the -onditions 6 3_90

and 0 < 60, 60 being a constant referred to as a criterion level by

Hambleton and Novick and a true mastery score by Huynh. A test is

given, and the observed test score x is obtained for each individual
examinee. A suitable test passing (cutoff, mastery) score ¢ will
bLe chosen, and th: examinee will be granted or denied mastery status

if the observed test score x is such that x > ¢ or x < ¢. The two

>
combinations (8 < 60; x < ¢) and (8 3_60; X > c) represent correct
decisions; they entail no (opportunity) losses in the decision
process. The other two possible combinations correspond to a false
positive error (8 < 60; x > c¢) and a false negative error (9 3_60;
X < ¢). Some form of loss function, such as constant, linear. or
squared error loss, is typically assigned to each of these errors
in most decision-theoretic formulations of mastery testing
(Hambleton & Novick, 1973; Huynh, 1976a, 1980b; van der Linden o
Mellenbergh, 1977).

Given various parameters defining the decision situation (such
as 60; the number of test items; the losses incurred by misclassifi-
cation; and, when available, prior information regarding the indi-
vidual examinee or the group of examinees), a test passing scoire
may be determined by minimizing either the average loss (Bayesian
or empirical Bayes passing score) or the maximum loss (minimax
passing score). For example, where classification errors are
weightad equally (e.g., when the false positive loss and the false
negative loss are identical), an optimum passiig score may be deter-
mined by minimizing the sum of the probabilities of making such
errors. Detalls regarding the determination of passing scores may
be found in Huynh (1976a, 1980b).

Once a passing score has been set for a test, an obvious ques-
tion concerns the extent to which the test itsclf contributes to

the quality of the decision-making process. The question may be
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answered in a variety of wa; .. For example, if the test scores are
used to identify students who need instructional remediation, then
the detection of poor achievers (nonmasters) is important, and
therefore a substantial false positive error rate may not be
acceptable. In this context, a mastery test may be considered as

effective or efficient if it yields a small false positive error

rate. In most situations, however, some combination of false posi-
tive error, false negative error, and their corresponding losses
would be desirable in assessing the efficiency of using test scores

to make decisions regarding individual examinees.

2. REVIEW OF LITERATURE

The consideration of decision efficiency was introduced by
Huynh (1975, 1976¢c) for the case involving constant losses. Let R
be the expected loss associated with the best use of test data und
R;in be the smallest expected loss encountered in the case of no
relationship between true ability and test score. Huynh's effi-
ciency coefficient, defined as € = l-RO/R;in, was interpreted as
the proportion of reduction in random loss which would result from
the best use of test data in the decision-making process. Under
fairly general conditions regarding the nzture of test data, Huynh
proved that € was included between O and 1. The lower bound occurs
when there is no relationship between test score and true ability;
the upper bound is rcached when there is a perfect increasing rela-
tionship between these two variabies.

The concept of decision efficiency was later extended under a
slightly different form by van der Linden and Mellenbergh (1978)
and Mellenbergh and van der Linden (1979). These writers proposed
the use of the coefficient 6 = (Rn-RB)/(Rn-Rc), which may be written
equivalently as § = 1 - (RB_Rc)/(Rn-Rc)’ ¢ .orm similar to Huynh's
original €. 1In these formulae, RB represents the expected loss
ascociated with any predetermined test passing score; Rc and Rn are
the expected losses encountered in situations in which the test
scores contain complete and no information about the true score,
respectively. As shown by var. der Linden and Mellenburgh, there is

a direct relationship between 8 and the classical reliability index
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when § is computed for linear losses at the optimum test passing

score. In addition, the two special vaives § = 0 and § = 1 have
the same meaning as €. However, van der Linden and Mellenbergh
correctly stated that their proposed § may not always be included
between 0 and 1, as would be typically desirable in the formulation
of indices to be used in educational and psycholcgical measurement.
Huynh (1980c) proposed a revised § in which Rc represented the
expected loss associated with the best use of completely infallible
data and proved that 0 < 6§ < 1 under fairly general conditions.
Wilcox (1978) had also advanced a modification of 6; his index y
ranged between 0 and 1. However, these boundary values of y did
not appear to bear direct interpretations in terms of the relation-
ship between test scores and true ability.

Livingston and Wingersky (1979) proposed the assessment of the
quality of pass/fail decisions (mastery testing) on the basis of
the probabilities of making correct and incorrect decisions and on
the basis of an efficiency index involving these probabilities and
the corresponding utilities. The issue of errors in decisions has
been considered at length in the literature (Hambleton & Novick,
1973; Huynh, 1976a; Wilcox, 1977). 1In addition, the Livingston-
Wingersky index varies from -1 to +1, a range which often compli-
cates the interpretation of the index. Estimates for the various
quantities considered by these authors are based on the compound
binomial model, which typirally requires the responses of at least
1000 examinees. The requirement geems quite stringent in many
cases involving field testing or the use of mastery tests. (Actual-
ly, as can be seen later in this paper, the Livingston-Wingersky
index relates directly to the raw efficiency index €y there is

little difference between estimates of €, based on the compound

binomial and beta-binomial models.)

The purpose of this paper is to provide a general formulation
of decision efficiency in mastery testing, to provide illustrations
based on the beta-binomial model, to describe ways to estimate the
proposed efficiency indices, and to report data comparing estimates

based on the compound binomial and beta-binomial models.
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Figure I provides the motivation for the general formulation
of decision efficiency as presented in the subsequent section. Let
us consider the simplest case in which the losses encountered by
both the false positive aud false negative errors are constant and
equal (and are set at Q). With the cell probabilities pij as pre-
viousiy defined, the expected loss (Bayes risk) in using test

scores to make decisions is equal to

R = Q(pg, + ;) - (1)

Let us presume now that there is no relationship between ability
and test score x, hence mastery/nonmastery decisions are based on a
random process independent of the examinee's ability. For this

situation, the loss is expected to be
Re = Qlp 1Py, + P gPy ) - (2)

This quantity will be referred to as randomdecision risk. 1In
addition, over all possible values for 60 and c, the worst decision
would occur when a true master is always denied mastery status and
a true nonmaste: is always granted mastery status. For these ex-
treme situations, the risk stands «° the maximum Rm = Q. Under
fairly general conditions (see Section 3), it may be verified that
R f-Re'

From the three expected losses R, Re, and Rm, two efficiency
indices may be formulated. First, Re - R represents the amount of
reduction in the random-decision risk which could be achieved by

sing test data. Hence, an index of decision efficiency may be
cefined via the ratio

€ = (Re - R)/Re (3)

which is the extent to which the reliance on test scores will reduce
the expected loss which would be encountered if no test data (or
completely fallible data) were used in the decision situation de-
fined by 60 and c. From Equations (1) and (2), it may be deduced
that

£ (P-Pc)/(l-Pc)

where P = Poo + P1qp and Pc =Py P + PyP This index, €1s is

actually the kappa index proposed by Cohen (1960) and studied

334
318




HUYNH

Figure I provides the motivation for the general formulation
of decision efficiency as presented in the subsequent section. Let
us consider the simplest case in which the losses encountered by
both the false positive aud false negative errors are constant and
equal (and are set at Q). With the cell probabilities pij as pre-
viousiy defined, the expected loss (Bayes risk) in using test

scores to make decisions is equal to

R = Q(pg, + ;) - (1)

Let us presume now that there is no relationship between ability
and test score x, hence mastery/nonmastery decisions are based on a
random process independent of the examinee's ability. For this

situation, the loss is expected to be
Re = Qlp 1Py, + P gPy ) - (2)

This quantity will be referred to as randomdecision risk. 1In
addition, over all possible values for 60 and c, the worst decision
would occur when a true master is always denied mastery status and
a true nonmaste: is always granted mastery status. For these ex-
treme situations, the risk stands «° the maximum Rm = Q. Under
fairly general conditions (see Section 3), it may be verified that
R f-Re'

From the three expected losses R, Re, and Rm, two efficiency
indices may be formulated. First, Re - R represents the amount of
reduction in the random-decision risk which could be achieved by

sing test data. Hence, an index of decision efficiency may be
cefined via the ratio

€ = (Re - R)/Re (3)

which is the extent to which the reliance on test scores will reduce
the expected loss which would be encountered if no test data (or
completely fallible data) were used in the decision situation de-
fined by 60 and c. From Equations (1) and (2), it may be deduced
that

£ (P-Pc)/(l-Pc)

where P = Poo + P1qp and Pc =Py P + PyP This index, €1s is

actually the kappa index proposed by Cohen (1960) and studied

334
318




EFFICIENCY OF DECISIONS

extensively in the context of mastery testing by Swaminathan,
Hambleton, and Algina (1975) aad Huynh (1976b, 1978, 1979a).

A second efficiency index may also be formulated, using R and
Rm. It is

€, = (Rm—R)/Rm. (4)

This index represents the extent to which the use of test scores
will reduce the maximum risk which is common to all situations.

From Equation (1), it may be verified that
€2 =Py TP " P
Thus €, is simply the combined probability of making a correct

decision. In the context of reliability of mastery tests, €, (or

2
P) is often referred to as the raw agreement index (Subkoviak, 1976;
Huynh, 1979a).

With the rationale for € and €, as stated, a general formula-

tion of decision efficiency will now be presented.

4. A GENERAL FORMULATION OF DECISION EFFICIENCY

Let 6 be the true ability of a given examinee and Q be its
range. For the binomial error model (Lord & Novick, 1968, ch. 23),
6 may be taken as the proportion of items in a large item pool that
the examinee is expected to answer correctly, and the range Q is
the intervall0,1]. Let x be the test score observed for the exami-
nee, and let x be distributed according to the conditional density
£(x|0). In addition, let p(8) be the density of 6.

A referral task (Huynh, 1976a) is assumed to exist and is used
as an external criterion for the determination of a passing score.
The task is defined operationally via a nondecreasing function s(8)
which describes the probability that an examinee with true ability
8 i1l succeed in completing the task. As noted in the author's
previous writing (Huynh, 1976a, 1980b), the referral task may be
real or hypothetical. For example, in individualized instructional
programs where a student proceeds from one content unit to the next
(presumibly more complex) unit, each succeeding unit may serve as a
referral task for the previous unit. In other situations, where no

hierarchy can be logically or empirically assumed to hold, a
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consensus on what constitutes an acceptable level of performance
may be translated into a hypothetical referral task. To be spe-
cific, let us suppose that there exists a constant 60 such that
mastery is equivalent to the condition 6 > 60 and nonmastery is
described by the inequality 6 < eo. The corresponding referral
task is operationally defined by the nonincreasiug function

s(8) = 0 for 6 < eo and s(8) = 1 for 8 3_60.

On the basis of the observed test score x and by relying on a
decision rule c, the examinee will be classified in the mastery
status (action al) or in the nonmastery status (action az). Let
cf(e) be the opportunity loss incurred in granting mastery status
to an examinee who will eventuilly fail to perform the referral
task (a false positive error). Likewise, let Cs(e) be the loss
associated with the denial of mastery to someone who will succeed
in completing the task (a false negative error). In most practical
situations, action al is taken when x > ¢, and action a, is taken
where x < c. Here, the constant c is referred to as a test passing
(cutoff, mastery) score.

Within the decision framework as stated, the expected loss
(Bayes risk) associated with the passing score c is given as

R=J, C_(0)s(8)Pr(x<c|0)p(8)do+ /o C.(0) (1-s(8))Pr(x>c|8)p(8)dE. (5)

When the test score x is discrete, the integration sign in each of
the two terms on the right side of (5) is to be replaced by the
summation (I) sign. For the special 0-1 form for s(€) as defined
previously, the Bayes risk is given as

®

R=1/ c_(0)Pr(x<c|6)p(8)do + f__ C,(8)Pr(x>c|6)p(6)do . ()

6
o

In both Equations (5) and (6), the two separate terms on the right
define the individual Bayes risk for the false negative error and
the false positive error.

Consider now the situation where test data do not reflect the
ability of the examinees and therefore are useless in the decision-
making process. For such a case, there would be no relationship
between ability 6 and test score x; in other words, 6 and x would be

independent of each other. The expected loss may now be written as

336 ...
3¢




EFFICIENCY OF DECISIONS

R, = (/g C,(8)s(8)p(8)de)Pr (x<c)

+ (15 c.(8){1-5(8) }p(8)db)Pr (x>¢) | (7)
and, for the special 0-1 case for s(8), as
R = (5 Co(0Ip(8)d0)Pr(x<c) + (£ C.(8)p(6)d0)Pr(x>c) . (8)
o o
Let p = Pr(x>c) so that l1-p = Pr(x<c). Then for the situation in
which no relationship exists between x and 8, the decision proucess
is carried out by randomly assigning individuals to mastery and
nonmastery categories according to the proportions p and 1l-p,
respectively. As in the previous section, the Bayes risk Re will
be referred to as the random-decision risk, or simply, random risk.
It may be verified frcm Equation (5) that the Bayes risk R
cannot exceed the quantity
R = o C.(8)s(0)p(0)de + Iq Cf(e)(l-s(e))p(e)de. (9

This risk is encountered when mastery/nonmastery decisions based on
test data are always incorrect, that is, a true master is always
denied mastery status and a true nonmaster is always granted mastery
status.

With the three risks R, Re’ and Rm as defined, the two decision
efficiency indices € and €, may now be written as

€ = l—R/Re (10}
and

€, = l-R/Rm . (11)

Since o is a generalization of the corrected-for-chance kappa index,

it seems appropriate to refer to it as the corrected-for-chance

efficiency index. Likewise, with €, as a general case of the raw

agreement index, it may be referred to as the raw efficiency index.

Just as in the case of kappa and P, there are fundamental
differences between €, and €ye The €y index is formulated on the
basis of the baseline risk Rm which expresses the worst possible
risk which could occur in the decision-making process. This risk
is incurred when decisions regarding mastery/nonmastery are always
incorrect. Thus € equals 1 when decisions are always correct and

reaches the minimum O where decisions are always incorrect.
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On the other hand, €, assumes the random risk Re to be the

baseline risk and expressts the extent to which the use of test
scores will reduce this random risk. As is the case of kappa, €
reveals the magnitude by which the test scores will improve the
effectiveness of the decision-making process beyond the level which
could be expected from random classification. + ™e random assign-
ment of examinees to the mastery and nonmastery categories, however,
keeps intact the proportions of masters and of nonmasters as defined
by the observed test score frequencies.) Thus El attains the maxi-
mum value of 1 when decisions are always currect. It will be equal
to zero when the decision-making process is carried out by random
classification (i.e., when test scores have no relationship with

the ability of the examinees).

