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ABSTRACT

In recent years, there has been considerable interest in the

precise assessment of instructional outcomes. Ttie inadequacy of

norm-referenced devices has been recognized. In addition, there

has been a movement toward gearing educational tests to the

specific educational outcomes that instructional programs are in-

tended to reflect. These tests are often referred to as

criterion-referenced, domain-referenced, or mastery tests.

A mastery test is typically designed to reflect specific

educational objectives and is normally used to make decisions

regarding student achievement. Such tests also form an integral

part of any program evaluation, where the focus is on the number

of students judged as competent in a given domain of performance.

Other situations in which institutional decisions about individuals

arc' required include: testing for certification in a profession;

testing for minimum competency, such as for high school graduation;

and the assessment of basic skills.

This study provides a basic technical framework for the

design and use of mastery tests. The topics discussed are (a)

appropriate ways to select test items, (b) practical methods for

extracting the best information from test data, !c) efficient

procedures for using data to make decisions, and (d) means for

relating test scores to the instructional outcomes being evaluated.

Statistical procedures and computer programs have been developed

to help testing practitioners deal with these issues in a simple

and convenient way.

The solutions reported in this study are directed toward the

improvement of educational testing in the context of instruction.

ix
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AN OVERVIEW OF THE MASTERY TESTING PROJECT

Huynh Huynh
Joseph C. Saunders

I. BACKGROUND

Recent developments and interest in adaptive instruction and

mastery learning call for new testing procedures focusing on the

evaluation of individual performance in terms of some competency

criterion. Given that a domain of behaviors is uniquely defined by

the mastery of some unit of instruction, a test is deliberately

constructed to produce scores that reflect the-degree of competency

in those behaviors. At the end of the period of instruction, the

test is administered to the individual student, and on the basis of

the observed test score he or she ls classified in ore of several

achievement categories. In typical instructional situations there

are two such categories, usually labeled mastery and nonmastery.

Using test scores to make decisions about individual students

is a daily activity in any effort to evaluate instructional programs.

When the objectives are clearly specified, an obvious concern of

the evaluator 'is the number of students or trainees who have mas-

tered any or all the objectives as a result of participating in the

program. The classification of students actually serves a dual

purpose: first, it pinpoints the objectives that a disproportionate

number of students have failed to master, thus encouraging a closer

The Mastery Testing Project was supported by Grant NIE-G-78-0087
with the National Institute of Education, Department of Education,
Huynh Huynh, Principal Investigator. Points of view or opinions
stated do not necessarily reflect NIE position or policy and nc
official endorsement should be inferred. Requests for reprints of
the papers described in the Publication Series in Mastery Testing
should be addressed to Huynh Huynh, College of Education, University
of South Carolina, Columbia, South Carolina, 29208.
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look at the instructional strategies for those objectives; second,

it identifies individual students who have not mastered some of the

objectives and for whom special provisions need to be made to

facilitate their attainment of these objectives.

Thus, using test scores to make decisions is an integral part

of the educational enterprise. In various stages of educational

testing development, this effort has been known as criterion-

referenced, tomain- referenced, or mastery testing. Though these

terms have different interpretations, it seems important to note

that they often refer to different aspects of the same process.

Consider, for example, the case in which test items are deliber-

ately constructed (or selected from an item bank) to reflect

specific educational objectives; the resulting test scores are

referenced to these objectives for interpretation and are then used

to assess the competency or mastery of the individual student with

respect to each of the objectives.

Criterion-Referenced and Domain-Referenced Tccting

Though the term criterion-referenced is used by most testing

practitioners (e.g., those working at school districts), the term

domain-referenced has been used in the report to make it clear that

test items are references directly to specific educational objec-

tives. The term mastery, on the other hand, is used to draw atten-

tion to the fact that test scores Arc used to make certain decisions

regarding the individual student. It may also be noted that it

would be difficult to make meaningful decisions on the basis of

test scores unless the test items can be directly referenced to a

well - defined domain of performance. (This domain may be defined by

a single objective or by several objectives; in these cases the

test is typically labeled objective-referenced.) When a student is

judged to be a master on the basis of a high test score, what in

fact has bean mastered? In order to answer this question, the

objectives or domain of performances on which the student is to be

judged must be specified in advance. If this line of reasoning is

correct, then the process of mastery testing embodies the concept

of domain-referenced testing.

4



AN OVERVIEW

Minimum Compc*sncy Testing and Basic Skills Assessment

The procedures associated with mastery teasing resemble those

used in minimum competency testing or in basic skills assessment.

In attempting to reverse the decline in the level of student

achievement over the last decade, several states have implemented

statewide programs testing for minimum competency in the basic

skills. Many of these programs aim to insure that high school

graduates possess a minimum level of academic achievement or have

acquired the skills required to function effectively as adults in

American society. Minimum competency testing, in this sense, acts

as a high school exit examination or what has been called a certi-

fication examination. When used in this manner, minimum competency

examinations do not have the positive connotation of some other

basic skills assessment programs. The latter programs are specifi-

cally designed for a continuous monitoring of the acquisition of

basic skills (namely, reading, writing, and mathematics) across

succeeding grade levels. The results of these continuous monitor-

ing programs are used to diagnose a student's deficiencies in the

basic skills and to provide for instructional remediation.

Although sometimes differing in their ultimate purposes, mas-

tery testing, minimum competency testing, and the monitoring of

basic skills are similar in many aspects of test development and

other technical problems. The selection or construction of test

items relies heavily on a thoughtful specification of the educa-

tional objectives or domain of skills to which scores are to be

referenced via performance on the test items. The specifications

for the items themselves must, in most instances, be worked out in

considerable detail so that there will be a high degree of con-

gruence between the test items and the corresponding educational

objectives. Technical aspects held in common include issues such

as setting passing scores (or performance standards), assessing

decision reliability, assessing errors of classification, determin-

ing test length, selecting items to maximize the accuracy of

classifications, referencing test items to segments of the

512
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curriculum or currently adopted textbooks, const-ucting alternate

forms, and studying bias In decisions based on Z.e$.,: scores.

II. TECHNICAL PROBLEMS IN MASTERY TESTING

For a period of two years (September 1, 1978, through August 31,

1980), the National Institute of Education provided financial sup-

port for the work of the principal investigator concerning some of

the above-mentioned technical issues in mastery testing. This

research has dealt with the following questions.

(1) What are some of the optimum ways to approach the issue of
setting test passing scores in both large testing programs and in
a typical classroom situation? How should passing score judgments
based on the content of the test items be processed?

(2) In which ways should the concept of reliability in mastery
testing be formulated? How can reliability indices be approximated
when repeated testing of the same examinees is not feasible? Which
inferential procedures are appropriate for studies regarding esti-
mates of reliability?

(3) How should the rate of misclassification be assessed for
domain-referenced tests? Wh-- are the sampling characteristics of
the estimates?

0) What approaches should be used to study the consequences of
making passing decisions on the basic of test scores? Which models
would be useful in forecasting the budgetary consequences associated
with the selection of a particular pass' .g score?

(5) How should decisions based on test data be eval ated in
terms of efficiency (Jr cost-effectiveness?

(6) What are appropriate ways to assess the sensitivity or a
test within the context of instruction?

(7) What are some of the scoring rules based on decision theory
which may be useful in the context of mastery testing?

(8) What are the appropriate procedures by which items can be
selected from en item bank to form a test which must meet specific
requirements regarding reliability or decision .ccuracy?

(9) What procedures are appropriate in formulating decisions
based on multivariate test data?

136
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III. PUBLICATION SERIES IN MASTERY TES'iTNG

As the Mastery Testing Project concludes, seventeen p2pers

have been written. All have been distributed nationally through

the Publication Series in Mastery Testing and are abstracted as

follows.

Research Memorandum 78-1

Computation and Inference for Two Reliability
Indices in Mastery Testing Based on

the Beta-Binomial Model

Huynh Huynh

Presented at the 17th Annual Southeastern Invitational Conference on
Measurement in Education, University of North Carolina at Greensbcro,
December 8, 1978. Journal of Educational Statistics, Fall, 1979.

Abstract: In mastery testing the raw agreement index and the kappa
index may be secured via one test administration when the test scores
follow beta-binomial distributions. This paper reports tables and a
computer program which facilitate the computation of those indices
and of their standard errors of estimate. Illustrations are provided
in the foam of confidence intervals, hypothesis testing, and minimum
sample sizes in reliability studies for mastery tests.

Research Memorandum 78-2

A Nonrandomized Minimax Solution for Passing Scores
in the Binomial Error Model

Huynh Huynh

Psychometrika, June 1980.

Abstract: A nonrandomized minimax solution is presented for mastery
scores i, the binomial error model. The computation does not require
prior knowledge regarding an individual examinee or group test data
for a population of examinees. The optimum mastery score minimizes
the maximum risk which would be incurred by misclassification. A
closed-form solution is provided for the case of constant losses,
and tables are presented for a variety of situations including
linear and quadratic losses. A scheme which allows for correction
for guessing is also described.

7
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Research Memorandum 79-1

Accuracy of Two Procedures for
Estimating Reliability of Mastery Tests

huynh Huynh
Jospph C. Saunders

Presented at the annual conference of the EasteLA Educational
Research Association, Kiawah Island, South Carolina, February 22-24,
1979. A short version of this paper will appear in Journal of
Educational Measurement (in pre3s).

Abstract: The beta-binomial estimates for the raw agreement index p
and the kappa index in mastery testing are compared with those based
on repeated testings in terms of bias and sampling stability. Across
a variety of test score distributions, test lengths, and mastery
scores, the beta-binomial estimates tend to underestimate the cor-
responding population values. The percent of bias, however, is
negligible (about 2.5%) for p and moderate (about 10%) for kappa.
Both beta-binomial estimates are almost twice as stable as those
based on repeated testings. Though the beta-binomial estimates
presume equality of item difficulty, the data presented indicate
that even gross departures from equality do not affect the perfor-
mance of the estimates.

Research Memorandum 79-2

Bayesian and Empirical Bayes Approaches
to Setting Test Passing Scores

Huynh Huynh
Joseph C. Saunders

Presented at the symposium "Psychometric approaches to domain-
referenced testing" sponsored jointly by the American Educational
Research Association and the Nr.tional Council on Measurement in
Education at their annual meetings in San Francisco, April 8-12,
1979.

Abstract: The Bayesian mastery scores as proposed by Swaminathan
et al. and the empirical Bayes mastery scores derived from Huynh's
decision-theoretic framework are compared on the basis of approxi-
mate beta-binomial and real CTBS test data. It is found that the
two sets of mastery scores are identical or almost identical as
long as the test score distribution is reasonably symmetric or when
the true criterion level is high. Large discrepancies tend to
occur when this level is low, especially ',hen th-2 test scores con-
centrate at some extreme scores or are fairl, bumpy. However, in
terms of mastery/nonmastery decision, the Huynh procedure provides
the same classifications as the Bayesian metIod in practically all
situations. Moreover, the former may be used for tests of arbitrary
length and has been generalized to more complex testing situations.

8
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Research Memorandum 79-3

Budgetary Consideration in
Setting Mastery Scores

Huynh Huynh

Presented as part Jf the symposium "Setting standards: Theory and
practice" sponsored jointly by the American Educational Research
Association and the National Council on Measurement in Education at
their annual meetings in San Francisco, April 8-12, 1979.

Abstract: A general model along with four illustrations is presented
for the consideration of budgetary constraints in the setting of
cutoff scores in instructional programs involving remedial actions
regarding poor test performers. Budgetary constraints normally put
an upper limit on any choice of cutoff score. Given relevant infor-
mation, this limit may be determined. Alternately, ways to assess
the budgetary consequences associated with a given cutoff score are
provided. Such information would be useful in any final decision
regarding the cutoff score.

Research Memorandum 79-4

A Class of Mastery Scores Based
on the Bivariate Normal Model

Huynh Huynh

Proceedings of the 1979 meeting of the American Statistical
Association (Social Statistics Section).

Abstract: This study touches some aspects of the determination of
mastery scores on the basis of the bivariate normal test model.
The loss ratio associated with classification errors is assumed to
be constant, and the referral success function ranges in the normal
ogive family. Alternately, the model also provides a fairly simple
way to assess the loos consequences associated with each mastery
score. Such information is deemed useful to the test user who may
wish to examine these consequences before making a final c dice of
cutoff score. It is also noted that the model provides a latent
trait analysis for testing/measurement situations involving
instructed and noninstructed groups, or pretest and posttest data.

9 1 G
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Research Memorandum 79-5

An Approximation to the True Ability Distribution
in the Binomial Error Model and Applications

Huynh Huynh
Garrett K. Mandeville

Abstract: Assuming that the density p of the true ability 0 in
the binomial test score model is continuous in the closed interval
[0,1], a Bernstein polynomial can be used to uniformly approximate
p. Then via quadratic programming techniques, least-square esti-
mates may be obtained for the coefficients defining the polynomial.
The approximation, in turn, will yield estimates for any indices
based on the univariate and/or bivariate density funccion associated
with the binomial test score model. Numerical illustrations are
provided for the projection of decision reliability and proportion
of success in mastery testing.

Research Memorandum 79-6

Statistical Inference for False Positive and
False Negative Error Rates in Mastery Testing

Huynh Huynh

Psychometrika, March 1980.

Abstract: This paper describes an asymptotic inferential procedure
for the estimates of the false positive and false negative error
rates. Formulae and tables are described for the computation of
the standard errors. A simulation study indicates that the asymp-
totic standard errors may be used even with samples of 25 cases as
long as the Kuder-Richardson Formula 21 reliability is reasonably
large. Otherwise, a large sample would be required.

17
10
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Research Memorandum 79-7

An Empirical Bayes Approach to Decisions
Based on Multivariate Test Data

Huynh Huynh

Presented at the annual meeting of the Psychometric Society, Iowa
City, Iowa, May 28-30, 1980.

Abstract: A general framework for making mastery/nonmastery
decisions based on multivariate test data is described in this
study. Over all, mastery is granted (or denied) if the posterior
expected loss associated with such action is smaller than the one
incurred by the denial (or grant) of mastery. An explicit form for
the cutting contour which separates mastery nnd nonmastery states
in the test score space is given for multivariate test scores which
follow a normal distribution with a constant loss ratio. For the
case involving multiple cutting scores in the true ability space,
the test score cutting contour will resemble the boundary defined
by multiple test cutting scores when the test reliabilities are
reasonably close to unity. For tests with low reliabilities, deci-
sions may very well he based simply on a suitably chosen composite
score.

Research Memorandum 80-1

A Comparison of Two Approaches to Setting Passing
Scores Based on the Nedelsky Procedure

Joseph C. Saunders
Joseph P. Ryan
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-3, 1980. Applied
Psychological Measurement (in press).

Abstract: The Nedelsky procedure has been proposed as a method for
setting minimum passing scores for multiple-choice tests, based on
an analysis of item content. Two versions of the procedure are
compared. Two groups of judges, one using each version, set passing
scores for a classroom test. Comparisons are based on (1) the
distributions of passing scores,. (2) the consistency of pass-fail
decisions between the two versions, and (3) the consistency of pass-
fail decisions between each version and the passing score estab-
lished by the test designer. In addition, the relationship between
the passing scor set by a judge and that judge's level of achieve-
ment in the content area is investigated.

11
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Research Memorandum 80-2

Adequacy of Asymptotic Normal Theory in Estimating Reliability
for Mastery Tests Based on the Beta-Binomial Model

Huynh Huynh

Abstract: Simulated data based on five test score distributions
indicate that a slight modification of the asymptotic normal theory
for the estimation of the p and kappa indices in mastery testing
will provide results which are in close agreement with those based
on small samples. The modification is achieved through the multi-
plication of the asymptotic standard errors of estimate by the

constant 1-1-m
3/4

where m is the sample size.

Research Memorandum 80-3

Considerations for Sample Size in Reliability
Studies for Mastery Tests

Joseph C. Saunders
Huynh Huynh

Presented at the annual conference of the Eastern Educational
Research Association, Norfolk, Virginia, March 5-8, 1980.

Abstract: In most reliability studies, the precision of a relia-
bility estimate varies inversely with the number of examinees
(sample size). Thus, to achieve a given level of accuracy, some
minimum sample size is required. An approximation for this minimum
size may be made if some reasonable assumptions regarding the mean
and standard deviation of the test score distribution can be made.
To facilitate the computations, tables are developed based on the
Comprehensive Tests of Basic Skills. The tables may be used for
tests ranging in length from five to 'flirty items, with percent
cutoff scores of 60%, 70%, or 80%, and with examinee populations
for which the test difficulty can be described as low, moderate,
or high, and the test variability as low or moderate. The tables
also reveal that for a given degree of accuracy, an estimate of
kappa would require a considerably greater number of examinees
than would an estimate of the raw agreement index.

19
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Research Memorandum 80-4

A Note on Decision-Theoretic
Coefficients for Tests

Huynh Huynh

Abstract: A modification is suggested for the decision-theoretic
coefficient 6 proposed by van der Linden and Mellenbergh. Under
reasonable assumptions, the modified index varies from 0 to 1
inclusive. It is argued that in many practical applications of
mastery testing, coefficients such as 6 are not readily available,
and consistency of decisions may serve as evidence of the quality
of the decision-making process.

Research Memorandum 80-5

Assessing Efficiency of DecisiohR
in Mastery Testing

Huynh Huynh

Abstract: Two indices are proposed for assessing the efficiency of
decisions in mastery testing. The indices are generalizations of
the raw agreement index and the kappa index. Both express the
reduction in the proportion o5 average loss (or the gain in util-
ity) resulting from the use of test scores to make decisions.
Empirical data are presented which show little discrepancy between
estimates based on the beta-binomial and compound binomial models
for one index.

Research Memorandum 80-6

Selecting Items and Setting Passing Scores for Mastery Tests
Based on the Two-Parameter Logistic Model

Huynh Huynh

Presented at the Informal Meeting o:: Model-Based Psychological Measurement
sponsored by the Office of Naval Research, Iowa City, Iowa, August 17-22, 1980.

Abstract: Three issues in mastery testing are considered, using a
minimax decision framework, based on the two-parameter logistic
model. The issues are: (1) setting passing scores, (2) assessing
decision efficiency, and (3) selecting items to maximize decision
efficiency. The losses or disutilities under consideration have a
constant or normal ogive form. It is found that, in the context of
minimax decisions, the item selection procedure based on maximum
information may not provide the best decision efficiency.
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Research Memorandum 80-7

Assessing Test Sensitivity in Mastery Testing

Huynh Huynh

A preliminary version of this paper was presented as part of the
symposium "Approaches to test design for the assessment of the
effectiveness of educational programs" sponsore,: by the American
Educational Research Association at its annual meeting in Boston,
April i-11, 1980.

Abstract: This paper addresses the concept of test sensitivity
within the context of mastery testing. It is argued that
correlation-based indices may not be appropriate for the assessment
of test sensitivity. Global assessment of test sensitivity may be
carried out via indices such as p-max or 6-max. Local measures of
sensitivity may be described via a two-parameter logistic model.
Procedures are described to check the tenability of test sensitivity
on the basis of observed test data.

Research Memorandum 80-8

Relationship between Decision Accuracy and
Decision Consistency in Mastery Testing

Huynh Huynh
Joseph C. Saunders

Abstract: In mastery testing, decision accuracy refers to the
proportion of examinees who are classified correctly, in one of
several achievement categories, by test data. Decision consistency
expresses the extent to which decisions agree across two test
administrations. Based on twelve cases involving a wide range of
a
21

reliabilities, it was found that decision accuracy and decision

consistency were almost perfectly related.
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AN OVERVIEW

IV. CONCLUDING REMARKS

As the readers of this summary may note, the work of the

Mastery Testing Project has focused on the very basic technical

issues encountered in using test scores for making decisions

regarding individual students. The work blended mathematical rigor

with the ambiguity typically encountered in the reality of testing.

Oftentimes, advanced mathematics was used, supplemented with com-

puter simulation based on real test data collected from the South

Carolina Statewide Testing Program. It is hoped that the many

results reported herein will contribute to the best use of testing

in the educational enterprise.
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PART ONE

SETTING PASSING SCORES
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A NONRANDOMIZED MINIMAX SOLUTION FOR PASSING SCORES
IN THE BINOMIAL ERROR MOD.::L

Huynh Huynh

University of South Carolina

Psychometrika, June 1980.

ABSTRACT

A nonrandomized minimax solution is presented for passing

scores in the binomial error model. The computation doe. not

require prior knowledge regarding an individual examinee or group

test data for a population of examinees. The npvimum passing score

minimizes the maximum risk which would be incurred by misclassifi-

cations. A closed-form solution is provided for the case of con-

stant losses, and tables are presented for a variety of situations

including linear and quadratic losses. A scheme which allows for

correction for guessing is also described.

1. INTRODUCTION

Much interest has been generated in recent years on the setting

of passing (mastery or cutoff) scores. Situations in which passing

scores are needed include (a) entrance requirements for an instruc-

tional program, (b) advancement of students from one instructional

unit to the next, presumably more complex unit, (c) certification

This paper has been distributed separately as RM 78-2, December, 1978.
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for occupations and the professions, and (d) minimum competency

testing legislated in several states. Most procedures for setting

passing scores fall into three broad categories: comparisons with

the performance of other individuals (e.g., using norm-referenced

data), an examination of item content (e.g., sv-h procedures as the

Nedelsky scheme), and a consideration of the consequences incurred

by misclassifications. A fairly comprehensive review of some of

these procedures may be found in Meskauskas (1976) and in Hambleton,

Swaminathan, Algina, and Coulson (1978).

Misclassifications may be characterized by their probabilities

of occurrence and losses. The papers by Fhandr (1974) and by

Wilcox (1976) consider the selection of passing scores and of test

length which would set maximum tolerable limits for the percents of

false positive and false negative errors in decision. Both papers

rely on the concept of indifference zones centered around the mini-

mum true ability for mastery, and the procedures so presented may

be generalized to include the case of arbitrary but constant losses.

As subsequently described, the Fhandr-Wilcox presentation may be

framed within the minimax context in statistical decision theory.

A simultaneous consideration of false positive errors, false

negative errors, and losses--often referred to as the decision-

theoretic approach to setting passing scores--is presented in a

number of sources including Swaminathan, Hambleton, and Algina

(1975); Huynh (1976, 1977); and van der Linden and Mellenbergb

(1977). These papers take into account knowledge concerning the

true ability of the examinees, and therefore may be applicable when

passing scores are to be set for a group of examinees. The r.oce-

dure advanced by Swaminathan et al. (1975) is based on the assump-

tion of exchangeability of prior information as described in Lindley

and Smith (1972) and implemented in Novick, Lewis, and Jackson

(1973). It requires specification of how mach prior informatics is

exchangeable. On the other hand, solutions proposed by Huynh (1976,

1977) may be classified as Bayes or empirical Bayes. The first

qualifier applies to the case of the individual examinee, when the

20
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prior distribution regarding his ability must be available. This

distribution may be assessed via procedures described in Novick and

Jackson (1974) and implemented via the CADA system (Novick, Isaacs,

and DeKeyrel, 1977). The second category, empirical Bayes, may be

used when test data are available for a group of examinees.

The empirical Bayes approach seems appropriate where past data

or data collected in field testing are used for setting passing

scores for future examinees who will take the same test or alter-

nate forms of the same test. There are, however, situations in

which such group data or prior information about the individual

examinee mey not be appropriate. This is the case of individualized

instructional programs. Here decisions regarding mastery or nor-

mastery for an individual examinee ought to be based solely on the

subject's test score, not on the performance of other examinees

who happen to be in the same situation.

The present paper focuses on a minimax approach to setting

passing scores. This procedure does not require specification of

prior information regarding the ability of an individual examinee

or group of examinees. Using this procedure, a passing score may

be established prior to any administration of the test. Section 2

of this paper presents the overall minimax framework for binary

classifications. In subsequent sections, various illustrations are

provided, based on the binomial error model.

2. BASIC ELEMENTS OF THE MINIMAX PROCEDURE

The true ability of a given examinee is defined as 6 with

range Q. For the binomial error model (Lord & Novick, 1968,

chap. 23), 6 is the proportion of items in a large item pool that

the examinee is expected to answer correctly, and Q is the interval

[0,1]. If a test is administered to the examinee, it is assumed

that his observed test score x is distributed according to a condi-

tional density f(x16). In subsequent discussions, the notation

P(A10) denotes the conditional probability that x is in A given

that the true ability is 6.
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A referral task (Huynh, 1976) shall be assumed to exist. The

task is operationally defined via a nondecreasing function s(0)

which specifies the probability that an examinee with true ability

0 will succeed in performing the task. The referral task may be

real or hypothetical. For example, if the test scores reflect

achievement in the current instructional unit, then the next, pre-

sumably more advanced, unit may serve as the referral task. This

may be the case, for example, if instructional units are hierarch-

ically sequenced according to the level of complexity (Huynh and

Perney, 1979). In other situations, such as minimum competency

testing, a consensus on what constitutes an acceptable level of

performance may be conceptualized as a referral task. To be spe-

cific, let it be agreed that in order to qualify as a true master,

an examinee must have a true ability of at least 0 The the

referral success function may be taken as 5(0) = 0 for 0 < 0
o

and

s(0) = 1 for O.>
o

. The constant 0
o

is referred to as a criterion

level by Hambleton and Novick (1973) and a true mastery score by

Huynh (1976).

The examinee will be classified in either the mastery status

(action a
1
) or the nonmastery status (action a

2
) on the basis of

the test score x and by relying on some decision rule c. Given a

specific true ability score 0, test scores may take a variety of

values in a certain range. Hence, for each examinee, actions al

and a
2
may both have positive probabilities of being chosen, These

probabilities sum to one since either a
1
or a

2
must be taken. The

performance of the examinee on the referral task may be deemed

success (true state bl) or failure (true state b2). If the true

state is b
1,

then action a
1
should be taken. For b2, a

2
should be

selected. For these two cases, each )urse of action taken is the

best, hence no (opportunity) losses are involved. On the other

hand, the combination (a b
2
) constitutes a false positive decision,

and (a2,b1) a false negative classification. Let the loss asso-

ciated with (a
l'

b
2
) be C

f
(0) and that incurred by (a2,b1) be C

s
(0).

These losses are functions of a particular true ability O. At this

22
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true ability, b1 occurs with probability s(8) a.id b2 with probability

1 - s(8). Hence, the loss is expected to be Cf(8)(1-s(8)) for

taking action al, and C
s
(8)s(8) for taking action a2.

Consider the decision rule denoted by c. This rule partitions

the range of the test scores into two disjoint subsets: Al (tor

action a1), and A
2

(for action a2),) each with a conditional probabil-

ity of P(A118) and P(A2I8), respectively. For an examinee with true

ability 8, the expected loss associated with c is

L(c,8) '2 Cf(e)(1-s(0))*P(A1le) + Cs(0)'s(0)*P(A210). (1)

Let

M(c) = sup L(c,8). (2)
eat

Then .he minimax decision rule c
o

is the one which corresponds to

the minim,-, (if it exists) of M(c) when c ranges in the space con-

sisting of alp nossible decision rules. This paper, however, will

restrict itself to she case of nonrandomized decision rules.

More details regarding the minimax principle and its relation-

ship with Bayesian decision procedures (as implemented in Huynh

(1976), for example) may be found in Ferguson (1967). The reader

may note that, in a number of situations, there exists a (least

favorable) prior distribution on the true ability such that the

corresponding Bayes solution is exactly the same as the minimax

decision rule.

The remaining portion of this paper will deal only with the

binomial error model when it is used with a 0-1 form for the

referral success function. The binomial error model appears to be

applicable when the test given to each examinee can be thought of

as a random sample of items drawn from a large item pool. On the

other hand, the 0-1 form for s(8) implies a consensus on a minimum

level of mastery on the true ability continuum.

3. THE BINOMIAL ERROR MODEL WITH 0-1 REFERRAL SUCCESS

Consider the case where s(8) = 0 for 8 < 80 and s(8) = 1 for

8 2. 8 In the simple context of mastery testing, the inequality

23
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"0 < 0 0" describes a true nonmastery state whereas the inequality

"01 0 0" indicates a true mastery state. In other words, F0 is the

minimum true ability that an examinee must have in order to qualify

for true mastery in the domain of content under consideration. It

follows that the expected loss associated with the decision rule c

as specified in (1) becomes

Cf(0)P(A1 10) if 0 < 0
L(c,0) = (3)

Cs(0)P(A210) if 0 > 00.

Now let

L
1
(c) = sup C

f
(0)P(A

1
10)

0<0
0

and

L
2
(c) = sup Cs(0)P(A

2
10).

Oleo

then

M(c) = max (L1(c),L2(c)}.

Suppose that for a fixed 0, the distribution of x follows the
x

binomial density function f(x) = This is called the

binomial error model (Lord & Novick, 1968). Such a distribution

belongs to the monotone likelihood ratio family (Ferguson, 1967,

chap. 5). Under fairly general conditions regarding Cf(0) and

C
s
(0), the search for a nonrandomized minimax rule c0 may be con-

fined to the class of partitions of the test score range

Al = {x;x < c - 1} and A
2
= {x;x > c} defined by a cutoff score c.

The cutoff score c0, which corresponds to the minimax rule c
o
, will

be referrea to as the minimax _passing score. There are two degen-

erate cases which correspond to c = 0 and c = n + 1. When c = 0,

Al is empty, and hence the examinee is declared a master regardless

of his test score. On the other hand, A2 is empty if c = n + 1.

For this situation, mastery is always denied.

-t follows that the minimax passing score may be found by

minimizing the function M(c) = max (L1(c),L2(c)} where
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L.nd

n

L
1
(c) = sup C

f
(6)

6<6
o

x=c

c-1
L2(c) = sup Cs(6)

6>60 x=o

(4)

(5)

The following section will provide the detailed computations

for the case of constant losses.

4. THE BINOMIAL ERROR MODEL WITH 0-1
REFERRAL SUCCESS AND CONSTANT LOSSES

Let e1 and
e2

be two suitably chosen nonnegative constants

such that 0 < 6
o

- e
1

< 6
o
+ e2 < 1. Without loss of generalit ,

the case of constant losses may be specified as follows:

and

C
f
(6) =

Cs(e) =

1

0

Q

0

if

if

if

1.f

6 < 6
o

- c
1

60 -
el

<. 6 < 60,

6
o
+

e2
.< 6

e2.6
o

< 6 < 6
o
+

Thus the region 6cDo - el, 60 + £23 is an indifference zone. For

an examinee with a true ability within this region, it does not

matter whether action a
1

or a
2

is taken. It may be noted that the

constant Q is the ratio of the loss caused by a false negative

decision to that incurred by a false positive decision (i.e.,

Q = Cs(6) Cf(6)).

It can be verified that the functions Li(c) and L2(c) as

detailed in (4) and (5) are given as

and

n

L
1
(c) = E

fnwe Ixfi_e ,L-x
vx/v o 11 v o `11

x=c

c-1
L
2
(c) = Q E (n)(6 +c

2
)x(1-6

o
-c

2
)n-x.

o
x=o

25
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For the general case where ci and E2 are not zero, the search for

the minimax passing score co may be accomplished by computing the

value of M(c) = max {L1(c),L2(c)} for each value c = 0, 1, 2,..., n+1,

and then selecting the value co at which M(c) is the smallest.

Numerical Example

Assume n = 5, 00 = .80, el = .10, e2 = .05, and Q = .80.

Table 1 reports the values of
'

L_
i

L2, and M at the passing scores

of 0, 1, 2, 3, 4, 5, and 6. Note that both 0 and 6 are degenerate

passing scores. The minimax passing score is c0 = 5.

TABLE 1

Values of the Functions L
1,

L2, and M

Function
Passing Score

0 1 2 3 4 5 6

L
1
(c) 1 .99757 .96922 .83692 .52822 .16807 0

L
2
(c) 0 .00006 .00178 .02129 .13183 .44503 .80

M(c) 1 .99757 .96922 .83692 .52822 .44503 .80

The minimax passing score is c = 5. All computations were carried
out with a table of cumulative °binomialbinomial diStributions.

The aforementioned discussion encompasses part of the presenta-

tion by Wilcox (1976) regarding the length and passing score of a

mastery test. Table I of the Wilcox paper provides minimax passing

scores for the following combinations: n = 8 (1) 20, 60 (Wilcox's

n
o

) = .70 (.05) .85, e
1
= c

2
(Wilcox's c) = .05, .10, and Q = 1.

The maximum expected loss, M(c
o
), associated with the minimax

passing score is obtained by subtracting from one the minimum

probability of a correct decision as tabulated in Wilcox's Table I.

For examnle, with n 10, 0 = .75, el = e2 = .05, and Q = 1, the

minima:: passing score is c0 = b. The corresponding maximum expected

loss is M(co) = 1 - .6172 = .3828.

The remaining part of this paper will focus on the case

1
=

2
= 0. It follows from Equations (6) and (7) that

M(c) = max fL1(c),Q.(1-L1(c)))
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where

n
L
1
(c) = E (

n
)0 (1-0

o
)n-x .

x
x=c

(8)

If the test score x were continuous, the minimax passing score c

would be the one at which L
1
(c) = Q(1-L

1
(c)). In other words, it

would satisfy the equation

n

E (
n
)0
x
(I-0 )

n-x
2r, o o 1+01'

X=C
o

(9)

If this equation has an integer solution c
o

, then c
o

is the minimax

passing score. Otherwise, let c' be the smallest integer such that

n

E (
n
)0
x
(1-013)

n-x Q
x o 14.Q.

0

(10)

The minimax passing score will be either c.") or c:3-1 (or possibly

both), whichever minimizes the maximum expected loss M(c).

Numerical Example

Let n = 10, 0 = .70, and Q = .5. Then via a table of cumula-

tive binomial distributions, it may be found that co = 9. At the

cutoff score 9, M(c) = 4253, and at the other cutoff score 8

(=c'-1), M(c) .3828. Thus the minimax passing score is c
o

= 8.

Now let I(p,q;t) denote the incomplete beta function as tabu-

lated in Pearson (1934) and implemented via computer routines such

as BDTR of the IBM Scientific Subroutine Package (1971) or MDBETA

of the International Mathematic.l and Statistical Library (1977).

Inequation (10) may now be written as

I(co,n-co + 1;0
o
) <

1+01
(11)

This inequality is reminiscent of the one defining the Bayes

(or empirical Bayes) passing score for the beta-binomial model as

presented in Huynh (1976, p. 70-72). In fact, let us impose on the

true ability 6 the prior beta density with parameters a and a.

Then the Bayes (or empirical Bayes) passing score is the smallest

integer cl at which
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I(a+ci,n+8-c *0
o 1+Q
) < (12)

It appears from (11) and (12) that the minimax passing score co and

the Bayes passing score cl do not differ by more than one unit if

a = 1 and if a is sufficiently small.

A special note is due for the case Q = 1, i.e., when the conse-

quences associated with false positive decisions and false negative

decisions are weighted equally. Equation (9) or Inequation (4.0)

indicates that the minimax passing score co would be chosen such

that, for an examinee with true ability 00, chances are about equal

that he would be classified as a master or a nonmaster on the basis

of the test score.

