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ABSTRACT

In recent years, there has been coasiderable interest in the
precise assessment of instructional outcomes. Tue inadequacy of
norm-referenced devices has been recognized. 1In addition, there
has been a movement toward gearing educational tests to the
specific educational outcomes that instructional programs are in-
tended to reflect. These tests are often referred to as
criterion-referenced, domain-referenced, or mastery tests.

A mastery test is typically designed to reflect specific
educational objectives and is normally used to make decisions
regarding student achievement. Such tests also form an integral
part of any program evaluation, where the focus is on the number
of students judged as competent in a given domain of performance.
Other situations in whick institutional decisions about individuals
arc required include: testing for certification in a profession;
testing for minimum competency, such as for high school graduation;
and the assessment of basic skills.

This study provides a basic technical framework for the
design and use of mastery tests. The topics discussed are (a)
appropriate ways to select test items, (b) practical methods for
extracting the best information from test data, ‘{c) efficient
procedures for using data to make decisions, and (d) means for
relating test scores to the instructional outcomes being evaluated.
Statistical procedures and computer programs have been developed
to help testing practitioners deal with these issues in a simple
and convenient way.

The solutions reported in this study are directed toward the

improvement of educational testing in the context of instruction.




AN OVERVIEW OF THE
MASTERY TESTING PROJECT




AN OVERVIEW OF THE MASTERY TESTING PROJECT

Huynh Huynh
Joseph C., Saunders

I. BACKGROUND

Recent developments and interest in adaptive instruction and
mastery learning call for new testing procedures focusing on the
evaluation of individual pecformance in terms of some competency
criterion. Given that a domain of behaviors is uniquely defined by
the mastery of some unit of instruction, a test is deliberately
constructed to produce scores that reflect the degree of competency
in those behaviors. At the end of the period of instruction, the
test is administered to the individual student, and on the basis of
the ohserved test score he or she is classified in orz of several
acnievement categories. In typical instructional situations there
are two such categories, usually labeled mastery and nonmastery.

Using test scores to make decisions about individual students
is a daily activity in any effort to evaluate instructional programs.
When the objectives are clearly specified, an obvious concern of
the evaluator is the number of students or trainees who have mas-
tered any or all the objectives as a result of participating in the
program. The classification of students actually serves a dual
purpose: first, it pinpoints the objectives that a disproportionate

number of students have failed to master, thus encouraging a closer

The Mastery Testing Project was supported by Grant NIE-G-78-0087
with the National Institute of Education, Department oS Education,
Huynh Huynh, Principal Investigator. Points of view or opinions
stated do not necessarily reflect NIE position or policy and nc
official endorsement should be inferred. Requests for reprints of
the papers described in the Publication Series in Mastery Testing
should be addressed to Huynh Huynh, College of Education, University
of South Carolina, Columbia, South Carolina, 29208.
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look at the instructional strategies for those objectives; second,
it identifies individual students who have not mastered some of the
objectives and for when special provisions need to be made to
facilitate their attainment of these objectives.

Thus, using test scores to make decisions is an integral part
of the educational enterprise. In various stages of educational
testing development, this effort has been known as criterion-

referenced, comain-referenced, or mastery testing. Though these

terms have different interpretations, it seems important to note
that they often refer tc different aspects of the same process.
Consider, for example, the case in which test items are deliber-
ately constructed (or selected from an item bank) to reflect
specific educational objectives; the resulting test scores are
referenced to these nbjectives for interpretation and are then used
to assess the competency or mastery of the individual student with

respect to each of the objectives.

Criterion-Referenced and Domain-Referenced Tecting

Though the term criterion-referenced is used by most testing

practitioners (e.g., those working at school districts), the term

domain~referenced has been used in the report to make it clear that

test items are referencea directly to specific educational objec-
tives. The term mastery, on the other hand, is used to draw atten-
tion to the fact that test scores are used to make certain decisions
regarding the irndividual student. It may also be noted that it
would be difficult to make meaningful decisions on the basis of

test scores unless the test items can be directly referenced to a
well-defined domain of performance. (This domain may be defined by
a single objective or by several objectives; in these cases the

test is typically labeled objective-referenced.) When a student is

judged to be a master on the basis of a high test score, what in
fact has bezn mastered? In order to answer this question, the
objectives or domain of performances on which the student is to be
judged must be specified in advance. If this line of reasoning js
correct, then the process of mastery testing embodies the concept

of domain-referenced testing.
4
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Minimum Compc*<ency Testing and Basic Skills Assessment

The procedures assoriated with mastery tesiing resemble those
used in minimum competency testing or in basic skills assessment.
In attempting to reverse the decline in the level of student
achievement over the last decade, several states have implemented
statewide programe testing for minimum competency in the basic
skills. Many of these programs aim to insure that high school
graduates possess a minimum level of academic achievement or have
acquired the skills required to function effectively as adults in
American society. Minimum competency testing, in this sense, acts
as a high school exit examination or what has been called a certi-
fication examination. When used in this manner, minimum competency
examinations do not have the positive connotation of some other
basic skills assessment programs. The latter programs are specifi-
cally designed for a continuous monitoring of the acquisition of
basic skills (namely, reading, writing, and mathematics) across
succeeding grade levels. The results of these continuous monitor-
ing programs are used to diagnose a student's deficiencies in the
basic skills and to provide for instructional remediation.

Although sometimes differing in their ultimate purposes, mas-
tery testing, minimum competency testing, and the monitoring of
basic skills are similar in many aspects of test development and
other technical problems. The selection or construction of test
items relies heavily on a thoughtful specification of the educa-
tional objectives or domain of skills to which scores are to be
referenced via performance on the test items. The specifications
for the items themselves must, in most instances, be worked out in
considerable detail so that there will be a high degree uf .on-
gruence between the test items and the corresponding educational
objectives. Technical aspects held in common include issues such
as setting passing scores (or performance standards), assessing
decision reliability, assessing errors of classification, determin-
ing test length, selecting items to maximize the accuracy of

classifications, referencing test items to segments of the

5
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curriculum or currently adopted textbooks, const~ucting alternate

forms, and studying bias in deci:ions based on le:: scores.

ITI. TECHNTCAL PROBLEMS IN MASTERY TESTING

For a period of two years (September 1, 1978, through August 31,
1980), the National Institute of Education provided financial sup-
port for the work of the principal investigator concerning some of
the above-mentioned technical issues in mastery testing. This
research has dealt with the following questions.

(1) What are some of the optimum ways to approach the issue of
setting test passing scores in both large testing programs and in
a typical classroom situation? How should passing score judgments
based on the content of the test items be processed?

(2) In which ways should the concept of reliability in mastery
testing be formulated? How can reliability indices be approximated
when repeated testing of the same examinees is not feasible? Which
inferential procedures are appropriate for studies regarding -sti-
mates of reliability?

(3) How should the rate of misclassification be assessed for
domain-referenced tests? Wh.. are the sampling characteristics of
the estimates?

(4) What approaches should be used to study the consequences of
making passing decisions on the basir of test scores? Which models
would be useful in forecasting the budgetary consequences associated
with the selection of a particular pass’ .g score?

(5) How should decisions based on test data be eval ated in
terrs of =fficiency ur cost-effectiveness?

(6) What are appropriate ways to assess the sensitivity oi a
test within the context of instruction?

(7) What are some of the scoring rules based on decision theory
which may be useful in the context of mastery testing?

(8) What are the appropriate procedures by which items can be
selected from ¢n item bank to form a test which must meet specific

requirements regaiaing reliability or decision .ccuracy?

(9) What procedures are appropriate in formulating decisions
based on multivariate test data?

13
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ITI. PUBLICATION SERIES IN MASTERY TES:ING

As the Mastery Testing Project concludes, seventeen [ipers
have been written. All have been distributed nationally through
the Publication Series in Mastery Testing and are abstracted as

follows.

Research Memorandum 78-1

Computation and Inference for Two Reliability
Indices in Mastery Testing Based on
the 3eca-Binomial Model

Huynh Huynh
Presented at the 17th Annual Southeastern Invitational Conference on

Measurement in Education, University of North Carolina at Greensbcro,
December 8, 1978. Journal of Educational Statistics, Fall, 1979.

Abstract: In mastery testing the raw agreement index and the kappa
index may be secured via one test administration when the test scores
follow beta-binomial distributions. This paper reports tables and a
computer program which facilitate the computation of those indices
and of their standard errors of estimate. Illustrations are provided
in the foim of confidence intervals, hypothesis testing, and minimum
sample sizes in reliability studies for mastery tests.

Research Memorandum 78-2

A Nonrandomized Minimax Solution for Passing Scores
in the Binomial Error Model

Huynh Huynh

Psychometrika, June 1980.

Abstract: A nonrandomized minimax solution is presented for mastery

scores i the binomial error model. The computation does not require
prior knowledge regarding an individual examinee or group test data
for a population of examinees. The optimum mastery score minimizes
the maximum risk which would be incurred by misclassification. A
closed-form solution is provided for the case of constant losses,

and tables are presented for a variety of situations including

linear and quadratic losses. A scheme which allows for correction
for guessing is also described.

~J
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Research Memorandum 79-1

Accuracy of Two Procedures for
Estimating Reliability of Mastery Tests

iuynh Huynh
Josenh C. Saunders
|

Presented at the annual conference of the Easte:.1 Educational
Research Association, Kiawah Island, South Carolina, February 22-24,
1979. A short version of this paper will appear in Journal of
Educational Measurement (in press).

Abstract: The beta-binomial estimates for the raw agreement index p
and the kappa index in mastery testing are compared with those based
on repeated testings in terms of bias and sampling stability. Across
a variety of test score distributions, test lengths, and mastery
scores, the beta-binomial estimates tend to underestimate the cor-
responding population values. The percent of bias, however, is
negligible (about 2.5%) for p and moderate (about 10%) for kappa.
Both beta-binomial estimates are almost twice as stable as those
based on repeated testings. Though the beta-binomial estimates
presume equality of item difficulty, the data presented indicate
that even gross departures from equality do not affect the perfor-
mance of the estimates.

Research Memorandum 7¢-2

Bayesian and Empirical Bayes Approaches
to Setting Test Passing Scores

Huynh Huynh
Joseph C. Saunders

Presented at the symposium "Psychometric approaches to domain-
referenced testing" sponscred jointly by the American Educational
Research Association and the National Council on Measurement in
Education at their annual meetings in San Francisco, April 8-12,
1979.

Abstract: The Bayesian mastery scores as proposed by Swaminathan
et al. and the empirical Bayes mastery sccres derived from Huynh's
decision-theoretic framework are compared on the basis of approxi-
mate beta-binomial and real CTBS test data. It is found that the
two sets of mastery scores are identical or almost identical as
long as the test score distribution is reasonably symmetric or when
the true criterion level is high. Large discrepancies tend to
occur when this level is low, especially "then th~ test scores con-
centrate at some extreme scores or are fairl, bhumpy. However, in
terms of mastery/nonmastery decision, the Huynh procedure provides
the same classifications as the Bayesian meti0d in practically all
situations. Moreover, the former may be used for tests of arbitrary
length and has hcen generalized to more complex testing situations.

8
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Research Memorandum 79-3

Budgetary Consideration in
Setving Mastery Scores

Huynh Huynh

Presented as part Of the symposium "Setting standards: Theory and
practice" sponsored jointly by the American Educational Research
Association and the National Council on Measurement in Education at
their annual meetings in San Francisco, April 8-12, 1979.

Abstract: A general model along with four illustrations is presented
for the consideration of budgetary constraints in the setting of
cutoff scores in instructional programs involving remedial actionms
regarding poor test performers., PBudgetary constraints normally put
an upper limit on any choice of cutoff score. Given relevant infor-
mation, this 1imit may be determined. Alternately, ways to assess
the budgetary consequences assoc?ated with a given cutoff score are
provided. Such information would be useful in any final decision
regarding the cutoff score.

Research Memorandum 79-4

A Class of Mastery Scores Based
on the Bivariate Normal Model

Huynh Huynh

Proceedings of the 1979 meeting of the American Statistical
Association (Social Statistics Section).

Abstract: This study touches some aspects of the determination of
mastery scores on the basis of the bivariate normal test model.

The loss ratio associated with classification errors is assumed to
be constant, and the referral success function ranges in the normal
ogive family. Alternately, the model also provides a fairly simple
way to assess the locs consequences associated with each mastery
score. Such information is deemed useful to the test user who may
wish to examine these consequences before making a final ¢ uice of
cutoff score. It is also notad that the model provides a latent
trait analysis for testing/measurement situations involving
instructed and noninstructed groups, or pretest and posttest data.




HUYNH & SAUNDERS

Research Memorandum 79-5

An Approximatlon to the True Ability Distribution
in the Binomial Error Model and Applications

Huynh Huynh
Garrett K. Mandeville

Abstract: Assuming that the density p of the true ability 6 in

the binomial test score model is continuous in the closed interval
{0,1], a Bernstein polynomial can be used to uniformly approximate
P. Then via quadratic programming techniques, least-square esti-
miates may be obtained for the coefficients defining the polynomial.
The approximation, in turn, will yield estimates for any indices
based on the univariate and/or bivariate densitv funccion associatad
with the binomial test score model. Numerical illustrations are

provided for the projection of decision reliability and proportion
of success in mastery testing.

Research Memorandum 79-6

Statistical Inference for False Positive and
False Negative Error Rates in Mastery Testing

Huynh Huynh

Psychometrika, March 1980.

Abstract: This paper describes an asymptotic inferential procedure
for the estimates of the false positive and false negative error
rates. Formulae and tables are described for the computation of
the standard errors. A simulation study indicates that the asymp-
totic standard errors may be used even with samples of 25 cases as
long as the Kuder-Richardson Formula 21 reliability is reasonably
large. Otherwise, a large sample would be required.
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Regsearch Memorandum 79-7

An Empirical Bayes Approach to Decisions
Based on Multivariate Test Data

Huynh Huynh

Presented at the annual meeting of the Psychoretric Society, Iowa
City, Iowa, May 28-30, 1980.

Abstract: A general framework for making mastery/nonmastery
decisions based on multivariate test data is described in this
study. Over all, mastery is granted (or denied) if the posterior
expected loss associated with such action is swmaller than the one
incurred by the denial (or grant) of mastery. An explicit form for
the cutting contour which separates mastery :nd nonmastery states
in the test score space is given for multiveriate test scores which
follow a normal distribution with a constsat loss ratio. For the
case involving multiple cutting scores in the true ability space,
the test score cutting contour will resemble the boundary defined
by multiple test cutting scores when the test reliabili~ies are
reasonably close to unity. For tests with low reliabilities, deci-

sions may very well he based simply on a suitably chosen composite
score.

Regsearch Memorandum 80-1

A Comparison of Two Approaches to Setting Passing
Scores Based on the Nedelsky Procedure

Joseph C. Saunders
Joseph P. Ryan
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-3, 1980. Applied
Psychological Measurement (in press).

Abstract: The Nedelsky procedure has been proposed as a method for
setting minimum passing scores for multiple~choice tests, based on
an analysis of item content. Two versions of the procedure are
compared. Two groups of judges, one using each version, set passing
scores for a classroom test. Compariscns are based on (1) the
distributions of passing scores, (2) the consistency of pass-fail
decisions between the two versions, and (3) the consistency of pass-
fail decisions between each version and the passing score estab-
lished by the test designer. 1In addition, the relationship between
the passing scor set by a judge and that judge's level of achieve-
ment in the content area is investigated.
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Research Memorandum 80-2

Adequacy of Asymptotic Normal Theory in Estimating Reliability
for Mastery Tests Based on the Beta-Binomial Model

Huynh Huynh

Abstract: Simulated data based on five test score distributions
indicate that a slight modification of the asymptotic normal theory

for the estimation of the p and kappa indices in mastery testing
will provide results which are in close agreement with those based
on small samples. The modification is achieved through the multi-
plication of the asymptotic standard errors of estimate by the

constant l+m3/4 where m is the sample size.

Research Memorandum 80-3

Conciderations for Sample Size in Reliability
Studies for Mastery Tests

Joseph C. Saunders
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-8, 1980.

Abstract: In most reliability studies, the precision of a relia-

bility estimate varies inversely with the number of examinees
(sample size). Thus, to achieve a given level of accuracy, some
minimum sample size is required. An approximation for this minimum
size may be made if some reasonable assumptions regarding the mean
and standard deviation of the test score distribution can be made.
To facilitate the computations, tables are developed based on the
Comprehensive Tests of Basic Skills. The tables may be used for
tests ranging in length from five to “hirty items, with percent
cutoff scores of 60%, 70%, or 80%, and with examinee populations
for which the test difficulty can be described as low, moderate,
or high, and the test variability as low or moderate. The tables
also reveal that for a given degree of accuracy, an estimate of
kappa would require a considerably greater number of examinees
than would an estimaie of the raw agreement index.

19
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Research Memorandum 80-4

A Note on Decision-Theoretic
Coefficients for Tests

Huynh Huynh

Abstract: A modification is suggested for the decision-theoretic
coefficient § proposed by van der Linden and Melleanbergh. Under
reasonable assumptions, the modified index varies from 0 to 1
inclusive. It is argued that in many practical applications of
mastery testing, coefficients such as § are not readily available,

and consistency of decisions may serve as evidence of the quality
of the decision-making process.

Research Memorandum 80-5

Assessing Efficiency of Decisiouns
in Mastery Testing

Huynh Huynh

Abstract: Two indices are proposed for assessing the efficiency of
decisions in mastery testing. The indices are generalizations of
the raw agreement index and the kappa index. Both express the
reduction in the proportion o average loss (or the gain in util-
ity) resulting from the use of test scores to make decisions.
Empirical data are presented which show little discrepancy between
estimates based on the beta-binomial and compound binomial models
for one index.

Research Memorandum 80-6

Selecting Items and Setting Passing Scores for Mastery Tests
Based on the Two-Parameter Logistic Model

Huynh Huynh

Presented at the Informal Meeting o:: Model-Based Psychological Measurement
sponsored by the (ffice of Naval Research, Iowa City, lowa, August 17-22, 1980.

Abstract: Three issues in mastery testing are considered, using a
minimax decision framework, based on the two-parameter logistic
model. The issues are: (1) setting passing scores, (2) assessing
decision efficiency, and (3) selecting items to maximize decision
efficiency. The losses or disutilities under consideration have a
constant or normal ogive form. It is found that, in the context of
minimax decisions, the item selection procedure based on maximum
information may not provide the best decision etficiency.
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Research Memorandum 80-7

Assessing Test Sensitivity in Mastery Testing
Huynh Huynh

A preliminary version of this paper was presented as part of the
symposium "Approaches to test design for the assessment of the
effectiveness of educational programs" sponsore. by the American
Educational Research Associatlion at its annual meeting 1n Boston,
April ,~11, 1980.

Abstract: This paper addresses the concept of test sensitivity
within the context of mastery testing. It is argued that
correlation-based indices may not be appropriate for the assessment
of test sensitivity. Global assessment of test sensitivity may be
carried out via indices such as p-max or 6-max. Local measures of
sensitivity may be described via a two-parameter logistic model.
Procedures are described to chack the tenability of test sensitivity
on the basis of observed test data.

Research Memorandum 80-8

Relationship between Decision Accuracy and
Decision Consistency in Mastery Testing

Huynh Huynh
Joseph C. Saunders

Abstract: In mastery testing, decision accuracy refers to the
proportion of examinees who are classified correctly, in one of
several achievement categories, by test data. Decision consistency
expresses the extent to which decisions agree across two test
administrations. Based on twelve cases involving a wide range of
a21 reliabilities, it was found that decision accuracy and decision

consistency were almost perfectly related.
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IV. CONCLUDING REMARKS

As the readers of this summary may note, the work of the
Mastery Testing Project has focused on the very basic technical
issues encountered in using test scores for making decisions
regardinug individual students. The work blended mathematical rigor
with the ambiguity typically encountered in the reality of testing.
Oftentimes, advanced mathematics was used, supplemented with com-
puter simulation based on real test data collected from the South
Carolina Statewide Testing Program. It is hoped that the many
results reported herein will contribute to the best use of testing

in the educational enterprise.
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SETTING PASSING SCORES
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A NONRANDOMIZED MINIMAX SOLUTION FOR PASSING SCORES
IN THE BINOMIAL ERROR MOD.L

Huynh Huynh

University of South Carolina

Psychometrika, June 1380.

ABSTRACT

A nonrandomized minimax solution is presented for passing
scores in the binomial error wmodel. The computation doe. not
require prior knowledge regarding an individual examinee or group
test data for a population of examinees. The nn+imum passing score
minimizes the maximum risk which would be incurred by misclassifi-
cations. A closed-form solution is provided for the case of con-
stant losses, and tables are presented for a variety of situations
including linear and quadratic losses. A scheme which allows for

correction for guessing is also described.

1. INTRODUCTION

Much interest has been generated in recent years on the setting
of passing (mastery or cutoff) scores. Situations in which passing
scores are needed include (a) entrance requirements for an instruc-
tional program, (b) advancement of students from one instructional

unit to the next, presumably more complex unit, (c) certification

This paper has been distributed separately as RM 78-2, December, 1978.
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for occupations and the professions, and (4) minimum competency
testing legislated in several states. Most procedures for setting
passing scores fall into three broad categories: comparisons with
the performance of other individuals (e.g., using norm-referenced
data), an examination of item content (e.g., sv~h procedures as the
Nedelsky scheme), and a consideration of the consequences incurred
by misclassifications. A fairly comprehensive review of some of
these procedures may be found in Meskauskas (1976) and in Hamblecton,
Swaminathan, Algina, and Coulson (1978).

Misclassifications may be characterized by their probabilities
of occurrence and losses. The papers by Fhanér (1974) and by
Wilcox (1976) consider the selection of passing scores and of test
length which would set maximum tclerable limits for the percents of
false positive and false negative errors in decision. Both papers
rely on the concept of indifference zones centered around the mini-
mum true ability for mastery, and the procedures so presented may
be generalized to include the case of arbitrary but constant losses.
As subsequently described, the Fhanér-Wilcox presentation may be
framed within the minimax context in statistical decision theory.

A simultaneous consideration of false positive errors, false
negative errors, and losses—--often referred to as the decision-
theoretic approach to setting passing scores~-~is presented in a
number of sources including Swaminathan, Hambleton, and Algina
(1975); Huynh (1976, 1977); and van der Linden and Mellenbergh
(1977). These papers take into account knowledge concerning the

true ability of the examinees, and therefore mayv be applicable when
passing scores are to be set for a group of examinees. The f.oce~-
dure advanced by Swaminathan et al. (1975) is based on the assump-
tion of exchangeability of prior information as described in Lindley
and Smith (1972) and implemented in Novick, Lewis, and Jackson

(1973). It requires specification of how much prior informatici is
exchangeable. On the other hand, solutions proposed by Huynh (1976,
1977) may be classified as Bayes or empirical Bayes. The first
qualifier applies to the case of the individual examinee, when the
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prior distribution regarding his anility must be availabie. This
distribution may be assessed via procedures described in Novick and
Jackson (1974) and implemented via the CADA system (Novick, Isaacs,
and DeKeyrel, 1977). The second category, empirical Bayes, may be
used when test data are available for a gruup of examinees.

The empirical Bayes approach seems appropriate where past data
or data collected in field testing are used for setting passing

scores for future examinees who will take the same test or alter-

nate forms of the same test. There are, however, situations in
which such group data or prior information avout the individual
examinee mey not be appropriate. This is the case of individualized
instructional programs. Here decisions regarding mastery or nor-

mastery for an individual examinee ought to be based solely on the

subject's test score, not on the performance of other examinees
who happen to be in the same situation.

The present paper focuses on a minimax approach to setting
passing scores. This procedure does not require specification of
prior information reg. rding the ability of an individual examinee
or group of examinees. Using this procedure, a passing score may
be established prior to any administratiun of the test. Section 2
of this paper presents the overall minimax framework for binary
classifications. 1In subsequent sections, various illustirations are

provided, based on the binomial error model.

2. BASIC ELEMENTS OF THE MINIMAX PROCEDURE

The true ability of a given examinee is defined as 6 with
range . For the binomial error mudel (Lord & Novick, 1968,
chap. 23), 6 is the proportion of items in a large item pool that
the examinee is expected to answer correctly, and § is the interval
{0,1). If a test is administered to the examinee, it is assumed
that his observed test score x is distributed according to a condi-
tional density f(x|6). In subsequent discussions, the notation
P(Ale) denotes the conditional probability that x is in A given
that the true ability is 6.
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A referral task (Huynh, 1976) shall be assumed to exist. The
task is operationally defined via a nondecreasing function s(8)
which specifies the probability that an examinee with true ability
6 will succeed in performing the task. The referral task may be

real or hypothetical. For example, if the test scores reflect

achievement in the current instructional unit, then the next, pre-
sumably more advanced, unit may serve as the referral task. This
may be the case, for example, if instructional units are hierarch-
ically sequenced according to the level of complexity (Huynh and
Perney, 1979). 1In other situations, such as minimum competency
testing, a consensus on what constitutes an acceptable level of
performance may be conceptualized as a referral task. To be spe-
cific, let it be agreed that in order to qualify as a true master,
an examinee must have a true ability of at least eo. The.. the
referral success function may be taken as s(8) = 0 for 8§ < eo and
s(8) =1 for 6 > 60. The constant 60 is referred to as a criterion
level by Hambleton and Novick (1973) and a true mastery score by
Huynh (1976).

The examinee will be classified in either the mastery status
(action al) or the nonmastery status (action a2) on the basis of
the test score x and by relying on some decision rule c. Given a
specific true ability score 0, test scores may take a variety of
values in a certain range. Hence, for each examinee, actions a,
and a, may both have positive probabilities of being chosen. These

2
probabilities sum to one since either a, or a, must be taken. The

performance of the examinee on the refeiral tzsk may be deemed
success (true state bl) or failure (true state b2). If the true
state 1is bl, then action a; should be taken. For b2, a, should be
selected. For these two cases, each .»urse of action taken is the
best, hence no (opportunity) losscs are involved. On the other
hand, the combination (al’bZ) constitutes a false positive decision,
and (aZ’bl) a false negative classification. Let the loss asso-
ciated with (al’bZ) be cf(e) and that incurred by (aZ’bl) be CS(O).
These losses are functic.s of a particular true ability 0. At this
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true ability, b1 occurs with probability s(8) s.d b2 with probability
1 - s(6). Hence, the loss is expected to be Cf(e)-(l—s(e)) for
taking action a5, and cs(e)-s(e) for taking action a,.
Consider the decision rule denoted by c. This rule partitions
the range of the test scores into two disjoint subsets: Al (for
action al), and A2 (for action 82)’ each with a conditional prubabil-
ity of P(Allﬁ) and P(Azle), respectively. For an examinee with true

ability 6, the expected loss associated with ¢ is

L(c,8) = C.(9)+(1-s(8))-P(A, |0) + C,(8) *s(8) (A, 0) . (1)

Let

M(c) = sup L(c,8). (2)
feq

Then .Ye minimax decision rule <, is the one which corresponds to
the minim - (if it exists) of M(c) when c ranges in the space con-
sisting of al. nossible decision rules. This paper, however, will
restrict itself to .“e case of nonrandomized decision rules.

More details regarding the minimax principle and its relation-
ship with Bayesian decision procedures (as implemented in Huynh
(1976), for example) may be found in Ferguson (1967). The reader
may note that, in a number of situations, there exists a (least
favorable) prior distribution on the true ability such that the
corresponding Bayes solution is exactly the same as the minimax

decision rule.

The remaining portion of this paper will deal only with the
binomial error model when it is used with a 0-1 form for the
referral success function. The binomial error model appears to be
applicable when the test given to each examinee can be thought of
as a random sample of items drawn from a large item pool. On the
other hand, the 0-1 form for s(8) implies a consensus on a minimum

level of mastery on the true abilitv continuum.

3. THE BINOMIAL ERROR MODEL WITH O-1 REFERRAL SUCCESS

Consider the case where s(8) = 0 for 6 < 60 and s(8) = 1 for

8 3_60. In the simple context of mastery testing, the inequality

23
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"g < eo" describes a true nonmastery state whereas the inequality

" > eo" indicates a true mastery state. In other words, €, is the
minimum true ability that an examinee must have in order to qualify
for true mastery in the domain of content under consideration. It
follows that the expected loss associated with the decision rule c
as specified in (1) becomes

C.(6)P(A,l8) 4if 6 < o
L(c,0) = © 1 0 3)

C (O)P(A,[0) if 6 > 8, -
Now let "
L (c) = sup C_(8)P(A,|6)
1 o<e I 1
(o]
and
L,(c) = sup cs(e)p(Azle);
6-6
- 0
then

M(c) = max {Ll(c)’LZ(c)}'

Suppose that for a fixed 6, the distribution of x follows the
binomial density function f(x) = (:)ex(l-e)“'x. This is called the
binomial error model (Lord & Novick, 1968). Such a distribution
belongs to the monotone likelihvod ratio family (Ferguson, 1967,
chap. 5). Under fairly general conditions regarding cf(e) and
cs(e), the search for a nonrandomized minimax rule c, may be con-
fined to the class of partitions of the test score range
A1 = {x;x < c -1} and A2 = {x;» > c} defined by a cutoff score c.
The cutoff score cy which corresponds to the minimax rule Cys will

be referrea to as the minimax passing score. There are two degen-

erate cases which correspond toc = 0 and ¢ = n+ 1. When c = 0,
Al is empty, and hence the examinee is declared a master regardless
of his test score. On the other hand, A2 is empty if ¢ = n + 1.
For this situation, mastery is always denied.

-t follows that the minimax passing score may be found by
minimizing the function M(c) = max {Ll(c),LZ(c)} where
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n
L (e) = sup c(8) & (D)o (1-0)" (4)
6<6 X=C
o
wnd
c-1 n, .X n-x
Lz(c) =sup C (8) (x)e (1-96) . (5)
q:eo s X=0

The following section will provide the detailed computations

for the case of constant losses.

4. THE BINOMIAL ERROR MODEL WITH 0-1
REFERRAL SUCCESS AND CONSTANT LOSSES

Let € and €y be two suitably chosen nonnegative constants
such that 0 < 60 e 60 +te,y < 1. Without loss of generalit-,

the case of constant }osses may be specified as follows:

1 1if 6 < eo g
cf(e) =

0 if 60 “g s 8 < 60,
and
Q if 6 + ¢, <8
c,(6) = °o 2
0 4f 8 <6 <H +¢,.
o— o 2
Thus the region 8¢ [60 - £ 60 + 92) is an indifference zone. For
an examinee with a true ability within this region, it does not
matter whether action a) or a, is taken. It may be noted that the
constant Q is the ratio of the loss caused by a false negative
decision to that incurred by a false positive decision (i.e.,
Q = C(8) : Cg(8)).
It can be verified that the functions Ll(c) and LZ(:) as
detailed in (4) and (5) are given as

L (c) = : () (8- ) (18 +e )" ™™ (6)
X=Cc
and
c-1 n X n-x
L (&) = Q@ I ()(65key) (1-0g-e)) " 7)
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For the general case where el and e2 are not zero, the search for
the minimax passing score ¢, may be accomplished by computing the
value of M(c) = max {Ll(c),Lz(c)} for each valuec =0, 1, 2,..., ntl,

and then selecting the value S at which M(c) is the smallest.

Numerical Example

Assume n = 5, 60 = ,80, € = .10, €y = .05, and Q = .80.
Tahle 1 reports the values of Ll’ L2’ and M at the passing scores
of 0, 1, 2, 3, 4, 5, and 6. Note that both 0 and 6 are degenerate

passing scores. The minimax passing score is ¢, = 5.
TABLE 1

Values of the Functions Ll’ LZ’ and M

Passing Score

Function 0 1 2 3 4 5 6
Ll(c) 1 .99757 .96922 .83692 .52822 .16807 0
Lz(c) 0 .00006 .00178 .02129 .13183 .44503 .80
M(c) 1 .99757 .96922 .83692 .52822 .44503 .80
The minimax passing score is ¢ = 5. All computations were carried

out with a table of cumulativeobinomial distributions.

The aforementioned discussion encompasses part of the presenta-
tion by Wilcox (1976) regarding the length and passing score of a
mastery test. Table I of the Wilcox paper provides minimax passing

scores for the following combinations: n = 8 (1) 20, 60 (Wilcox's
no) = ,70 (.05) .85, € = & (Wilcox's ¢) = .05, .10, and Q = 1.
The maximum expected loss, M(co), associated with the minimax
passing score is obtained by subtracting from one the minimum
probability of a correct decision as tabulated in Wilcox's Table I.
For examnle, with n - 10, 60 = ,75, el =€y = .05, and Q = 1, the
minima:: passing score is ¢, = b. The corresponding maximum expected
loss is M(co) =1 - .6172 = ,3828.

The remaining part of this paper will focus on the case

E

=g = 0. It follows from Equations (6) and (7) that

M(c) = max {Ll(c),Q‘(l'Ll(c))}

1
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where

3

Ll(C) =
X

n, X n-x
Qg™ 8)

If the test score x were continuous, the minimax passing score c
would be the one at which Ll(c) = Q'(l—Ll(c)). In other words, it
would satisfy the equation

n
n, . x n-x _ _
r (eX(-e )" ™ - 186' (9)

X=C
[0}

If this equation has an integer solution s then s is the minimax

passing score. Otherwise, let c; be the smallest integer such that

n

ny X.._ n-x __Q
xfc' (x)eo(l 90) < Q" (10)
o

The minimax passing score will be either c; or cg-l {or possibly

both), whichever mininizes the maximum expected loss M(c).

Numerical Example

Let n = 10, 90 = .70, and Q = .5. Then via a table of cumula-

tive binomial distributions, it may be found that cé = 9, At the

cutoff score 9, M(c) = 4253, and at the other cutoff score 8

(=c;—1), M(c) = .3828. Thus the minimax passing score is ¢, = 8.

Now let 1(p,q;t) denote the incomplete beta function as tabu-

lated in Pearson (1934) and implemented via computer routines such
as BDTR of the IBM Scientific Subroutine Package (1971) or MDBETA
of the International Mathematicol and Statistical Library (1977).

Inequation (10) may now be written as

— . Q_ )
I(co,n co + 1,90) < 149" (11)

This inequality is reminiscent of the one defining the Bayes

(or empirical Bayes) passing score for the beta-binomial model as

presented in Huynh (1976, p. 70-72). 1In fact, let us impose on the

true ability 6 the prior beta density with parameters o« and 8.

Then the Bayes (or empirical Bayes) passing score is the smallest
at which

integer c

1
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I(a+cl,n+8-cl;9°) 5_126. (12)

It appears from (11) and (12) that the minimax passing score <, and
the Bayes passing score c, do not differ by more than one unit if
B =1 and if o is sufficiently small.

A special note is due for the case Q = 1, +.e., when the conse-
quences associated with false positive decisions and false negative
decisions are weighted equally. Equation (9) or Inequation (.0)
indicates that the minimax passing score <, would be chosen such
that, for an examinec with true ability 90, chances are about equal
that he would be classified as a master or a nonmaster on the basis
of the test score.