It should be clear from the above elaboration that decision
efficiency depends not only on the characteristics of the test (as
reflected in the dependency between x and 6), but also on the par-~
ticular circumstances under which the test scores are used to make
decisions regarding the individual examinees. Such circumstances
are reflected in the referral success function s(8), the two loss
functions Cs(e) and Cf(e), and the prior or group ability density
p(8).

To complete this section, it may be noted that under all
circumstances 0 < € In addition, since the

< 1 and €, < €

2 1 2°
referral success function s(6) enters in the definition of R and

R, but not in that of R » it is expected that s(6) will have more
influ nce on El than on 62. Thus, in the simplest formulation of
mastery testing which involves the true mastery score 90, this

score 00 will probably have more bearing on € than on Eqe
ES 4

5. CONDITIONS UNDER WHICH e, IS POSITIVE

In the most general situation, €] may be negative. This
<ection will describe the conditions under which this index is
positive.

From the definition of losses presented at the beginning of

Section 3, it seems reasonable to assume that both s(8) and cf(e)
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are nondecreasing and that Cs(e) is nonincreasing. In fact, if the
referral task is chosen appropriately, then examinees of higher
ability should be more likely to succeed in performing the task than
those of low ability. 1In addition, the denial of mastery status
should cause less harm for subjects with low ability than for those
with high ability. Likewise, granting mastery status to a low
ability examinee would cause more harm than granting mastery to a
high ability examinee. Thus, it seems sensible to assume that
Cs(e)s(e) is nondecreasing with respect to 6 and that Cf(e)(l—s(e)]
is nonincreasing with respect to 6.

Now let us focus on the relationship between ability 6 and
test score x. If the test is reasonably well constructed, then the
probability Pr(x<c|9) is nonincreasing in its argument 6. In other
words, examinees with low ability are more likely to get low test
scores than those with high ability. This assumption is tenable if
the density f(x|6) belongs to the monotone likelihood ratio (Esary,
Proschan, & Walkup, 1967; Dykstra, Hewett, & Thompson, 1973). It
follows from Theorem 1 of Dykstra et al. that

o €,(8)s(8)Pr(x<c|8)p(0)de

< (fQCS(O)s(O)p(O)dO)(IQ Pr(x<c|8)p(6)ds) . (12)

The last integral is simply the unconditional probability Pr(x<c).
By using the same theorem, it may be verified that
1}2cf<e)(1-s(e))Pr(gic|e)p<e)de< {&ch(e)(l—s(a))p(ﬁ)de}Pr(xzc). (13)

It follows that, at each test passing score c, R < Rc, and hence

0 :_cl <1

6. AN ILLUSTRATION BASED ON THE BETA-BINOMIAL MODEL
WITH CONSTANT LOSSES AND O-1 REFERRAL SUCCESS

Consider now the simple case in which the test score x obtained
from the administration of an n-item test to a subject with ability
6 is distributed according to the binomial density

f(x]|0) = (2)9“(1—9)“‘”, X=0,1,...,n. (14)

In addition, let it be assumed that the subject comes from a popula-
tion of examinees for whom the ability 6 is distributed according to

the beta density
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p(6) = F(Tl,s_) 0% 11-0)f1 o<e<1. (15)

Then the unconditional distribution of the test score x is defined
by the negative hypergeometric density

(%) B (a+x,n-x+8)
B(a,B)
Let 90 be the minimum passing level in the ability continuum,
and let cf(e) = 1 and Cs(e) = Q. 1In other words, Q is the ratio of

f(x) =

(16)

the constant loss due to a false negative error to the one produced
by a false positive error. The two Bayes risks R and Re may now be
computed via the following formulae:

R = Pr(e<eo,xic) +Q Pr(eieo,xic-l) 17)
and

Ré= Pr(e<eo)Pr(xic) +Q Pr(ezao)Pr(xic-l). (18)

The two probabilities listed in (17) may be obtained from tables of
the incomplete beta function (Pearson, 1934), by use of the formu-
lae presented in Huynh (1976a, p. 71), or from tables and a computer
program documented in Huynh (1979b, 1980a). The two probabilities
in Equation (18), on the other hand, may be secured by applications
of the inductive formulae reported in Huynh (1976b). It may also

be noted that Rm = Pr(6<60) +Q Pr(eiﬁo).

Numerical Example 1

Consider the situation in which a 10-item test is administered
to a group of examinees and the resulting test scores have a mean
of u = 7.00 and a KR21 index of @y = .40. From the formulae in
Huynh (1976a), it may be deduced that the parameters defining the
beta true ability are a = (-1 + 1/321)11 = 10.5and B = -a +n/a21-n
= 4.5. Let 00 = ,60, ¢c = 8, and Q = .,50. Then, by using the
tables reported in Huynh (1979b), the rates of false positive error
and of false negative error may be found to be

.0173

Pr(8<6 _,x>c)

and

Pr(620_,x<c) = .3955.

Hence the Bayes risk in using the test scores to make decisions is
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R = .0173 + .50 x .3955 = ,2151. On the other hand, Pr(x<c) = .5713
and Pr(9<60) = .1931, and hence Re = ,1931 x ,4287 + .50 x ,8069
X .5713 = ,3133. In addition, Rm = ,1931 + .50 x ,8069 = .5966.
The decision efficiency indices are €, = 1-.1931/.3133 = .384 and

€, = 1-.2151/.5966 = .639

1

7. DECISION EFFICIENCY FOR THE BETA-BINOMIAL MODEL
WITH POWER LOSSES AND 0-1 REFERRAL SUCCESS

Consider now the beta-binomial model along with the special

0-1 referral success and the losses defined by

P
- - _ay 1 19
vf(e) (9o 8) for 0 < 90 (19)
=0 for 8 > 0
-0
and
Py
c (8) = Q(6-8 ) “ for & > o, (20)
= 0 for 6 < 9 .
o

Then, 1ipart from the denominator B(a,B), the Bayes risk at the test

passing score c is given as
P - = - .
(6-6 ) 10 1(1-6)B~1 "5 (MyeX(1_g)P%ye (21)
o X
o x=C
eo Py a-1 B-1 n n, . x n-x
+ IO (90-9) ] (1-9) z (x)e (1-9) de .
X=C

P!
R=0Q /g

Similarly, apart {rom the denominator B(a,B), the random-decision

Bayes risk is given as

P _ _ c-1
R, = Q(I; (6-6 ) 1ga=1(1.9)® lde)( I f(x)) (22)
N
(o} X=i
) P n
o 2_a-1 -1
+ (4 (6 -8) “6" " (1-8)"""de) (2. £()),
and the maximum risk as
el Pla-1,. o p-1
R =Q feo (8-8 ) “6° 77 (1-8)"""ae
3] P _
+1o° (8.-8) Z6%(1-0)6Tap . (23)

Waen p,(or pz) is an integer such as in the case of linear or
quadratic losses, the integrals in (21), (22), and (23) which
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involve Py (or p2) may be computed via the incomplete beta function

(Pearson, 1934) and the recurrence formula described as follows. Let

®_u-1 1
D(u,v38)) = /o rra-t) Y ae (24)

= B(u,v)I(u,v;Oo).
Then
D(u*1,v-138 ) = (-93(1-eo)v‘1 + ub(u,v30 )/ (v-1) . (25)

The computations for R, Re, and Rm are simplified considerably
when losses are of the linear form. The Bayes risk R of Equation (21)

may now be written as
c-1

AICH fe (6*" 1 (1-0)P o0 6*ta-0)71) & (e (1-0)""ae
x=0

6

1 o
I (eo Li1-0)

+ B-1_ a+1 1
B(a,B) "0

n

a-0F1Y) £ (Me*(1-6)"Xae
x=c X

Let Fn(n,a,ﬁ,ﬂo,c) and Fp(n,a,B,Oo,c) denote the false negative and

false positive error ra.es associated with the beta true ability

distribution with parameters a and B. By noting that

_T(@)T(B) _ aT(a)T(B) _ aB(a,B)
B(o+1,8) = Trreel) - (atB)T (a+B) v

it may be verified that the Bayes risk R is given as

R = F_(n,o+1,8,0 ,c) - 0 F (n,a,8,0 ,2))

Q(oz+B
a
+ eon(n,a,B,eo,c) oy Fp(n,a+1,8,9°,c).

Formulae, tables, and a computer program are available (Huynh, 1979a,
1980a) for the computation of the false positive and false negative

error rates.

As for Re and Rm, they may be expressed via the incomplete beta

function as follows:

R -Q{Q+B(1-I(a+1,e;en))-90(1-1(a,e;e°))} (27)

Cl a n
. { z f(x)]+ %QI(Q’B;GO)— g;gl(a+l.8;9°% '( z f(x)].
X

x=0
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|

Q
R = Q{;IE[I-I(G+1,B;6°)] - eo[l—I(a,B;eo)]J (28)
a .
+ GOI(G,B,GO) - ;"'—B I(a+1,8,6°) .

Numerical Example 2

For the basic data described in the first numerical example,
the use of linear losses (p1 =p, = 1) will result in the Bayes
risks R = .02165, Re = ,03865, and Rm = ,07118. Hence the values
of the efficiency indices are e, = 1-.02165/.03865 = .440 and
€, = 1-.02165/.07118 = .696.

1

8. RELATIONSHIP BETWEEN €., AND THE
LIVINGSTON-WINGERSKY EFFICIENCY INDEX

Recently, Livingston and Wingersky (1979) proposed an index of
efficiency for situations in which the consequences of granting or
denying mastery status are expressed in terms of utility. For the
simplest case involving linear and opposite utility, the utility of
granting mastery status is 8-60 and the utility of denying mastery
status is 60-6. Here 6 is the true ability of the examinee, and 60
is a given constant. As before, let x be the observed test score
and ¢ be the test passing score. The efficiency index proposed by
Livingston and Wingersky (1979) is the ratio
L(6-6 )sign(x-c)

I[6-8 ]

(29)

where the summation sign (I) is extended over all examinees. This
index reaches the maximum value of 1 when decisions based on test
data are always correct and the minimum value of -1 when these
decisions are always incorrect.

We will show that a linear relationship exists between the
Livingston-Wingersky efficiency index e and the raw efficiency
index €, computed from the corresponding (opportunity) loss func-
tions. These loss functions are expressed as

cf(e) = 2(90-6) for 0 < 60
= for 6 >0 ,
- o
and

Ny
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cs(e) = 2(8-80) for 06> 8

o
=0 for 8 <898 .,
0
Then the raw efficiency index €, is given as
pX S (68 )+ L bX (80-8)
020 x>c ° e<e_ x<c
€2 " z[6-6_] . (30)

With the losses as defined, it will now be shown that e = 252-1.
In fact, apart from the denominator z]e-eol, the quantity 262-1 is

equal to
2T L (8-8)+2 I I (6-6)-
028 x>c ° 8<0_ x<c

[t T (-8)+ I I (-6 )+ I I (8. -0)+ I L (8-0)
[Qzeo x>c 8390 x<e 8<8° x<c 6<8o x>c

= I I (0-6)+ I (6-8))- L ( &L (6-8)+ I (8- )
x>c {6>8 ° <o 0 1 x<c |0>8 x>0
- - 0 (o} - 0 - 0

= Z(e-eo)sign(x-c).

This quantity defines the numerator of the Livingston-Wingersky
y efficiency index. Thus the relationship e = 262'1 holds for linear
and opposite utilities. For other opposite utilities which define
the Livingston-Wingersky general index of efficiency, and with the
corresponding (opportunity) loss functions, it may also be verified
that the same relationship will hold.
As a passing remark to end this section, it may be noted that
Livingston and Wingersky (1979, p. 258) appear to imply that "if
examinees' chances of passing the test were completely unrelated
to their true scores, the efficiency index would have an expected
value of zero." T'is assertion regarding e apparently is not
complete, as may be seen from the following argument. If there is
complete independence between true ability 6 and observed score x,
then it may be verified that at each given pair (eo,c), the numera-
tor of e in (26) is given as
Z(e-eo)sign(x-c) = (2(8-80))Pr(xzp) - (2(8-60))Pr(x<c).

Hence, when 2(8-80) # 0, e is 0 if and only if the test passing
score ¢ is set up such that half of the subjects will pass and the
other half will fail. (This observatinn also holds for situations

344 "
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in wh.ch the action of granting mastery and the action of denying

mastery have opposite utilities other than opposite linear ones.)

9. ESTIMATION PROCEDURES BASED ON THE BETA~BINOMIAL
AND COMPOUND BINOMIAL ERROR MODELS

The estimation of the decision efficiency indices € and €y
may be carried out on the basis of the observed test data if rea-
sonable assumptions can be made regarding the functional forms of
the conditional probability Pr(x<c|6) and of the density p(8) of
tne true ability.

When the beta-binomial error model (Lord & Novick, 1968,
ch. 23) is appropriate, the estimation of decision efficiency under
constant or power losses may be carried out via the formulae de-
scribed in Sections 6 and 7. 1In using these formulae, the param-
eters a and B of the beta distribution are to be replaced by their
corresponding estimates based on sample data. A commonly uscd set
of estimates is the mrment estimates which are obtained as follows.
Let x and 8 be the mean and standard deviation of the test scores,

and let the Ki2l reliability be defined as

.. [ x(n-x)
%1 % w1 [1 7 ] (31)
ns

Then the moment estimates of a and B are given as

a = (-1 + 1/a21)x (32)
and

= - 0. - 33
B a + n/a21 n. (33)

While the beta-binomial model has been found to fit geveral
test score d .'ributions reasonably well (Feats & Lord, 1962;
Duncan, 1974), and to provide useful results in mastery testing
(Fuynh, 1976a, 1976b, 1977, 1979, 1980a), che compound binomial
error model (Lord, 1965, 1969) has been advocated as 2 more real-
istic model for the description of actual test data. Livingston
and Wingersky (1979) used the latter model to obtain estimates for
the false positive and false negative error rates, estimates for
decision accuracy (proportir-~ of examinees who are correctly clas-
sified), and estimates of the decision efficiency index e under

linear and opposite utilities. A basic feature of the estimation
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process is the use of Lord's Method 20 (Lord, 1969) as implemented
by Wingersky, Lees, Lennon, and Lord (1969). Its use is recommended
for data from at least 1000 examinees.