Finally, a normal approximation is available for reasonably

large n and for 00 not too close to 0 or 1. Let C be the 100/(1+Q)

percentile of the unit normal distribution. The minimax passing

score may be approximated by the quantity

c
o

= nO
o
+ C(n0 (1-0

o
)) .

5. THE BINOMIAL ERROR MODEL WITH 0-1 REFERRAL SUCCESS
AND POWER LOSSES CENTERING AROUND 00

P1
Consider now the loss functions C

f
(0) = (0 -0) for 0 < 0

P2
and Cs(0) = Q(0-00) for 0 > 00, where pl, p2, and Q are positive

constants. Linear losses correspond to pl = p2 = 1 and squared

error losses are obtained by letting pl = p2 = 2. At the cutoff

score c, we have

and

p n
L
1
(c) = sup (0 -0)

1
(:)0x(1-0)

n-x

e<e
o

x=c

p
2

c-1
L
2
(c) =sup Q(0-0 ) (n)0x(1-0) n-x

0>0
o

0

For the special case c = 0, L
1
(c) =

00J
and L

2
(c) = 0, hence

P
M(c) = 0

i

o
. On the other band, when c = n+1, L

1
(c) = 0 and

L
2
(c) = Q(1-0 0)

p2
, hence M(c) = Q(1-0 0)

p2
. For other situations

where 1 < c < n, it may be shown that there exist two values 01
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and e
2'

0 < el < eo < e2 < 1 such that at each cutoff c,

and

pl n
L1(c) =

o
-el) E (:)031(1-01)n-x

x =c

P2 c-1
L2(c) = Q(02-00) E

(:)(332(1-e2)n-x.
x=o

(13)

(14)

As in all previous discussions, M(c) = max {L1(c),L2(c) }. The

minimax passing score co is the one at which the maximum expected

loss M(c) is minimized.

The determination of e
1
and e

2
at each cutoff score c may be

carried out via numerical approximation procedures such as the

Newton-Raphson algorithm for solving nonlinear equations.

5.1. Searching for L1(c)

Consider now the function

ye) = E (:)ex(1-e)n-x.
x=c

The first derivative Z'
1

of Z
1
with respect to e is given as

v(e) = E (:)r
1 n x 1)vex- (1-e) n-x - (n-x)exu-e) ).

x=c

Taking into account that

(
n
)x = n(

n-1
)

x-1

and

(n)(n_x) o(n-1),

it follows that

or

n1
Z1(e)

n( (n-lNex-1(1 _on-x fn-lNex(i_e)n-x-1]
-Lvv,

x-11
x=c x=c

nco) = c(dec-1 (1-e)n-c .

Now let
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H1(0) = (0o-0) 1 Z
1
(0) .

Then the value 0 of 0 which maximizes H1(0) satisfies the equation

H'1 (0
1
) = 0, where

p 1-1 F
H1(0) =-p1(0o- e) z

1
(e) + (0

o
-0)

l
Z'(u,.
1

In other words, 01 satisfies the equation D1(01) = 0, where

(n)ex(i_on-x 0(n) _00.2-1(i_on-c=
1 1 1 x c o

To solve this equation via the Newton-Raphson algorithm, the

derivative D'(0) is needed. It is given as

where

c(1)0C....2(1..0)11C".4G1(0)

G1(0) = -(p1+1) 0(1-0) + (00-0)(c-1-(n-1)0)

f

G1(0) = (n+p1)0
2
- tpl+c+(n-1)00)0 + (c-1)0

Consider first the situation where c > 1. It may be seen from

(17) that G1(0) = (c-1)00 > 0 and G1(00) = -(p1+1)e0(1-00) < 0.

Hence it may be seen that G,(0) vanishes at only one point, 0

between 0 and 0 The value of 0 is given as

* pi+c+(n-l)d0 - {(pi+c+(n-1)00)
2
- 4(n+pi)(c-1)00111

0 =
2(n+pi)

*
It follows that D'(0) is positive when 0 < 0 < 0 and negative when

1

0 < 0 <
o

. In other words, D
1
(0) is increasing when 0 < 0 < 0 ,

* *
is decreasing when 0 < 8 < 8 and reaches a maximum at 8 = 8 .

Since D
1
(0) = 0, D

1
(0

1
) > O. On the other hand, D

1
(0
o
*
) < 0 as may

be seen from (15). Hence D1(0) = 0 at only 01 where 0 < el < 00.

By entering c = ] directly in Equation (15), it may also be argued
*

that D1(0) = 0 at only 01 somewhere between 0 = 0 and 00.

The above discussion indicates that the value 0
1
may be obtained

via the Newton-Raphson iteration procedure with input data D1(0) and

W(0) computed via (15), (16), and (17). The iteration process has
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been found to converge if the suitably chosen starting value for

is somewhere between 6 and 6
o

.

5.2. Searching for L2(0)

In the expression defining L2(2) at the beginning of this

section, let E
o

= 1-6 E = 1-6, y = n-x, and d = n -c +l. It then

may be seen that

2 n n y n-yL2(c) = Q sup (E0-E) E ( )E (1-E)

k. Eo
y=d Y

It follows that the search for 62, and hence L2(c), may be conducted

in the same way as in the locating of 61.

6. A FRAMEWORK OF CORRECTION FOR GUESSING

Consider now the case where each test item has A alternatives,

and let us assume that an examinee without knowledge on a given item

will randomly choose one of the A alternatives as his response.

Thus the framework of knowledge-or-random-guessing is used in the

present section.

As in previous sections, let 6 be the true proportion of items

Chet an examinee has knowledge of and would respond correctly to if

given. Since the examinee guesses randomly on the remaining items

(which account for a proportio. 1-6), and since each item has A

alternatives, the proportion of items that would be answerci cor-

rectly by pure guessing is (1-6)/A. Thus an examinee with true

ability 6 will actually have a probability of t = 6+(1-6)/A to

answer correctly each item of the pool of items from which the test

is assembled. It may be noted that since 0 < 3 < 1,
1

< t < 1.

Now let 60, pl, and p2 have the same meaning as in the begin-

ning of Section 5, and let

t
o o

= 6 +(1-6
o
)/A.

Then it may be seen that

6-6 =
A

)
o A1 o

and hence
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A
1

P1 P1 n n
L1(c) = (A- ) sup (to-0 E (dt

x
(1-t;

n-x
,

1 x=
<t<t

c

A o

A P
2

p
2

c-1
L2(c) = Q(A1 ) sup (t-to) E (:)t(1-t)n-x.

t>t x=o
o

For the two degenerate cases c = 0 and c = n+1, the maximum

expected loss M(c) takes the values

A P1 1 P2
M(0) = (1-.7f) (to -

and

(19)

(20)

A
p
2 P

2
M(n +l)

Q(-AT) ( 1-to) .

As for 1 < c < n, the search for L
2
(c) of (20) may be conducted via

the procedure described in Section 5.2. The value L1(c) from (19),

with the constraint < t < t
o
, may be obtained by going throughA--

the steps described in Section 5.1 to obtain the maximum of the

function

g(t) = (to- tj
xPl

E (
n
)t

x
(1-t)

n-x

X=C

under the constraint t < t and the value t* at which the maximum
o

occurs. If t* > A1, then

A P
1

L1(c) g(t*)

1On t1 othe
A

r hand, if t* < than

A Pl
1

Ll (c) =
A- 1)

g(A)

As in other cases, M(c) = max {11(c),1,2(c)) and the minimax passing

score is the one di which M(c) is the sma llest.

Numerical Example

et n = 15, 00 = .60, A = 4, pl = p2 = .5, and Q = .25. The

minimax passing score is 12. Without correction for guessing, the

minimax passing score would be 11.
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7. RELATIONSHIP BETWEEN MINIMAX PASSING
SCORES AND OTHER PARAMETERS

Extensive computations as well as the examination of Appendix A

reported in Section 8 reveal that, other things being the same, the

minimax passing score is a nondecreasing function of n, 00, and p2

and a nonincreasing function of A, p1, and Q. These trends seem to

be justified intuitively. For example, a low Q or a high p2 will

reduce the consequences incurred with a false negative error;

hence, a higher passing score might be needed to dampen the overall

expected loss associated with the decision problem. On the other

hand, high values of pl will reduce the consequences of a false

positive error, thus making a lower passing score tolerable. As

for the number A of alternatives, a low value for A will provide

opportunity for some extra probability of getting a correct answer

beyond the true ability of the examinee. Thus it would be sensible

to increase the passing score in order to offset this unwarranted

benefit.

8. TABLES OF MINIMAX PASSING SCORES

The computations described in Sections 5 and 6 may be imple-

mented where computer facilities are available. A FORTRAN IV

routine will be described in the next section. In a number of

instances, however, a passing score might be needed quickly.

Appendix A presents a set of tables of passing scores for the case

of no correction for guessing (Section 5) only.

All computations were carried out via the FORTRAN program

described in Section 9. The tables are set up with the presumption

that the false-negative consequences are less serious than those

incurred by false positive errors. The parameter Q is set at .25,

.50, .75, and 1.00. Sixteen combinations of pl and p2 are used,

namely those in which these parameters vary from .50 to 2.00 in steps

of .50. The number of items is set at n = 3 (1) 20, and the crite-

rion level at 8 = .50 (.05) .90.

It is possible to get a passing score of n+1, especially whet

e
o

is large and/or Q is small. Such a mastery score indicates that
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nonmastery is always declared regardless of test score. This

peculiarity is due to the discontinuous nature of the binomial

probability density and produces the seeming paradox noted in the

papers by Novick and Lewis (1974, p. 153-154) and by Wilcox (1976,

p. 362, footnote) and in Section 10 of this report. In a practical

sense, the peculiarity may be avoided by (i) not allowing 60 to be

unrealistically high, and(ii) not letting the loss associated with

one type of error in decision (false positive or false negative)

dominate that associated with the other type of error.

In a number of instances, it may be possible to deduce a pass-

ing score for nontabled entries by taking advantage of the relation-

ships described in Section 7.

Example 1

Let n = 10, pl = p2 = .5, and Q = .75. At 60 = .70 and .75,

the passing score is 8. Hence for all e between .70 and .75, it

may be assumed that the passing score is also 8.

Example 2

Let n = 10, pl = .5, 00 = .70, and Q = .25. At both p2 = .5

and 1.0, the passing score is 9. It may be assumed that the same

passing score holds for any p2 between the two given values.

9. COMPUTER PROGRAM

A FORTRAN IV routine for passing score computations based on

Sections 5 and 6 is listed in Appendix B. The program requires

two packaged subroutines, DRTNI from the Scientific Subroutine

Package (1971) and MDBIN of the International Mathematical and

Statistical Library (1977).

The main part of the program contains an attempt to solve

Equation (15) iteratively at each c via the Newton-Raphson procedw-e

for nonlinear equations, as implemented by DRTNI. A good starting

value for 6 is required for convergence; therefore, the following

steps are built into the program.

1. First, the value 6 of Section 5.1 is computed.
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2. The interval (e ,e
o
) will then be divided into N equal

intervals using (N-1) points. The value of D1(e) of (15)

is computed at successive dividing points until two

points, ea and et., are found such that the product

D
1
(e
a
)D

1
(e
b
) < O.

3. Then the interval (ea,0b) will be subdivided in M equal

intervals in order to search for two successive dividing

points et, ea such that D1(et)D1(es) < O.

4. Finally, the starting value for DRTNI is set at

(et es)/2'

In the construction of the tables of Section 8, the following

values were used: N = 20 and M = 50. The tolerance for e was set

at EPS = .0001. Subroutine DRTNI converged in all cases listed in

the tables. For long tests along with ec very near 0 or 1, an M

larger than 50 might be needed for convergence.

10. A SEEMING PARADOX

Consider the mastery decision defined by the parameters n = 3,

eo = .8, pl = p2 = .5, and Q = .25. The nonrandomized minimax

passing score is 3, at which the maximum expected loss M(c) is .218.

?'ow let us suppose that the decision has been carried out on a

continuous random variable Y independent of the ability e of the

examinee. Let c be any cutoff score. Then

P1 fL1(c) = sup 00-0) P(Y > .89443 P(Y > c)
0<0

and

P2 rL2(c) = Qsup wed P(Y < c) = .11180(1-p(Y > c)).
0).0

o

It follows the maximum expected loss M(c) is minimized when

L
1
(c) = L

2
(c) at which P(Y > c) = .111, and M(c) = .100. Thus, as

judged by the minimax principle, the decision rule of randomly

assigning mastery status with an 11.1 percent. probability and

lionmastery status with an 88.9 percent probabilitI is better than

that based on the test score!
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The apparent paradox is actually caused by the restriction of

the decision problem to the class of nonrandomized classifications

defined by the pr sing scores of 0, n, n+1. A similar

contradiction is also displayed in a paper by Wilcox (1976) in

which the minimum probability of a correct decision is not an

increasing function of the number of test items.

The paradox, however, may be resolved by a consideration of

the entire class of randomized decision rules. It is well known

( Ferguson, 1967, Section 2.8) that under fairly general conditions,

there always exists a randomized decision rule which is as good as

or better than a given nonrandomized decision rule. Randomized

minimax decisions, unfortunately, seem harder to approach than

nonrandomized decisions.

11. SUMMARY

In this re, 'rt solutions are provided for the setting of pass-

ing scores within the context of nonrandomized decisions based on

the binomial test score model. No issumption is required regarding

the true ability distribution of the individual examinee or of the

group of examinees under. study. The model assumes that the test is

formed by a randum selection of items from a large (real or hypo-
.

thetical) pool of items. In , dition, it requires specification of

the minimum true ability for mastery and of consequences incurred

by misclassification errors. A scheme for correction-for-guessing

within the minimax framework is also pres''ted. Tables and descrip-

tions a computer program are also provided to facilitate the

determination of passing scores.
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APPENDIX A

Tables of Minimax Passing Scores
in the Binomial Error Model
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Table of Minimax Mastery Scores in the Binomial Error Model
with p

1
=0.5 and p

2
=0.5

eog.)=

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q =0.25 Q=0.50

3 3 3 3 3 3 3 3 4 4 3 2 3 3 3 3 3 3 3 4
4 3 4 4 4 4 4 4 5 5 4 3 3 3 4 4 4 4 4 4
5 4 4 4 5 5 5 5 5 6 5 3 4 4 4 4 5 5 5 5
6 4 5 5 5 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 5 6 6 6 7 7 7 7 7 5 5 5 6 6 6 7 7 7
8 6 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 7 8 8
9 6 7 7 7 8 8 9 9 9 9 6 6 6 7 7 8 8 9 9

10 7 7 8 8 9 9 10 10 10 10 6 7 7 8 8 9 9 10 10
11 7 8 8 9 9 10 10 11 11 11 7 7 8 8 9 9 10 10 11
12 3 8 9 10 10 11 11 12 12 12 7 8 8 9 10 10 11 11 12
13 8 9 10 10 11 11 12 13 13 13 8 8 9 10 10 11 12 12 13
14 9 10 10 11 12 12 13 13 14 14 8 9 10 10 11 12 12 13 14
15 9 10 11 12 12 13 14 14 15 15 9 9 10 11 12 12 13 14 15
16 10 11 12 12 13 14 15 15 16 16 9 10 11 12 12 13 14 15 16
17 10 11 12 13 14 15 15 16 17 17 10 11 11 12 13 14 15 16 16
13 11 12 13 14 15 15 16 17 18 18 10 11 12 13 14 15 16 17 17
19 12 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 16 17 18
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 :15 16 17 18 19

0000= e000=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 55 70 75 80 85 90

Q0.75 Q=1.00

3 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 4
5 3 3 4 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 4 5 5 5 6 6
7 4 5 5 5 6 6 6 7 7 7 4 4 5 5 5 6 6 7 7
8 5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 7 8
9 5 6 6 7 7 8 8 8 9 9 5 5 6 6 7 7 8 8 9

10 6 6 7 7 8 8 9 9 10 10 5 6 7 7 8 8 9 9 10
11 6 7 7 8 9 9 10 10 11 11 6 7 7 8 8 9 9 10 11
12 7 7 8 9 9 10 10 11 12 12 6 7 8 8 9 10 10 11 11
13 7 8 9 9 10 11 11 12 13 13 7 8 8 9 10 10 11 12 12
14 3 9 9 10 11 11 12 13 13 14 7 8 9 10 10 11 12 13 13
15 8 9 10 11 11 12 13 14 14 15 3 9 10 10 11 12 13 13 14
16 9 10 10 11 12 13 14 14 15 16 8 9 10 11 12 13 13 14 15
17 9 10 11 12 13 14 14 15 16 17 9 10 11 12 12 13 14 15 16
18 10 11 12 13 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 1C 19 10 11 12 13 14 15 16 17 18
20 11 12 13 14 13 16 17 18 19 20 10 12 13 14 15 16 17 18 19
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Table of Minimax Mastery Scores in the Binomial Error Model
with p

1
=0.5 and p2 -1.0

e000= 000D=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q=0.25 Q=0.50

3 3 3 3 3 3 4 4 4 4 3 3 3 3 3 3 3 4 4 4
4 4 4 4 4 4 4 5 5 5 4 3 4 4 4 4 4 4 5 5
5 4 5 5 5 5 5 6 6 6 5 4 4 4 5 5 5 5 6 6
6 5 5 5 6 6 6 6 7 7 6 5 5 5 5 6 6 6 6 7
7 5 6 6 7 7 7 7 8 8 7 5 5 6 6 7 7 7 7 8
3 6 7 7 7 8 8 3 9 9 8 6 6 6 7 7 8 8 8 9
9 7 7 8 8 8 9 9 9 10 9 6 7 7 8 8 8 9 9 10

10 7 8 8 9 9 10 10 10 11 10 7 7 8 8 9 9 10 10 10
11 8 8 9 10 10 10 11 11 12 11 7 3 9 9 10 10 11 11 11
12 8 9 10 10 11 11 12 12 13 12 8 9 9 10 10 11 11 12 12
13 9 11 10 11 12 12 13 13 14 13 9 9 10 11 11 12 12 13 13
14 10 10 11 12 12 13 14 14 14 14 9 10 11 11 12 13 13 14 14
15 10 11 12 12 13 14 14 15 15 15 10 10 11 12 13 13 14 15 15
16 11 12 12 13 14 15 15 16 16 16 10 11 12 13 13 14 15 16 16
17 11 12 13 14 15 15 16 17 17 17 11 12 13 13 14 15 16 16 17
13 12 13 14 15 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18
19 13 14 14 15 16 17 18 19 19 19 12 13 14 15 16 17 17 18 19
20 13 14 15 16 17 18 19 20 20 20 12 13 14 15 16 17 18 19 20

6000= eo00=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q=0.75 Q=1.00

3 3 3 3 3 3 3 3 4 4 3 2 3 1 3 3 3 3 3 4
4 3 3 4 4 4 4 4 4 5 4 3 3 3 4 4 4 4 4 5
5 4 4 4 4 5 5 5 5 6 5 4 4 4 4 5 5 5 5 6
6 4 5 5 5 6 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 5 6 6 6 7 7 7 7 7 5 5 5 6 6 6 7 7 7
8 5 6 6 7 7 7 8 8 8 8 5 6 6 6 7 7 8 Et 8
9 6 6 7 7 8 8 9 9 9 9 6 6 7 7 8 8 9 9 9

10 7 7 8 8 9 9 10 10 10 10 6 7 7 8 8 9 9 10 10
11 7 8 3 9 9 10 10 11 11 11 7 7 8 9 9 10 10 11 11
12 3 8 9 10 10 11 11 12 12 12 7 8 9 9 10 10 11 12 12
13 8 9 10 10 11 11 12 13 13 13 ri 9 9 10 11 11 12 13 13
14 9 10 10 11 12 12 13 14 14 14 9 9 10 11 11 12 13 13 14
15 9 10 11 12 12 13 14 14 15 15 9 10 11 11 12 13 14 14 15
16 10 11 12 12 13 14 15 15 16 16 10 10 11 12 13 14 14 15 16
17 10 11 12 13 14 15 15 16 17 17 10 11 12 13 14 14 15 16 17
13 11 12 13 14 15 15 16 17 18 18 11 12 13 13 14 15 16 17 18
19 12 13 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 13 19
20 12 13 14 15 16 17 18 19 20 20 12 13 14 15 16 17 18 19 2n
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Table of Minimax Mastery Scores in the Binomial Error Model
with p .00.5 and p

1 2

o (7)= eo(7)=

50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q-0.50

3 3 3 3 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4

4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 5 5 5

5 5 5 5 5 5 6 6 6 6 5 4 4 5 5 5 5 6 6 6

6 5 5 6 6 6 6 7 7 7 6 5 5 5 6 6 6 6 7 7

7 6 6 7 7 7 7 8 8 8 7 5 6 6 7 7 7 7 8 8

8 6 7 7 8 8 8 9 9 9 8 6 7 7 7 8 8 8 9 9

9 7 8 8 8 9 9 9 10 10 9 7 7 8 8 8 9 9 10 10

10 8 8 9 9 10 10 10 11 11 10 7 8 8 9 9 10 10 10 11

11 8 9 9 10 10 11 11 12 12 11 6 9 9 10 10 11 11 11 12

12 9 10 10 11 11 12 12 13 13 12 9 9 10 10 11 11 32 12 13

13 10 10 11 11 12 13 13 13 14 13 9 10 10 11 12 12 13 13 14

14 10 11 12 12 13 13 14 14 15 14 10 10 11 12 12 13 14 14 15

15 11 12 12 13 14 14 15 15 16 15 10 11 12 13 13 14 15 15 16

16 11 12 13 14 14 15 16 16 17 16 11 12 13 13 14 15 15 16 17

17 12 13 14 15 15 16 17 17 18 17 12 12 13 14 15 16 16 17 18

13 13 14 14 15 16 17 18 18 19 18 12 13 14 15 16 16 17 18 18

19 13 14 15 16 17 18 18 19 20 19 13 14 15 16 16 17 18 19 19

20 14 15 16 17 18 19 19 20 21 20 13 14 15 16 17 18 19 20 20

eo0D= 6(70°'

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q -0.75

3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 4 4 4

4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 4 4 4 5 5

5 4 4 5 5 5 5 5 6 6 5 4 4 4 5 5 5 5 6 6

6 5 5 5 6 6 6 6 7 7 6 5 5 5 5 6 6 6 7 7

7 5 6 6 6 7 7 7 8 8 7 5 5 6 6 7 7 7 7 8
8 6 6 7 7 7 8 8 8 9 8 6 6 7 7 7 8 8 8 9

9 6 7 7 8 8 9 9 9 10 9 6 7 7 8 8 9 9 9 10
10 7 8 8 9 9 10 10 10 11 lv 7 7 8 8 9 9 10 10 11
11 8 8 9 9 10 10 11 11 12 11 8 8 9 9 10 10 11 11 12
12 8 9 10 10 11 11 12 12 13 12 8 9 9 10 11 11 12 12 13
13 9 10 10 11 11 12 13 13 14 13 9 9 10 11 11 12 12 13 13
14 9 10 11 12 12 13 14 14 15 14 9 10 11 11 12 13 13 14 14
15 10 11 12 12 13 14 14 15 15 15 10 11 11 12 13 14 14 15 15
16 11 11 12 13 14 15 15 16 16 16 10 11 12 13 14 14 15 16 16
17 11 12 13 14 15 15 16 17 17 17 11 12 13 14 14 15 16 17 17
18 12 13 14 15 15 16 17 18 18 18 12 12 13 14 15 16 17 18 18
19 12 13 14 15 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19

20 13 14 15 16 17 18 19 20 20 20 13 14 15 16 17 18 19 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p1 -0.5 and p

2
.02.0

eo(7)

n 50 55 60 65 70 75 80
Q0.25

3 3 3 3 4 4 4 4
4 4 4 4 4 5 5 5

5 5 5 5 5 6 6 6
6 5 6 6 6 6 7 7

7 6 6 7 7 7 8 8
8 7 7 8 8 8 8 9
9 7 8 8 9 9 9 10

10 8 9 9 10 10 10 11
11 9 9 10 10 11 11 11
12 9 10 11 11 12 12 12
13 10 11 11 12 12 13 13
14 11 11 12 13 13 14 14
15 11 12 13 13 14 15 15
16 12 13 13 14 15 16 16
17 13 13 14 15 16 16 17
18 13 14 15 16 17 17 18
19 14 15 16 17 17 18 19
20 14 15 16 17 18 19 20

eoC4=
n 50 55 60 65 70 75 80

Q -0.75

3 3 3 3 3 4 4 4
4 4 4 4 4 4 5 5

5 4 5 5 5 5 5 6
6 5 5 6 6 6 6 7
7 6 6 6 7 7 7 7

3 6 7 7 7 8 8 8
9 7 7 8 8 9 9 9
10 8 8 9 9 9 10 10
11 3 9 9 10 10 11 11
12 9 9 10 11 11 12 12
13 9 10 11 11 12 12 13
14 10 11 11 12 13 13 14
15 11 11 12 13 14 14 15
16 11 12 13 14 14 15 16
17 12 13 14 14 15 16 17
18 12 13 14 15 16 17 17
19 13 14 15 15 17 18 18
20 14 15 16 17 18 18 19

85 90
GoOr.)'4

50 55

4 4 3

5 5 4
6 6 5

7 7 6
8 8 7

9 9 8
10 10 9

11 11 10
12 12 11
13 13 12
14 14 13
15 15 14
16 16 15
17 17 16
18 18 17
18 19 18
19 20 19
20 21 20

3 3
4 4
4 5
5 5

6 6
6 7

7 8
8 8
8 9

9 10
10 10
10 11
11 12
11 12
12 13
13 14
13 14
14 15

VD=
85 90 n 50 55

4 4 3 3 3
5 5 4 3 4
6 6 5 4 4
7 7 6 5 5
8 8 7 5 6
9 9 8 6 7

10 10 9 7 7
11 11 10 7 8
12 12 11 8 9
12 13 12 9 9
13 14 13 9 10
14 15 14 10 11
15 16 15 10 11
16 17 16 11 12
17 18 17 12 12
18 19 18 12 13
19 20 19 13 14
20 21 20 13 14

60 65 70 75 80 85 90
Q-0.50

3 3 4 4 4 4 4
4 4 4 5 5 5 5

5 5 5 6 6 6 6

6 6 6 6 7 7 7

E 7 7 7 8 8 8

7 8 8 8 9 9 9

8 8 9 9 9 10 10
9 9 10 10 10 11 11
9 10 10 11 11 12 12

10 11 11 12 12 13 13
11 12 12 13 13 14 14
12 12 13 14 14 14 15
12 13 14 14 15 15 16
13 14 15 15 16 16 17
14 15 15 16 17 17 18
15 15 16 17 18 18 19
15 16 17 18 19 19 20
16 17 18 19 19 20 21

60 65 70 75 80 85 90

3 3 3 4 4 4 4
4 4 4 4 5 5 5

5 5 5 5 6 6 6

5 6 6 6 7 7 7

6 7 7 7 7 8 8

7 7 8 8 8 9 9

8 8 9 9 9 10 10
8 9 9 10 10 11 11
9 10 10 11 11 11 12

10 10 11 12 12 12 13
11 11 12 12 13 13 14
11 12 13 13 14 14 15
12 13 13 14 15 15 16
13 13 14 15 16 16 17
13 14 15 16 16 17 18
14 15 16 17 17 18 19
15 16 17 17 18 19 20
15 16 17 18 19 20 21
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Table of Minimax Mastery Scores in the Binomial Error Mode/
with pl=1.0 and p

2

n
eo00=
50 55 60 65 70 75

Q=0.25
80 G5 90 n

eo0D=
50 55 60 65 70 75

Q=0.50
80 85 90

3 2 2 3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 4
5 3 4 4 4 4 5 5 5 5 5 3 3 3 4 4 4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 4 5 5 5 6 6
7 4 5 5 5 6 6 6 7 7 7 4 4 5 5 5 6 6 6 7
8 5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 6 7 7
9 5 6 6 7 7 8 8 8 9 9 5 5 6 6 7 7 8 8 9

10 6 6 7 7 8 8 9 9 10 10 5 6 6 7 7 8 8 9 9
11 6 7 7 3 8 9 10 10 11 11 6 6 7 7 8 9 9 10 10
12 7 7 8 9 9 10 10 11 12 12 6 7 7 3 9 9 10 11 11
13 7 8 9 9 10 10 11 12 12 13 7 7 8 9 9 10 11 11 12
14 8 8 9 10 11 11 12 13 13 14 7 8 9 9 1U 11 11 12 13
15 8 9 10 10 11 12 13 13 14 15 8 3 9 10 11 11 12 13 14
16 9 ' 10 11 12 13 14 14 15 16 8 9 10 10 11 12 13 14 15
17 9 1J 11 12 13 13 14 15 16 17 8 9 10 11 12 13 14 15 16
13 10 11 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 15 16
19 10 11 12 13 14 15 16 17 18 19 9 10 11 12 13 14 15 16 17
20 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18

0000= -00%)=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q=0.75 Q=1.00

3 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 3 3 3 3
4 2 2 3 3 3 3 4 4 4 4 2 2 2 3 3 3 3 4 4
5 3 3 3 3 4 4 4 5 5 5 2 3 3 3 4 4 4 4 5
6 3 3 4 4 4 5 5 5 6 6 3 3 4 4 4 5 5 5 6
7 4 4 4 5 5 5 6 6 7 7 3 4 4 4 5 5 6 6 6
S 4 4 5 5 6 6 7 7 7 8 4 4 5 5 6 6 6 7 7
9 4 5 5 6 6 7 7 8 8 9 4 5 5 6 6 7 7 8 8

10 5 5 6 6 7 8 8 9 9 10 5 5 6 6 7 7 8 8 9
11 5 6 6 7 8 8 9 9 10 11 5 6 6 7 7 8 9 9 10
12 6 6 7 8 8 9 10 10 11 12 6 6 7 7 8 9 9 10 11
13 6 7 3 8 9 10 10 11 12 13 6 7 7 8 9 9 10 11 12
14 7 7 8 9 10 10 11 12 13 14 6 7 8 9 9 10 11 12 13
15 7 8 9 10 10 11 12 13 14 15 7 8 8 9 10 11 12 13 13
16 8 8 9 10 11 12 13 14 14 16 7 3 9 10 11 12 12 13 14
17 8 9 10 11 12 13 13 14 15 17 6 9 10 10 11 12 13 14 15
13 9 9 10 11 12 13 14 15 16 18 8 9 10 11 12 13 14 15 16
19 9 10 11 12 13 14 15 16 17 19 9 10 11 12 13 14 15 16 17
20 9 10 12 13 14 15 16 17 18 20 9 10 11 12 13 14 15 17 18
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Table of Minimax Mastery Scores in the Binomial Error Model
with p ...IA and p =1.0

0o(7°)=

1 2

60a)rs

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q -0.25 Q=0.50

3 3 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3 4
4 3 3 4 4 4 4 4 4 5 4 3 3 3 4 4 4 4 4 4
5 4 4 4 5 5 5 5 5 6 5 3 4 4 4 4 5 5 5 5

6 4 5 5 5 6 6 6 6 7 6 4 4 5 5 5 5 6 6 6

7 5 5 6 6 6 7 7 7 7 7 4 5 5 6 6 6 7 7 7

8 5 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 7 8 8

9 6 6 7 7 8 8 9 9 9 9 5 6 6 7 7 8 8 Q 9

10 6 7 7 8 8 9 9 10 10 10 6 7 7 8 8 9 9 10 10
11 7 8 8 9 9 10 10 11 11 11 6 7 8 8 9 9 10 10 11
12 8 8 9 9 10 11 11 12 12 12 7 8 8 9 10 10 11 11 12
13 8 9 9 10 11 11 12 13 13 13 8 8 9 10 10 11 12 12 13
14 9 9 10 11 11 12 13 13 14 14 8 9 10 10 11 12 12 13 14
15 9 10 11 11 12 13 14 14 15 15 9 9 10 11 12 12 13 14 15
16 10 10 11 12 13 14 14 15 16 16 9 10 11 12 12 13 14 15 16
17 10 11 12 13 14 14 15 16 17 17 10 10 11 12 13 14 15 16 16
18 11 12 13 13 14 15 16 17 18 18 10 11 12 13 14 15 16 16 17
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 15 16 17 18
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

e0(70= 0o(7°)'

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.75 Q=1.00

3 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 4
5 3 3 4 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
6 4 4 4 5 5 5 6 f 6 6 3 4 4 5 5 5 6 6 6

7 4 5 5 5 6 6 6 7 7 7 4 4 5 5 6 6 6 7 7
8 5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 8 6
9 5 6 6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9

10 6 6 7 7 8 8 9 9 13 10 5 6 7 7 8 8 9 9 10
11 6 7 7 8 9 9 10 10 11 11 6 7 7 8 8 9 10 10 11
12 7 7 8 9 9 10 10 11 12 12 6 7 8 8 9 10 10 11 12
13 7 8 9 9 10 11 11 12 13 13 7 8 8 9 10 10 11 12 12
14 8 8 9 10 11 11 12 13 14 14 7 8 9 10 10 11 12 13 13
15 8 9 10 11 11 12 13 14 14 15 8 9 10 10 11 12 13 13 14
16 9 10 10 11 12 13 14 15 15 16 8 9 10 11 12 13 14 14 15
17 9 10 11 12 13 14 15 15 16 17 9 10 11 12 13 13 14 15 16
13 10 11 12 13 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 i5 16 17 18
20 11 12 13 14 15 16 17 18 19 20 10 12 13 14 15 16 1, 18 19
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Model
with p 1..0 and p

1 2

000= eo(7..)=

n 50 55 60 65 70 75
Q 0.25

80 85 90 n 50

3 3 3 3 3 3 4 4 4 4 3 3

4 3 4 4 4 4 4 5 5 5 4 3

5 4 4 5 5 5 5 5 6 6 5 4

6 5 5 5 6 6 6 6 7 7 6 4

7 5 6 6 6 7 7 7 7 8 7 5

8 6 6 7 7 7 3 8 8 9 8 5

9 6 7 7 8 8 9 9 9 10 9 6

10 7 7 8 8 9 9 10 10 11 10 7

11 8 8 9 9 10 10 11 11 12 11 7

12 8 9 9 10 11 11 12 12 12 12 8

13 9 9 10 11 11 12 12 13 13 13 8

14 9 10 11 11 12 13 13 14 14 14 9

15 10 11 11 12 13 14 14 15 15 15 9

16 10 11 12 13 14 14 15 16 16 16 10

17 11 12 13 14 14 15 16 17 17 17 10

18 12 12 13 14 15 16 17 18 18 18 11
19 12 13 14 15 16 17 18 18 19 19 12

20 13 14 15 16 17 18 18 19 20 20 12

55 60 65 70 75 80 85 90

3 3 3 3 3 3 4 4

3 4 4 4 4 4 5 5

4 4 5 5 5 5 5 6

5 5 5 6 6 6 6 7

5 6 6 6 7 7 7 8

6 6 7 7 7 8 8 9

6 7 7 8 8 9 9 9

7 8 8 9 9 10 10 10
8 8 9 9 10 10 11 11
8 9 10 10 11 11 12 12

9 10 10 11 12 12 13 13

9 10 11 12 12 13 14 14
10 11 12 12 13 14 15 15
11 12 12 13 14 15 15 16
11 12 13 14 15 16 16 17
12 13 14 15 15 16 17 18
12 13 14 15 16 17 18 19