Finally, a normal approximation is available for reasonably
large n and for 90 not too close to 0 or 1. Let § be the 100/(1+Q)
percentile of the unit normal distribution. The minimax passing

score may be approximated by the quantity

e, =no_ + g(neo(l—eo))%.

5. THE BINOMIAL ERROR MODEL WITH 0-1 REFERRAL SUCCESS
AND POWER LOSSES CENTERING AROUND 6,

Consider now the loss functions cf(e) = (90—8)pl for 8 < 60
and CS(S) = Q(S-eo) 2 for 6 > 90, where Py> Py and Q are positive
constants. Linear losses correspond to P TPy = 1 and squared
error losses are obtained by letting P =Py = 2. At the cutoff
score ¢, we have

pl n x n-x
Ly(e) =sup (8 -0) =~ £ (D)e*(1-0)
o X
0<0 Xx=c
o
and
p2 c-1 n, .X n-x
Lz(c) =sup Q(0-0) r (e (1-0) .
o X
0>0 X=0
ZV0 .
For the special case ¢ = 0, Ll(c) = OOJ and Lz(c) = 0, hence

P
M(c) = 901. Onpthe other band, when ¢ ; n+l, Ll(c) = 0 and

Lz(c) = Q(1-e°) 2, hence M(c) = Q(l—Oo) 2. For other situations

where 1 < ¢ < n, it may be shown that thece exist two values %
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and 62, 0 < 61 < 60 < 62 < 1 such that at each cutoff c,

L.(c) = (v -6 )pl ; Me*(-s )% (13)
1 o 1 x=cC x’ 71 1
and
L‘(c) = Q(8.,-6 )p2 cgl (M e¥(1-0, )% (14)
2 2 "o x=0 X 2 2 *

As in all previous discussions, M(c) = max {Ll(c),Lz(c)}. The
mininax passing score s is the one at which the maximum expected
loss M(c) is minimized.

The determination of 61 and 62 at each cutoff score c may be
carried out via numerical approximation procedures such as the

Newton-Raphson algorithm for solving nonlinear equa'ions.

5.1. Searching for ngcz

Consider now the function

n
n, X n-x
zl(e) = I (x)e (1-6) .

x=c
The first derivative Zi of zZ, with respect to 8 is given as
T o x-1 n-x X n-x-1
2y(0) = & () {x6""(1-0)"" - (n-x)6™(1-6) ).
x=c

Taking into account that

n-1

n
M= = a7

and
n n-1
(x)(n-x) = n( x )

it follows that

n-1

n n-1, .x-1 n-x n-1, .x n-x-1
Zi(e) = n[ z (x_l)e (1-8) - L ( x )67 (1-6)
X=c X=c
or
' = o(Mac=1l/q_ayn-c
zl(e) = c(c)e (1-8) .
Now let
29
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5]

Hl(e) = (90-6) zl(e).

Then the value 60 of 6 which maximizes Hl(e) satisfies the equation
1 -
H)(6,) = 0, where

-1

, P F1
Hl(e) =-P1(9°-9) Zl(e) + (eo-e)

' N
Zl(u, .

In other words, 6, satisfies the equation Dl(el) = 0, where

I 8 =

n, X n-x n c-1 n-c .
Dl(6)=-—p1 . (x)e (1-9) + c(c)(eo-e)e (1-90) =0, (15)

C

To solve this equation via the Newton-Raphson algorithm, the
derivative Di(e) is needed. 1It is given as

pi(6) = (M6 ?(1-0)" "¢ (o) (16)
where

G1(8) = -(p+1)6(1~8) + (8_-6) (c-1-(n-1)6) (17)
or

6,(6) = (m+p))6” — (p +et(n-1)6 )0 + (c-1)0_. (18)

Consider first the situation where ¢ > 1. It may be seen from
(17) that Gl(O) = (c-l)eo > 0 and Gl(eo) = -(p1+1)€°(1—6°) < S.
Hence it may be seen that Gl(e) vanishes at only one point, 6

*
between 0 and 60. The value of 9 1is given as

e* ) pl+c+(n—l)d0 - {(pl+c+(n-l)6°)2 - 4(n+pl)(c—l)6°}%
2(n+p,) ’

I: follows that Di(e) is positive when 0 < 0 < 6* and negative w:en
6 < 0 < 60. In oth:r words, Dl(e) is increasing when 0 < @ <*6 ,
is decreasing when 6 < 8 < 60, and reaches a maximum at 6 = ¢ .
Since Dl(O) = Q, Dl(el) > 0. On the other hand, Dl(eol < 0 as may
be seen from (15). Hence Dl(e) = 0 at only 91 where 6 < 61 < 60.
By entering ¢ = 1 directly in Equation (15), it may also be argued
that Dl(O) = 0 at only 01 somewhere hetween 0* = 0 and Oo.

The above discussior indicatcs that the value 01 may be obtained

via the Newton-Raphson iteration procedure with input data Dl(O) and
Di(O) computed via (15), (16), and (17). The iteration process has
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been found to converge if the suitably chosen starting value for 6

*
is somewhere between 8 and eo.

5.2. Searching for L,(8)

In the expression defining Lz(:) at the beginning of this
section, let Eo = 1-e°, £E=1-6, y = n-x, and d = n-c+1. It then
may be seen that

P n -
Ly =qsuwp (60 ¢ 1 () a-o".
A1 y=d
It follows that the search for 62, and hence L2(c), may be conducted
in the same way as in the locating of el.
6. A FRAMEWORK OF CORREC.LON FOR GUESSING

Consider now the case whe:e each test item has A alternatives,
and let us assume that an examinee without knowledge on a given item
will randomly choose one of the A alternatives as his response.
Thus the framework of knowledge-or-random-guessing is used in the
present section.

As in previous sections, let 6 be the true proportion of items
thet an examinee has knowledge of and would respond correctly to if
given. Since the examinee guesses randomly on the remaining items
(which account for a proportio~ 1-6), and since each item has A
alternatives, the proportion of items that would be answered cor-
rectly by pure guessing is (1-6)/A. Thus an examinee with true
ability 6 will actually have a probability of t = 6+(1-6)/A to
answer correctly each item of the pool of items from which the test
is assembled. It may be noted that since 0 < ) < 1, %’i t <1,

Now let 60, Py and Py have the same meaning as in the begin-
ning of Section 5, and let

t, = ed+(1—eo)/A.

Then it may be seen that
A

and hence
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P P, n
A "1 1 . -
Li(e) = G~ sup (£ -t) z (-6, (19)
X S
and

A.P2 Py c-1 n-— n-x N
Ly(e) = QT " sup (t-t ) © = (Je@-t)" 7. (20)

3t x=0

For the two degenerate cases ¢ = 0 and ¢ = n+l, the maximum

expected loss M(c) takes the values
P P
_,A "1 _ 172
M(0) = G (g, )
and
P P
_ A2, 2
M(n+l1) = Q(K:I (1 to) .

As for 1 < c < n, the search for Lz(c) of (20) may be conducted via
the: procedure described in Section 5.2. The value Ll(c) from (19),

A
the steps described in Section 5.1 to obtain the maximum of the

with the constraint é § t < to, may be obtained by going through

function

=]

P
(0 = (e 11 (HeR-nt
X=C

under the constraint t j_to and the value t* at which the maximum
occurs. If t* >‘%, then
P
= (A, *

On the other hand, if t* 5‘%, then

P
L (c) = (XiAT 1 g(%)-

As in other cases, M(c) = max {L1(c),L2(c)} and the minimax passing

score is the one at which M(c¢) is the smallest.

Numerical Example

et n = 15, 60 .60, A = 4, Py =P, = .5, and Q = .25. Tbhe

minimax passing score is 12. Without correction for guessing, the

minimax passing score would be 11.
32
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7. RELATIONSHIP BETWEEN MINIMAX PASSING
SCORES AND OTHER PARAMETERS

Extensive computations as well as the examination of Appendix A
reported in Section 8 reveal that, other things being the same, the
minimax passing score is a nondecreasing function of n, eo, and P,
and a nonincreasing function of A, Pys and Q. These trends seem to
be justified intuitively. For example, a low Q or a high Py will
reduce the consequences incurred with a false negative error;
hence, a higher passing score might be needed to dampen the overail
expected loss associated with the decision problem. On the other
hand, high values of Py will reduce the consequences of a false
positive error, thus making a lower passing score tolerable. As
for the number A of alternatives, a low value for A will provide
opportunity for some extra probability of getting a correct answer
beyond the true ability of the examinee. Thus it would be sensible
to increase the passing score in order to offset this unwarranted
benefit.

8. TABLES OF MINIMAX PASSING SCORES

The computations described in Sections 5 and 6 may be imple-
mented where computer facilities are available. A FORTRAN IV
routine will be described in the next section. In a number of
instances, however, a passing score might be nceded quickly.
Appendix A presents a set of tables of passing scores for the case
of no correction for guessing (Section 5) only.

All computations were carried out via the FORTRAN program
described in Section 9. The tables are set up with the presumption
that the false-negative consequences are less serious than those
incurred by false positive errors. The parameter Q is set at .25,
.50, .75, and 1.00. Sixteen combinations of P and Py are used,
namely those in which these parameters vary from .50 to 2.00 in steps
of .50. The number of items is set at n = 3 (1) 20, and the crite-
rion level at eo = ,50 (.05) .90.

It is possible to get a passing score of n+l, especially whe\

eo is large and/or Q is small. Such a mastery score indicates that
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nommastery is always declared regardless of test score. This
peculiarity is due 'o the discontinuous nature of the binomial
probability density and produces the seeming paradox noted in the
papers by Novick and Lewis (1974, p. 153-154) and by Wilcox (1976,
P. 362, footnote) and in Section 10 of this report. 1In a practical
sense, tke peculiarity may be avoided by (i) not allowing eo to be
unrealistically high, and (ii) not letting the loss associated with
one type of error in decision (false positive or false negative)
dominate that associated with the other type of error.

In a number of instances, it may be possible to deduce a passe-
ing score for nontabled entries by taking advantage of the relation-
ships described in Section 7.

Example 1

Let n = 10, Pp =P, = .5, and Q = .75. At eo = ,70 and .75,
the passing score is 8. Hence for all 6 between .70 and .75, it

may be assumed that the passing score is also 8.

Example 2
Let n = 10, P, = .5, eo = .70, and Q = .25. At both P, = .5

and 1.0, the passing score is 9. It may be assumed that the same

passing score holds for any P, between the two given values.

9. COMPUTER PROGRAM

A FORTRAN IV routine for passing score computations based on
Sections 5 and 6 is listed in Appendix B. The program requires
two packaged subroutines, DRTNI from the Scientific Subroutine

Package (1971) and MDBIN of the International Mathematical and
Statistical Library (1977).

The main part of the program contains an attempt to solve
Equation (15) iteratively at each ¢ via the Newton-Raphson procedure
for nonlinear equations, as implemented by DRTNI. A good starting

value for 6 is required for convergence; therefore, the following

steps are built into the program.

*
1. First, the value 6 of Section 5.1 is computed.
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2. The interval (e*,eo) will then be divided into N equal
intervals using (N-1) points. The value of Dl(e) of (15)
is computed at successive dividing points until two
points, ea and eb, are found such that the product
Dl(ea)Dl(eb) < 0.

3. Then the interval (ea,eb) will be subdivided in M equal
intervals in order to search for two successive dividing
points et, 8, such that Dl(et)Dl(es) < 0.

4. Finally, the starting value for DRTNI is set at
(6, +0.)/2.

In the construction of the tables of Section 8, the following
values were used: N = 20 and M = 50. The tolerance for § was set
at EPS = .0001. Subroutine DRINI converged in all cases listed in
the tables. For long tests along with ec very near 0 or 1, an M

larger than 50 might be needed for convergence.

10. A SEEMING PARADOX

Consider the mastery decision defined by the parameters n = 3,
8, = .8, P =Py = «5, and Q = .25. The nonrandomized minimax
passing score is 3, at which the maximum expected loss M(c) is .218.
low let us suppose that the decicion has been carried out on a
continuous random variable Y independent of the ability @ of the

examinee. Let ¢ be any cutoff score. Then

P
L,(c) = sup (8 -8) 1 P(y > ) = .89443 P(Y > ¢
<0
[o]

and

P2
Ly(c) = Qsup (6-6) “ P(Y < c) = .11180(1-P(Y > c)).
6>6
o
It follows the maximum expected loss M(c) is minimized when
Ll(c) = Lz(c) at which P(Y > c) = .111, and M(c) = .100. Thus, as
Judged by the minimax principle, tho decision rule of randomly
assigning mastery status with an 11.1 percent probability and
uonmastery status with an 88.9 percent probability is better than

that based on the test score!
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The apparent paradox is actually caused by the restriction of

the decision problem to the class of nonrandomized classifications

defined by the p: 'sing scores of 0, 1,..., n, ntl. A similar
contradiction is alsc displayed in a paper by Wilcox (1976) in
which the minimum probability of a correct decision is not an
increasing function of the number of test¢ items.

The paradox, however, may be resolved by a consideration of

the entire class of randomized decision rules. It is well known

(Ferguson, 1967, Section 2.8) that under fairly general conditions,
there always erists a randomized decision rule which is as good as
or better than a given nonrandomized decision rule. Randomized
minimax decisions, unfortunately, seem harder to approach than

nonrandomized decisions.
11. SUMMARY

In this re, 'rt solutions are provided for the setting of pass-—
ing scores within the context of nonrandomized decisions based on
the binomial test score model. No issumption is required regarding
the true ability Jdistribution of the individual examinee or of the
group of examinees under study. The model assumes that the test is
formed by a randum selection of items from a large (real or hypo-
thetical) pool of items. In . dition, it requires specification of
the minimum true ability for mastery and of consequences incurred
by misclassificatiun errors. A scheme for correction-for-guessing
within the minimax framework is also pres:-~ted. Tables and descrip-~
tions . a computer program are also provided to facilitate the

determination of passing scores.
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APPENDIX A

Tables of Minimax Passing Scores
in the Binomial Error Model
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p2-0.5

80 (%)= 8 (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.25 «--cecccmaccacncccncccaaaa Q=0.50 ~ccceccan-
3 3 3 3 3 3 3 3 4 ¢4 3 2 3 3 3 3 3 3 3 &4
4 3 4 4 4 4 4 4 5 5 4 3 3 3 4 &4 & 4 4 4
5 4 4 4 5 5 5 5 5 6 5 3 4 4 4 4 5 5 5 5
6 4 5 5 5 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 5 6 % 6 7 71 7 17 7 5 556 6 6 7 171 17
8 6 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 7 8 8
9 6 727 7 7 8 8 9 9 9 9 6 6 6 7 7 8 8 9 9
10 7.7 8 6§ 9 9101010 10 6 7 7 8 8 9 91010
11 7 8 8 9 9101011 11 11 7 7 6 8 9 91010 11
12 3 8 91010 11 11 12 12 12 7 8 8 91010 11 11 12
13 8 910 10 11 11 12 13 13 13 8 8 9101011 12 12 13
14 9 10 10 11 12 12 13 13 14 14 8 91010 11 12 12 13 14
15 9 10 11 12 12 13 14 14 15 15 9 5101112 12 13 14 15
16 10 11 12 12 13 14 15 15 16 16 9 10 11 12 12 13 14 15 16
17 10 11 12 13 14 15 15 16 17 17 10 11 11 12 13 14 15 16 16
13 11 12 13 14 15 15 16 17 18 18 10 11 12 13 14 15 16 17 17
1 12 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 16 17 18
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

0o (%) 0o(%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 66 55 70 75 80 85 90
------------- Q=0.75 ==e--cmcccacccccccacacneaas Q=]1,00 ~mmememe--
3 22 2 3 3 3 3 3 3 3 22 23 33 3 3 3
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 &
5 3 3 4 4 4 5 5 5 5 5 3 3 4 4 4 &4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 4 5 5 5 6 6
7 4 55 5 6 6 6 7 7 7 4 4 55 5 6 6 7 7
8 55 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 7 8
9 5 6 6 7 7 8 8 8 9 9 55 6 6 7 7 8 8 9
10 6 6 7 7 8 8 9 910 10 5 6 7 7 8 8 9 910
11 6 7 7 & 9 91010 11 11 6 7 7 8 8 9 91011
12 7 7 8 9 91010 11 12 12 6 7 8 8 9101011 11
13 7 8 9 9101111 12 13 13 7 8 8 9101011 12 12
14 8 9 91011 11 12 13 13 14 7 & 910 10 11 12 13 13
15 8 910 11 11 12 13 14 14 15 8 91010 11 12 13 13 14
16 9 10 10 11 12 13 14 14 15 16 8 910 11 12 13 13 14 15
17 910 11 12 13 14 14 15 16 17 910 i1 12 12 13 14 15 16
18 10 11 12 13 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 1C 11 12 13 14 15 16 17 1¢ 19 10 11 12 13 14 15 16 17 18
10
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Table of Minimax Mastery Scores in the Binomial Error Model
with pl-O.S and p2-1.0

H

w
=
NHCOWVWVKRONNOULULIS S WW

90(70)=
65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Qu0.25 ~-mcemmcmemcamecee——————a- Q=0.50 =emmem—en-
3 3 4 4 4 ¢4 3 3 3 3 3 3 3 4 4 4
4 4 4 5 5 5 4 3 & 4 4 4 4 4 5 5
5 5 5 6 6 6 5 4 4 4 5 5 5 5 6 6
6 6 6 6 7 7 6 5555 6 6 6 6 7
7.7 7 7 8 8 7 5 56 6 7 7 7 7 8
7 8 8 8 9 9 8 6 6 6 7 7 8 8 8 9
8 8 9 9 910 9 6 7 7 8 8 8 9 910
9 910 10 10 11 10 7 7 8 8 9 91010 10
10 10 10 11 11 12 11 7 3 9 910101111 11
10 11 11 12 12 13 12 8 9 91010 11 11 12 12
11 12 12 13 13 14 13 9 910111112 12 13 13
12 12 13 14 14 14 14 9 10 11 11 12 13 13 14 14
12 13 14 14 15 15 15 10 10 11 12 13 13 14 15 15
13 14 15 15 16 16 16 10 11 12 13 13 14 15 16 16
14 15 15 16 17 17 17 11 12 13 13 14 15 16 16 17
15 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18
15 16 17 18 19 19 19 12 13 14 15 16 17 17 18 19
16 17 18 19 20 20 20 12 13 14 1516 17 18 19 20
65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.75 ~~=s-memacccmmeccecnnaen- Q=1.00 cmeemenen-
3 3 3 3 4 ¢4 3 2 3 3 3 3 3 3 3 &4
& 4 4 4 4 5 4 3 3 3 4 4 4 4 4 5
4 5 5 5 5 6 5 4 4 4 4 5 5 5 5 6
S 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
6 6 7 7 7 17 7 5 55 6 6 6 7 7 7
7 7 7 8 8 8 8 5 6 6 6 7 7 8 & 8
7 8 8 9 9 9 9 6 6 7 7 8 8 9 9 9
8 9 91010 10 10 6 7 7 8 8 9 91010
9 910 10 11 11 11 77 8 9 91010 11 11
10 10 11 11 12 12 12 7 8 9 91010 11 12 12
10 11 11 12 13 13 13 59 9101111 12 13 13
11 12 12 13 14 14 14 9 910111112 13 13 14
12 12 13 14 14 15 15 910 11 17 12 13 14 14 15
12 13 14 15 15 16 16 10 10 11 12 13 14 14 15 16
13 14 15 15 16 17 17 10 11 12 13 14 14 15 16 17
14 15 15 16 17 18 16 11 12 13 13 14 15 16 17 18
14 15 16 17 18 19 16 11 12 13 14 15 16 17 15 19
15 16 17 18 19 20 20 12 13 14 15 16 17 18 1v 20

20 12

TR O 0O O SIS U e 5 S0 S0 SP T e S5 T N P G 6 S S5 O = S5 S5 Wr S5 0 TP PSP S0 P O W 0P 6 ob TP S5 S5 W = T P = S @ @ LR R R R N PR T

42




MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p2 =l,5

60(7")= 60(7:’ =
50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.25 =-=mmmememmmmmecemcccaac=an Qu0,50 ========a-
3 3 3 3 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4
4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 5 5 5
5 5 55 5 5 6 6 6 6 5 4 4 5 5 5 5 6 6 6
6 5 5 6 6 6 6 7 7 17 6 5 5 5 6 6 6 6 7 7
7 6 6 7 171 7 7 8 8 8 7 5 6 6 7 71 7 7 8 8
8 6 7 7 8 8 8 9 9 9 8 6 2 7 7 8 8 8 9 9
9 7 8 8 8 9 9 91010 9 7 7 8 8 8 9 91010
10 8 8 9 91010 10 11 11 10 7 8 8 9 91010 1011
11 8 9 910 10 11 11 12 12 11 § 9 91010 11 11 11 12
2 91010 i1 11 12 12 13 15 12 9 91010 11 11 212 12 13
13 10 10 11 11 12 13 13 13 14 13 9 10 10 11 12 12 13 13 14
14 10 11 12 12 13 13 14 14 15 14 10 10 11 12 12 13 14 14 15
15 11 12 12 13 14 14 15 15 16 15 10 11 12 13 13 14 15 15 16
16 11 12 13 14 14 15 16 16 17 16 11 12 13 13 14 15 15 16 17
17 12 13 14 15 15 16 17 17 18 17 12 12 13 14 15 16 16 17 18
13 13 14 14 15 16 17 18 18 19 18 12 13 14 15 16 16 17 18 18
19 13 14 15 16 17 18 18 19 20 19 13 14 15 16 16 17 18 19 19
20 14 15 16 17 18 19 19 20 21 20 13 14 15 16 17 18 19 20 20
8, (%)= 6o (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q0.75 =mmmmemcemmeemeesccecaaeas Q1,00 ==-a-ae=--
3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 4 4 4
4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 4 4 4 5 5
5 4 4 5 5 5 5 5 6 6 5 4 4 4 5 5 5 5 6 6
6 5 5 5 6 6 6 6 7 7 6 5 5 5 5 6 6 6 7 7
7 5 6 6 6 7 7 7 8 8 7 55 6 6 7 7 7 7 8
8 6 6 7 7 7 8 8 8 9 8 6 6 7 7 7 8 8 8 9
9 6 7 7 8 8 9 9 910 9 6 7 7 8 8 9 9 910
10 7 8 8 9 510101011 iv 7 7 8 8 9 9101011
11 8 8 9 9 10 10 11 11 12 11 8 8 9 910 10 11 11 12
12 8 910 i0 11 11 12 12 13 12 8 9 910 11 11 12 12 13
13 9 10 10 1i 11 12 13 13 14 13 9 910 11 11 12 12 13 13
14 910 11 12 12 13 14 14 15 14 9 10 11 11 12 13 13 14 14
15 10 11 12 12 13 14 14 15 15 15 10 11 11 12 13 14 14 15 15
16 11 11 12 13 14 15 15 16 16 16 10 11 12 13 14 14 15 16 16
17 11 12 13 14 15 15 16 17 17 17 11 12 13 14 14 15 16 17 17
18 12 13 14 15 15 16 17 18 18 18 12 12 13 14 15 16 17 138 18
19 12 13 14 15 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19
20 13 14 15 16 17 18 19 20 20 20 13 14 15 16 17 18 19 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-0.5 and p =2,0

2
8o(%)= 9o ()=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Qm0.25 ~memmcmmeemececccsmccceeee Q0,50 =e=mmemaas
3 3 3 3 4 &4 4 &4 4 4 3 3 3 3 3 4 4 4 4 4
4 4 4 4 4 5 5 5 5 5 & 4 4 4 4 4 5 5 5 5
5 5 55 5 6 6 6 6 6 5 4 5 5 5 5 6 6 6 6
6 5 6 6 6 6 72 7 71 17 6 5 56 6 6 6 7 171 7
7 6 6 72 7 7 8 8 8 8 7 6 6 €6 7 7 7 8 8 8
8 7 7 8 8 8 8 9 9 9 8 6 727 7 8 8 8 9 9 9
9 7 8 8 9 9 91010 1¢C 9 7 8 8 8 9 9 91010
10 8§ 9 91010 10 11 11 11 10 8 8 9 910 10 10 11 11
11 9 910 10 11 11 11 12 12 11 8 9 910 10 11 11 12 12
12 9 10 11 11 12 12 12 13 13 12 9 10 10 11 11 12 12 13 13
13 10 11 11 12 12 13 13 14 14 13 10 10 11 12 12 13 13 14 14
14 11 11 12 13 13 14 14 15 15 14 10 11 12 12 13 14 14 14 15
15 11 12 13 13 14 15 15 16 16 15 11 12 12 13 14 14 15 15 16
16 12 13 13 14 15 16 16 17 17 16 11 12 13 14 15 15 16 16 17
17 13 13 14 15 16 16 17 18 18 17 1213 14 15 15 16 17 17 18
18 13 14 15 16 17 17 18 18 19 18 13 14 15 15 16 17 18 18 19
19 14 15 16 17 17 18 19 19 20 19 13 14 15 16 17 18 19 19 20

20 14 15 16 17 18 19 20 20 21 26 141516 17 18 19 19 20 21

o, (%)= 8 (D)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.75 ===eemcececcceccaccecaiaace Qml, 00 =mmmmmme--m
3 333 3 4 4 & 4 & 3 33 3 3 3 4 4 4 4
4 & 4 & &4 4 5 5 5 5 4 3 4 4 4 4 & 5 5 5
5 4 55 5 5 5 6 6 6 5 4 4 5 5 5 5 6 6 6
6 5 56 6 6 6 7 7 7 6 555 6 6 6 7 7 7
7 66 6 7 7 7 71 8 8 7 56 6 7 7 1 71 8 8
5 6 7 7 7 8 8 8 9 9 8 6 7 7 7 8 8 8 9 9
9 7 7 8 8 9 9 91010 9 7 7 ¢ 8 9 9 91010
10 3 8 9 9 910101111 10 7 8 8 9 9 10 10 11 11
11 3 9 9101011111212 11 & 9 9 10 10 11 11 11 12
12 9 910111112121213 12 9 9 10 10 11 12 12 12 13
13 9101111 1212131314 13 91011 11 12 12 13 13 14
14 10 11 11 12 13 13 14 14 15 14 10 11 11 12 12 13 14 14 15
15 11 1112 13 14 14151516 15 10 11 12 13 13 14 15 15 16
16 11 12 13 14 14 15 16 16 17 16 11 12 13 13 14 15 16 16 17
17 12 13 14 14 15 16 17 17 18 17 12 12 13 14 15 16 16 17 18
18 12 13 14 1516 17 17 18 19 18 12 13 14 15 16 17 17 18 19
19 13 14 15 16 17 18 18 19 20 19 13 14 15 16 17 17 16 19 20
20 14 15 16 17 18 18 19 20 21 20 13 14 15 16 17 18 19 20 21
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2

=1,.0 and p =0.5

1

Table of Minimax Mastery Scores in the Binomial Error Model
with p

8, ()=
n 50 55 60 65 70 75 80 85 90

memeeeceecenc Q20,25 se=sceecccceccaccccacaacae Qm0.50 ~cmceaooas

o th=
n 50 55 60 65 70 75 80 85 90

345678990“
MNMITNOORONO
NMFTNNOMNOONO

— -

NI TNOONOANO
— -

NNNATNWNONMNOOND
— -

111 12 13 14
11 12 13 14 15
112 13 14 15 16
2 13 14 15 15 16
2 13 14 15 16 17
314 1516 17 18

NMNMTTVNOWONMNOOOOO

—
NMTNONRNOANOANNTITNONOONO
e R e e N e e N N N
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el A~~~
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A - -
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A~ -
MTNNORNRVDWOANAOOFHNMNITINY
el - -
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A~~~
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NOVNTTNNOORNNDOANAGRO O
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el AA A A~
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50 55 60 65 70 75 80 85 90

¢

R, -

6o (‘Z,)=

n 50 55 60 65 70 75 80 85 90
~mesecmsneces Q=0.75 m=ceccmcmeeceeccacaccaaan Q1,00 cecmeenen-

n
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+.0

Table of Minimax Mastery Scores in the Binomial Error Model
with p =i.0 and p =
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Mcdel
with p1=1.0 and p2-1.5

6o()= 8o )=
n 50 55 60 65 70 75 80 85 90 n 50 55 €0 65 70 75 80 85 90
------------- Q=0.25 =m-=-ecc-eseececccceccaancs Q=0,50 ==---=c=s-
3 33 3 3 3 4 4 4 4 3 3 3 3 3 3 3 3 4 4
4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 & & & 5 5
5 4 & 5 5 5 5 5 6 6 5 4 4 & 5 5 5 5 5 6
6 5 5 5 6 6 6 6 7 7 6 4 5 5 5 6 6 6 6 7
7 5 6 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 7 8
8 6 6 7 7 7 3 8 8 9 8 5 6 6 7 7 7 8 8 9
9 6 7 7 8 8 9 9 910 9 6 6 7 7 8 8 9 9 9
10 7 7 8 8 9 9101011 10 7 7 8 8 9 9101010
11 8 8 9 910 10 11 11 12 11 7 8 8 9 910101111
12 8 9 910 11 11 12 12 12 12 8 8 91010 11 11 12 12
13 9 910 11 11 12 12 13 13 13 8 910 10 11 12 12 13 13
14 91011 1112131314614 14 9 91011 12 12 13 14 14
15 10 11 11 12 13 14 14 15 15 15 9 10 11 12 12 13 14 15 15
16 10 11 12 13 14 14 15 16 16 16 10 11 12 12 13 14 15 15 16
17 11 12 13 14 14 15 16 17 17 17 10 11 12 13 14 15 16 16 17
18 12 12 13 14 15 1€ 17 18 18 18 11 12 13 14 15 15 16 17 18

19 12 13 14 15 16 17 18 18 19 19 12 12 13 14 15 16 17 18 19

85 (B)= 0 ()=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0.75 ~-mwemecmeemeemmcoeesmeeoe Qul,00 ====-cece=
3 2 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3 &
4 3 3 3 4 4 4 & 4 5 4 3 3 3 4 4 4 & & 5
S 4 4 4 4 5 5 5 5 6 S 3 4 4 4 5 5 5 5 6
6 4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 55 6 6 7 7 71 17 7 4 5 5 6 6 6 7 7 1
8 5 6 6 6 7 7 8 8 8 8 5 5 6 6 7 7 8 8 8
9 6 6 7 7 3 8 9 9 9 9 6 6 7 7 8 8 8 9 9
10 6 7 7 8 8 9 91010 10 6 7 7 8 8 9 910 10
11 7 7 8 9 9101011 11 11 7 7 8 8 91010 1111
12 7 8 9 91010 11 12 12 12 7 8 8 910 10 11 12 12
13 8 9 91011 i1 1z 13 13 13 8 8 91016 11 12 1z 13
14 8 910 11 11 12 13 13 14 14 8 910 10 11 12 13 13 14
15 9 10 11 11 12 15 14 14 15 15 9 10 10 11 12 13 13 14 15
16 10 10 11 12 13 14 14 15 16 16 9 10 11 12 13 13 14 15 1€
17 10 11 12 13 14 14 15 16 17 17 10 11 12 13 13 14 15 16 17
18 11 12 13 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19

20 12 13 14 15 16 17 18 19 20 20 11 13 14 15 16 17 18 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-1.0 and p =2.0
2

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.25 ==c-=cccmecccccmccccccaace Q0,50 =-=c=-=-=-
3 333 3 4 4 4 & & 3 33 33 3 4 4 4 &
& 4 &4 & & & 5 5 5 5 4 3 &4 4 & 4 & 5 5 5
5 4 55 5 556 6 6 5 4 4 5 5 5 5 5 6 6
6 556 6 6 6 1 7 7 6 5 5 5 6 6 6 6 7 7
7 6 6 6 7 7 7 71 8 8 7 56 6 6 7 7 171 8 8
8 6 7 7 7 8 8 8 9 9 8 6 6 7 7 7 8 8 8 9
9 7 7 8 8 9 9 91010 9 6 7 7 8 8 9 9 910

10 7 8 8 9 910101111 10 7 8 8 9 9 10 10 10 11

11 8 9 9101011111112 11 8 8 9 910 10 11 11 12

12 9 9101011 11121213 12 8 9 910 11 11 12 12 13

13 910101112 12131314 13 9 9 10 11 11 12 13 13 14

14 10 10 11 12 13 13 14 1415 14 9 10 11 11 12 13 13 14 15

15 10 11 12 13 13 14 151516 15 10 11 11 12 13 14 14 15 15

16 11 12 13 13 14 15 16 16 17 16 10 11 12 13 14 14 15 16 16

17 121213 14 15 16 16 17 18 17 11 12 13 14 14 15 16 17 17

18 12 13 14 1516 16 17 18 19 18 12 13 13 14 15 16 17 18 18

19 1314 1516 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19
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n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- Q=0,75 ===cemecccecccmcccccaccaae Qul, 00 ~ecmemmca-
3 333 3 3 3 4 4 4 3 23333 3 4 4 &4
& 3 3 &4 &4 & & & 5 5 & 3 3 4 4 4 & & 5 5
5 4 & 4 5 5 5 5 6 6 5 4 4 4 55 5 5 6 6
6 4 555 6 6 6 71 7 6 4 5 5 5 6 6 6 6 7
7 556 6 7 171 1 1 8 7 556 6 6 7 7 7 8
8 6 6 6 7 7 8 8 8 9 8 56 6 7 7 8 8 8 9
9 6 7 7 8 8 9 9 910 9 6 6 7 7 8 8 9 910
10 7 7 8 8 9 9101311 10 7 7 8 8 9 9 10 10 11
11 7 8 8 91010111112 11 7 8 8 9 9 16 11 11 11
12 8 9 910 10 11 12 12 12 2 8 8 91010 11 11 12 12
13 8§ 91011 1112121313 13 8 9 10 10 11 12 1z 13 13
14 910111112 13 13 1414 14 9 10 10 11 12 12 13 14 14
15 10 10 11 12 13 13 141515 15 9 10 11 12 13 13 14 15 15
16 10 11 12 13 13 14 1516 16 16 10 11 12 12 13 14 15 16 15
17 111213 13 14 15 16 17 17 17 11 11 12 13 14 15 16 16 17
18 1112 13 14 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18