In small-scale testing programs such as those associated with
field testing for mastery tests or those conducted at the school-
district level, the requirement of 1000 examine. cannot be easily
fulfilled. In addition, the data presented in Wilcox (1977) seem
to indicate that as far as error rates (and therefore efficiency
under constant losses) are concerned, the use of the more complex
compound binomial model instead of the simple beta-binomial model
does not improve substantially the accuracy of the estimates.

This section will compare estimates of €y based on the beta-
binomial model with those computed from the compound binomial wodel
as implemented by Livingston and Wingersky (1979). (These authors

proposed the use of the index e which is 2e,-1.) For the case of

cc “tant and equal losses, the estimate ft 252 is simply the sum

of the two probabilities of making a correct decision. Hence, in
using the output described by Livingston and Wingersky, the
compound binomial estimate for €, may be obtained by summing the
probabilities which appear in the two ceils ''Should Pass/Will Pass"
and "Should Fail/Will Fail." For the first output reported in
Figure 1 of the Livingston-Wingersky paper, this estimate is

55.9% + 24.3% = 80.2% or .802. The output also reports the com-
pound binomial estimate for the efficiency index e under linear and
opposite utilities. The (raw) efficiency index €y in turn, may be
deduced from e via the formula 52 r (1+e)/2. For the output just
referenced, the value of e is (.81, hence the estimate for 82 is
(1+0.81)/2 = .905.

The compound binomial estimates for efficiency index €, under
constant and linear losses with Q = 1 (or under constant and linear,
but opposite utilities) were derived from the computer programs
provided by Livingston and Wingersky. The corresponding estimates
base¢ &n the beta-binomial model were obtained via the computer
program listed in Appendix A. The comparison cf the two sets of

estimates was made using the basic test data summarized in Table 1.

These data were extrac.ed from the Comprchensive Tests of Basic
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Skills data file collected in the 1978 South Carolina statewide
testing program. In this table, si represents the variance of the
item difficulty (defined as the proportion of examinees who cor-

rectly answered the item).
TABLE 1

Description of Test Data Used to Compare the Beta-Binomial
and Compound Binomial Estimates of ¢

2
Case n Mean S.D 32 (X104) ; é ;
T diff 21
A 10 7.2315 2.6888 64.87 1.7693 0.6774  .8034
B 15 8.6247 3.1932 301.61 3.9433 2.9148 .6862
c 20 16.1621 3.8987 97.93 3.1278 0.7427 .8379
D 30 18.0707 6.3192 202.90 3.2300 2.1323  .8484
E 40 23.5658 8.3406 281.87 3.1258 2.1799  .8829
F 50 30.4848 10.7558 205.92 2.8152 1.8022 . 9155

Table 2 reports the estimates of €, for a variety of combina-
tions of 60 and c. The data reveal only negligible discrepancies
between the beta-binomial estimates and those based on the compound
binomial model. Since the beta-binomial estimates only .equire
estimation of the two parameters of the beta distribution, they may
be safely obtained from the responses of a small or moderate sample
of examinees. For a sample of this type, estimation via the com-

pound binomial model may not be appropriate.
TABLE 2

Estimates of ¢, Based on the Beta-Binomial (BB)
and Compound Binomial (CB) Models

Opposite & Constant Opposite & Linear
Utility Utility
Case % c BB CB BB CB
A .70 7 .874 .893 . 948 .950
B .70 10 .792 .798 .898 .905
c .70 14 .912 .923 .972 .975
D .80 24 .901 .96% .977 .980
E .80 32 .920 .917 .985 .985
F .80 40 .925 .934 .987 .390
347

o
-
1




HUYNH

10. COMPUTER PROGRAM

A FORTRAN IV program which provides an analysis of decision
efficiency for the case of constant and linear losses is listed in
Appendix A. For each prob’em, the input data are to be "keypunched"

on three cards detailed as follows.
First Card

This card contains the title of the problem, keypunched between

colvmns 1 and 80.
Second Card

This card provides data on number of items (n), the alpha (a)
and beta (B) parameters of the true ability distribution, the frue
mastery score (60), the test passing score (c), and the loss ratio
(Q). These must be keypunched according to the format (I5, ?70.5,
F5.3, I5, F5.2).

For example, the efficiency analysis described in numerical
examples 1 and 2 may be performed via the computer program using
the following two input cards.

1 1 2 2 3 3 4

Column: 1...5...0....5....0....5....0....5....0
First card: AN EYsVPLE OF DECISION EFFICIENCY ANALYSTS
Second card: 10 10.5 4.5 .60 8 .50

Table 3 1lists the output for t! -.s problem.
Several problems may be performed ir. one run by stacking the

input. cards together.
11. SUMMARY

This paper describes two indices which pertain to the effi-
ciency of decisions in mastery testing. The indices are gener-
alizations of the raw agreement index and the kappa index. Both
express the reduction in proportion of losses (or the gain in pro-
portion of utility) resulting from the use of test scores to make
decisions. Empirical data reveal only negligible discrepancies

between the beta-binomial and compound binomial estimates .or these

indices.
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TABLE 3

An Output of the Computer Program

ANALYSIS OF DECISION EFFICIENCY BASED ON THE
BETA~BINOMIAL MODEL. THE TITLE OF THIS PROBLEM IS:
AN EXAMPLE OF DECISION EFFICIENCY ANALYSIS

INPUT DATA ARE:

NUMBER OF ITEMS ..... 10
ALPHA ....cevvivvnnnen 10.50000
BETA .....civvennnnee 4.50000
THETA ZERO .......... 0.60000
TEST PASSING SCORE .. 8
LOSS RATIO Q ..... cee 0.50000

FOUR~CELL TABLE WITH PROBABILITIES

SHOULD FAIL AND WILL FAIL ..... 0.1758
SHOULD PASS AND WILL PASS ..... 0.4113
SHOULD FAIL BUT WILL PASS
(A FALSE POSITIVE ERRGR) ...... 0.0173
SHOULD PASS BUT WILL FATL
(A FALSE NEGATIVE ERROR) ...... 0.3955

FOR LINEAR LOSSES, THE OUTPUT ARE:

RISK FOR USING TEST SCORES .. 0.02165
RANDOM-DECISION RISK ........ 0.03865
MAXIMUM RISK cevevunnceennnnn 0.07118

DECISION-EFFICIENCY INDICES:
CORRECTED-FOR~CHANCE INDEX ... El

NO CORRECTION FOR CHANCE
(RAW) INDEX vovvvvrnnncencnnnn E2

0.440

0.696

*%* NORMAL END OF PROGRAM **
PROGRAM WRITTEN BY
HUYNH HUYNH
COLLEGE OF EDUCATION
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
MAY 1980
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APPENDIX A

A Computer Program for the Analysis of the Efficiency
of Decisions in Mastery Testing
Based on the Beta-Binomial Model
Disclaimer: The computer program hereafter listed has been written
with care and tested extensively under a variety of conditions using
tests with 50 or fewer items. The author, howewer, makes no war-
ranty as to its accuracy and functioning, nor shall the fact of its

distribution imply such warranty.
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A COMPUTER PROGRAM FOR id4E COMPUTATION OF DECISION-EFFFICLENCY
WITH CONSTANT QR LINEAR LOSSES AND WITH BETA-BINOMIAL TEST DATA.
CONSTANT LOSSES INCLUDE CONSTANT UTILITIES, AND LINEAR LOSSES
INCLUDE LINEAR AND OPPOSITE UTILITIES.

INPUT DATA ARE:
FIRST CARD: TITLE OF THE PROBLEM (ENTER ANYTHING YOU WANT)

SECOND CARD: ENTER THE FOLLOWING INFORMATION, USING THE FORMAT
(15,2F10.5,F5.2,15,F5.2)

+... NUMBER OF TEST ITEMS

+ e« ALPHA PARAMETER OF THE BETA DISTRIBURION

B .... BETA DISTRIBUTION OF THE BETA DISTRIBUTION

TT ... THE™\ ZERO (MINIMUM TRUE SCORE FOR PASSING)

IM ... TEST PASSING SCORE

Q .... LOSS RATIO

SEVERAL PROBLEMS MAY BE RUN CONSECUTIVELY BY STACKING THE INPUT
CARDS TOGETHER.

SUBROUTINE REQUIRED: THE BDTR OF THE SCIENTIFIC SUBROUTINE
PACKAGE.

DOUBLE PRECISION A,B,TT,FP,FN,FP1,FN1,SUM

DIMENSION W(20)

READ(5,100,END=99) W

FORMAT (20A4)

WRITE(6SZOO) w

FORMAT('1', 'ANALYSIS OF DECISION EFFICIENCY BASED ON THE'/

*T2, 'BETA-BINOMIAL MODEL. THE TITLE OF THIS PROBLEM IS: '/T2,20A4)
READ(5,110) N,A,B,TT,IM,Q

> =

FORMAT (I5,2F10.5,F5.2,15,F5.2)

WRITE(6,230) N,A,B,TT,IM,Q

FORMAT (T2, 'INPUT DATA ARE:'//

* T6, 'NIMBER OF ITEMS .....',I10/

* T6,'AL.dA.......00vvn.... ' F10.5/

* T6,"BETA veevvveevnennn.. ' F10.5/

* T6, 'THETA ZERO ..........',F10.5/

* T6, 'TEST PASSTNG SCORE...'.I10/

* T6, 'LOSS RATIO Q ........',F10.5//)

CALL ERRFPN(N,A,3,TT, IM,FP,FN)

CALL ERRFPN(N,A+1.D0,B,TT, IM,FP1,FN1)

CALL MDBETA(TT,A,B,P1,1IER)

CALL MDBETA(TT,A+1.DO,B,P2,IER)

ZZ=A/ (A+B)

R=Q¥* (ZZ*FN1-TT*FN)+TT*FP-ZZ*FP1

AA=Q¥ (ZZ*(1,-P2)=TT*(1.-P1))

BB=TT*Pl-ZZ¥P2

RMwAA+BB

CALL NEHY3(N,A,B, I, SUM)

RE=AA*SUM+BB* (1, - SUM)

El=1,-R/RE

E2=1.-R/RM

Pl=SUM-FN

P2=1.-SUM - FP

WRITE(6,236) P1,P2,FP,FN

FORMAT (T2, 'FOUR-CELL TABLE WITH PROBABILITIES'//

* T6, 'SHOULD FAiL AND WILL FAIL .....' F10.4/
* T6, 'SHOULD PASS AND WILL PASS .....'.F10.4/
* T6, 'SHOULD FAIL BUT WILL PASS '/

* T6, '(A FALSE POSITIVE ERROR).......', F10.4/
* T6, 'SHOULD PAS3 BUT WILL FAIL'/

* T6,'(A FALSE NEGATIVE ERROR) ......',F10.4//

T2, 'FOR LINEAR LOSSES, THE OU.2UT ARE:'//)




(P]

O 0000

99
150

10

15
30

35

WRITE(6,240) R,RE,RM,E1l,E2
240 FORMAT(T6 "RISK FOR USING TEST SCORES...' .1"10 5/

* T6, ' RANDOM-DECISION RISK ........',F10.5/

* T6, ' MAXTMUM RISK................ ,F10.5//

* T2, 'DECISION-EFFICIENCY INDICES:'//

* T6, ! CORRECTED-FOR-CHANCE INDEX ... El = ',F6.3/
* 6, 'uo CORRECTION FOR CHANCE'/

* coTo 1 T6," (RAW) INDEX «..0eooceveesecees E2 = ', F6.3)

WRITE(6,150)
FORMAT (T2, ' #* NORMAL END OF PROGRAM #**/

T2.' PROGRAM WRITTEN BY'/

T2.' HUYNH HUYNH'/

T2,' COLLEGE OF EDUCATION'/

UNIVERSITY OF SOUTH CAROLINA'/

T2,' COLUMBIA, SOUTH CAROLINA 29208/
T2,' MAY 1980")

* % % % % %
[
»N

STOP
END
SUBROUTINE ERRFPN(N,A,B,TT,IM,FP

FN)
DOUBLE PRECISION A,B,TZ.BETA,DFCT,U,V,DX,ONE, Y1,

*VMONE, BB,DF (61) , FP, FN,
*E(2),TT,P1,BA,BI
EXTERNAL BETA, BI,DFCT

ONE=1.D0

Y1=BETA(A,B)

SET UP FOR FALSE POSTITIVE ERRORS
TZ=TT

IC=IM

U=A+DFLOAT (1C)

V=B+DFLOA} {N-1C)

DO 40 L=1,2

F=0ONE-TZ
DX=DFCT(U,V,TZ)
BB=BI(N,IC)
E(L)=DX*BB

BA=RETA(U,V)
IF(IC.EQ.i{) GO TO 30
1Z=l-1C

DO 15 I=1,12Z
I¥=1C+1

VMONE=V-0NE

Zlma (TZ#**U) *F**VNMONE
DX=(Z1+U*DX)/VMONE
BB=BB¥* (N-IX+1)/I4

VaV-Q0iik
BA=BA*U/V

U=U+ONE
E(L)=E (L)+B%*DX

CONTINUE
IF(L.EQ.1) GOTO 35

INTERCHANGE DFPA AND DFPE FOR FALSE NEGATIVE ERROR

E(L)=E(L)/Y1
SET UP FOR FALSE NEGATIVE ERRORS

-
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TZ=ONE-TT
ICeN-IM+1
U=B+DFLOAT (IC)
VeA+DFLOAT (N-1C)

40 CONTINUE

FP=E(1)
FN=E(2)

RETURL
END

ggU?LE PRECISION FUNCTION BI(N,M)
IF (M*(N-M) .EQ.0) GOTO 20
MMe=N

IF(N.GT. (N=M)) MM=N-M
DO 15 J=1,MM

15 BI=BI*(N-J+1)/J
RETURN

END

SUBROUTINE NEHY3(N,A,B
DOUBLE PRECISION A,B,F
Z1=DFLOAT (N)+B
22=Z1+A
K=0
F=1,.D0
DO 5 I=1,N
FeF#(Z1-DFLOAT(1))/ (22-DFLOAT(I))
SUM=F
“PleK+1
.F(KP1.GE.I}) RETURN
FeF*DFLOAT (N=K) * (A+DFLOAT (K) )/
% (DFLOAT(KP1) *(Z1-DFLOAT(KP1)))
SUM=SUM+F
KeK+1
GOTO 10
END

Yy
N
-
N
[
)
2

DOUBLE PRECISION FUNCTION DFCT(A,B,TZ)
EXTERNAL BETA
DOUBLE PRECISION A,B,TZ,BETA

CALL MDBETA(TZ,A,B,P,IER)

IF(IER.NE.0) WRITE(6,100)A,B,TZ,IER

FORMAT('0'," ERROR IN BDIR, A B 1. IER ARE ',3F20.10,15)
DFCT=DBLE (P)*BETA(A, B)

RETURN

EAD :

DOUBLE PRECISION FUNCTION BETA(X,Y)

DOUBLE PRECISION A,B,CON,X,Y,F
F=5.D0

A=X

BeY

CON=1.DO
IF(A.LE.F) GOTO 2
A=A-1.D0
CON=CON*A/ (A+B)
IF(A.LE.F) GOTO 2
COTO 1

IF(B.LE.F) GOTO 4
B=B-1,D0
CON=CON*B/ (A+B)
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IF(B.LE.F) GOTO 4
GOTO 3

BETA=DGAMMA (A) *DGAMMA (B) / DGAIRIA (A+B) *CON

RETURN
END

SUBROUTINE MDBETA(X,A,B,P,IER)
DOUBLE PRECISION A,B,X,BETA
EXTERNAL BETA

IF(A.GT..5 .AND. B.GT..3) GOTO 10
IF(A.GT..5 .AND. B.LT..5) GOTO 20
IF(A.LT..5 .AND. B.GT..5) GOTO 30

OTHERWISE BOTH A ANL B ARE SMALLER THAN .5

AA=A+].