13 14 15 16 17 18 19 20

eo (7.)=
n 50 55 60 65 70 75 GO 85 90

00 =
n 50 55 60 65 70 75 80 85 90

(1.0.75 (?.1.00

3 2 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3 4

4 3 3 3 4 4 4 4 4 5 4 3 3 3 4 4 4 4 4 5

5 4 4 4 4 5 5 5 5 6 5 3 4 4 4 5 5 5 5 6

6 4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 6

7 5 5 5 6 6 7 7 7 7 7 4 5 5 6 6 6 7 7 7

8 5 6 6 6 7 7 8 8 8 8 5 3 6 6 7 7 8 8 8

9 6 6 7 7 8 8 9 9 9 9 6 6 7 7 8 8 8 9 9

10 6 7 7 8 8 9 9 10 10 10 6 7 7 8 8 9 9 10 10

11 7 7 8 9 9 10 10 11 11 11 7 7 8 8 9 10 10 11 11

12 7 8 9 9 10 10 11 12 12 12 7 8 8 9 10 10 11 12 12

13 8 9 9 10 11 it 12 13 13 13 8 8 9 10 10 11 12 12 13

14 8 9 10 11 11 12 13 13 14 14 8 9 10 10 11 12 13 13 14

15 9 10 11 11 12 13 14 14 15 15 9 10 10 11 12 13 13 14 15

16 10 10 11 12 13 14 14 15 16 16 9 10 11 12 13 13 14 15 16

17 10 11 12 13 14 14 15 16 17 17 10 11 12 13 13 14 15 16 17

18 11 12 13 13 14 15 i6 17 18 18 10 11 12 13 14 15 16 17 18

19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19

20 32 13 14 15 16 17 18 19 20 20 11 13 14 15 16 17 18 19 20
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Table of Minimax Mastery Scores in the Binomial Error Model
with p =1.0 and p =2.0

1 2

n
(40

50

(7)

55 60 65 70 75
Q=0.25

80 85 90 n
00(10's

50 55 60 65 70 75
Q0.50

80 85 90

3 3 3 3 3 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4
4 4 4 4 4 4 5 5 5 5 4 3 4 4 4 4 4 5 5 5
5 4 5 5 5 5 5 6 6 6 5 4 4 5 5 5 5 5 6 6
6 5 5 6 6 6 6 7 7 7 6 5 5 5 6 6 6 6 7 7
7 6 6 6 7 7 7 7 8 8 7 5 6 6 6 7 7 7 8 8
8 6 7 7 7 8 8 8 9 9 8 6 6 7 7 7 8 8 8 9
9 7 7 8 8 9 9 9 10 10 9 6 7 7 8 8 9 9 9 10

10 7 8 8 9 9 10 10 11 11 10 7 8 8 9 9 10 10 10 11
11 8 9 9 10 10 11 11 11 12 11 8 8 9 9 10 10 11 11 12
12 9 9 10 10 11 11 12 12 13 12 8 9 9 10 11 11 12 12 13
13 9 10 10 11 12 12 13 13 14 13 9 9 10 11 11 12 13 13 14
14 10 10 11 12 13 13 14 14 15 14 9 10 11 11 12 13 13 14 15
15 10 11 12 13 13 14 15 15 16 15 10 11 11 12 13 14 14 15 15
16 11 12 13 13 14 15 16 16 17 16 10 11 12 13 14 14 15 16 16
17 12 12 13 14 15 16 16 17 18 17 11 12 13 14 14 15 16 17 17
18 12 13 14 15 16 16 17 18 19 18 12 13 13 14 15 16 17 18 18
19 13 14 15 16 16 17 18 19 19 19 12 13 14 15 16 17 18 19 19
20 13 14 15 16 17 18 19 20 20 20 13 14 15 16 17 18 19 20 20

n
eo(70=
50 55 60 65 70 75

Q=0.75
80 85 90

110(74

n 50 55 60 65 70 75 80 85 90
Q=1.00

3 3 3 3 3 3 3 4 4 4 3 2 3 3 3 3 3 4 4 4
4 3 3 4 4 4 4 4 5 5 4 3 3 4 4 4 4 4 5 5
5 4 4 4 5 5 5 5 6 6 5 4 4 4 5 5 5 5 6 6
6 4 5 5 5 6 6 6 7 7 6 4 5 5 5 6 6 6 6 7
7 5 5 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 7 8
3 6 6 6 7 7 8 8 8 9 8 5 6 6 7 7 8 8 8 9
9 6 7 7 8 8 9 9 9 10 9 6 6 7 7 8 8 9 9 10

10 7 7 8 8 9 9 10 13 11 10 7 7 8 8 9 9 10 10 11
11 7 8 8 9 10 10 11 11 12 11 7 8 8 9 9 10 11 11 11
12 8 9 9 10 10 11 12 12 12 12 8 8 9 10 10 11 11 12 12
13 8 9 10 11 11 12 12 13 13 13 8 9 10 10 11 12 li 13 13
14 9 10 11 11 12 13 13 14 14 14 9 10 10 11 12 12 13 14 14
15 10 10 11 12 13 13 14 15 15 15 9 10 11 12 13 13 14 15 15
16 10 11 12 13 13 14 15 16 16 16 10 11 12 12 13 14 15 16 16
17 11 12 13 13 14 la 16 17 17 17 11 11 12 13 14 15 16 16 17
18 11 12 13 14 15 16 17 18 18 18 11 12 13 14 15 16 17 17 18
19 12 13 14 15 16 17 18 18 19 19 12 13 14 15 16 17 17 18 19
20 12 13 15 16 17 17 18 19 20 20 12 13 14 15 16 17 13 19 20
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Lrror !coC.c1
with p

1
1.5 and p

2
..0.5

0000=
n 50 55 60 65 70 75 80 85 90 n

Q=0.25

3 2 2 2 2 3 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4
5 3 3 3 4 4 4 4 5 5 5
6 3 4 4 4 5 5 5 6 6 6
7 4 4 4 5 5 6 6 6 7 7
S 4 5 5 5 6 6 7 7 3 8
9 5 5 6 6 6 7 7 8 8 9

10 5 6 6 7 7 8 8 9 9 10
11 5 6 7 7 3 3 9 10 10 11
12 6 7 7 8 3 9 10 10 11 12
13 6 7 3 8 9 10 10 11 12 13
14 7 8 8 9 10 10 11 12 13 14
15 7 8 9 10 10 11 12 13 14 15
16 & 9 9 10 11 12 13 14 14 16
17 3 9 10 11 12 13 13 14 15 17
13 9 10 10 11 12 13 14 15 16 18
19 9 10 11 12 13 14 15 16 17 19
20 10 11 12 13 16 15 16 17 18 20

°OM=
n 50 55 60 65 70 75 80 85 90 n

Q=0.75

3 1 2 2 2 2 2 3 3 3 3
4 2 2 2 3 3 3 3 4 4 4
5 2 3 3 3 3 4 4 4 5 5
6 3 3 3 4 4 4 5 5 5 6
7 3 3 4 4 5 5 5 6 6 7
3 3 4 4 5 5 f 6 7 7 8
9 4 4 5 5 6 r, 7 7 8 9

10 4 5 5 C 6 7 8 8 9 10
11 5 5 6 6 7 8 8 9 10 11
12 5 6 6 7 8 8 9 10 10 12
13 6 6 7 3 8 9 10 10 11 13
14 6 7 7 8 9 10 10 11 12 14
15 6 7 8 9 10 10 11 12 15
16 7 3 8 9 10 11 12 13 14 16
17 7 8 9 10 11 12 13 14 15 17
13 8 9 10 10 11 12 13 14 15 18
19 S 9 10 11 12 13 14 15 16 19
20 9 LO 11 12 13 14 15 16 17 20

°OM=
50 55

2 2

2 2

2 3

3 3

3 4
4 4
4 5

5 5
5 6

5 6

6 7

6 7

7 7

7 8
8 8

8 9

8 9

9 10

eo(%)'='
50 55

1 2

2 2

2 2

2 3

3 3

3 4
4 4
4 5
4 5

5 6

5 6
6 6

6 7

7 7

7 8

7 8
8 9

8 9

60 65 70 75 80 35 90
Q=0.50

2 2 2 3 3 3 3
3 3 3 3 3 4 4
3 3 4 4 4 4 5
4 4 4 5 5 5 6
4 4 5 5 6 6 6
5 5 5 6 6 7 7
5 6 6 7 7 8 8
6 b 7 7 8 8 9
6 7 7 8 9 9 10
7 7 8 9 9 10 11
7 8 9 9 10 11 11
8 8 9 10 11 12 12
8 9 10 11 1. 13
9 10 10 11 12 14
9 10 11 12 13 14 15

10 11 12 13 14 15 16
10 11 12 13 14 16 17
11 12 13 14 15 16 17

60 65 70 75 80 85 90
Q=1.00

2 2 2 2 2 3 3
2 2 3 3 3 3 4
3 3 3 4 4 4 5
3 4 4 4 5 5 5
4 4 4 5 5 6 6
4 5 5 5 6 6 7
5 5 6 6 7 7 3
5 6 6 7 7 8 9
6 6 7 7 8 9 9
6 7 7 8 9 10 10
7 7 8 9 10 10 11
7 8 9 9 10 11 12
8 9 9 10 11 12 13
8 9 10 11 12 13 14
9 10 11 12 12 13 14
9 10 11 12 13 14 15

10 11 12 13 14 15 16
10 11 12 14 15 16 17
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Table of Minimax Mastery Scores in the Binomial Error Model
with p 1.5 and p2

2

n

3

4
5
6
7

9

10
11
12
13
14
15
16
17
18
19
20

n

3

4
5

6

7

3

9

10
11
12
13
14
15
16
17
13
19
20

e0(1)= vo-
50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

W.50

2 2 3 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 3
3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 4
3 4 4 4 4 j 5 5 5 5 3 3 4 4 4 4 5 5 5
4 4 4 5 5 5 6 6 6 6 3 4 4 4 5 5 5 6 6
4 5 5 5 6 6 7 7 7 7 4 4 5 5 5 6 6 7 7

5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 7 8
5 6 6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9
6 6 7 7 8 8 9 9 10 10 5 6 6 7 7 8 9 9 10
6 7 7 8 9 9 10 10 11 11 6 6 7 8 8 9 9 10 11
7 7 8 9 9 10 11 11 12 12 6 7 8 8 9 9 10 11 11
7 8 9 9 10 11 11 12 13 13 7 7 8 9 10 10 11 12 12
8 8 9 10 11 11 12 13 13 14 7 8 9 9 10 11 12 12 13
8 9 10 11 11 12 13 14 14 15 8 9 9 10 11 12 12 13 14
9 10 10 11 12 13 14 14 15 16 8 9 10 11 12 12 13 14 15
9 10 11 12 13 14 14 15 16 17 9 10 10 11 12 13 14 15 16

10 11 12 13 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18
11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18

eo 00= eo(%)c1

50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 80 85 90

2 2 2 2 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 4
3 3 3 4 4 4 5 5 5 5 3 3 3 4 4 4 4 5 5
3 4 4 4 5 5 5 6 6 6 3 3 4 4 4 5 5 6 6
4 4 4 5 5 6 6 6 7 7 4 4 4 5 5 6 6 6 7

4 5 5 5 6 6 7 7 8 8 4 4 5 5 6 6 7 7 3
5 5 6 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8
5 6 6 7 7 8 8 9 9 10 5 5 6 7 7 8 8 9 9
6 6 7 7 8 9 9 10 10 11 5 6 7 7 8 8 9 10 10
6 7 7 8 9 9 10 11 11 12 6 6 7 8 8 9 10 10 11
6 7 8 9 9 10 11 11 12 13 6 7 3 8 9 10 10 11 12
7 8 3 9 10 11 11 12 13 14 7 7 8 9 10 10 11 12 13
7 8 9 10 11 11 12 13 14 15 7 8 9 1C 10 11 12 13 14
3 9 10 10 11 12 13 14 15 16 8 9 9 10 11 12 13 14 15
3 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 15
9 10 11 12 13 14 15 16 16 18 9 10 10 11 12 13 14 15 16
9 10 11 12 13 14 lj 16 17 19 9 10 11 12 13 14 15 16 17

10 11 12 13 14 15 16 17 13 20 10 11 12 13 14 15 16 17 13
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Bino 'al Error Model
with p

1
=1.5 and p2 =1.5

qp(7)=
SoCr°1-

n 50 55 60 65 70 75 80 85 90 n 50 55 6j 65 70 -/5 80 85 90
Q=0.25 Q=0.50

3 2 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 3 4
4 3 3 4 4 4 4 4 5 5 4 3 3 3 4 4 4 4 4 5
5 4 4 4 4 5 5 5 r, 6 5 3 4 4 4 4 5 5 5 5
6 4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 6
7 5 5 5 6 6 7 7 7 7 7 4 5 5 6 6 6 7 7 7

5 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 7 8 8
9 6 6 7 i 8 3 9 9 9 9 5 6 6 7 7 3 3 9 9

10 6 7 7 8 9 9 10 10 10 6 6 7 8 8 9 9 10 10
1' 7 7 8 : 9 10 10 11 11 11 6 7 8 8 9 9 10 10 11
12 7 3 9 9 10 10 11 12 12 12 7 8 8 9 10 10 11 11 12
13 3 9 9 10 11 11 12 13 13 13 7 8 9 10 10 11 12 12 13
14 3 9 10 11 11 12 13 13 14 14 3 9 9 10 11 12 12 13 14
15 9 10 11 11 12 13 14 14 15 15 8 9 10 11 12 12 13 14 15
16 _0 10 11 12 13 14 14 15 16 16 9 10 11 12 12 13 14 15 16
17 10 11 12 13 14 14 15 1( 17 17 10 10 11 12 13 14 15 16 16
13 11 11 12 13 14 15 16 17 16 18 10 11 12 13 14 15 16 17 17
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 14 15 16 17 16
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

eo00= f)o C7°)=

n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.75 Q=1.00

3 2 2 2 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 4
4 3 3 3 3 4 4 4 4 4 4 2 3 3 3 3 4 4 4 4
5 3 4 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 5 5 5 6 6 6
7 4 5 5 5 6 6 7 7 7 4 4 5 5 6 6 6 7 7
3 5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 8 8
9 5 6 6 7 7 8 8 9 9 9 5 5 6 6 7 7 8 8 9

10 6 6 7 7 3 8 9 9 70 10 5 6 ./ 7 8 8 9 9 10
11 6 7 7 3 9 9 10 10 11 11 6 7 7 8 8 9 10 10 11
12 7 7 3 9 9 10 11 11 12 12 6 7 8 8 9 10 10 11 12
13 7 8 9 9 10 11 11 12 13 13 7 8 3 9 10 10 11 12 13
14 S 8 9 10 11 11 12 13 14 14 7 8 9 10 10 11 12 13 13
15 8 9 10 11 11 12 13 14 15 15 3 9 10 10 11 12 13 14 14
16 9 10 10 11 12 13 14 15 15 16 3 9 10 11 12 13 14 14 15
17 9 10 11 12 13 14 15 15 16 17 9 10 11 12 13 13 14 15 16
18 10 11 12 13 14 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18
20 11 12 13 14 15 16 17 18 19 20 10 12 13 14 15 lF 17 18 19
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Table of Minimax Mastery Scores in the Binomial Error Model
with p .4.5 and p2

2

0cx) = eo00'
n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 30 85 90

3 3 3 3 3 3 4 4 4 4 3 2 3 3 3 3 3 4 4 4
4 3 4 4 4 4 4 5 5 5 4 3 3 4 4 4 4 4 5 5
5 4 4 4 5 5 5 5 6 6 5 4 4 4 4 5 5 5 5 6
6 4 5 5 5 6 6 6 7 7 6 4 4 5 5 6 6 6 6 7
7 5 5 6 6 7 7 7 7 8 7 5 5 6 6 6 7 7 7 8
J 6 6 6 7 7 8 8 8 9 8 5 6 6 7 7 7 8 8 9
9 6 7 7 3 8 9 9 9 10 9 6 6 7 7 8 8 9 9 9

10 7 7 8 3 9 9 10 10 11 10 6 7 7 8 9 9 10 10 10
11 7 8 8 9 10 10 11 11 12 11 7 8 8 9 9 10 10 11 11
12 8 9 9 10 10 11 12 12 12 12 7 8 9 9 10 11 11 12 12
13 8 9 10 10 11 12 12 13 13 13 8 9 9 10 11 11 12 13 13
14 9 10 10 11 12 13 13 14 14 14 9 9 10 11 12 12 13 14 14
15 10 10 11 12 13 13 14 15 15 15 9 10 11 11 12 13 14 14 15
16 10 11 12 13 13 14 15 16 16 16 10 10 11 12 13 14 15 15 16
17 11 12 12 13 14 15 16 17 17 17 10 11 12 13 14 15 15 16 27
18 11 12 13 14 15 16 17 17 18 18 11 12 13 14 14 15 16 17 lb
19 12 13 14 15 16 17 17 18 19 19 11 12 13 14 15 16 17 18 19
20 12 13 14 15 16 17 13 19 20 20 12 13 14 15 16 17 18 19 20

eog4= e000-
n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 30 85 90

Q=0.75 Q1,00

3 2 3 3 3 3 3 3 4 4 3 2 2 3 3 3 3 3 4 4
4 3 3 3 4 4 4 4 4 5 4 3 3 3 4 4 4 4 4 5
5 3 4 4 4 5 5 5 5 6 5 3 4 4 5 5 5 5 6
E 4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 7
7 5 5 5 6 6 6 7 7 8 7 4 5 5 6 6 6 7 7 7
3 5 6 6 6 7 7 8 8 8 8 5 5 6 6 7 7 8 8 8
9 6 6 7 7 b 8 9 9 9 9 5 6 6 7 7 8 8 9 !I

10 6 7 7 8 3 9 9 10 10 10 6 7 7 8 8 9 9 10 10
11 7 7 8 8 9 10 10 11 11 17 7 7 8 8 9 10 10 11 11
12 7 8 9 :: 10 10 11 12 12 12 7 8 8 9 10 10 11 12 12
13 8 8 9 10 11 11 12 13 13 13 3 8 9 10 10 11 12 12 13
14 3 9 10 11 11 12 13 13 14 14 8 9 10 10 11 12 13 13 14
15 9 10 10 11 12 13 14 14 15 15 9 9 10 11 12 13 13 14 15
16 9 10 11 12 13 14 14 15 16 16 9 10 11 12 13 13 14 15 16
17 10 11 12 13 13 14 25 16 17 17 10 11 12 12 13 14 15 16 17
16 10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18
19 11 12 13 14 15 16 17 18 19 19 11 12 13 14 15 16 17 18 19
20 12 13 14 15 16 17 18 19 20 20 11 12 13 14 15 17 18 19 20
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MINIMAX PASSING SCORES

Table of Minimax Mastery Scores in the Binomial Error Model
with p =2.0 and p =0.5

1 2

eoM= 60(1Q=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q=0.25 Q=0.50

1 4̂ 2 2 2 2 3 3 3 3 3 1 2 2 2 2 2 3 3 3

4 2 2 3 3 3 3 4 4 4 4 2 2 2 3 3 3 3 4 4
5 2 3 3 3 4 4 4 5 5 5 2 2 3 3 3 4 4 4 5

6 3 3 4 4 4 5 5 5 6 6 3 3 3 4 4 4 5 5 5

7 3 4 4 4 5 5 6 6 6 7 3 3 4 4 4 5 5 6 6

3 4 4 5 5 5 6 6 7 7 8 3 4 4 5 5 6 6 6 7

9 4 5 5 6 6 7 7 8 8 9 4 4 5 5 6 6 7 7 8

10 4 5 6 6 7 7 8 8 9 10 4 5 5 6 6 7 7 8
11 5 5 6 7 7 8 8 9 10 11 4 5 6 6 7 7 8 9 9

12 5 6 7 7 8 9 9 10 11 12 5 5 6 7 7 3 9 9 10
13 f 6 7 3 9 9 10 11 11 13 5 6 7 7 8 9 10 10 11
14 6 7 8 8 9 10 11 11 12 14 6 6 7 8 9 9 10 11 12
15 7 7 3 9 10 11 11 12 13 15 6 7 8 8 9 10 11 12 13
16 7 3 9 10 10 11 12 13 14 16 6 7 8 9 10 11 12 13 14
17 7 8 9 10 11 12 13 14 15 17 7 8 9 10 10 11 12 13 14
18 3 9 10 11 12 13 14 15 16 18 7 8 9 10 11 12 13 14 15
19 3 9 10 11 12 13 14 15 16 19 8 9 10 11 12 13 14 15 16
20 9 10 11 12 13 14 15 16 17 20 3 9 10 11 12 13 15 16 17

eog0= e0( )=

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.75 Q=1.00

3 1 1 2 2 2 2 2 3 3 3 1 1 2 2 2 2 2 3 3
4 2 2 2 2 3 3 3 3 4 4 2 2 2 2 2 3 3 3 4
5 2 2 3 3 3 3 4 4 4 5 2 2 2 3 3 3 4 4 4
6 2 3 3 3 4 4 4 5 5 6 2 3 3 3 4 4 4 5 5
7 3 3 3 4 4 5 5 6 6 7 3 3 3 4 4 5 5 5 6
3 3 3 4 4 5 5 6 6 7 8 3 3 4 4 5 5 6 6 7
9 3 4 4 5 5 6 6 7 8 9 3 4 4 5 5 6 6 7 7

10 4 4 5 5 6 7 7 E 8 10 4 5 5 6 6 7 8 8
11 4 5 5 6 7 7 3 9 9 11 4 5 5 6 6 7 8 0 9
12 5 5 6 7 7 8 9 9 10 12 4 5 6 6 7 8 8 9 10
13 5 6 6 7 8 9 9 10 11 13 5 5 6 7 3 8 9 10 11
14 5 6 7 8 8 9 10 11 12 14 5 6 7 7 8 9 10 11 12
15 6 7 7 3 9 10 11 12 12 15 6 6 7 8 9 10 10 11 12
1C 6 7 8 9 10 10 11 12 13 16 6 7 8 9 9 10 11 12 13
17 7 7 8 9 10 11 12 13 14 17 6 7 8 9 10 11 12 13 14
18 7 8 9 10 11 12 13 14 15 13 7 8 9 10 11 12 13 14 15
19 7 8 9 10 11 12 14 15 16 19 7 8 9 10 11 12 13 14 16
20 8 9 10 11 12 13 14 15 17 20 8 9 10 11 12 13 14 15 16
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Table of Minimax Mastery Scores in the Binomial Error Model
with p =2.0 and p =1.0

1 2

n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90
Q=0.25 Q=0.50

3 2 2 2 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 3 4 4 4
5 3 3 4 4 4 4 5 5 5 5 3 3 3 4 4 4 4 5 5
6 3 4 4 4 5 5 5 6 6 6 3 3 4 4 4 5 5 6 6
7 4 4 5 5 5 6 6 7 7 7 4 4 4 5 5 6 6 6 7
8 4 5 5 6 6 7 7 7 8 8 4 4 5 5 6 6 7 7
9 5 5 6 6 7 7 8 8 9 9 4 5 5 6 6 7 7 8 8

10 5 6 6 7 7 8 3 9 10 10 5 5 6 6 7 8 8 9 9
11 6 6 7 7 8 9 9 10 10 11 5 6 6 7 8 8 9 10 10
12 6 7 7 8 9 9 10 11 11 12 6 6 7 8 8 9 10 10 11
13 7 7 8 9 9 10 11 11 12 13 6 7 8 8 9 10 10 11 12
14 7 8 9 9 10 11 12 12 13 1/ 7 7 8 9 10 10 11 12 13
15 8 3 9 10 11 12 12 13 14 15 7 8 9 9 10 11 12 13 14
16 8 9 10 11 11 12 13 14 15 16 7 3 9 10 11 12 13 14 14
17 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 12 13 14 15
18 9 10 11 12 13 14 15 16 17 18 8 9 10 11 12 13 14 15 16
19 9 10 11 12 13 14 15 16 17 19 9 10 11 12 13 14 15 16 17
20 10 11 12 13 14 15 16 17 18 20 9 10 11 12 14 15 16 17 13

00M= 0.00=
n 50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q=0.75 Q=1.00

3 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 3 3 3 3
4 2 2 3 3 3 3 4 4 4 4 2 2 2 3 3 3 3 4 4
5 2 3 3 3 4 4 4 5 5 5 2 3 3 3 4 4 4 4 5
6 3 3 4 4 4 5 5 5 6 6 3 3 3 4 4 5 5 5 6
7 3 4 4 4 5 5 6 6 7 7 3 4 4 4 5 5 6 6 6
8 4 4 5 5 6 6 6 7 7 8 4 4 4 5 5 6 6 7 7
9 4 5 5 6 6 7 7 8 3 9 4 4 5 6 6 7 7 8 8

10 5 5 6 6 7 7 8 9 9 10 4 5 6 6 7 7 8 8 9
11 5 6 6 7 7 3 9 9 10 11 5 5 6 7 7 8 9 9 10
12 5 6 7 7 3 9 9 10 11 12 5 6 7 7 8 9 9 10 11
13 6 7 7 8 9 9 10 11 12 13 6 6 7 8 9 9 10 11 12
14 6 7 8 9 9 10 11 12 13 14 6 7 3 8 9 10 11 12 12
15 7 8 8 9 10 11 12 13 13 15 7 7 8 9 10 11 11 12 13
16 7 3 9 10 11 12 12 13 14 16 7 3 9 10 10 11 12 13 14
17 3 9 9 10 11 12 13 14 15 17 7 3 9 10 11 12 13 14 15
13 8 9 10 11 12 13 14 15 16 18 8 9 10 11 12 13 14 15 16
19 9 10 11 12 13 14 15 16 17 19 3 9 10 11 12 13 14 1f 17
20 9 10 11 12 13 14 15 17 18 20 9 10 11 12 13 14 15 16 18
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Table of MLnimax Mastery Scores in the Binomial Error Model
with 1)1=2.0 end p2=1.5

ec)'00- 80(1°'
n 50 55 60 65 70 75 80 35 90 n 50 55 60 65 70 75 30 85 90

Q=0.25 Q=0.50

3 2 2 3 3 3 3 3 4 4 3 2 2 2 3 3 3 3 3 4
4 3 3 3 4 4 4 4 4 5 4 3 3 3 3 4 4 4 4 4
5 3 4 4 4 5 5 5 5 5 3 3 4 4 4 4 5 5 5
6 4 4 4 5 5 5 6 6 6 6 3 4 4 5 5 5 6 6 6
7 4 5 5 5 6 6 7 7 7 7 4 4 5 5 6 6 6 7 7
8 5 5 6 6 7 7 7 8 8 8 4 5 5 6 6 7 7 3 3
9 5 6 C 7 7 3 3 9 9 9 5 5 6 6 7 7 3 3 q

10 u i 7 7 3 9 9 10 10 10 5 7 7 8 8 9 9 10
11 6 7 7 8 9 9 10 10 13 11 6 6 7 8 3 9 10 10 11
12 7 7 8 9 9 10 11 11 12 12 6 7 8 8 9 10 10 11 12
13 7 3 9 9 10 11 11 12 13 13 7 8 8 9 10 10 11 12 12
14 8 9 9 10 11 11 12 13 14 14 7 8 9 10 10 11 12 13 13
15 3 9 10 11 11 12 13 14 15 15 8 9 9 10 11 12 13 13 14
16 9 10 10 11 12 13 14 15 15 16 8 9 10 11 12 13 13 14 15
17 9 10 11 12 13 14 15 15 16 17 9 10 11 12 12 13 14 15 16
13 10 11 12 13 14 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18
20 11 12 13 14 15 lb 17 18 19 20 10 11 12 13 14 16 17 18 19

e 000= ei0=
n 50 55 60 65 70 75 30 85 90 n 50 55 60 65 70 75 80 35 90

Q=0 75 Q=1.00

3 2 2 2 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3
4 2 3 3 3 3 4 4 4 4 4 2 2 3 3 3 4 4 4 4
5 3 3 3 4 4 4 5 5 5 5 3 3 3 4 4 4 5 5 5
6 3 4 4 4 5 5 5 6 6 6 3 4 4 4 5 5 5 6 6
7 4 4 5 5 5 6 6 7 7 7 4 4 4 5 5 6 6 7 7
3 4 5 5 6 6 7 7 7 8 3 4 5 5 5 6 6 7 7 8
9 5 5 6 6 7 7 8 8 9 9 5 5 6 6 7 7 8 8 9

10 5 6 6 7 7 3 9 9 10 10 5 6 6 7 7 8 8 9 10
11 6 6 7 7 8 9 9 10 11 11 5 6 7 7 8 9 9 10 10
12 6 7 7 3 9 9 10 11 11 12 6 7 7 8 9 9 10 11 12
13 7 7 8 9 9 10 11 12 12 13 6 7 8 9 9 10 11 11 12
14 7 8 9 9 10 11 12 12 13 14 7 8 S 9 10 11 11 12 13
15 3 8 9 10 11 12 12 13 14 15 7 8 9 10 11 11 12 13 14
16 8 9 10 11 11 12 13 14 15 16 8 9 10 10 11 12 13 14 15
17 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16
13 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17
19 9 10 11 12 13 15 16 17 13 19 9 10 11 12 13 14 15 16 17
20 10 11 12 13 14 15 16 17 13 20 10 11 12 13 14 15 16 17 13
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n

3

4
5

6

7

8

9

10
11
12
13
14
15
16
17
16
19
20

n

3

4
3

6

7

8
9

10
11
12
13
14
15
16
17
13
19
20

Table of Minimax Mastery Scores in the Binomial Error Model
with p

1
-2.0 and p

2
c2.0

8000= "000-
50 53 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q0.50

2 3 3 3 3 3 4 4 4 3 2 2 3 3 3 3 3 4 4
3 3 4 4 4 4 4 5 5 4 3 3 3 4 4 4 4 4 5
4 4 4 4 5 5 5 5 6 5 3 4 4 4 4 5 5 5 6
4 4 5 5 5 6 6 6 7 6 4 4 5 5 5 6 6 6 6
5 5 5 6 6 7 7 7 8 7 4 5 5 6 6 6 7 7 7
5 6 6 7 7 7 8 8 8 8 5 5 6 6 7 7 8 8 8
6 6 7 7 8 8 9 9 9 9 5 6 6 7 7 8 8 9 9
6 7 7 8 8 9 9 10 10 10 6 6 7 8 8 9 9 10 10
7 7 8 9 9 10 10 11 11 11 6 7 8 8 9 9 10 11 11
7 8 9 9 10 10 11 12 12 12 7 8 8 9 10 10 11 11 12
8 9 9 10 11 11 12 13 13 13 7 8 9 10 10 11 12 12 13
8 9 10 11 11 12 13 13 14 14 8 9 9 10 11 12 12 13 14
9 10 10 11 12 13 14 14 15 15 8 9 10 11 12 12 13 14 15
9 10 11 12 13 14 14 15 16 16 9 10 11 12 12 13 14 15 16

10 11 12 13 13 14 15 16 17 17 9 10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 17
11 12 13 14 15 16 17 18 19 19 10 11 13 14 15 15 16 17 18
11 13 14 15 16 17 18 19 20 20 11 12 13 14 15 16 17 18 19

000= e0M=
50 55 60 65 70 75 80 85 90 n 50 55 60 65 70 75 80 85 90

Q1.00

2 2 3 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 4
3 3 3 3 4 4 4 4 5 4 2 3 3 3 4 4 4 4 5
3 3 4 4 4 5 5 : 5 5 3 3 4 4 4 5 5 5 5
4 4 4 5 5 5 6 6 6 6 3 4 4 5 5 5 6 6 6
4 5 5 5 6 6 7 7 7 7 4 4 5 5 6 6 6 7 7
5 5 6 6 6 7 7 8 8 8 4 5 5 6 6 7 7 8 8
5 6 6 7 7 8 8 9 9 9 5 6 6 7 7 8 8 9 9
6 6 7 7 8 8 9 10 10 10 5 6 7 7 8 8 9 9 10
6 7 7 8 9 C 10 10 11 11 6 7 7 8 8 9 10 10 11
7 7 8 9 9 10 11 11 12 12 6 7 8 8 9 10 10 11 12
7 8 9 9 10 11 11 12 13 13 7 8 8 9 10 11 11 12 13
8 8 9 10 11 11 12 13 14 14 7 8 9 10 11 11 12 13 14
8 9 10 11 11 12 13 14 15 15 8 9 10 10 11 12 13 14 15
9 10 10 11 12 13 14 15 16 16 8 9 10 11 12 13 14 15 15
9 10 11 12 13 14 15 16 16 17 9 10 11 12 13 14 14 15 16

10 11 12 13 14 14 15 16 17 18 9 10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 l( 17 18
11 12 13 14 15 16 17 18 19 20 10 12 13 14 15 16 17 18 19
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MINIMAX PASSING SCORE

APPENDIX B

SUBROUTINE MIMAX

This subroutine computes the minimax passing (mastery) score

for the binomial error model in mastery testing.