19 1213 14 1516 17 18 18 19 19 12 13 14 15 16




MINIMAX PASSING SCORES
Table of MMinimax Mastery Scores in the Binomial FLrror Mo.cl

with pl-l.S and p2-0.5

8o (%)= Bo(h)=
n 50 55 €0 65 70 75 80 &5 90 n 50 55 60 65 70 75 80 35 90
------------- Q=0.25 ------m-ceccmcccnccccnncn =0,50 c-—-emmme-
3 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 3 4 4
5 3 3 3 4 4 4 4 5 5 5 2 3 3 3 4 4 4 4 5
6 3 4 4 4 5 5 5 6 6 6 3 3 4 4 &4 5 5 5 6
7 4 4 4 5 5 6 6 6 7 7 3 4 4 4 5 5 6 6 €
S 4 5 5 5 6 6 7 7 8 8 4 4 5 5 5 6 ¢ 7 7
9 5 5 6 6 6 7 7 8 8 9 4 5 5 6 6 7 7 8 8
10 5 6 6 7 7 8 8 9 9 10 5 5 6 6 7 7 8 8 9
11 5 6 7 7 8 8 91010 11 5 6 6 7 7 8 9 910
12 6 7 7 8 3 91010 11 12 5 6 7 7 8 9 91011
13 € 7 8 8 9101011 12 13 6 7 7 8 9 91011 11
14 7 & 6 91010 11 12 13 14 6 7 8 8 910111212
15 7 8 910 10 11 12 13 14 15 77 8 910111. "~ 13
16 6 6 91011 12 13 14 14 16 7 6 910101112 .. 14
17 d 910 11 12 13 13 14 15 17 8 3 9101112 13 14 15
3 91010 11 12 13 14 15 16 18 8 910 11 12 13 14 15 16
19 9 10 11 12 13 14 15 16 17 19 8 910 11 12 13 14 16 17
200 10 11 12 13 14 15 16 17 16 l 9 10 11 12 13 14 15 16 17

6000 = 60(70)"’

n 50 55 60 65 7C 75 80 85 90 n 50 55 60 65 70 75 80 85 90
------------- (=0.75 -e-emcmmmccncccncneccceces =100 ~eecmeca—-
3 1 2 2 2 2 2 3 3 3 3 1 2 2 2 2 2 2 3 3
4 2 2 2 3 3 3 3 4 4 4 2 2 2 2 3 3 3 3 4
5 2 3 3 3 3 4 4 4 5 5 2 2 3 3 3 4 4 4 5
6 3 3 3 4 4 4 5 5 5 6 2 3 3 4 4 4 5 5 5
7 3 3 4 4 5 5 5 6 ¢ 7 3 3 4 4 4 5 5 6 6
8 3 4 4 5 5 €6 6 7 7 8 3 4 4 5 5 5 6 6 7
9 4 4 5 5 ¢ 7 7 8 9 4 4 5 5 6 6 7 7 8
10 4 5 5 ¢ 6 7 8 8 9 10 4 5 5 6 6 7 7 8 9
11 5 5 6 6 7 86 & 910 11 4 5 6 6 7 7 8 9 9
12 5 6 6 7 8 8 91010 12 5 6 6 7 7 8 91010
13 6 6 7 3 8 9101011 13 5 6 7 7 8 910 10 11
14 6 7 7 & 9 1010 11 12 14 6 6 7 8 9 910 11 12
15 6 7 8 9101011 12 15 15 6 7 8 9 91011 12 13
16 7 8 8 91011 12 13 14 16 7 7 8 9101112 13 14
17 7 8 91011 12 13 14 15 17 7 8 910111212 13 14
18 8§ 91010 11 12 13 14 15 18 7 8 910111213 14 15
19 S 910 11 12 13 14 15 16 19 8 91011 12 13 14 15 16
<0 9 1011 12 13 14 15 16 17 2 8 910 11 12 14 15 16 17

.---——-_.---m---—-——.---—------——-----------—--—---—----_----—-----—-
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1-1.5 and p2-1.0

= A
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
............. Qm0.25 —e=emc-cmcecceccncacceesan Qu0,50 ~me---=ee=
3 2 2 3 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 3
4 3 3 3 3 4 4 & 4 4 4 2 3 3 3 3 4 4 4 4
5 3 4 4 4 & 5 5 5 5 5 3 3 4 &4 4 &4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 & 5 5 5 6 6
7 4 5 5 5 6 6 7 7 7 7 4 4 5 5 5 6 6 7 17
. 5 5 € 6 6 7 7 8 8 8 4 5 5 6 6 7 7 71 8
9 5 6 6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9
10 6 €6 7 7 8 8 9 910 10 5 6 6 7 7 8 9 910
11 6 7 7 8 9 9101011 11 6 6 7 8 8 9 91011
12 7 7 8 9 91011 11 12 12 6 7 8 8 9 9101111
13 7 8 ¢ 910111112 13 13 7 7 8 91010 11 12 12
14 8 8 910 11 11 12 13 13 14 7 8 9 91011 12 12 13
15 8 910 11 11 12 13 14 14 15 8§ 9 910111212 13 14
16 9 10 10 11 12 13 14 14 15 lé €€ 910111212 13 14 15
17 9 10 11 12 13 14 14 15 16 17 9 10 10 11 12 13 14 15 16
18 10 11 12 13 13 14 15 16 17 18 910 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18
20 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18
o ()= 9o (%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 6G 65 70 75 80 85 90
------------- Q=0.75 ==e=meccmcccmeccecnmcaamee Qul, 00 =e-ceeeee=
3 2 2 2 2 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 4
5 3 3 3 4 4& 4 5 5 5 5 3 3 3 4 4 4 4 5 5
6 3 4 4 4 5 5 5 6 6 6 3 3 4 & ¢t 5 5 6 6
7 4 4 4 5 5 6 6 6 7 7 4 4 4 5 5 6 6 6 7
3 4 5 5 5 6 6 7 7 8 8 4 4 5 5 6 € 7 7 8
9 5 56 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8
1o 5 6 6 72 7 8 8 9 9 10 5 5 6 7 7 8 8 9 9
11 6 6 7 7 8 9 91010 11 S 6 7 7 8 8 91010
12 6 7 7 8 9 9101111 12 €6 6 7 8 8 9101011
13 6 7 86 9 9101111 12 13 6 7 3 8 910 10 11 12
14 7 8 8 91011 11 12 13 14 7 7 8 91010 11 12 13
15 7 8 91011 11 12 13 14 15 7 8 916 10 11 12 13 14
16 3 91010 11 12 13 14 15 16 8 9 9101112 13 14 15
17 83 910 11 12 13 14 15 16 17 8§ 910 11 12 13 14 15 15
18 9 10 11 12 13 14 15 16 16 18 2 10 10 11 12 13 14 15 16
12 910 11 12 13 14 15 16 17 19 910 1112 13 14 15 16 17
20 10 11 12 13 14 15 16 17 18 20 10 11 12 13 14 15 16 17 13




MINIMAX PASSING SCORES

Table of Minimax llastery Scores in the Bino ‘al Error Model
with p1=1.5 ani p2=1.5

AR 0 ()=
n 50 55 60 €5 70 75 80 85 90  n 50 55 £J 65 70 75 80 £5 90
------------- Q=0,25 ==m=emcemmcecccccaocclican Qm0,50 mmmmmman-
3023333 3 3 4 4 3 0223 33 33 3 4
& 3 3 4 4 & 4 & 5 5 & 3 3 3 4 4 & 4 & 5
5 4 4 4 4 5 5 5 5 6 5 3 4 4 4 & 5 5 5 5
€ 4 4 5 55 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5556 6 7 7 1 7 7 4 556 6 6 7 1 7
S 5 66 * 7 7 8 8 8 8 5 56 6 7 7 7 8 8
9 6 6 7 7/ 8 & 9 9 9 9 56 6 7 7 8 8 9 9
10 6 7 7 % 8 9 91010 10 6 6 7 8 8 9 9 10 10
1 7 7 3 © 910101111 11 6 7 8 8 9 9 10 10 11
12 7 3 ¢ 91010311212 12 7 8 8 91010 11 11 12
13 8 9 9101111121313 13 7 8 9 10 10 11 12 12 13
14 8 9101111321313 14 14 3 9 9 10 11 12 12 13 14
15 91011 111213141415 15 8 910 11 12 12 13 14 15
16 .0 10 11 12 13 14 14 1516 16 9 10 11 12 12 13 14 15 16
17 1011 12 13 14 14 15 1r 17 17 10 10 11 12 13 14 15 16 16
15 11 11 12 13 14 15 1€ 17 1§ 18 10 11 12 13 14 15 16 17 17
19 1112 13 14 1516 17 18 19 19 11 12 13 14 14 15 16 17 18

20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

8, (%)= 8, )=

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.75 ==cmccmcmcccccccccacccaaas Qm1,00 comccceee-
2 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 4
33 4 4 4 & & & 2 3 3 3 3 4 &4 & &
& 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
L 5 5 5 6 6 6 6 3 4 4 5 5 5 6 6 6
55 6 6 - 7 7 7 4 4 55 6 6 6 7 7
6 6 6 7 7 8 § 8 4 5 5 6 6 7 7 8 8
6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9
7 7 6 8 9 9719 10 5 6 7 7 8 8 a9 910
7 8 ¢ 910 10 11 11 6 7 7 8 & 9 10 10 11
8 9 910 11 11 12 12 6 7 & 8 910 10 11 12
9 910 11 11 12 13 13 7 8 8 91010 11 12 13
o 10 i1 11 12 13 14 14 7 8 91010 11 12 13 13
10 11 11 12 13 14 15 15 8 910 10 11 12 13 14 14
16 11 12 13 14 15 15 16 8 910 11 12 13 14 14 15
11 12 13 14 15 15 16 17 910 11 12 13 13 14 15 16
12 13 14 14 15 1€ 17 1& 910 1) 12 13 14 15 16 17
12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18

13 14 15 16 17 18 19 20 10 12 13 14 15 1€ 17 18 19
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1=1.5 and p2-2.0

8= 6 (%)=

n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 30 85 90

------------- Q=0.25 -=escccccccccccncnccanccen Q0,50 ~emmceaan-"
3 3 3 3 3 3 4 4 4 & 3 2 3 3 3 3 3 4 4 4

4 3 4 4 4 4 4L 5 5 5 4 3 3 4 4 4 4 4 5 5

5 4 4 4 5 5 5 5 6 6 5 4 4 4 4 5 5 5 5 6

6 4 5 5 5 6 6 6 7 7 6 4 4 5 5 6 6 6 6 7

7 55 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 71 8

o 6 6 6 7 7 8 8 8 9 8 5 6 6 7 7 7 8 8 9

9 6 7 7 3 8 9 9 910 9 6 €6 7 7 8 8 9 9 9

10 7 7 8 3 9 9101011 10 6 7 7 8 9 91010 10
11 7 8 8 9101011 11 12 il 7 8 8 9 9101011 11
12 3 9 9101011 12 12 12 12 7 8 9 910111112 12
13 8 91010111212 13 13 13 8 9 91011 11 12 13 13
14 910 10 11 12 13 13 14 14 14 9 91011 12 12 13 14 14
15 10 10 11 12 13 13 14 15 15 15 910 11 11 12 13 14 14 15
16 10 11 12 13 13 14 15 16 16 16 10 10 11 12 13 14 15 15 16
17 11 12 12 13 14 15 16 17 17 17 10 11 12 13 14 15 15 16 17
13 11 12 13 14 15 16 17 17 18 18 11 12 13 14 14 15 16 17 1%
19 12 13 14 15 16 17 17 18 19 19 11 12 13 14 15 16 17 18 19
20 12 13 14 15 1€ 17 18 19 20 20 12 13 14 15 16 17 18 19 20

8 (%)= 8,(%)=

n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 80 85 90

------------- Q=0.75 ~~===cccmmccccccccancncncs Qu]l,00 ~ccevemmn-
J 2 3 3 3 3 3 3 4 4 J 2 2 3 3 3 3 3 4 4

4 3 3 3 4 4 4 & 4 5 4 3 3 3 4 4 4 4 4 5

5 3 4 4 4 5 5 5 5 6 53 " 4 4 5 5 5 5 6

€ « & 5 5 5 6 6 6 7 6 4 4+ 5 5 5 6 6 6 7

7 5 5 5 6 6 6 7 7 8 7 4 5 5 6 6 6 7 7 7

3 5 6 6 6 7 7 8 8 8 8 5 3 6 6 7 7 &8 8 8

9 6 6 7 7 5 8 9 9 9 9 5 6 6 7 7 8 8 9 0

10 6 7 7 8 8 9 910 10 10 6 7 7 8 8 9 91010
11 7 7 8 8 9101011 11 1 7 7 8 38 9101011 11
127 8 9 2101011 12 12 12 7 8 & 91010 11 12 12
13 8 8 9101111 1213 13 13§ 8 9101011 12 12 13
14 3 9101111121313 14 14 8 910 10 11 12 13 13 4
15 91010 11 12 13 14 14 15 15 9 9101112 13 13 14 15
16 910 11 12 13 14 14 15 16 16 9 1011 12 13 13 14 15 16
17 10 11 12 13 13 14 15 16 17 17 10 11 12 12 13 14 15 16 17
15 10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19
13 14 15 16 17 18 19 20 20 11 12 13 14 15 17 18 19 20
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5, (=
n 50 55 60 65 70 75 80 85 90

=0.,5
1 2

Table of Minimax Mastery Scores in the Binomial Error Model
with p =2.0 and p

%ak

n 50 55 60 65 70 75 80 85 90
cmcememcmcmas Q=0.25 =e=mecmcccecccmcecmcacaman Qu0,50 -=em=aa-n-

MINIMAX PASSING SCORES
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Table of Minimax Mastery Scores in the Binowmial Lrror Model
with p =2.0 and p =1.0
1

3 2 2 2 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 ¢4
5 3 3 4 4 4 4 5 5 5 5 3 3 3 4 4 4 4 5 5
6 3 4 4 4 5 35 5 6 6 6 3 3 4 4 4 5 5 6 6
7 4 4 5 5 5 6 6 7 7 7 4 4 4 5 5 6 6 6 7
8 4 5 5 6 6 7 7 7 8 3 4 4 5 5 6 6 7 7 ¢
9 5 5 6 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8
10 5 6 6 7 7 8 8 910 10 5 5 6 6 7 8 8 9 9
11 6 6 7 7 86 9 91010 11 5 6 6 7 8 8 91010
12 6 7 7 8 9 91011 11 12 6 6 7 8 8 910 10 11
13 7 7 8 9 91011 11 12 13 6 7 8 8 910 10 11 12
14 7 86 9 910 11 12 12 13 1¢ 7 7 8 91010 11 12 13
15 8 8 91011 12 12 i3 14 15 7 8 9 9101112 13 14
16 8 91011 11 12 13 14 15 16 7 3 91011 12 13 14 14
17 6§ 91011 12 13 14 15 16 17 8§ 910 11 12 12 13 14 15
18 910 11 12 13 14 15 16 17 18 8 910 11 12 13 14 15 16
19 91011 12 13 14 15 16 17 19 9 10 11 12 13 14 15 16 17
20 10 11 12 13 14 15 16 17 18 20 9 10 11 12 14 15 16 17 18
eo(‘z’ = 60\70)=
n 50 55 €0 65 70 75 80 85 90 n 50 55 €0 65 70 75 80 85 90
------------- Q=0.75 =--mmmmemmceceececececmcee Qul,00 =---ooe-eee
3 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 3 3 3 3
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Table of M.inimax Mastery Scores in the Binomial Error Model
with p1-2.0 and p2-1.5
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1

with p =2,0 and p =2.0

Table of Minimax Mastery Scores in the Binomial Error Model
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MINIMAX PASSING SCORE

APPENDIX B
SUBROUTINE MIMAX

This subroutine computes the minimax passing (mastery) score

for the binomial error model in mastery testing.

Disclaimer: The computer program hereafter 1{isted has been written
with care and tesced extensively under a variety of conditions. The
author, however, makes no warranty as to its accuracy and function-

ing, nor shall the fact of its distribution imply such warranty.
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MINIMAX PASSING SCORES
SUBROUTINE MINAX(N,TA,IA,P1,P2,0,1I2)

C
Chdededededrdvdedededdedededede dededdededede dededede sedriededede e dede de dedededed e de dedeode s sedede sk de s desie e de e sk dedesdk s ek

THIS SUBROUTINE COMPUTES THE MINIMAX PASSING (MASTFRY) SCORE FOR
THE BINOMIAL ERROR MODEL IN MASTERY TESTING.

INPUT DATA ARE:

N..... NUMBER OF TEST ITEMS
TA .... CRITERION LEVEL (THETA ZERO)
IA .... NUMBER OF OPTIONS (ALTERNATIVES) FOR EACH MULTIPLE-

CHOICE ITEM, THIS INFORMATION 1S NEEDED IF CORRECTION
FOR GUESSING IS TO BE PERFORMED. IF O CORRECTION FOR
GUESSING IS REQUIRED, SET 1A = 0, ;

Pl .... EXPONENT FOR FALSE POSITIVL ERROR LOSS

P2 .... EXPONENT FOR FALSE NEGATIVE ERROR LOSS

qQ..... WEIGHTING CONSTANT FOR FALSE NEGATIVE ERROR LOSS
OUTPUT DATA 1S

12 .... MINIMAX PASSING (MASTERY) SCORE

SUBROUTINES REQUIRLD:
DRTNI FROM SSP (NEWTON-RALPHSON ITERATION PROCESS)
MDBIN FROM IMSL (BINOMIAL PROBABILITY)

oo dedededededededededede dededede dede sk s dedkedede e dedede dedede dekedeok de de i dede dede e de dede de e dededestedede e dede dedede dle desk deve dededede

OO0OO00OO0O00O0O0O0O000O00OO00OO0000

COMMON NKELP,IC,R,TT,KODE,IOPT
DOUBLE PRECISICN FL1,FL2 ,FMAX,FMAXL

WRITE (6.200) N,TA,IA,P1,P2,Q
200 FORMAT('1l',T4,'NUMBER OF ITEMS .', 14/

1 T4.'CRITERION LEVEL .',F10.5/
2 T4,'NUMBER OF OPTIORS',I14/
3 T4,'Pl ...t ool ',F10.5/
4 T4,'P2 ..ooiiiviinnn, ',Fi10.5/
5 T4,'LOSS RATIO Q ....',F10.5)
DMAX=AMIN1(1l.,Q)
NKEEP=il

DD=IA *1./(IA-1)
IF(IA.EQ.0) DD=1.
K1=DD**P1
X2=DD**P 2

TZ=TA

IF(IA.NE.0) TZ=TA*(l.-1./IA)+l./IA
I1Cl=0
FMAX1=1.D50

DO 10 ID=1,N

IC=1D
R=Pl
TT=T2
IOPT=IA

CALL LMAX(FLI)

FL1=FL1%*{1l

R=P2

TT=1.-TZ

IC=N-1ID+1

I0PT=-1

CALL LMAX(FL2)

FL2=FL2%*Q

FL2=FLZ%*X2
FMAX=DMAX1(FL1,FL2)
IF(FMAX.GE.FMAX1) GOTO 10
ICl=ID
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FMAX1=FMAX
CONTINUE

AMAX=TZ¥**p]
AMAY=AMAX*X1
B=Q*(1.-TZ)%**p2

B=B¥*X2

IX=0

IF(AMAX.LE.B) GOTO 13
I¥=N+1

AMAX=B

1Z=7Cl
IF(AMAY . LT.FMAX1) I1Z=I¥

WRITE(6.220) 1Z

FORMAT('0',2X, 'MINIMAX PASSING'/3X,'SCORE ........... ', 14)
RETURN

END

SUBROUTINE LMAX(FL)
COMMON N,IC,P,TZ,KODE,1A
DOUBLE PRECISION T,F,DERF,TS,FL,T1,Fl,DERF1

EXTERNAL FCT

ZX=0.

IF(IA.GT.0):X=1.0/1A
EPS=.0001

1END=200

KODE=0

NN=20

MM=50

H=P+IC+(N-1)*T2Z

Tl=(ki-SQRT (H*H-4* (K +P)*(IC-1)*TZ))/(2*(N+P))
IF(T1.LE.0.DO) Tl=1.D-20
DD=(TZ-T1) /NN

TS=T1

CALL FCT(T1,Fl,DERFl)

DO 5 I=1,NN

T=T1+I*DD

CALL FCT(T,F,DERF)
IF(F*F1.LE.0.0) GOTO 10

TS=T

Fl=F

CONTINUE

DD=(T=TS) /MM

CALL FCT(TS,Fl,DERF1)

Tl=7S

DO 15 I=1,MM

T=T1+I*DD

CALL FCT(T,F,DERF)
IF(F1*F.LE.0.) GOTO 20

TS=T

Fl=F

CONTINUE

TS=(TS+T)/2.0

UD=T-TS

IF(DD.LE.EPS) GOTO 25

KODE=1

CALL DRTNI(T,F.DERF,FCT,TS.EPS,IEND,IER)
IF(IER.NL.0) WRITE(6,200) IER
FORMAT('0','ERROR iN THE SSP SUBROUTIMNE DRTNI',I14)
éF(IA.GT.O.AND.T.LT.XX)T-XX
=T

CALL MDBIN(IC-I,N,S,D.TK,IER)
IF(IER.NL,0) WRITE(€E,~10) IER
FORMAT('0','ERROR IN THE IMSL SUBROUTINL MDBIN',14)
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10

15

FL=(TZ-T)**P*(l.-D)
RETURN
END

SUBROUTINE FCT(T,F,DERF)

COMMON N,IC,P,TZ,KODE

EXTERNAL BI

INTEGER Bl

DOUBLE PRECISION T,F,DERF,G

S=T

LL=RI(N,IC)

FeIC*LL* (TZ-T)*T**(IC-1)*(1.D0-T)** (N-IC)
CALL MDBIN(IC-1,N,S,D,PK,IER)
F=uP*(1.D0-D)+F

IF(KODE.EQ.0) RETURN

DER¥=0

IF(IC.EQ.N) GOTO 10
G=(1.D0-T)**(N-IC-1)

IF(IC.EQ.1l) GOTO 5

DEPF= (LC-1)*TZ*T**(1C-2)*G

DERF= ( (N+P)*T**IC- (P+IC+(N-1)*TZ) *T¥*¥%(IC-1))*G+DERF
DERF=DERF*IC*LL

RETURHN
DERF=N*T#* (Ij- 2) % (- ({HP) *T+(N- 1) *TZ)
RETURN

LJD

FUNCTION BI(N,M)
INTEGER BI

BI=1

IF (M*(N-M).EQ.0) RETURN
MH=N-1{

IF(QDM.GT.M)MM=M

DO 15 J=1,MM
LI=BI*(N-J+1)/J

END

//LKED.SYSLIB DD

DSN=ACAD. I11SL.DY.SUBLIB,DISP=SHR
DSN=ACAD. IMSL.SP.SUBLIB, D1SP=SHR
DSlI=SSP.SUBLIB, DISP=SIIR

// DD
// DD
// DD
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BAYESIAN AND EMPIRICAL BAYES APPROACHES TO SETTING
PASSING SCORES ON MASTERY TESTS

Huynh Huynh
Joseph C. Saunders

University of South Carolina

Presented at the symposium "Psychometric approaches to domain-
referenced testing” sponsored jointly by the American Educational
Research Association and the National Council on Measurement in
Education at their annual meetings in San Francisco, April §-12, 1979.

ABSTRACT

The Bayesian approach to setting passing s.ores as proposed by
Swaminathan, Hambleion, and Algina is compared with the empirical
Bayes approach to the same problem that is derived from Huynh's
decision-theoretic framework. Comparisons are based on simulated
data which follow an approximate beta-binomial distribution and on
real test data sampled from a statewide testing program. It is
found that the two procedures lead to setting identical or almost
identical passing scores as long as the test score distribution is
reasonably symmetric or when the minimum mastery level or criterion
level is high. Larger discrepancies tend to occur when this level
is low, especially when the distribution of test scores is concen-
trated at a few extreme scores or when the frequencies are irregu-
lar. However, in terms of mastery/nonmastery decisions, the two
procedures result in the same classifications in practically all
situations. However, the empirical Bayes procedure may be used for
tests of any length, while the Bayesian procedure is recommended

only for tests of 8 or more items. Additionally, the empirical

This paper has been distributed separately as RM 79-2, April, 1979.
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Bayes procedure can be generalized and applied to more complex

testing situations with less difficulty than the Bayesian procedure.

1. INTRODUCTION

Among the many decision-theoretic approaches to setting pass-
ing scores (or standards) for mastery tests, there are at leasc two
methods which rely on test data collected from a group of examinees.
The Bayesian procedure, as presented in Swaminathan, Hambleton, and
Algina (1975), assumes that prior knowledge regarding the examinees
is exchangeable (Novick, Lewis, & Jackson, 1973) and can be quanti-
fied in some appropriate manner. On the other hand, the empirical
Bayes approach, as formulated in Huynh (1976a), uses only the true
ability distribution of the examinees and makes no assumption re-
garding prior knowledge about the examinees. Both procedures use
test data collected from a group of examinees and establish passing
scores for mastery tests by minimizing certain loss functions. The
purpose of this paper is to present a comparison of the two sets of
standards (passing scores) formulated under a variety of conditions
which can be expected Lo be encountered in mastery testing or in
minimum competency testing. The comparison will be made first on
the basis of apprcximate beta-binomial test scores. Further com-
parisons will be made using the Comprehensi: : Tests of Basic Skills
(CTBS, 1973) data collected in the 1978 South Carolina Statewide
Testing Program.

2. AN OVERVIEW OF THE BAYESIAN AND
EMPIRICAL BAYES APPROACHES

Overall Framework

The Bayesian framework as presented by Swaminathau et al. and
the special empirical Bayes procedure described in Huynh (1976a,
p. 70-73) start with a typical four-corner setup used in decision
theory. (See Figure I, p. 78, for the basic elements of this setup.)

Let 6 (7 in the notation of Swaminathan et al.) be the true score (or
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true ability) of an examinee and x be the observed test score as
obtained from an n-item test. For the binomial error model adopted
1n both standard setting approaches, 6 is the proportio.. of items
in a real or hypothetical item nool that an examinee answers cor-
rectly. Let a person be called a master if that person's true
score 6 is such that 6 > 90 and a nonmaster if 6 < 6,- Here, 60 is
a given constant which defines the lower boundary of the mastery
level or the criterion level. Since a person's true score cannot
be observed directly, decisions about whether to call the person a
master must be based on an observed test sccre. What remains to be
determined is the cutoff score ¢ that will be in some sense optimal.

On the basis of the test score x, a person is called a master
if x > ¢ and a nonmaster if x < c. A correct decision is made
whenever either (a) 6 > 60 and x > ¢, or (b) 6 < 60 and x < c.
Otherwise, either a false positive error (8 < 60 and x > ¢) or a
false negative error (6 2_60 and x < c) is encountered.

In the case where the loss associated with each error is con-~
stant, generality is not diminished if we let the loss incurred by
a false positive error be equal to 1 and that associated with a
false negative error be equal to §. Here, Q expresses the ratio of
the false negative error loss to the false positive error loss.

(In the notation of Swaminathan et al., Q = 221/212.)

Bayesian Approach

Now let an n-item test be given to m examinees. In the Bayes-
ian procedure as implemented by Swaminathan et al., the prior in-
formation regarding the examinees is assumed to be exchangeable
(t.e., prior knowledge regarding one examinee can be interchanged
with that associated with another examinee without causing any dis-
turbance in the decision problem). The model requires knowledge
(prior belief) of the distribution of the variance of true scores
for the group. (In point of fact, an arcsine transformation of ©
is used.) This prior distribution is taken to be the inverse chi-
square distribution with parameter A and degrees of freedom v. A

recommended choice of v is 8 (Novick, EE.EEJP;4973)'
i
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To assess A, let t be the number of test items which would
need to be administered to a typical <xamine. in order to obtain as
much information about that examinee's 6 as we already have. Then,
A = 3/(2t+1l). Wang (1973) has tables to facilitate computation in
this procedure. In the setup of the Wang tables, A/v is chosen as
.01, .02, .03, .04, and .05. These ratios correspond to the t val-
ues of 18.25, 8.875, 5.75, 4.1875, and 3.25. Given the prior infor-
mation as revcaled through A and v and the test data of m subjects,
it is possible via the Wang tables to Ccompute the two _xpected
losses: Pr(6 < 90 | test data) and Q*Pr(6 2_60 | test data, at
each test score. A Bayesian passing score is then the smallest
score at which the first expectcd loss is smaller than the second
one. More details may be found in Swaminathan et al. (1975) and
in Novick et al. (1973).

Empirical Bayes Approach

The empirical Bayes solution assumes that the m examinees
constitute a random sample from a population for which the true
ability 6 follows a known distributional form such as the beta
density with parameters @ and B (Keats & Lord, 1962, page 68).
Sample test data are used to obtain the estimates & and é, and the
results are used to compute the probability of a false positive
decision Pr(6 < 60, x > c) and of a false negative decision
Q+Pr (6 3_60, X < c) at a given cutoff score c. The optimum passing
score (henceforth referred to simply as the Ppassic _-2) will be
the value of c at which the avrrage loss, Pr(6 < 60, x> c)

+ Q'Pr(6 28, x <c), is the smallest.

The procedure is implemented as follows. Let x and s be the
mean and standard deviation of the test scores, and let the Kuder-
Richardson reliability coefficient be defined as

%1 " oy [l'xn;x]'

ns
Then

@ = (-1+ 1/ay)%

and
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-~ -~ ~

£ = -3 + n/a n

Tor test scores with insufficifnt variability, ;21 may be negative.
If this occurs simply replace a21 by the smallest positive relia-
bility estimate which happens to be available. Let I denote the
incomplete beta functiou as tabulated in Pearson (1934) and imple-
mented “ia computer programs such as the IBM Scientific Subroutine
Fackage (1971) or the IMSL (1977). Then the passing score is the
smallest integer c, at which

I(ate,mtB-c;8 ) < Q/(1+Q). (1)

A normal approximation ‘s available if there is a sufficiently
large number of items and if 60 is not near 0 or 1. Let £ denote
the 100/ (14+Q) percentile of thLe unit normal dis* ibution. Then the

test passing score is nearly equal to
c = (n+a+B—1)6o + £ (n+ﬁt+B—-1)60(1—60)};2 - o+ .5, (2)

The data presented in Huynh (1976b) indicate that the passing score
crmputed from Equation (2) does not differ appreciably from the one
deduced from Inequa*ion (1) when the test consists of 20 items and
when 60 is within the range from .50 to .80.

3. A COMPARISON OF BAYESIAN AND EMPIRICAL BAYES

PASSING SCORES FOR APPROXIMATE
BETA-BINOMIAL TEST DATA

The passing score obtained via the empirical Bayes approach,
as revealed by Inequation (1), is based on test score data that
tollow a beta-binomial distribution. It may be of interest to
compare the Bayesian approach to setting a passing score with the
empirical Bayes approach, using test data which follow closely a
beta-binomial form.

Both the present comparison and the one detaileu in the next
section are based on tests with ten items. 1In these comparisons,
the criterion or minimum mastery level is set at 60 = ,60, .70, and
.80. The loss ratlo is chosen to be Q = .25, .50, 1.00, and 2.00.
(A 1>ss ratio smaller than one indicates that a false positive
error is less serious than a false negative error.) To compute a

assing score via the Bayesian approach, it is necessary to specify
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the ratio A/v or, equivalently, the quantity t as described in
Section 2. It may be recalled that t cay be interpreted as the
number of "test items" which are believed to be as informative as
the prior belief about the examinees. 1In practical situations in-
volving standard setting, it seems unreasonable to let the prior
belief v carry as much weight as the objective test data. In other
words, it is unl'kely that t is too close to n. Thus for the
comparisons based on 10~item tests reported in this section ana i-
Section 4 as well as the comparisons based on 20-item tests
described in Section 5, the t-values are chosen to be 8.875

(A/v = ,02), 5.75 (A/v = .03), 4.1875 (A/v = ,04), and 3.25

(A/v = .05).

The €irst five test score frequency distributions (labeled Al
through A5 in Table 1) serve as the data base for the comparison of
the passing scores computed by the two procedures using test score
distributions that are approximately beta-pinomial. Each is delib~-
erately chosen (i) to yield an sé value (variance of the arcsine-
square-root transformation of the test scores) conforming as closely
as possible to the tabulated s: values of the Wang tables (so that
no interpclation would be necessary) and (ii) to reflect several
degrees of skewness and variability thought to be typical of mas-
tery testing situations. (Also in Table 1, and explained below,
are distributions of actual test scores from the South Carolina
Statewide Testing Program.) It may be noted that in Table 1, the
quantity D(Z) represents the maximum percent difference between
the observed and beta-binomial-fitted cumulati s frequencies. A
small D-value indicates a good fit.

Table 2 reports the Bayesian passing scores and the corre-
sponding empirical Bayes passing scores (in italics) for geveral
combinations of 90, Q, and t. The data indicate that for the situa-
tions under consideration, the Bayesian and empirical Bayes passing
scores are identical, .r nearly so, as long as the test score dis-
tribution is reasonably symmetricai (Cases A2, A4, and AS). For
highly skewed distributions (Cases Al and A3) the two passing
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TABLE 1

Frequency Distributions of Test Scores Used
in Comparisons of Passing Scores

Data Source/ * + Skew- Frequency at score of
Set  Subtest m D(%) S.D. ness 0 1 2 3 4 5 6 7 8 910
Approximate Beta-Binomial

Al Fictitious 40 3.1 1.36 -0.61 1 3 6 81111
A2 Fictitious 80 1.0 1.87 -0.31 1 3 6101316 1511 5
A3 Fictitious 40 1.2 1.01 -1.51 1 2 41023
A4 Fictitious 40 1.6 2.01 -0.02 1 356 7 7 5 4 20
A5 Fictitious 40 1.0 2.15 0.12 1 3 5 6 7 6 5 4 2 1 O

Comprehensive Tests of Bas.c Skills
Bl Mathematics

concepts and

application. 20 6.7 1.28 -0.63 2 1 6 4 7
B2 Mathematics

computations 20 9.2 1.45 -0.24 3 4 3 4 6
B3 Spelling 20 6.1 1.76 -1.04 2 01 2 6 4 5
B4 Social

studies 40 6.2 2.11 0.27 1 459 5 5 6 311
B5 Language

expression 40 8.7 1.86 -0.53 1 1 5 3 41110 3 2
B6 Reading 40 4.1 1.22 -2.12 1 1 2 3 330
B7 Science 60 5.6 1.74 -0.22 2 610 814 812 O
B8 Reading

vocabulary 60 3.2 1.56 -1.7% 1 0 3 1 5 51629
B9 Reading

vocabulary 80 2.7 1.68 -1.49 2 1 2 5 611 23 30
B10 Spelling 80 2.1 1.50 -1.44 1 0 2 4 71216 38
*

m = total number of scoures in the distribution.