BB=B+1.

X=X

CALL BDTR(XX,AA,BB,P,D, IER)

PuXk*AX (1 ,D0=X)**B/ (A¥BETA(A, B) ) +X**B*(1.D0-X) **(A+1.D0)/
* (B*BETA(A+1.D0,B)) + P

RETURN

AA=A

BB=B

X=X

CALL BDTR(XX,AA,BB,P,D,IER)

RETURN

AA=A

BB=B+1.

LX=X

CALL BDTR(XI,AA,BB,P,D, IER)
PuX#*B*(1,D0~X)%*A/ (B*¥BETA(A,B) )+ P
RETURN

AA=A+1.

BB=B

X=X

CALL BDTR(XX,AA,BB,P,D,1ER)
PaX*%4%{1.D0~X)**B/ (A¥BETA(A,B)) + P
RETURN

END
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ASSESSING TEST SENSITIVITY IN MASTERY TESTING

Huynh Huynh

University of So'th Carolina

A preliminary version of this baper was presented as part of the sym-
posium "Approaches to test design for the assessment of the effect~
iveness of educa:i. onal programs"” sponsored by the ‘merican Educational
Research Association at its annual meeting in Boston, April 7-11, 1980.

ABSTRACT

This paper addresses the concept of test censitivity 'within the
context of maste.; testing. It is argued that correlation-beszed
indi¢ *3 may not be appropriate for che assessment of test sensitiv-
ity. Global assessment of test sensitivity may be carried out via
‘ndices such as p-max or 6-max. Local measurec of sensitivity may
be described via a two-parameter logistic model. Procedures are

described to check the tenability of test sensitivity on the basis
of observed test data.

1. INTRODUCTION

..ducational tests which are used for student or program evalua-
tion are often described using terms such as "criterion-referenced,"
"domain-referenced,” or "mastery" tests (Harris, Alkin, and Popham,
1974; Berk, 1980). It is important to note, however, that these
different labels often refer to different aspects of the same proc-
ess; depending on the context, all might be used to describe the
same test. For c¢xample, test items can be deliberately constructed

(or selectcd from an item bank) to reflect specific educational

This paper has been distributed separately as R!i 80-7, August, 1980.




object ves; the resulting test scores are referenced to these
objectives for interpretation and may then be used to assess the
competency or mastery status of the individual student with respect
to each of the objectives. For reasons of specificity, the term

nastery testing will be used in this paper. By nastery testirg, it

is meant that, at the end of the testing proces. test scores are
used to make decisions regarding the individual student. In most
testing for instructional purposes (such as formative testing or
basic skills assessment programs) and for certification (in the
professions or in minimum competency testing programs), there are
twc decision categories based on test scores, namely mastery and
nonmastery. Students with high test scores are granted mastery
status (in the domain of performances or educational objectives
underlying the test) and perhaps are permitted to move to a more
advanced or complex instructional unit. Other students with low
scores will be placed in the nonmastery category and will perhaps
be provided with the opportunity of remedial instruction.

In the light of the above discussion, it appears clear that a
mastery test is most useful if it can differentiate studeiits who
have mastered the educational objectives from those who have not.
The extent to which the test fulfills this specific requirement
will be referred to as instructional sensitivity (Harris, 1977;
Haladyna and Goid, 1980). Of course, the concept of test sensitiv-
ity cannot be detached from the unique purposes and/or circumstances
for which the test scores are to be used.

Another situation in which the concept of test sensitivity is
called upon involves the use of test scoree for admission or place-
ment purposes. Here, decisions are made on whether or not the test
scores show sufficient evidence that the student or applicant has
the prerequisite skills or knowledge for a successful performance
in the training or instructional program. For example, admission
to a statistics course may require a minimal level of performance
in arithmetic; hence arithmetic test scores may be used as a cri-
terion fur admission to such ¢ course. In this case, test sensi-
tivity may be framed within the context of predictive validity; a

test may be said to be sensitive to the content of a course to the

362
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exteut that test scores can separate those who, given effective

instruction, will succeed in the course from the others who will not.
The purpose of this paper is to address the con-ept of test

sensitivity within the context of mastery testing (Huynh, 1976),

and to propose new ways to assess the degree to which a test is

sensitive to the particular purpose for which it is intended.

2. POSSIBLE MISUSE OF CORRELATION
TO ASSESS TEST SENSITIVITY

A variety of designs has been proposed to assess test sensi-
tivity. Most involve the use of two contrasting groups of test
scores. For example, a pretest-posttest design may be in order if
there are reasons to assume that instruction is effective. 1In
other words, a mastery test is given prior to instruction and

again at the completion of instruction. The mastery test is

sensitive to the instructional objectives to the extent that the

distribution of pretest scores and that of posttest scores can be
separated from each other. Another contrasting groups design
involves the use of an unins*ructed group and an instructed group.
This design is appropriate for a test to be used to admit students
to a course; in this case the instructed group would consist of
students who have successfully completed the course and the un-
instructed group would be formed of students who have failed the
course.

How should test sensitivity be assessed on the basis of the
separation between the test score distributions of the two contrast-
ing grourc? 1Is the point biserial correlation an appropriate
choice for test sensitivity? (The reader may note that this corre-
lation may be obtained by assigning the dummy code X = 0 to the
lower score group and X = 1 to the higher score group and then by
computing the Pearson correlation between X and the test scores.)
Correlation, typically, is influenced by the variability in the
test scores, yet test score variation usually does not play a
major role in mastery testing (Millman and Popham, 1974). To
substantiate this point, let a mastery test be such that all pre-

test scores are below the score of 20 and all posttest scores are
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above this score 20. Then, for classification purposes, a passing
score of 20 would be selected. It should take no imagiriation to

see that the test is completely sensitive (i.e., completely sepa-
rates the pretest score distribution from the posttest score
distribution). Yet, the point biserial correlation between the
dummy code X and the test scores will change ac. 'rding to the means
and standard deviations of the pretest and posttest scores. Follow-

ing are two examples based on contrasting groups of ten subjects each.

Pretest Posttest Point
Mean S.D. Mean S.D. Biserial
14,10 2.21 23.00 2.68 .88
10.40 5.52 31.00 12.05 74

3. A SIMPLE ALTERNATIVE TO POINT PISERIAL CORRELATION

The above numerical illustration clearly indicates that the use
of point biserial correlation (or ¢f similar indices) may not be
appropriate if the distribution cf the pretest scores or that of
the posttest scores shows a large degree of variability. Unfor-
tunately, it is a common experience that the pretest scores tend to
show ..ubstantial variation. This is probably true for the case
involving an uninstructed group, as well. (This occurs mainly
because of rzuaoa guessing and differences in input student
characteristics.)

Thus, aiternatives to point biserial correlation may be needed
to assess test sensitivity in the use of test scores to make educa-
tional decisions. There are a variety of ways to approach the
issue. For example, something like the maximum raw agreement index
(p-max) may be appropriate. This index is very simple to concep-
tualize and to compute. At each possible cutoff score, compute the
raw agreement index p between the grouping categories (pretest
versus posttest, uninstructed versus instructed) and the decisions
based on the test data (nonmastery versus mastery). Then search
for the maximum of these raw agreement indices. This maximum p
value corresponds to the situation in which the test scores are put
to the best use. For both data sets in the previous illustration,

the maximum of p (or p-max) 1is exactly 1.
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FIGURE I

Configuration of Decisions Based
on Contrasting-Group Data

Test
data Nonmastery Mastery Marginal
Contrasting sum
groups
Posttest
(instructed) n, 0y, n,
i=1
Pretest
(uninstructed) %o %o1 n,
i=0
(3=0) + (3=1)
cutoff
score

Figure I depicts the configuration of decisions based on
contrasting-group data. Let the index i take the value 0 when the
individual test score belongs to the pretest (or uninstructed)
group, and the value 1 when the test score belongs to the posttest
(or instructed) groty. On the other hand, let the index j be O
when the test score is smaller than the cutoff score ¢ (nonmastery
status), and 1 vhen the test score is at least c (mastery status).
The number of testc scores in the combined contrasting groups in
each (i,j)-cell will be denoted as nij' In addition, let
Ny = My + 1 be the number of pretest (uninstructed) scores anl
np=mn,t ny be the number of posttest (in.tructed) scores. For
the pretest-posttest design with no dropouts (experimental mortali-
ty), n0 = nl. For the most general situation, particularly when
the instructed-uninstructed design is contemplated, n, and n, are
not typically equal.

With the notation as defined, the p index at each cutoff score

is given asg

n n
p =kt 20 )
1 0
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and the p-max index is simply the maximum of p when the cutoff score

varies in its range of possible scores.

Numerical Illustration 1

Let n = 10, n10 = 15, and n,, = 20. Then ng = 15

00 = °* Ngy 11

and n, = 35. Hence p = .452.

Numerical Illustration 2

Table 1 reports the frequency distributions of the pretest and
the posttest scores of 50 students on a four-item test. The p in-
dices are listed as follows.

Cutoff score | 1 2 3 4
p—index | .67 .76 .77 .64

From this 1list, it may be deduced that p-max is .77.

TABLE 1

Frequency Distributions of Pretest and Posttest Data
for Fifty Students

Test score Pretest frequency Posttest frequency
0 20 3
1 10 1
2 8 7
3 7 20
4 5 19

The p-max index does not tak. directly into account changes
within individual students from pretesting to posttesting. Other
indices may be more appropriate, particularly for the pretest-
posttest design. Harris (1977), for example, argues thet in

studies of item sensitivity, an appropriate index would involve the

difference between the proportion of studenis who have learned the
item and the proportion of those who have forgotten it. The first
proportion is the probability of responding correctly on the post-
test, given that the student responded incorrectly on the pretest.
The second proportion represents the probability of responding
incorrectly following instruction, given that the response prior to
instruction was correct. This index was referred to as the Index
of Depa..ure from Symmetry (8). To use this index for the assess-
ment of test sensitivity, a cutoff score c may be selected, and
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students are then classified into the two categories of mastery and
nonmastery. A § index may then be computed, considering nonnastery
as an incorrect response and mastery as a ccrrect one. Then, the
maximum of §, 6-max, may be determined by locating the maximum of §
when the cutoff score c va.ies within its range of possible values.
For both sets of data considered in Section 2, the 6-max indices
are exactly 1.

Figure II depicts the corfiguration of decisions based on pre-
test and posttest data. With c as a cutoff score, each student is
classified twice, once based on pretest data and again based on
posttest data. Let i = 0 (for nonmastery) and 1 (for mastery) be
the decision based on pretest data, and j = 0 or 1 for the decision
based on posttest data. In addition, let nij be the number of
students in each (i,j)-cell, n, = oo + oy be the number of stu-
dents who fail the pretest, and ny =0, + ny be the number of
students who pass the pretest. Then the index 6§ is defined a

n n
5= 2. 10 @
o ™

As previously stated, §-max is the maximum value that § can take

within the range of possible cutoff scores.
FIGURE 11

Configur- ion of Decisions Based
on Pretest-Pcsttest Data

Posttest
b cetest Nonmastery cutoff Mastery Ma:ﬁinal
\\\\ score
Mastery Ny nll nl
cutoff
score -+ .
Nonmastery 9o No1 n,
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Numerical Illustration 3

Table 2 reports the bivariate pretest-posttest frequency
distribution of 50 students on a four-item test. At the cutoff
score 3, the cell and pretest marginal frequencies are given as
oo 0~ 38 and n, = 12,
Hence the § index is 8§ = ,539, At all possible cutoff scores, the

= 8, Ny = 30, N ™ 3, and ny = 9; n
§ indices are listed as follows.

Cutoff score | 1 2 3 4
§-index [ .833 .867 .539 ~. 400

From the list it may be deduced that 6-max is .867.

TABLE 2

Bivariate Frequency of Pret.st-Posttest Data

Posttest score

0 1 2 3 4
4 0 0 3 1 1 5
Pretest 3 0 0 0 2 5 7
score 2 0 0 0 4 4 8
1 2 0 1 3 4 10
0 1 1 3 10 5 20
3 1 7 20 19 50

4. AN OVERALL APPROACH TO TEST SENSITIVITY

It may now be pointed out that point biserial correlation,
r -max, 6-max, and other similar indices provide only a global (over-
all) measure of test sensitivity. They do not provide an assessment
of the extent to which the test is sensitive at a particular ability
or test score level or in a given range of ability. For example,
it is well known that one test may provide a smaller error of mea-
surement than another; however, its relative efficiency with respect
to the other test varies as a function of examinee ability level
(Loxrd, 1974). The same situation may appear in test sensitivity.
It is conceivable that a test is able to separate tvo contrasting
groups more effectively at one level of ability than at another.
tonsider now the case of instructional sensitivity. If the
test items faithfully reflect the objectives underlying the instruc-

tional unit, then a posttest score (or the score of a student who
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has completed the unit) is more likely to be high than a pretest
score (or the score of a noninstructed student). Let the qualifier
"success™ be applied to any posttest score and "failure" to any

pretest score. The following definitions apply to test sensitivity.
Definition 1

Let s(8) be the probability of success at the ability (or test
score) ievel 6. A test is said to be sensitive to the instructional
unit (or to the task for which the test is used as a predictor) in
a range of ability if s(6) is nondecreasing (but not a constant
uniformly) within this range.