Disclaimer: The computer program hereafter fisted has been written

with care and tested extensively under a variety of conditions. The

author, however, makes no warranty as to its accuracy and function-

ing, nor shall the fact of its distribution imply such warranty.
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SUBROUTINE (N , TA , IA , P1 , P2 , Q I2)

c*********************** A A R A A A 1 k****************************************

C
C THIS SUBROUTINE COMPUTES THE MINIMAX PASSING (MASTFRY) SCORE FOR
C THE BINOMIAL ERROR MODEL IN MASTERY TESTING.
C

C INPUT DATA ARE:
C N NUMBER OF TEST ITEMS
C TA CRITERION LEVEL (THETA ZERO)
C IA NUMBER OF OPTIONS (ALTERNATIVES) FOR EACH MULTIPLE -
C ITEM. THIS INFORMATION IS NEEDED IF CORRECTION
C FOR GUESSING IS TO BE PERFORMED. IF NO CORRECTION FOR
C GUESSING IS REQUIRED, SET IA O.
C P1 EXPONENT FOR FALSE POSITIVE ERROR LOSS
C P2 EXPONENT FOR FALSE NEGATIVE ERROR LOSS

WEIGHTING CONSTANT FOR FALSE NEGATIVE ERROR LOSS
C
C OUTPUT DATA IS

MINIMAX PASSING (MASTERY) SCORE
C
C SUBROUTINES REQUIRED:
C DRTNI FROM SSP (NEWTON-RALPHSON ITERATION PROCESS)
C MDBIN FROM IMSL (BINOMIAL PROBABILITY)
C
c************************************************************************
C

C

C

COMMON NKEEP,IC,R,TT,KODE,IOPT
DOUBLE PRECISION FL1.FL2.FMAX,FMAX1

WRITE (6.200) N,TA,IA,P1,P2,Q
200 FORMAT(111,T4,'NUMBER OF ITEMS .',I4/

1 T4,'CR:TERION LEVEL .',F10.5/
2 T4,'NUMBER OF OPTIONS',I4/
3 T4,'P1 ',F10.5/
4 T4,'P2 ',F10.5/
5 T4,'LOSS RATIO Q ',F10.5)
DMAX=AMIN1(1.
NKEEP=N
DD-IA *1./(IA-1)
IF(IA.EQ.0) DD-1.
X1=DD**P1
X2=DD**P2
TZ -TA
IF(IA.NE.0) TZ=TA*(1.-1./IA)+1./IA
IC1=0
FMAX1=1.D50

DO 10 ID -1,N

IC -ID
R -P1

TT -TZ
IOPT -IA
CALL LMAX(FLl)
FL1 =FL1 *X1
R=P2
TT -1. -TZ
IC=N-ID+1
IOPT=-1
CALL LMAX(FL2)
FL2=FL2*0
FL2=F12*X2
FMAX=DMAX1(FL1,FL2)
IF(FMAX.GE.FMAX1) GOTO 10
IC1 -ID
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1MAX1=FMAX
10 CONTINUE

C

AMAX=TZ**P1
AMAX=AMAX*X1
B=Q*(1.TZ)**P2
B=B*X2
IX -0

IF(AMAX.LE.B) GOTO 13
IX -N+1
AMAX -B

13 IZ - ?C1

IF(AMAX.LT.FMAX1) IZ -IX
C

WRITE(6.220) IZ
220 FORMAT('0',2X,'MINIMAX PASSING'/3X,'SCORE ',I4)RETURN

END
C

SUBROUTINE LMAX(FL)
COMMON N,IC,P,TZ,KODE,IA
DOUBLE PRECISION T,F,DERF,TS,FL,T1,F1,DERFI

EXTERNAL FCT
XX=0.
IF(IA.GT.0)==1.0/LA
EPS=.0001
IEND -200
KODE=0
NN -20
MM -50

H=P+IC+(N-1)*TZ
T1 =(ti-SQRT(H*H-4*(K +P)*(IC-1)*TZ))/(2*(N+P))
IF(T1.LE.O.D0) T1- 1.D -20
DD=(TZ-T1)/NN
TS -T1

CALL FCT(T1,F1,DERF1)
DO 5 I=1,NN
TosT1+I*DD
CALL FCT(T,F,DERF)
IF(F*F1.LE.0.0) GOTO 10
TS -T

F1=F
5 CONTINUE

10 DD- (T- TS) /MM

CALL FCT(TS,F1,DERF1)
T1 -TS
DO 15 1=1,MM
T=T1+I*DD
CALL FCT(T,F,DERF)
IF(F1 *F.LE.0.) GOTO 20
TS -T
FI=F

15 CONTINUE
20 TS- (TS +T) /2.0

DD=T-TS
IF(DD.LE.EPS) GOTO 25
KODE -1

CALL DRTNI(T,F,DERF,FCT,TS,EPS,IEND,IER)
IF(1ER.NE.0) WRITE(6,20') IER

200 FORMAT('0','ERROR iN THE SSP SUBROUTINE DRTNI',14)
25 IF(LA.GT.O.AND.T.LT.XX)T=XX

S=1
CALL MDBIN(IC-1,N,S,D,TK,IER)
IF(IER.N1.0) WRITE(6,:10) IER

210 FORMAT('0','ERROR IN THE IMSL SUBROUTINE MDBIN',I4)
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FLo.(TZ-T)**P*(1.-D)
RETURN
END

C
SUBROUTINE FCT(T,F,DERF)
COMMON N,IC,P,TZ,KODE
EXTERNAL BI
INTEGER BI
DOUBLE PRECISION T,F,DERF,G
ST
LLBI(N,IC)
P.IC*LL*(TZ-T)*T**(IC-1)*(1.DOT)**(NIC)
CALL MDBIN(IC-1,N,S,D,PK,IER)
FP*(1.D0 D)+F
IF(KODE.EQ.0) RETURN
DERF..0

GOTO 10
G(1.D0-T)**(NIC-1)
IF(IC.EQ.1) GOTO 5
DERF..(iC-1)*TZ*T**(IC-2)*G

5 DERF..((N+P)*T**IC(P+IC+(N-1)*TZ) *T**(IC-1))*G+DERF
DERP.DERF*IC*LL
RETURN

10 DERFN*T**(N-2) *((N+P)*T+(N-1)*TZ)
RETURN
END

C

FUNCTION BI(N,M)
INTEGER BI
BI -1

IF(M*(NM).EQ.0) RETURN
M11-14M
IF(IIM.GT.11)MMM
DO 15 .11,MM

15 EIG.B1*(NJ+1)/J
END

//LKED.SYSLIB DD
// DD DSNACAD.I.M.DP.SUBLIB,DISPSHR
// DD DSNACAD.IMSL.SP.SUBLIB,DISP.SHR
// DD DSN=SSP.SUBLIB,DISPSHR
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BAYESIAN AND EMPIRICAL BAYES APPROACHES TO SETTING

PASSING SCORES ON MASTERY TESTS

Huynh Huynh
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Presented at the symposium "Psychometric approaches to domain-
referenced testing" sponsored jointly by the American Educational
Research Association and the National Council on Measurement in
Education at their annual meetings in San Francisco, April 8-12, 1979.

ABSTRACT

The Bayesian approach to setting passing sk...)res as proposed by

Swaminathan, Hambleton, and Algina is compared with the empirical

Bayes approach to the same problem that is derived from Huynh's

decision-theoretic framework. Comparisons are based on simulated

data which follow an approximate beta-binomial distribution and on

real test data sampled from a statewide testing program. It is

found that the two procedures lead to setting identical or almost

identical passing scores as long as the test score distribution is

reasonably symmetric or when the minimum mastery level or criterion

level is high. Larger discrepancies tend to occur when this level

is low, especially when the distribution of test scores is concen-

trated at a few extreme scores or when the frequencies are irregu-

lar. However, in terms of mastery/nonmastery decisions, the two

procedures result in the same classifications in practically all

situations. However, the empirical Bayes procedure may be used for

tests of any length, while the Bayesian procedure is recommended

only for tests of 8 or more items. Additionally, the empirical

This paper has been distributed separately as RM 79-2, April, 1979.
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Bayes procedure can be generalized and applied to more complex

testing situations with less difficulty than the Bayesian procedure.

1. INTRODUCTION

Among the many decision-theoretic approaches to setting pass-

ing scores (or standards) for mastery tests, there are at leas': two

methods which rely on test data collected from a group of examinees.

The Bayesian procedure, as presented in Swaminathan, Hambleton, and

A)gina (1975), assumes that prior knowledge regarding the examinees

is exchangeable (Novick, Lewis, & Jackson, 1973) and can be quanti-

fied in some appropriate manner. On the other hand, the empirical

Bayes approach, as formulated in Huynh (1976a), uses only the true

ability distribution of the examinees and makes no assumption re-

garding prior knowledge about the examinees. Both procedures use

test data collected from a group of examinees and establish passing

scores for mastery tests by minimizing certain loss functions. The

purpose of this paper is to present a comparison of the two sets of

standards (passing scores) formulated under a variety of conditions

which can be expected Lo be encountered in mastery testing or in

minimum competency testing. The comparison will be made first on

the basis of approximate beta-binomial test scores. Further com-

parisons will be made using the Comprehensi' ! Tests of Basic Skills

(CTBS, 1973) data collected in the 1978 South Carolina Statewide

Testing Program.

2. AN OVERVIEW OF THE BAYESIAN AND
EMPIRICAL BAYES APPROACHES

Overall Framework

The Bayesian framework as presented by Swaminathan et al. and

the special empirical Bayes procedure described in Huynh (1976a,

p. 70-73) start with a typical four-corner setup used in decision

theory. (See Figure I, p. 78, for the basic elements of this setup.)

Let 6 (r in the notation of Swaminathan et al.) be the true score (or
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true ability) of an examinee and x be the observed test score as

obtained from an n-item test. For the binomial error model adopted

in both standard setting approaches, e is the proportio.-- of items

in a real Jr hypothetical item pool that an examinee answers cor-

rectly. Let a person be called a master if that person's true

score e is such that e > eo and a nonmaster if e < e
o

. Here, e
o

is

a given constant which defines the lower boundary of the mastery

level or the criterion level. Since a person's true score cannot

be observed directly, decisions about whether to call the person a

master must be based on an observed test score. What remains to be

determined is the cutoff score c that will be in some sense optimal.

On the basis of the test score x, a person is called a master

if x > c and a nonmaster if x < c. A correct decision is made

whenever either (a) e > e and x > c, or (b) e < e and x < c.
o o

Otherwise, either a false positive error (e < e
o

and x > c) or a

false negative error (e > e
o

and x < c) is encountered.

In the case where the loss associated with each error is con-

stant, generality is not diminished if we let the loss incurred by

a false positive error be equal to 1 and that associated with a

false negative error be equal to Q. Here, Q expresses the ratio of

the false negative error loss to the false positive error loss.

(In the notation of Swaminathan et al., Q =
21

/I
12'

)

Bayesian Approach

Now let an n-item test be given to m examinees. In the Bayes-

ian procedure as implemented by Swaminathan et al., the prior in-

formation regarding the examinees is assumed to be exchangeable

(i.e., prior knowledge regarding one examinee can be interchanged

with that associated with another examinee without causing any dis-

turbance in the decision problem). The model requires knowledge

(prior belief) of the distribution of the variance of true scores

for the group. (In point of fact, an arcsine transformation of 0

is used.) This prior distribution is taken to be the inverse chi-

square distribution with parameter A and degrees of freedom v. A

recommended choice of v is 8 (Novick, et all:A.973).
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To assess A, let t be the number of test items which would

need to be administered to a typical ,txaminek in order to obtain as

much information about that examinee's e as we already have. Then,

A 3/(2t+1). Wang (1973) has tables to facilitate computation in

this procedure. In the setup of the Wang tables, A/v is chosen as

.01, .02, .03, .04, and .05. These ratios correspond to the t val-

ues of 18.25, 8.875, 5.75, 4.1875, and 3.25. Given the prior infor-

mation as revealed through A and v and the test data of m subjects,

it is possible via the Wang tables to compute the two --xpected

losses: Pr(B <
o

1 test data) and QPr(e > eo I test data, at

each test score. A Bayesian passing score is then the smallest

score at which the first expected loss is smaller than the second

one. More details may be found in Swaminathan et al. (1975) and

in Novick et al. (1973).

Empirical Bayes Approach

The empirical Bayes solution assumes that the m examinees

constitute a random sample from a population for which the true

ability 0 follows a known distributional form such as the beta

density with parameters a and B (Keats & Lord, 1962, page 68).

Sample test data are used to obtain the estimates a and 0, and the

results are used to compute the probability of a false positive

decision Pr(0 < e
o
, x > c) and of a false negative decision

QPr(e >13
o
, x < c) at a given cutoff score c. The optimum passing

score (henceforth referred to simply as the passic -e) will be

the value of c at which the average loss, PO) < 0, x > c)

+ Qpr(e > 0, x < c), is the smallest.

The procedure is implemented as follows. Let x and s be the

mean and standard deviation of the test scores, and let the Ruder-

Richardson reliability coefficient be defined as

n 1 - 1(11
a21 21 n-1

ns
2

Then

a . (-1 + 1/a21)x

and
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C = -a + n/a
21

- n.

7or test.: scores with insufficient variability,
a21 may

be negative.

If this occurs simply replace an by the smallest positive relia-

bility estimate which happens to be available. Let I denote the

incomplete beta function as tabulated in Pearson (1934) and imple-

mented "ia computer programs such as the IBM Scientific Subroutine

Package (1971) or the MEL (1977). TLen the passing score is the

smallest integer c, at which

I(a+c,n+e-c;00) < Qm+q). (1)

A normal approximation 4s available if there is a sufficiently

large number of items and if 00 is not near 0 or 1. Let denote

the 100/(1+Q) percentile of the unit normal dis' ibution. Then the

test passing score is nearly equal to

c = (n+a+8-1)0 +
4(n+A "
+1)0

o
(1-0

o
)
)1/2

- a + .5. (2)

A A.

0-

The data presented in Ruynh (1976b) indicate that the passing score

c,mputed from Equation (2) does not differ appreciably from the one

deduced from Inequation (1) when the test consists of 20 items and

when e
o

is within the range from .50 to .80.

3. A COMPARISON OF BAYESIAN AND EMPIRICAL BAYES
PASSING SCORES FOR APPROXIMATE

BETA-BINOMIAL TEST DATA

The passing score obtained via the empirical Bayes approach,

as revealed by Inequation (1), is based on test score data that

follow a beta-binomial distribution. It may be of interest to

compare the Bayesian approach to setting a passing score with the

empirical Bayes approach, using test data which follow closely a

beta-binomial form.

Both the present comparison and the one detailed in the next

section are based on tests with ten items. In these comparisons,

the criterion or minimum mastery level is set at 00 = .60, .70, and

.80. The loss ratio is chosen to be Q = .25, .50, 1.00, and 2.00.

(A 1)ss ratio smaller than one indicates that a false positive

error is less serious than a false negative error.) To compute a

assing score via the Bayesian approach, it is necessary to specify
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the ratio A/v or, equivalently, the quantity t as described in

Section 2. It may be recalled that t may be interpreted as the

number of "test items" which are believed to be as informative as

the prior belief about the examinees. In practical si;:uations in-

volving standard setting, it seems unreasonable to let the prior

belief v carry as much weight as the objective test data. In other

words, it is unLkely that t is too close to n. Thus for the

comparisons based on 10-item tests reported in this section ana 1

Section 4 as well as the comparisons based on 20-item tests

described in Section 5, the t-values are chosen to be 8.875

(A /v = .02), 5.75 (A /v - .03), 4.1875 (A /v - .04), and 3.25

(A /v = .05).

The first five test score frequency distributions (labeled Al

through A5 in Table 1) serve as the data base for the comparison of

the passing scores computed by the two procedures using test score

distributions that are approximately beta-binomial. Each is delib-

erately chosen (i) to yield an s
2
value (variance of the arcsine-

square-root transformation of the test scores) conforming as closely

as possible to the tabulated s
2
values of the Wang tables (so that

no interpolation would be necessary) and (ii) to reflect several

degrees of skewness and variability thought to be typical of mas-

tery testing situations. (Also in Table 1, and explained below,

are distributions of actual test scores from the F_;Juth Carolina

Statewide Testing Program.) It may be noted that in Table 1, the

quantity D(X) represents the maximum percent difference between

the observed and beta-binomial-fitted cumulatim frequencies. A

small D-value indicates a good fit.

Table 2 reports the Bayesian passing scores and the corre-

sponding empirical Bayes passing scores (in ita2ics) for several

combinations of 0 , Q, and t. The data indicate that for the situa-

tions under consideration, the Bayesian and empirical Bayes passing

scores are identical, ur nearly so, as long as the test score dls-

tribution is reasonably symmetrical (Cases A2, A4, and A5). For

highly skewed distributions (Cases Al and A3) the two passing
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TABLE 1

Frequency Distributions of Test Scores Used
in Comparisons of Passing Scores

Data Source/
*

Skew-
Set Subtest m D(X)t S.D. ness

Frequency at score of
0 1 2 3 4 5 6 7 8 9 10

Approximate Beta-Binomial

1

1

3

1

1

3

5

4

1

3

5

6

5

1

2

1

2

1

6

6

7

2

9

5

6

0

1

0

1

10

7

6

0

5

3

1

10

3

2

2

3

13

1

7

5

2

3

1

5

4

1

8

1

5

4

6

16

2

5

4

1

4

2
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6
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3
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8

5
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11

11
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2

1

4

4

4

1

3

3

12

16

23
16

11

5

23

0

0

7

6

5

1

2

30

0

29

30

38

Al Fictitious 40 3.1 1.36 -0.61
A2 Fictitious 80 1.0 1.87 -0.31
A3 Fictitious 40 1.2 1.01 -1.51
A4 Fictitious 40 1.6 2.01 -0.02
A5 Fictitious 40 1.0 2.15 0.12

Comprehensive Tests of Basic Skills
B1 Mathematics

concepts and
application. 20 6.7 1.28 -0.63

B2 Mathematics
computations 20 9.2 1.45 -0.24

B3 Spelling 20 6.1 1.76 -1.04
B4 Social

studies 40 6.2 2.11 0.27
B5 Language

expression 40 8.7 1.86 -0.53
B6 Reading 40 4.1 1.22 -2.12
B7 Science 60 5.6 1.74 -0.22
B8 Reading

vocabulary 60 3.2 1.56 -1.75
B9 Reading

vocabulary 80 2.7 1.68 -1.49
kl0 Spelling 80 2,1 1.50 -1.44
*
m = total number of scores in the distribution.

t
D%) represents the maximum percent difference between the obseriTed
and beta-binomial-fitted cumulative frequencies. All are not sig-
nificant at the ten percent level of significance.

scores rarely differ by more than one unit when the criterion level

e
o is relatively high (.70 or .80) and when A/v is such that t is

not too close to n, say when A/v is at least .03. Large discrepan-

cies, however. may occur at a low criterion level such as .60 or

whet_ t is close to n.
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TABLE 2

Bayesian and Empirical Bayes Passing Scores for Five
Approximate Beta-Binomial Test Score Distributions

Bayesian (at = .02,.03,.04,.05)
Data and empirical Bayes (in italics) at
Set e

o
Q .25 Q = .50 Q = 1.00 Q = 2.00

Al .60 4, 5, 6, 6, 4 3, 4, 5, 5, 2 2, 3, 4, 4, / 1, 2, 3, 3, 0
.70 7, 8, 8, 8, 6 6, 7, 7, 7, 5 5, 5, 6, 6, 4 4, 4, 5, 5, 3
.80 10,10,10,10, 9 9, 9, 9, 9, 8 8, 8, 8, 8, 7 7, 7, 7, 7, 6

A2 .60 7, 8, 8, 8, 7 6, 7, 7, 7, 6 5, 6, 6, 6, 5 4, 4, 5, 5, 4
.10 10,10, 9, 9, 9 9, 9, 9, 9, 9 8, 8, 8, 8, 8 , 7, 7, 7, 7
.80 10,10,10,10,10 10,10,10,10,:0 10,10,10,10,10 9, 9, 9, 9, 9

A3 .60 1, 3, 4, 4, 3 1, 2, 3, 3, 2 0, 1, 2, 2, 1 0, 1, 1, 2, 0
.70 4, 5, 6, 6, 6 3, 4, 5, 5, 5 2, 3, 4, 4, 4 1, 2, 3, 3, 3
.80 8, 8, 9, 9, 8 7, 7, 8, 8, 7 5, 5, 7, 7, 6 4. 5, 6, 6, 5

A4 .60 9, 9, 9, 9, 9 9, 8, 8, 8, 8 8, 7, 7, 7, 8 7 6, 6, 6, 6
.70 10,10,10,10,10 10, -,10,10,10 10, 9, 9, 9,10 9, 9, 8, 8, 9
.80 10,10,10,10,10 10,10,10,10,10 10,10,10.10,10 10,10,10,10,10

AS .6G 10,10, 9,10 9, 9, 9, 9, 9 8, 8, 8, 8, 8 7, 7, 7, 7, 7
.:0 10,10,10,10,10 10,10,10,10,10 10,10, 9, 9,10 9, 9, 9, 9, 9
.80 10 10 10,10,10 10,10 10 10 /0 10.10 10,10,10 10 10 10 10 10

4. A COMPARISON OF BAYESIAN AND EMPIRICAL
BAYES PASSING SCORES FOR CTBS TEST DATA

This phase of the study is based on a 10% systematic sample

of the entire third grade CTBS-Level C data file compiled during the

1978 South Carolina Statewide Testing Program. To obtain the fre-

quency distributions labeled as B1 to B10 (in Tables 1 and 3), the

following procedure was used. First, ten 10-item subtests were

assembled by random selection of items from each CTBS subtest.

Next, for each 10-item subtest, a frequency distribution was con-

structed for each school district which had at least 20 students in

the systematic sample, and the corresponding s
2

value was obtained.

(The a
2

values were distribLted as follows: .10 to .50 (32%), .1,1

to .75 (38%), .76 to 1.00 (20%), and more than 1.00 (10%). Large

s
2
values tended to associate with subtests dealing with reading

comprehension (sentences or paragraphs), language expression, and

language mechanics.) Third, among the frequency d tributions with

s
2
values included between .01 and .05, ten were finally selected
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and altered slightly so that the total number of examinees (m) was

exactly 20, 40, 60, or 80.

Table 3 lists the Bayesian and empirical Bayes passing scores

under a variety of conditions. As in the previous section, the data

TABLE 3

Bayesian and Empirical Bayes Passing Scores
for Ten CTBS Test Score Distributions

Data
Set 0

o

Bayesian (at A/v = .02,.03,.04,.05)
and empirical Bayes (in italics) at

Q = .25 Q = .50 Q = 1.00 Q = 2.00

81 .60 5, 5, 6, 6, 3 4, 4, 5, 5, 2
.70 7, 7, 8, 8, 6 6, 6, 7, 7, 5
.80 10,10,10,10, 9 9, 9, 9, 9, 8

B2 .60 6, 6, 6, 6, 5
.70 8, 8, 8, 8, 7
. 80 10,10,10,10, 9

B3 .60 6, 6, 7, 7, 6
.70 8, 8, 8, 8, 8
.80 10,10,10,10,10

5, 5, 5, 5, 4
7, 7, 7, 7, 6

9, 9, 9, 9, 9

5, 5, 6, 6, 6
7, 7, 8, 8, 7
9, 9, 9, 9, 9

3, 3, 4, 4, 1

5, 5, 6, 6, 4
8, 8, 8, 8, 7

4, 4, 4, 5, 2
6, 6, 6, 6, 5
8, 8, 8, 8, 8

4, 4, 5, 5, 5
6, 7, 7, 7, 6

9, 9, 9, 9, 8

2, 2, 3, 3, 0
4, 4, 5, 5, 3
7, 7, 7, 7, 6

3, 3, 3, 4, 1

5, 5, 5, 6, 4
7, 7, 8, 8, 7

3, 4, 4, 4, 4
5, 6, 6, 6, 6
8, 8, 8, 8,

B4 .60 9, 9, 9, 9, 9 9, 8, 8, 8, 8 8, 8, 7, 7, 7 7, 7, 6, 6, 7
. 70 10,10,10,10,10 10,10,10,10,10 10, 9, 9, 9, 9 9, 9, 8, 8, 9
.80 10,10,10,10,10 10,10,10,10,10 10,10,10,10,10 10,10,10,10,10

B5 .60 8, 8, 8, 8, 7 7, 7, 7, 7, 6 6, 6, 6, 6, 5 4, 5, 5, 5, 4
.70 10,10, 9, 9,10 9, 9, 9, 9, 9 8, 8, 8, 8, 8 7, 7, 7, 7, 7
.80 10,10,10,10,10 10,10,10,10,10 10,10,10,10,10 9, 9, 9, 9, 9

B6 .60 2, 3, 4, 5, 6 1, 2, 3, 4, 6 1, 2, 2, 3, 5 0, 1, 1, 2, 4
. 70 5, 5, 6, 7, 8 3, 4, 5, 6, 7 2, 3, 4, 5, 6 2, 2, 3, 4, 6
. 80 8, 8, 9, 9, 9 7, 7, 8, 8, 8 6, 6, 7, 7, 8 4, 5, 6, 6, 7

B7 .60 8, 8, 8, 8, 7 7, 7, 7, 7, 6 5, 6, 6, 6, 5 4, 5, 5, 5, 4
.70 10,10,10,10, 9 9, 9, 9, 9, 9 8, 8, 8 8, 8 7, 7, 7, 7, 7
.80 10,10,10,10,10 10,10,10,10,10 10,10,10,10,10 10,10, 9, 9,10

B8 .60 3, 4, 5, 6, 6 2, 3, 4, 5, 6
.70 6, 7, 7, 8, 8 5, 6, 6, 7, 7
.80 9, 9, 9, 9, 9 8, 8, 9, 9, 8

B9 .60

. 70

. 80

B10 .60
. 70

.6)

4, 5, 5, 6, 6
7, 7, 8, 8, 8
9,10,10,10, 9

3, 4, 5, 6, 6
6, 7, 7, 8, 8
9, 9, 9, 9, 9

3, 4, 4, 5, 6
4, 6, 7, 7, 7

9, 9, 9, 9, 9

2, 3, 4, 5, 5
5, 6, 6, 7, 7

8, 8, 9, 9, 8

2, 2, 3, 4, 5
4, 5, 5, 6, 6
7, 7, 8, 8, 8

2, 3, 3, 4, 5
4, 5, 6, 6, 6
8, 8, 8, 8, 8

1, 2, 3, 4, 5
4, 4, 5, 6, 6
7, 7, 8, 8, 8

1, 2, 2, 3, 4
4, 4, 5, 6

6, 6, 7, 7, 7

1, 2, 3, 3, 4
3, 4, 5, 5, 6
6, 7, 7, 7, 7

1, 1, 2, 3, 4
3, 3, 4, 5, 5
6, 6, 7, 7, 7
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show that the two sets of passing scores are the same, or nearly

so, es long as the test score distribution is reaaonably symmetric

(see cases B4, B5, and B7). Discrepancies in these situations are

rarely larger than one unit. For most othc- situations, the dif-

ference between the two values for a passing score is seldom larger

than one unit when the criterion 0
o
is .70 or .00 and when A/v is

at least .03. The same magnitude of difference, one unit, also

tends to hold at 0
0 = .60 unless the test scores pile up at extreme

values (Case B6) or unless the frequencies are fairly irregular

(Case Bl).

5. ADDITIONAL DATA FOR MODERATELY
SKEWED DISTRIBUTIONS

Additional comparisons were made for ten 20-item tests with

distributions having skewness ranging from -1.109 to .117 (see

Table 4). These tests were assembled in the same way as the 10-

item tests described in Section 4. As in the previous sections,

the criterion level e
o
was set at .60, .70, and .80, and the loss

ratio Q at .25, .50, 1.00, and 2.00. The prior knowledge about the

examinees was assumed to be equivalent ti, a number of items, t, of

8.875 (A/v = .02), 5.75 (A/v = .03), 4.1875 (A /v = .04), and 3.25

(A /v = .05). For all the 480 combinations under consideration, the

TABLE 4

Frequency Distribution of Score, on Ten CTBS Subtests
Mentioned in Section 5

Frequency at Score of
Subtest 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Reading vocabulary 1 1 5 3 4 7 4 8 3 4
Spelling 1 1 2 3 2 3 8 12 8
Science 1 1 1 3 3 4 3 1 9 4 5 2 1 1 1
Social studies 2 0 2 0 3 1 2 2 6 9 3 4 4 1 3 0
Social studies 1 2 5 3 3 1 6 5 4 2 2 5 0 0 1
Reading vocabulary 2 0 0 2 1 4 4 3 3 4 8 3 4 2
Mathematics concepts
and application 1 0 0 1 2 3 2 3 4 0 7 7 2 6 2
Reading vocabulary 1 2 3 2 5 5 6 9 7
Social studies 1 3 1 1 1 0 2 5 3 6 3 5 4 4 1 0
Science 1 1 4 2 2 2 4 2 4 2 3 4 3 5 0 1
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absolute value of the discrepancies between the two computed

passing scores are distributed as follows: 0 (35%), 1 (37%), 2

(15%), 3 (5%), and 4 or more (8%). Hence in about three-fourths of

all situations, the Bayesian and empirical Bayes passing scores do

not differ from each other by more than one unit.

6. AGREEMENT OF MASTERY/NONMASTERY DECISIONS

As noted in Section 4, there are situations (such as some

cases associated with the Al, Bl, and B6 data sets) where the pass-

ing scores obtained from the two methods differ appreciably. This

may seem disheartening. However, the procedures provide mastery/

nonmastery classifications which are in high agreement for most

cases under consideration. For Data Set Al with e
o

= .60 and .70,

fo: example, the combined proportions of students identically clas-

sified in either the mastery or nonmastery cstegory by the Bayesian

procedure (with Ahl = .05) and by the empirical Bayes procedure are

88%, 95%, 99%, and 100% for Q = .25, .50, 1.00, and 2.00 respect-

ively. Over the fifteen data secs of Table 1 and with the same

values for A/v and Q, the proportions of identical classifications

reach 94%, 96%, 98, and 97% respectively. As for the data of

Table 4, these proportions stand at 98%, 98%, 98%, and 97%.

Though the overall agreement for classifications is high for

the data considered in this study, some individual cases may show

less agreement than others. These cases include situations such as

A2 with 0
o

= .60, Q = .25, and A/v = -.05 where the Bayesian passing

score of 8 and the empirical Bayes passing score of 7 are located

near the center of the test score distribution. The shift of only

one unit in test score in this case actually causes 1C students out

of a total of 80 to be classified differently by the two procedures.

Visible disagreement between the classifications defined by the

Bayesian and empirical Bayes procedures may occur in situations

where scores with high frequencies of occurrence are selected as

the passing scores. If this is the case, the proportion of stu-

dents classified in the mastery (or nonmastery) category is not

likely 'o be close to either 0% or 10C%. In otii r situation:. where
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most students are declared masters (Data Set Al with 0
o

.60,

A/v .05, and Q 2.00) or nonmasters (Data Set A5 with 00 .70,

A/v R .05, and Q 1.00), the agreement in classifications is

almost perfect.

7. DISCUSSION AND CONCLUSION

The results described in previous sections may be summarized

as follows: (i) Bayesian passing scores and those computed via the

empirical Bayes procedure are identical or almost identical as long

as the test score frequency distribution is reasonably symmetric or

when the criterion level 0
o

is sufficiently high (.70 or .80);

(ii) large discrepancies in passing scores may occur at criterion

levels .60 (or below), especially when the test scores pile ap

at a fei extreme values or when the frequency distribution is

irregular; (iii) however, mastery/nonmastery decisions deried from

the two procedures are most often identical. Overall, the cc=bined

proportion of students similarly classified by both procedures is

about 97%.

All in all, there is little difference between the Bayesian

approach as described by Swaminathan et al. and the Huynh empirical

Bayes procedure described here, either in terms of the resulting

passing scores or in terms of the mastery/nonmastery categorization.

It should be pointed out tilt the procedure by Swaminathan et

al. relies on a normal arcsine-square-root transformation of the

test data and is therefore considered adequate only when the test

has at least 8 items. In addition, the scheme requires the evalua-

tion of certain posterior probabilities. This may be done via the

MARPRO computer program (mentioned in Wang, 1973) or via the Wang

tables. To the chagrin of the writers, many frequency distribu-

tions such as those derived from the CTBS test data of the South

Carolina Statewide Testing Program have s
2
values much larger than

the upper bound of .05 allowed in the above-mentioned tables. In

addition, the constraint of having at least 8 items seems to be

quite severe in many practical situations involving objective.
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referenced testing. Such tests frequently have 5 or fewer items

per objective.

The empirical Bayes approach in its simplest form, as pre-

sented in Huynh (1976s), requires that the test scores follow a

beta-binomial distribution. There are indications (Keats & Lord,

1962; Duncan, 1974; Huynh & Saunders, 1979; also see Table 1) that

the model adequately fits many test score distributions. Moreover,

it is known (Subkoviak, 1978; Huynh & Saunders, 197r) that the

model is useful in the estimation of the reliability of mastery

classification based on one test administration. In addition,

using the empirical Bayes approach, passing scores may be computed

for tests of any length and can be approximated quickly via

Equation (2).

It may be noted that the Bayesian and empirical Bayes proce-

dures discussed in this paper deal with the setting of passing

scores for a particular test. Both procedures assume the availabil-

ity of a minimum mastery or criterion level Bo and the availability

of other information such as Q, the ratio of the loss incurred by

a false positive decision to that incurred by a false negative one.

In the context of testing for instructional purposes, Go may be

based on the judgment of a curriculum specialist or a knowledgeable

teacher and Q may be assessed via the time losses encountered by a

misdecision (Huynh, 1976a). The issue is much more involved for

end-of-program certification, such as high school graduation (mini-

mum competency) testing programs legislated in several states. The

reader is referred to Jaeger (1976) and Shepard (1976) for insight

regarding some of these issues.

The empirical Bayes approach with the availability of a pre-

determined criterion level, however, is only the simplest form of

the general framework of mastery evaluation as approached by Huynh

(1976a). The essential component of this model is an external task

(real or hypothetical) that examinees are supposed to perform once

they are granted mastery of the objectives or content upon which a

test is based. Such an external task may be identified in the

context of instruction, especially when instructional units are
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sequenced in some logical order. If this requirement is fulfilled,

the specification of 80 is no longer necessary. Some scgaestions

for solutions along this line have been presented elsewhere (Huynh,

1976a, p. 73-75; Huynh, 1977; Huynh & Perney, 1979). To the

knowledge of the writers, the Bayesian approach as presented by

Swaminathan et al. has not been generalized to situations other

than those involving constant losses and when a criterion level is

available. Although such a generalization may be made, the numer-

ical analysiE would be more involved than can be expected from the

empirical Bayes approach.

As indicated previously, both standard setting procedures

studied in this paper are based on group data and therefore are

appropriate to the extent that minimization of loss is considered

for the entire group of examinees. This may be the case for mini-

mum competency testing where resources for remedial instruction are

limited. Procedures relating to standard setting in the absence of

group data are available (see, for example, Huynh, 1978).

In conclusion. the empirical Bayes approach yields mastery/

nonmastery decisions identical in most cases to those based on the

Bayesian approach. In tddition, the former approach is aimpler in

terms of coLpitatioas, is applicable to any test length, and has

been generalized to more complex testing situations.

BIBLIOGRAPHY

Comprehensive Tests of Basic Skills, Level C (1973). Monterey,

California: CTB/McGraw-Hill.

Duncan, G. T. (1974). An empirical Bayes approach to scoring
multiple-choice tests in the misinformation model. Journal of

the American Statistical Association 69, 50-57.

Huy:41, H. (1976a). Statistical consideration of mastery scores.
Psychometrika 41, 65-78.

Huynh, H. (1976b). On mastery scores and efficiency of criterion-
referenced tests when losses rre partially known. Paper pre-
sented at the annual meeting of the American Educational
Research Association, San Francisco, April 19-23.

76



bAYESIAN & EMPIRICAL PASSING SCORES

Huynh, H. (1977). Two simple classes of mastery scores based on
the beta-binomial model. Psychometrika 42, 601-608.

Huynh, H, (1978). A nonrandomized minimax solution for mastery
scores in the binomial error model. Research Memorandum 78-2,
Publication Series in Mastery Testing. University of South
Carolina College of Education.

Huynh, H. & Perney, J. C. (1979). Determination of mastery scores
when instructional units are linearly related. Educational and
Psychological Measurement 39, 317-325.

Huynh, H. & Saunders, J. C. (1979). Accuracy of two procedures for
estimating reliability of mastery tests. Research Memorandum
79-1, Publication Series in Mastery Testing. University of
South Carolina College of Education. Also presented at the
annual conference of the Eastern Education Research Association,
Kiawah Island, South Carolina, February 22-24, 1979.

IBM Application Program, System/360 (1971). Scientific subroutines
package (360-CM43X) Version III Programmer's manual. White
Plains, New York: IBM Corporation Technical Publication
Department.

IMSL Library 1 (1977). Houston: International Mathematical and
Statistical Libraries.