+D(Z) represents the maximum percent difference between the observed
and beta-binomial-fitted cumulative frequencies. All are not sig-
nificant at the ten percent level of significance.

scores rarely differ by more than one unit when the criterion level
60 is relatively high (.70 or .80) and when A/v is such that t is
not too close to n, say when A/v is at least .03. Large discrepan-
cies, however, may cccur at a low criterion level such as .60 ot

wher. t i8 close to n.
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TABLE 2
Empirical Bayes Passing Scores for Five

Approximate Beta-Binomial Test Score Distributions
Bayesian (at ‘/v = ,02,.03,.04,.05)
Data and empirical Bayes (in italics) at
Set 90 n-=.,25 Q= .50 Q=1.9 Q=2.00
Al .60 4, 5,6,6,¢ 3,4,5,5,2 2,3,4,4,1 1,2,3, 3,0
.70 7, 8,8,8,6 6,7,7,7,5 5,5,6,6,4 4,4, 5,5, 3
.80 10,10,10,10, 9 9, 9, 9, 9, 8 8, 8,8, 8,7 7,7,7,7,6
A2 .60 7,8,8,8,7 6,7,7,7,6 5,6, 6,6,5 4,4,5,5,4
.70 10,10, 9, 9, 9 9, 9, 9,9, 9 8,8,8,8,8 7,7,17,17,7
.80 10,10,10,10,10 10,10,10,10,20 10,10,10,10,10 9, 9, 9, 9, 9
A3 .60 1, 3, 4,4, 3 1, 2,3,3,2 0,1, 2,2,1 0,1,1, 2,0
.70 4,5,6,6,6 3,4,5,5,5 2,3, 4,4,4 1,2, 3,3, 3
.80 8,8, 9,9,8 7,7,8,8,7 5,4,7,7,6 4 5,6, 6,5
A4 .60 9,9,9,9,9 9.8,8,8,8 8,7,7,7,8 * 6, 6, 6, 6
.70 10,10,10,10,10 10, °,10,10,10 10, 9, 9, 9,10 9, 9, 8, 8, 9
.80 l0,10,10,10,10 10,10,10,10,10 10,10,10.10,10 10,10,10,10,10
A5 .6( 10,10, ., 9,10 9, 9,9, 9,9 8,8,8,8,8 7,7,7,17,7
..0 10,10,10,10,10 10,10,10,10,10 10,10, 9, 9,10 9, 9, 9, 9, 9
.80 10,10,10,10,10 10,10,10,10,10 10.10,10,10,10 10,10,10,10,10

4. A COMPARISON OF BAYESTAN AND EMPIRICAL

BAYES PASSING SCORES FOR CTBS TEST DATA

This phase of the study is based on a 10% systematic sample
of the entire third grade CTBS-Level C data file compiled during the
1978 South Carolina Statewide Testing Program. To obtain the fre-
quency distributions labeled as Bl to B10 (in Tables 1 and 3), the
following procedure was used. First, ten 10-item subtests were
assembled by random selection of items from each CTBS subtest.
Next, for each 10-item subtest, a frequency distribution was con-
structed for each schuol district which had at lea;t 20 students in
the systematic sample, and the corresponding 82 value was obtainnd.
(The 82 values were distributed as follows: .%0 te .50 (32%2), ..l
o .75 (38%), .76 to 1.00 (202), and more than 1.00 (10%).

sz values tended to associate with subtes:s dealing with reading

Large

comprehension (sentences or paragraphs), language expression, and
language mechanics.) Third, among the frequency d :tributions with

sz values included between .01 and .05, ten were finally selected
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and altered slightly so that the total number of examinees (m) was

exactly 20, 40, 60, or 80.

Table 3 lists the Bayecian and empirical Bayes passing scores

As in the previous section, the data

under a variety of conditions.

TABLE 3

Bayesian and Empirical Bayes Passing Scores
for Ten CTBS Test Score Distributions

.02,.03,.04,.05)

Bavesian (at A/v =

and empirical Bayes (in italics) at
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show that the two sets of passing scores are the same, or nearly
8o, ¢8 long as the test score distribution is reasonably symmetric
(see cases B4, BS5, and B7). Digcrepancies in these situations are
rarely larger than one unit. For most othe~ cituations, the dif-
ference between the two values for a passing score is seldom larger
than one unit when the criterion 60 is .70 or .C0 and when A/v is
at least .03. The same magnitude of difference, one unit, also
tends to hLold at 60 = .60 unless the test scores pile up at extreme

values (Case B6) or unless the frequencies are fairly irregular
(Case B1).

5. ADDITIONAL DA3A FOR MODERATELY
SKEWED DISTRIBUTIONS

Additional comparisons were made for ten 20-item tests with
distributions having skewness ranging from -1.109 to .117 (see
Table 4). These tests were assembled in the same way as the 10-
item tests described in Section 4. As in the previous sections,
the criterion level Bo was set at .60, .70, and .80, and the loss
ratio Q at .25, .50, 1.0G, and 2.00. The prior knowledge about the
examinees was assumed to be equivalent tv a number of items, t, of
8.875 (A/v = .02), 5.75 (A/v = .03), 4.1875 (A/v = .04), and 3.25
(A\/v = .05). For all the 480 combinatious under consideration, the

TABLE 4

Frequency Distribution nf Scorees on Ten CTBS Subtests
Mentioned in Section 5

Frequency at gcore of

Subtest 5 6 7 8 9101112 1314151617 18 19 20
Reading vocabulary 1 15 3 4 7 4 8 3 4
Spelling 11 2 3 2 3 812 8
Science 1113 34 319452111
Social studies 2 0 20 312 26 9 3 441 30
Social studies 1 25 3 3165 4 2 25001
Reading vocabulary 2.0 02 1 4 4 3 3 4 8 3 4 2
Mathematics concepts

and application 1 00 1 2 3 2 3 4077 2 6 2
Reading vocabulary 1 2 3 25 5 6 9 7
Social studies 1 31110253 6 3544 10
Science 1 1 4 2 2 2 4 2 4 2 3 4 35 0 1
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absolute value of the discrepancies between the two computed
passing scores are distributed as follows: 0 (35Z), 1 (37%), 2
(15%), 3 (5%), and 4 or more (8%). Hence in about three-fourths of
all situations, the Bayesian and empirical Bayes passing scores do

not differ from each other by more than one unit.

6. AGREEMENT OF MASTERY/NONMASTERY DECISIONS

As noted in Section 4, there are situations (such as some
cases associated with the Al, Bl, and B6 data sets) where the pass-—
ing scoree obtained from the two methods differ appreciably. This
may seem disheartening. However, the procedures provide mastery/
nonmastery classifications which are in high agreement for most
cases under consideration. For Data Set Al with 90 = .60 and .70,
for example, the combined proportions of students identically clas-~
sified in either the mastery or nonmastery category by the Bayesian
procedure (with A/u = ,05) and by the empirical Bayes procedure are
88%, 95%, 99%, and 100% for Q = .25, .50, 1.00, and 2.00 respect-
ively. Over the fifteen data se:cs of Table 1 and with the same
values for A/v and Q, the proportions of identical classifications
reach 94%, 96%Z, 98, and 97% respectively. As for the data of
Table 4, these proportions stand at 98%, 98%, 98%, and 97%.

Though the overall agreement for classifications is high for
the data considered in this study, some individual cases may show
less agreement than others. These cases include situations such as
A2 with 90 = .60, Q = .25, and A/v = .05 where the Bayesian passing
score of 8 and the empirical Bayes passing score of 7 are located
near the center of the test score distribution. The shift of only
one unit in test score in this case actually causes 1( students out
of a total of 80 to be classified differently by the two procedures.
Visible disagreement between the classifications defined by the
Bayesian and empirical Bayes proce:dures may occur in situations
where scores with high frequencies of occurrence are selected as
the passing scores. If this i{s the case, the proportion of stu—
dents clasgified in the mastery (or nonmastery) category is not
likely "o be close to either 0% or 10C%. 1In otu r situation: where
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most students are declared masters (Data Set Al with 60 = ,60,
A/v = .05, and Q = 2.00) or nonmasters (Data Set AS with 00 = .70,
A/v = .05, and Q = 1.00), the agreement in classifications is

almost perfect.

7. DISCUSSION AND CONCLUSION

The results described in previous sections may be summarized
as follows: (i) Bayesian passing scores and those computed via the
empirical Bayes procedure are identical or almost identical as long
as the test score frequency distribution is reasonably symmetric or
when the criterion level 00 1s sufficiently high (.70 or .80);

(11) large discrepancies in passing scores may occur at criterion
levels .60 (or below), especially when the test scores pile ap
at a fc / extreme values or when the frequency distribution is
irregular; (iii) however, mastery/nonmastery decisions derived from
the two procedures are most often identical. Overall, the ccmhined
proportion of students similarly classified by both procedures is
about 97%.

All in all, there 1is little difference between the Bayesian
approach as described by Swaminathan et al. and the Huynh empirical
Bayes procedure described here, either in terms of the resulting
passing szores or in terms of the masterv/nonmastery categorization.

It should be pointed out t: st the procedure by Swaminathan et
al. relies cn a normal arcsine-square-root transformation of the
test data and is therefore considered adequate only when the test
has at least 8 items. In addition, the scheme requires the evalua-
tion of certain posterior probabilities. This may be done via the
MARPRO computer program (mentioned in Wang, 1973) or via the Wang
tables. To the chagrin of the writers, many frequency distribu-
tions such as those derived from the CTBS test data of the South
Carolina Statewide Testing Program have s: values much larger than
the upper bound of .05 allowed in the above-~mentioned tables. In
addition, the constraint of having at least 8 items seems to be

quite severe in many practical situations involving objective-
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referenced testing. Such tests frequently have 5 or fewer items
per objective.

The empirical Bayes approach in its simplest form, as pre-
sented in Huynh (1976a), requires that the test scores follow a
beta-binomial distribution. There are indications (Keats & Lord,
1962; Duncan, 1974; Huynh & Saunders, 1979; also see Table 1) that
the model adequately fits many test score distributions. Moreover,
it is known (Subkoviak, 1978; Huynh & Saunders, 197°) that the
model is useful in the estimation of the reliability of mastery
classification based on one test administration. In addition,
using the empirical Bayes approach, passing scores may be computed
for tests of any length and can be approximated quickly via
Equation (2).

It may be noted that the Bayesian and empirical Bayes proce-
dures discussed in this paper deal with the setting of passing
scores for a particular test. Both procedures assume the availabil-
ity of a minimum mastery or criterion level 60 and the availability
of other information such as Q, the ratio of the loss incurred by
a false positive decision to that incurred by a false negative one.
In the context of testing for instructional purposes, 60 may be
based on the judgment of a curriculum specialist or a knowledgeable
teacher and Q may be assessed via the time losscs encountered by a
misdecision (Huynh, 1976a). The issue is much more involved for
end-of-program certification, such as high school graduation (mini-
mum competency) testing programs legislated in several states. The
reader is referred to Jaeger (1976) and Shepard (1976) for insight
regarding some of these issues.

The empirical Bayes approach with the availability of a pre-
determined criterion level, however, is only the simplest form of
the general framework of mastery evaluation as approached by Huynh

(1976a) . The essential component of this model is an external task

(real or hypothetical) that examinees are supposed to perform once
they are granted mastery of the objectives or content upon which a
test i1s based. Such an external task may be identified in the

context of instruction, especially when instructional units are
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sequenced in some logical order. If this requirement is fulfilled,
the specification of 00 is no longer necessary. Some suggestions
for solutions along this line have been presented elsewhere (Huynh,
1976a, p. 73-75; Huynh, 1977; Huynh & Perney, 1979). To the
knowledge of the writers, the Bayesian approach as presented by
Swaminathan et al. has not been generalized to situations other
than those involving constant losses and when a criterion level is
available. Although such a generalization may be made, the numer-
ical analysis would be more involved than can be expected from the
empirical Bayes approach.

As indicated previously, both standard setting procedures
studied in this paper are based on group data and therefore are
appropriate to the extent that minimization of loss is considered
for the entire group of examinees. This may be the case for mini-
mum competency testing where resources for remedial instruction are
limited. Procedures relating to standard setting in the absence of
group data are available (see, for example, Huynh, 1978).

In conclusion. the empirical Bayes approach yields mastery/
nonmastery decisions identical in most cases to those based on the
Bayesian approach. In sddition, the former approach is aimpler in
terms of corpatations, is applicable to any test length, and has

been generalized to more complex testing situations.
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Assaciation (Sacial Statistics Sectian).

ABSTRACT

This study touches some aspects of the determination of
passing (cutoff, mastery) scores on the basis of the bivariate
normal test model. The loss ratio associated with classification
errors is assumed to be constant, and the referral success function
is assumed to belong tc the normal ogive family. Alternately the
model also provides a fairly simple way to assess the loss conse-
quences associated with each passing score. Such information is
deemed useful to the test user who may wish to examine these con-

sequences before making a final choice of passing score.

1. INTRODUCTION

A general framework for setting passing (cutoff, mastery)
scores in binary classification (or mastery testing) has been pro-
vided recently (Huynh, 1976). Applications of the procedure to
test data distributed as tke beta-binomial model have also been

presented (Huynh, 1976, 1977). The framework assumes that the true

This paper has been distributed separately as RM 79-4, April, 1979.
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ability of a population cf subjects may be described by a random
variable 6 with probability density function p(6). If only one
subject is involved, then p(6) describes the prior information
regarding this subject's ability. A test is administered to the
subject and the resulting test score is denoted as x. The test
score is then compared to a passing (or cutoff) score equal to a
constant c. If x is equal to or greater than c, the subject
passes (or is declared a "master"). If x is less than c, the sub-
Ject does not pass (or is declared a "nommaster”). The problem is
to determine a value of ¢ which ig optimum in some sense.

The model, as proposed, postulates the availability of a
referral task which the subjects are expected to be able to perform
if they are classified as having mastered the competencies under-
lying the test scores. Performance on the referral task is cate-
gorized as success nr failure. The probability of a successful
performance on the task by a subject with true ability 6 is defined
via a nondecreasing function s(8), the referral task. Each referral
task corresponds to a unique function s{(6). Conversely, from a
purely mathematical point of view. any nondecreasing function s(p)
may be conceptualized as a referral task.

The referral task, thus, may be real or hypothetical. For
example, if an integer addition unit is to be followed by lessons
on integer multiplication, then performance on a multiplication
test may serve as a referral task for a test tapping the ability
to add integers. Othe illustrations of real referral tasks may also
be found in situations where the sequence of instructional units
forms a linear hierarchy. 1In a number of situations, a referral
task can be conceptualized. For example, in minimum competency
testing programs legislated in several states, a consensus on what
constitutes a minimum level of performance for mastery may serve as
a basis for a referral task. To be specific, let us agree that in
order to qualify for mastery, an examinee must have a true ability

of at least eo. Then the nondecreasing function s(8) which takes

the value of 0 if 6 < N and the value of 1 for 6 > 0 mathematically
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defines the referral task for this case. The special 0-1 form for
s(6) has been considered by a number of writers itcluding Hambleton
and Novick (1973).

Now let cf(e) represent the opportunity loss incurrei by
granting mastery status to a subject who will eventually fail in
performing the referral tas.. (a false positive error). Likewise,
let cs(e) be the loss associated with tie denial o mastery to a
subjec- whose performance on the task would be deemed successful (a
false negative error). Under these conditione, r~asonable choice
fer an optimum passing score would be the score c, at which the
average loss across all subjects in the population (or the Bayes
risk in the case of only one subject) is smallest. Details regard-
ing the computation of ¢, may be found ia Huynh (1976).

When test scores may be assumed to follow a beta-binomial
model and when the referral success function s(6) is of the 0-1,
linear, or cubic form, closed-form solutions exist for CR (Huynh,
1976, 1977). As is well known, the binomial error model is appro-
priate when each examinee is given an independent sample of items
(Lord and Novick, 1968, chap. 23). There are indications that
several test score distributions migh: fit the beta-binomial frame-
work even if examinees in each distribution respond to the same set
of items.

There are models other than the bet: -bincmial framework which
could be used to represent test data. For example, many frequency
distributions obtained from standardized tests are known to follow
closely a normal distribu.ion. Models using a bivariate normal
distributi~~ for the true score 6 and the observed score x are not
uncommon in educaticnal measurement and Bayesian statistical lit-
erature. Moreover, as an implication of the Central Limit Theorem.
the beta-binomial distribution will resemble a bivariate normal
distribution when the num>er of test items is sufficiently large.

The purpose of this paper is to provide the computation for
the optinur .ssing score (mastery score) fo. the bivariate normal

test score model with constant losses and 0-1 r normal ogive s(8).
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Since normal test scores form a continuous scale, the op timum
passing score <, satisfies the equation

[Q{(cs(e) + C.(8))s (o) - Ce(0) Ip(efc )do = 0. (1)

In the above expression, .} represents the sample space of §. For
the sake of completeness, a procedure will also be proposed for
approximating the referral success func:ion s(0).

2. PASSING SCORE COMPUTATION FOR THE BIVARIATE

NORMAL MODEL WITH CUNSTANT LOSSES
AND NORMAL OGIVE REFERRAL SUCCESS

Without any loss of generalfty, let C (6) = 1 and C (8) = Q.
Here Q expresses the ratio of the loss incurred by a false negative
error to that associated with a talse positive error. Now let the
referral success e defined as

6-6

(2)

where e and ¢ are two constants and F (.) denotes the cumulative

distribution function of a unit normal random variable. 1In aduition,

let x be in its standardized form (with zero mean and unit variance).

With p as the test reliability, the mean and variance of are
respectively 0 and p, and the correlatiow. between x and 6§ is .

It is now assumed that the vector (6,x) follows a bivariaze
normal distribution. It may e then verified that the conditional
density p(elc ) is giveu as a ncrmal density with mean pc and
variance p(l—p) Fruation (1) now becomes

+ +6,
{w (QH)F, 5 J - 1p(e]c )do = 0

+=  [6-0
[ Fy pofc ) = —5 (3

The integral in Equation (3) may be written as

or

. +o @ (t-6 )? o-pe )’ _l
A=——— 1 {] exp ~———|dt} exp| - de
/_2 @® > 262 2(p-p 2)
2movp-o -
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Thiz integral may be viewed as the probab .1ity of the joint event
{-» < 8 <o t < 8} associated with two independent random variszbles
t and 6. The random variable t has mean eo and variance 02; the
second random variable 9 lLias mean pc, and variance p - pz. Now the
difference t - 8 follows a normal distribution with mean e - pc

and variance p - 02 + 02. Siun~e the mentioned loint eventois °
equivalent to the condition t - & < 0, it follows that the value of
A is

FN[(pco~eo)/(p-pz+02)%]. Let £ be the 100/(14Q) percentile of the

unit normal distribution, e.g. FN(E) = 1/{14Q). Then <, is given as
60 + 5¢p-p2+02
—

Cc
[0}

(4)

If the test scores have mean My and a standard deviation Oys
then the test cutoff score is given as Co = ¥y + co~cx.

The following remarks may be made about Equation (4). First
by letting 02 = 0, the normal ogive s(68) will degenerate to a 0-1
form with the jump occurring at eo. Thus if true nonmastery status
is defined by 6 < 90 and true mastery by 6 > eo, ther the cutoff
score 1is c, = eo/p + &/1-p. Next, when misdecisions are weighted
equally in terms of losses (i.e., when Q = 1), <, and eo relate to
each other via the equation 60 = pc,. This expression is reminiscent
of the Kelly formula whick defines the regression of true score on
test score (Lord and Novick, 1968, p. 65). Finally, when the rela-
tionship between the ability 6 and the referral task is fuzzy, 1i.e.,
whenr 02 is large, the cutoff acore <, will shoot sharply abov= the
"central value" eolp if Q < 1 and will locate appreciably below
this central value if Q > 1.

It may be noted that the unstandardized passing score Co may
be written as

6 o
o X

2
+ €¢?1~o)o§ + ozo;ipz.

Co = v +
Let oz be the squared standard error of measurement. ‘rhen

2 2
g (l-p)ox and
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6 o
O

Co=u + +Eo +oo/p (5)

Numerical Example 1

Let wo= 100, o, = 15, p = .90, 60 =1, 0=.5 and Q =
Then § = .432, -.d c, = 1.391. The raw (unstandardized) cutoff
score is found ., be Co = 120.86.

~.___ESTIMATION PROCEDURE FOR
NORMAL OGIVE REFERRAL SUCCESS

Now let g(x,l) be the proportion of subjects who have a test
score of x and succeed in performing the referral task. Then from
Equation {13) of Huynh (1976, p. 74), it may be seen that

o
g(x,1) = [ h(x,8)s(6)de

vhere 1.(x,6) is the bivariate normal demsity of x and 6. It follow -

that
+ g-"
g(x,1) = £ (x)] Fgl—5|p(elx)do

where fN(.) is the unit normal density. Hence from the derivations
in the middle part of the previous section,
g(x,1) _ F PPy

£ (x) N|
N /b-p +0

The ratio p(x) = g(x,l)/fN(x) represents the (corditional) propor-
tion of students who, at the test score x, will succeed in perform-

ing the referral task. Now let

2%

a = p/(p—pz+o ) (6)

and

B = —60/(0-02+02)8.
then

p(x) = FN(ax+-B).
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If £(x) denotes the 100p(x) rercentile of the unit normal distribu-
tisn, then

£(x) = ax + 8 . )]

Now let ;(x), é(x) be the observed values of p(x) and £(x). Let
w(x) be a sultably chosen weight function at tb- score x. Then via
the least squares technique, the estimates for a and B are given as
a = s()r(x,8) (8)
and

B=E,, (9)
where E‘ and s(é) are the mean and standard deviation of the %(x)
values, and r(x,é) is the correlation between the x and E(x) values,
cach pair being weighted by w(x). The computation. of course, is
carried out only over the x values at which the sample valies ;(x)
are available. The reader may recali that the test scores x are in
standardized form.

It may be noted that p(x) is an increasing function of x.
Hence it seems reasonable to require that the sample value p(x) be
a nondecreasing function of x. Thas may be done by applying the
Pool-Adjacent-Violator algorithm (Barlow, Bartholomew, Bremner, and
Brunk, 1972, p. 13) using w(x) as the w. ght function. In addition,
since all p(x) values must be included strictly between 0 and i,
the algorithm must be cuaducted such that the adjusted values ;(x)
conform to this requirement. (See Table 1 for an illustration.)

As in any least square procedure, the weight function w(x) may
be chosen in a variety of ways. It appears to the author that the
number of subjects at each test score might serve as a .:2asonable
choice for this function.

Once the estimates ; an? é have been determined, the estimates
for 6  and 02 may be derived from Equatibgs (5) and (6). Tliese are

60 = -pB/a (10)

and

A

2

02 - pZ/&2 -p+p°. an
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In the case where Equation (11) yields a negative value, a reasonable

choice for 02 would be 0.

Numerical Example 2

Table 1 presents the basic data for this example. The test
reliability is taken to be p = .90. The summary data are E. =
-.2280, s(£) = .8668, and r(x, £ = .9723. It follows that a =

.8427 and B = -,2280, hence 9 = 244 and o = 1.050.

4. ASSESSING THE CONSEQUJENCES
OF SELECTING A MASTERY SCORE

Section 2 providesn the computation of mastery scores when the
loss ratio Q is known. In ¢ number of applications, however, the
test user may not be willing to specify in advance a value for Q.
Instead the user may wish to look at the consequences associated
with each cutoff score before making a final choice. Such a prac-
tice is not uncommon in real testing situations. Both Jaeger (1976)
and Shepard (13976) have advocated an iterative process for setting
cutoff scores in testing programs such as high school graduation
or minimum competency testing.

As in Section 2, let FN(.) denote the cumulative distribution
fuuction of the unit normal variable. Given the loss ratio Q, the

mastery score c_ is given by the equation

[(pc ~6.)/(p-p +oz)”] SR

Alternately tte selection of :, 88 the cutoff score would indicate
that the weights (or losses) accorded to a false negative er.ur a-4i

to a false positive error are in the ratio of Q te 1 where
Q=1/F ((pc -6,)/(p-p 24 )!’J - 1.

Q will degenerate to 0 when <, goes to +» (i.e., when all subjects
are denied mastery) and to = when ¢, Boes t> -=» (i.e., when mastery

is granted regardless of test score).

5. SUMMARY AND CONCLUSION

This study touches some aspects of the determination of pass-

ing scores on the basis of the bivariate normal test wodel. The
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TABLE 1

Basic Data for Numerical Example 2

Raw Test Score

1 2 3 4 5 6 7 8 9 10

Frequency of examinees 1 4 10 21 16 23 21 16 8 5
Frequency of referral-
successful examinees 0 0 1 3 4 8 15 10 7
tnadjusted ﬁ(x) 0 0 .100 143 .250 .348 .714 .6z5 .875
Pool-Adjacent-Violator-
Adjusted p(x) .067 .067 .067 143  .250 .348 .676 .676 .923  .923

E(x) -1.450 -1.%50 =1.450 -1.067 -.675 -.391 .457 .457 1.426 1.426
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loss ratio associated with classification errors Is assumed ¢c be
constant, and the referral success function is assumed to be in the
normal ogive family. Alternately, the model also provides a fairly
simple way to assess the loss consequences associated with each
mastery score. Such information is deemed useful to the test user
who may wish to examine these consequences before making a final
choice of cutoff score.

It shouid be mentionmed that the paper deals with group test
data for a population of exariinees. Thus the various results
would be useful to the extent that loss consequences are consiaered
jointly for the entire population. A procedure for setting passing
scores on tests in the absence of group data is discussed elsewhere
(Huynh, 1978; also in press).
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ABSTRACT

A general framework for making mastery/nommastery decisions
based on multivariate test data is described in this study. Over
all, mastery is granted (or denied) if the posterior expecied loss
associated with such action is smaller than the one incurred by the
denial (or grant) of masters. An explicit form for the cutting
contour which separates mastery and nonmastery states in the test
score space is given for multivariate ’ ast scores which follow a
normal distribution with a constant loss ratio. For the case
involving multiple cutting scores in the true ability space, the
test score cutting contour will resemtle the boundary dufined by
multiple test cutting scores when the test reliabilities are reason-
ably close to unity. For tests with low reliabiliies, decisions

may very well be based simply on a suitably cnosen composite score

1. INTRODUCTION

Application of mental measurement to selection or certification

problems often involves the use of more than one test score. For

This paper has been distributed separately ac RN 79-7, December,
1979.
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example, the selection of students for an advanced program in some
subject area may be based on several traits (variables), such as
prior achievement, aptitude, interest, etc. Ideally, selection
should be based on the subject's true measures on these traits; in
reality, however, decisions are typically based on observed test
scores which are contaminated with errors of measurement. Thas,
misclassifications are bound to occur, and rules for decisions
based on test data are typically formuiated in such a way as to
minimize the risks incurred by misclassification.

Decision problems based on one variable have been considered
at length in the literature. Statistical issues involved in estab-
lishing a single cutoff (cutting, passing, or mastery) score are
described in detail in & number rf sources including Swaminathan,
Hambleton, and Algina (1975); Huynh (1976, 1977, 1979, 1980);
Wilcox (1976); and van der Linden and Mellenbergh (1977). Huynh
(1979, 1980) also provides an explicit relationship awong test
cutting score, losses incurred by misclassification, and errors of
measurement. In general, within the minimax or empirical Bayes
decision framework, it is found that errors in measurement will
reduce the test cucting score when a false negative error is more
serious than a false positive error. Converscly, the test cutting
score will increase when a false negative error is less serious
than a false positive error.

The effect of errors of measurement in selection zitwations
involving multiple true cutting scc es has been considered by Lord
(1962). The selection framework used involves the regression line
expressing the amount of "desirabilicy" assignel to different
examinees as a furction of the .bserved test scores. Using the
multivariate norril distribution to describe the true and observed
scores, lLord was able to plot the contour line in the observed
test score plane which separates the subjects deemed acceptable
(masters) from those judged as vnacceptable (normasters). Lord's
paper, however, does not appear to come naturally from decision
theory as formulated by Wald (1950) or as prescribed in Ferguson
(1767).
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The purpose of this paper is twofold. First it will describe
a general empirical Bayes solution to the "plotting" of a cutting
contour in selection situations involving multiple test scores.
Second, it will explove the influence of the loss ratio on the
cutting contour and will reexamine the distortion caused by errors
of measurement (Lord, 1962), using an empirical Bayes decision-
theoretic framework. Examples based on the multivariat : normal
distribution with constant losses for misdecisions are .rovided to

illuminate various points or procedures put forward in the paper.

2. EMPIRICAL BAYES APPROACH TO CUTTING CONTOUR

Now let the vector 6 = (61,62,...,6k)' denote the true scores
(measures) of an individual subject on k traits (or selection
variables). Let Q represent the region in the true score space
where a subject must be located in order to qualify for the true
state of mastery. Thus a subject 1s defined as a true master if
8 € 0. Let q° be the complement of {i. Then a subject is declared
a true nonmaster when 6 ¢ Q°.

Now let the vector x = (xl,xz,...,xk)' represent the observed
test scores of the subject. On the basis of x and other p:-ior
information regarding 6, a decision may be made concerning the sub-
ject: either to grant mastery (action a]) or to deny mastery
(action az). When 6 ¢ R, the best course of action is as and no
loss wiil be encountered. Similarly, action a, is best when 6 ¢ 9°.
For other situations, classification errors occur. To e specific,
the choice of action a, when 6 € @ constitutes a false ragative
error, whereas the selection of a, when 6 € o° produce, a false
rositive error.

Let cs(e) be the loss associated with a false negative error
and cf(e) be the loss encounterad bv a4 false positive error. Let

p(elx) be the posterior probability density of 6 given that the

rost score vector i has been observed. Given x, the posterior
expected loss encountered in taking action a, is given by the
integral R(a, |x) = fgc Cf(e)p(elx)de.
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Similarly, cthe posterior loss associated with the choice of

= (
action a, is R(azlx) jQ Cs(e)p(elx)de.

It follows from Bayes (or empirical Bayes) decision theory as
expressed, for example, in Ferguson (1967) that, in the test score
space generated by the test score vector X, the cutting contour S
scparating the two actions a, (granting mastery) and a, (denying
mastery) is defined by the equality R(allx) = R(azlx). In other
words, the line (or surface) S consists of all points x at which

Jo Cs(eIp(o|x)de = ]gc Ce(8)p(o[x)de. (1)

The following section explores in detail the implications of
Equation (1) for the case involving constant losses and multiple

true cutting scores.

3. CUTTING CONTOUR FOR CONSTANT LOSSES
AND MULTIPLE TRUE CUTTING SCORES

Let losses be constant and expressed as cf(e) =1 and Cs(e) = Q
in the region where they do not vanish. In other words, Q is the
ratio of the false negative loss to the false positive loss. In
addition, let o be the "upper .ight" corner defined by the true

* % *
cutting scores el,ez,...,ek. In other words,

* * *
2= {650720150,<6,s+++,0,<6,).
With constant losses Equation (1) may now be written as
Qf ple|x)de = [Qc p(e|x)de.
Since U Qc spans the entire space for g, it follows that
Jq plo|x)de + [Qc p(e|x)de = 1.

With this relztionship, Equation (1) becomes

1
Joplelxdo = 735, (2)
which may be written, using the given multip’e true cutting scores,
as
* * * 1
Pr(el_<_91,92_<_92,...,Bkiek]x) = T (3)

The line consisting of the points of coordinate x which satisfy
FEquation (2) or (3) defines the boundary between granting and deny-

ing mastery ir the test score space. This boundary line will be

referred to as a cutting contour.
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4. CUTTING CONTOUR IN MULTIVARIATE NORMAL TEST SCORES

For illustrative purposes, let it be assumed that the true
score vector 6 for a population of subjects follows a multivr+iate
normal distribution with mean vector u = (u,,uz,...,uk)' and with
covariance matrix Ze - [oij)' In the term . ‘ogy of empirical
Bayes statistics, this statement is equivalent ty the requirement
that the prior distribution c¢f the true score vector 6 be the same
for all subjects in the population under study. This common prior
distribution may be estimated from historical test score data or by
procedures which are consistent with classical measurement theory
and practice.

The difference vector e = x - @ represents the errors of
measurement. It will Le assumed that the k omponents of e are
normally and independent.ly distributed, each with a mean of zero
and a variance of €40 i=1,2,...,k, free of 8. 1In addition, it
will be assumed that the two vectors e and 6 are stochastically
independent. To simplify the notation, let Ze be the diagonal
matrix with elements £i4"

It follows from classical measurement theory and from known
properties of multivariate normal di tributions that the joint
distrj .ation of x and 6 is multivariate normal with a mean vector

of u for both x and 6 and with a covariance matrix defined as

where Zx =T, + Ze. Hence the posterior distribution of 6 giveu

]
the test score x is multivariate normal with mean vecter £(x) -

(51.52,...,£k)' = u+ (x—u)'Zez;l and with covariance matrix

=)=zt - 511
A (Aij' Tg = BgI, Ly The vector E(x) is a function of the

test score vector x. On the other hand, the matrix A is free of x.
Now let us consider the standardized variables YysYpsr ooV
where

ye= (0 =~ @)/, 1= 1,2,.0,k.
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Each of these variables has zero mean and unit variance. Let T be
the correlation matrix associated with A (i.e., T is the covariance
matrix of the ¥y variables). 1In addition, let

* * —
vy = (8 - AL, 1= 1,200 k. (4)
Then the cutting contour separating the two actions a, and a, in

the test score space is defined by the equality

Pr(y:fyl’y;fyz"'"yzfyk) - E%E (5)
where the random vector y = (yl,yz,...,yk)' follows a multivariate
normal distribution with zero means, unit variances, and correlation
mactrix T free of x.

Consider now the set Yy consisting of the points with coordi-
nates (y;,y;,...,y;) which satisfy Equation (5). Tihansky (1970)
refers to this set as an equidistributional contour and provides
ways to construct contours of this type for bivariate normal dis-
tributions. The contour y depends only on T which does not involve
the observed test score ve~ntor x. Once it has been constructed,
the cutting contour C in the test score space may be plotted via
the system of linear equations represented by

1

mt ew'L L= g, (6)
where
* *
£ = 6 - yinii, i=1,2,...,k.

Where computer facilities are available, equidistributional
contours may be drawn v.a the Newton-Raphson iteration process for
nonlinear equaticns. For example, let (yl,yz)' follow a standard-
ized bivariate normal distribution with correlation p. Let a be
any number between O and 1, and u be such that Pr(u < yl) <o, We
will search for the value v at which G(v) = O, where

G(v) = Pr(y >u,y,>v) - a,

= Pr(yljfu,yzfrv) - a. N

The derivative of G(v) with respect to v is given as

2
6'(v) = -(20) exp (- ) Bly <-uly, = V). ®
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Here the conditlonal distribution of Yq given Y,

= -v is a normal
distribution with a mean of -pv and a gtandard deviation of (1_02)8_
Hence

2
' - v -u+
G' (V) = -(2m) Pexp (- L) (2 :——Qfg) (9)
2 (1-92)

where Z is the standardized normal varisble. The values of G(v)
and G'(v) may be obtained via computer programs such as MDBNOR
(IMSL, 1977) and the Fortran IV library function ERFC. Both G(v)
and G'(v) are needed in the Newton-Raphson iteration process. This
procedure has been found to converge when u is not too close to the
upper bound u_ at which P(uo j.yl) = a. (It may be noted that the
bivariate equidistributional contour has two asymptotes defined as
u=u and v = u,. Thus small variations in a u value near u, will
tend to associate with substantial changes in the v values; because
of this, the iteration process may fail. However, since P(yI.Z u,
Yy >vVv) = P(y1 2 vy, 2> u), the contour is symmetric with respect
to the first diagonal in the (u,v)-plane. Thus it is necessary to
iterate the v value for each u sufficiently smaller than the upper
bound u s and then to resort to symmetry to complete the drawing of
the contour.)