The function s(6) may take any shape, as long as it is non~-
decreasing. As defined, s(8) is reminiscent of the concept of item
characteristic curve (Lord & Novick, 1968) and of the notion of
referral success (Huynh, 1976). The second notion is more relevant
to the psychometric foundation of mastery testing.

Now, at the ability level 6, a test is more sensitive if the
probability s(8) changes sharply at this point. The following

definition applies to the case where s(8) has a derivative.

Definition 2

Let £(8) denote the derivative of s(8) with respect to 6, This
derivative is said to be the test sensitivity at the ability level 6.

It follows from the second definition that test sensitivity is
a nor-negative function since s(8) is nondecreasing. It may be
noted that £(8) acts like the density of a cumulative distribution
function; hence estimation procedures associated with density

functions (Wegman, 1974) would be applicable to £(8).

5. TEST SENSITIVITY AND ITEM INFORMATION

Within the context of mastery testing (Huynh, 1976), a two-
parameter logistic form has been proposed for s(6), namely
o2 (0-8)

s(0) = ——5—=7, (3)
1+ea(6-8)

where o > 0 and B are suitably chosen constants. The test sensi-

tivity function is now given as
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a(6-8)
E(8) = 8'(0) = —2 = 45(0) (1-5(8)) . (4)

[l+ea(e—8)]2

Let P(8) = s(8) and Q(6) = 1-s(8). Then it may be verified that

)’ (5)
2(0)Q(0) °

The quantity on the right of this expression represents the informa-

£(8) =

tion provided by a test item for which the item characteristic curve
is P(8) = s(8) (Birnbaum, 1968, p. 454).

6. STATISTICAL INFERENCE REGARDING TEST SENSITIVITY
AS A MONOTONE REGRESSION PROBLEM

Consider now a range of ability (or test score) in which a
test is suspected to be sensitive to a given instructional unit or
to a task which it is intended to predict. An inferential proce-
dure will now be presented for checking the hypothesis that s(8) is
nondecreasing.

Let the mentioned range of ability be partitioned into k
mutually exclusive and exhanustive sets, namely Al,Az,...,Ak in such
a way that the number of test scores in each of the k categories in
the combined pretest-posttest or instructed-noninstructed sample
are as nearly equal as possible. Let ysfyyeeesly be th? number of
test scores which fall into each of the A sets, and let o be the
corresponding proportion of students belonging to the success
catepgory.

Under the assumption that s(8) is nondecreasiag, the sample
propnrtions ;i must be adjusted if necessary to reflect this pre-
imposed trend. This may be don~ via the Pool-Adjacent-Violator
algorithm described in Barlow, Bartholomew, Bremner, and Brunk
51972). In essence, whenever two consecutive sample values ;i and
si+1 are in the unexpected 9irectionﬂ(decreasing), they are taken
as the weighted average (nisi + ni+lsi+l)/(ni + ni+l)' This common

value will then be compared with s If these two quantities are

i+1°

not in the expected direction, then the Sis Sy4q0 and S 42 values

i+
will be taken as equal, and equal to their weighted average.
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Once the set of monotone-adjusted ;: has been obtained, the
standard chi square test for association in a 2 X k contingency
table may be applied. The null hypothesis (independence) corre-
sponds to the case wnere s(8) is a constant for all the A cells;
the alternative (dependence) expresses the nondecreasing nature of
s(6) with respect to 6. The use of the standard chi square test in
this case was suggested by Bartholomew (1955) and Shorack (1967)
for the case where the n, are equal. Presumably the test should

i

hold approximately when the n, are nearly equal.

i
Numerical Illustration 4

Table 3 presents detailed compucations for the chi squsre test
based on the data of Table 1. 1In this table, the A categories are
taken as the test score levels of 0, 1, 2, 3, and 4. As explained
previously, at each score, n, denotes the total number of cases, ;

~%
the unadjusted proportion of success, and s

i
the monotone-adjusted

i
propertion of success. Thus, at the same test score, the monotone~-
~%
adjusted number of cases is n s, for success and n, (l-s ) for

failure. The correspording expected frequencies are n p and ni(l-p)

i
where p is the proportion of success in the combined sample of test

scores. (In the case of pretest-posttest, p = %.) The value of x2

is now
~ % ~%
9 k (nisi nip)2 k Eni(lms ) - n (l-p))2
i=1 nyP i=1 ny (1-p)
k n, (s -p) k n, (s p)2
i
= ——— + ¥ ——l——.
1=1 P i=1 P
k
2 “k 2
p-p 2 M) (6)

With the data of Table 1, the n, are equal to 23, 11, 15, 27, and
24 at the rest scores of 0, 1, 2, 3, and 4. The adjusted frequen-
cies of success are 2.71, 1.29, 7.00, 20.00, and 19.00. In addi-
tion, p = .5. Hence x2 = 17.18. With a standard chi-square
distribution of k-1 = 5 degrees of freedom, the upper tail proba-
bility at this observed x2 value is smaller than .0l. Hence the

hypothesis of test sensitivity is supported by the test data.
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TABLE 3

An Example of the Adjusted Chi Square Test
for Test Sensitivity

T22112§Z£;47 ] s* Cell frequency
(6.) n i i Adjustead Chi-square
i i (x100) (x100) observed Expected contribution
0 23 13.04 11.76 2.71 11.50 6.72
1 11 9.09 11.76 1.29 5.50 3.22
2 i5 46.67 46.67 7.00 7.50 0.03
3 27 74.07 74 .n7 20.00 13.40 3.13
4 24 79.17 79.17 19.00 12.00 4.08
Total 100 100 100 x> =17.18"

*
. computed as ns,
df = 4; p < .01

7. ESTIMATING TEST SENSITIVITY VIA
THE TWO-PARAMETER LOGIST1C MODEL

Let it be assumed now that the function s(6) can be satisfac-
torily represented by the two-parameter logistic curve
L2 (6-8)

s(8) = ——=—av>
14¢%(0-8)

and hence the test sensitivity curve will take the form
£(8) = as(8) (1-s(8)).

There are at least two ways to estimate the two parameters a
and B, namely the minimum logit square method and the maximum like-
lihood (ML) proccdure. The first procedure is less 2legant than
the second one; however, the computations are much less demanding.

To apply the minimum logit square technique, let Py be the

natural logarithm of the ratio s /(l -s (Preferably, the log of

).
i
the ratio s /(l -s ) should be used ) Let 6 denote the typical
ability of the test score category A

T Then, at each i

hence a and B may be estimated via standard linear regression tech-
nique. They are given as

Nzeipi-(zei)(Zpi)
a = > 5 (7
Nze © - (z6,)

and
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e=——azi-zpi. (8
Na

In these formulae, N is the number of cases in the combined sample.
Strictly speaking, the procedure does not work if ;i =0or 1 for
some score category, since Py would then be equal to -» or +». To
proceed with the estimation, however, it has been recommended
(Berkson, 1953) that ;i be set to a small constant when it is ex-—
actly zero, and a number near 1 when it is actually one.

A more direct procedure to estimate a and B would be an appli-
cation of the ML principle. To do this, let 61 denote a test score
in the combined sample and uy be 1 for the success category and 0
for the failure category. Then, assuming local independence for
the success/failure classification, the likelihood function for the

combined sample may be written as

N uy l-ui
n [s(ei)) [l—s(ei)]
i=1

L

N a(ei-B)ui
n eh .
1=1 14476

Hence the log of the likelihood function will take the form

N N a(ei-B)
log L= I a(8,-B)u, - I log(l+e ). (9)
i=1 i=1

The partial derivatives of log L with respect to a and 8 are given as

a8, -B)
i
N N (6,-B)e
alga feor (®;-B)uy - I : a(6.-8) (10)
i=1 e R |
and
dlog L _ _ ;‘awi‘ﬁfﬁ (11)
%8 f=1 1 qay  @(8-8)"
14e

By setting these two partial derivative. to zero, the values for o

and B may be found. The process will lead to the following simpler
equations:
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A

G(a,B) = L — ey - I u, =20, (12)
i=1 l+e“(°1 B) 4o 1

and
a(ei-B)

N eie N

F(a,B) = 121 __—FREZZET - 121 Bu, =0. (13)

1+e

Equations (12) and (15 may be solved via iteration procedures such
as the Newton-Raphson process. The process requires the following

partial derivatives:

N
G = 121 (6,-8)s(8,) (1-s(s))) , (14)
N
Gy = -a 1§ s(ei)(l-s(ei)) , (15)
=1
N
F' = 121 6, (8,-8)s(8,) (1-5(8))) , (16
and
N
Fp = -o 121 0,8(8,)(1-s(8))) . (an

Let @, and Bo be two starting values for o and 8. Then the Newton-

Raphson iterated values a, and Bl satisfy the linear equations

1
{(“1'“0)G&(“o'80) + (8)-8)Gg(a ,8) = -G(a ,B)
(al_ao)F(“.(aO’BO) + (Bl_BO)Fé(aO’BO) = -F(aO’BO) . (18)

Hence o, and a, are given as

1 2
ay = a - (6(a,B)Fy(a ,B) - Fla ,8)6;(a ,8))/
and
By = B, + (6(a B )F (a ,B ) - Fla ,B))G}(a ,8.))/A
where A =

' ' _ ™ 1
Ga(ao.Bo)FB(ao.Bo) Fa(ao.Bo)GB(ao.Bo).
The iteration process continues until convergence Js assured

to a satisfactory degree.
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Numerical Il1lustration 5

For the data of Table 1, the logit square prucedure based on
Ehe unadjusted proportions ;1 ylelds the estimates ; = ,982 and
B = 2.397. The maximum likelihood procedure results in the esti-
mates o = .947 and B = 2.244.

Within the logistic model the traditional asymptotic likelihood
ratio test may be used to check the hypothesis of test sensitivity.
The log likelihood associated with ML es~imation for o and B is
equal to log L(;,é), where log L is given in Equation (9). Whcn
the test shows no sensitivity, then the probability s(ei) is uni-
formly equal to P, = nO/(n0+nl). (This probability is equal to %
for the pretest-posttest design.) The corresponding log likelihood
is given as log Lo =, log P, t+ n, log (l-po). tne asymptotic
likelihood ratio test is carried out via the quantity
x2 = log L(;,é) -~ log Lo which is distributed approximately as a
chi square distribution with one degree of freedom. With the data
referred to in Numerical Illustration 5, for example, it was found
that 1log L(a,8) = ~51.718, and log L = -69.315. Hence x° = 17.597,
which corresponds to an upper tail probability of less than .0l.
Thus, the data show strong evidence of test sensitivity.

Appendix A provides a listing of a computer program for the

computations described in this section.
8. SUMMARY

This paper has discussed test sensitivity in mastery testing.
Arguments have been presented to show that correlation-baced
indices may not be appropriate for assessing the sensitivity of
mastery tests. Instead, indices such as p-max or 6-max are advo-
cated for the glohal assessment of test sensitivity, while local
measuces of sensitivity may be obtained using a two-parameter
logistic model. Finally, procedures are described to test the
tenability of the hypothesis of test sensitivity on the basis of

observed test data.

N~
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APPENDIX A

Listing of & Computer Program for Assessing Test Sensitivity
via the Two-Parameter Logistic Model
Disclaimer: The computer program here. “ter listed has been written
with care and tested extensivily under a variety of conditions
using tests with 60 or fewer items. The author, however, makes no
warrinty as to its accuracy and functioning, nor shall the fact of