Jaeger, R. M. (1976). Measurement consequences of selected
standard-setting models. Florida Journal of Educational
Research 18, 22-27.

Keats, J. A. & Lord, F. M. (1962). A theoretical distribution for
mental test scores. Psychometrika 27, 59-72.

Novick, M. R., Lewis, C. & Jackson, P. H. (1973). The estimation
of proportions in m groups. Psychometrika 38, 19-45.

Pearson, K. (1934). Tables of the Incomplete Beta Function.
Cambridge: University Press.

Shepard, L. A. (1976). Setting standards and living with them.
Florida Journal of Education Research 18, 23-32.

Subkoviak, M. J. (1978). Empirical investigation of procedures for
estimating reliability of mastery tests. Journal of Educational
Measurement 15, 111-116.

Swaminathan, H., Hambleton, R. K. & Algina, J. (1975). A Bayesian
decision-theoretic procedure fur use with criterion-referenced
tests. Journal of Educational Measurement 12, 87-98.

77



HUYNH & SAUNDERS

Wang, M. M. (1973). Tables of constants for the posterior marginal
estimates of proportions in m groups, ACT Technical Bulletin
No. 14. Iowa City, Iowa: The American College Testing Program.

FIGURE I

Four Categories of Decisions
Based on Observed Test Scores

Observed
Score

True
(X)

Sco-e (0)

Observed Observed
Nonmastery Mastery

c

True

Mastery

True
Nonmastery

e
o

Nonmastery-
Mastery
(false negative
decision)

Mastery-
Mastery

(accuLate
decision)

Nonmastery-
Nonmastery

(accurate
decision)

Mastery-

Nonmastery
(false positive
recision)

ACKNOWLEDGEMENT

This work was performed pursuant to Grant NIE -G -78 -0087 with the
National Institute of Education, Department of Health, Education,
and Welfare, Huynh Huynh, Principal Investigator. Points of view or
opinions stated do not neccessarily reflect NIE positions or policy
and no endorsement should be inferred. The editorial assistance of
Anthony J. Nitko is gratefully acknowledged.

78

5



3
A CLASS OF PASSING SCORES BASED
ON THE BIVARIATE NORMAL MODEL

Huynh Huynh

University of South Carolina

Proceedings of the 1979 meeting of the American Statistical
Association (Social Statistics Section).

ABSTRACT

This study touches some aspects of the determination of

passing (cutoff, mastery) scores on the basis of the bivariate

normal test model. The loss ratio associated with classification

errors is assumed to be constant, and the referral success function

is assumed to belong to the normal ogive family. Alternately the

model also provides a fairly simple way to assess the loss conse-

quences associated with each passing score. Such information is

deemed useful to the test user who may wish to examine these con-

sequences before making a final choice of passing score.

1. INTRODUCTION

A general framework for setting passing (cutoff, mastery)

scores in binary classification (or mastery testing) has been pro-

vided recently (Huynh, 1976). Applications of the procedure to

test data distributed as the beta-binomial model have also been

presented (Huynh, 1976, 1977). The framework assumes that the true

This paper has been distributed separately as RM 79-4, April, 1979.
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ability of a population et subjects may be described by a random

variable e with probability density function p(e). If only one

subject is involved, then p(8) describes the prior information

regarding this subject's ability. A test is administered to the

subject and the resulting test score is denoted as x. The test

score is then compared to a passing (or cutoff) score equal to a

constant c. If x is equal to or greater than c, the subject

passes (or is declared a "master"). If x is less than c, the sub-

ject does not pass (or is declared a "nonmaster"). The problem is

to determine a value of c which is optimum in some sense.

The model, as proposed, postulates the availability of a

referral task which the subjects are expected to be able to perform

if they are classified as having mastered the competencies under-

lying the test scores. Performance on the referral task is cate-

gorized as success nr failure. The probability of a successful

performance on the task by a subject with true ability e is defined

via a nondecreasing function s(e), the referral task. Each referral

task corresponds to a unique function s(e). Conversely, from a

purely mathematical point of view. any nondecreasing function s(e)

may be conceptualized as a referral task.

The referral task, thus, may be real or hypothetical. For

example, if an integer addition unit is to be followed by lessons

on integer multiplication, then performance on a multiplication

test may serve as a referral task for a test tapping the ability

to add integers. Othe illustrations of real referral tasks may also

be found in situations where the sequence of instructional units

forms a linear hierarchy. In a number of situations, a referral

task can be conceptualized. For example, in minimum competency

testing programs legislated in several states, a consensus on what

constitutes a minimum level of performance for mastery may serve as

a basis for a referral task. To be specific, let us agree that in

order to qualify for mastery, an examinee must have a true ability

of at least e . Then the nondecreasing function s(e) which takes

the value of 0 if e < e
o

and the value of 1 for e > 00 mathematically
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defines the referral task for this case. The special 0-1 form for

s(6) has been considered by a number of writers including Hambleton

and Novick (1973).

Now let C
f
(6) represent the opportunity loss incurred by

granting mastery status to a subject who will eventually fail in

performing the referral tas_ (a false positive error). Likewise,

let C
s
(6) be the loss associated with tIle denial ol mastery to a

subjec- whose performance on the task would be deeme6 successful (a

false negative error). Under these conditions, r.,ssonable choice

for an optimum passing score would be the score co at which the

average loss across all subjects in the population (or the Bayes

risk in th' case of only one subject) is smallest. Details regard-

ing the computation of co may be found to Huynh (1976).

When test scores may be assumed to follow a beta-binomial

model and when the referral success function s(6) is of the 0-1,

linear, or cubic form, closed-form solutions exist for co (Huynh,

1976, 1977). As is well known, the binomial error model is appro-

priate when each examinee is given an independent sample of items

(Lord and Novick, 1968, chap. 23). There are indications that

several test score distributions mi311.: fit the beta-binomial frame-

work even if examinees in each distribution respond to the same set

of items.

There are models other than the bets -binomial framework which

could be used to represent test data. For example, many frequency

distributions obtained from standardized tests are known to follow

closely a normal distribc_ion. Models using a bivariate normal

distributi-r, for the true score e and the observed score x are not

uncommon in educaticnal measurement and Bayesian statistical lit-

erature. Moreover, as an implication of the Central Limit Theorem.

the beta-binomial distribution will resemble a bivariate normal

distribution when the num')er of test items is sufficiently large.

The purpose of this paper is to provide the computation for

the optiuur issing score (mastery score) fo,' the bivariate normal

test score model with constant losses and 0-1 r normal ogive s(6).
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Since normal test scores form a continuous scale, the optimum

passing score co satisfies the equation

f i(c
s
(e) + C

f
(e))8(e) - C

f
(0))p(Olc

o
)(10 = O.

In the above expression, I represents the sample space of 6. For
the sake of completeness, a procedure will also be proposed for

approximating the referral success function s(0).

HUYNH

(1)

2. PASSING SCORE COMPUTATION FOR THE BIVARIATE
NORMAL MODEL WITH CONSTANT LOSSES
AND NORMAL OGIVE REFERRAL SUCCESS

Without any loss of pnerallty, let Cf(0) = 1 and Cs(0) = Q.

Here Q expresses the ratio of the loss incurred by a false negative

error to that associated with a false positive error. Now let the

referral success Ile defined as

0-0
s(0) = FN(

a (2)

where and a are two constants and F
N (.) denotes the cumulative

distribution function of a unit normal random variable. In addition,
let x be in its standardized form (with zero mean and unit variance).
With p as the test reliability, the mean and variance of 0 are

respectively 0 and p, and the correlatioh between x and 0 is )5.

It is now assumed that the vector (0,x) follows a bivariate

normal distribution. It may Ile then verified that the conditional

density p(Olco) is given as a normal density with mean pco and

variance p(1-p). r!uation (1) new becomes

+co

re1
f [(Q+1)F

N p
°I lip(Olc

o
)d0 = 0)

or

f F ---2]p(Olc
o
) =

+=, [

a

0-0
1

N-co (3)

The integral in Equation (3) may be written as

1
+cm e (t-0 )

2
(0pc0)21

A = f (f exp do exp

J
dO.2

2a 20pi2.1m47
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Thie. integral may be viewed as the probab.lity of the joint event

i-= 0 < =, t < OJ associated with two independent random variables

t and O. The random variable t has mean 0
o

and variance a
2

; the.

second random variable 9 Sias mean pc
o
and variance p - p

2
. Now the

difference t - 0 follows a normal distribution with mean 0 - pc
o

and variance p - p
2
+ a

2
. Sihce the mentioned joint event is

equivalent to the condition t - 0 < 0, it follows that the value of

A is

F
N
((pc

o
-0

o
)/(p-p2+a2)11]. Let C be the 100/(1i0 percentile of the

unit normal distribution, e.g. FN(E) = 1/(1+01). Then co is given as

irT
e
o
+ E p-p

FT
+a

(
p

C
o
= (4)

If the test scores have mean p
x and a standard deviation a

x
,

then the test cutoff score is given as Co = +

The following remarks may be made about Equation (4). First

by letting a
2
= 0, the normal ogive s(0) will degenerate to a 0-1

form with the jump occurring at 0 Thus if true nonmastery status

is defined by 0 < 90 and true mastery by 0 > 00, they the cutoff

score is c
o

= 0
o
/p + Eil-/). Next, when misdecisions are weighted

equally in terms of losses (i.e., when Q = 1), co and 00 relate to

each other via the equation eo = pco. This expression is reminiscent

of the Kelly formula which defines the regression of true score on

test score (Lord and Novick, 1968, p. 65). Finally, when the rela-

tionship between the ability 0 and the referral task is fuzzy, i.e.,

when a
2

is large, the cutoff score c
o
will shoot sharply abovs the

"central value" 0
o
/p if Q < 1 and will locate appreciably below

this central value if Q > 1.

It may be noted that the unstandardized passing score Co may

be written as

0 a
o x 1C

o
= p

x p
+ + Eir(1-p)a

x
2
+ a

2eip 2
.

Let a
2

e be the squared standard error of measurement. Then

a
e

2
= (1-0a2 and
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eoax 42 0202/...2.

o x p e x

Numerical Example 1

Let p
x
= 100, a

x
= 15, p = .90, 8 = 1, a = .5, and Q = .5.

Then t = .432, --141 co = 1.391. The raw (unstandardized) cutoff

score is found ,) be Co = 120.86.

ESTIMATION PROCEDURE FOR
NORMAL OGIVE REFERRAL SUCCESS

(5)

Now let g(x,i) be the proportion of subjects who have a test

score of x and succeed in performing the referral task. Then from

Equation (13) of Huynh (1976, p. 74), it may be seen that

g(x,1) = 5 h(x,O)s(0)d8
CO

there 1.(x,0) is the bivariate normal density of x and 0. It follow

that

+a,

g(x,1) = f
N
(x)f F

N a
p(0Ix)d8

where f
N'
.%) is the unit normal density. Hence from the derivations

in the middle part of the previous section,

g(x,1)
px-

Po
f
N
(x)

rp-p +a

The ratio p(x) = g(x,1)/fN(x) represents the (conditional) propor-

tion of students who, at the test score x, will succeed in perform-

ing the referral task. Now let

a = P/(P-P
2
+a

2
) (6)

and

-e
o
/(P-P

2
+0

2
)

then

p(x) FN(ax+ 8)
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If F(x) denotes the 100p(x) Percentile of the unit normal distribu-

tton, then

E(x) = ax + $ .
(7)

Now let p(x), E(x) be the observed values of p(x) and E(x). Let

w(x) be a suitably chosen weight function at score x. Then via

the least squares technique, the estimates for a and 0 are given as

a = s(E)r(x,E)
(8)

and

8 = t. (9)

where E. and s(E) are the mean and standard deviation of the E(x)

values, and r(x,E) is the correlation between the x and E(x) values,

each pair being weighted by w(x). The computation, of course, is

carried out only over the x values at which the sample values p(x)

are available. The reader may recall that the test scores x are in

standardized form.

It may be noted that p(x) is an increasing function of x.

Hence It seems reasonable to require that the sample value p(x) be

a nondecreasing function of x. This way be done by applying the

Pool-Adjacent-Violator algorithm (Barlow, Barthllomew, Bremner, and

Brunk, 1972, p. 13) using w(x) as the w,.ght function. In addition,

since all p(x) values must be included strictly between 0 and 1,

the algorithm must be cwaducted such that the adjusted values p(x)

conform to this requirement. (See Table 1 for an illustration.)

As in any least square procedure, the weight function w(x) may

be chosen in a variety of ways. It appears to the author that the

number of subjects at each test score might serve as a .:aasonable

choice for this function.

Once the estimates a ane. 8 have been determined, the estimates

for 0
o

and a
2
may be derived from Equatibl, (5) and (6). Mese are

(10)60 =

and

2 2,2 2
a - p la - p p
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In the case where Equation (11) yields a negative value, a reasonable

choice for a
2
would be O.

Numerical Example 2

Table 1 presents the basic data for this example. The test

reliability is taken to be p = .90. The summary data are C. =

-.2280, s(C) = .8668, and r(x,C) = .9723. It follows that a =

.8427 and 0 = -.2280, hence 00 = .244 and o
2
= 1.050.

4. ASSESSING THE CONSEQUENCES
OF SELECTING A MASTERY SCORE

Section 2 provide;: the computation of mastery scores when the

loss ratio Q is known. In c number of applications, however, the

test user may not be willing to specify in advance a value for Q.

Instead the user may wish to look at the consequences o.;suciated

with each cutoff score before making a final choice. Such a prac-

tice is not uncommon in real testing situations. Both Jaeger (1976)

and Shepard (1976) have advocated an iterative process for setting

cutoff scores in testing programs such as high school graduation

or minimum competency testing.

As in Section 2, let F
N
(.) denote the cumulative distribution

function of the unit normal variable. Given the loss ratio Q, the

mastery score c0 is given by the equation

1 1FN((pc0-00)/(p-p 2+a
2
) =

Alternately tie selection of :0 as the cutoff score would indicate

that the weights f:or losses) accorded to a false negative err evi

to a false positive error are in the ratio of Q to 1 where

Q = 1/FNI(pc0-00)/(p-p 2+a
2
)

1/2)

j - 1.

Q will degenerate to 0 when c
o

goes to += (i.e., when all st.bjects

are denied mastery) and to = when c0 goes to -= (i.e., when mastery

is granted regardless of test score).

5. SUMMARY AND CONCLUSION

This study touches some aspects of the determination of pass-

ing scores on the basis of the bivariate normal test wodel. The
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TABLE 1

Basic Data for Numerical Example 2

Raw Test Score
1 2 3 4 5 6 7 8 9 10

Frequency of examinees 1 4 10 21 16 23 21 16 8 5

Frequency of referral-
successful examinees 0 0 1 3 4 8 15 10 7 5

Unadjusted P(x) 0 0 .100 .143 .250 .348 .714 .625 .875 1

Pool-Adjacent-Violator-
Adjusted p(x) .067 .067 .067 .143 .250 .348 .676 .676 .923 .923

x) -1.450 -1.150 -1.450 -1.067 -.675 -.391 .457 .457 1.426 1.426
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loss ratio associated with classification errors is assumed La be

constant, and the referral success function is assumed to be in the

normal ogive family. Alternately, the model also provides a fairly

simple way to assess the loss consequences associated with each

mastery score. Such information is deemed useful to the test user

who may wish to examine these consequences before making a final

choice of cutoff score.

It should be mentioned that the paper deals with group test

data for a population of examinees. Thus the various results

would be useful to the extent that loss consequences are consiaered

jointly for the entire population. A procedure for setting passing

scores on tests in the absence of group data is discussed elsewhere

(Huynh, 1978; also in press).
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ABSTRACT

A general framework for making mastery/nonmastery decisions

based on multivariate test data is iescribed in this study. Over

all, mastery is granted (or denied) if the posterior expected loss

associated with such action is smaller than the one incurred by the

denial (or grant) of master .% An explicit form for the cutting

contour which separates mastery and nonmastery states in the test

score space is given for multivariate '1st scores which follow a

normal distribution with a constant loss ratio. For the case

involving multiple cutting scores in the true ability space, the

test score cutting contour will resemble the boundary defined by

multiple test cutting scores when the test reliabilities are reason-

ably close to unity. For tests with low reliabilities, decisions

may very well be based simply on a suitably chosen composite score

1. INTRODUCTION

Application of mental measurement to selection or certification

problems often involves the use of more than one test score. For

This paper has been distributed separately ar RN 79-7, December,
1979.
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example, the selection of students for an advanced program in some

subject area may be based on several traits (variables), such as

prior achievement, aptitude, interest, etc. Ideally, selection

should be based on the subject's true measures on these traits; in

reality, however, decisions are typically based on observed test

scores which are contaminated with errors of measurement. T!Ils,

misclassifications are bound to occur, and rules for decisions

based on test data are typically formulated in such a way as to

minimize the risks incurred by misclassification.

Decision problems based on one variable have been considered

at length in the literature. Statistical issues involved in estab-

lishing a single cutoff (cutting, passing, or mastery) score are

described in detail in a number nf sources including Swaminathan,

Hambleton, and Algina (1975); Huynh (1976, 1977, 1979, 1980);

Wilcox (1976); and van der Linden and Mellenbergh (1977). Huynh

(1979, 1980) also provides an explicit relationship among test

cutting score, losses incurred by misclassification, and errors of

measurement. In general, within the minimax or empirical Hayes

decision framework, it is found that errors in measurement will

reduce the test cutting score when a false negative error is more

serious than a false positive error. Conversely, the test cutting

score will increase when a false negative error is less serious

than a false positive error.

The effect of errors of measurement in selection 2itvarions

involving multiple true cutting scc es has been considered by Lord

(1962). The selection framework used involves the regression line

expressing the amount of "desirability" assignel to different

examinees as a fuLetion of the _bserved test scores. Using the

multivariate -normal distribution to describe the true and observed

scores, Lord was able to plot the contour line in the observed

test score plane which separates the subjects deemed acceptable

(masters) from those judged as cnacceptable (normasters). Lord's

paper, however, does not appear to come naturally from decision

theory as formulated by Wald (1950) or as prescribed in Ferguson

(1967).
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The purpose of this paper is twofold. First it will describe

a general empirical Bayes solution to the "plotting" of a cutting

contour in selection situations involving multiple test scores.

Second, it will explore the influence of the loss ratio on the

cutting contour and will reexamine the distortion caused by errors

of measurement (Lord, 1962), using an empirical Bayes decision-

theoretic framework. Examples based on the multivariat! normal

distribution with constant losses for misdecisions ace provided to

illuminate various points or procedures put forward in the paper.

2. EMPIRICAL BAYES APPROACH TO CUTTING CONTOUR

Now let the vector 6 = (61,62,...,Ok)' denote the true scores

(measures) of an individual subject on k traits (or selection

variables). Let Q represent the region in the true score space

where a subject must be located in order to qualify for the true

state of mastery. Thus a subject is defined as a true master if

6 e Q. Let Q
c

be the complement of Q. Then a subject is declared

a true nonmaster when 6 E Qc.

Now let the vector x = (x x2" x
k
)' represent the observed

test scores of the subject. On the basis of x and other p:ior

information regarding 6, a decision may be made concerning the sub-

ject: either to grant mastery (action al) or to deny mastery

(action a2). When e E Q, the best course of action is al, and no

loss will be encountered. Similarly, action a2 is best when 6 E Qc.

For other situations, classification errors occur. To '3e specific,

the choice of action a
2
when 6 E Q constitutes a false pqgative

error, whereas the selection of a
1
when e E

c
produce, a false

positive error.

Let C
s
(6) be the loss associated with a false negative error

and C
f
(6) be the loss encountered by a false positive error. Let

p(61x) be the posterior probability density of 6 given that the

t;sst scorn vector has been observed. Given x, the posterior

expected loss encountered in taking action al is given by the

integral R(allx) = fe Cf(6)p(6(x)d6.
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Similarly, the posterior loss associated with the choice of

action a2 is R(a21x) = jrz Cs(0)p(01x)d6.

It follows from Bayes (or empirical Bayes) decision theory as

expressed, for example, in Ferguson (1967) that, in the test score

space generated by the test score vector x, the cutting contour S

separating the two actions al (granting mastery) and a2 (denying

mastery) is defined by the equality R(allx) = R(a2Ix). In other

words, the line (or surface) S consists of all points x at which

J Cs(0)P(01x)d0 = J Cf(B)p(01x)d0. (1)

The following section explores in detail the implications of

Equation (1) for the case involving constant losses and multiple

true cutting scores.

3. CUTTING CONTOUR FOR CONSTANT LOSSES
AND MULTIPLE TRUE CUTTING SCORES

Let losses be constant and expressed as Cf(0) = 1 and C
s
(0) = Q

in the region where they do not vanish. In other words, Q is the

ratio of the false negative loss to the false positive loss. In

addition, let c be the "upper ..ight" corner defined by the true
* *

cutting scores 01,02,...03k. In other words,

With constant losses Equation (1) may now be written as

Qfsl p(01x)d0 = J p(01x)d0.

Since Q U Qc spans the entire space for e, it follows that

p(01x)de +
c

p(0Ix)d0 = 1.

With this relationship, Equation (1) becomes

fQ P(61x'd6 =
1

(2)

which may be written, using the given multiple true cutting scorej,

as

Pr(6
*
<6

l'
.

k
6
*
<6 ..,6

*
<6
k 1
lx) = (3)+Q

The line consisting of the points of coordinate x which satisfy

Equation (2) or (3) defines the boundary between granting and deny-

ing mastery it the test score space. This boundary line will be

referred to as a cutting contour.
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4. CUTTING CONTOUR IN MULTIVARIATE NORMAL TEST SCORES

For illustrative purposes, let it be assumed that the true

score vector 0 for a population of subjects follows a multivariate

normal distribution with mean vector p = (pi,p2,...,p01 and with

covariance matrix E
e
= (cy

ij
). In the term 'ogy of empirical

Bayes statistics, this statement is equivalent to the requirement

that the prior distribution et the true score vector 0 be the same

for all subjects in the population under study. This common prior

distribution may be estimated from historical test score data or by

procedures which are consistent with classical measurement theory

and practice.

The difference vector e = x - 0 represents the errors of

measurement. It will Le assumed that the k omponents of e are

normally and independently distributed, each with a mean of zero

and a variance of cii, i = 1,2,...,k, free of 0. In addition, it

will be assumed that the two vectors e and 0 are stochastically

independent. To simplify the notation, let Ee be the diagonal

matrix with elements cii.

It follows from classical measurement theory and from known

properties of multivariate normal di tributtons that the joint

distribution of x and 0 is multivariate normal with a mean vector

of p for both x and 0 and with a covariance matrix defined as

ElE1x 1 0

120 1 E0

where Ex=E
0
+E. Hence the posterior distribution of 0 given

the test score x is multivariate normal with mean vectcr E(x) -

(E 1'E2'
= p + (x-p)1E

e
E
x
1
and with covariance matrix

A =
ij = E

6
- Ex 1E

6.
The vector E(x) is a function of the

test score vector x. On the other hand, the matrix A is free of x.

Now let us consider the standardized variables yry2,...,yk

where

yis*(ei Ei(x))/iWiT, i = 1,2,...,k.
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Each of these variables has zero mean and unit variance. Let r be

the correlation matrix associated with A (i.e., r is the covariance

matrix of the y, variables). In addition, let

yi = (ei - Ei(x))/Aii, i = 1,2,...,k. (4)

Then the cutting contour separating the two actions a
1

and a
2

in

the test score space is defined by the equality

* * 1
14Q (5)

where the random vector y = (yry2,..,yk)1 follows a multivariate

normal distribution with zero means, unit variances, and correlation

matrix r free of x.

Consider now the set y consisting of the points with coordi-
* *

nates (y,,y2,,yk) which satisfy Equation (5). Tihansky (1970)

refers to this set as an equidistributional contour and provides

ways to construct contours of this type for bivariate normal dis-

tributions. The contour y depends only on r which does not involve

the observed test score ver..tor x. Once it has been constructed,

the cutting contour C in the test score space may be plotted via

the system of linear equations represented by

p + (x-p)1E0E:1 = E, (6)

where
* *

Ei 81. - yeic, i = 1,2,...,k.

Where computer facilities are available, equidistributional

contours may be drawn vla the Newton-Raphson iteration process for

nonlinear equaticns. For example, let (yry2)1 follow a standard-

ized bivariate normal distribution with correlation p. Let a be

any number between 0 and 1, and u be such that Pr(u < y1) < a. We

will search for the value v at which G(v) = 0, where

G(v) = Pr(yeu,y2>v) - a,

= Pr(y1<-u,y2<7v) - a.

The derivative of G(v) with respect to v is given as

2

G1(v) = -(2v) hexp (- P(y1 <7111y2 = -v).
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Here the conditional distribution of y. given y
2
la v is a normal

listribution with a mean of -pv and a standard deviation of (1-o2
)

Hence

2

G' (v) = -(20-1/2exp (- 2/- 0(Z < -1141v ) (9)2
(1-o

2
)

where Z is the standardized normal variable. The values of G(v)

and G'(v) may be obtained via computer programs such as MDBNOR

(IM, 1977) and the Fortran IV library function ERFC. Both G(v)
and O'(v) are needed in the Newton-Raphson iteration process. This
procedure has been found to converge when u is not too close to the
upper bound uo at which P(uo < yl) = a. (It may be noted that the

bivariate equidistributional contour has two asymptotes defined as

u = u.0 and v = u
o

. Thus small variations in a u value near u
o
will

tend to associate with substantial changes in the v values; because
of this, the iteration process may fail. However, since P(yi > u,

y2 > v) = P(y, > v,y2 > u), the contour is symmetric with respect

to the first diagonal in the (u,v)-plane. Thus it is necessary to

iterate the v value for each u sufficiently smaller than the upper
bound u

o'
and then to resort to symmetry to complete the drawing of

the contour.)

The drawing of an equidistributional contour for any k-variate

normal distribution may be accomplished in the same way via thc.

Newton-Raphson iteration process previously described. The details

are straightforward and therefore are not presented here. Multi-
*variate normal probabilities of the form P(yi < y1,y2 < y2,...,

yk yk) may be evaluated via computer programs such as the one

described in Milton (1972).

It may be noted that the contour y does not depend on the two
*

vectors 6 and p. In addition, in the transformation from y to C

as defined by (6), these two -lectors act only to indicate the new

location of the transformed curve. It fnilows that the shape of

the cutting contour C does not depend on either the vector p or the
*

vector e .
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5. AN ILLUSTRATION OF CUTTING CONTOUR

Consider now a selection based on two variables defined by the

true scores 01 and 02, and by the observed test data xi and x2. It

will be assumed, as in Lord (1962), that both x1 and x2 are in their

standardized form and have a common reliability coefficient of .90.

In addition, let the correlation between x, and x2 be .60. It fol-

lows that the matrices E
x
and E

s
are defined as

and

x =
1.00

.60

.60

1.00

.90 .60
E
e
=

.60 .90

With

-1
E
x

it follows

9-x

and

A..

.60

1
-.60

1.001

.54 .06

.06 .54

.522

.378

.378

.522

.84375

.09375

.09375

.84375

1..084375

1.009375

.009375

.084375

.64
-.60

that

1

.64

..60

.90
.64

Thus the posterior distribution of (01,02)' given the test data

x = (x x
2
)' is bivariate normal with mean vector F(x) = (E E

2
)'

where Ei = .84375x1 + .09375x2 and E2 = .09375x1 + .84375x2. The

posterior standard deviations are (.084375)1/2 . .29047 for both 0
1

and 02, and the posterior correlation between 01 and 92 is

.00)375/.084375 = .11111.

It may then be deduced from the equations represented by (4)

flat
* *

yi (01 - (.84375x1+ .09375x2))/.29047

and
* *

y2 = (02 - (.09375x1 + .84375x2))/.29047.
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To draw the (x x
2
) contour line, let us suppose that e

1
= e

2
= O. The two equations represented by (6) can be written as

*
.84375x

1
+ .09375x

2
= - .29047y1

.09375x
1
+ .84375x

2
= -.29047y

2

or equivalently

x = -.34857y, + .03873y2

x2 = .03873y1 - .34857y2.

* *
In the abe equations, the point at coordinate (yy,) belongs

*
to the equidistributional contour line defined by P(y1 < yry2 < y2)

= 1/(1+Q), where (y1,y2)1 follows a standardized bivariate normal

distribution with correlation .11111. It may be recalled that Q is

the ratio of the false negative error loss to the false positive

error lost.

For purposes of illustration, the sf:eps previously described

were implemented in drawing the cutting contours associated with

the loss ratios Q = 1/3, 1, and 4. These contours are depicted in

Figure I.

6. EFFECT OF LOSS RATIO ON CUTTING CONTOUR

In Figure I, the upper right region bounded by each cutting

contour consists of the test score points at which mastery is

granted. It may be observed that the mastery region expands as the

loss ratio Q increases. This conclusion is to be expected. If the

consequences due to a false negative error become more serious (i.e.,

Q increases), then the classification (or selection) procedure

should be so designed as to reduce the probability of this error.

Thus the size of the nonmastery set must be reduced, and as a

consequence, it becomes more likely that mastery will be granted.

In general, let the set A (Q
1
) con at of all points y*

* *
(yvy2,...ak) for which

P(Y < Y Y
2 <1 l' Y2'''''Yk Yk) 1/(1+441)

(10)
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FIGCRE I
Multivariate Cutting Contour

for three Q Values
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and let A(Q
1
) be the corresponding region in the test score space.

It may be verified that in A(Q1) the expected posterior losses

associated with the two actions a
1

(granting mastery) and a
2

(deny-

ing mastery) satisfy the inequality R(allx) < R(a2lx). Thus the

set A(Q
1
) consists of test score points at which the subject is

declared a master. Now let Q
2
be a second loss ratio such that

Qi < Q2. This is equivalent to 1/(1+611) > 1/(1+Q2). Let A(Q2) have

the same meaning as above. Then any test score points which belong

to A(Q1) must also belong to A(Q2). In other words, the inequality

Qi < Q2 impl'.es that A(Q1) c A(Q2). Thus, as the loss ratio Q

increases, the mastery region in the test score space will expand.

By the same line of reasoning, when Q decreases, the mastery region

will be reduced in size.

7. EFFECT or ERRORS OF MEASUREMENT ON CUTTING CONTOUR

To illustrate the effect of errors of measurement on the cut-

ting contour in Lte test score space, let it be assumed as in the

previous section that the test scores xl and x2 are in their

standardized forms and have a correlation of .60. In addition, let

it he assumed that x
1
and x

2
are equally reliable with common relia-

bility coefficient p, and that Al = 62 = O.

It rollows from the equations represented by (6) that

2 *
1.25(p-.36)x1 + .75(1-p)x2 = (p -1.36p+.36)-yi

(11)

.75(1-p)xl + 1.25(p-.36)x2 = (p
2
-1.36p+.36)-y,

*
.

In these expressions, the point (yi,y2) belongs to an appropriate

equidistributioaal contour associated with the standardized bi-

variate normal distribution with correlation 6 = .6(1-p)/(p-.36).

It may be deduced from the positive semidefiniteness of the

covariance matrix of (0
1
,6

2
) that the common reliability p must be

between .60 and 1.00. As a function of p, the posterior correla-

tion 6 is a decreasing function, assuming the value of 1.00 when

p = .60 and having the limit of 0 when p tends to 1.00.
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When p approaches the upper limit 1.00, the posterior distri-

bution of (e1,02) will degenerate at the point (xl,x2). (It may

be noted that when p = 1, the posterior covariance matrix A as

defined in Section 4, i.e., Ee E eEx E
e'

will vanish.) Given the

test score vector x = (xl,x2)', formally, the posterior expected

loss for taking action a
1,

R(a
1
Ix), is equal to 0 when x e fl and

1 when x E sf. Similarly, R(a2 1x) is equal to Q when x e 0 and

0 when x e ff. Thus, mastery is granted when xl > 0 and x2 > 0.

When either x
1

< 0 or x
2 < 0 (or both), mastery is denied. In

summary, when p tends to unity, the cutting contour line in the

test score space will approach the cutting contour line defined

in the true score space.

Consider now the other limiting situation where p tends to .60

and 8 goes to 1.00. The entire bivariate probability of (xl,x2)'

is now concentrated on the diagonal xl = x2. Let yo be tne point

at which P(yo < yl) = 1/(1+Q) where yl, as previously defined, is a

standardized normal variable. The equidistributionbi contour line

is now comprised of the two half lines defined by (i) y
1
= y

o
and

Y2 < Yo, and (ii) y2 = yo and yl < yl. Both half lines start at

the point (yo,y0) and extend to -=, one vertically and the other

horizontally.

The equations (11) now become

xl + x2 = -.32y1

xl + x2 = -.32y2.

It follows that the cutting contour in the observed test score

space is the straight line defined by the equation x1 +x2= -.32y0.

The decision regarding granting or denying mastery in this case is

actually based on the composite score xi + x
2
although separate

cutting scores have been set is the true score space!

For purposes of illustration, cutting contours are drawn for.

the reliability coefficients of p = .95, .80, and .65, and with the

loss ratio Q = 1. The contours are uhown in Figure II.
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FIGURE II

Multivariate Cutting Contours
for Three p Values
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8. SUMMARY

A general framework for making mastery/nonmastery decisions

based on multivariate test data is described in this study. Over

all, mastery is granted (or denied) if the posterior expected loss

associated with such action is smaller than the one incurred by he

denial (or grant) of mastery. An explicit form for the cutting

contour which separates mastery and nonmastery states in the test

score space is given for multivariate test scores which follow a

normal distribution with a constant loss ratio.

For the case involving multiple cutting scores in the true

ability space, the test score cutting contour will resemble the

boundary defined by multiple test cutting scores when the test

reliabilities are reasonably close to unity. For tests with low

reliabilities, decisions may very well be based simply on a suitably

chosen composite score.
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ABSTRACT

Two versions of the Nedelsky procedure for setting minimum

passing scores are compared. Two groups of judges, one using each

version, set passing scores for a classroom test. Comparisons of

the resulting sets of passing scores are made on the basis of (1)

the raw distributions of passing scores, (2) the consistency of

pass-fail decisions between the two versions, and (3) the con-

sistency of pass-fail decisions between each version and the pass-

ing score establishe1 by the test designer. The two versions of

the procedure are found to produce essentially equivalent results.

In addition, a significant relationship is observed between the

passing score set by a judge and that judge's level of achievement

in the content area of the test.

This paper has been distributed separately as RM 80-1, March, 1980.
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1. INTRODUCTION

Passing scores are needed in a broad variety of situations,

including (a) entrance examinations, (b) tests for advancement of

students from unit to unit in individually pre-eribed instruc-

tional programs, (c) minimum competency testing, and (d) certifi-

cation or licensing examinations. Though writers such as Glass

(1978) charge that passing scores for minimum competency testing

are usually selected arbitrarily and frequently used unwisely,

others (Hambleton, 1978; Shepard, 1976) have documented the need

for cutoff scores in such areas as objectives-based programs and

individualized instruction. This paper presumes the practical

necessity of passing scores and explores ways in which they can

be established more objectively.