The drawing of an equidistributional contour for any k-variate
normal distribution may be accomplished in the same way via the
Newton-Raphson iteration process previously described. The details
are straightforward and therefore are not presented here. Multi-
viriate normal probabilities of the form P(y; j,yl,y; < Yoreres
Yy =2 yk) may be evaluated via computer programs such as the one
described in Milton (1972).

It may be noted that the contour y does not depend on the two
vectors e* and u. In addition, in the transformation from Yy to C
as defined by (6), these two —7ectors act only to indlcate the new

locatior of the transformed curve. It feilows that the sbape of

the cutting contour C does not depend on either the vector u or the
*
vector 8 .
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5. AN ILLUSTRATION OF CUTTING CONTOUR

Consider now a selection based on two variables defined by the
true scores 61 and 62. and by the observed test data 3 and X It
will be assumed, as in Lord (1962), that both X and X, are in their
standardized form and have a common reliability coefficient of .90.
In addition, let the correlation betwaen X, and X, be .60. 1t fol-

lows that the matrices Zx and I, are defined as

9
1.00 .60
I =
* | .60 1.00
and
(.90 .60
I = .
® l.60 .90
With
)
Sl 1.00 -.60
»
x  -641_.60 1.00]

it foilows that
41 [.54 .06] [‘84375 .09375]

LI = ——

Yx -84l 06 .54) |.00375 .84375
and
.90 .60 1 [-522 .378 [.086375» . 009375
A= -L - :
.60 .90) €4 378 .522) |.009375 084375

Thus the posterior distribution of § = (61,62)' given the test data
x = (xl,xz)' is bivariate normal with mean vector £(x) = (51,52)'
where 51 = .84375x1 + .09375x2 and 52 = .09375x1 + .84375x2. The
posterior standard deviations are (.084375)!i = .29047 for both 6

1 and 02 is

1
and 6,» and the posterior correlation between 6

.00375/.084375 = .11111.

It may then be deduced from the equations represented by (4)
that

vy = (6] - (.84375x; + .09375x,)) /29047
and

y5 = (65 - (.09375x, + .84375x,))/.29047.
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MULITIVARIATE CUTTING CONTOUR

*
To draw the (xl,xz) contour line, let us suppose that 91 = g

= 0. The two equations represented by (6) can be written as

N

®x
-84375%) + .09375x, = -.29047y,

.09375x. + .84375x, = ~. 25047y,
1 2 2
or equivalently

® ®
x, = -.34857y1 + .03873y2

873y 857y "
x, = .03 vy - .34 Yo -

In the above equations, the point at coordinate (yl,yz) Zelongs
to the equidistributional contour line defined by P(y1 < ¥psY,
= 1/(1+Q), where (yl,yz) follows a standardized bivariate normal
distribution with correlation .11111. It may be recalled that Q is

<v,)

the ratio of the false negative error loss to the false positive
error losc.

For purposes of illustration, the sf.eps previously described
were implemented in drawing the cutting contours associated with

the loss ratios Q = 1/3, 1, and 4. These contours are depicted in
Figure 1.

6. EFFECT OF LOSS RATIO ON CUTTING CONTOUR

In Figure I, the upper right region bounded by each cutting
contour consists of the test score points at which masteiy is
granted. It may be observed that the mastery region expands as the
loss ratio Q increases. This conclusion is to be expected. If the
consequences due to a false negative error become more serious (i.e.,
Q increases), then the classification (or selection) procedure
should be so designed as to reduce the probability of this error.
Thus the size of the nommastery set must be reduced, and as a
consequence, it becomes more likely that mastery will be granted.

In general let the set A (Ql) con st of all points y =
(yl,yz,...,yk) for which

] ] ]
P(7) £ 91Y5 S 3psee oy 2 3) > 1/(14Q)) (10)
99
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FIGURE 1
Multivariate Cutting Contour
for three Q Values
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and let A(Ql) be the correspondiug region in the test score space.
It may be verified that in A(Ql) the expected posterior losses
associated with the *wo actions a, (granting mastery) and a, (deny-
ing mastery) satisfy the inequality R(a1|x) < R(azlx). Thus the
set A(Ql) consists of test score points at which the subject is
declared a master. Now let Q2 be a second loss ratio such that

Q; <Q, This is equivalent to 1/(1+Q1) > 1/(1+Q2). Let A(Q,) have
the same meaning as above. Then any test score points which belong
to A(Ql) must also belong to A(Qz). In other words, the inequality
Q, <Q, impl-es that A(Ql) c A(Qz). Thus, as the loss ratio Q
increases, the mastery region in the test score space will expand.
By the same line of reasoning, when Q decreases, the mastery region

will be reduced in size.

7. EFFECT OI' ERRORS OF MEASUREMENT ON CUTTING CONTOUR

To illustrate the effect of errors of measurement on the cut-
ting contour in :the test score space, let it be assumed as in the
previous section that the test scores X, and x, are in their
standardized forms and have a correlation of .60. In addition, let
it be assumed that x, and X, are equally reliable with common relia-

1

* *
bility coefficient 5, and that 91 = 92 = 0,

It rollows from the equations represented by (6) that
*

l.25(p—.36)xl + .75(l—p)x2 = (92-1.36p+.36);2yl

(11)
*

75(1-p)x, + 1.25(p=.36)x, = (p’-1.360+.36) %, .

x %
In these expressions, the point (yl,yz) belongs to an appropriate
equidistributioanal contour associited with the standardized bi-
variate normal distribution with correlation § = ,6(1-p)/(p-.36).

It may be deduced from the positive semidefiniteness of the
covariance matrix of (91.92) that the common reliability p must be
between .60 and 1.00. As a function of p, the posterior correla-
tion 6§ is a decreasing function, assuming the value of 1.00 when

p = .60 and having the limit of 0 when p tends to 1.00.
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When p approaches the upper iimit 1.00, the posterior distri-
bution of (61,92) will degenerate at the point (xl,xz). (It may
be noted that when p = 1, the posterior covariance matrix A as
defined in Section 4, i.e., ze - Zeleze, will vanish.) Given the
test score vector x = (xl,xz)', formally, the posterior expected
loss for taking action a5, R(allx), is equal to 0 when £ ¢ Q and
1 when x ¢ a°. Similarly, R(azlx) is equal to Q when x ¢ 9 and
0 when x € 2°. Thus, mastery is granted when X; 2 0 and Xy 2 0.
When either X <0or Xy <0 (or both), mastery is denied. In
summary, when p tends to unity, the cutting contour line in the
test score space will approach the cutting contour line defined
in the true score spuce.

Consider now the other limiting situation where p tends to .60
and & goes to 1.00. The entire bivariate probability of (xl,xz)'
is now conceitrated on the diagonal X} = x,. Let Yo be tne point
at which P(y°.5 yl) = 1/(14Q) where ¥y as previously defined, is a
standardized normal cariable. The equidistributional contour line
is now comprised of the two half lines defined by (i) y1 =Y, and
y2 Y0 and (ii) y2 =Y, and y1 <y, Both half lines start at
the point (yo,yo) and extend to -«», one vertically and the other
horizontally.

The equations (11) now become

+ x

2 *
X 2 -3 Y1

*
X, + Xy = —.32y2.
It follows that the cutting contour in the observed test score
space is the straight line defined by the equation xl-ﬁx2-=- 32y

The decision regarding granting or denying mastery in this case 15
actually based on the composite scure M + Xy although separate
cutting scores have been set in the true score space!

For purposes of illustration, cutting contours are drawn for .
the reliability coefficients of p = .95, .80, and .65, and with the

loss ratio Q = 1. The contours are thown in Figure II.
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8. SUMMARY

A general framework for making mastery/normastery decisions
based on multivariate test Jdata i{s described in this study. Over
all, mastery is granted (or denied) if the posterior expected loss
associated with such action is smaller than the one incurred by che
denial (or grant) of mastery. An expiicit form for the cutting
contour which separates mastery and normastery states in the test
score space is given for multivariate test scores which follow a
normal distribution with a constant loss ratio.

For the case involving aultiple cutting scores in the true
ability space, the test score cutting contour will resemble the
boundary defined by mu1tiple test cutting scores when the test
reliabilities are reasonably close to unity. For tests with low

reliabilities, decisions may very well be based simply on a suitably

chosen composite score.
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ABSTRACT

Two versions of tbe Nedelsky procedure for setting minimum
passing scores are compared. Two groups of judges, one using each
version, set passing scores for a classroom test. Comparisons of
the resulting sets of passing scores are made on the basis of (1)
the raw distributions of passing scores, (2) the consistency of
pass-fail decisions between the two versions, and (3) the con-
sistency of pass-fail decisions between each version and the pass-
ing score established by the test designer. The two versions of
the procedure are found to produce essentially equivalent results.
In addition, a significant relationship is observed between the
passing score set by a judge and that judge's level of achievement

in the content area of the test.

This paper has been distributed separately as RM 80-1, March, 1980.

o 107 107




SAUNDERS, RYAN, & HUYNH

1. INTRODUCTION

Passing scores are needed in a broad variety of situations,
including (a) entrance examinations, (b) tests for advancement of
students from unit to unit in individually pre-rribed instruc-
tional programs, (c) minimum Competency testing, and (d) certifi-
cation or licensing examinations. Though writers such as Glass
(1978) charge that passing scores for minimum competency iesting
are usually selected arbitrarily and frequently used unwisely,
others (Hambleton, 1978; Shepard, 1976) have documented the need
for cutoff scores in such areas as objectives-based programs and
individualized instruction. This paper presumes the practical
necessity of passing scores and explores ways in which they can
be established more objectively.

Procedures for Setting Passing Scores

Various procedures for setting passing scores or "standards"
have been developed (see Meskauskas, 1976). Most can be placed
into one of three broad categories: (a) comparisons with the per-
formance of others, (b) considerations of the consequences of
misclagsification, and (c) examinations of item content.
Standard-setting procedures in the first two categories generally
require actual student response data or assume a theoretical,
statistical distribution of such data; content-based methods use
Judgements of content experts. Content-based methods frequently
are used with tests when student performance data are not avail-
able.

Methcds for determining passing scores by analyzing test con-
tent require a judge or group of judges to estimate the probable
score of a hypothetical examinee responding at the level of mini-
mum acceptable performance. Three of the best-known content-based
procedures are those proposed by Angoff (1971), Ebel (1972), and
Nedelsky (1954). 1In using the Angoff method, each judge estimates,
the probability that the "minimally acceptable person' would
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respond correctly to each item; the passing score is determinec .y
suming the estimated item probabilities (Angoff, 1971; Zieky and .
Livingston, 1977). 1In the Ebel procedure, judges gort items into
categories of "relevance" and "difficulty." Each judge then esti-
mates the proportion of correct answers in each category expected
of a "minimally qualified" examinee. The passing score is the
weighted sum of these proportions, with the weight for each cate-
gory being the number of items it contains (Ebel, 1972). The
Nedelsky method is restricted to multiple-choice tests. Every re-
sponse option 1s considered by each judge, who decides which op—-
tions could be rejected as incorrect by an examinee performing at
the mininum passing level. The probability that somenne at this
level would respond correctly to the item is t.“en to be th: re-
ciprocal of the number of remaining options (i.e., one divided by
the number of options that the minimally performing examinee
should not be able to reject). The passing score is the sum of
these reciprocals for all items. (In the original formulation,
Nedelsky (1954) offera further refinements, such as, estimatiug
the stundard deviation of the chance distribution of scores and
using it in :onjunction with setting the passing score. These
reficements are not considered in this payrer.) In all cases, the
pasaing score can be expressed as a fraction or percentage of the

total number of items.

omparisons of e ication he

The metnods discussed above, though operational.y quite
different, have strong logical similarities. It might seem that
they could be expected to produce equivalent passing scores. Re-
search reported in the literature indicates that this equivalence
is not always observed. In a study comparing the Ebel and Nedelsky
Procedures, Andrew and Hecht (1976) found that the two standard-
setting methods produced significantly different passing scores.

Perhaps an even more important consideration was that 45 percent
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of the examinees being tested were claisified differently by the
two passing scores (Glass, 1978). 1In research utilizing the
Nedelsky and Angoff procedures, Bremnan and Lockwood (1979) also ‘
reported a substantial difference in the resulting passing scores.
When several judges are used, the variation among judges’
individual passing scores also can become an issue. A certain
degree of variation might be expected. It is usually suggested
that the different passing scores be reconciled either by
averaging the scores or by requiring judges to reach a consensus
passing score. Andrew and Hecht (1976) found that passing scores
obtained by consensus and by averaging did not differ significantly.
In at least one reported case, however, the amount of variation
among passing scores set by a group of judges using the Nedelsky
procedure was substantial, and the procedure was rejected as un-
feasible (Meskauskas and Webster, 1975). The averaging process
treats the variation in passing scores as random or "error'" varia-
tion. It might be, however, that differences in passing scores
are related systematically to characteristics of the judges. If
passing scores are to be useful, they should not depend too much
on the characteristics of a particular judge or group of judges.
Such characteristics, once idencified, pcssibly could be con-
trolled to prevent them from exerting an undue influence on the
standard-setting process. One characteristic which intuitively
might be expected to show such a relationship is the judge's own

1 vel of achievement in the relevant area.

Tycus of this Paper

This paper deals only with the Nedelsky procedure. Two ver-
sions of the procedure appear to he in use. In the first version,
judges must classify response options into two categories: (a)
thos.:: which should be rejected as incorrect by the minimally per-
forming examinee, and (b) those which should not. 1In the alter-

native version, a third category, '"undecided," also is used when
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the judge is unable to classify the response option as one that
either shoulc¢ ur should not be rejected. Decisions between the
two versions seem to be based on the preferences of the judges,
rather than any theoretical consideration (e.g., Paiva and Vu,
1979; Smilansky and Guerin, 1976). Nedelsky (1954) discussed the
use of the alternative procedure; he apparently felt the two ver-
slons were equivalent.

The purpose of this paper is twofold. First, a comparison
is made between the two versions of the Nedelsky procedure.
Second, the relationship between the achievement levels of judges

and the passing scores they set will be assessed.
2. METHOD

Subjects

In order to compare the two versions of the Nedelsky pro-
cedure, subj2cts acting as judges were divided into two groups.
Group A used the two-category version of the procedure to set
passing scores on an achievement test, while Group B used the
three-category version. The results were compared using the dis-
tributions of passing scores, as well as the consistency of
decisions based upon the scores. Also, to determine the relation-
ship between judges' achievement and passing score, the correlation
between measures of the two variables was calculated.

Data for the study were obtained from students in an intro-
ductory course in educational research and measurement. The course
was conducted via videotape at a number of regional campuses of a
large state university. Ali subjects were graduate students; many

were experienced teachers.
Instrument

The instrument for which passing scores were set, and by
which judges' achievement levels were determined, was the course

midterm examination, a 40-iter, four-option, multiple-choice test,
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constructed by the course instructor (the second author). The
test covered such topics as the nature of the research process,
observation and measurement, sampling, and item analysis. The
exam has been revised over several years to reach a high degree
of content validity, and in its most recent administration showed
an internal consistency (KR20) reliability index of .82. Thus,
scores on the test are taken to be valid and reliable measures

of achievement.

Treatment Groups

All students enrolled in the course wrote the midterm exam-
ination a3 a regular course requirement. The exams routinely were
graded and returned to the students for discussion in class. The
students then were asked to participate in an exercise involving
the use of the Nedelsky procedure to determine a passing score for
the test. While participation in the exercise was voluntary, more
than 95% of the students chose to participate. Of the 148 students
agreeang to participate, 30 were deleted from the study due to
failure to follow instructions, missing identification codes, or
missing achievement data, leaving 118 students as the sample used
in the experiment. Subjects were assigned randomly to groups,
stratified by course section to control for possible differences
among regional campuses. Then they were given copies of the test,
along witn detailed instructions on the Nedelsky procedure. In-
structions for the two groups differed only with respect to the

version of the procedure used.

Definition of Minimum Competence

Minimum acceptable performance was defined for the subjects
as the lowest level of performance on the test for which a grade
of "B" would be awarded. This level was chosen as appropriate,
since one of the requirements of the subjects' degree programs is
that a "B" average be maintained. For each incorrect response

option on the test, the subjects were instructed to respond to the
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question "Should the student performing at the minimum acceptable

level (as defined above) be able to reject this option as

incorrect?" Spaces were provided for that purpose beside each

option. For the two-category version (Group A) of the procedure,

the possible responses were "yes" and "no." The three-category

version (Grov) B) also allowed "undecided" as a possible choice.

In order to minimize any possible confounding effect produced by

the subjects' knowledge of previously existing course standards,

the subjects were not required to calculate their resulting

Nedelsky passing scores; this was done by the authcrs. Each sub-

Ject responded individually; no attempt was made to determine con-

sensu8 passing scores.

Comparison Procedures

The frequency distribntions of passing scores produced by
the two groups were compared using the Kolmogorov-Smirnov two-

sample test, a broad test sensitive to any difference in the two

distributions. The distributions of passing scores are given in
Table 1. All passing scores were rounded upward to the nearest
whole number, that is, the number of correctly-answered items
necessary for an examinee to be classified as passing. Decision
consistency was assessed via comparisons of the proportions of
students writing the exam who were classified similarly by the two
versions. Both the mean and median passing scores for each group
were used in the comparisons. The results are shown in Table 2.
Also, decisions based or the groups' passing scores were compared

with those based on the standard established by the course in-

structor, as shown in Table 3. Finally, to assess the re'ation-
ship between judges' achievement and passing score, the Pearson
product-moment correlation coefficient was determined for the
subjects' examination grades and their Nedelsky passing scores.

For this calculation, the two groups were combined.
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TABLE 1

.istributions of Passing Scores from Two Versions
of the Nedelsky Procedure

Passirg Freguency Passing Frequency
Score Group A Group B Score Group A  Group B
13 0 1 26 2 4
14 1 0 27 - 0
15 0 0 28 5 2
16 2 1 29 4 4
17 0 1 30 0 1
18 1 0 31 3 5
19 0 0 32 5 3
20 3 1 33 2 3
21 1 0 34 6 10
22 1 0 35 6 5
23 2 2 36 3 2
24 2 4 37 3 5
25 1 2 38 5 3

N MEAN  MEDIAN  S.D.
Group A 59  29.88 31.17  6.38
Group B 59  30.51 31.37 5.79

Kolmogorov-Smirnov D = .170 (p = .36)

3. RESULTS

The overall passing score distributions for the two groups,
displayed in Table 1, showed no significant difference (p = .36).
As can be seen in Table 2, the two forms also produced highly
consistent classification decisions. If the mean passing score
for cach group is used as a standard, only 7 of 185 students taking
the test would have been classified differently, a percentage of
agreemert of 96%. The exact median passing scores from the two
groups ate 31.17 and 31.37, respectively. Rounding upward, both
these valuves become 32. Thus, use of the median passing score

produced the surprising result of complete agreement in classifi-

cation.
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The fact that the two versions produce passing scores - =1ding
consistent decisions does not, in itself, mean that the scores are
useful in practice. But further comparisons of decisions based on
the Nedelsky passing scores with those based on standards previous-
ly established by the course instructor (32 correct answers for a
grade of B) also show a high degree of agreement (Table 3). Using
the group mean passing score as the standard, 11 of 185 students
were classified differently by Group A (the two-category version)
and the course instructor's pre-set standard (percentage agreement
= 94%). For Group B (the three-category versions), this percentage
was 98% (7 students classified differently). The group medians,
rounded up to 32, coincide exactly with the course instructor's
standard. Here again, use of the group medians produced ( >mplete
agreement.

As was noted previously, subjects in both groups were com-
bined to consider the relationship between judges' achievement and
passing score. Such a relationship, if it exists, might be expect-
ed to hold across methods; in any event, the demonstrated equiva-
lence of the two forms suggests the reasonableness of combining the
two groups. The linear correlation between achievement and passing
score for the subjects of the study was .30 (p = .001). Thus
achievement in the subject matter area accounted for 9% of the ob-

served variation in passing scores.

4. DISCUSSION

From the results of this study, the two- and three-category
versions of the Nedelsky procedure yield equivalent results.
The finding holds both in terms of the empirical distributions of
passing scores, and of consistency in classification decisions.
Additionally, there was a close correspondence both in distribu-
tions of passing scores and in classification decisions between
passing scores set by the subjects and the pre-set standard es-

tablished by the course instructor.
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TABLE 2

Decision Consistency of Passing Scores
Two Versions of the Nedelsky Procedure

Case I: Using the mean of geveral judges.

Group A
fail pass
fail 44 7 51
Group B
pass 0 134 134

44 141 185
134 + 44 _

Proportion of consistent decisions = 185 .96
Case II: Using the median of several judges.
Group A
fail pass
fail 55 0 55
Group B
pass 0 134 134
55 134 185
Proportion of consistent decisions = léﬁiggéé = 1.00
116 1.”;
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While either the mean or median of several judges' passing scores
could be used to set the final passing standards the median, rather
than the mean, might be more appropriate. The median's resistance
to the influence of extreme scores would seem to reduce some of the
effect of variability in passing scores from a group of judges.

Some variation wac observed in the scores from both groups of
judges. The slightly smaller standard deviation of passing scores
from Group B, using the three-category version of the procedure,
might be a point in favor of the use of that version. The signi-
ficant poritive correlation between judges' achievement and pass-
ing score indicates that at least a small portion of the observed
variation in passing scores was related systematically to a
characteristic of the judges. Other relevant characteristics might
be identified which also relate systematically to judges' passing
scores. Knowledge of these characteristics and their relationship
to passing scores could lead to their elimination, control, or
utilization in the standard-setting process. This knowledge would
make the setting of passing scores on the basis of expert judgement
a more objective process.

In conclusion, this study has shown that the two versions of
the Nedelsky procedure considered here produce equivalent passing
scores. Also, it was shown that the passing scores set by differ-
ent judges were related positively to the judges' own achievement.
It should be noted that the study involved the setting of passing
scores for a single test, using as judges students who took the
test but who were not responsible for constructing it. Further,
such judges are not likely to have the broad knowledge of other
students, of how such tested content fits into the total curri-
culum, and of the subject-matter itself which, say, faculty
members might have. It is an open question whether faculty
members would tend to show the same pattern of consistenc, in
applying the two Nedelsky methods. Thus the observed results must

be seen as suggestive rather than conclusive. However, given the
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Decision Consistency of Course Instructor's Standard with
Passing Scores from Two Versions of the Nedelsky Procedure

Case I: Using the mean of several judges.

Group A
fail pass
Instructor's fail 44 11 55
Pre-set
Standard pass 0 130 130

44 141 185
Proportions of consistent decisions =

130 + 44 _ o,
185

Group B

fail pass

51 4 55

0 130 130

51 134 185

130 + 51 _ o4
185

Case II: Using the mediau of several judges.

Group A
fail pass
Instructor's fail 55 0 55
Pre-set
Standard pass 0 130 130

55 130 185
Proportions of consistent decisions =

130 + 55 _
=222 = 1.00

Group B
fail pass

55 0 55

0 130 130

55 130 185

130 + 55 . .00
185
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results of this study, a choice between the two versions justifi-

ably could be made on practical grounds, such as the preference of
the judges.
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ABSTRACT

A general model along with four illustrations is presented for
the consideration of budgetary constraints in the setting of passing
scores in instructional programs involving remedial action for poor
test performers. Budgetary constraints normally put an upper limit
on any choice of passing score. Given relevant information, this
limit may be determined. Alternately, ways o assess the budgetary
consequences associated with a given passing score are provided.

Such information would be useful in any final decision regarding the
passing score.

1. INTRODUCTION

In many instructional programs, such as Individually Prescribed
Instruction (Glaser, 1968) or others of a similar nature (Atkinson,
1968; Flanagan, 1967), testing is conducted at the end of every
instructional unit to provide feedback to the student and/or teacher
in order that appropriate action can be taken. If a student's test

score is high, it may be reasonable to grant that student mastery

This paper has been distributed separately as RM 79~3, %pril, 1979,

123

o
~ne
o




HUYNH

of the current unit and to allow him to proceed to a subsequent
unit. On the other hand, a low score may indicate that the student
might benefit from some remedial action. This is also the case for
certification testing such as high school graduation or for minimum
competency testing as legislated in several strtes. Funds are
usually allocated for remediation for students whose scores are too
low to warrant mastery of the competencies under consideration.

The statistical issues relating to granting or denying mastery
status have been approached by several writers, including Huynh
(1976, 1977, 1978). Most proposed schemes are by and large quota-
free, i.e., the mastery/nomnmastery decision process considered by
the writers does not take into account the budgetary consequences
associated with the denial of mastery status. If funds provided
for remediation are limited, then a conotraint will have to be
imposed on the number of students declared as failures (nonmasters).

The purpose of this paper is to demonstrate how budgetary
restrictions may be taken into account in the process of setting
passing (mastery) scores or performance standards. Alternately,
the presentation provides ways to assess the budgetary consequences
associated with an arbitrary passing score. Section 2 describes
the overall framework. Illustrations based on the beta-binomial
and normal-normal test score models will be provided in subsequent

sections.

2. OVERALL FRAMEWORK

It is now assumed that the true ability of a population of
subjects may be described by a random variable 6 which ranges in
the sample space Q. For the beta-binomial model, 6 ir the propor-
tion of items that : subject answers correctly in an item pool and
2 is the interval _.rom O to 1. For the norma” test score model, 6
is the traditional true score (Lord & Novick, 1968) and Q is the
entire real line. Let the probability density function (pdf) of 6
be p(6).




BUDGFTARY CONSIDERATION

Let x be the score obtained from the administration of an n-
item test and let f(x) and f(x|6) denote its marginal and condi-
tional probability density functions with respect to 6.

It shall be assumed that all subjects with test scores smaller
than a passing (mastery) score c will be denied mastery for the
irstructional objectives covered by the test and that these subjects
will be provided with appropriate remedial learning activities.

The remediation is assumed to be so devised that its conclusion
will coincide with the mastery status which was previously denied
the student. The cost of remediation will be assumed to be a non-
increasing function of 6 and will be denoted as 6(6). Thus,
remediation will cost less for more able students than it willifor
less able ones.

Consider now a subject with true ability 6. The probability
thal this person will be declared in need of remediation is given
as the sum If(x|6) or the integral [ f(x|6)dx, with x < c. For the
purposes of this section, the summation notation will be used. It
follows that the (conditional) expected remediation cost for this
subject is

I f(x|6)s(e).
X<c

Hence the (unconditional or marginal) expected remediation cost for
a subject drawn randomly from the population is

v(e) = [o T £(x|6)s(8)p(o)do. (1)
x<c

This function is nondecreasing with respect to its argument c. Its
lowest limit is zero (when all subjects are granted mastery status)
and its maximum value, Yoax = fg 6(0)p(6)de, is reached when
remediation is provided to all subjects regardless of their test
scores.

Let us suppose, furthermore, that testing is to be conducted
for a total of m subjects and the total cost of possible remediation
cannot exceed the value B. If the passing score c is selected, then
the total expected remediation cost will be my(c). Hence any choice
for c must satisfy the budgetary constraint my(c) < B. If Ypax < B

&y
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any cutoff score will be acceptable. However, if B < Ypax® then

the passing score ¢ must be less than or equal to Cy» where <y is
the highest score satisfying the inequality
Y(cl) < B/m. (2)

For discrete test scores, such as those of the uinomial error model,
Inequation (2) may be solved by computing the values of y(c) one by
one, starting with ¢ as the smallest test score, and stopping when
the value <, is reached. For continuous test data, numerical pro-
cedures for solving the nonlinear equation y(cl) = B/m might be
needed.

3. THE BETA-BINOMIAL MODEL WITH CONSTANT COSTS

Consider now the beta-binomial model as defined by the follow-
ing pdf's:

fx[o) = (6" (1-8)"™, x = 0,1,...,n
and

ea—l(l_e)e-l
B(a, B) ’

The two parameters a and B may be estimated from sample data via

p(e) = 0<pc<l.

one of several estimation techniques such as the moment procedure

or the maximum likelihood procedure. Let x and s be the sample

-

test score mean and standard deviation. In addition, let a., be

21
the KR21 reliability coefficient as defined by
o, x(n-x)
21 = n-lll 2 ] (3
ns

(In the case of a negative yqs simply replace the value computed
from Equation (3) by any positive reliability estimate.) The moment
estimates for o and 8 are given as

a= (-1 + l/a21);' (4)
and

B= —-a+ n/a21 - n. (5)

We will now focus on the simple case where a single true pass-

ing score (or criterion level) eo, separating true masters from
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true nonmasters, has been specified. Let the remediation cost be
constant and equal to Yo for a true nommaster and Y1 for a true
master. Thus the cost function is of the form

Y if e <@
8(8) = ©
Y1 if o> eo.
The nonincreasing nature of §(6) is satisfied whenever Y, > Yy
The expected remediation cost per student as shown by Equa-
tion (1) is now given as
1 c-1

1
n atx-1 nHB-x-1
Y©) = 5igy =z (x)[vl Ieo 0% (1-0) de

0
o otx-1 nHg-x-1
v, [, ® (1-0) de]

or

1 c-1 n
Y(c) = 3o, B) xfo (x)[YlB(G+x,n+B-X)

)
_ o qofx-1 .  nbB-x~1
+ -y [0 e (1-6) de].
It may be noted that the marginal beta-binomial pdf of x is glven as
£(x) = (3)B(atx,n+8-x) /B(a,B) (6)

and that the incomplete beta function I(a+x,n+8-x;eo) is defined as
0
I(a+x,m+B-x;0 ) = ]o° ea+x_l(l-e)n+8—x-lde/B(a+x,n+B-x).
It follows that

c-1
v(e) = I f(x)(Yl + (Yo-vl)l(a+x,n+8-x;eo))- (7)
X=0

The values of f(x) may be computed via the following inductive

formulae:
T i
HOY = 1 mebe1 ®
i=1
and
f(x+l) = f(x) ° (n=x) (a+x) x=0,1,...,n-1. (9)

(x+1) (n+B-x~1) ’

5 ogn -
PN
| R V!
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The following recurrence formula, on the other hand, will quicken
the evaluation of the incomplete beta functions:
™% (1-gy+E-x-1

1(c+x+1,n+8—x-l;eo) == (ot+x) B ( obx, 0+ B-X)

+ I(a+x,n+8—x;60).

(10)

Finally, as in Section 2, let B be the maximum funds allocated

for possible remediation involving a group of m subjects. Then the

passing score cannot exceed the highest integer ¢
v(c,) < B/m.

1 at which

Numerical Example 1

A maximum sum of B = $4000 has been allocated for remediation
in an instructional program with m = 100 students. Thus B/m = $40.
For the program under study, assume that eo = ,60 and the remedia-
tion costs are Y, = $150 for each student with true ability 6 < ,60
and Y = $50 for students with 8 > .60. Now suppose a Sjitem test
is administered and the test scores yield the estimates o = 3 and
é = 2. At the passing scores ¢ =1, 2, 3, 4, and 5, the expected
remediation costs y(c) are $7.02, $19.06, $31.83, $41.25, and
$47.19, respectively. Since y(cl) < $40, it follows that ¢y = 3.
The budget constraint imposes an upper limit of 3 on the passing
score. If 3 is used, the expected cost of remediation amounts to
$3183. If the next higher passing score, 4, were used, the expected
remediation cost would be $4125, over the maximum budgeted sum of
$4000.

4. THE BETA-BINOMIAL MODEL WITH LINEAR COSTS

Let us suppose now that the cost functicn may be written as
6(6) = (YO-Yl)(l-e) + Yls (11)

in which Yy < Yo Thus the cost is a linear function of 6. It is
equal to Yo when 6 = 0 and Y1 when 6 = 1.
Under the beta-binomial model as described in the first para-

graph of Section 3, the expected cost per student is given as
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I S 1 atx-1,. . mExtl-l
v(e) = B(a, B) x:; (x)((yb-yl) I; o (1-6) dé
- Ii eahc—l(l_e)trl-s—x—lde}

1 e-1 n
= B(as 8) XEO (x) [(YO-Y].)B(M"H.B-HI) + YlB(aPX9n+B‘X)] .

By noting that

B(otx, n+B-x+l) = %:;—’é B(atx, n+B-x)

it may be deduced that
c-1 (v,-v;) (n+B-x)

Y(c) = © f(x) e
X=0

c-1 ao(n+8—x) + yl(a+x)

= I f(x) .
%= ot

+ Yl

(12)

As in the previous section, the values of f(x) may be computed
inductively via Equations (8) and (9).

Numerical Example 2

Consider the basic data of the first numerical example, namely
B/m = $40, Y, = $150, Y = $50, a = 3, B =2, and n = 5 items. At
the passing scores of 1, 2, 3, 4, and 5, the expected remediation
costs y(c) are $5.71, $18.81, $37.86, $59.29, and $78.33. Hence
the passing score cannot exceed 3, where the maximum value of the
expected cost of remediation would amount to $3786. Had a score
of 4 been selected, the expected cost would have amounted to as
much as $5929,

To close this section, it should be mentioned that simple
expressions for y(c) such as the one of Equation (12) may be worked
out for all cost functions 8(6) which can be represented as inte-

gral polynomials of 6.

5. THE BIVARIATE NORMAL MODEL WITH CONSTANT COSTS

Now consider the case where the true score 6 and the observed
score x are jointly distributed according to a bivariate normal
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distribution. Without any loss of generality, it may be assumed
that x is in its standardized form with zero mean and unit variance.
Let p be the reliability of the test for the normal population of
subjects under consideration. The true score 0 has a mean of zero,
a staxdard deviation of vp, and a correlation o” vp with the test
score x. The joint pdf of x and 0 is

2

1 1 2 0

f(x,0) = ———— exp [- — (x" - 2x6 + -——)] . (13)
21/ (1=p) 2(1-p) P

As 1n Section 2, it will be assumed that the coust function
8(0) 1is constant, taking the values of Yo for 6 < 80 and the value
of y, for 8 > 8 . It follows from Equation (1) that at any passing
score c, the remediation v:ost for a subject drawvn randomly from

the population is expected to be

0
v(e) = v, [ ° £(x,0)dedx + v, [© [{ £(x,9)dedx
-0 =00 . .} (o]
0
=y Prix <o) + (v~v)) [ [© £(x,0)dedx. (14)

The maximum passing score <1 satisfies the equation Y(cl) = B/m.

This value of ¢, exists as long as B < y where
1 max

Ypax = YoPr(e < 80) + YlPr(e 3'90).

Solutions may be found via numerical procedures such as the
Newton iterative solution for nonlinear equations. To apply this
technique, it may be noted that the derivative of y(c) with respect
to ¢ 1s

]

y' () = ylfN(c) + (Yo-Yl) {a? f(c,0)de
where fN(.) denotes the pdf of x (the unit normal variable). 1In
other words,

L e-c2/2‘
27
It may also be noted that

fN(c) =
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eo-pc
N

_]i° £(c,0)d6 = £ (c) - F
p=p
where FN(.) is the (cumulative) distribution function of the unit
normal variable.
In summary,
6 -pc
Y'(e) = f(c) |y, + (=Y Fy —=—1]. (15)
p—p
Both y(c) and y'(c) may be evaluated via computer programs such as
those described in the IMSL (1977). They may also be obtained by
use of appropriate tables for the univariate and bivariate normal
distributions.