its distribution imply such wairanty.
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c THIS PROGRAM COMPUTES THE MAXIMUM LIKELIHOOD ESTIMATES OF THE 10
c ALPHA AND BETA PARAMETERS WHICH FORM THE BASIS FOR ASSESSING 20
c TEST SENSITIVITY. 30
c INPUT DATA ARE LISTED AS FOLLOWS. 40
c FIRST CARD: TITLE CARD (ENTER ANYTHING YOU WANT.) 50
c SECOND CARD: NUMBER (1) OF TEST SCORE/ABILITY LEVELS (I5) 60
c THIRD CARD: FORMAT CARD FOR EACH OF THE M FOLLOWING CARDS 70
I M CARDS: EACH CONTAINS THE TEST SCORE LEVEL, THE FREQUENCY &0
c OF THE PRETEST/UNINSTRUCTED GROUP, AND THE 90
c FREQUENCY OF THE POSTTEST/INSTRUCTED GROUP. EACH 100
c CARD 1S 70 BE KEYPUNCHED ACCORDING TO THE FORMAT 110
c ENTERED VIA THE THIRD CARD. 120
c SEVERAL PROBLEMS MAY BE PERFORMED IN ONE RUN BY STACKING THE 130
c INPUT CARDS TOGETHER. 140
c THIS PROGRAM IS WRITTEN FOR TESTS WITH UP TO 61 LEVELS OF TEST 150
c SCORE OR ABILITY. FOR LONGER TESTS, REDIMENSION T AND N TO BE 160
g T(M) AND NQ1), M BEING THE NUMBER OF LEVELS. 170
180
" DIMENSION T(61),(61),FCT(20) 190
DOUBLE PRECISION A,B,EA,EB,EPS,DELTA 200
EPS=., 00001 210
NTOT=0 220
SU=(. 230
STU=0. 240
ST=0, 250
ST2=0, 260
SR=0, 270
STR=0. 280
5 READ(S,95,END=99) FCT 290
95 FORMAT (20A4) 300
WRITE(6,195) FCT 310
195 FORMAT (T2, 'ANALYSIS OF TEST SENSITIVITY VIA THE LOGISTIC MODEL'/ 320
& TZ, 'mﬂmm#mmm'/ 330
& T2, 'TITLE OF THIS PROBLEM 1S:'/T2,20A4 340
READ(5,96) it 350
96 FOR VAT (15) 360
WRITE(6,196) M 370
196 FORMAT (T2, 'NUMBER OF TEST SCORE/ABILITY LEVELS:',15) 380
READ(S,97) FCT 390
97 FORMAT (20A4) 400
WRITE(6,197) FCT 410
197 FORMAT(T2, ' INPUT FORMAT FOR FREQUENCY DATA:'/T2,20A4) 420 |
WRITE(6,198) 430 |
198 FORMAT (T2, 'FREQUENCY DISTRIBUTION'/ 460 |
& T2,' SCORE PRETEST/UNINSTRUCTED POSTTEST/INSTRUCTED' 450
& /T2,' LEVEL GROUP GROUP'/ 460
& TZ, ' Yedekedede Ktk ddAiiek doiedekdek Riekdeicvedeiriedrievok drk ') 470
DO 20 K=l M 480
READ (5,FCT; T(K),lILOVER,NUPPER 490
WRITE(G,200) T(K),NLOWER,NUPPER 560
200 TORMAT(T2,F8.2,T21,13,T44,13) 510
N (K)=NLOWER+NUFPER 520
HTOT=NTOT4N (K) 530
ReFLOAT (NUPPER) / FLOAT (}(K) ) 540
SU=SU+ITUPPER 350
STU=STU+T (K) "WUPPER 560
ReAMA U (.CL,R) 570
R=AMIN1(.99,R) 58v
=ALOG{R/ (1.-R)) 590
STuST+T(K) 600
ST2=5T2+T (K) ¥%2 510
SR=SR+R 620
20 STR=STR+T(K)*R 634
A= (MASTR- ST*SR) / {*ST2 -ST*ST) 640
B (A*ST-SR) / (M*A) 650
WRITE(G,215) A,B 660
215 FORMAT (T2, 'STARTING VALUCS BASED ON MINIMUM LOGIT'/ 670
& T17,'ALPRA = ',F10.5/T1l7,'BETA = ',F10.5) 680
30 CALL WEWTNN(M,N,T,SU,STU,A,B,EA,EB)
DELT™*=DMA U (EA,EB)
IF (DABS (DELTA) . LT. EPS) GOTO 40
A=A+EA
B=B+EB
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GOTO 30 740
40 WRITE(6,220) A,B 750
220 FORMA’I(TZ 'FINA! RESULTS: ALPHA = ',F10.5/ 760
* T2,' BETA = ' Flo 5/1) 770
Hl-A*(S"‘U-B*SU) 780
P=SU/NTO" 790
L0 50 I=_ K 800
50 Hl=H1-}(I)*DLOG(1l.+DEXP (A*(T(I)-B))) 810
HO=SU*ALOG(P)+(IITOT=SU) *ALOG (1. «P) 820
CHISQ=H1 «H) 830
WRITE (6,22 ) Hl ,HO, CHISQ 840
221 "‘ORI!AT(TZ '1.0G OF 'mz LIKELIHOOD FUNCTION / 850
& T2,' WITH TEST SENSITIVITY: ',Fl10.5/ 860
& '1‘2 ' O TEST SENSITIVITY..: ' mo 5/ 870
& T2, 'CHI-SOUARE STATISTIC ...: ‘no 5/ 880
& T2,'WITH ONE DEGREE OF FREEDOY.') 890
GOTO 5 900
99 \RITE(6, 225) 910
225 FORI!AT(TZ **NORMAL LEND OF JOB¥#*'/ 920
& '1‘2, PROGRAM WRITTEN BY HUYMNH HUYNH'/ 930
& T2,' COLLEGE OF EDUCATION'/ 940
& T2,' UNIVERSITY OF SOUTH CAROLINA'/ 950
& T2,' COLUMBIA, SOUTH CAROLINA 29208'/ 960
& T2,' JULY 1980°') 970
STOP 980
END 990
(o 1000
SUBROUTINE NEWTON(K,N,T,SU,STU,A,B,EA,EB) 1010
DIMENSION N(1),T(1) 1020
DOUBLE PRLIISION S,G,F,CA,GB,FA,FB,D,E,P,A,B,EAEB 1030
G=-SU 1040
F=-STU 1050
FA=0.D0 1060
FB=0.D0 1070
GA=0.D0 1080
GB=0.D0 1090
(o 1100
D0 10 I=1,K 1110
L=DEXP(A*(T(I)-B)) 1120
P=E/ (E+1.D0;} 1130
S=p*(1.D0-P) 1140
G=G+PMI(1) 1150
TaF+i{ (1) *T(1)*P 1160
GA=GAHI(I)*(T(I)-B)*S 1170
GB=GB=A*S*N(T) 1180
FA=FAHT(I)*T(I)*(T(I)=B)*S 190
10 FB=FB-A*T(I)*S*N(1) 1200
D=GA*Fli-FA*GB 1210
EAm< (G*FB-F*GB) /D 1220
EB= (G*FA-F*GA)/D 1230
RETUR;! 1240
END 1250
382
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SELECTING ITEMS AND SETTING PASSING SCORES FOR MASTERY TESTS
BASED ON THE TWO-PARAMETER LOGISTIC MODEL

Huynh Huynh

University of South Carolina

Presented at the Informal Meeting on Model-Based Psgchological

Measurement sponsored by the Office of Naval Research, Iowa City,
Iowa, August 17-22, 1989.

ABSTRACT

Three igsues in mastery testing are considered, using a
minimax decision framework, based on the two-parameter logistic
model. The issues are: (1) setting passing scores, (2) assessing
decizion efficiency, and (3) selecting items to maximize decision
efficiency. The losses or disutilities under consideration have a
constant or normal ogive form. It is found that, in the context of
minimax decisions, the item selection procedure based on maximum

information may not provide the best decision efficiency.

1. INTRODUCTION

A primary purpose of mastery testing is to classify each
examinee in one of several achievement (or ability) categories.
Typically there are two such categories, commenly labeled mastery
and nonmastery. Let 8 be the ability or trait being measured. On
the 6 scale, the status of mastery is defined by the condition
8 > 90, and that of nonmastery by 8 < eo, where 90 is a prespecified

constant often referred to as a true mastery score. (As can be seen

This paper has been distributed separately as RM 80~6, August, 1980.




HUYNH l

later, the postulated existence of 90 is justified when the losses
or utilities associated with the decision problem fulfill fairly
reasonable assumptions.) In most practical situations, however, 6
is not known, and mastery/nonmastery decisions are usually based on
the responses of the examinee to a relevant set of items. Three
issues thus emerge, which deal with (1) scoring 1item responses,

(2) setting a test passing scove, and (3) selecting test items which
serve best (in some sense) the process of classificatirn (mastery
testing).

Within the context of Bayesian decision theory as applied to
the case of constant losses, and considering tolerable limits on
the probabilities of making false positive (a) and false negative
(B) errors, Birnbaum (1968) and Lord (1980) have given considerable
attention to the three issues mentioned above. The treatment devel-~
oped by Birnbaum does not seem to lead to an easy generalization to
situations involving other than constant losses, and the discussion
by Lord, at times, moves from Bayesian decision theory to confidence
interval estimation without a strong link of continuity.

The purpose of this paper is to provide a consideration of the
aforementioned issues in mastery testing, using a minimax decision
framework. Consideration is restricted to a two-parameter logistic
model in which a sufficient statistic exists for the estimation of
ability. A uinimax treatment of mastery testing which involves the
simple binomial error model may be found in Huynh (1980), and in
Wilcox (1976) in another form.

2. SUFFICIENCY, MONOTONE LIXELIHOOD RATIO,
AND MONOTONE DECISION PROBLEMS

Consider a test consisting of n items (indexed by i = 1,2,...,n)

for which the item response uy of an examinee with ability 6 follows

a two-parameter logistic model with item difficulty bi and item

discrimination a,. It is well known that the compocite test score
n

x= 1L aju, is a sufficient statistic for estimating €, and that
i=1

the conditional density f(xle) has the mcnotone likelihood ratio

property (Birnbaum, 1968, sec. 19.4). Sufficiency implies
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(Ferguson, 1967, p. 120, Theorem 1) that any decision problem
focusing on 6 may be simply based on the test score x since the set
of decision rul.; based on x forms an essentially comp’ete class.
In other words, for any decisior rule based on the vector of re-
sponses (ul,uz,...,un), there is always a decision rule based on x
which performs at least as well as the given rule in terms of risk
(or expected loss).

Consider now the action (al) of granting mastery status and
the action (a2) of denying mastery status to an axaminee with
ability 6. Let Ll(e) and L2(9) be the losses (disutilities) asso-
ciated with the two actions a, and ae In practical situations, it
Seems reasonable to assume that L1(9) is nonincreasing in 6 and
L2(9) is nondecreasing in 6. In other words, granting mastery
status should cause less harm to an examinee with high ability than
to someone with low ability. The reverse should hold for the act
of denying mastery status. When the graphs of Ll(e) and L2(9) do
not cross, either action a or action a, is uniformly better than
the other at all ability levels 8; hence the choice for the best
course of action would be either a, or a, regardless of the observed
test score x. This "cegenerate" case does not represent 2 typical
use of test data; hence it seems reasonable to assume that the
graphs of Ll(9) and L2(9) cross at least at cine point. Due to the
nondecreasing nature of the difference L2(9) - Ll(9), crossing can
occur only once. Hence, there exists one ability level 90 such
that L1(9) > L2(9) for 8 < 90 and Ll(e) < L2(9) for 6 > 90. Under
these conditions, the decision problem is said to be monotone
(Ferguson, 1967, chap. 6). It may then be noted that, in terms of
loss, action -1 is best when 6 > 90, and action a, is best when
6 < 90.

Within the monotone decision probler as stated and with the
monctone likelihood ratio property for the density f(x|9), it is
well known (Ferguson, 1967, p. 286; Zacks, 1971, ch. 9) that the
search for an o} timum decision rule may be restricted to the (essen-
tially complete) class of decision rules defined by a, = {x; x > ¢}

and a, = {x; x < c}, where ¢ is a guitable test passing score. At

D) Vo~
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each potential passing score c, the expected loss is
R(c;0) = Ll(e)P(x_>_c|9) + L, (8)P(x<c|0) . (1)

A minimax passing score c is the score which minimizes the maximum
of R(c;8) with respect to 6. (For the sake of simplicity, it is
assumed that the search for maximum and minimum can be accomplished.)
Consider now the maximum G(8) of the two losses Ll(e) and
L2(9). It is given as G(8) = Ll(e) for 6 < 90, and G(8) = L2(9)
for 0 3.90. The expected loss R(c;68) may now be written as
R(c;0) = G(0) + (L,(8) - L,(8))P(x<c|0)
for 6 < 90, and as
R(c;0) = G(8) + (L,(8) - L,(8))P(x>c|0)

for 0 3_90. The quantity cf(e) = Lz(e) - Ll(e), 8 < 90, represents
the opportunity loss due to a false negative error, and the quantity
cs(e) = L2(9) - Ll(e), 6 < 90, denotes the opportunity loss due to

a false positive error. Opportunity losses are zero when correct
decisions, namely the two combinations (9<9°,x<c) and (ezﬁo,xic),
are made. Thus, as indicated in this special case, solutions for a
monotone decision problem may be found by looking at the original
losses, or at the corresponding opportunity losses. Additional
examples of this duality may be found in elementary textbooks such
as Schlaifer (1969Y).

Due to the duality as presented, both losses and opportunity
losses will be considered in the remaining part of this paper.
Thus, for opportunity losses Cf(e) wiil be taken as zero when
6 3_90, and Cs(e) as zero when 0 < 90. In all ot}~r cases, both
Cf(e) and Cs(e) are nonnegative, with Cf(e) being nonincreasing and

Cs(e) nondecreasing in 0.

3. MINIMAX PASSING SCORF AND DECISION EFFICIENCY

The risk R(c;0) may now be written as follows:
Ce(8)P(x>¢|0) for 6 < 6_

R(c;€) = (2)
Cs(e)P(x<c|9) for 6 > 6,

Now let

L,(c) = sup Cf(G)P(pr|9) (3)
9<9°

388
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and
Ly(c) = sup C_(B)P(x<c|8) . (4)
6 6
Then the maximum (or supremum) of R(c;0) over 6 is
M(e) = max{Ll(c),Lq(c)}.

The optimum (minimax) passing score is the test score c, at which
M(c) is minimized. The minimum (or infinimum) value of M(c), hence~
forth denoted as Ro’ is traditionally referred to as the minimax

value of the decision problem (Ferguson, 1967, p. 33).

Consider now the extreme case where the score x does not
reveal the true ability 9, e.g., when x and 6 are stochastically
independent. Let

*
Cf = gup C (6)
e<e

and

*

C = sup C 9) .

s 826

* *

In the case where both Cf and CS are finite, the miniwax passing

*
score ¢ sgatisfies the equation
* * * *
Cf P(x>c ) = Cs P(x<c ).

In other words, when there is no relationship between x and 6, it
is best to randomly assign mastery with a probability of
c /(C + C ) and nonmastery with a probability of ¢ /(C + C )

The minimax value of the decision situation is then
*
R = cfcs/(cf + cs) . (5)

It may be recalled that opportunity losses are zero when the
decisions are correct. Hence, when the test score X reveals fully
the nature of the ability 6, the minimax value is zero. This obser-
vation along with the nature of R and R suggests the use of the
quantity n = (R —R )/R as an index to measure the efficiency of
using test scores in making mastery/nonmastery decisions. This
efficiency index measures the extent to which the best use of test

data will reduce the amount of risk which would be expected had the

389 Y ou
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test data not been used at all. It is a function of the opportunity

losses cf(e) and cs(e), and of the item parameters a, and bi'

i
As defined, the efficiency index n is computable only when both

C: and C: are finite. This means that the opportunity losses cs(e)
and C.(8) are not allowed to drift out of bounds when 6 goes to
infinity. Hence, efficiency is not defined for linear or quadratic
losses if thesc are expressed as a direct function of 6. However,
as Novick and Lindley (1978) point out, it seems sensible to demand
that losses or utilities be bounded, at least in the context of
educational and psychological testing. This assumption will be
made throughout the remaining part of this paper.

With the efficiency index now defined, the design of a mastery
test may be accomplished by deciding on the number of test items,
n, and selecting the test items such that the resulting efficiency
index would be equal or nearly equal to a specified level.

It seems intuitively true that as the number of test items
increases, the efficiency index will increase. However, when the
situation permits, a short tect is preferable to a lengthy one.
Hence, a balance seems appropriate between efficiency and test
length. As a passing remark, one may express the latter trait as a
function of n, say 2(n), and then search for an n valte at which
the product of 2£(n) with the efficiency index n(r) is maximized.

4. DESIGNING A MASTERY TEST FOR
THE CASE OF CONSTANT LOSSES

For technical reasons which should be apr ‘ent from the work of
Birnbaum (1968, ch. 19), the case of constant losses in minimax

decision problems may be represented by the following functions:

[1 if 0 < 0
C(0) =«1 (6)
0if 6 >0 |,
and
Q if 6 +c < 6
C,0) = (7

0 if 6 < 0 +¢ ,
(o]
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where Q is a constant. The region {6;60<6<60+e} is an indifference
zone. For any examinee whose true ability falls within this raage,
it does not matter whether action a, or a, is taken. The constant
Q is the ratio of the false negative error to false positive error.
(It may also be said simply that the false negative error and the

false positive error are weighted according to the ratio Q * 1.)