Procedures for Setting Passing Scores

Various procedures for setting passing scores or "standards"

have been developed (see Meskauskas, 1976). Most can be placed

into one of three broad categories: (a) comparisons with the per-

formance of others, (b) considerations of the consequences of

misclassification, and (c) examinations of item content.

Standard-setting procedures in the first two categories generally

require actual student response data or assume a theoretical,

statistical distribution of such data; content-based methods use

judgements of content experts. Content-based methods frequently

are used with tests when student performance data are not avail-

able.

Methcds for determining passing scores by analyzing test con-

tent require a judge Of group of judges to estimate the probable

score of a hypothetical examinee responding at the level of mini-

mum acceptable performance. Three of the best-known content-based

procedures are those proposed by Angoff (1971), Ebel (1972), and

Nedelsky (1954). In using the Angoff method, each judge estimates,

the probability that the "minimally acceptable person" would
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respond correctly to each item; the passing score is determiner ,7

summing the estimated item probabilities (Angoff, 1971; Zieky and

Livingston, 197). In the Ebel procedure, judges sort items into

categories of "relevance" and "difficulty." Each judge then esti-

mates the proportion of correct answers in each category expected

of a "minimally qualified" examinee. The passing score is the

weighted sum of these proportions, with the weight for each cate-

gory being the number of items it contains (Ebel, 1972). The

Nedelsky method is restricted to multiple-choice tests. Every re-

sponse option is considered by each judge, who decides which op-

tions could be rejected as incorrect by an examinee performing at

the minimum passing level. The probability that someone at this

level would respond correctly to the item is to be th re-

ciprocal of the number of remaining options (i.e., one divided by

the number of options that the minimally performing examinee

should not be able to reject). The passing score is the sum of

these reciprocals for all items. (In the original formulation,

Nedelsky (1954) offers further refinements, such as, estimating

the standard deviation of the chance distribution of scores and

using it in lonjunction with setting the passing score. These

refinements are not considered in this paper.) In all cases, the

passing score can be expressed as a fraction or percentage of the

total number of items.

om arisons of he i ion of h

The metnods discussed above, though operationaliy quite

different, have strong logical similarities. It might seem that

they could be expected to produce equivalent passing scores. Re-

search reported in the literature indicates that this equivalence

is not always observed. In a study comparing the Ebel and Nedelsky

procedures, Andrew and Hecht (1976) found that the two standard-

setting methods produced significantly different passing scores.

Perhaps an even more important consideration was that 45 percent
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of the examinees being tested were classified differently by the

two passing scores (Glass, 1978). In research utilizing the

Nedelsky and Angoff procedures, Brennan and Lockwood (1979) also

reported a substantial difference in the resulting passing scores.

When several judges are used, the variation among judges'

individual passing scores also can become an issue. A certain

degree of variation might be expected. It is usually suggested

that the different passing scores be reconciled either by

averaging the scores or by requiring judges to reach a consensus

passing score. Andrew and Hecht (1976) found that passing scores

obtained by consensus and by averaging did not differ significantly.

In at least one reported case, however, the amount of variation

among passing scores set by a group of judges using the Nedelsky

procedure was substantial, and the procedure was rejected as un-

feasible (Meskauskas and Webster, 1975). The averaging process

treats the variation in passing scores as random or "error" varia-

tion. It might be, however, that differences in passing scores

are related systematically to characteristics of the judges. If

passing scores are to be useful, they should not depend too much

on the characteristics of a particular judge or group of judges.

Such characteristics, once identified, possibly could be con-

trolled to prevent them from exerting an undue influence on the

standard-setting process. One characteristic which intuitively

might be expected to show such a relationship is the judge's own

1 vel of achievement in the relevant area.

F.)cus of this Paper

This paper deals only with the Nedelsky procedure. Two ver-

sions of the procedure appear to be in use. In the first version,

judges must classify response options into two categories: (a)

those which should be rejected as incorrect by the minimally per-

forming examinee, and (b) those which should not. In the alter-

native version, a third category, "undecided," also is used when

I o
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the judge is unable to classify the response option as one that

either should 'Jr should not be rejected. Decisions between the

two versions seem to be based on the preferences of the judges,

rather than any theoretical consideration (e.g., Paiva and Vu,

1979; Smilansky and Guerin, 1976). Nedelsky (1954) discussed the

use of the altellative procedure; he apparently felt the two ver-

sions were equivalent.

The purpose of this paper is twofold. First, a comparison

is made between the two versions of the Nedelsky procedure.

Second, the relationship between the achievement levels of judges

and the passing scores they set will be assessed.

2. METHOD

Sub ects

In order to compare the two versions of the Nedelsky pro-

cedure, subjects acting as judges were divided into two groups.

Group A used the two-category version of the procedure to set

passing scores on an achievement test, while Group B used the

three-category version. The results were compared using the dis-

tributions of passing scores, as well as the consistency of

decisions based upon the scores. Also, to determine the relation-

ship between judges' achievement and passing score, the correlation

between measures of the two variables was calculated.

Data for the study were obtained from students in an intro-

ductory course in educational research and measurement. The course

was conducted via videotape at a number of regional campuses of a

large state university. All subjects were graduate students; many

were experienced teachers.

Instrument

The instrument for which passing scores were set, and by

which judges' achievement levels were determined, was the course

midterm examination, a 40-iter, four-option, multiple-choice test,
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constructed by the course instructor (the second author). The

test covered such topics as the nature of the research process,

observation and measurement, sampling, and item analysis. The

exam has been revised over several years to reach a high degree

of content validity, and in its most recent administration showed

an internal consistency (KR20) reliability index of .82. Thus,

scores on the test are taken to be valid and reliable measures

of achievement.

Treatment Groups

All students enrolled in the course wrote the midterm exam-

ination as a regular course requirement. The exams routinely were

graded and returned to the students for discussion in class. The

students then were asked to participate in an exercise involving

the use of the Nedelsky procedure to determine a passing score for

the test. While participation in the exercise was voluntary, more

than 95% of the students chose to participate. Of the 148 students

agreeing to participate, 30 were deleted from the study due to

failure to follow instructions, missing identification codes, or

missing achievement data, leaving 118 students as the sample used

in the experiment. Subjects were assigned randomly to groups,

stratified by course section to control for possible differences

among regional campuses. Then they were given copies of the test,

along witn detailed instructions on the Nedelsky procedure. In-

structions for the two groups differed only with respect to the

version of the procedure used.

Definition of Minimum Competence

Minimum acceptable performance was defined for the subjects

as the lowest level of performance on the test for which a grade

of "B" would be awarded. This level was chosen as appropriate,

since one of the requirements of the subjects' degree programs is

that a "B" average be maintained. For each incorrect response

option on the test, the subjects were instructed to respond to the

112

170



NEDELSKY PASSING SCORES

question "Should the student performing at the minimum acceptable

level (as defined above) be able to reject this option as

incorrect?" Spaces were provided for that purpose beside each

option. For the two-category version (Group A) of the procedure,

the possible responses were "yes" and "no." The three-category

version (Grov? B) also allowed "undecided" as a possible choice.

In order to minimize any possible confounding effect produced by

the subjects' knowledge of previously existing course standards,

the subjects were not required to calculate their resulting

Nedelsky passing scores; this was done by the authors. Each sub-

ject responded individually; no attempt was made to determine con-

sensus passing scores.

Comparison Procedures

The frequency distributions of passing scores produced by

the two groups were compared using the Kolmogorav-Smirnov two-

sample test, a broad test sensitive to any difference in the two

distributions. The distributions of passing scores are given in

Table 1. All passing scores were rounded upward to the nearest

whole number, that is, the number of correctly-answered items

necessary for an examinee to be classified as passing. Decision

consistency was assessed via comparisons of the proportions of

students writing the exam who were classified similarly by the two

versions. Both the mean and median passing scores for each group

were used in the comparisons. The results are shown in Table 2.

Also, decisions based on the groups' passing scores were compared

with those based on the standard established by the course in-

structor, as shown in Table 3. Finally, to assess the relation-

ship between judges' achievement and passing score, the Pearson

product-moment correlation coefficient was determined fai the

subjects' examination grades and their Nedelsky passing scores.

For this calculation, the two groups were combined.
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TABLE 1

'Astributions of Passing Scores from Two Versions
of the Nedelsky Procedure

Passing
Snore

Frequency Passing
Score

Frequency
Group A Group B Group A Group B

13 0 1 26 2 4
14 1 0 27

_
- 0

15 0 0 28 5 2
16 2 1 29 4 4

17 0 1 30 0 1
18 1 0 31 3 5
19 0 0 32 5 3

20 3 1 33 2 3

21 1 0 34 6 10
22 1 0 35 6 5
23 2 2 36 3 2
24 2 4 37 3 5
25 1 2 38 5 3

N MEAN MEDIAN S.D.

Group A 59 29.88 31.17 6.38

Group B 59 30.51 31.37 5.79

Kolmogorov-Smirnov D = .170 (p = .36)

3. RESULTS

The overall passing score distributions for the two groups,

displayed in Table 1, showed no significant difference (p = .36).

As can be seen in Table 2, the two forms also produced highly

consistent classification decisions. If the mean passing score

for k-.ach group is used as a standard, only 7 of 185 students taking

the test would have been classified differently, a percentage of

agreement of 96%. The exact median passing scores from the two

groups ate 31.17 and 31.37, respectively. Rounding upward, both

these valves become 32. Thus, use of the median passing score

produced the surprising result of complete agreement in classifi-

cation.
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The fact that the two versions produce passing scores molding

consistent decisions does not, in itself, mean that the scores are

useful in practice. But further comparisons of decisions based on

the Nedelsky passing scores with those based on standards previous-

ly established by the course instructor (32 correct answers for a

grade of B) also show a high degree of agreement (Table 3). Using

the group mean passing score as the standard, 11 of 185 students

were classified differently by Group A (the two-category version)

and the course instructor's pre-set standard (percentage agreement

= 94%). For Group B (the three-category versions), this percentage

was 98% (7 students classified differently). The group medians,

rounded up to 32, coincide exactly with the course instructor's

standard. Here again, use of the group medians produced (amplete

agreement.

As was noted previously, subjects in both groups were com-

bined to consider the relationship between judges' achievement and

passing score. Such a relationship, if it exists, might be expect-

ed to hold across methods; in any event, the demonstrated equiva-

lence of the two forms suggests the reasonableness of combining the

two groups. The linear correlation between achievement and passing

score for the subjects of the study was .30 (p = .001). Thus

achievement in the subject matter area accounted for 9% of the ob-

served variation in passing scores.

4. DISCUSSION

From the results of this study, the two- and three-category

versions of the Nedelsky procedure yield equivalent results.

The finding holds both in terms of the empirical distributions of

passing scores, and of consistency in classification decisions.

Additionally, there was a close correspondence both in distribu-

tions of passing scores and in classification decisions between

passing scores set by the subjects and the pre-set standard es-

tablished by the course instructor.
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TABLE 2

Decision Consistency of Passing Scores
Two Versions of the Nedelsky Procedure

Case I: Using the mean of several judges.

Group A

fail pass

Group B

fail

pass

44 7 51

0 134 134

44 141 185

Proportion of consistent decisions = 13418544
5

44
.96

Case II: Using the median of several judges.

Group A

fail pass

Group B

fail

pass

55 0

0 134

55

134

55 134 185

Proportion of consistent decisions = 134

1+5
55

= 1.00
8
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While either the mean or median of several judges' passing scores

could be used to set the final passing standards the median, rather

than the mean, might be more appropriate. The median's resistance

to the influence of extreme scores would seem to reduce some of the

effect of variability in passing scores from a group of judges.

Some variation vat observed in the scores from both groups of

judges. The slightly smaller standard deviation of passing scores

from Group B, using the three-category version of the procedure,

might be a point in favor of the use of that version. The signi-

ficant poFitive correlation between judges' achievement and pass-

ing score indicates that at least a small portion of the observed

variation in passing scores was related systematically to a

characteristic of the judges. Other relevant characteristics might

be identified which also relate systematically to judges' passing

scores. Knowledge of these characteristics and their relationship

to passing scores could lead to their elimination, control, or

utilization in the standard-setting process. This knowledge would

make the setting of passing scores on the basis of expert judgement

a more objective process.

In conclusion, this Study has shown that the two versions of

the Nedelsky procedure considered here produce equivalent passing

scores. Also, it was shown that the passing scores set by differ-

ent judges were related positively to the judges' own achievement.

It should be noted that the study involved the setting of passing

scores for a single test, using as judges students who took the

test but who were not responsible for constructing it. Further,

such judges are not likely to have the broad knowledge of other

students, of how such tested content fits into the total curri-

culum, and of the subject-matter itself which, say, faculty

members might have. It is an open question whether faculty

members would tend to show the same pattern of consistenc, in

applying the two Nedelsky methods. Thus the observed results must

be seen as suggestive rather than conclusive. However, given the
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TABLE 3

Decision Consistency of Course Instructor's Standard with
Passing Scores from Two Versions of the Nedelsky Procedure

Case I: Using the mean of several udges.

Group A

fail pass

Instructor's fail 44 11 55

Pre-set

Standard pass 0 130 130

Group B

fail pass

51 4

0 130

55

130

44 141 185 51 134 185

Proportions of consistent decisions =

130 + 44 = .94
185

Case II: Using the mediae of several judges.

Group A

fail pass

Instructor's fail 55 0 55

Pre-set

Standard pass 0 130 130

55 130 185

Proportions of consistent decisions =

130 + 55
= 1.00

185

130 + 51 = .98
185

Group B

fail pass

55 0

0 130

55

130

55 130 185

130 + 55 1.00
185

-=
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results of this study, a choice between the two versions justifi-

ably could be made on practical grounds, such as the preference of

the judges.
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ABSTRACT

A general model along with four illustrations is presented for

the consideration of budgetary constraints in the setting of passing

scores in instructional programs involving remedial action for poor

test performers. Budgetary constraints normally put an upper limit

on any choice of passing score. Given relevant information, this

limit may be determined. Alternately, wayo tn assess the budgetary

consequences associated with a given passing score are provided.

Such information would be useful in any final decision regarding the

passing score.

1. INTRODUCTION

In many instructional programs, such as Individually Prescribed

Instruction (Glaser, 1968) or others of a similar nature (Atkinson,

1968; Flanagan, 1967), testing is conducted at the end of every

instructional unit to provide feedback to the student and/or teacher

in order that appropriate action can be taken. If a student's test

score is high, it may be reasonable to grant that student mastery

This paper has been distributed separately as RM 79-3, 4pril, 1979,
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of the current unit and to allow him to proceed to a subsequent

unit. On the other hand, a low score may indicate that the student

might benefit from some remedial action. This is also the case for

certification testing such as high school graduation or for minimum

competency testing as legislated in several stares. Funds are

usually allocated for remediation for students whose scores are too

low to warrant mastery of the competencies under consideration.

The statistical issues relating to granting or denying mastery

status have been approached by several writers, including Huynh

(1976, 1977, 1978). Most proposed schemes are by and large quota-

free, i.e., the mastery/nonmastery decision process considered by

the writers does not take into account the budgetary consequences

associated with the denial of mastery status. If funds provided

for remediation are limited, then a constraint will have to be

imposed on the number of students declared as failures (nonmasters).

The purpose of this paper is to demonstrate how budgetary

restrictions may be taken into account in the process of setting

passing (mastery) scores or performance standards. Alternately,

the presentation provides ways to assess the budgetary consequences

associated with an arbitrary passing score. Section 2 describes

the overall framework. Illustrations based on the beta-binomial

and normal-normal test score models will be provided in subsequent

sections.

2. OVERALL FRAMEWORK

It is now assumed that the true ability of a population of

subjects may be described by a random variable 0 which ranges in

the sample space Q. For the beta-binomial model, 9 is the propor-

tion of items that : subject answers correctly in an item pool and

SI is the interval _rpm 0 to 1. For the norma- test score model, 0

is the traditional true score (Lord & Novick, 1968) and SI is the

entire real line. Let the probability density function (pdf) of 0

be p(0).
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Let x be the score obtained from the administration of an n-

item test and let f(x) and f(x10) denote its marginal and condi-

tional probability density functions with respect to e.

It shall be assumed that all subjects with test scores smaller

than a passing (mastery) score c will be denied mastery for the

instructional objectives covered by the test and that these subjects

will be provided with appropriate remedial learning activities.

The remediation is assumed to be so devised that its conclusion

will coincide with the mastery status which was previously denied

the student. The cost of remediation will be assumed to be a non-

increasing function of 0 and will be denoted as 6(0). Thus,

remediation will cost less for more able students than it will for

less able ones.

Consider now a subject with true ability 0. The probability

dui: this person will be declared in need of remediation is given

as the sum Ef(x10) or the integral J f(xj0)dx, with x < c. For the

purposes of this section, the summation notation will be used. It

follows that the (conditional) expected remediation cost for this

subject is

E f(x10)6(0).
x <c

Hence the (unconditional or marginal) expected remediation cost for

a subject drawn randomly from the population is

Y(c) = JO E f(xl 0)6(0)p(0)(10. (1)
x<c

This function is nondecreasing with respect to its argument c. Its

lowest limit is zero (when all subjects are granted mastery status)

and its maximum value,
Ymax 6(0)p(0)d0, is reached when

remediation is provided to all subjects regardless of their test

scores.

Let us suppose, furthermore, that testing is to be conducted

for a total of m subjects and the total cost of possible remediation

cannot exceed the value B. If the passing score c is selected, then

the total expected remediation cost will be my(c). Hence any choice

for c must satisfy the budgetary constraint my(c) < B. If y
x

< B,
ma
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any cutoff score will be acceptable. However, if B < ynax, then

the passing score c must be less than or equal to cl, where cl is

the highest score satisfying the inequality

y(c
1
) < B/m. (2)

For discrete test scores, such as those of the uinomial error model,

Inequation (2) may be solved by computing the values of y(c) one by

one, starting with c as the smallest test score, and stopping when

the value c
1

is reached. For continuous test data, numerical pro-

cedures for solving the nonlinear equation y(c1) = B/m might be

needed.

3. THE BETA-BINOMIAL MODEL WITH CONSTANT COSTS

Consider now the beta-binomial model as defined by the follow-

ing pdf's:

f(x10) = (:)0x(1-0) n-x, x = 0,1,...,n

and

P(0)
0
a-1

(1-0)
B-1

B(a,B)
0 < 0 < 1.

'

The two parameters a and $ may be estimated from sample data via

one of several estimation techniques such as the moment procedure

or the maximum likelihood procedure. Let x and s be the sample

test score mean and standard deviation. In addition, let a2l be

the KR21 reliability coefficient as defined by

=
n x(n -x)

a21 n-i
.11

ns
2 (3)

(In the case of a negative a21, simply replace the value computed

from Equation (3) by any positive reliability estimate.) The moment

estimates for a and 3 are given as

a = (-1 + 1/a21)x (4)

and

= -a + n/a
21

n. (5)

We will now focus on the simple case where a single true pass-

ing score (or criterion level) 00, separating true masters from
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true nonmasters, has been specified. Let the remediation cost be

constant and equal to yo for a true nonmaster and for a true

master. Thus the cost function is of the form

-yo if 6 < 00
a(e)

y
1

if 6> 6 .

The nonincreasing nature of S(0) is satisfied whenever yo yi.

The expected remediation cost per student as shown by Equa-

tion (1) is now given as

y(c) =
1

1

Yi je e
a+x-1

(1-6)
n+8-x-1

deB(a,$)
x=0

Or

(1-0)
n+8 -x -1

de+ y f

eo

e"f x-1
0 0

c-1
y(c) =

B(a, 8)
E (x+

1
B(c+x,n+-x)

(Y0 -Y1)
f60 ea+x-1(1-6)n+8x-1 d6) .
o

It may be noted that the marginal beta-binomial pdf of x is given as

f(x) = (:)B(a+x,n+13-x)/B(a03) (6)

and that the incomplete beta function I(a+x,n+8-x;00) is defined as

I(a+x,n+8-x;60) = o ea+x-1(i_e)n+8-x
--10/B(a+x,n+8-x).

)

It follows that

c-1
y(c) = E f(x)(yi + (y -y

1
)I(a+x,n+8-x0 )) .

x=0

The values of f(x) may be computed via the following inductive

formulae:

and

(7)

f(0) =
n*8-1

(8)n+a+$-1
1=1

f(x+1) = f(x)
(n-x)(a+x)

x = 0,1,...,n-1. (9)(x+1)(n+B-x-1)'
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The following recurrence formula, on the other hand, will quicken

the evaluation of the incomplete beta functions:

1-41c
(1 -01

m+B-x 1
I(a+x+1,n+6 -x -1;80) = + I(a+x,n+6-x;00).

(ofx)B(a+x,n+6-x)

(10)

Finally, as in Section 2, let B be the maximum funds allocated

for possible remediation involving a group of m subjects. Then the

passing score cannot exceed the highest integer cl at which

y(c1) < B/m.

Numerical Example 1

A maximum sum of B = $4000 has been allocated for remediation

in an instructional program with m = 100 students. Thus B/m = $40.

For the program under study, assume that 00 = .60 and the remedia-

tion costs are yo = $150 for et.:1. student with true ability 8 < .60

and yi = $50 for students with 0 > .60. Now suppose a 5-item test

is administered and the test scores yield the estimates a = 3 and

6 = 2. At the passing scores c = 1, 2, 3, 4, and 5, the expected

remediation costs y(c) are $7.02, $19.06, $31.83, $41.25, and

$47.19, respectively. Since y(c1) < $40, it follows that cl = 3.

The budget constraint imposes an upper limit of 3 on the passing

score. If 3 is used, the expected cost of remediation amounts to

$3183. If the next higher passing score, 4, were used, the expected

remediation cost would be $4125, over the maximum budgeted sum of

$4000.

4. THE BETA-BINOMIAL MODEL WITH LINEAR COSTS

Let us suppose now that the cost function may be written as

6(e) (Y0-Y1)(1-e) Y1'
(11)

in which yi < y
o

. Thus the cost is a linear function of 6. It is

equal to yo when 8 = 0 and yi when 8 = 1.

Under the beta-binomial model as described in the first para-

graph of Section 3, the expected cost per student is given as

128

127



BUDGETARY CONSIDERATION

Y(c) =
B(a,$)

c
E
-1

x
(n)((y

o 1' J

(1 .a+x -1
(1-8)

n+0-x+1 -1de'o u
x=o

I1
eafx-1(1_0n+0-x-lde]

o

c-1
1

E (n)((Y -Y M
Yl

(Yo-x+1) + B(a+x,n+0-x)).
B(a,0)

x =o
x o 1

By noting that

n+.x
B(a+x,n+0-x+1) = n+a0+0 B(a+x,n+0-x)

it may be deduced that

c-1 (YA-Y1)(n+0-x)
Y(c) = E f(x) + y

1n+a+0x=o

c-1 ao(n+0-x) + y1(a+x)
= E f(x)

n+a+0x=o

As in the previous section, the values of f(x) may be computed

inductively via Equations (8) and (9).

Numerical Example 2

(12)

Consider the basic data of the first numerical example, namely

= $40, yo = $150, y1 = $50, a = 3, $ = 2, and n = 5 items. At

the passing scores of 1, 2, 3, 4, and 5, the expected remediation

costs y(c) are $5.71, $18.81, $37.86, $59.29, and $78.33. Hence

the passing score cannot exceed 3, where the maximum value of the

expected cost of remediation would amount to $3786. Had a score

of 4 been selected, the expected cost would have amounted to as

much as $5929.

To close this section, it should be mentioned that simple

expressions for y(c) such as the one of Equation (12) may be worked

out for all coat functions 5(e) which can be represented as inte-

gral polynomials of B.

5. THE BIVARIATE NORMAL MODEL WITH CONSTANT COSTS

Now consider the case where the true score a and the observed

score x are jointly distributed according to a bivariate normal
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distribution. Without any loss of generality, it may be assumed

that x is in its standardized form with zero mean and unit variance.

Let p be the reliability of the test for the normal population of

subjects under consideration. The true score 0 has a mean of zero,

a staldard deviation of 47, and a correlation o: 4-with the test

score x. The joint pdf of x and 0 is

0
2

f(x,0) = 1 exp (
2(1-p)

(x
2
- 2x0 (13)

1
274TI;05-

As in Section 3, it will be assumed that the cost function

6(0) is constant, taking the values of yo for 0 < 00 and the value

of y.1 for 0 > 00. It follows from Equation (1) that at any passing

score c, the remediation cost for a subject drawn randomly fr',m

the population is expected to be

0
rc o

f(x,O)d0dx + y fc f(x,O)d0dx
To

-co
1

oco

0

= yiPr(x < c) + (yo-yi) fc f o f(x,9)d0dx. (14)

The maximum passing score c1 satisfies the equation y(ci) = B/m.

This value of c
1

exists as long as B < y
max

where

x
= y

o
Pr(0 < 0

o
) + y

1
Pr(0 > 0

o
).

ma

Solutions may be found via numerical procedures such as the

Newton iterative solution for nonlinear equations. To apply this

technique, it may be noted that the derivative of y(c) with respect

to c is

0

y' (c) = ylfN(c) + (Y0-Y1) f ° f(c,O)d0

where f
N
(.) denotes the pdf of x (the unit normal variable). In

other words,

2

N
(1 1 e-c /2.

It may also be noted that
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f f(c,6)d6 = f
N
(c) F

N-= 21

where FN(.) is the (cumulative) distribution function of the unit

normal variable.

In summary,

{0o-Pc
Y' (c) = fN(c) Yi (Y0 -Y1)FN (15)

p- p2

Both y(c) and y'(c) may be evaluated via computer programs such as

those described in the IMSL (1977). They may also be obtained by

use of appropriate tables for the univariate and bivariate normal

distributions.

Numerical Example 3

Let the parameters defining the problem be p = ,64, 00 = 1,

Yo = $150, yl = $50, and B/m = $40. Numerical procedure yields the

maximum standardized passing score cl = -.475. If the test scores

have a mean of 50 and a standard deviation Lf 20, then the passing

score cannot exceed 40.5.

6. THE BIVARIATE NORMAL MODEL
WITH NORMAL -OGIVE COST

Now consider the case where the cost function 8(6) is of the

form

e-e

(Yo-Y1)[1 FN ('-r )1 .4 Y1
(16)

where, as before, FN(.) represents the distribution function of the

unit normal variable. In the context of decision theory, expres-

sions similar to those of Equation (16) have been proposed as

utility functions (e.g., Lindley, 1976, and Novick and Lindley,

1978). As in the case of the beta-binomial model with linear costs,

Yo and y
1
represent the remediation costs associated with the least

able (6 = -00) and the most able (6 = +a) subjects. On the other

hand, the parameter 60 is the location at which the cost is
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(yo+y,)/2 and 1/a indicates the extent to which 6(0) decreases at

this location.

The expected remediation cost y(c) may now be written as

where

C e3

y(c) 5 f f(x,O)6(0)d0dx

= y Pr(x < c) (y
o
-y

1
) O(x)f

N
(x)dxo

-co

e-e
0(x) = f f(elx)r dO.

N a

The conditional pdf f(61x) is given as

f(61x) = exp I
1 (6-px)

2

20(1-0
12-77fT67-7T

It follows that

(17)

(t-e0)211 (6-tpx)
dt1d0.0(x) = lexp - exp

lira,5TT-7 2a
2

It should be noted that the expression

1
exp

(6-px)
2 (t-e0)

2.1ra6Tf--117i 2a
2 21

acts as the joint pdf of two independent normal random variables 6

and t with means px and
o
, and with variances 0(1-0 and a

2
.

Now let us introduce the new random variable u = - t for

which the mean is px - 6
o
and the variance is p - p2 + a2. Since

the condition t < 6 is equivalent to u > 0, it follows that 0(x)

may be expressed simply as

co

0(x) fo g
Ou '

(6 u)dOdu,

where 136u(e'u) is the bivariate normal pdf of 6 and u. Hence

cp(x) = Pr(u > 0) = 1 - Pr(u < 0)

Or
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[

0 -px
(x) = 1 - Ft, 0 . (18)

° i-71-71
P-P +a

With this new expression for 0(x), the expected remediation

cost as defined in Equation (17) may be written as

c 00-px
Y(c) = y1Pr(x < c) + (yo-yi) f FN f

N
(x)dx. (19)_00 M

vp-p +a

The integral found in Equation (19) may be written as

c h(x)
Z(c) = f j fN(w)fN(x)dwdx,

_op _co

where h(x) = (-px+0) /Yp-p2+02, and fN(.) is again the pdf of a unit

normal variable. Let

v = w - h(x) = w + (px-O
o

/

Then x and v follow a joint bivariate normal pdf, gxv(x'v)' with

means, variances, and correlation given, respectively, as

p
x

= 0,

-e /47X1;1,
"v c' "

and

a
x

2
= 1,

a
2

= (P+a
2
)/(o-P

2
+a

2
),

Pxv Pi P-1-0 .

Hence the integral Z(c) takes a simpler form given as

c o

Z(c) = J f g (x,v)dvdx,
xv

CO

and the expected remediation cost y(c) may be written as

c o

y(c) = y1Pr(x < c) + (Yo -Y1) J f
gxv

(x,v)dvdx.
-co -00

The numerical v-lues of y(c) may be computed via tables or

computer programs dealing with the univariate and bivariate normal

distributions.

(20)

(21)
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Numerical procedures such as the Newton iteration process may

be used to solve the equation y(c) = B/m. The derivative of y(c)

with respect to c, from Equation (19), is found to be

0 -pcy'(c) = fN(c) y1 + (yo-yi)FN 0 II

{ P-P +a

It may be noted that by taking a2 = 0, Equations (19) and (22)

of this section will reduce to Equations (14) and (15) of Section 5.

This is expected since the normal-ogive cost function d(e) as

defined in (16) will degenerate into the constant cost function of

Section 5 when a
2

tends to zero. Finally, the maximum expected

remediation cost (per random uubject) may be deduced from Equation

(22)

(21) by letting c = +Go. It is

eo
Ym Y1 (Yo-Y1)FN

ir--P+a

(23)

Numerical Example 4

Let the parameters of the problem be p = .64, 80 = 1, a = 2,

Yo = $150, yl = $50, and B/m = $40. The Newton iteration pracedere

for solving the equation y(ci) = B/m yields the solution cl = -.362.

If the test scores have a mean oZ 50 and a standard deviation of 20,

then the test passing score cannot exceed 42.76.

7. SOME CONCLUDING REMARKS

In this paper a general model along with four separate illus-

trations is provided for the consideration of budgetary constraints

in the setting of passing scores in instructional programs involv-

ing remediation for subjects with poor test performance. The

illustrations are not meant to be exhaustive. Budgetary constraints

normally impose a limit on the number of students allowed to take

remedial learning activities and, hence, restrict the range in

which a choice for the passing score is to be made. The paper also

provides ways to assess the budgetary requirement associated with

each passing score. This information would be a factor in deci-

sions regarding passing scores and budgets for remediation.
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ABSTRACT

In mastery testing the raw agreement index and the kappa index

may be secured via one test administration when the test scores

follow beta-binomial distributions. This paper reports tables and

a computer program which facilitate the computation of those indi-

ces and of their standard errors of estimate. Illustrations are

provided in the form of confidence intervals, hypothesis testing,

and minimum sample sizes in reliability studies for mastery tests.

1. INTRODUCTION

As indicated by several writers including Carver (1970) and

Hambleton and Novick (1973), one of the uses of criterion-referenced

testing is to classify examinees in two or more achievement cate-

gories. In this context, referred to here as mastery testing,

reliability would be most appropriately viewed as classification

(or decision) consistency across repeated test administrations

using the same form or two equivalent forms. Decision consistency

This paper has been distributed separately as RM 78-1, December, 1:779.
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may be quantified by the raw agreement index p which expresses the

proportion of examinees classified in the same category by both

testings. When the two test admiristrations yield equivalent (or

changeable) test data, p is bounded from below by pc, the propor-

tion of consistent decisions which would be exp'cted if no rela-

tionship existed between the two sets of data (Huynh, 1976, 1978).

In other words, pc < p < 1. In a number of instances, for example

when decision consistency is to be compared for two testing situa-

tions involving different pc values, it would be suitable to scale

p so that it forms an index with a range from 0 to 1. The kappa

coefficient (Cohen, 1960), as defined by K (p-p
c
)/(1-p

c
), is

such an index. This coefficient represents the extent of improve-

ment in decision consistency which is reflected by the dependency

between two equivalent sets of data.

The definitions of both p and kappa include the notion of

repeated testings. However, there are at least two procedures by

which p and kappa may be approximated via test data collected from

one test administration (Huynh, 1976; Subkoviak, 1976). The

Subkoviak procedure relies on the estimation of the true score for

each individual examinee. When combined with the binomial or com-

pound binomial error model, the estimated true score will yield a

consistency lex for each examinee. The average of th ..a index

over a population of examinees is the Subkoviak estimate for p.

The Huynh method, on the other Mild, assumes that test scares

on one form follow a beta-binomial model and test scores on both

forms distribute jointly as a bivariate beta-binomial distribution.

Both p and kappa (and other similar indices) may then be computed

via the univariate and bivariate distributions. In a simulation

study based on real test data, Subkoviak (1978) concluded that "all

things considered, the Huynh approach seems worthy of recommenda-

tion. It is mathematically sound, requires only one testing, and

provides reasonably accurate estimates, which appear to be slightly

conservative for short tests" (p. 115).

This paper will consider only the Huynh procedure for the

approximation of p and kappa. Section 2 will provide a review of

140

.137



RELIABILITY IN MASTERY TESTING

the computation of p and kappa. Section 3 will present formulae

for computing the asymptotic standard errors of their estimates.

Section 4 will describe the arrangement of the tables regarding p

and kappa and their standard errors. Section 5 describes the

interpolation process for nontabulated entries. Some applications

of the tables will be presented in Section 6. The last two sec-

tions deal with a computer program for the estimates and their

standard errors.

2. COMPUTATIONS FOR p AND K

Consider now the administration of an n-item test to a popula-

tion of examinees with true ability distributed according to the

beta density with parameters a and B. The frequency distribution

of the observed test score x is given by the beta-binomial (or

negative hypergeometri^' density

f(x) = (
n
) B(a + x, n + B - x)/B(a,0). (1)

In this formula as well as in all other subsequent ones, the

notation B denotes the beta function. The density f(x) may be com-

puted via any of the following inductive formulae

Or

n +B +i
f(0) =

i=1
n+a+6-i

f(x+l) = f(x)
(n-x)(a+x)

x=0,1,...,n -1;
(x+1)(n+0 -x-1) '

n
f(n) = II n+a-i

{

n+a+O -1
i=1

f(x-1) = f(x)
x(n+0-x)

(n-x+1)(a+x-1)
x=1,...,n.

The first recurrence scheme is more efficient for small test scores

whereas the second set works better for large test scores.

Let x and y be the test scores obtained by administering two

equivalent n-item tests to each examinee in the population. Under

local independence with respect to true ability, x and y follow the

biv,,riate beta-binomial (or negative hypergeometric) density

(2)

(3)
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(n) (n)

f(x,y) =
B(a 0)

B(a+x+y,2n*8 -x-y).

This density is symmetric in the sense that f(x,y) = f(y,x).