Numerical Example 3

Let the parameters defining the problem be p = .64, eo =1,
Y, = $150, Y= $50, and B/m = $40. Numerical procedure yields the
maximum standardized passing score ¢, = -.475. If the test scores
have a mean of 50 and a standard deviation ¢f 20, then the passing
score cdannot exceed 40.5.

6. THE BIVARIATE NORMAL MODEL
WITH NORMAL-OGIVE COST

Now consider the case where the cost function §(8) is of the

form

6-8
8(8) = (v -v;) [l - FN[—O—Q]] +v (16)
where, as before, FN(.) represents the distribution function of the
unit normal variable. In che context of decision theory, expres-
sions similar to those of Equation (16) have been proposed as
utility functions (e.g., Lindley, 1976, and Novick and Lindley,
1978). As 1in the case of the beta-binomial model with linear costs,
Yo and Y, represent the remediation costs associated with the least
able (8 = -«) and the most able (8 = +x) subjects. On the other

hand, the parameter eo is the location at which the cost is
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(yo+yl)/2 and 1/0 indicates the extent to which §(8) decreases at
this location.

The expected remediation cost y(c) may now be written as

c 4o
Ye) = | [ f(x,8)8(6)dedx

-0 =00

Cc
= Y Prlx <) - (y,-v)) L $(x) £ (x)dx (17)

where

+o0 6-0
o(x) = | £8|x)F,, Olde.

g
-

The conditional pdf £(8]¥) is given as

2
1 (6-px)
f(elx) S ————— exp [" ] .
,2170(1-0) 29(1"9)

It follows that

2
+o 0 (t-8)
1 Se-gxz (o}
¢(x) = ———— {exp l- ] exp (- ———(dt}de.
2navp (1-p) -~ 20 (1-p) {w 202

It should be noted that the expression

4 2
(e-px)? _ (678
e P {7 20(1-p) 2
2n0vp(1-p) 20
acts as the joint pdf of two independent normal random variables 6

and t with means px and eo, and with variances p(l-p) and 02.

Now let us introduce the new random variable u = § - t for
which the mean is px - eo and the variance is p - p2 + 02. Since
the condition t < 6 is equivalent to u > 0, it follows that ¢ (x)
may be expressed simply as

o(x) = Io f 8eu(e,u)dedu,

where geu(e,u) is the bivariate normal pdf of # and u. Hence

$(x) = Pr(u > 0) =1 - Pr(u < 0)
or
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Bo—px
o(x) =1 - Pl /——|- (18)

VO‘OZ+°2
With this new expression for ¢(x), the expected remediation
cost as defined in Equation (17) may be written as

c 8 -px
v(e) = v,Pr(x <¢) + (y-v,) [ F |— £ (x)dx. (19)
1 o 1”7 °N 3 N
p=p +0
The integral found in Equation (19) may be written as
c h(x)
z(c) = f | fN(w)fN(x)dwdx,

where h(x) = (-px+60)/ﬂr-pz+02, and fN(.) is again the pdf of a unit
normal variable. Let

v=w-hx) =w+ (px—eo)//p—p2+02.

Then x and v follow a joint bivariate normal pdf, ng(x,v), with
means, variances, and correlation given, respectively, as

u =0,

X
'90/10'92+°29

h =3
]

v

2 .

o, = 1, (20)
03 = (p+02)/(p—92+02) R

and
Py = o/ v'o+02 .

Hence the integral Z(c) takes a simpler form given as

c o
2(c) = [ [ g (x,v)dvdx,

- 00 =0

and the expected remediation cost y(c) may be written as
c o
v(e) = v Pr(x <c) + (y,-v,) _J_m !m 8y (Xs V) dvdx . (21)

The numerical v-Zues of y(c) may be computed via tables or

computer programs dealing with the univariate and bivariate normal

distributions.
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Numerical procedures such as the Newton iteration process may
be used to solve the equation y(c) = B/m. The derivative of y(e)
with respect to ¢, from Equation (19), is found to be

Y'(e) = £ (e)fy, + (YO-YI)FN[—EQ—BE-;J (22)
p=p +o

It may be noted that by taking o2 = 0, Equations (19) and (22)
of this section will reduce to Equations (14) and (15) of Section 5.
This 1s expccted since the normal-ogive cost function §(6) as
defined in (16) will degenerate into the constant cos: function of
Section 5 when 02 tende to zero. Finally, the maximum expected
remediation cost (per random subject) may be deduced from Equation
(21) by letting ¢ = +=. It 1s

6
= - -
Yo = Y1 F (g Fy =5 (23)
pto
Numerical Example 4
Let the parameters of the problem be p = ,64, eo =1, 0 =2,

Y, = $150, Y = $50, and B/m = $40. The Newton iteration procedure
for solving the equation y(cl) = B/m yields the solution ¢, = ~.362.
If the test scores have a mean of 50 and a standard deviation of 20,

then the test passing score cannot exceed 42.76.

7. SOME CONCLUDING REMARKS

In this paper a general model along with four separate illus-

trations is provided for the consideration of budgetary constraints
“in the setting of passing scores in instructional programs involv-
ing remediation for subjects with poor test performince. The
1llustrations are not meant to be exhaustive. Budgetary constraints
normally impose a limit on the number of students allowed to take
remedial learning activities and, hence, restrict the range in
which a choice for the passing score is to be made. The paper also

provides ways to assess the budgetary requirement associated with

each passing score. This information would be a factor in deci-

sions regarding passing scores and budgets for remediation.
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ABSTRACT

In mastery testing the raw agreement index and the kappa index
may be secured via one test administration when the test scores
follow beta-binomial distributions. This paper reports tables and
a computer program which facilitate the computation of those indi-
ces and of their standard errors of estimate. Illustrations are
provided in the form of confidence intervals, hypothesis testing,

and minimum sample sizes in reliability studies for mastery tests.

1. INTRODUCTION

As indicated by several writers including Carver (1970) and
Hambleton and Novick (1973), one of the uses of criterion-referenced
testing is to classify examinees in two or more achievement cate-

gories. 1In this context, referred to here as mastery testing,

reliability would be most appropriately viewed as classification
(or decision) consistency across repeated test administrations

using the same form or two equivalent forms. Decision consistency

This paper has been distributed separately as RM 78-1, December, 1379.
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may be quantified by the raw agreement index p which expresses the
proportion of examinees classified in the same category by both
testings. When the two test admiristrations yield equivalent (or
. «changeable) test data, p is bounded from below by P, the propor

tion of consistent dacisions which would be exprcted if no rela-
tionship existed between the two sets of data (Huynh, 1976, 1978).
In other words, P.LP < 1. In a number of instances, for example
when decision consistency is to be compared for two testing situa-
tions involving different pc values, it would be suitable to scale
p so that it forms an index with a range from 0 to 1. The kappa
coefficient (Cohen, 1960), as defined by k = (p-pc)/(l-pc), is
such an index. This coefficient represents the extent of improve-
ment in decision consistency which is reflected by the dependency
between two equivalent sets of data.

The definitions of both p and kappa include the notion of
repeated testings. However, there are at least two procedures by
which p and kappa may be approximated via test data collected from
one test administration (Huynh, 1976; Subkoviak, 1976). The
Subkoviak prucedure relies on the estimation of the true score for
each individual examinee. When combined with the binomial or com-
pound binomial error model, the estimated true score will yield a
consistency ° Jex for each examinee. The average of th.s index
over a population of examinees is the Subkoviak estimate for p.

The Huynh method, on the other hand, assumes that test scores
on one form follow a beta-binomial model and test scores on both
forms distribute jointly as a bivariate beta-binomial distribution.
Both p and kappa (and other similar indices) may then be computed
via the univariate and bivariate distributions. In a simulation
study based on real test data, Subkoviak (1978) concluded that "all
things considered, the Huynh approach seems worthy of recommenda-
tion. It is mathematically sound, requires only one testing, and
provides reasonably accurate estimates, which appear to be slightly
conservative for short tests" (p. 115).

This paper will consider only the Huynh procedure for the

approximation of p and kappa. Section 2 will provide a review of
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the computation of p and kappa. Section 3 will present formulae
for computing the asymptotic standard errors of their estimates.
Section 4 will describe the arrangement of the tables regarding p
and kappa and their standard errors. Section 5 describes the
interpolation process for nontabulated entries. Some applications
of the tables will be presented in Section 6. The last two sec-
tions deal with a computer program for the estimates and their

standard errors.

2. COMPUTATIONS FOR p AND k

Consider now the administration of an n-item test to a popula-
tion of examinees with true ability distributed according to the
beta density with parameters a and B. The frequency distribution
of the observed test score x is given by the beta-binomial (or
negative hypergeometri~' density

£x) = () B(a + x, m + B - x)/B(a,B). ey

In this formula as well as in all other subsequent ones, the
notation B denotes the beta function. The density f(x) may be com-
puted via any of the following inductive formulae

n
£(0) = I
i=1

n+B+1i
nta+pf-1
(2)

(n-x) (a+x)
(x+1) (n+B-x-1) °*

f(x+l) = f(x) - x=0,1,...,n-1;

or

nta-1i

n
fla) = 1 rotb-1

i=1 (3)

x (n+B-x)
(n-x+1) (a+x-1) °

The first recurrence scheme is more efficient for small test scores

f(x-1) = f(x) -

x=1,...,n.

whereas the second set works better for large test scores.

Let x and y be the test scores obtained by administering two
equivaient n-item tests to each examinee in the population. Under
local independence with respect to true ability, x and y follow the
biv.riate beta-binomial (or negative hypergeometric) density
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Q O
f(x,y) = Wa,% B(a+x+y, 2n+B-x-y) .
This density is symmetric in the sense that f(x,y) = f(y,x).
For values of x and y near 0, f(x,y) may be evaluated induc-
tively via the following formulae:

2n n

i=] im]

and

, . . —(0-%) (a+xty)
EGetley) = £069) * 33Y 2mbBoxmy-1)

For values of x and y near n, it is more efficient to use the fol-

lowing formulae:

2n n
nta-1 2nta—-1
f(a,n) = 1 2§+a+8-i =f(n) « M S BT’
i=1 i=1

and

x(2n+B-x-y)
(n-x+1) (¢ "xty-1) °

Consider now the case where it is desired to place examinees

f(x-1,y) = f(x,y) *

into k classifications or categories defined by k-1 cutoff scores
denoted by the intagers cj, J=1,2,...,k-1 with 0 < ¢y < ... < -1
< n. The first category consists of all test scores between 0 and
cl-l inclusive. For the second categorv, the test score: .ange
between ¢y and cz-l inclusive, and sc on. Finally, for the kth
category, the test score limits are ck-l and n. For binary classi-
fication, k=2 and the cutoff score c is traditionally referred to
as a mastery or passing score. These two categories are represented
as {x: 0 < x < c-1} and {x: ¢ < x < n}. Por k classifications as
defined above, the raw agreement index is expressed as
AR
p= I L £(x,y)]| .

=1 x,yﬂcj_l

Here c, = 0 and Cp - ntl. The lower limit for decision consistency

is given as

142 i R D




RELTABILITY IN MASTERY TESTING

Kk cJ-l

p = L f(x)
¢ i=l ‘*x=

cj_1
As previously mentioned, the kappa index is defined as k = (p-pc)
/(~p.).

The formulae become somewhat simpler for binary classifica-
tions. For the use of c near 0, let

c-1
= I f(x)

° x=0

c~-1
P = X f(x’Y) .
00 x,y=0

Then
P = 1-2(ny-p,q)
and
€ = (poo-P2) (py-p2) .

On the other hand, for values of ¢ near n, let

n
P = E f(x)
x=c
and
n
Py = r f(x,y, .
X,y=c
Then
p = 1-2(91-911)
and

< = (py;p2)/ (py-p3) .

3. ASYMPTOTIC SAMPLING DISTRIBUTION
OF THE ESTIMATES

The estimation for p and « may be carried out by replacing o
and B by their estimates in the appropriate formulae of Section ?.
There are at least two ways to estimate o and £, namely the maximum
likeiihood (ML) principle and the moment method. Let x and s be




HUYNH

the mean and standard deviation of the test scores of m examinees,
and let the estimated KR21 reliability be defined as

~ __n [, x(n-x)
%21 = m=l [1 2 ]'
ns

The moment estimates of @ and B are given as
a = (-1 + l/u )x

and
B= -q+ n/u.21 - n. R

These estimates are positive (thus acceptable) only when O<a__<1.

When the test scores do not show sufficient variability, the iim—
puted value for &21 may be zero or negative. If this happens,
replace this computed value by the smallest positive estimate for
test reliability which happens to be available.

Maximum likelihood estimations for a and B have been consid-
ered by Gritfiths (1973). A fairly efficient algorithm has been
provided by Huynh (1977). Starting with the moment estimates, the
Newton-Raphson procedure as implemented by Huynh has been found to
converge very quickly in practicu.ily all cases considered by the
author. It has been found that the ML estimates, in most cases, do
not differ appreciably from the moment estimates a and B hence
general sampling properties appropriate for the ML estimates would
be applicable to @ and B For example, agymptotically, /_(a-u B 8)

follows a bivariate normal distribution with zero mean and covari-

ance matrix I = (oij) = ||b "-l where
n
x=0
_ 5 3f(x) | af(x)
127 7 P Tha /£(x)

and

n 8"x 2
x=0

Now let p = p(a,B) and « = ¢ (a,B) be the functions of (a, B) defin—

ing the two reliability indices. By replacing a and B by and B

~

respectively, the moment estimates p and " may be obtained for p
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and k. It may be noted that both p and k are continuous with
respect to (a,8). It follows from Rao (1973, p. 386-7), that as m
goes to infinity, JE(;-p) and A;(;-K) converge to two normal dis-
tributions with zero means and with variances

2 _ 3 , 3
v 11( )2 * 2,5 % " 38 t 922Gp)

P
and

2 oK, 2 oK oK oK, 2

Vim0 Ga) 2, 5 9t 9 GR) s

respectively. Thus, it may be said that p has an approximate nor-
mal distribution with mean p and standard deviation (standard
error) of o (p) = V_ //m when m is sufficiently large. An estimated
standard error for p, namely s, (p), may be obtained by replacing a
and 8 by their estimated values & and B. The discussion also holds
for K. Thus < has an approximate normal distribution with mean «
andﬁstandard error °u(;) = Vk//;. The estim?ted standard error
8,(k) may be obtained in the same way as s (p).

4. TABLES FOR p, V,, K, AND V
FOR SHORT STS

Appendix A presents tables which facilitate the computations
for the reliability indices p and « and their standard errors for
the case of tests having 5 to 10 items. All computations were car-
ried out via the IBM 370/168 syste.: at the University of South
Carolina, using the double precision mode.

Input data to the tables are (1) number of test items, n,

(2) mastery or passing score, ¢, (3) test mean, x, and (4) the KR21
reliability estimate, a 2" It may be noted that if a and 8 are any
estimates of the parameters a and B other than the moment estimates,
then the entries for test mean and KR21 ‘re simply na/(a+8) and
n/(n+0+8), respectively.

For ?ach en}ry of (n,c;;,&ZI), four values may be read out.
They are p, Vb, K, and Vk respectively. Both V and Vk are enclosed

in parentheses.
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The tables are constructed for n = 5 (1) 10 and &21 =
.10 (.10) .90. For each n, the mastery score c is set equal to
Ny *tl,...,n-1,n vhere n_ is the smallest integer such that n, > n/2
and with x = n times a decimal which ranges from .10 to .90 in steps
of .10. To read the values of B, Vp, ;. and V|< for a mastery score
of ¢ < n,s simply enter the tables with a mastery score of n-c+l

and a test mean of n-x.

Numerical Example 1

Let n = 10, X = 6, &21 = .50, and ¢ = 7. Then p = .680,
Vp = ,278, k= .347, and V'< = ,582. If the data are obtained from
a random sample of m = 36 examinees, then the estimated standard
errors are sw(;) = ,278/6 = .046 for ; and sm(;) = ,582/6 = .097
for «x.

Numerical Example 2

Let n = 8, ;;= 6.4, ;21 = .30, and ¢ = 3. Here n, = 4, The
Zalues of p, Vp, Ky and V|< may be obtained by using the entry n = 8,
x = 8-6.4 = 1.6, ¥y = .30, and ¢ = 8-3+1 = 6. The results are

p = .988, Vp = .075, ¢ = .050, and V'< = 448, AWith m = 25, for
exanle, the estimated standard errors are sm(p) = .015 and

Sm(K) = ,090.

5. INTERPOLATION

~

As revealed thrrugh the tables, p, Vp, K, and V. are not

~

monoto?ically increasing or decreasing functions of x at each Ggps
or of @, at each x. Hence interpolation shouldhnot be carried out
indiscriminately. However, in situations where %1 x/n, and ¢/n
are not too extreme, for example when all these quantities are
between .20 and .80, the monotonicity property usually holds. If
so, bivariate linear interpolation may be safely carried out to
approximate tbe values of ;, Vp’ ;, and VK.

Suppose @7 and x represent tbe computed values of KR21 and
the test mean. In general, let f(a21,x) be any one of the quanti-

ties p, Vp, K, Or VK that are needed but not found in the tables.

Let u, and u, (where u; < a5y < u,) be the two tabulated values
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closest to the computed a5 -value. Also, let v, and v, (where
vy 2 x < VZ) be the two tabulated values closest to the computed
x-value. Define the following:

(a21 l)
(u2 l)

r=
and
_ (x-v,)
(vy-vy)
Then the linearly interpolated value for f(a21,;) is given as
f(u,v) = (l-r)(l-s)f(ul,vl) + r(l-s)f(uz,vl)
+ s(l-r)f(ul,vz) + rsf(uz,vz)
(see Abramowitz & Stegun, 1968, Formula 25,2.66).

Numerical Example

~

Let n = 10. @y = .56 (=u), and x = 4.77 (=v). Here u, = .50,

u, = .60, r = .60, v, = 4.00, v, = 5.00, and s = ,77. Aththe
mastery or passing score ¢ = 7, it may be found that the p-values
are f(ul,vl) = ,839, f(uz,vl) = ,836, f(ul’VZ) = ,742, and )
f(uz,vz) = .761. Hence the linearly interpolated value for p at
@yy = .36 and x = 4.77 is given as .40 x .23 x .839 + .60 x .23 x
-836 + .77 x .40 x ,742 + .60 x .77 x ,761 = ,773. In the same
way, other linearly interpolated valueb are Vp = ,205, ; = ,365,
and VK = .574. The exact values for p, Vp, K, and VK computed
directly from the formulae of Section 3 are .771, .201, .364, and
.574, respectively.

6. APPLICATIONS

Besides easing the computations for ;, ;, and their tandard
errors in the case of short tests, the tables may be used to
establish confidence intervals for p and k, to test the equality
of two or several independent p or k's, and to answer questions

regarding sample size in reliability studies for mastery tests.

id,
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6.1. Inferance for One Sample

Let a 5-item test be administered to 100 students and let the
summary test data be x = 3.500 and ;21 = ,400. At tha mastery score
¢ = 4, the tables yield the values p = .650, Vp = .389, K= ,293,
and v = .769. The estimated standard errors a.e s_(p) = .386/10 =
.039 and s_(x) = .763/10 = .076. The 90% confidence intervals are
.650 + 1.645 x ,039 or (.581,.714) for the parameter p, and
.293 + 1.645 x .076 or (.168,.418) for the parameter k.

Hypothesis testing may also be conducted for the one-sample
case. To test the null hypothesis that p is equal to a specified
value Py against an appropriate alternative, simply compare the
Student-like ratio tp = (p-pH)/s (p) with suitably chosen critical
value(s) read from the unit normal distribution. For k, use the
ratio t = (K-KH)/S (K) With the data provided in this section,
the null hypothesis Py = .50 corresponds to the Student-like ratio
tp = (.650-.500)/.039 = 3.846. The null hypothesis Ky = .350 1is
associated with the ratio t = (.293-.350)/.076 = -.75. If the
alternatives are two-sided and if the level of significance is 10%
(at which the critical values are + 1.645), the null hypothesis for

Py is rejected, whereas the one for Ky is accepted.

6.2. Inference for Two Independent Samples

Any infererce for the case of two independent samples may be
carried out by noting that the standard error of P;~Py» where Py
and p, are two independent sample p-values, is

8,(P;7Py) = [s (pl) +s (pz)]

~ -~

For two independent Kl and Kz, the standard errer of Ky7Ky

2
18

given as
s (; —x ) = 32(; ) + 8 (; ) %
’ 12 2 *
For example, let the data for the first sample be n = 5 c =4,

% = 4.000, Gy = .600, and m = 100. It follows that pl .785,

Sw(pl) = ,0289, k) = .464, and s (K ) = .0675. For the second

sample, chosen independently from the first one, let n =8, ¢ = 6,
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= 4.8 ay, = 300 and m = 64. It may be verified that p2 .633,
sm(pz) = ,0398, Ky = .196, and s (KZ) = .093. It follows that

Sm(Pl‘Pz) = 049

and

~

s (K

1~ 2) .115.

These standard errors will allow the formulation of confidence
intervals for the parameters PP, and K ~Kye For example, at the
90% confidence level, the confidence intervals are (.785-.633) +
1.645 x .049 or (.071,.233) for P17Pys and (.464-.196) + 1.645 x
.115 or (.079,.457) for Ky ~Kge
computed to test the equality hypothesis for Py and Pys and for

Student-like ratios may also be

Kl and KZ' For | p2’ the mentioned ratio is tpl_pz =

(.785-.633)/.048 = 3.'67 and for K] = Koy the corresponding ratio
is (.464-.196)/.115 = 2.330. With two-sided alternatives aznd with
a level of significance of 10% (at which the critical values are
+ 1.645), both equality hypotheses are rejected.

6.3. Testing Equality of Several Independent p or x's

The mechanism by which equality of several p (or k) values is
to be tested is similar to the one by which several independent
corfelations are compared (Rao, 1973, page 434). Let ;i and
sm(pi), i=1,,2,...,I, be the estimated raw agreement index and

its standard error associated with the i-th sample. Let u, =

~ i
l/si(pi) be the reciprocal of the e ror variance, and let
I ~
T, = I u,p,,
1 i=1 ivi
I ~
T, = I u,p.,
2 {=1 ivi
and
I
B= ¥ u,.
i=1 1

Then the statistic for testing homogeneity of the p-values is




2
H = T2 - (Tl/B) ’

which can be used as xz with I-1 degrees of freedom. Table 1
presents the data and various computations for the statistic H.
With the value H = 1.738 and I-1 = 3 degrees of freedom (at which
the 5% critical value is 7.815), it may be concluded that the four
independent ; values do not differ significantly from each other at
the 5% level of significance.

TABLE 1

An Illustration of Homogeneity Testing for p

n ¢ m X o ' 8 (;) u ; u ; u ;2
21 P © i i i1 i1
4 64 3,0 .60 .269 .033625 884.454 .730 645.652 471.326
8 7 25 4.8 .40 .239 .,047800 437.667 .776 339.63G 263.553
10 6 100 5.0 .70 .206 .029600 2356.490 .765 1802.715 1379.077

9 6 49 6.3 .50 .267 .038143 687.337 .721 495.570 357.306

Total 4365.948 3283.567 2471,262
Summary data: B = 4365.948
T, = 3283.567
T, = 2471.262

Test statistic: H = 1.738 iith df = 4-1 = 3

6.4. Sample Size Determination

In some reliability studies for mastery tests, it may be neces-
sary to determine in advance the minimum number of examinees needed
to acaieve a given degree of accuracy. For example, if a standard
error sm(;) of no more than 100y%Z of the parameter p is acceptable,
then how many examinees should be tested? The question, of course,
may not have an answer unless there are some indications about the
mean and variability of the test scores. In a number of situations
involving an n-item test with a options for each item, it may not
be unreasonable to assume that the test mean is about halfway

between the chiance score n/a and the maximum score n and that the

standard deviation s is about one-fourth of the difference between
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these two scores. In other words, the "guessed-at" values for X, 8,

and a,, are given as

x = (n + n/a)/2,

s = (n - n/a)/4,
and

;21=FI-IT [1-4—lx “;‘].

ns

By entering these values of x and a21, along with n and ¢, those of
p and V = /o s (p) may be deduced Then m may be approximated by
noting that the ratio of Vp/#ﬁ-to p cannot exceed y In other
words, the minimum number of examinees is (V /(yp))
8, a=15,c=25, and y = 0.05.
Then x = 4.8, s = 1. 6, and a21 = .29. From the tables, it may be
.615 and Vp = .369. The minimum number
of examinees is 144. If y is .10, then only 36 examinees would be

As in illustration, let n

found that approximately p

needed.

7. COMPUTER PROGRAM

Appendix B lie-s a FORTRAN IV program which computes the
values of p, s (p), x, and s (K) for situations with k classifica-
tions. The input data are to be keypunched on three cards detailed

as follows.
First Card

This contains the title of the problem, keypunched anywhere

between columns 1 and 80.
Second Card

This provides data on number of items (n), number of exami-
nees (m), number of classifications (k), the test mean (x), and
the test standard deviations (s). These must be keypunched accord-
ing to the format (3I5, 2F10.5).

Third Card

This contains the (k-1) cutoff scores, keypunched with the
format (16I5). Thus reliability problems with 17 classifications

145
151 g




TABLE II

An Output of the Computer Program

%%k

ESTIMATES OF DECISION RELIABILITY

AND THEIR STANDARD ERRORS IN

MASTERY TESTING BASED ON THE BETA-
BINOMIAL MODEL

TITLE OF THIS JOB IS:

AN EXAMPLE OF RELIABILITY COMPUTATION

INPUT DATA ARE:

NUMBER OF iTEMS .. = 8

NUMBER OF SUBJECTS = 25

MEAN OF TEST SCORE ...ccvennnaee ®
STANDARD DEVIATION OF TEST SCORE =
NUMBER OF CATEGORIES = 2

CUTOFF SCORE :seccee = 5

OUTPUT DATA ARE:

ALPHA = 2.05710
BETA = 1.37140
KR21 = 0.70000

RAW AGREEMENT INDEX P = 0.77095
STANDARD ERROR OF P.. = 0.04345

KAPPA INDEX ® 66 6000 00 00 = 0.53165
STANDARD ERROR OF KAPPA = (.08871

NORMAL END FOR THIS JOB **
PROGRAM WRITTEN BY HUYNH HUYNH
COLLEGE OF EDUCATION
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
REVISED, DECEMBER 1979

4.80000
2.22596
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may be implemented via this FORTRAN program,

~

The computer program starts with the computation of L If

%5 is zero or negative, the following message will be printed:
NON-POSITIVE ESTIMATE KR21.
MIMENT ESTIMATES FOR ALPHA AND BETA DO NOT EXIST.
\ JMPUTATIONS DISCONTINUED FOR THIS CASE.

Otherwise, the estimates o and 8 will be obtained. These, in turn,
will be used as input in a subroutine which computes Py, S (p), K,
and s (K)
For example, let the input cards be as follows:
1 1 2 2 3 3
Column : 1...5....0....5....0....5....0....5
First Card : AN EXAMPLE OF RELIABILITY COMPUTATION

Second Card : 8§ 25 2 4.8 2.22596
Third Card : 5

In other words, n =8, m =25, k=2, x = 4.8, s = 2,2259, c = 5.
The output is printed in Table 2. It may be read that p = .77095,
s (p) .04345, ¢ = .53165, and s (K) .08871.

Several problems may be performed in one run by stacking the

input cards together.

8. DISCLAIMER

The computer program presented in this report has been written
with care and tested extensively under a variety of conditions
using tests with 60 or fewer items. The author, however, makes no
warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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APPENDIX A

Tables of the Raw Agreement Index and Its Standard Error
Times the Square Roo! of m, the Kappa Index and Its
Standard Error Times the Square Root of m,

When the Beta-Binomial Model is Assumed

(m = Number of Subjects)

Input data to the tables are (i) number of test items (n),
(i1) mastery score (c), (iii) test mean (x), and (iv) the KR21
reliability (321). ONote that if ; and é are any estimates of the
parameters a and B other than the moment estimates, then the entries
for test mean and KR21 are simply na/(a+8) and n/(n+u+8),
respectively.]

For ?ach enEry of (n, c,';, &21), four values may be read out.
They are p, Vp, K, and VK, respectively. Both Vp and VK are en-

clused in parentheses.

Example

Let n=5,¢=3, x= 1.5, and a21 = .400. The tables provide
the values p = ,755, Vp = ,267, « = .268, and VK = ,784. With
m = 100, for example, the estimated standard errors are s(p, = .0267

azd s(x) = .0784.
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Table of the Raw Agreement _ndex and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = §
Mastery score C = 3
Test KR2l=
Mean .100 .200 . 300 «400 .500 . 600 .700 .800 + 900
0.5 0.975 0.966 0.957 0.949 0.942 0.939 0.940 0.948 0.966
(0.157)(0.172)(0.177)(0.172)(0.157)(0.138)(0.118)(0.105)(0.089)
0.022 0.062 0,122 0.198 0.288 0.392 0.5i0 0.643 0.798
(0.477)(0.734)(0.928)(1.048)(1.091)(1.063)(0.969)(0.808)(0.570)

1.0 0.879 0.869 0.842 0.858 0.858 0.864 0.877 0.901 0.938
(0.297)(0.276)(0.252)(0.226)(0.202)(0.180)(0.162)(0.146)(0.119)
0.042 0.096 0.162 0.239 0.325 0.421 0.529 0.652 0.800
(0.706)(0.808)20.858)(0.863)(0.831)(0.769)(0.680)(0.563)(0.405)

1.5 0.729 0.734 0.743 0.755 0.772 0.795 0.824 0.364 0.918
(0.338)(0.313)(0.289)(0.267)(0.245)(0.223)(0.201)(0.175)(0.137)
0.057 0.122 0.192 0.268 0.351 0.441 0.542 0.659 0,801
(0.874)(0.865)(0.833)(0.734)(0.720)(0.646)(0.561)(0.463)(0.339)

2.0 0.591 0.617 0.645 9.675 0.709 0.746 0.789 0.340 0.906
(0.431)(0.397)(0.365)(0.332)(0.299)(0.266)(0.232)(0.195)(0.147)
0.067 0.137 0.209 0.285 0.365 0.453 0.550 0.662 0.802
(0.973)(0.898)(0.821)(0.744)(0.666)(0.587)(0.505)(0.417)(0.309)

2.5 0,325 0,571 0.607 0.645 0.685 0.728 0.776 1.832 0.901
(0.503,(0.454)(0.409)(0.366)(0.325)(0.284)(0.244)(0.201)(0.150)
0.070 0.142 0,215 0.290 0.370 0.457 0.552 n.664 0.803
(1.006)(0.909)(0.818)(0.732)(0.649)(0.569)(0.488)(0.403)(0.300)

3.0 0.591 0.617 0.645 0.675 0.709 0.746 0.789 0.840 0.906
(0.631)(0.397)(0.365)(0.332)(0.299)(0.266)(0.232)(0.195)(0.147)
0.067 0.137 0.209 0.285 0.365 0.453 0.550 0.662 0.802
(0.973)(0.893)(0.821)(0.744)(C.666)(0.587)(0.505)(0.417)(0.309)

3.5 0.729 0.734 0.743 0.755 0.772 0.795 0.824 0.864 0.918
(0.338)(0.313)(0.289){0.267)(0.245)(0.223)(0.201)(0.175)(0.137)
0.057 0.122 0.192 0.268 0.351 0.441 0.542 0.659 0,301
(0.874)(0.865)(0.833)(0.784)(0.720)(0.646)(0.561)(0.463)(0.339)

4.0 0.879 0.869 0.862 0.358 0.858 0.864 0.877 0.901 0.938
(0.297)(0.276)(0.252)(0.226)(0.202)(0.180)(0.162)(0.146)(0.119)
0.042 0.096 0.162 0,239 9.325 0.421 0.529 0.652 0.800
(0.706)(0.808)(0.858)(0.863)(0.831)(0.769)(0.680)(0.563)(0.405)

4.5 0.975 0.966 0.957 0.949 0.942 0.939 0.940 0.948 0.966

(0.157)(0.172)(0.177)(0.172)(0.157)(0.138)(0.118)(0.105)(0.089)
0.022 0.062 0.122 0.198 0.288 0.392 0.510 0.643 0.798
(0.477)(0.734)(0.928)(1.048)(1.091)(1.063)(0.969)(0.808)(0.570)
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 5
Mastery score C = 4

Test KR2l=

Mean . 100 . 200 . 300 400 .500 . 600 .700 .800 .900

0.5 0.998 0.996 0.992 0.987 0.981 0.974 0.968 0.964 0,971
(0.028)(0.045)(0.064)(0.084)(0.101)(0.108)(0.102)(0.083)(0.068)
0.005 0.021 0.055 0.111 0.192 0.297 0.427 0.583 0.768
(0.142)(0.355)(0.611)(0.855)(1.041)(1.136)(1.118)(0.971)(0.682)

1.0 0.980 0.973 0.963 0.953 0.942 0.932 °.925 0.926 0.925
(0.120)(0.140)(0.157)(0.167)(0.167)(0.156)\0.133)(0.108)(0.094)
0.014 0,042 0.088 0.152 0.235 0.338 0.459 0.603 0.775
(0.300)(0.491)(0.661)(0.787)(0.854)(0.857)(0.796)(0.670)(0.473)

1.5 0.928 0.916 0.903 0.891 0.882 0.376 0.876 0.389 0.923
(0.242)(0.243)(0.237)(0.223)(0.202)(0.175)(0.148)(0.127)(0.114)
0.027 0,067 0.123 0.192 0.276 0.374 0.487 0.620 0.782
(0.483)(0.620)(0.715)(0.764)(0.767)(0.727)(0.650)(0.537)(0.384)

2.0 0.830 0.820 0.8!3 0.808 0.809 0.815 0.830 0.858 (.90C7
(0.316)(0:292)(0.266)(0.238)(0.211)(0.186)(0.166)(0.150)(0.131)
0.041 0.C¢93 0.155 0.228 0.311 0.404 0.511 0.635 0.787
(0.666)(0.729)(0.755)(0.747)(0.710)(0.648)(0.565)(0.464)(0.337)

2.5 9.697 0.701 ©.709 0.721 0.738 0.761 0.793 0.836 0.899
(0.323)(0.299)(0.277)(0.256)(0.237)(0.218)(0.199)(0.178)(0.146)
0.055 0.116 0.184 0.258 0.339 0.429 0.530 0.647 0.792
(0.827)(0.817)(0.785)(0.737)(0.674)(0.600)(0.517)(0.424)(0.313)

3.0 0.576 0.601 0.628 0.658 0.692 0.730 0.775 0.829 0.898
(0.401)(0.377)(0.352)(0.325)(0.298)(0.269)(0.238)(0.203)(0.156)
0.065 0.134 0.205 0.280 0.361 0.448 0.545 0.657 0.796
(0.952)(0.884)(0.812)(0.737)(0.660)(0.581)(0.499)(0.412)(0.308)