The risk R(c;6) of Equation (2) may now be expressed as follows:

P(xicle) for eieo
R(c;8) = (8)
QP(x<cl9) for 63@°+e.

As elaborated in Section 2, the conditional density f(xle) belongs
to the monotone likelihood ratio family. It follows from Dykstra,
Hewett, and Thompson (1973) that x and 6 are stochastically increas-
ing in sequence; hence the maximum value of P(x<c|e) occurs

at 6 = 6°+e and that of P(xicle) occurs at 6 = 60. Thus the expres-
sions Ll(c), Lz(c), and M(c) of Equations (3), (4), and (5) become

Ll(c) P(xiple = 60), (9)

Lz(c) QP(x<cI6 = 6°+e) . (10)

and

M(c) = max{Ll(c),Lz(c)} .

It may he noted that, as a function of C, Ll(c) is nonincreas-
ing and varies from 1 to 0. As for Lz(c), it is nondecreasing and
varies from 0 to Q. If the test score X can be zesumed to be
continuous, then the minimum of M(c) will occur at co where
Ll(co) = Lz(co).

Consider now the special case where ¢ = 0. Then the minimax
passing score <, satisfies the equation

P(x>c [0 = 8 = QP(x<c |6 = 8,),
or

P(x<c°|6 =6) = 1/(Q+) .

The minimax value of the decision problem is Ro = @/ (Q+1) regardless
of the nature of the items which form the test. 1In addition, the

minimax value encountered when the test data are not used is
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R* = Q/(Q+1l); thus the decision efficiency index n is zero. (Tkis
conclusion is consistent with the observation by Wilcox (1977) that
when n = 0, the process of randomly assigning an exaiinee to mastery
and nonmastery status, each with a prchability of .5, .>u'd encoun-
ter no more maximum error than any attempt to use lest data.) Thuz,
when there is no indifference zone separating muaters and nonmasters
on the ability scale, there is no way to d:sign a test which will
add any efficlency to the minimax decision-making process. For
this reasor, the constant ¢ shall be assumed to be st~ictly positive
in tbk~ remaining part of this section.

As may be seen ‘rom Equations (9) and (10), Ll(c) decreases
from 1 to 0 and L,(c) increases from O to Q when the passing score
c spans the range-of possible values. If the test score can be
assumed to be continuous, then the minimar passing score S is the
one at which Ll(c) = Lz(c). Otherwise, <, is one (or both) of the
two scores which lie nearest to the location at which tle graphs of
Ll(c) and Lz(c) meet. As before, the minimax passing score is the
test score at vhich M(e) is the smallest.

5. APPROXIMATE SOLUTION FOR MINIMAX
PASSING SCORE FOR CONSTANT LOSSES

Let the tost now consist of n items. Each item is associated
with a characteristic function defined by t} . probability that the

item vrespouse u, is correct, namely

i
eai(e-bi)
pi\e) = ai(e_bi) . (11)
l+e
n
Let the (composi‘e) test score be x = I au,. The mean and the
i=1
variance of the test score x are given respectively as
n
u(e) = 7 a;p (8) (12)
i=1
and
2 n
07(0) = % ap, (6)q,(8), (13)
=1 11 1

where qi(e) =] - pi(e).
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When there are a sufficient number of items forming th test,
the conditional dis.ribution of x, given 8, may be approximated by
the normal distribution with mez: p(8) and standard deviation a(8).

The minimax passing score -, DOW sati. fies the equation
=0 = =
p(xicole o) QP(x<c°|3 6 _+e) . (14)

Let #(.) denote the cumulative distribution function of a unit
normal variahle (with zero mean and unit variance). Then ¢, is the
solution of the equation

- —nf
{co u(eo) e u\90+€)

1 - ¢lTO) = Q¢ —Weo—"'—ﬁ_)— (15)

This equation may be solved numerically via the Newton-Raphson
iteration process. To do this. let the fuiction H be defined as

c-u(8 ) (c-u(o_+e)]
H(c) = ¢ '—6-(60) + Q¢ W()"‘ETJ -1 (16)
The derivative of H with respect to c is given as
o1 c-u (e )] [c-ute +e)
H'(c) = o(eo)“’[ 5(6_) + ?('eo+e)¢l“<7(3;7e‘)“ an

where ¢(,) is the density of the unit normal variadle. In other

words,
2
1 2
$(z) = —e” . (18)
Von

To proceed with the Newton-Raphson process, 2 starting value
y for the passing score must be found. This may be taken as the

average of the two c values at which

[c-1 (8 )
o 1
5@y | "1 (19)
and )
(c-u (6 +¢)
o 1
o | T TR 20

Once < has been computed, the updated ¢y value is given as

cy ey - H(cl)/H'(cl).
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Using c

5 as a starting value, the updated Cq

The process will end when the chaiige in the ¢ value is sufficiently

value may be found.

small.

Numeri:zt Illustration

Let a test consist of ten items with parameters listed as
follows:

Item | i 2 3 4 5 6 7 8 9 10
a 3.0 1.0 1.0 0.6 0.6 0.3 0.3 0.2 0.2 0.1

bi -2.9 -2.0 -1.5 -1.0 0.3 0.6 V.8 2.0 3.0 5.0

In addition, let 60 =1.2, ¢ = 1.0, and Q = 2. Then u(eo) = 6.2875,
0(60) = ,7795, u(6°+e) = 6.5424, and 0(6°+e) = ,6943. The unit nor-
mal z score at which ¢(z) = 1/(1+Q) = 1/3 3s z = .432, hence the
starting value for the Newton-Raphson process is ¢, = 6.7333. The

1
first updated value is c, = 6.1280. If a tolerance error of .00001

is acceptable, then the iteration process ends at the solution

¢, = 6..487. At this minimax passing score, the minimax value of
t:e decisidn problem ic Ro = M(co) = P(xipoleo) = .5701. With

R =0Q/(1HQ) = 2/3, the efficiency index n is 1 - RO/R = ,1440,

6. AN ITEM SELECTION PROCEDURE FOR CONSTANT LOSSES

Consider now the task of selecting n items for a test from a
pool consisting of N items. (Conceptually, N may be infinite.)
Which items shoutd be selected? Lord (1980) proposes that items
should be selected in such a way that the item responses would show
the highest degree of information at 60 (for the case where € = 0).
W ile it appears clear that there is a direct relationshin between
test informatiun and the reduction of decision errors, it seems
desirable to buse the selection of test items on the efficiency
index n, which is derived from (minimax) decision theory in a more
direct way than is test information.

Since the efficiency index is n = l—RofR* and since R* is
constant, the highest efficiency would occvi wiien the minimax value
Ro is at its minimum. When the test score can .e assumed to be
continvcus, R is either P(xgp°|e=eo) or QP(x<c°|3=9°+e). Thus,
the selection of the items must be such that these two quantities

are simultaneousliy as small as possible.
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Except for the case of equal item difficulties and equal item
discriminations, the probabilities which define the minimax value
Ro involve the iItem parameters in a rather complex manner. Hence,
the optimur. selection of items would require the complete enumera-
tion of all the (:) possible item combinations. The number of
combinations may be ver, large; thus, for large-item pools, optimal-
ity in selection of items ¢~~s not appear to justify the computing
costs at the present time.

An approximate solution for item selection may be obtained by
noting that, at cach passing score c, P(xzp°|6=eo) is an increasing
function of each individual probability pi(eo)’ and that
QP(x<c°|6=6°+€) is an increasine function of each individual compo-
nent 0q1(6°+e)=Q(1-pi(eo+e)). Hence, at each c, the maximum value
M(c) would be sall if pi(eo) and Q[l-pi(eo+e)) are simultaneously

small. (This cannoi be true if e=0.) Hence, the selection ~f
items n.y be accomplished as fcllows. (i) For each item i, compute
the maximum 61 of pi(eo) and Q[l-pi(30+e)). (11) Select the n items

for which the 61 values are the smallest.

Numerical Illustration

With the item parameters documented in the numerical illustra-

tion found in Section 5, the 61 values are given as follows:

Item | 1 2 3 4 5 6 7 8 9 10
61 |1.oo .96 .94 .79 .63 .76 .79 .98 1.08 1.14

Thus, if five items are to be selected for the decision sitv_tion
under consideration, they would be *he ones indexed by the numbers
3, 4, 5, 6, and 7. The efficiency index computed from the normal
approximation is n = ,1411. It may be interesting to note that the
selection procedure based on maximum information (at 6°+§) would
result in the items with numbers 4, 5, 6, 7, and 8. The =fficiency
index for this selection is .1163. To gain some insight in the
seleccion procedure based on §, a random selection of items was
conducted and resulted in the items 1, 3, 4, 8, and 10. The cor-
responding efficiency index was found tz be .1086.

The numerical illustration seems to ‘ndicate that the procedvre

based on maximum item information may not be the best way to selent
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~est items in the context of minimax decisi.. theory. In addition,
though thic procedure and the one based or minimum § value appear
to select a fair number of common items, the § procedure seems to be

more consistent with the minimax decision approach to mastery testing.

7. A COMPUTER PROGRAM FOR THE CASE OF CONSTANT LOSSES

Appendix A provides the listing of a FORTRAN computer program
which is written for the analysis of decisions based on the minimax
principle. Input data to the program are (i) a title card; (ii) a
card providing the data for n, eo, 60+ e, and Q, (iii) an input format
card for reading each pair (ai,bi); and (iv) n cards of item
parareters. For example, the input data for the numerical example
of Section 5 is listed in Table 1. Table 2 lists the outpu. of the

program.
TABLE 1

An Example of Input Data

AN EXAMPLE OF MINIMAX DECISION ANALYS1S
10 1.20000 2.20000 2.00000 .43200

(2F10.5)
3.0 -2.0
1.0 -2.0
1.0 -1.5
0.6 -1.0
0.6 0.3
0.3 0.6
0.3 0.8
0.2 2.0
0.2 3.0
0.1 5.0

&, AN APPROXIMATE SOLUTION FOR MINIMAX
PASSING SCORES UNDER NORMAI LOSSES

Novick and Lindley (1978) indicated that in most practical
applications, a more realistic form of utility (and consequently,
of the loss function) would be the normal ogive family. Let
v(x) = ex/(l+ex) be the logistic function. Then (Haley, 1952, p. 7)
¢¥(1.7z) and the unit normal distribution ¢(z) differ by less than

.01 uniformly in z. For this reason, and for the computational
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TABLE 2

An Example of Cutput from the Computer Program

MINIMAX DECISION ANALYSIS FOR THE TWO-PARAMETER
LOGISTIC MODEL. TITLE OF THIS PROBLEM IS:

AN EXAMPLE OF MINIMAX DECISION ANALYSIS

NUMBER OF ITEMS ......cc000000 10

INDIFFERENCE ZONE ON THE ABILITY THETA SCALE
LOWER LIMIT (THETA-ZERO). 1.20000
UPPER LIMIT (THETA-ZERO

PLTS EPSILON).  2.20000

LOSS RATIO Q cevvevnnncan-nens 2.00000
TOLERANCE ERROR .....v00 oo... 0.00001
ITEM PARAMETERS
ITEM ID DISCR. DIFF.
1 3.000 -2.000
2 1.000 -2.000
3 1.000 -1.500
4 0.600 -1.000
5 0.600 0.300
6 0.300 0.600
7 0.300 0. 800
8 0.200 2.000
9 0.200 3.000
19 0.100 5.000

NORMAL APPROXIMATION FCR TEST SCORES
AT LIMITS OF INDIFFERENCE ZONE

LOWER LIMIT : MEAN ..... 6.288
S.D. ..... 0.694
UPPER LIMIT : MEAN ..... 6.542
S.D. ..... 0.694
MINIMAX VALUES
WITH USE OF TEST SCORES ..... 0.57067
WITH NO USE OF TEST SCORES .. 0.66667

FINAL RESULTS

FINAL MINIMAX PASSING SCORE 6.14872
DECISION EFFICIENCY ....... 0.14400

simplicity associateu with the logistic function, -he two functions
7(z) and ¢(1.72) will be used interchangeably in this section.

The normal (or logistic) form for the two loss functions (dis--
utilities) Ll(B) for action a, and L2(9) for action a, may be

written as
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a (6-8.)

L0 =1/(+e b ) (21)

and
a,(6-8,) a,(6-8,)

Ly(8) =qe 2 /(e 2 ). (22)
In these expressions, al and a, are positive constants. Constant
losses correspond to the degenerate case in which Bl = 82 and
al = a2 =

Now let 90 be the solution of Ll(eo) = Lz(eo). This quantity
may be obtained via a typical Newton-Raphson iteration process.

Given 60, the opportunity losses are given as foliows:

L2(6)-L1(6) for 9390

f

Cc (8) (23)

0 for 9<6_,
o

’

and

[ 0 for 6>6
-0

cf(e) (24)

)=
1L1 9) Lz(e) for 6<6°.

At each potential passing score c, the risk R(c;6) of Equation (2)
is equai to
(Ll(e)-LZ(e,)P(x:_»cIe) for 6<0_
R(c;0) = (25)
(L,(8)-L (8))P(x<c|6) for 628 .

Consider first the situation where 6<6°. At 6 = 60,
(Ll(e)-Lz(e))P(xicle) is zero. As 0 approaches -», this (positive)
quantity moves to 0. Hence there exists a value 91 at which this
function reaches a maximum. Let L. (c) be this maximum. Likewise,
let Lz(c) be the maximum of [LZ(G)-Ll(e)]P(x<cl0) when 6 > 60.

Then M(c) = max {Ll(c), Lz(c)}, and the minimax passing score is
the test score c_ at which M(c) is the smallest.

Given c, both Ll(c) and Lz(c), and hence M(c), may be obtained
via numerical procedures such as the Newton-Raphson iteration proc-
esr. The process is rather involved; however, it can be simplified
by replacing the two probabilities P(chlﬁ) and P(x<c|8) by two
appropriate logistic functions. Let u(8) and 0(6) be the mean and
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standard deviation described in Section 5. Then, approximately,

P(x<c|8) = &7/ (1+eY)

and
P(x>|8) = 1/(1+eY)
where y = 1.7(c-u(e))/o(e). By using these logistic expressions,

the two derivatives with respect tn 8 yhich form the basis for the
Newton-Raphson process will involve enly ratisnal forms of the
exponential functions, and thus can be obtained without undue
difficulty.