For values of x and y near 0, f(x,y) may be evaluated induc-

tively via the following formulae:

n 2n+0
2n

f(0,0) = fl
1 f(0)

2n+0-
n 2n+a+0-1
4.1i.1

and

f(x+1,y) = f(x,y)
(n-x)(a+x+y)

(x+1)(2n+0-x-y-1)

For values of x and y near n, it is more efficient to use the fol-

lowing formulae:

2n
2n+a-i 2n+a-if(n,n) = n f(n) n

2n+a+0.-i 2n4a+0-i,11 1=1

and

f(x-1,y) = f(x,y) x(2n+0-x-y)
(n-x+1)(c"-mFy-1)

Consider now the case where it is desired to place examinees

into k classifications or categories defined by k-1 cutoff scores

denoted by the integers cj, j.1,2,...,k-1 with 0 < c
1

< < c.
k-1

< n. The first category consists of all test scores between 0 and

c
1
-1 inclusive. For the second category, the test score. range

between c
1
and c

2
-1 inclusive, and so on. Finally, for the kth

category, the test score limits are ck_i and n. For binary classi-

fication, k=2 and the cutoff score c is traditionally referred to

as a mastery or passing score. These two categories are represented

as {x: 0 < x < c-1} and {x: c < x < n}. For k classifications as

defined above, the raw agreement index is expressed as

k
c
j
-1

p E E f(x,y)) .

j=1 x,y.c
j-1

Here c
o
= 0 and c

k
- n+1. The lower limit for decision consistency

is given as
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k cj-1
2

E E

[

f(x)I .
c

p

j=1 x=c
j-1

As previously mentioned, the kappa index is defined as K (p -p c)

gl-Pc).

The formulae become somewhat simpler for binary classifica-

tions. For the use of c near 0, let

c-1
p
o

= E f(x)

x=0

and

Then

c-1
p E f(x,y) .

00
x,y=0

P 1-2(i0-Poo)

and

K (POO-PO)' (PG -Po )

On the other hsnd, for values of c near n, let

and

Then

and

p
1

.,.. f(x)
x=

p
11

= E f(x,;) .

x,y=c

p = 1-2(pl-p11)

2 2

K (1311-P1)/(P1-131)

3. ASYMPTOTIC SAMPLING DISTRIBUTION
OF THE ESTIMATES

The estimation for p and K may be carried out by replacing a

and $ by their estimates in the appropriate formulae of Section 2.

There are at least two ways to estimate a and e, namely the maximum

likelihood (ML) principle and the moment method. Let x and s be
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the mean and standard deviation of the test scores of m examinees,

and let the estimated KR21 reliability be defined as

n (
1

7C0-;)a21
21 n=1

ns
2 ).

The moment estimates of a and B are given as

a = (-1 + 1/a21)x

and

0 = -a + n/a
21

- n.

These estimates are positive (thus acceptable) only when 0 <
a21 <

1.

When the test scores do not show sufficient variability, the com-

puted value for a21 may be zero or negative. If this happens,

replace this computed value by the smallest positive estimate for

test reliability which happens to be available.

Maximum likelihood estimations for a and 0 have been consid-

ered by Gritfiths (1973). A fairly efficient algorithm has been

provided by Huynh (1977). Starting with the moment estimates, the

Newton-Raphson procedure as implemented by Huynh has been found to

converge very quickly in practic.ily all cases considered by the

author. It has been found that the ML estimates, in most cases, do

not differ appreciably from the moment estimates a and 0, hence

general sampling properties appropriate for the ML estimates would

be applicable to a and B. For example, asymptotically, &(a -a, 0-$)

follows a bivariate normal distribution with zero mean and covari-

ance matrix E = (J
ij ) =

bpq H-1 where

and

b
11

=

x=0

b b12 = 21

115P

2

/f(x)

af(x) lfiEl/f(x)
as

n .

x=0
as

b
22

= nE r-21--(1 2/f (x) .
f3

x=0

Now let p = p(a,$) and K " K (a,$) be the functions of (a,B) defin-

ing the two reliability indices. By replacing a and 0 by and 0

respectively, the moment estimates p and K may be obtained for p
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and K. It may be noted that both p and K are continuous with

respect to (a,$). It follows from Rao (1973, p. 386-7), that as m

goes to infinity, &(p -p) and 1471.(K-K) converge to two normal dis-

tributions with zero means and with variances

v2 dcei 2 22. 122.2
p ii `a 12 act as 22`a

and

172 faK12 , aK aK faK12V
all`ae `an act as an`as'

respectively. Thus, it may be said that p has an approximate nor-

mal distribution with mean p and standard deviation (standard

error) of a,(p) = V ain- when m is sufficiently large. An estimated

standard error for p, namely s,(p), may be obtained by replacing a

and 0 by their estimated values a and 0. The discussion also holds

for K. Thus K has an approximate normal distribution with mean K

and standard error o.(K) = V bc. The estimated standard error

£300(K) may be obtained in the same way as s.(p).

4. TABLES FOR p,
FOR SHORT TUTS

Appendix A presents tables which facilitate the computations

for the reliability indices p and K and their standard errors for

the case of tests having 5 to 10 items. All computations were car-

ried out via the IBM 370/168 syste at the University of South

Carolina, using the double precision mode.

Input data to the tables are (1) number of test items, n,

(2) mastery or passing score, c, (3) test mean, x, and (4) the KR21

reliability estimate, a21. :t may be noted that if a and 0 are any

estimates of the parameters a and 0 other than the moment estimates,

then the entries for test mean and KR21 -re simply na/(a+0) and
040 .0

ngn+a+B), respectively.

For each entry of (n,c,x,a21), four values may be read out.
. .

They are p, V
P

, K, and V respectively. Both V
P

and VK are enclosed

in parentheses.
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The tables are constructed for n = 5 (1) 10 and a
21

=

.10 (.10) .90. For each n, the mastery score c is set equal to

n ,n +1,...,n-1,n where n is the smallest integer such that n > n/2o o o o
and with x = n times a decimal which ranges from .10 to .90 in steps

of .10. To read the values of p, V , K, and V for a mastery score

of c < n
o

, simply enter the tables with a mastery score of n-c+1

and a test mean of n-x.

Numerical Example 1

Let n = 10, x = 6, a
21

= .50, and c = 7. Then p = .680,

V = .278, K = .347, and V = .582. If the data are obtained from

a random sample of m = 36 examinees, then the estimated standard

errors are s,(p) = .278/6 = .046 for p and s.(K) = .582/6 = .097

for K.

Numerical Example 2

Let n^= 8, x^= 6.4,
a21 .30, and c = 3. Here no = 4. The

values of p, V
P'

K, and V may be obtained by using the entry n = 8,

x = 8-6.4 = 1.6, a
21

= .30, and c = 8-3+1 = 6. The results are

p = .988, Vp = .075, K = .050, and V = .448. With m = 25, for

example, the estimated standard errors are sce(p) = .015 and

s0,(K) = .090.

5. INTERPOLATION

As revealed thrrugh the tables, p, V
P'

K, and VK are not

monotonically increasing or decreasing functions of x at each a21,

or of a
21

at each x. Hence interpolation should not be carried out

indiscriminately. However, in situations where a21, x/n, and c/n

are not too extreme, for example when all these quantities are

between .20 and .80, the monotonicity property usually holds. If

so, bivariate linear interpolation may be safely carried out to

approximate the values of p, V
P'

K, and VK.

Suppose an and x represent the computed values of KR21 and

the test mean. In general, let
a21'x)

f( be any one of the quanti-
'

ties p, V
P'

K, or V that are needed but not found in the tables.

Let u
1
and u

2
(where u

1
< a

21
< u

2
) be the two tabulated values
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closest to the computed an-value. Also, let v, and v2 (where

v, < x < v
2
) be the two tabulated values closest to the computed

x-value. Define the following:

and

(a21 u1)
r -

(u
2
-u

1
)

(x -v
1
)

s -
(v2 -v1).

A

Then the linearly interpolated value for f(a21,x) is given as

f(u,v) = (1-0(1-s)f(ul,v1) + r(1-s)f(u2,v1)

+ s(1-0f(ui,v2) + rsf(u2,v2)

(see Abramowitz & Stegun, 1968, Formula 25.2.66).

Numerical Example

Let n = 10. a
21 = .56 (=u), and x = 4.77 (=v). Here u

1
= .50,

u
2
= .60, r = .60, v

1
= 4.00, v

2
= 5.00, and s = .77. At the

mastery or passing score c = 7, it may be found that the p-values

are f(u v
1
) = .839, f(u

2'
v
1
) = .836, f(u v

2
) = .742, and

A
f(u

2'
v
2
) = .761. Hence the linearly interpolated value for p at

a
21 .56 and x = 4.77 is given as .40 x .23 x .839 + .60 x .23 x

.836 + .77 x .40 x .742 + .60 x .77 x .761 = .773. In the same

way, other linearly interpolated value. are V = .205, K = .365,
APand V = .574. The exact values for p, V , Ks and V computed

directly from the formulae of Section 3 are .771, .201, .364, and

.574, respectively.

6. APPLICATIONS

A A

Besides easing the computations for p, Ks and their tandard

errors in the case of short tests, the tables may be used to

establish confidence intervals for p and K, to test the equality
A A

of two or several independent p or K'S, and to answer questions

regarding sample size in reliability studies for mastery tests.

1 4 ;
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6.1. Inference for One Sample

Let a 5-item test be administered to 100 students and let the

summary test data be x = 3.500 and a21 = .400. At the mastery score

C = 4, the tables yield the values p = .650, Vp = .386, K = .293,

and VK = .760. The estimated standard errors aL,e sjp) = .386/10 =

.039 and sco(K) = .763/10 = .076. The 90% confidence intervals are

.650 + 1.645 x .039 or (.581,.714) for the parameter p, and

.293 + 1.645 X .076 or (.168,.418) for the parameter K.

Hypothesis testing may also be conducted for the one-sample

case. To test the null hypothesis that p is equal to a specified

value pH against an appropriate alternative, simply compare the

Student-like ratio t = (p-pH)/s.(p) with suitably chosen critical

value(s) read from the unit normal distribution. For K9 use the

ratio tK = (K-KH)/s.(K). With the data provided u this section,

the null hypothesis pH = .50 corresponds to the Student-like ratio

t = (.650- .500)/.U39 = 3.846. The null hypothesis KH = .350 is

associated with the ratio t = (.293-.350)/.076 = -.75. If the

alternatives are two-sided and if the level of significance is 10%

(at which the critical values are + 1.645), the null hypothesis for

p
H is rejected, whereas the one for K

H
is accepted.

6.2. Inference for Two Independent Samples

Any inferer.c for the case of two independent samples may be

carried out by noting that the standard error of pl-p2, where pl

and p2 are two independent sample p-values, is

2 "

sco(P1 -P2) [sco(P1) 62)J k.
A A A

For two independent K
1
and K2, the standard error of K1 -K2 is

given as

1/2

sco(K1-1(2) isco(K1) 56(2)]

For example, let the data for the first sample be n = 5, c = 4,

X = 4.000, a
21

=
^
.600, and m = 100. It follows that p

1
= .785,

s.(pi) = .0289, K1 = .464, and sco(K1) = .0675. For the second

sample, chosen independently from the first one, let n = 8, c = 6,
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x = 4.8 a21 = .300, and m = 64. It may be verified that p2 = .633,

so,(p2) = .0398, K2 = .196, and so,(x2) = .093. It follows that

s.(pl-p2) = .049

and
. .

S
co
(K 1 K

2
) = .115.

These standard errors will allow the formulation of confidence

intervals for the parameters pl-p2 and x1 K2. For example, at the

90% confidence level, the confidence intervals are (.785-.633) +_
1.645 x .049 or (.071,.233) for pl-p2, and (.464-.196) + 1.645 x

.115 or (.079,.457) for x1 -x2. Student-like ratios may also be

computed to test the equality hypothesis for pl and andand for

K1 and x2. For pl = p2, the mentioned ratio is t =
pl-p2

(.785-.633)/.048 = 3-1.67 and for ri = K7, the corresponding ratio

is (.464-.196)/.115 = 2.330. With two-sided alternatives and with

a level of significance of 10% (at which the critical values are

+ 1.645), both equality hypotheses are rejected._

6.3. Testing Equality of Several Independent p or K's

The mechanism by which equality of several p (or K) values is

to be tested is similar to the one by which several independent

correlations arc. compared (Rao, 1973, page 434). Let p
i
and

s.(pi), i = 1,2,...,1, be the estimated raw agreement index and

its standard error associated with the i-th sample. Let ui =

l/s
2
(p

i
) be the reciprocal of the e ror variance, and let

co

and

I

T
1

= E uip
i'

1=1

I
^2

T
2

= E u p,
i 2.1

1=1

I

B E ui.

i=1

Then the statistic for testing homogeneity of the p-values is
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H = T
2
- (T

2
/B)

'

which can be used as x
2
with I-1 degrees of freedom. Table 1

presents the data and various computations for the statistic H.

With the value H = 1.738 and I-1 = 3 degrees of freedom (at which

the 5% critical value is 7.815), it may be concluded that the four

independent p values do not differ significantly from each other at

the 5% level of significance.

TABLE 1

An Illustration of Homogeneity Testing for p

n c m xa21 Vp s.(p) ui pi uipi uipi

5 4 64 3.0 .60 .269 .033625 884.454 .730 645.652 471.326

8 7 25 4.8 .40 .239 .047800 437.667 .776 339.630 263.553

10 6 100 5.0 .70 .206 .023600 2356.490 .765 1802.715 1379.077

9 6 49 6.3 .50 .267 .038143 687.337 .721 495.570 357.306

Total 4365.948 3283.567 2471.262

Summary data: B = 4365.948

T
1
= 3283.567

T
2
= 2471.262

Test statistic: H = 1.738 iith df = 4-1 = 3

6.4. Sample Size Determination

In some reliability studies for mastery tests, it may be neces-

sary to determine in advance the minimum number of examinees needed

to a6lieve a given degree of accuracy. For example, if a standard

error s.(p) of no more than 100y% of the parameter p is acceptable,

then how many examinees should be tested? The question, of course,

may not have an answer unless there are some indications about the

mean and variability of the test scores. In a number of situations

involving an n-item test with a options for each item, it may not

be unreasonable to assume that the test mean is about halfway

between the chance score n/a and the maximum score n and that the

standard deviation s is about one-fourth of the difference between
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these two scores. In other words, the "guessed-at" values for x, s,

and a
21

are given as

and

x = (n + n/a)/2,

s = (n n/a)/4,

a
21 = n7-1

(1
n- s2

By entering these values of x and a21, along with n and c, those of

p and V = Ai s.(p) may be deduced. Then m may be approximated by

noting that the ratio of V /Ai to p cannot exceed y. In other

words, the minimum number of examinees is (V gyP))2.

As in illustration, let n = 8, a = 5, c = 5, and y = 0.05.

Then x = 4.8, s = 1.6, and a21 = .29. From the tables, it may be

found that approximately p = .615 and V = .369. The minimum number

of examinees is 144. If y is .10, then only 36 examinees would be

needed.

7. COMPUTER PROGRAM

Appendix B a FORTRAN IV program which computes the
A A

values of p, K, and 8(K) for situations ulth k classifica-

tions. The input data are to be keypunched on three cards detailed

as follows.

First Card

This contains the title of the problem, keypunched anywhere

between columns 1 and 80.

Second Card

Th1 provides data on number of items (n), number of exami-

nees (m), number of classifications (k), the test mean (x), and

the test standard deviations (s). These must be keypunched accord-

ing to the format (315, 2F10.5).

Third Card

This contains the (k-1) cutoff scores, keypunched with the

format (1615). Thus reliability problems with 17 classifications

4 ;;
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TABLE II

An Output of the Computer Program

ESTIMATES OF DECISION RELIABILITY
AND THEIR STANDARD ERRORS IN
MASTERY TESTING BASED ON THE BETA-
BINOMIAL MODEL
TITLE OF THIS JOB IS:
AN EXAMPLE OF RELIABILITY COMPUTATION

INPUT DATA ARE:

NUMBER OF ITEMS = 8

NUMBER OF SUBJECTS = 25
MEAN OF TEST SCORE
STANDARD DEVIATION OF TEST SCORE =
NUMBER OF CATEGORIES = 2

CUTOFF SCORE b - 5

OUTPUT DATA ARE:

ALPHA = 2.05710
BETA = 1.37140
KR21 = 0.70000

RAW AGREEMENT INDEX P = 0.77095
STANDARD ERROR OF P.. = 0.04345

KAPPA INDEX = 0.53165
STANDARD ERROR OF KAPPA - 0.08871

** NORMAL END FOR THIS JOB **
PROGRAM WRITTEN BY HUYNH HUYNH
COLLEGE OF EDUCATION
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
REVISED, DECEMBER 1979

4.80000
2.22596

I
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may be implemented via this FORTRAN program.

The computer program starts with the computation of a21. If

a
21

is zero or negative, the following message will be printed:

NON-POSITIVE ESTIMATE KR21.

M')MENT ESTIMATES FOR ALPHA AND BETA DO NOT EXIST.

OMPUTATIONS DISCONTINUED FOR THIS CASE.

Otherwise, the estimates a and B will be obtained. These, in turn,

will be used as input in a subroutine which computes p, s.(p), K,

and s.(x).

For example, let the input cards be as follows:

1 1 2 2 3 3
Column : 1...5....0....5....0....5....0....5

First Card : AN EXAMPLE OF RELIABILITY COMPUTATION

Second Card : 8 25 2 4.8 2.22596

Third Card : 5

In other words, n = 8, m = 25, k = 2, x = 4.8, s = 2.22596, c = 5.

The output is printed in Table 2. It may be read that p = .77095,

s.(p) = .04345, K = .53165, and s.(x) = .08871.

Several problems may be performed in one run by stacking the

input cards together.

8. DISCLAIMER

The computer program presented in this report has been written

with care and tested extensively under a variety of conditions

using tests with 60 or fewer items. The author, however, makes no

warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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APPENDIX A

Tables of the Raw Agreement Index and Its Standard Error
Times the Square Root of m, the Kappa Index and Its

Standard Error Times the Square Root of m,
When the Beta - Binomial Model is Assumed

On = Number of Subjects)

Input data to the tables are (i) number of test items (n),

(ii) mastery score (c), (iii) test mean (i), and (iv) the KR21

reliability (a21). (Note that if a and 8 are any estimates of the

parameters a and 8 other than the moment estimates, then the entries

for test mean and KR21 are simply na/(a+0) and n/(n+a+8),

respectively.)

For each entry of (n. c, x, a21), four values may be read out.

They are p, V
P,

K, and V , respectively. Both V and VK are en-

clused in parentheses.

Example

Let n = 5, c = 3, x = 1.5, and a
21

= .400. The tables provide

the .,alues p = .755, V = .267, K = .268, and V = .784. With

m = 100, for example, the estimated standard errors are s(p) = .0267

s(K) = .0784.
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HUYNII

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(h) in the Beta-binomial Model
M 10 Number of subjects
Number of items N la 5

Mastery score C 4

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.5 0.998 0.996 0.992 0.987 0.981 0.974 0.968 0.964 0.971
(0.028)(0.045)(0.064)(0.084)(0.101)(0.101)(0.102)(0.083)(0.068)
0.005 0.021 0.055 0.111 0.192 0.297 0.427 0.583 0.768
(0.142)(0.355)(0.611)(0.855)(1.041)(1.136)(1.118)(0.971)(0.682)

1.0 0.980 0.973 0.963 0.953 0.942 0.932 '.925 0.926 0.915
(0.120)(0.140)(0.157)(0.167)(0.167)(0.156)0.133)(0.108)(0.094)
0.014 0.042 0.088 0.152 0.235 0.338 0.459 0.603 0.775
(0.300)(0.491)(0.661)(0.787)(0.854)(0.857)(0.796)(0.670)(0.473)

1,5 0.928 0.916 0.903 0.891 0.882 0.376 0.876 0.389 0.923
(0.242)0.243)(0.237)(0.223)(0.202)(0.175)(0.148)(0.127)(0.114)
0.027 0 067 0.123 0.192 0.276 0.374 0.487 0.620 0.782
(0.433)(0.620)(0.715)(0.764)(0.767)(0.727)(0.650)(0.537)(0.384)

2.0 0.830 0.820 0.813 0.808 0.809 0.315 0.830 0.858 G;907
(0.316)( 292)(0.266)(0.238)(0.211)(0.186)(0.166)(0.150)(0.131)
0.041 0.093 0.155 0.228 0.311 0.404 0.511 0.635 0.787
(0.666)(0.729)(0.755)(0.747)(0.710)(0.648)(0.565)(0.464)(0.337)

2.5 0.697 0.701 0.709 0.721 0.738 0.761 0.793 0.836 0.399
(0.323)(0.299)(0.277)(0.256)(0.237)(0.218)(0.199)(0.178)(0.146)
0.055 0.116 0.184 0.258 0.339 0.429 0.530 0.647 0.792
(0.827)(0.817)(0.785)(0.737)(0.674)(0.600)(0.517)(0.424)(0.313)

3.0 0.576 0.601 0.628 0.658 0.692 0.730 0.775 0.829 0.898
(0.401)(0.377)(0.352)(0.325)(0.298)(0.269)(0.238)(0.203)(0.156)
0.065 0.134 0.205 0.280 0.361 0.448 0.545 0.657 0.796

(0.952) (0.884) (0.812) (0.737) (0.660) (0.531) (0.499) (0.412) (0.308)

3.5 0.538 0.574 0.612 0.650 0.691 0.735 0.784 0.839 0.908
(0.521)(0.473)(0.429)(0.386)(0.345)(0.304)(0.262)(0.216)(0.159)
0.071 0.144 0.217 0.293 0.374 0.460 0.555 0.664 0.800
(1.027)(0.932)(0.844)(0.760)(0.678)(0.598)(0.516)(0.429)(0.323)

4.0 0.636 0.662 0.689 0.718 0.750 0.785 0.825 0.871 0.927
(0.464) (0.428) (0.392) (0.358) (0.324) (0.289) (0.252) (0.208) (0.150)
0.070 0.142 0.217 0.294 0.376 0.464 0.560 0.669 0.803
(1.035)(0.969)(0.900,(0.829)(0.754)(0.675)(0.590)(0.492)(0.370)

4.5 0.845 0.844 0.847 0.853 0.864 0.879 0.899 0.925 0.958
(0.317) (0.291) (0.267) (0.247) (0.231) (0.214) (0.195) (0.167) (0.121)
0.057 0.124 0.198 0.279 0.365 0.458 0.559 0.671 0.805
(0.952)(1.023)(1.052)(1.036)(0.983)(0.913)(0.810)(0.677)(0.502)

For the mastery score l 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E. *SQRT(M) in the Beta-binomial Model
M Number of subjects
Number of items N 5

Mastery score C 5

Test KR211.
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.5 1.000 1.000 0.999 0.998 0.996 0.993 0.938 9.980 0.975
(0.002)(0.005)(0.010)(0.019)(0.032)(0.051)(0.072)(0.081)(0.062)
0.000 0.004 0.015 0.040 0.088 0.168 0.288 0.458 0.687
(0.019)(0.089)(0.231)(0.443)(0.699)(0.949)(1.125)(1.139)(0.893)

1.0 0.999 0.997 0.995 0.992 0.986 0.978 0.966 0.954 0.950
(0.015)(0.024)(0.037)(0.055)(0.077)(0.100)(0.116)(0.111)(0.080)
0.002 0.010 0.028 0.062 0.119 0.205 0.326 0.488 0.702
(0.059)(0.158)(0.303)(0.476)(0.649)(0.787)(0.853)(0.807)(0.613)

1.5 0.992 0.988 0.983 0.975 0.964 0.951 0.935 0.922 0.925
(0.053)(0.070)(0.091)(0.112)(0.133)(0.148)(0.149)(0.125)(0.092)
0.006 0.019 0.046 0.089 0.154 0.244 0.363 0.517 0.716
(0.130)(6.252)(0.393)(0.534)(0.651)(0.723)(0.729)(0.655)(0.488)

2.0 0.973 0.965 0.954 0.942 0.927 0.911 0.895 0.887 0.904
(0.127)(0.147)(0.165)(0.180)(0.188)(0.184)(0.164)(0.127)(0.105)
0.012 0.034 0.070 0.122 0.192 0.284 0.400 0.545 0.729

(0.236) (0.364) (0.487) (0.591) (0.660) (0.682) (0.651) (0.562) (0.416)

2.5 0.928 0.915 0.901 0.886 0.870 0.857 0.849 0.853 0.888
(0.228)(0.236)(0.239)(0.235)(0.221)(0.196)(0.161)(0.128)(0.125)
0.021 0.053 0.098 0.158 0.233 0.325 0.437 0.572 0.741
(0.376)(0.488)(0.579)(0.641)(0.667)(0.652)(0.595)(0.500)(0.371)

3.0 0.843 0.830 0.817 0.806 0.799 0.796 0.803 0.826 0.880
(0.311)(0.296)(0.275)(0.248)(0.218)(0.185)(0.158)(0.148)(0.151)
0.033 0.076 0.131 0.197 0.275 0.366 0.477 0.597 0.753
(0.544)(0.620)(0.668)(0. 686)(0. 673)(0.629)(3.557,(0.461)(0.347)

3.5 0.714 0.711 0.711 0.715 0.725 0.742 0.770 0.813 n.883
(0.314)(0.285)(0.257)(0.234)(0.216)(0.205)(0.201)(0.07)(0.173)
0.047 0.102 0.166 0.237 0.316 0 405 0.505 0.621 0.764
(0.734)(0.758)(0.757)(0.732)(0.686)(0.621)(0.!.39)(0.445)(0.342)

4.0 0.576 0.597 0.621 0.649 0.683 0.722 0.759 0.827 0.901
(0.349)(0.346)(0.343)(0.337)(0.328)(0.313)(0.:91)(0.256)(0.196)
0.063 0.130 0.201 0.277 0.357 0.443 0.537 0.643 0.775
(0.945)(0.910)(0.861)(0.799)(0.727)(0.646)(0.558)(0.464)(0.366)

4.5 0.560 0.603 0.647 0.691 0.737 0.783 0.832 0.883 0.938
(0.672) (0.632) (0.587) (0.537) (0.482) (0.422) (0.354) (0.277) (0.183)
0.080 0.153 0.237 0.316 0.396 0.479 0.567 0.664 0.785

(1.202) (1. 127) (1.046) (0.960) (0.870) (0. 776) (0.677) (0.574) (0.464)

For the mastery score 1 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

M Number of subjects
Number of items N 6

Mastery score C 3

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.6 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207)(0.201)(0.188)(0.169)(0.140(0.128)(0.114)(0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771)(0.918)(0.995)(1.008)(0.964)(0.869)(0.724)(0.517)

1.2 0.815 0.811 0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320)(0.293)(0.267)(0.242)(0.220)(0.199)(0.179)(0.157)(0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0.793)(0.837)(0.842)(0.816)(0.766)(0.697)(0.611)(0.506)(0.368)

1.8 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395) (0.366) (0.337) (0.309) (0.279) (0.250) (0.218) (0.183) (0.137)
0.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793
(0.930)(0.873)(0.810)(0.741)(0.668)(0.592)(0.510)(0.421)(0.311)

2.4 0.538 0.573 0.609 0.646 0.685 0.727 0.774 0.829 0.898
(0.487) (0.440) (0.396) (0.354) (0.314) (0.274) (0.235) (0.193) (0.143)
0.069 0.140 0.212 0.286 0.365 0.450 0.544 0.654 0.792
(0.973)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384)(0.35)(0.321)(0.289)(0.257)(0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.353 0.444 0.539 0.650 0.791
(0.933)(0.858)(0.783)(0.706)(0.629)(0.550)(0.470)(0.385)(0.285)

3.6 0.708 0.713 0.721 0.734 A.750 0.773 0.803 0.844 0.903
(0.328)(0.304)(0.281)(0.258)(0.236)(0.214)(0.191)(0.166)(0.132)
0.055 0.117 0.135 0.259 0.340 0.428 0.528 0.643 0.788
(0.820)(0.307)(0.774)(0.724)(0.660)(0.586)(0.503)(s .411)(0.300)

4.2 0.857 0.846 0.838 0.833 0.832 0.837 0.,149 0.874 0.918
(0.305)(0.284)(0.260)(0.234)(0.208)(0.182)(0.160)(0.141)(0.118)
0.040 0.091 0.154 0.227 0.311 0.404 0.540 0.633 0.785
(0.645)(0.724)(0.760)(0.757)(0.721)(0.659)(0.5'3)(0.470)(0.337)

4.8 0.957 9.946 0 934 0.923 0.913 0.906 0.905 0.913 0.940
(0.192)(0.203)(0.206)(0.200)(0.185)(0.163)(0.137)(0.115)(0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0.429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

5.4 0.995 0.991 0.986 0.979 0.971 0.964 0.958 0.957 0.968
(0.052)(0.074)(0.095)(0.113)(0.123)(0.121)(0.107)(0.086)(0.072)
0.008 0.030 0.073 0.337 0.223 0.329 0.455 0.602 0.775
(0.210)(0.448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

For the Mastery score 4 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M - Number of subjects
Number of items N 6

Mastery score C - 4

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.6 0.995 0.991 0.986 0.979 0.971 0.964 0.958 0.957 0.968
(0.052)(0.074)(0.095)(0.113)(0.123)(0.121)(0.107)(0.085)(0.072)
0.008 0.030 0.073 0.'37 0.223 0.329 0.455 0.602 0.775
(0.210)(0.448)(0.694)(0.896)(1.024)(1.062)(1.006)(0.853)(0.595)

1.2 0.957 0.946 0.934 0.923 0.913 0.906 0.905 0.(''' 0.940
(0.192)(0.203)(0.206)(0.200)(0.185)(0.163)(0.137)(0.1 4(0.099)
0.022 0.061 0.115 0.185 0.271 0.371 0.486 0.619 0.780
(0.429)(0.603)(0.731)(0.804)(0.822)(0.788)(0.708)(0.585)(0.413)

1.8 0.857 0.846 0.838 0.833 0.832 0.837 0.849 0.874 0.918
(0.305)(0.284)(0.260)(0.234)(0.208)(0.182)(0.160)(0.141)(0.118)
0.040 0.091 0.154 0.227 0.311 0.404 0.510 0.633 0.785
(0.645)(0.724)(0.760)(0.757)(0.721)(0.659)(0.575)(0.470)(0.337)

2.4 0.708 0.713 0.721 0.734 0.750 0.773 0.803 0.844 0.903
(0.328)(0.304)(0.281)(0.258)(0.236)(0.214)(0.191)(0.166)(0.132)
0.055 0.117 0.185 0.259 0.340 0.428 0.528 0.643 0.788
(0.820)(0.807)(0.774)(0.724)(0.660)(0.586)(0.503)(0.611)(0.300)

3.0 0.574 0.601 0.629 0.660 0.694 0.732 0.775 0.828 0.896
(0.416)(0.384)(0.353)(0.321)(0.289)(0.257)(0.222)(0.185)(0.140)
0.066 0.134 0.205 0.279 0.358 0.444 0.539 0.650 0.791

(0.933) (0.858) (0.783) (0.706) (0.629) (0.550) (0.470) (0.385) (0. 285)

3.6 0.538 0.573 0.609 0.646 0.685 0.727 0.774 0.829 0.898
(0.487) (0.440) (0.396) (0.3c4) (0.314) (0.274) (0.235) (0. 193) (0. 143)
0.069 0.140 0.212 0.286 0.365 0.450 0.544 0.654 0.792
(0.fi3)(0.880)(0.793)(0.710)(0.629)(0.550)(0.470)(0.387)(0.287)

4.2 0.637 0.657 0.679 0.704 0.732 0.764 0.803 0.849 0.910
(0.395)(0.366)(0.337)(0.309)(0.279)(0.250)(0.218)(0.183)(0.137)
n.065 0.133 0.204 0.279 0.359 0.446 0.542 0.654 0.793

(0.930) (0.873) (0.810) (0.741) (0.668) (0.592) (0.510) (0.421) (0.311)

4.8 0.815 0.811 0.811 0.814 0.822 0.836 0.857 0.887 0.931
(0.320)(0,293)(0.267)(0.242)(0.220)(0.199)(0.179)(0.157)(0.123)
0.051 0.111 0.180 0.256 0.340 0.431 0.533 0.650 0.793
(0.793)(0.837)(0.842)(0.816)(0.766)(0.697)(0,611)(0.506)(0.38)

5.4 0.959 0.948 0.938 0.930 0.925 0.924 0.928 0.939 0.961
(0.202)(0.207)(0.201)(0.188)(0.169)(0.147)(0.128)(0.114)(0.093)
0.028 0.074 0.137 0.214 0.304 0.404 0.517 0.643 0.792
(0.553)(0.771)(0.918)(0.995)(1.008)(0.964)(0.669)(0.724)(0.517)

For the mastery score - 3 ente N-zbar in the test mean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M Number of subjects
Number of items N 6

Mastery score C 5

Test KR21'.
Meau .100 .200 .300 .400 .500 .600 .700 .800 .900

0.6 1.000 0.999 0.998 0.996 0.992 0.986 0.979 0.972 0.973
(0.006)(0.013)(0.024)(0.039)(0.058)(0.017)(0.088)(0.081)(0.059)
0.001 0.009 0.029 0.069 0.137 0.235 0.366 0.532 0.737
(0.048)(0.175)(0.381)(0.631)(0.871)(1.045)(1.101)(1.001)(0.714)

1.2 0.994 0.991 0.985 0.978 0.969 0.958 0.946 0.939 0.946
(0.047)(0.065)(0.086)(0.107)(0.125)(0.135)(0.129)(0.105)(0 080)
0.006 0.022 0.054 0.106 0.181 0.280 0.406 0.559 0.748
(0.143)(0.302)(0.482)(0.650)(0.773)(0.829)(0.804)(0.693)(0.488)

1.8 0.971 0.962 0.951 0.938 0.925 -.912 0.902 0.902 0.923
(0.142)(0.16'.)(0.176)(0.185)(0.184)(0.172)(0.147)(0.116)(0.097)
0.015 0.042 0.086 0.147 0.226 0.324 0.442 0.583 0.757
(0.291)(0.446)(0.582)(0.681)(0.730)(0.724)(0.663)(0.552)(0.389)

2.4 0.909 0.895 0.882 0.869 0.859 0.852 0.853 0.866 0.905
(0.261)(0.258)(0.249)(0.233)(0.211)(0.182)(0.152)(0.128)(0.114)
0.028 0.063 0.121 0.188 0.269 0.364 0.474 0.604 0.766
(0.472)(0.584)(0.661)(0.698)(0.694)(0.651)(0.575)(0.469)(0.335)

3.0 0.795 0.787 0.781 0.779 0.781 0.789 0.807 0.838 0.893
(0.320)(0.293)(0.266)(0.239)(0.212)(0.188)(0.167)(0.150)(0.131)
0.042 0.095 0.156 0.227 0.307 0.398 0.502 0.623 0.773
(0.661)(0.706)(0.719)(0.704)(0.662)(0.599)(0.517)(0.420)(0.305)