3.5 0.538 0.574 0.612 0.650 0.691 0.735 0.784 0.839 0.908
(0.521)(0.473)(0.429)(0.386)(0.345)(0.304)(0.262)(0.216)(0.159)
0.071 0.144 0.217 0.293 0.374 0.460 0.555 0.664 0.800
(1.027)(0.932)(0.844)(0.760)(0.678)(0.598)(0.516)(0.429)(0.323)

4.0 0.636 0.662 0.689 0.718 0.750 0.785 %.825 0.871 0.927
(0.464)(0.428)(0.392)(0.358)(0.324)(0.289)(0.252)(0.208)(0.150)
0.070 0.142 0.217 0.294 0.376 0.464 0.560 0.669 0.803
(1.035)(0.969)(0.900}(0.829)(0.754)(0.675)(0.590)(0.492)(0.370)

b.5 0.845 0.844 0.847 0.853 0.864 0.879 0.899 0.925 0.958
(0.317)(0.291)(0.267)(0.247)(0.231)(0.214)(0.195)(0.167)(0.121)
0.057 0.124 0.198 0.279 0.365 0.458 0.559 0.671 0.805
(0.952)(1.028)(1.052)(1.036)(0.988)(0.913)(0.810)(0.677)(0.502)

------—---—--------------------------u------------------------—------

For the mastery score = 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 5
Mastery score C = 5
Test RR21=
Mean . 100 .200 .300 .400 . 500 .600 .700 . 800 .900
0.5 1.000 1.000 0.999 0.998 0.996 0.993 0.938 9.980 0.975
(0.002)(0.005)(0.010)(0.019)(0.032)(0.051)(0.072)(0.031)(0.062)
0.000 0.004 0.015 0.040 0.088 0.168 0.288 0.458 0.687
(0.019)(0.089)(0.231)(0.443)(0.699)(0.949)(1.125)(1.139)(0.893)

1.0 0.999 0.997 0.995 0.992 0.986 0.978 0.966 0.954 0.950
(0.015)(0.024)(0.037)(0.055)(0.077)(0.100)(0.116)(0.111)(0.080)
0.002 0.010 0.028 0.062 0.119 0.205 0.326 0.488 0.702
(0.059)(0.158)(0.303)(0.476)(0.649)(0.787)(0.853)(0.807)(0.613)

1.5 0.992 0.988 0.983 0.975 0.964 0.951 0.935 0.922 0.925
(0.053)(0.070)(0.091)(0.112)(0.133)(0.148)(0.149)(0.125)(0.092)
0.006 0.019 0.046 0.089 0.154 0.244 0.363 0.517 0.716
(0.130)(0.252)(0.393)(0.534)(0.651)(0.723)(0.729)(0.655)(0.488)

2,0 0.973 0.965 0.954 0.942 0.927 0.911 0.895 0.887 0.904
(0.127)(0.147)(0.165)(0.180)(0.188)(0.184)(0.164)(0.127)(0.105)
0.012 0.034 0.070 0.122 0.192 0.284 0.400 0.545 0.729
(0.236)(0.364)(0.487)(0.591)(0.660)(0.682)(0.651)(0.562)(0.416)

2.5 0.928 0.915 0.%01 0.886 0.870 0.857 0.849 0.853 0.888
(0.228)(0.236)(0.239)(0.235)(0.221)(0.196)(0.161)(0.128)(0.125)
0.021 0.053 0.098 0.158 0.233 0.325 0.437 0.572 0.741
(0.376)(0.488)(0.579)(0.641)(0.667)(0.652)(0.595)(0.500)(0.371)

3.0 0.843 0.830 0.817 0.806 0.799 0.796 0.803 0.826 0.880
(0.311)(0.296)(0.275)(0.248)(0.218)(0.185)(0.158)(0.148)(0.151)
0.033 0.076 0.131 0.197 0.275 0.366 0.47? 0.597 0.753
(0.544)(0.620)(0.668)(0.686)(0.673)(0.629)(0.557,’0.461)(0.347)

3.5 0.714 0.711 0.711 0.715 0.725 0.742 0.770 0.813 0,883
(0.314)(0.285)(0.257)(0.234)(0.216)(0.205)(0.201)(0.197)(0.173)
0.047 0.102 0.166 0.237 0.316 0 405 0.505 0.621 0.764
(0.734)(0.758)(0.757)(0.732)(0.686)(0.621)(0.539)(0.445)(0.342)

4.0 0.576 0.597 0.621 0.649 0.683 0.722 0.759 0.827 0.901
(0.349)(0.346)(0.343)(0.337)(0.328)(0.313)(0.291)(0.256)(0.196)
0.063 0,130 0.201 0.277 0.357 0.443 0.537 0.643 0.775
(0.945)(0.910)(0.861)(0.799)(0.727)(0.646)(0.558)(0.464)(0.366)

4.5 0.560 0.603 0.647 0.691 0.737 0.783 0.832 0.883 0.938
(0.672)(0.632)(0.587)(0.537)(0.482)(0.422)(0.354)(0.277)(0.183)
0.080 0.458 0.237 0.316 0.396 0.479 0.567 0.664 0.785
(1.202)(1.127)(1.046)(0.960)(0.870)(0.776)(0.677)(0.574)(0.464)

D e - D D - - - - - - - - - - - .- - D D - - - - - - - - T e . - -

For the mastery score = 1 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Nunber of subjecis
Number of items N = 6
Mastery score C = 3

Mean .100 .200 .,300 .40C .500 .600 .70C .800 .900
0.6 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207)(0.201)(0.188)(0.169)(0.14/)(0.128)(0.114)(0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771)(0.918)(0.995)(1.008)(0.964)(0.869)(0.724)(0.517)

1.2 0.815 0,811 0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320) (0.293) (0.267) (0.242) (0.220) (0.199) (0.179) (0.157) (0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0.793)(0.837)(0.842)(0.816)(0.766)(0.697)(0.611)(0.506)(0.368)

1.8 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395)(0.366)(0.337)(0.309)(0.279)(0.250)(0.218)(0.183)(0.137)
0.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793
(0.930)(0.873)(0.810)(0.741)(0.668)(0.592)(0.510)(0.421)(0.311)

2.4 0.538 0.573 0.609 0.646 0.685 0,727 0.774 0.829 0.898
(0.487)(0.440)(0.396)(0.354)(0.314)(0.274)(0.235)(0.193)(0.143)
0.069 0.140 0,212 0.286 0.365 0.450 0.544 0.654 0.792
(0.973)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384)(0.353)(0.321)(0.289)(0.257)(0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.353 0.444 0.539 0.650 0.791
(0.933)(0.858)(0.783)(0.706)(0.629)(0.550)(0.470)(0.385)(0.285)

3.6 0.708 0.713 0,721 0.734 ©,750 0.773 0.803 0.844 0.903
(0.328)(0.304)(0.281)(0.258)(U.236)(0.214)(0.191)(0.166)(0.132)
0.055 0.117 0,185 0.259 0.340 0.428 0.528 0.643 0.788
(0.820)(0.307)(0.774)(0.724)(0.660)(0.586)(0.503)(i.411)(0.300)

4.2 0.857 0.846 0.838 0.833 0.832 0.837 0.449 0.874 0.918
(0.305)(0.284)(0.260)(0.234)(0.208)(0.182)(0.160)(0.141)(0.118)
G.040 0.091 0,154 0.227 0.311 0.404 0.5.0 0.633 0.785
(0.645)(0.724)(0.760)(0.757)(0.721)(0.659)(0.573)(0.470)(0.337)

4.8  0.957 0.946 0 934 0.923 0.913 0.906 0.905 0.913 0.940
(0.192)(0.203)(0.206)(0.200)(0.185)(0.163)(0.137)(0.115)(0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0.429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

.4 0,995 0.991 0.986 0.979 0.971 0.964 0.558 0.957 0.968
(0.052)(0.074)(0.095)(0.113)(0.123)(0.121)(0.107)(0.086)(0.072)
0.008 0.030 0.073 0.137 0.223 0.329 0.455 0.602 0.775
(0.210)(0.448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

For the Mastery score = &4 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 6
Mastery score C = 4
Test KR21l=
Mean .100 200 .300 .400 .500 .600 .700 . 800 . 900
0.6 0.995 O 991 0. 986 0. 979 0.971 0.964 0.958 0.957 0,968
(0.052)(0.07¢4) (0.095) (0. 113)(0 123)(0.121)(0.107) (0.086) (0.072)
0.008 0.030 0.073 0.°37 0.223 0.329 0.455 0.602 0.775
(0.210) (0. 448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

1.2 0.957 0.946 0.934 0.923 0.913 0.906 0.905 0.° * 0,940
(0.192) (0.203) (0.206) (0.200) (0.185)(0.163) (0.137)(0.1 ,) (0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0. 429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

1.8 0.857 0.846 0.838 0.833 0.832 0.837 0.849 0.874 0.918
(0.305) (0.284) (0.269)(0.234) (0.208)(0.182)(0.160)(0.141)(0.118)
0.040 0.091 0.154 0.227 0.311 0.404 0.510 0.633 0.785
(0.645)(0.724) (0.760)(0.757) (0.721)(0.659) (0.575)(0.470) (0.337)

2.4 0.708 0.713 0.721 0.734 0.750 0.773 0.803 0.844 0.903
(0.328) (0.304) (0.281)(0.258) (0.236)(0.214)(0.191)(0.166) (0.132)
0.055 0.117 0.185 0.259 0.340 0.428 0.528 0.643 0.788
(0. 820)(0.807)(0.774)(0.724)(0.660)(0.586)(0.503)(0.611)(0.300)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384) (0.353)(0.321) (0.289)(0.257) (0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.358 O0.444 0.539 0.650 0.791
(0.933) (0.858) (0.783) (0.706) (0.629)(0.550) (0.470)(0.385) (0.285)

3.6 0.538 0.573 0.609 0.646 0.685 0.727 0.774 0.829 0.898
(0.487)(0.440) (0.396)(0.354) (0.314)(0.274)(0.235) (0.193) (0.143)
0.069 0.140 0.212 0.286 0.365 0.450 0.544 0.654 0,792
(O.f/3)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

4.2 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395) (0.366) (0.337)(0.309) (0.279)(0.250) (0.218)(0.183)(0.137)
7.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793
(0.930) (0.873) (0.810)(0.741) (0.668)(0.592)(0.510)(0.421) (0.311)

4.8 v.815 0.811 o0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320) (0.293) (0.267)(0.242) (0.220)(0.199)(0.179)(0.157) (0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0. 793)(0.837)(0.842)(0.816)(0.766)(0.697)(0‘611)(0.506)(0.358)

5.4 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207) (0.201)(0.188)(0.169)(0.147)(0.128) (0.114) (0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771) (0.918)(0.995) (L. 008)(0 964) (0. d69)(0 724)(0 517)

For the mastery score = 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number uf items N = 6
Mastery score C = 5

Test KR21=

Mean .100 200 « 300 .400 .500 .000 .700 .800 .900

0.6 1.000 0.999 0.998 O. 996 0. 992 0.986 ¢©. 979 0.972 0.973
(0.006)(0.013) (0.024)(0.039) (0. 058) (0.0,7)(0.088)(0.081) (0.059)
0.001 0.009 0.029 0.069 0.137 0.235 0.366 0.532 0.737
(0.048) (0.175)(0.381)(0.631)(0.871)(1.045)(1.101)(1.001) (0.714)

1.2 0.994 0.991 0.985 0.978 0.969 0.958 0.946 0.939 0.946
(0.047) (0.065) (0.086) (0.107)(0.125)(0.135)(0.129) (0.105) (0 080)
0.006 0.022 0.054 0.106 0.181 0.280 0.406 0.559 0.748
(0.143) (0.302)(0.482)(0.650)(0.773)(0.829)(0.804) (0.693) (0.488)

1.8 0.971 0.962 0.951 0.938 0.925 ~.912 0.902 0.902 0.923
(0.142)(0.16)(0.176)(0.185)(0.184) (0.172)(0.147)(0.116)(0.097)
0.015 0.042 0.086 0.147 0.226 0.324 0.442 0.583 0.757
(0.291) (0.446) (0.582)(0.681) (0.730) (0.724) (0.663) (0.552) (0.389)

2.4 0.909 0.895 0.882 0.869 0.859 0.852 0.853 0.866 0.905
(0.261) (0.258)(0.249)(0.233)(0.211)(0.182)(0.152)(0.128)(0.114)
0.028 0.063 0.121 0.188 0.269 0.364 0.474 0.604 0.766
(0. 472)(0.584)(0.661)(0.698)(0.694)(0.651)(0.575)(0.469)(0.335)

3.0 0.795 0.787 0.781 0.779 0.781 0.789 0.807 0.838 0.893
(0.320) (C¢.293)(0.266)(0.239)(0.212)(0.188)(0.167)(0.150)(0.131)
0.042 0.095 0.156 0.227 0.307 0.398 0.502 0.623 0.773
(0. 661)(0.706)(0.719)(0.704)(0.662)(0.599)(0.517)(0.420)(0.305)

3.6 0.649 0.659 0.673 0.690 0.712 0.739 0.775 0.323 0.890
(0.321) (0.301) (0.282)(0.264) (0.246)(0.227) (0.206) (0.181) (0.146)
0.057 0,119 0.187 0.260 0.339 0.426 0.524 9.638 0.780
(0.831) (0. 805)(0.763)(0.708)(0.642)(0.568)(0.486)(0.397)(0.294)

4.2 0.543 0.575 0.608 0.643 0.681 0.723 0.771 0.827 0.898
(0.447) (0.415) (0.383) (0.351)(0.318) (0.284)(0.248)(0.207) (0.155)
0.063 0.137 0.208 0.283 0.362 0.447 0.541 3.652 0.786
(o. 959)(0.880)(0.802)(0.724)(0.647)(0.569)(0.488)(0.403)(0.303)

4.8 0.581 0.614 0.647 0.683 0.720 0.761 0.805 0.856 0.918
(0.509) (0.463) (0.420)(0.379)(0.339)(0.300) (0.258) (0.212) (0.152)
0.071 0.144 0.217 0.293 0.373 0.458 0.551 0.658 0.791
(1. 017)(0.935)(0.855)(0.778)(0.702)(0.625)(0.544)(0.454)(0.343)

5.4 0.798 0.803 0.811 0.323 0.839 0.859 0.883 0.914 0.952
(0.344) (0.318) (0.295)(0.274)(0.255) (0.234) (0.210)(0.177) {0.126)
0.062 0.130 0.204 0.283 0.367 0.457 0.554 0.663 0.795
(C.967) (0.996) (0.990) (0. 957)(0 903) (0.829) (0.736) (0. 617)(0 462)




RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 6
Mastery score C = {

Test KR21=
Mean .100 . 200 «+300 . 400 500 .600 .700 . 800 .900

0.6 1,000 1.000 1.000 0.999 0.999 0.997 0.993 0.986 0.978
(0.000)(0.001)(0.003)(0.007)(0.014)(0.028)(0.049)(0.070)(0.063)
0.000 0.001 0.007 0.022 0.056 0.121 0.231 0.399 0.644
(0.005)(0.035)(0.119)(0.275)(0.503)(0.771)(1.010)(1.109)(0.918)

1.2 1.000 0.999 0.998 0.997 0.994 0.988 0.979 0.965 0.953
(0.004)(0.008)(0.015)(0.026)(0.042)(0.065)(0.091)(0.105)(0.031)
0.001 0.004 0.014 0.038 0.082 0.156 0.270 0.434 0.663
(0-022)(0.078)(0.182)(0.332)(0.509)(0.680)(0.797)(0.801)(r.628)

1.8 0.997 0.996 0.993 0.988 0.981 0.970 0.955 0.937 0.929
(0.022)(0.032)(0.047)(0.066)(0.089)(0.113)(0.131)(0.127)(0.088)
0.002 0.010 0.027 0.060 0.113 0.195 0.311 0.469 0.681
(0.063)(0.148)(0.268)(0.409)(0.548)(0.656)(0.703)(0.658)(0.496)

2.4 0.988 0.983 0.976 0.967 0.954 0.939 0.920 0.903 0.905
(0.068)(0.086)(0.106)(0.128)(0.148)(0.162)(0.161)(0.135)(0.094)
0.006 0.021 0.047 0.089 0.151 0.238 0.353 0.503 0.698
(0.137)(0.245)(0.368)(0.488)(0.586)(0.643)(0.641)(0.567)(0.418)

3.0 0.961 0.951 0.939 0.925 0.908 0.890 0.874 0.866 0.885
(0.154)(0.172)(0.188)(0.200)(0.203)(0.195)(0.171)(0.129)(0.106)
0.014 0.037 0.073 0.125 0.194 0.283 0.395 0.535 0.715
(0.253)(0.366)(0.474)(0.561)(0.616)(0.628)(0.591)(0.503)(0.368)

3.6 0.898 0.884 0.869 0.854 0.839 0.827 0.822 0.831 0.873
(0.263)(0.265)(0.260)(0.248)(0.227)(0.196)(0.159)(0.130)(0.131)
0.024 0.059 0.106 0.166 0.240 0.330 0.437 0.567 0.730
(0.410)(0.505)(0.579)(0.625)(0.637)(0.613)(0.552)(0.458)(0.338)

4.2 0.781 0.770 0.762 0.756 0.755 0.760 0.776 0.809 0.872
(0-323)(0-297)(0-269)(0-239)(0.209)(0.184)(0.169)(0.166)(0.163)
0.039 0.087 0.144 0.211 0.288 0.377 0.478 0.597 0.745
(0.606)(0.658)(0.684)(0.683)(0.656)(0.604)(0.528)(0.433)(0.327)

4.3 0.620 0.630 0.644 0.662 0.687 0.718 0.759 0.814 0.889
(0.297)(0.285)(0.277:(0.272)(0.268)(0.264)(0.254)(0.235)(0.190)
0.056 0.118 0.185 0.258 0.337 0.423 0.517 0.625 0.758
(0.836)(0.825)(0.797)(0.751)(0.691)(0.618)(0.534)(0.441)(0.343)

5.4 0.542 0.583 0.625 0.668 0.714 0.761 0.812 0.867 0.928
(0.596)(0.570)(0.538)(0.500)(0.457)(0.408)(0.349)(0.279)(0.188)
0.076 0.151 0.228 0.305 0.385 0.467 0.554 0.651 0.771
(1.114)(1.047)(0.974)(0.895)(0.812)(0.724)(0.631)(0.532)(0.428)

.---..--—-u-------------------------------------------------—--—

For the mastery score = ] enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial) Model
M = Number of subjects
Number of items N = 7
Maastery score C = 4

Test KR2l=
Mean .100 .200 . 300 <400 . 500 .600 .700 .800 .900

0.7 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.081)(0.104)(0.123)\0.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0.775
(0.274)(0.516)(0.738)(0.901)(0.986)(0.992)(0.919)(0.772)(0.541)

1.4 0.923 0.911 0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251)(0.247)(0.235)(0.217)(0.195)(0.169)(0.145)(0.124)(0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 ©.779
(0.537)(0.675)(0.760)(0.793)(0.780)(0.728)(0.644)(0.529)(0.376)

2.1 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296)(0.270)(0.245)(0.221)(0.199)(0.176)(0.152)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782
(0.758)(0.779)(0.768)(0.733)(0.678)(0.607)(0.524)(0.428)(0.309)

2.8 0.603 0.630 0.654 0.680 0.710 0.744 0.784 0.832 0.897
(0.387)(0.359)(0.331)(0.302)(0.272)(0.241)(0.209)(0.174)(0.131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784
(0.897)(0.835)(0.768)(0.697)(0.623)(0.546)(0.466)(0.379)(0.278)

3.5 0.534 0.569 0.604 0.641 0.680 0.722 0.768 0.823 0.892
(0.472)(0.426)(0.383)(0.342)(0.303)(0.263)(0.224)(0.182)(0.134)
0.008 0.138 0.209 0.282 0.360 0.443 0.537 0.645 0.784
(0.945)(0.853)(0.767)(0.685)(0.605)(0.527)(0.448)(0.365)(0.269)

4.2 0.608 0.630 0.654 0.680 0.710 0.744 0.784 0.832 0.897
(0.387)(0.359)(0.331)(0.302)(0.272)(0.241)(0.209)(0.174)(0.131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784
(0.897)(0.835)(0.768) (0.697)(0.623)(0.546) (0.466) (0.379)(0.278)

4.9 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296) (0.270) (0.245) (0.221)(0.199)(0.176) (0.1.2)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782
(0.758)(0.779)(0.768) (0.733)(0.678) (0.607) (0.524) (0.428) (0.309)

5.6 0.923 0.911 ©0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251)(0.247)(0.235)(0.217) (0.195)(0.169) (0.145)(0.124) (0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 0.779
(0.537)(0.675)(0.760)(0.793)(0.780)(0.728)(0.644)(0.529)(0.376)

6.3 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.031)(0.104)(0.123)(0.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0N.775
(0.274)(0.516)(0.738)(0.901)(0.986)(0.992)(0.919)(0.772)(0.541)




RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
©3:5.E.%SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
- OEM.:JNunbetigf subjects .
. nLrgoNumber of ftems N w-7c - - '
. toni Mastery score?C w75t

R A

0,999 0.998 "0.996 "0.992 "0.987" 0980 ‘07972
(0.014) (0.025) (0.041) (0.060) (0.080)
..9.003 0,014 6,041 0.092 0.168
(0.082)(0.249)10.479) {0.721) (0.918) ¢

0.986 0.979

“0.966°°0:970
(0.095)(0.098) (0.083)(0.062)
0.272 0.403 0.561 0.751
1.028)(1.025) (0.895)(0.625)
0.971°'0.961 -0.949 7.938

(0;993)(9.115)(9.135)§0:150)(0.156)(0;152)(
"0.011 0.035 0.077 °0.138 *03220 +0:321

(9.237)(0.412)(0:588)(0.719)(0.79;)(0.?96)(

0.929 0.926 0.942
0.133) (0.105) (0.084)
0.443 0.586 -0.760
0.736)(0.613) (0.427)
ey A L - R . . .

0.932 1.920 '0.907 ‘0.894" 0.884 0.376  0.875 0.886° 0.918
(0.230) (0.234) (0%231) (0.220) (0.201) (0.176) (0.147) (G.121) (0.102)
0.025 0.064 0.118 0.186 0.268 0,365 0.476 0.607 0.767

(0.443)(9.577) (0.672) (0.719) (0.719) (0.677) (0.597) (0. 486) (0. 342)
0.815 0,807 '0.801 '0.,98 0.799 0.807 0.823 )

(£.316) (0.291) (02255) (07238 (0.212) (0.186) (0.163) (0-142) (0.118)
0.042 0.095 07157 ° 04228 0.309 0.400 0,503  9.623 ' 0.774
(0.653) (0.795) (0.721) (0.706) (0.663) (9.598) (0.515) (0.416) (0. 297)

0,851 0.901

LT
0.657 0.668 0.682
(0.330) (0.308) (0. 287)
0.057" 0.120° 0,188
(0.826) (0.795) (0.749)

0.544 0.575 0609
(0.444) (0.407) (0-.370)
0.067 0.136"°0.206

'0.699 1 0.721 - 0.748 0.783 0.828 0.892
(0-266) (0.244) (0.221) (0.196) (0.167) (0.131)
"0.261° 0,339 - 0,426 0.523 0.635 0.778
(0.692) (0.624) (0.549) (0.468) (0.379) /0.276)

“0.643 0,681 (0,722 0.767 0.827 - 0. 892
(0.334) (0.299) (0.263) (0.225) (0.186) (0. 138)
"0.280 ' 0.357 ' 0.441 D535 D.644 0.782

(0.932)(0.848)(q.768)(0.@?9)(0,611)(0.533)

(0.454) (0.370) (6. 274)

0.573 0.603 0.634 0.668 0.703
(0.456) (0.415) (0.376) (0.338) (0.302
0.068 0.137 0,209 0.283 0.361
(0.948)(0.867)(0.788) (0.710) (0.634)

0.749 0.754 0.702 0.773 0.789
(0.339)(0.313) (0.288) (0..264) (0.241)

0.742 0.786 - 0.837 ' 0.902
) (0.265)(0.227) (0.187) (0.137)

0.446 0.539 0.648 0,785
(0.557)(0.478)(0.394) (0.292)

0.1t 0,838 0.874 0,924
(0.218)(0.194) (0.166) (0.126)

0.057 0.121 0.191
(0.851)(0.849) (0.823)

0.938 0.927 0.918
(0.238)(0.233) (0.220)
0.034 0.084 0,149
(0.616)(0.794) (0.903)

For the mastery score = 3

0.267 0.348 0.437 0.535 0.647 0.786
(0.777)(0.717)(0.646)(0.563)(0.466)(0.343)

0.911 0.908 0,909 0.916 0.931 0.957
(0.200)(0.178)(0;157)(0.138)(0.122)(0.098)
0.227 J.315 0.412 0.520 0.642 0.787
(0.948)(0.941)(0.889)(0.797)(0.665)(0.479)

. enter N-xbar in ‘the test mean -colunmn
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HUYNH

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 7
Mastery score C = 6

Test KR2l1l=

Mean . 100 .200 « 300 »400 .500 .600 .700 .800 .900

0.7 1.000 1.000 0.999 0.998 0.997 0.993 0.987 0.979 0.975
(0.001)(0.003)(0.008)(0.016)(0.030)(0.04))(0.069)(0.077)(0.057)
0.000 0,003 0.015 0.042 0.096 0.133 0.311 0.484 0.706
(0.015)(0.081)(0.226)(0.446)(0.703)(0.934)(1.064)(1.021)(0.747)

1.4 0.998 0.997 0.994 0.990 0.984 0.975 0.963 0.951 0.949
(0.016)(0.027)(0.042)(0.061)(0.083)(0.104)(0.115)(0.105)(0.074)
0.002 0.011 0.032 0.072 0.136 0.230 0.356 0.518 0.721
(0.064)(0.175)(0.334)(0.515)(0.678)(0.785)(0.804)(0.715)(0.506)

2.1 0.989 0.983 0.976 0.966 0.954 0.940 0.925 0.916 0.925
(0.072)(0.092)(0.113)(0.133)(0.149)(0.155)(0.146)(0.117)(0.086)
0.008 0.025 ©.058 0.109 0.182 0.278 0.399 0.54% 0.734
(0.166)(0.305)(0.455)(0.588)(0.680)(0.712)(0.676)(0.571)(0.399)

2.8 0.953 0.942 0.929 0.915 0.909 0.887 0.877 0.878 0.904
(0.181)(0.196)(0.205)(0.208)(0.201)(0.183)(0.155)(0.120)(0.100)
0.018 0.047 0.092 0.152 0.229 0.324 0.439 0.575 0.746
(0.322)(0.454)(0.565)(0.641)(0.672)(0.654)(0.589)(0.482)(0.338)

3.5 0.869 0.356 0.843 0.832 0.824 0.8:.1 0.826 0.844 0.890
(0.292)(0.231)(0.264)(0.241)(0.214)(0.134)(0.155)(0.132)(0.117)
0.032 0.075 0.130 0.196 0.275 0.367 0.474 0.599 0.756
(0.513)(0.599)(0.652)(0.670)(0.653)(0.604)(0.526)(0.424)(0.302)

4.2 0.728 0.726 0.727 0.731 9.741 0.757 0.783 0.321 0.884%
(0.315)(0.287)(0.262)(0.238)(0.217)(0.197)(0.179)(0.161)(0.136)
0.048 0.103 0.166 0.237 0.316 0.404 0.504 0.620 0.766
(0.712)(0.727)(0.717)(0.685)(0.634)(0.566)(0.485)(0.392)(0.286)

4.9 0.578 0.600 0.625 0. 53 0.684 0.721 0.765 0.818 0.889
(0.362)(0.344)(0.325)(0.304)(0.282)(0.257)(0.229)(0.196)(0.150)
0.062 0.128 0.197 0.270 0.348 0.433 0.527 0.636 0.774
(0.884)(0.829)(0.767)(0.700)(0.629)(0.554)(0.474)(0.388)(0.290)

5.6 0.548 0.584 0.621 0.659 0.699 0.742 0.789 0.843 0.909
(0.513)(0.467)(0.423)(0.382)(0.341)(0.301)(0.259)(0.213)(0.153)
0.071 0.142 0.215 0.289 0.368 0.451 0.543 0.649 0.781
(0.990)(0.904)(0.822)(0.744)(0.668)(0.592)(0.513)(0.427)(0.323)

6.3 0.753 0.764 0.777 0.794 0.815 0.839 0.368 0.903 0.946
(0.376)(0.349)(0.324)(0.300)(0.276)(0.251)(0.222)(0.185)(0.131)
0.065 0.135 0.209 0.286 0.368 0.456 0.551 0.657 0.786
(0.977)(0.972)(0.944)(0.900)(0.841)(0.769)(0.681)(0.573)(0.433)

--—-----------------------------------------------------------—------

For the mastery score = 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta~binomial Model
M = Number of sublects
Number of items N = 7
Mastery score C = 7

Test KR21=
Mean .100 . 200 . 300 400 « 500 .600 . 700 . 800 . 900

0.7 1.000 1.000 1,000 1.000 1.000 0.999 0.996 0.990 0.981
(0-000)(0.000)(0.001)(0-002)(0.006)(0.01:)(0.031)(0.057)(0.064)
0.000 0.000 0.003 0.012 0.036 0.088 0.184 0.347 0.604
(0.001)(0.014)(0.060)(0.168)(0.356)(0.616)(0.893)(1.068)(0.940)

1.4 1.000 1.000 0.999 0.999 0.997 0.994 0.987 0.974 0.958
(0.001)(0.003)(0.006)(0.011)(0.022)(0.040)(0.066)(0.093)(0.084)
0.000 0.002 0.007 0.023 0.056 O0.118 0.223 0.386 0.627
(0.008)(0.038)(0.107)(0.227)(0.392)(0.578)(0.736)(0.790)(0.644)

2.1 0.999 0.998 0.997 0.994 0.990 0.982 0.969 0.950 0.934
(0.009)(0.014)(0.023)(0.036)(0.055)(0.080)(0.108)(0.122)(0.091)
0.001 0.005 0.016 0.040 0.083 0.155 0.265 0.425 0.649
(0.030)(0.085)(0.179)(0.307)(0.453)(0.5&8)(0.672)(0.660)(0.508)

2.3 0.995 0.992 0.988 0.982 0.972Z 0.959 0.94C €c.919 0.909
(0.035)(0.048)(0.064)(0.085)(0.109)(o.'32)(0.148)(0.139)(0.092)
0.003 0.013 0.031 0.064 C.118 0.198 0.311 0.464 0.670
(0.078)(0.162)(0.272)(0.396)(0.514)(2.600)(0.628)(0.574)(0.425)

3.5 0.979 0.972 0.963 0.951 0.936 0.918 0.898 0.880 0.886
(0.098)(0.117)(0.137)(0.157)(0.173)(0.181)(0.172)(0.138)(0.096)
0.009 0.025 0.054 0.098 0.160 0.246 0.358 0.502 0.690
(0.168)(0.271)(0.382)(0.486)(0.566)(0.604)(0.589)(0.510)(0.370)

4.2 0.935 0.922 0.908 0.892 0.875 0.857 0.844 0.841 0.870
(0.205)(0-213)(0.227)(0-229)(0.222)(0.203)(0.170)(0.128)(0.114)
0.018 0.045 0.085 0.139 0.209 0.297 0.406 0.539 0.709
(0.308)(0.410)(0.500)(0.568)(0.604)(0.600)(0.552)(0.461)(0.335)

4.9 0.835 0.821 0.308 0.796 0.787 0.783 0.788 0.810 0.865
(0.309)(0.295)(0.275)(0.250)(0.219)(0.186)(0.157)(0.144)(0.148)
0.032 0.073 0.124 0.187 0.262 0.350 0.453 0.575 0.728
(0.501)(0.572)(0.620)(0.641)(0.632)(0.593)(0.524)(0.430)(0.318)

3.6 0.667 0.668 0.673 0.683 0,699 0.722 0.755 0.804 0.878
(0.297)(0.271)(0.251)(0.237)(0.228)(0.224)(0.221)(00213)(0.184)
0.050 0.106 0.170 0.240 0.318 0.404 0.493 0.609 0.745
(0.743)(0.754)(0.744)(0.715)(0.666)(0.601)(0.521)(0.428)(0.328)

6.3 0.536 0.573 . 511 0.653 0.697 0.744 0.796 0.853 0.919
(0.517)(0.504)(0.485)(0.459)(0.428)(0.389)(0.341)(0.278)(0.193)
0.072 0.145 0.219 0.295 0.374 0.456 0.543 0.641 0.761
(1.043)(0-985)(0-920)(0-843)(0.770)(0.687)(0.599)(




1.6

2.4

4.0

4.8

5.6

6.4

For the mastery score = 5

HUYNH

Table of the Raw Agreement Index ind its
S.E.*SQRT{H), the Kappa Index and its
S.E,*SQRT(M) 1in the Beta-binomial Model
M = Number of subjects
Number of items N = 8
Mustary score C = 4

.300 .400 +500
0.984 0.977 0.968 0.959 0,950 0.943 0.940 0.944 0.961
(0.112)(0.133)(0.149)(0.155)(0.152)(0.1,3)(0.118)(0.G97)(0.080)
0.015 0.043 0.100 0.171 0.259 0.363 0.431 0.615 0.773
(0.334)(0.568) (0.763) (0.892) (0.947)(0.931) (0.852)(0.712)(0.502)

0.881 0.871 0.862 0.856 0.854 0.858 0.869 0.890 0.928
(0.290) (0.273) (0.251) (0.227)(0.202) (0.177)(0.154) (0.133)(0.10/)
0.039 0.090 0.153 0.227 0.311 0.404 0.509 0.629 0.776
(0.627)(0.724) (0.770)(0.773)(0.741) (0.680) (0.595) (0.488) (0.350)

0.693 0.703 0.715 v.731 0.751 0.776 0.807 0.848 0.905
(0.342)(0.317)(0.293)(0.268) (0.244)(0.218)(0.191)(0.161)(0.123)
0.058 0.122 0.190 0.264 0.343 0.429 0.525 0.637 0.778
(0.833)(0.8067)(0.765)(0.709) (0.643) (0.570) (0.488) (0.398) (0.290)

0.549 0.581 0.615 0.649 0.686 0.726 0.771 0.824 0.892
(0.451) (0.409) (0.369)(6.331) (0.293)(0.256)(0.217)(0.177)(0.130)
0.067 0.136 0.206 0.279 0.356 0.439 0.532 0.640 0.778
(0.923)(0.838) (0.756)(0.677) (0.600) (0.522) (0.444) (0.360) (0.264)

0.564 0.592 0.622 0.653 0.688 0.726 0.769 0.821 0.889
(0.414)(0.381)(0.348)(0.315)(0.281)(0.247)(0.212)(0.173)(0.128)
0.065 0,133 0,202 0.275 0,352 0.436 0.529 0.637 0.777
(0.901) (0.825) (0.749)(0.673) (0.597) (0.520) (0.440) (0.356) (0.260)