The location of the test score c, at which the maxirim risk
M(c) is minimized is somewhat tedious, since the algebraic form of
M(c) a3 a function of ¢ is not known explicitly. Hence numerical
procedurec such as the Newtcn-Raphson iteration may no* be appli-

cable. It may be noted, however, that the test score x varies from
n

0 to the maximum of X = L a, via only a finite number of points.
i=1

(When all item discriminations are equal, x can take only mtl

points; these may be taken conveniently as 0,1,2,...,n.) The loca-
tion of the minimax passing score ¢, may now be accomplished by
computing the value of M(c) at several equally spaced points 1in the
intervel (O,xm), and then by selecting the point at which M(c) is
the smallest. A refinement of this approach may be carried out by
Plotting M(c) against c, and then by drawing a smooth curve through
the points (c,M(c)). The place at which the smooth curve is peaked

may then be taken as the wminimax passing score.

9. ITEM SELECTION UNDER NORMAT, LOSSES

The item gselection process described in Section 6 for the case
of constant losses may be generalized to normal losses as follows:
1. For each item, compute the maximum risk defined as

f
5, = m:x (L, (0)p, (8} + L,(8) {1-p, (8))) (26)
where

¢ - - Y - \\
p;(0) = exp (ai(6 bi))/{l+exp (ai(e b “1}.

2. Then select the n item¢ which show the highest § values.
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10. SUMMARY

This paper provides a minimax decision framework in which
three issues in mastery testing based on the two-parameter logistic
model are approached. The issues deal with setting passing scores,
assessing decision efficiency, 2nd selecting it s to maximize
decision efficiency. The losses or disutilities under consideration
have constant or normal ogive form. It is found that, within the
context of minimax decisjons, the item selection procedure based on

maximum information may not provide the best decision efficiency.
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APPENDIX A

A Computer Program for Minimax Decision Analysis
for the Two-Parameter Logistic Model
under Constant Losses
Disclaimer: Thkis program has been written with care and tested
under a variety of conditions. The author, however, makes no
warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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i

Sededededehricirichdededcidotedekedctoicieiek dolodeioiciciokck:
A FORTRAN PROGRAM FOR THE COMPUTATION OF MINIMAX PASSING SCORE
AND DECISION EFFICIENCY FOR THE TWO-PARAMETER LOCISTIC MODEL
WITH CONSTANT LOSSES WHICH ARE EQUAL TO ZERO OVER A SELECTED
INDIFFERENCE ZONE. THE NORMAL APPROXIMATION IS USED TO DESCRIBE
THE CONDITIONAL DISTRIBUTION OF THE TEST SCORE AT EACH ABILITY
LEVEL, HENCE THE PROGRAM IS APPROPRIATE WHEN THE NUMBER OF TEST
ITEMS IS SUFFFICIENTLY LARGE.

INPUT DATA CARDS ARE:
FIRST CARD: TITLE OF THE PROBLEM, ENTER ANYTHING YOU WANT.
SECOND CARD: ENTER THE FOLLIWING DATA, USING THE FORMAT
(I10,5F10.5)
N ... NUMBER OF ITEMS
Tl... LOWER LIMIT OF THE INDIFFERENCE ZONE
T2 ,. UPPER LIMIT OF THE INDIFFERENCE ZONE
Q ... LOSS RATIO
THIRD CARD: INPUT FORMAT FOR THE READING OF EACH PAIR 0
ITE{ PARAMETERS. AN EXAMPLE IS (2F10.5).
FOLLOWING IN THE INPUT DECK ARE N CARDS, EACH CARD
CONTAINING THE DISCRIMINATION AND DIFFICULTY OF ONE
ITEM, KEYPUNCHED IN THAT ORDER.

THE PROGRAM IS SET UP FOR TESTS WITH UP TO 200 ITEMS. IF THERE
ARE MORE THAN 200 ITEMS, SIMPLY CHANCE THE DIMENSIONS OF A AND B
IN THE FOLLOWING DIMENSION STATEMENT TO A(N) AND B(N).
iR S AT ENT TO AN) AND BN . e
DIMENSION A(200),B(200),FCT(20)
5 READ(5,95,END=99) (A(I).I=1,20)
95 FORMAT(20A4)
VRITE(6,195) (A(1),I=1,20)
195 FORMAT('1', 'MINTMAX DECISION ANALYSIS FOR THE TWO-PARAMETER'/
* T2, 'LOGISTIC MODEL. TITLE OF THIS PROBLEM IS:'/T2,20A4)
READ(5,100) N,T1,T2,0
100 FORMAT(I10,3F10.5)
TOL=.00001
READ(S,95) FCT

oo 00000CO0000N00O0000n

[vXeK2!

WRITE(6,200) N,T1,T2,Q,TOL

200 FORMAT (T2, 'NUMBER OF ITEMS ......... NS 2Y7
* T2, 'INDIFFERENCE ZONE ON THE ABILITY THETA SCALE'/
* T2, LOWER LIMIT (THETA-ZERO).',F10.5/
* T2,' UPPER LIMIT (THETA-ZERO '
* T2,' PLUS EPSILON).',F10.5//
* T2,'LOSS PATIO Q .......... ceevea.',F10.5/
* T2, 'TOLERANCE EPROR ..............',F10.5//
* T2, 'ITE! PARAMETERS'/
* T2,'ITEN ID DISCR. DIFF.'/)
D0 10 I=1,u

READ(S,FCT) A(I),B(I)
P1=EXP (A (I)*(T1-B(I)))
Pl=P1/(i.+P1)
P2=EXP (A (I)*(T2-B(1)))
P2=Q*(1.-P2/ (1.+P2))
D=P1
IF(P1.LT P2) D=p2
FOR=EXP(A(L)*((T1+T2)/2-B{I)))
FOR=A(1)*FOR/ ( (1+FOR)*%2)

10 WRITE(6,220) I,A(I),B(I}

220 FORMAT(T4,14,F12.3,F12.3)
CALL SCORL(N,A,B,Tl,T2,TOL,Q,CZERO,ETA)
WRITE(6,230) CZERN,ETA

230 FORMAT(//T2, 'FINAL RESULTS'//
* T2, 'FIFAL MINDIAX PASSING SCORE',Fl(.5/
* T2, 'DECISION EFIFICIENCY ..... L FLG.5/))
GOT: 5

99 WRITE(6,245) ,
245 FORMAT(T? :** NORIAL END OF JOB **'/

* T., PROCRAM WRITTEN BY'/

* T2,' HUYNH HUYNH'/

* T2,' COLLEGE OF EDUCATION'/

* T2,' UNIVERSITY OF SOUTH CAROLINA'/
* T2,' COLIMBIA, SOUTH CAROLINA 29208'/
* T2,' JULY 1980')
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STOP 740
EXD 750
c 760
SUBROUTINE SCORE(N,A,B,T1,T2,TOL,Q,CZERO,ETA) 770
DIMENSION A(l),B(l) 780
AA=1./6.28318+*.5 790
P=1./(0+1.) 800
CALL NORMAL (P,CZERO) 810
Mi=0. 820
K12=0. 830
SD1=0, 840
SD2=0, 850
DO 10 I=1,N 360
Pl=EXP(A(I)*(T1-B(I))) 870
Pl=P1l/(1l.+P1) 880
P2=EXP(A(I)*(T2-B(I))) 890
P2=P2/ (1.+P2) 900
XM =XML+A (1) *P1l 910
X2=XM2+A (1) *P2 920
SD1=SD1+A(I)*P1l*(1.-Pl) 930
10 SD2=SD2+A(I)*P2*(1.-P2) 940
SDL=SDLl¥k, 5 950
SD2=SD2%k 5 960
WRITE(6,200) X1, SD2,XM2, SD2 970
200 Fomu\'ru'rz:'uonmx. APPROXIMATION FOR TEST SCORES'/ 980
* T2, 'AT LIMITS OF INDIFFERENCE ZONE'// 990
* T2, 'LOWER LIMIT : MEAN .....',F10.3/ 1000
* T2, s.D. .....',F10.3// 1010
* T2 'UPPER LIMIT : MEAM .....',F10.3/ 1020
* TZ,' s.D. .....',F10.3/) 1030
c 10640
CZERO= (ICTL+XM2+(SD1+ED2) *CZERD) /2. 1050
¢ 1060
c WRITE(6,205) CZERO 1070
C 205 FORIMAT(T2, 'STARTING CZERO',r10.5) 1080
20 Z1=(CZERO-XI11)/SD1l 1090
Z2=(CZERO-X2)/SD2 1100
H=, S¥ERFC (~.7071068%21)+Q*.5%ERFC (-.7071068*Z2) -1, 1110
HP=mAA® (1, /SDL *EXP(-Z1%%*2/2)4+Q/SD: *EXP(-22%%2/2)) 1120
De=H/HP 1130
IF (ABS (D) .LT.TOL) GOTO 30 1140
ClERO=CZLRO-D 1150
C WRITE(6,210) CZERN 1160
C 210 FORMAT(T2, 'UPDATED CZERO ',F10.5) 1170
GOTO 20 1180
30 RZERO=Q*, 5%ERFC(~-.7071068%22) 1190
RSTAR=Q/ (Q+1. ) 1200
WRITE(6,220) RZERO, RSTAR 1210
220 FORMAT(T2, "{INDMAX VALUES'/ 1220
* T2,' UITH USE OF TEST SCORES ..... ', F10.5/ 1230
* T2,' WITH NO USE OF TEST SCORES ..',Fl0.5) {ggg

o )
ETA=1.=-RZERO/ RSTAR 1260
RETURM 1270
END 1280
SUBROUTINEC :IORMAL(P,X) 1200
D=p 1300
Ir(n-.5) 9,9,8 1310
8 D=1.-D 1320
9 T2=ALOG(L./ (D*D)) 1330
T=SORT (T2 1340
VmT=(2.515517+0.802835*T+1 0L0328*T2) /(1. 0+1,432788*T+n.139269*T2 1350
& +0.001308*T*T2) 1360
IF(P-0.5) 10,10,11 1370
10 XweX 1380
11 RETURN 1390
END 1400
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A VIEW ON THE FUTURE OF MASTERY TESTING

Anthony J. Nitko

University of Pittsburgh

These remarks were made as part of the symposium "First year of
the Mastery Testing Project. Technical advances, applications, and
conjectures” at the annual meeting of the American Educational
Research Association, Boston, dpril 7-11, 1980.

As is pointed out in the Overview, the Mastery Testing Project
has made important strides in solving several psychometric problems
associated with setting cutting scores on tests for the purpose of
making mastery decisions. It has been encouraging that the research
has taken as its central concern making effective and consistant
decisions. This focus has contributed to the reformulation of test-
ing issues in the decision context--away from the traditional view
of the measurement of individual differences and toward a view of
classification decisions within the context of instraction.

A second encouraging aspect which contributes to a future view
of mastery testing is the project's use of the binomial error model
and the beta-binomial distribution. 1In the past, most testers have
applied decision theoretic statistical methods to a normal distri-
bution model, assuming that both measurement error and ability are
distributed normally. The Mastery Testing Project has broken with
this tradition. In a formal and rigorous way, the project has shown
that other assumptions about the mathematical form of human behavior
can be plausible. Thus, solutions to testing and classification
problems can be morieled on distributions other than the normal dis-
tribution. Eventually, this work will help to dispel the en-
chantment of test users with the nineteenth century view that human
abilities are '"naturally" normally distributed. Unleashed from the
constraints of a Gaussian view, new vistas of human accomplishments
are possible in the future.

The strong true score model adopted by the Mastery Testing

Project has helped to advance a broader view of what it means to
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have a "reliable" test. This means that in the future test develr pers
will be wmcre concerned with the consistency of decisions made using
test scores than they have in the past. Further, wider use of the raw
agreement and kappa indices are to be expected. 1In addition, since
these indices have a broader application than in mastery testing alone,
and since their statistical form has been rigor sly traced by the
studies of the Mastery Testing Project, there should be a spillover of
the cechnical knowledge gained in this project to other aveas.

The Mastery Testing Project has focused on only one view of what
it means to be a master. 'The findings of the studies reported here
will give tremendous creditability to this one view of wastery because
they have put it on a technically rigorous psychometric foundation.

In this view of mastery, a "master" is one who can perform correctly
more of essentially the same kind of task. What is to be learned is
conceived of essentially as a large domain of test items. The test
administrator selects a random (or representatively random) sample
of items from this domain and administers them tc the examinee. This
tester's interest is in estimating either the number or percentage of
the tasks in the domain to which the examinee can respond correctly.

This is a useful model for a number of learning objectives,
especially at an elementary, minimal competence level. Eut the model
tends to equate mastery with information store and to limit this store
to verbal information. This view is appropriate, for example, when
estimating the proportion oi simple addition facts known, or number
of three digit, two addend arithmetic problems that can be solved.

In the future, one can speculate that such a view will not be
applicable to other important learning problems. Cognitive
psychologists, for example, have studied the differences between
"expert" and ''novice" performers of complex, problem solving tasks.
They find that experts differ from novic-=s on quszlitative attributes,
not ilust on the amount of information stored. Fo. example, on in-
ductive reasoning tasks, Pelligreno and Glaser (1979) found that
competest performers have (a) better management of memory, (b) better
knowledge of the coanstraints in a given problem soiving situation,

and (c) betier representation of the structure or organization of the
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knowledge base that is relevant to the problem at hand.

Teaching and learning directed toward this latter, more cognitive
view of what it means to have competence or mastery, is quite different
than the "domain of tasks" view currently adopted by most educationists.
In the future, we can expect that the cognitive view will offer in-
sights into how to diagnose learning problems and design teaching
qualitative aspecis of competence, not just its quantitative aspects.

But these newer cognitive views of mastery are not yet ready to
be applied. A great deal of research remains to be done before the
state of knowledge is at a level wheie application to test develop-
ment is possible. 'Thus, the lag between these psychological views
and development of psychometric theory is to be expected and we cannot
fault the Mastery Testing Project for not attending to these issues.

It is the nature of the beast, that psychometric theorists have to
wait until psychological problems are better formulated before
attempting to apply quantitative methods to their solutions. Perhaps
at the end of the fourth year of the Mastery Testing Project, it can
be reported that Huynh and his colleagues have applied their tre-
mendous talents to the measurement of a new kind of mastery or

expertise,
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