0.714 0,717 0.724 0.735 0.751 0.771 0.799 0.833 0.896
(0.324)(0.299) (0.275) (0.252) (0.229) (0.206) (0.181) (0.154) (0.120)
0.054 0.114 0.180 0.253 0.332 0.419 0.516 0.630 0.774
(0.777)(0.769) (0.739)(0.691) (0.630) (0.557) (0.474)(0.382)(0.275)

0.878 0.866 0.855 0.847 0.843 0.844 0.852 0.872 0.913
(0.290)(0.275) (0.255)(0.232) (0.206)(0.179)(0.153)(0.130) (0.107)
0.035 0.083 0.143 0.215 0.297 0.339 0.495 0.617 0.770
(0.572)(0.665) (0.713)(0.720)(0.691)(0.631)(0.547)(0.442)(0.313)

0.971 0.962 0.951 0.939 0,928 0.918 0.912 0.915 0.937
(0.147)(0.165)(0.177)(0.181)(0.176)(0.161) (0.137)(0.109) (0.088)
0.017 0.049 0.098 0.164 0,248 0.348 0.464 0.600 0.764
(0.330)(0.507) (0.652) (0.745) (0.778)(0.753)(0.678) (0.557) (0.388)

0.998 0.996 0.992 0.987 0.981 0.973 0.965 0.961 0.967
(0.025) (0.040) (0.059) (0.080) (0.298) (0.108) (0.104) (0.085) (0.065)
0.004 0.019 0,053 0.109 0.191 0.296 0.425 0.576 0.756
(0.119)(0.312)(0.548)(0.767)(0.924)(0.990)(0.955)(0.817)(0.568)

enterr N-xbar in the test mean column
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RELIABILITY IN MASTRERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 3
Mastery score C = §

Mean . 100 .200 .300 +400 «500 . 600 . 700 .800 +900
0.8 0.996 0.996 0.992 0.987 0.981 0.973 0.965 0.961 0.967
(0.325)(0.060)(0.059)(0.080)(0.098)(0.108)(0.104)(0.085)(0.065)
0.004 0.019 0.053 0.109 0.191 0.296 0.425 0.576 0.756
(0.119)(0.312)(0.548)(0.767)(0.924)(0.990)(0.955)(0.817)(0.568)

1.6 0.971 0.962 0.951 0.93?2 0.928 0.918 0.912 0.915 0.937
(0.147)(0.165)(0.177)(0.181)(0.176)(0.161)(0.137)(0.109)(0.0&8)
0.017 0,049 0.098 0.164 0.248 ..348 0.464 0.600 0.764
(0.330)(0.507)(0.652)(0.745)(0.778)(0.753)(0.678)(0.557)(0.388)

2.4 0.878 0.866 0.855 0.847 0.843 0.844 0.852 0.872 0.913
(0.290)(0.275)(0.255)(0.232)(0.206)(0.179)(0.153)(0.130)(0.107)
0.035 0.083 0.143 0.”°5 0.297 0.389 0.495 0.617 0.770
(0.572)(0.665)(0.713)(0.720)(0.691)(0.631)(0.547)(0.442)(0.313)

3.2 0.714 0.717 0.724 0.735 0.751 0.771 0.799 0.833 0.896
(0.324)(0.299)(0.275)(0.252)(0.229)(0.206)(0.181)(0.154)(0.120)
G.C54 0,114 0.180 0.253 0.332 0.419 0.516 0.630 0.774
(0.777)(0.769)(0.739)(0.691)(0.630)(0.557)(0.474)(0.382)(0.275)

4.0 0.564 0.592 0.622 0.653 0.688 0.726 0.769 0.821 0.889
(0.414)(0.381)(0.348)(0.315)(0.281)(0.247)(0.212)(0.173)(0.128)
0.065 0.133 0.202 0.275 0.352 0.436 0.529 0.637 0.777
(0.901)(0.825)(0.749)(0.673)(0.597)(0.520)(Qﬂ440)(0.356)(0.260)

4.8 0.549 0.581 0.615 0.649 0.686 0.726 0.771 0.824 0.892
(0.451)(0.409)(0.369)(0.331)(0.293)(0.256)(0.217)(0.177)(0.130)
0.067 0.136 0.206 0.279 0.356 0.439 0.532 0.640 0.778
(0.923)(0.838)(0.756)(0.677)(0.600)(0.522)(0.444)(0.360)(0.264)

5.6 0.693 €.703 0.715 0.731 0.751 0.776 0.807 0.8i8 0.905
(0.342)(0.317)(0.293)(0.268)(0.244)(0.218)(0.191)(0.161)(0.123)
0.058 0.122 0.190 0.264 0.343 0.429 0.525 0.637 0.778
(0.833)(0.807)(0.765)(0.709)(0.643)(0.570)(0.488)(0.398)(0.290)

6.4 0.381 0.871 0.862 0.856 0.854 0.858 0.869 0.890 0.928
(0.290)(0.273)(0.251)(0.227)(4.202)(0,177)(0.154)(0.133)(0.107)
0.039 0.090 0.153 0.227 0.311 0.404 0.509 0.629 0.776
(0.627)(0.724)(0.770)(0.773)(3.741)(0.680)(0.595)(0.488)(0.350)

7.2 0.984 0.977 0.968 0.959 0.950 0.943 0.940 0.944 : .361
(0.112)(0.133)(0.149)(0.155)(0.152)(0.139)(0.118)(0.097)('.080)
0.015 0.048 0.100 0.171 0.259 0.363 0.481 0.615 o 773
(0.334)(0.568)(0.763)(0.892)(0.947)(0.931)(0.852)(0 712)(uv.502)

------------------—---------.-'l---—--II--‘--—--—--------.'~“ Y e en e e - -

For the mastery score = 4 enter N-xbar in the tzst .ean column
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Table of the Raw Agreement Index and 1its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta~binomial Model
M = Number of subjects
Number of items N = 8
Mastery score C = 6
Test KR21=
Mean .100 .200 .300 .400 500 .600 .700 .800 .900
0.8 1.000 0.999 0.992 0.997 0.994 0.989 0.982 (6.974 0,972
(0.003)(0.008) (0.016)(0.028)(0.046) (0.06C) (0.082)(0.080) (0.057)
0.001 o©.n06 0,023 0,060 0.124 0.222 0.354 0.521 0.727
(0.029)(0.128)(0.312)(0.552)(0.791)(0.967)(1.025)(0.930) (0.656)

1.6 0.996 0.992 0.988 0.931 0.972 0.9¢6. 0.948 0.939 0.945
(0.038)(0.055)(0.075)(0.097)(0.116) (0.1.3)(0.126)(0.105) (0.075)
0.005 0.019 0.050 0.100 0.175 ©0.275 0,400 0.553 6,740
(0.121)(0.270)(0.448) (0.615)(0.737)(0.788)(0.757) (0.642) (0.444)

2.4 0.970 0.960 0.949 0.936 0.923 0.910 92.900 0.899 0.920
(0.143)(0.162)(0.176) (0.184) (0.183) (0.171)(9.147)(0.115) (0.090)
0.015 0.043 0,087 0.148 0.227 0.325 0.442 0.580 0.750
(0.286)(0.438)(0.572)(0.664)(0.705)¢0.690)(0.622) (0.507) (0.350)

3.2 0.392 0.879 0.866 0.855 0.846 0.842 0.845 0.861 0.901
(0.275)(0.268) (0.254) (0.235) (0.210) (0.182)(0.153)(0.127) (0.106)
0.030 0.073 0.128 0.196 0.276 0.369 0.477 0.602 0.759
(0.497)(0.597)(0.659) (0.682) (0.665) (0.614) (0.533) (0.428) (0.299)

4.0 0.747 0.744 0.745 0.749 0.758 0.772 (,796 0.831 0.889
(0.317)(9.290) (0.265) (0.240) (0.217)(0.195)(0.173)(0.150) (9.121)
0.048 0.103 0.167 0.238 0.317 0.405 0.504 0.620 0.767
(0.706) (0.723)(0.713)(0.679) (0.627) (0.557) (0.475) (0.381) (0.272)

4.8 0.588 0.60¢ 0.633 0.660 0.691 0.726 0.767 0.818 0.886
(0.365)(0.342)(0.313) (0.294){0.268)(0.240)(0.210)(0.175) (0.133)
0.062 0.127 0.196 0.208 0.346 0.430 0.523 0.633 0.772
(0.866)(0.308) (0.744)(%.675)(0.603)(0.527)(0.447)(0.362) (0.265)

5.6 0.540 0.574 0.610 0.646 0.685 0.727 0.773 0.827 0.895
(0.476) (0.430) (0.388)(0.%47)(0.308) (0.269)(0.229)(0.187)(0.137)
0.069 0.138 0.209 0.232 0,359 0.442 0.534 0.641 0.777
(0.940)(0.852)(0.769)(0.689) (0.612)(0.536) (0.458) (0.375) (0.278)

6.4 0.(37 0.701 0.717 0.737 0.760 0.738 0.821 0.863 0.917
(0.370)(0.343)(0.316){0.289) (0.263)(0.235)(0.206) (0.174) (0.129)
0.062 0.1z9 0.199 0.274 0.353 0.439 0.534 0.643 0.780
(0.389) (0.853) (0.805) (0.746) (0.680) (0.608) (0.528) (0.437) (0.323)

7.2 0.s15 0.904 0.896 0.891 0.8°0 0.894 0.904 0.923 0.952
(0.267)(0.253}(0.233)(0.211)(0.133)(0.166)(0.148)(n.130)(0.102)
0.039 0.093 0.159 0.237 0.323 0.418 0.522 0.640 0.781
(0.668)(0.809) (0.836)(0.9C8) (0.887)(0.830) (0.741) (0.619) (0.450)

For the mastery score = 3 enter N~-xbar in the test mean colurn
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Iidex and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in tie Beta-binomial Model
M = Number ol subjects
Number of fteme N = 8
Mastery score C = 7

Test KR21=

Mean .100 «200 .300 400 .500 .600 .700 .800 . 900

0.8 1.000 1.000 1,000 1.000 0.999 0.997 0.992 G.)85 0,977
(0.000)(0.00I)(0.003)(0.006)(0.014)(0.029)(0.050)(0.068)(0.057)
0.000 0.001 0.007 0.025 0.066 0.142 0.264 0.440 0.677
(0.005)(0.036)(0.129)(0.305)(0.551)(0.815)(1.009)(1.031)(0.780)

1.6 1.000 0.999 0.998 0.996 0.992 0.985 0.975 0.961 0.953
(0.00S)(0.0IO)(0.019)(0.031)(0.0SO)(0.073)(0.096)(0.102)(0.073)
0.001 0.005 0.018 0.048 G.101 0.187 0.311 0.478 0.695
(0.027)(0.097)(0.222)(0.394)(0.577)(0.726)(0.792)(0.734)(0.527)

2.4 0.596 0.993 0.989 0.982 0.973 0.960 0.945 0.929 0.978
(0.034)(0.068)(0.066)(0.088)(0.110)(0.129)(0.136)(0.119)(0.081)
0.004 0.015 0.038 0.080 0.144 0.236 0.358 0.514 0.712
(0.091)(0.201)(0.363)(0.493)(0.618)(0.690)(0.684)(0.591)(0.612)

0.977 0.969 0.959 0.947 0.932 0.916 0.900 0.891 0.905
(0.112)(0.133)(0.152)(0.168)(0.177)(0.175)(0.157)(0.122)(0.090)
0.011 0.032 0.068 0.121 0.193 0.287 0.404 0.547 0.727
(0.212)(0.362)(0.670)(0.576)(0.661)(0.652)(0.604)(0.499)(0.365)

(93]
.
[ )

4.0 0.920 0.907 0.892 0.878 0.864 0.852 0.847 0.854 0.888
(0.237)(0.262)(0.241)(0.232)(0.215)(0.189)(0.156)(0.126)(0.106)
0.023 0.058 0.105 0.167 0.244 0.336 0.446 0.576 0.740
(0.389)(0.499)(0.583)(0.632)(0.641)(0.610)(0.539)(0.635)(0.303)

4.8 u.798 0.788 0.731 0.776 0.775 0.780 0.795 0.824 0.879
(0.317)(0.293)(0.266)(0.239)(0.211)(0.185)(0.162)(0.146)(0.126)
0.039 0.088 0.146 0.714 0.292 0.381 0.483 0.602 0.752
(0.599)(0.650)(0.671)(0.663)(0.628)(0.570)(0.690)(0.396)(0.282)

5.6 0.628 0.640 0.655 0.673 0.697 0,726 0.763 0.813 0.882
(0.313)(0.295)(0.279)(0.263)(0.267)(0.229)(0.208)(0.183)(0.145)
0.056 0.118 0.184 0,256 0.333 0.418 0.513 0.623 0.763
(0.805)(0.777)(0.736)(0.682)(0.619)(0.567)(0.468)(0.380)(0.280)

6.4 0.535 0.570 0.606 0.644 0.685 0.728 0.776 0.832 0.901
(0.482)(0.664)(0.606)(0.369)(0.332)(0.295)(0.256)(0.211)(0.154)
0.069 0.13% 0.210 0.284 0.361 0.444 0.535 0.640 0.772
(0.956)(0.874)(0.795)(0.719)(0.665)(0.570)(0.693)(0.4,8)(0.309)

7.2 0.710 0.727 0.746 0.768 0.793 0.821 0.854 0.893 0.940
(O.llO)(0.379)(0.351)(0.322)(0.296)(0.265)(0.233)(0.193)(0.136)
0.067 0.138 0.211 0,288 0.369 0.454 0.547 0.651 0.779
(0,981)(0.952)(0.909)(0.855)(0.796)(0'723)(0.640)(0.560)(0.610)

For the mastery score = 2 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 8
Mastery score C = §

-—— 0 b Y T G T e D e T O I S I I T s S R I G 0 G I G G G G e G G GD G R R e T S S e

Test KR21=

Mean .100 .200 . 300 .400 «500 .600 .700 .800 + 900

0.8 1.000 1,000 1,000 1,000 1,000 O0.%29 0.998 0.994 0.984
(0.0¢0) (0.€00) (0.000) (0.001) (0.002) (0.0C7)(0.019)(0.043) (D.063)
0.000 0.000 0.001 O0.0C7 0.023 0.063 0.147 0.302 0.566
(0.000) (0.005) (0.030)(0.101)(0.249)(0.486) (0.780)(1.018) (0.959)

1.6 1,000 1,000 1,000 1,000 0.999 0.997 0.992 0.982 0.963
(0.000) {0.001) (0.002) (0.005) (0.011) (0.023) (0.04&) (0.578) (0.086)
0.000 0.001 0.004 O0.014 0.038 0.089 0.184 0.343 J.593
(0.003)(0.018>(0.062) (0.152) (0.297)(0.485) (0.671)(0.772) (0.660)

2.4 1,000 0.999 0.999 0.997 0.995 0.990 0.980 0.962 0.940
(0.003)(0.006) (0.011)(0.019) (0.033) (0.055) (0.0845(0.111)(0.096)
0.000 0.003 0,0lv 0,026 C 060 O0.123 0.226 0.385 0.619
(0.014) (0.048) (0.117)(0.226) (L 368)(0.519) (0.636) (0.658) (0.521)

3.2 0.998 0.996 0.994 0.990 0.982 0.973 0.956 0.933 0.914
(0.017) (0.025)(0.037)(0.054) (0.076)(0.103) (0.128)(0.137)(0.096)
0.002 0,007 0.02¢ 0.046 0,091 9Q.164 0.273 0.427 0.644
(0.044)(0.105)(0.198)(0.317)(0.444) (0.554)(0.611)(0.581) (0.435)

4.0 0.989 0.984 0©0.978 0.969 0.957 0.940 0.918 0.895 0.889
(0.060) (0.076) (0.096) (0.118) (0.140) (0.159)(0.166) (0.145) (0.093)
0.005 0.017 0.039 0,076 0.132 0.212 0.323 0.471 0.668
(0.110)(0.199)(0.305)(0.416) (0.514)(0.577) (0.585)(0.519) (0.376)

4.5 J.959 0.949 0.936 0.922 0.904 0.884 0.865 0.853 0.869
(0.152)(0.170)(0.187) (0.200) (0.206) (0.200) (0.177)(0.134)(0.,102)
0.013 0.035 0.068 0.1:6 0.181 0.267 0.376 0.513 0.691
(0.230){0.331)(0.429)(0.513)(0.570) (0.586) (0.554) (0.463) (0.335)

5.6 f.378 6.863 0.848 0.38333 0.813 0.807 0.803 0.814 0.859
(0.277)(0.276)(0.268)(C.252) (0.228)(0.196)(9.159)(0.131)(0.133)
0.025 0.061 O0.107 0.166 0.238 0.326 0.430 0.555 0.712
(0.413)(0.497)(0.562)(0.601) (0.610) (0.585) (0.525)(0.431)(N.313)

6.4 2.713 0 708 0.706 0.703 0.715 0.730 0.756 0.798 0.869
(0.310) (0.:31)(0.253)(0.228) (0.209)(0.197)(0.194)(0.193>(0.176)
0.044 0.096 0.156 0.224 0.300 0.386 0.483 0.594 0.733
(0.661) (0.691) (0.699)(0.684)(0.647) (0.590) (0.513) (0.420)(0.317)

7.2 0.539 0.571 0.606 0.643 0.635 0.731 0.782 0.841 0,911
(0.344)(0.440)(0.431)(0.417)(0.396) (0.367) (0.329)(0.275)(0.195)
0.068 0.138 0.211 0.286 0.364 0.446 0.534 0.631 0.752
(0.981) (0.934)(0.877)(0.8 ) (0.739)(0.660)(0.575)(0.482) (0.382)

For the mastery score = 1 cnter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table o
S.E.*S
S.E.*SQ

Test KR21=

Mean . 100 .200

0.9 0.996 0.993 0
(0.039)(0.058) (0
0.006 0.025 0O
(0.159)(0.367)(0

1.8 0.951 0.939 o
(0.199)(0.209) (0
0.023 0.061 0
(0.418) (0.577) (0

2.7 0.312 0.805 0
{0.315) (0.290) (0
0.045 0.099 o0
(0.676)(0.722) (0

3.6 0.625 0.643 0
(0.362) (0.336) (0
0.061 0.126 O
(0.852) (0.300) (0

4.5 0.534 0.568 0
(0.457)(0.412) (0
0.067 wv.136 0
(0.913)(0.824) (0

5.4 0.625 0.643 0
(0.362) (0.336) (0
0.061 0.126 0
(0.352) (0.800) (0

6.3 0.812 0.805 0
(0.315) (0.290) (0
0.045 0.099 o0
(0.676) (0.722) (0

7.2 0.951 0.939 o
(0.199) (0.209) (0
0.023 0.061 0
(0.418)(0.577) (0

8.1 6.996 0.993 0
(0.039) (0.058) (0
0.006 0.025 0
(0.159)(0.367) (0

f the Raw Agreement Index and its
QRT(M), the Kappa Index and its
RT(M) in the Beta-binomial Model
M = Number of subjects

Number of jitems N = 9

Mastery score C = 5

«300 «400 « 500 .600 .700 .800 «900
-988 0.982 0.974 0.966 0.958 0.955 0.964
.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)
«063 0.124 0.208 0.314 0.440 0.585 0.758
.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)

+927 0.915 0.905 0.898 0.896 0.905 0.932
.210)(0.204)(0.189)(0.167)(0.140)(0.114)(0.093)
«146 0.185 0.269 0.367 0.479 0.607 0.764
.691)(0.750)(0.755)(0.712)(0.631)(0.515)(0.361)

-801 0.801 0.805 0.814 0.831 0.860 0.907
.264)(0.238)(0.213)(0.188)(0.164)(0.139)(0.110)
-163 0.235 0.316 0.405 0.506 0.622 0.769
.730)(0.708)(0.660)(0.593)(0.509)(0.411)(0.293)

-663 0.687 0.714 0.745 0.782 0.828 0.892
.311)(0.284)(0.257)(0.228)(0.197)(0.163)(0.121)
«194 0.267 0.344 0.428 0.522 0.631 0.771
.740)(0.674)(0.603)(0.527)(0.447)(0.360)(0.260)

-603 0,639 0.677 0.718 0.764 0.817 0.886
.370)(0.331)(0.292)(0.253)(0.214)(0.172)(0.125)
<205 0.278 0.354 0.436 0.527 0.634 0.772
.741)(0.661)(0.583)(0.506)(0.428)(0.345)(0.251)

<663 0.687 0.714 0.745 0.782 0.828 0.892
.311)(0.284)(0.257)(0.228)(0.197)(u.163)(0.121)
«194 0.267 0.344 0.428 0.522 0.631 0.771
.740)(0.674)(0.603)(0.527)(0.447)(0.360)(0.260)

-801 0.801 0.805 0.814 0.831 0.360 0.907
.264)(0.238)(0.213)(0.188)(0.164)(0.139)(0.110)
«163 0.235 0.316 0.405 0.506 0.622 0.769
.730)(0.708)(0.660)(0.593)(0.509)(0.411)(0.293)

«927 0.915 0.905 0.89¢ 0.896 0.905 0.932
.210)(0.204)(0.189)(0.167)(0.140)(0.114)(0.093)
«116 0,185 0.259 0.367 0.479 ~.607 0.764
.691)(0.750)(0.755)(0.732)(0.631)(0.515)(0.261)

-988 0.982 0.974 0.966 0.958 0.955 0.964
.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)
-0€3 0.124 0.208 0.314 0,440 0.585 0.758
.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)




HUYNH

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta=-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = 6
Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900
0.9 1.000 0.999 0.998 0.995 0.9°21 0.985 0.977 0.969 0.970
(0.007)(0.014) (0.025)(0.041)(0.061) (0.021)(0.091)(0.082)(0.058)
0.001 0.009 0.031 0.075 O0.146 9.248 0.381 0.542 0.737
(0.047)(0.174)(0.380)(C.620)(0.831)(0.9€1)(0.975)(0.857)(0.598)

1.8 0.990 0.985 0.978 0.968 0.957 0.945 0.934 0.929 0.940
(0.070)(0.091)(0.112)(0.131)(0.143) (0.145)(0.132)(0.105) (0.079)
0.008 0.029 0.C67 0.125 0.205 0.306 0.428 0.572 0.748
(0.186)(0.356) (0.530)(0.671)(0.754)(0.766) (0.708)(0.587) (0.404)

2.7 0.939 0.927 0.914 0.901 7.882 0.380 0.877 0.885 0.815
(0.215)(0.223)(0.223)(0.215)+0.199)(0.176) (0.148)(0.118) (0.095)
0.023 0.060 0.£!2 0.179 0.260 0.356 0.467 0.596 0.756
(0.405)(0.542)(0.641) (0.693)(0.696) (0.654) (0.574)(0.462) (0.320)

3.6 0.811 $.302 0.796 0.794 0.796 0.304 0.819 0.847 0.396
(0.314)(0.290) (0.264) (0.233)(0.212)(0.186)(0.162)(0.137) (0.110)
0.042 0.094 0.156 0.227 0.307 0.396 0.497 O0.615 0.763
(0.640)(0.688)(0.702)(0.684) (0.640) (0.574) (0.490)(0.392) (0.276)

4.5 0.633 0.648 0.665 0.°86 0.711 0.740 0.776 0.822 0.886
(0.339)(0.317) (0.295)(0.272)(0.248) (0.222) (0.193)(0.161) (0.122)
0.059 0.122 0.189 0,261 0.339 0.423 0.517 0.627 0.768
(0.824)(0.782)(0.729)(0.567)(0.599) (0.524) (0.443)(0.355) (0.256)

5.4 0.534 0.568 0.603 ©.639 0.677 0.718 0.764 0.318 0.887
(0.455)(0.412)(0.371) (0.332)(0.293) (0.255)(0.216)(0.175) (0.128)
0.667 0.135 0.205 0.278 0.354 0.436 0.527 0.634 0.772
(0.913)(0.826)(0.743)(0.664) (0.587) (0.510) (0.432)(0.349) (0.255)

6.3 0.624 0.644 0.667 0.692 0.721 0.753 0.791 0.837 0.899
(0.335)(0.356) (0.326) (0.297)(0.267) (0.236) (0.203)(0.168) (0.125)
0.063 0.130 0.199 0.272 0.350 0.433 0.527 0.635 0.773
(0.878)(0.820)(0.756) (0.689)(0.617) (0.542) (0 463)(0.377) (0.276)

7.2 2.834 n 827 0.822 0.822 0.326 0.336 0.852 0.879 0.923
(0.311) (0.286) (0.261) (0.236)(0.211) (0.187) (0.164)(0.141) (0.111)
0.045 0.102 0.167 0.241 0.323 0.413 0.514 0.630 0.773
(0.700) (0.756) (0.771)(0.752) (0.707) (0.640) (0.557)(0.457) (0.330)

81 0.976 0.967 0.957 0.947 0.933 0.932 0.931 G.%237 0.957
(0.144)(0.161)(0.171)(0.172)(0.163)(0.145)(0.123)(0.102) (0.083)
0.012 0.056 0.111 0.184 0.272 0.373 0.483 0.617 0.771
(0.389)(0.6190)(0.778)(0.878) (0.909) (0.880) (0.798)(0.666) (0.473)

For the mastery score = 4 enter N-xbar in the test wmean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = 7
Test KR2lw
Mean . 100 .200 .300 . 400 + 500 .600 .700 .800 .900
0.9 1.000 1.000 1.000 0.999 0.997 0.994 0.989 0.980 0.975
(0.001)(0.002)(0.005)(0.012)(0.024)(0.042)(0.063)(0.074)(0.056)
0.000 0.003 0.012 0.038 0.091 0.179 0.309 0.483 0.704
(0.010)(0.062)(0.193)(0.405)(0.659)(0.886)(1.007)(0.956)(0.688)

1.8 0.999 0.997 0.995 0.991 0.985 0.975 0.963 0.951 0.948
(0.014)(0.024)(0.038)(0.057)(0.079)(0.100)(0.112)(0.104)(0.071)
0.002 0,010 0.031 0.071 0.137 0.232 0.360 0.520 0.720
(0.058)(0.165)(0.324)(0.506)(0.666)(0.764)(0.769)(0.669)(0.463)

2,7 0.987 0.981 0.973 0.963 0.951 0.936 0.922 0.913 0.923
(0.078)(0.098)(0.119)(0.139)(0.152)(O.l-u)(0.145)(0.116)(0.083)
0.008 0.027 0.062 0.115 0.190 0.287 0.407 0.553 0.733
(0.175)(0.318)(O.&68)(0.596)(0.676)(0.694)(0.644)(0.530)(0.351)

3.6 0.940 0.928 0.914 0.900 0.886 0.875 0.868 0.873 0.901
(0.207)(0.218)(0.221)(0.217)(0.205)(0.183)(0.153)(0.120)(0.096)
0.021 0.054 0.102 0,165 0,244 0.338 0.449 0.581 0.745
(0.363)(0.490)(0.589)(0.648)(0.661)(0.628)(0.554)(0.444)(0.304)

4.5 0.824 0.814 0.805 0.799 0.797 0.800 0.812 0.837 0,887
(0.311)(0.289)(0.265)(0.239)(0.211)(0.184)(0.159)(0.136)(0.112)
0.038 0.087 0.145 0.214 0,293 0.382 0.484 0.604 0.755
(0.585)(0.644)(0.671)(0.665)(0.630)(0.570)(0.488)(0.388)(0.272)

5.4 0.651 0.660 0.673 0.690 0.711 0.737 0.771 0.817 0.882
(0.317)(0.297)(0.277)(0.257)(0.237)(0.216)(0.192)(0.164)(0.127)
0.056 0.116 0.182 0.254 0.331 0.416 0.511 0.622 0.763
(0.787)(0.761)(0.720)(0.666)(0.602)(0.529)(0.449)(0.360)(0.260)

6.3 0.535 0.569 0.603 0.639 0.677 0.718 0.765 0.819 0.889
(0.448)(0.409)(0.372)(0.336)(0.300)(0.263)(0.226)(0.185)(0.136)
0.067 0.135 0.205 0.277 0.354 0.436 0.5286 0.634 0.770
(0.914)(0.831)(0.752)(0.675)(0.599)(0.523)(0.446)(0.364)(0.268)

7.2 0.634 0.656 0.680 0.706 0.735 0.768 0.806 0.852 0.911
(0.410)(0.377)(0.345)(0.313)(0.281)(0.249)(0.216)(0.179)(0.131)
0.065 0.133 0.204 0.278 0.356 0.440 0.533 0.630 0.774
(0.911)(0.852)(0.788)(0.722)(0.652)(0.579)(0.502)(0.415)(0.308)

8.1 0.8868 0,879 0.873 0.871 0.873 0.880 0.893 0.915 0.948
(0.288)(0.267)(0.244)(0.220)(0.197)(0.176)(0.157)(C.137)(0.106)
0.043 0.100 0.168 0.245 0.329 0.422 0.524 0.638 0.777
(0.712)(0.820)(0.870)(0.874)(0.842)(0.782)(0.696)(0.583)(0.427)

For the mastery gcore = 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
Z.E.*SQRT(M), the Kappa Iandex and its
S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = §

Test KR21l=

Mean .100 .20C .300 .400 .500 .600 .700 .800 .900

0.9 1.000 1.000 1.000 1.000 0.999 0.998 0.956 0.8% 0.980
(0.000)(0.000)(0.001)(0.002)(0.007)(0.016)(0.034)(0.057)(0.058)
0.000 0.000 0.004 0.015 0.045 0.i09 0.222 0.398 0.643
(0.001)(0.015)(0.071)(0.203)(0.422)(0.697)(0.942)(1.029)(0.812)

1.8 1.000 1.000 0.999 0.998 0.996 0.992 0.984 0.970 0.957
(0.002)(0.004)(0.008)(0.016)(0.029)(0.049)(0.075)(0.094)(0.074)
0.000 0.002 0n.010 0.031 0.074 0.159 0.270 0.440 0.670
(0.011)(0.051)(0.143)(0.292)(0.479)(0.659)(0.770)(0.749)(0.548)

2.7 0.998 0.997 0.995 0.991 0,984 0.974 0.960 0.942 0.932
(0.015)(0.024)(0.037)(0.054)(0.076)(0.101}(0.120)(0.118)(0.081)
0.002 0.008 0.025 0.057 0.113 0.199 0.320 0.481 0.690
(0.048)(0.127)(0.251)(0.402)(0.549)(0.656)(0.685)(0.611)(0.427)

3.6 0.989 0.984 0.977 0.967 0.955 0.939 0.921 0.905 0.908
(0.065)(0.084)(0.105)(0.126)(0.145)(0.157)(0.153)(0.127)(0.085)
0.006 0.021 0.049 0.094 0.161 0.252 0.370 0.519 0.708
(0.135)(0.250)(0.381)(0.507)(0.601)(0.642)(0.616)(0.517)(0.354)

4.5 0.952 0.941 0.928 0.913 0.897 0.881 0.868 0.365 0.888
(0.175)(0.191)(0.203)(0.203)(0.205)(0.189)(0.161)(0.124)(0.096)
0.016 0.043 0.084 0.141 0.214 0.307 0.419 0.554 0.725
(0.288)(0.407)(0.512)(0.588)(0.624)(0.613)(0.553)(0.448)(0.307)

5.4 0.855 0.842 0.829 0.818 0.809 0.806 0.810 0.829 0.876
(0.297)(0.285‘f0.267)(0.244)(0.216)(0.186)(0.156)(0.132)(0.116)
0.032 0.074 92.127 0.192 0.269 0.358 0.462 0.535 0.740
(0.497)(0.574)(0.622)(0.639)(0.623)(0.575)(0.500)(0.400)(0.280)

6.3 0.634 0.686 0.692 0.701 0.716 0.737 0.767 0.810 0.876
(0.305)(0.281)(0.259)(0.239)(0.222)(0.206)(0.189)(0.169)(0.139)
0.050 0,107 0.170 0.240 0.318 0.403 0.499 0.611 0.753
(0.725)(0.726)(0.705)(0.667)(0,614)(0.546)(0.467)(0.377)(0.274)

7.2 0.539 0.570 0.603 0.639 0.677 0.719 0.767 0.823 0.894
(0.432)(0.406)(0.375)(0.366)(0.316)(0.233)(0.268)(0.207)(0.153)
0.066 0.134 0.204 0.277 0.354 0.436 0.527 0.632 0.764
(0.917)(0.845)(0.773)(0.701)(0.628)(0.555)(0.678)(0.395)(0.297)

8.1 0.671 G.694 0.718 0.744 0.773 0.305 0.841 0.883 0.934
(0.462)(0.407)(0.376)(0.342)(0.310)(0.277)(0.241)(0.199)(0.140)
0.069 0.140 0.213 0.289 0.368 0.452 0.544 0.647 0.773
(0.982)(0.935)(0.880)(0.821)(0.757)(0.686)(0.607)(0.513)(0“391)

For the mastery score = 2 enter N-xbar in the test mean column
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RELTABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and it
S.E.*SORT(M), the Kappa Index and its
“+E.*SQRT(M) in the Beta-binomial liodel
N = Number of subjects
Number of items N = 9
Mastery score C = 9
Test KR21=
Mean .100 «200 . 300 . 400 . 500 . 600 .700
0.9 1.000 1.000 1.000 1.000 1.000 1.000 0.999
(0.000)(0.000)(0.000)(0.000)(0.001)(0.003)(0.011
0.000 0.000 0.001 0.004 0.015 0.045 0,117
(0.000)(0.002)(0.015)(0.060)(0.172)(0.380)(0.675

1.8 1.000 1.000 1.000 1.000 J.999 0.998 0.995
(0.000)(0.000)(0.001)(0.002)(0.005)(0.013)(0.031
0.000 0.000 0.002 0.008 0.026 0.067 0.151
(0.001)(0.003)(0.035)(0.100)(0.222)(0.401)(0.605

2.7 1.000 1.000 0.999 0.999 0.997 0.994 0.987
(0.001)(0.003)(0.005)(0.010)(0.019)(0.036)(0.063
0.000 0.001 0.006 0.017 0.044 0.097 0.192
(0.006)(0.026)(0.075)(0.164)(0.295)(0.452)(0.595

3.6 0.999 0.998 0.9.7 0.994 0.990 0.93? 0.968
(0.003)(0.013)(0.021)(0.033)(0.052)(0.077)(0.107
0.001 0.004 0.013 0.033 0.071 0.135 0.239
(0.024)(0.067)(0.142)(0.249)(0.379)(0.505)(0.590

4.5 0.994 0.991 0.987 0.981 0.971 0.956 0.936
(0.035)(0.043)(0.064)(0.085)(0.109)(0.134)(0.153
0.003 0.012 0.028 0.059 0.108 0.183 0.291
(0.072)(0.143)(0.240)(0.352)(0.462)(0.547)(0.573

5.4 0.974 0.966 0.956 0.944 0.927 0.908 0.885
(0.108)(0.128)(0.148)(0.167\(0.183)(0.189)(0.179
0.609 0.026 0.054 0,096 0.157 0.239 0.348
(0.170)(0.264)(0.365)(0.461)(0.534)(0.571)(0.555

6.3 0.910 0.896 0.831 0.864 0.847 0.831 0.819
(0.237)(0.246)(0.249)(0.2