3.6 0.649 0.659 0.673 0.690 0.712 0.739 0.775 0.823 0.890
(0.321)(0.301)(0.282)(0.264)(0.246)(0.227)(0.206)(0.181)(0.146)
0.057 0.119 0.187 0.260 0.339 0.426 0.524 3.638 0.780
(0.831)(0.805)(0.763)(0.708)(0.642)(0.568)(0.486)(0.397)(0.294)

4.2 0.543 0.575 0.608 0.643 0.681 0.723 0.771 0.827 0.898
(0.447)(0.415)(0.383)(0.351)(0.318)(0.284)(0.248)(0.207)(0.155)
0.068 0.137 0.208 0.283 0.362 0.447 0.541 3.6X.1 0.786
(0.959)(0.880)(0.802)(0.724)(0.647)(0.569)(0.488)(0.403)(0.303)

4.8 0.581 0.614 0.647 0.683 0.720 0.761 0.805 0.856 0.918
(0.509)(0.463)(0.420)(0.379)(0.339)(0.300)(0.258)(0.212)(0.152)
0.071 0.144 0.217 0.293 0.373 0.458 0.551 0.658 0.791
(1.017)(0.935)(0.855)(0.778)(0.702)(6.625)(0.544)(0.454)(0.343)

5.4 0.798 0.803 0.311 0.823 0.839 0.859 0.883 0.914 0.952
(0.344)(0.318)(0.295)(0.274)(0.255)(0.234)(0.210)(0.177)0.126)
0.062 0.130 0.204 0.283 0.367 0.457 0.554 0.663 0.795
(0.967)(0.996)(0.990)(0.957)(0.903)(0.829)(0.736)(0.617)(0.462)

For the mastery score 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

M Number of subjects
Number of items N 6

Mastery score C n 6

Test KR2l
Mean .100

0.6 1.000

.200 .300 .400 .500

1.000 1.000 0.999 0.999

.600 .700 .800 .900

0.997 0.993 0.986 0.978
(0.000)(0.001)(0.003)(0.007)(0.014)(0.028)(0.049)(0.070)(0.063)
0.000 0.001 0.007 0.022 0.056 0.121 0.231 0.399 0.644
(0.005)(0.035)(('.119)(0.275)(0.503)(0.771)(1.010)(1.109)(0.918)

1.2 1.000 0.999 0.998 0.997 0.994 0.988 0.979 0.965 0.953
(0.004)(0.008)(0.015)(0.026)(0.042)(0.065)(0.091)(0.105)(0.031)
0.001 0.004 0.014 0.038 0.082 0.156 0.270 0.434 0.663
(0.022)(0.078)(0.102)(0.332)(0.509)(0.680)(0.797)(0.801)(C.628)

1.8 0.997 0.996 0.993 0.988 0.981 0.970 0.955 0.937 0.929
(0.022)(0.032)(0.047)(0.066)(0.089)(0.113)(0.131)(0.127)(0.088)
0.002 0.010 0.027 0.060 0.113 0.195 0.311 0.469 0.681

(0.063) (0.148) (0.268) (0.409) (0.548) (0.656) (0.703) (0.658) (0.496)

2.4 0.988 0.983 0.976 0.967 0.954 0.939 0.920 0.903 0.905
(0.068)(0.086)(0.106)(0.128)(0.148)(0.162)(0.161)(0.135)(0.094)
0.006 0.021 0.047 0.089 0.151 n.238 0.353 0.503 0.698
(0.137)(0.245)(0.368)(0.488)(0.586)(0.643)(0.641)(0.567)(0.418)

3.0 0.961 0.951 0.939 0.925 0.908 0.890 0.874 0.866 0.885
(0.154)(0.172)(0.188)(0.200)(0.203)(0.195)(0.171)(0.129)(0.106)
0.014 0.037 0.073 0.125 0.194 0.283 0.395 0.535 0.715

(0.253) (0.366) (0.474) (0.561) (0.616) (0.628) (0.591) (0. 503) (0.368)

3.6 0.898 0.884 0.869 0.854 0.839 0.827 0.822 0.831 0.873
(0.263)(0.265)(0.260)(0.248)(0.227)(0.196)(0.159)(0.130)(0.131)
0.024 0.059 0.106 0.166 0.240 0.330 0.437 0.567 0.730
(0.410)(0.505)(0.579)(0.625)(0.637)(0.613)(0.552)(0.458)(0.338)

4.2 0.781 0.770 0.762 0.756 0.755 0.760 0.776 0.809 0.872
(0.323)(0.297)(0.269)(0.239)(0.209)(0.184)(0.169)(0.166)(0.163)
0.039 0.087 0.144 0.211 0.288 0.377 0.478 0.597 0.745
(0.606)(0.658)(0.684)(0.683)(0.656)(0.604)(0.528)(0.433)(0.327)

4.8 0.620 0.630 0.644 0.662 0.687 0.718 0.759 0.814 0.889
(0.297)(0.285)(0.277:0.272)(0.268)(0.264)(0.254)(0.235)(0.190)
0.056 0.118 0.185 0.258 0.337 0.423 0.517 0.625 0.758
(0.836)(0.825)(0.797)(0.751)(0.691)(0.618)(0.534)(0.441)(0.343)

5.4 0.542 0.583 0.625 0.668 0.714 0.761 0.812 0.867 0.928
(0.596)(0.570)(0.538)(0.500)(0.457)(0.408)(0.349)(0.279)(0.188)
0.076 0.151 0.228 0.305 0.385 0.467 0.554 0.651 0.771
(1.114)(1.047)(0.974)(0.895)(0.812)(0.724)(0.631)(0.532)(0.428)

For the mastery score 1 enter N-xbar in the test mean column

163

1 .'i :1



HUYNII

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

M = Number of subjects
Number of items N = 7
Mastery score C = 4

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.7 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.081)(0.104)(0.123)1/40.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0.775
(0.274)(0.516)(0.738)(0.901)(0.986)(0.992)(0.919)(0.772)(0.541)

1.4 0.923 0.911 0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251)(0.247)(0.235)(0.217)(0.195)(0.169)(0.145)(0.124)(0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 0 779

(0.537) (0.675) (0.760) (0.793) (0.780) (0.728) (0.644) (0.529) (0.376)

2.1 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296)(0.270)(0.245)(0.221)(0.199)(0.176)(0.152)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782
(0.758) (0.779) (0.768) (0.733) (0.678) (0.607) (0.524) (0.428) (0.309)

2.3 0.603 0.630 0.654 0.680 0.710 0.744 0.784 0.832 0.897
(0.387) (0.359) (0.331) (0.302) (0.272) (0.241) (0.209) (0. 174) (0.131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784

(0.897) (0.835) (0.768) (0.697) (0.623) (0.546) (0.466) (0.379) (0.278)

3.5 0.534 0.569 0.604 0.641 0.680 0.722 0.768 0.823 0.892
(0.472) (0.426) (0.383) (0.342) (0.303) (0.263) (0.224) (0.182) (0.134)
0.068 0.138 0.209 0.282 0.360 0.443 0.537 0.645 0.784

(0.945) (0.853) (0.767) (0.685) (0.605) (0.527) (0.448) (0.365) (0.269)

4.2 0.608 0.630 0.654 0.680 0.710 0.744 0.784 0.332 0.897
(0.387) (0.359) (0.331) (0.302) (0.272) (0.241) (0.209) (0. 174) (0. 131)
0.064 0.130 0.200 0.274 0.353 0.438 0.533 0.643 0.784
(0.897)(0.835)(0.768)(0.697)(0.623)(0.546)(0.466)(0.3/9)(0.278)

4.9 0.775 0.772 0.774 0.779 0.788 0.804 0.826 0.860 0.911
(0.323)(0.296)(0.270)(0.245)(0.221)(0.199)(0.176)(0.1_2)(0.121)
0.050 0.109 0.176 0.250 0.331 0.420 0.521 0.637 0.782

(0.758) (0.779) (0.768) (0.733) (0.678) (0.607) (0.524) (0.428) (0.309)

5.6 0.923 0.911 0.900 0.890 0.883 0.881 0.886 0.901 0.934
(0.251) (0.247) (0.235) (0.217) (0. 195) (0.169) (0.145) (0. 124) (0.103)
0.031 0.077 0.136 0.209 0.294 0.391 0.500 0.626 0.779
(0.537)(0.675)(0.760)(0.793)(0.780)(0.728)(0.644)(0.529)(0.376)

6.3 0.990 0.985 0.978 0.970 0.961 0.953 0.949 0.951 0.964
(0.081)(0.104)(0.123)(0.136)(0.139)(0.131)(0.113)(0.091)(0.076)
0.011 0.039 0.087 0.156 0.244 0.349 0.471 0.610 0.775
(0.274)(0.516)(0.738):0.901)(0.986)(0.992)(0.919)(0.772)(0.5;1)
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
-5PELf.:P4:147-,(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

,M r Number of subjects
''NitiVer 'of items' N -7'

,Madtery scorecC

Test KR21..
Mean .100 .200 :600 .700 .800 .900

0.999 .0:99e-6:996" '0.992 '0.987- '0:980 '0;972 '0.966-0;970(0.014)
(0.025)(0.041)(0.060)(0.080)(0.095)(0.098)(0.083)(0.062)0.003 0.014 0.041 0.092 0.168 0.272 0.403 0.561 0.751

(0.082)0:249)(6.479)(0.721)(0.918)(1:028)(1.025)(0.895)(0.625)
1.4

2.1

0.986
(0.093)
'0.011
(0.237)

0.932

0.979' 0:971''0.961 -0.949 1:'938 0.929 0.926 0.942
(0.115) (p.135) (0:150) (0. 156) (0. 152) (0. 133) (0.105) (0.084)0.035 0 :077''0.138 '0:220 '0:321 0.443 0;586 0.760
(0.417)(0.588)(0.719)(0.791)(0.796)(0.736)(0.613)(0.427)

9.920 0.007' p.894 0:884 0:376'0.05 0.886, 0.918
(0.230)(P.234)(0:231)(0.220)(0.201)(0.176)(0.147)(0.121)(0.102)0.025 0.064 0.118' 0.186 0.268 0:365 0.47'6 .0.607 0.767(0.443) (0.577)(0.672)(0.719)(0.719)(0.677)(0.597) (0.486) (0.342)

2.3 0.815 0.307 -0'.801 0.;98 0'.799 0%807 0.82 0.851 0.901(0.316) (ff.291)(0'.2.65)(0".238)(0.212) (0.186)(0.163)(0:142)(0.113)'0.042 0.095 '0:457: 0%228 0-.309 0.400 0.6/3 '0./74
0.653)(0.795)(D,721)(0.70.6)(0.,663)(0.598)(0.515)(0.416)(0.297). .1

r ,3.5 0'.657 0.663 Cr.fi82- 0'.:695 0.743 0.783 0.323 0.892(0.330) (0.308) (0'. 287),((.266),(0'. 244) (0-.221) (0.-19-6) (0.167) (0. 131)0.057 0.120 0'.188 .261 0..339 0%426 0.523 0.'635 0.778(0.326) (0.795) (.0. 749) (0.692) (0.624) (0.549) (0.468) (0.379) '0.276)
4.2 0.544 0.575 0%609 0-.643 0.631 1 0.-7i2 0.767 0.-822' 0.852(0.444) (0.407) (0.370).c0.334) (0.299) (0.263) (0.225) (0.186) (0. 138)0.067 0.136 0.206 0.280 0.357 .441 0:535 0.64'4 0.782(0.932) (0.848) (0.768) (0.689)(0.611)(0.533)(0.454)(0.370)(0.274)
4.9 0.573 0.603 0*.j634 0.668 0.:703 0.742 0.736 - 0.837 0.902(0.456) (0.415) (0.376) (0.338) (0.302) (0 :265) (0.227) (0. 137) (0.137)0.068 0.137 0.209 0.283 0.361 0,446 0.539 0.648 0.785(0.948) (0.867)(0.788) (0.710) (0.634)(0.557)(0.478) (0.394) (0.292)
5.6 0.749 0.754 0..762 0.773 0.789 0.311 0.838 0.874 0.924(0.339) (0.313) (0.288) (0..264) (0.241) (0.-218) (0.194) (0.166) (0. 126)0.057 0:121 0.'191 0.267 0.348 0.437 0.535 0.647 0.786(0,851) (0.349) (0.823) (0.777) (0.717) (0.646) (0.563) (0.466) (0.343)
6.3 0.938 0.927 0.918 0.911 0.'908 0:909 0.916 0.931 0.957(0.238) (0.233) (0 :220) (0.200)(0.178)(0:157)(0.138) (0.122) (0.098)0.034 0.084 0.149 0.227 3.315 0.412 0.520 0.642 0.787

(0.616)(0.794)(0.903)(0.948)(0.941)(0.889)(0.797)(0.665) (0.479)

For the mastery.score
lg 3, enter N-xbar in -the test mean -column
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(£0'0)(E15'0)(189'0)(691'0)(1/860)(006'0)(//660)(ZL6'O) (LL660) 
98L°0 LS9'0 TWO 9517'0 89£'0 98Z°0 60Z°0 SET°0 590°0 

(i£I°0)(S8i'0)(ZZZ'0)(TSZ*0)(9LE°0)(00C°0)(hZE*0)(6/£60)(91C0) 
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606'0 £1,8°0 68L'O ZVL*0 669'0 60'0 TZ9*0 /WO 8/5'0 9'S 

(06Z°0)(88£'0)(/ W0)(VSS°0)(6Z9*0)(00C0)(L9L'0)(6Z8'0)(/88'0) 
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/C1'° u/S*0 66E60 8LZ*0 ZOT'O 601'0 850°0 SZO*0 800'0 
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UV() 815*0 95E°0 °£V() 9E1'0 ZLO°0 ZE0*0 TTO*0 Z00*0 
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06'0 IS6'0 £96.0 cL6*0 V86'0 066'0 /66'0 L66°0 866'0 

(LIW0)( TZ0.1)(1790°I)(/£6'0)(£0L'0)(91W0)(9ZZ*0)(180"0)(SiO°0) 
90L'0 /817'0 1i£'0 £81*0 960'0 ZVO°0 STO*0 C00°0 000'0 

(LS060)(110'0)(690.0)((.70'0)(0E060)(970'0)(80060)(£00'0)(100'0) 
SL6'0 6L6'0 186°0 £66°0 L66°0 866'0 666'0 000°1 000'i 

S'£ 

'7. 

V'T 

L'0 

006' 008' 001' 009' 005* 00/' 00C* 00Z' 001' uteaH 
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HUM 
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L N 81192T jo xecpanN 

sauacque I() lequing g 
TaP0H erTmouTq-1292 aqz ux (P)INine'VS 
112T Pas Impui 'tide); 9112 '0010$402'S 
8T pus xapul zuamaaagy AUX 9q2 30 9Tq9I 



L .,9 T 

L9I 

umn/oo uyam 2sal atp II/ avqx-g zazua / m aloos Alazsam alp aoa 

(Z07.0)(705'0)(665'0)(L89'0)(OLL'0)(878'0)(026'0)(586'0)(E70'I) 
I9C0 179'0 £75'0 957'0 71E'0 S6Z*0 6TZ'0 S7I*0 ZL0'0 (c61'0)(8LZ*0)(17C*0)(68£'0)(8Z7'0)(657'0)(587'0)(7(15'0)(LIS.0) 
616'0 C58'0 961'0 771'0 L69'0 C59'0 II(_, ' ELS'O 9CS*0 £'9 

(GZC'0)(8Z7'0)(TW0) (I09'0)(999'0)(SIL'0)(771'0)(751'0)(£71'0) 
571'0 609'0 F67"0 707'0 OTC° ()VV.() OLI'0 901'0 OSO*0 (781.0)(EIZ'0')(IZZ.0)(7ZZ'0)(8ZZ'0) (LEZ'0MISZ'0MILZ*0)(L6Z*0) 
818'0 708'0 S5L'0 ZZL'O 669'0 E89'0 CL9'0 899'0 L99'0 9'i 

(8IC.0)(0£7'0)t7Z5-0)(C65'0)(ZE9'0)(179'0)(029'0)(ZW0)(TOS'0) 
SZCO SL5'0 E57'0 OSCO Z9Z*0 L81'0 VZI*0 C10'0 ZC0'0 (871.0)(77I'0)(LST'0)(98I'0)(6IZ'O) (OSZ'0MSLZ*0)(S6Z'0)(60£'0) 
598'0 OT8'0 88L'0 C8L'O L8V0 96L'O 80C'0 TZ8'0 SC8'0 6'7 

(5CU0)(197'0)(Z55-0)(009'0)(709'0)(895'0)(005'0)(017'0)(80£'0) 
60L'O 6E5'0 907'0 16Z'0 60Z'0 6CI*0 580'0 570*0 010'0 (7IT'0)(8ZI*0)(OLI'0)(COZ*0)(ZZZ'0)(6ZZ'0)(LZZ'0)(8IZ'0) 

(SOZ'0) 
0L8'0 I78'0 778'0 LS8'0 5L8'0 Z68'0 806'0 ZZ6'0 SC6'0 Z'7 

(OL£'0)(OTS'0)(68S*0)(7090)(995-0)(987'0)(Z8C0)(ILZ*0)(89I'0) 
069'0 ZOS*0 85C'0 97Z*0 091'0 860'0 750'0 SZO'0 600'0 (960.0)(8W0)(ZW0)(I8I'0)(CLI'0)(LST.0)(LCI'0)(LIT'0)(860.0) 
988'0 088'O 868'0 816'0 9E6'0 156'0 £96'0 ZL6'0 6/6'0 5C 
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M Number of subjects
Number of items N 8
Mastery score C 5

Test KR2l
Mean .100 .200 .300 .400 .50C .600 .700 .800 .900

0.8 0.998 0.996 0.992 0.987 0.981 0.973 0.965 0.961 0.967
(0.125)(0.040)(0.059)(0.080)(0.098)(0.108)(0.104)(0.085)(0.065)
0.001* 0.019 0.053 0.109 0.191 0.296 0.425 0.576 0.756
(0.119) (0.312) (0.548) (0.767) (0.924) (0.990) (0.955) (0.817) (0.568)

1.6 0.971 0.962 0.951 0.939 0.928 0.918 0.912 0.915 0.937
(0.147)(0.165)(0.177)(0.181)(0.176)(0.161)(0.137)(0.109)(0.01.8)
0.017 0.049 0.098 0.164 0.248 ,,.348 0.464 0.600 0.764
(0.330)(0.507)(3.652)(0.745)(0.778)(0.753)(0.678)10.557)(0.388)

2.4 0.878 0.866 0.855 0.847 0.843 0.844 0.852 0.872 0.913
(0.290)(0.275)(0.255)(0.232)(0.206)(0.179)(0.153)(0.130)(0.107)
0.035 0.083 0.143 0.'.5 0.297 0.389 0.495 0.617 0.770
(0.572)(0.665)(0.713)(0.720)(0.691)(0.631)(0.547)(0.442)(0.313)

3.2 0.714 0.717 0.724 0.735 0.751 0.771 0.799 0.838 0.896
(0.324)(0.299)(0.275)(0.252)(0.229)(0.206)(0.181)(0.154)(0.120)0.054 0.114 0.180 0.253 0.332 0.419 0.516 0.630 0.774
(0.777)(0.769)(0.739)(0.691)(0.630)(0.557)(0.474)(0.382)(0.275)

4.0 0.564 0.592 0.622 0.653 0.688 0.726 0.769 0.821 0.889
(0.414) (0.381) (0.346) (0.315) (0.281) (0.247) (0.212) (0.173) (0.128)
0.065 0.133 0.202 0.275 0.352 0.436 0.529 0.637 0.777
(0.901)(0.825)(0.749)(0.673)(0.597)(0.520)(^ 440) (0.356) (0.260)

4.8 0.549 0.581 0.615 0.649 0.686 0.726 0.771 0.824 0.892
(0.451)(0.409)(0.369)(0.331)(0.293)(0.256)(0.217)(0.177)(0.130)
0.067 0.136 0.206 0.279 0.356 0.439 0.532 0.640 0.778
(0.923)(0.838)(0.756)(0.677)(0.600)(0.522)(0.444)(0.360)(0.264)

5.6 0.693 6.703 0.715 0.731 0.751 0.776 0.807 0.8'48 0.905
(0.142)(0.317)(0.293)(0.268)(0.244)(0.218)(0.191)(0.161)(0.123)
0.058 0.122 0.190 0.264 0.343 0.429 0.525 0.637 0.778
(0.833)(0.807)(0.765)(0.709)(0.643)(0.570)(0.488)(0.398)(0.290)

6.4 0.381 0.871 0.862 0.856 0.854 0.858 0.869 0.890 0.928
(0.290)(0.273)(0.251)(0.227)0.202)(0.177)(0.154)(0.133)(0.10r
0.039 0.090 0.153 0.227 0.311 0.404 0.509 0.629 0.776
(0.627)(0.724)(0.770)(0.773)0.741)(0.680)(0.595)(0.488)(0.350)

7.2 0.984 0.977 0.968 0.959 0.950 0.943 0.940 0.944 5.961
(0.112)(0.138)(0.149)(0.155)(0.152)(0.139)(0.118)(0.097) ( ^.080)
0.015 0.048 0.100 0.171 0.259 0.363 0.481 0.615 773
(0.334)(0.568)(0.768)(0.692)(0.947)(0.931)(0.852)(0 /12)(v.502)

For the mastery score 4 enter N-xbar in the v.tst i-ean column
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

M Number of subjects
Number of items N 8

Mastery score C 6

Test KR2l
Mean .100 .200 .300 .400 (500 .600 .700 .800 .900

0.8 1.000 0.999 0.999 0.997 0.994 0.989 0.982 0.974 0.972
(0.003)(0.008)(0.016)(0.028)(0.046)(0.060(0.082)(0.080)(0.057)
0.001 0.006 0.023 0.060 0.124 0.222 0.354 0.521 0.727
(0.029)(0.128)(0.312)(0.552)(0.791)(0.967)(1.025)(0.930)(0.656)

1.6 0.996 0.992 0.988 0.931 0.972 0.96. 0.948 0.939 0.945
(0.038)(0.055)(0.075)(0.097)(0.116)(0.1.3)(0.126)(0.105)(0.075)
0.005 0.019 0.050 0.100 0.175 0.275 0.400 0.553 G.740
(0.121)(0.270)(0.448)(0.615)(0.737)(0.788)(0.757)(0.642)(0.444)

2.4 0.970 0.960 0.949 0.936 0.923 0.910 0.900 0.899 0.920
(0.143)(0.162)(0.176)(0.184)(0.183)(0.171)(0.147)(0.115)(0.090)
0.015 0.043 0.087 0.148 0.227 0.325 0.442 0.580 0.750
(0.286)(0.438)(0.572)(0.664)(0.705)(0.690)(0.622)(0.507)(0.350)

3.2 0.392 0.879 0.866 0.855 0.846 0.842 0.845 0.861 0.901
(0.275)(0.268)(0.254)(0.235)(0.210)(0.182)(0.153)(0.127)(0.106)
0.030 0.073 0.128 0.196 0.276 0.369 0.477 0.602 0.759
(0.497)(0.597)(0.659)(0.682)(0.665)(0.614)(0.533)(0.428)(0.299)

4.0 0.747 0.744 0.745 0.749 0.758 0.772 r.796 0.831 0.889
(0.317) (0.290) (0.265) (0.240) (0.217) (0.195) (0.173) (0.150) (0. 121)
0.043 0.103 0.167 0.238 0.317 0.405 0.504 0.620 0.767
(0.706)(0.723)(0.713)(0.679)(0.627)(0.557)(0.475)(0.381)(0.272)

4.8 0.588 0.609 0.633 0.660 0.691 0.726 0.767 0.818 0.886
(0.365) (0.342) (0. 318) (0. 294) (0.268) (0.240) (0.210) (0. 175) (0. 133)
0.062 0.127 0.196 0.208 0;346 0.430 0.523 0.633 0.772
(0.866)(0.808)(0.744)0.67.5)(0.603)(0.527)(0.447)(0.362)(0.265)

5.6 0.540 0.574 0.610 0.646 0.685 0.727 0.773 0.827 0.895
(0.476)(0.430)(0.388)(0,147)(0.308)(0.269)(0.229)(0.187)(0.137)
0.069 0.138 0.209 0.232 0.359 0.442 0.534 0.641 0.777
(0.940)(0.852)(0.769)(0.689)(0.612)(0.536)(0.458)(0.375)(0.278)

6.4 0.C37 0.701 0.717 0.737 0.760 0.738 0.821 0.863 0.917
(0 370)(0.343)(0.310(0.289)(0.263)(0.235)(0.206)(0.174)(0.129)
0.062 0.129 0.199 0.274 0.353 0.439 0.534 0.643 0.780
(0.889)(0.853)(0.805)(0.746)(0.680)(0.608)(0.528)(0.437)(0.323)

7.2 0.415 0.904 0.896 0.891 0.890 0,894 0.904 0.923 0.952
(0.267)(0.253s(0.233)(0.211)(0.183)(0.166)(0.148)(0.130)(0.102)
0.039 0.093 0.159 0.237 0.323 0.418 0.522 0.640 0.781
(0.668)(0.809)(0.886)(0.Q08)(0.887)(0.830)(0.741)(0.619)(0.450)

For the mastery score 3 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Lkdex and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in tie Bete-binomial Model
M Number or subjects
Number of items N 8
Mastery score C 7

Test KR21'
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 1.000 1.000 1.000 1.000 0.999 0.997 0.992 C.)85 0.977
(0.000)(0.001)(0.003)(0.006)(0.014)(0.029)(0.050)(0.068)(0.057)
0.000 0.001 0.007 0.025 0.066 0.142 0.264 0.440 0.677
(0.005)(0.036)(0.129)(0.305)(0.551)(0.815)(1.009)(1.031)(0.780)

1.6 1.000 0.999 0.998 0.996 0.992 0.985 0.975 0.961 0.953
(0.005) (0.010) (0.019) (0.031) (0.050) (0.073) (0.096) (0. 102) (0.073)
0.001 0.005 0.018 0.048 0.101 0.187 0.311 0.478 0.695

(0.027) (0.097) (0.222) (0.394) (0.577) (0. 726) (0.792) (0. 734) (0.527)

2.4 0.596 0.993 0.989 0.982 0.973 0.960 0.945 0.929 0.9'8
(0.034)(0.048)(0.066)(0.088)(0.110)(0.129)(0.136)(0.119)(0.081)
0.004 0.015 0.038 0.080 0.144 0.236 0.358 0.514 0.712
(0.091)(0.201)(0.343)(0.493)(0.618)(0.690)(0.684)(0.591)(0.412)

3.2 0.977 0.Q69 0.959 0.947 0.932 0.916 0.900 0.891 0.905
(0.112)(0.133)(0.152)(0.168)0.177)(0.175)(0.157)(0.122)(0.090)
0.011 0.032 0.068 0.121 0.193 0.287 0.404 0.547 0.727
(0.212)(0.342)(0.470)(0.576)(0.641)(0.652)(0.604)(0.499)(0.345)

4.0 0.920 0.907 0.892 0.878 0.864 0.852 0.847 0.854 0.888
(0.2j7)(0.242)(0.241)(0.232)(0.215)(0.189)(0.156)(0.124)(0.106)
0.023 0.058 0.105 0.167 0.244 0.336 0.446 0.576 0.740
(0.389)(0.499)(0.383)(0.632)(0.641)(0.610)(0.539)(0.435)(0.303)

4.8 u.798 0.788 0.731 0.776 0,775 0.780 0.795 0.824 0.879
(0.317)(0.293)(0.266)(0.239)(0.211)(0.185)(0.162)(0.144)(0.126)0.039 0.088 0.146 0.714 0.292 0.381 0.483 0.602 0.752
(0.599)(0.650)(0671)(0.663)(0.628)(0.570)(0.490)(0.394)(0.282)

5.6 0.628 0.640 0.655 0.673 0.697 0.726 0.763 0.813 0.882
(0.313)(0.295)(0.279)(0.263)(0.247)(0.229)(0.208)(0.183)(0.145)
0.056 0.118 0.184 0.256 0.333 0.418 0.513 0.623 0.763
(0.805)(0.777)(0.736)(0.682)(0.619)(0.547)(0.468)(0.380)(0.280)

6.4 0.535 0.570 0.606 0.644 0.685 0.728 0.776 0.612 0.901
(0.482) (0.444) (0.406) (0.369) (0.332) (0.295) (0.256) (0.211) (0. 154)0.069 0.139 0.210 0.284 0.361 0.444 0.535 0.640 0.772
(0.956)(0.874)(0.795)(0.719)(0.645)(0.570)(0.493)(0.4,8)(0.309)

7.2 0.710 0.727 0.746 0.768 0.793 0.821 0.854 0.893 0.940
(0.L10)(0.379)(0.351)(0.322)(0.294)(0.2(5)(0.233)(0.193)(0.136)
0.067 0.138 0.211 0.288 0.369 0.454 0.547 0.651 0.779
(0.981)(0.952)(0.909)(0.855)(0.794)(0.723)(0.640)(0.540)(0.410)

For the mastery score Is 2 enter N-xbar in the test mean column
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Table of the 11-kw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E. *SQRT(M) in the Beta-binomial Model
H Number of subjects
Number of items N 8

Mastery score C &

HUYNP.

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 1.000 1.000 1.000 1.000 1.000 0.939 0.998 0.994 0.984
(0.000)(0.000)(0.000)(0.001)(0.002)(0.0C')(0.019)(0.043)(0.063)
0.000 0.000 0.001 0.007 0.023 0.063 0.147 0.302 0.566
(0.000)(0.005)(0.030)(0.101)(0.249)(0.486)(0.780)(1.018)(0.959)

1.6 1.000 1.000 1.000 1.000 0.999 0.997 0.992 0.982 0.963
(0.000)(0.001)(0.002)(0.005)(0.011)(0.023)(0.046)(0.u78)(0.086)
0.000 0.001 0.004 0.014 0.038 0.089 0.184 0.343 0.593
(0.003)(0.018;(0.062)(0.152)(0.297)(0.485)(0.671)(0.772)(0.660)

2.4 1.000 0.999 0.999 0.997 0.995 0.990 0.980 0.962 0.940
(0.003)(0.006)(0.011)(0.019)(0.033)(0.055)(0.084)(0.111)(0.096)
0.000 0.003 0.010 0.026 C 060 0.123 0.226 0.385 0.619
(0.014)(0.048)(0.117)(0.226)(L 368)(0.519)(0.636)(0.658)0.521)

3.2 0.998 0.996 0.994 0.990 0.983 0.973 0.956 0.933 0.914
(0.017)(0.025)(0.037)(0.054)(0.076)(0.103)(0.128)(0.137)(0.096)
0.002 0.007 0.020 0.046 0.091 0.164 0.273 0.427 0.644
(0.044)(0.105)(0.198)(0.317)(0.444)(0.554)(0.611)(0.581)(0.435)

4.0 0.989 0.934 0.978 0.969 0.957 0.940 0.918 0,895 0.889
(0.060)(0.076)(0.096)(0.118)(0.140)(0.159)(0.166)(0.145)(0.093)
0.005 O.U17 0.039 0.076 0.132 0.212 0.323 0.471 0.668
(0.110)(0.199)(0.305)(0.416)(0.514)(0.577)(0.585)(0.519)(0.376)

4.3 0.959 0.949 0.936 0.922 0.904 0.884 0.865 0.853 0.869
(0.152)(0.170)(0.187)(0.200)(0.206)(0.200)(0.177)(0.134)(0.102)
0.013 0.035 0.068 0.116 0.181 0.267 0.376 0.513 0.691
(0.230)(0.331)(0.429)(0.513)(0.570)(0.586)(0.554)(0.468)(0.335)

5.6 0.378 0.863 0.848 0.333 0.813 0.807 0.803 0.814 0.859
(0.277)(0.276)(0.268)(0.252)(0.228)(0.196)(0.159)(0.131)(0.133)
0.025 0.061 0.107 0.166 0.238 0.326 0.430 0.555 0.712
(0.413)(0.497)(0.562)(0.601)(0.610)(0.585)(0.525)(0.431)().313)

6.4 9.713 0 708 0.706 0.703 0.715 0.730 0.756 0.798 0.869
(0.310)(0.!31)(0.253)(0.228)(0.209)(0.197)(0.194)(0.193)(0.176)
0.044 0.096 0.156 0.224 0.300 0.386 0.483 0.594 0.733
(0.661)(0.691)(0.699)(0.684)(0.647)(0.590)(0.513)(0.420)(0.317)

7.2 0.539 0.571 0.606 0.643 0.685 0.731 0.782 0.841 0.911
(0.444)(0.440)(0.431)(0.417)(0.396)(0.367)(0.329)(0.275)(0.195)
0.068 0.138 0.211 0.286 0.364 0.446 0.534 0.631 0.752
(0.981)(0.934)(0.877)(0.8 )(0.739)(0.660)(0.575)(0.482)(0.382)

For the mastery score 1 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M in Number of subjects
Number of items N 9

Mastery score C 5

Test KR21"
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.9 0.996 0.993 0.988 0.982 0.974 0.966 0.958 0.955 0.964
(0.039)(0.058)(0.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)0.006 0.025 0.063 0.124 0.208 0.314 0.440 0.585 0.758
(0.159)(0.367)(0.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)

1.8 0.951 0.939 0.927 0.915 0.905 0.898 0.896 0.905 0.932
(0.199)(0.209)(0.210)(0.204)(0.189)(0.167)(0.140)(0.114)(0.093)0.023 0.061 0.146 0.185 0.269 0.367 0.479 0.607 0.764
(0.413)(0.577)(0.691)(0.750)(0.755)(0.712)(0.631)(0.515)(0.361)

2.7 0.812 0.805 0.801 0.801 0.805 0.814 0.831 0.860 0.907
(0.315)(0.290)(0.264)(0.238)(0.213)(0.188)(0.164)(0.139)(0.110)0.045 0.099 0.163 0.235 0.316 0.405 0.506 0.622 0.769
(0.676)(0.722)(0.730)(0.708)(0.660)(0.593)(0.509)(0.411)(0.293)

3.6 0.625 0.643 0.663 0.687 0.714 0.745 0.782 0.828 0.892
(0.362)(0.336)(0.311)(0.284)(0.257)(0.228)(0.197)(0.163)(0.121)0.061 0.126 0.194 0.267 0.344 0.428 0.522 0.631 0.771
(0.852) (0.300) (0.740) (0.674) (0.603) (0.527) (0.447) (0.360) (0.260)

4.5 0.534 0.568 0.603 0.639 0.677 0.718 0.764 0.817 0.886
(0.457)(0.412)(0.370)(0.331)(0.292)(0.253)(0.214)(0.172)(0.125)0.067 u.136 0.205 0.278 0.354 0.436 0.527 0.634 0.772
(0.913)(0.824)(0.741)(0.661)(0.583)(0.506)(0.428)(0.345)(0.251)

5.4 0.625 0.643 0.663 0.687 0.714 0.745 0.782 0.828 0.892
(0.362) (0.336) (0.311) (0.284) (0.257) (0.228) (0.197) (u.163) (0.121)0.061 0.126 0.194 0.267 0.344 0.428 0.522 0.631 0.771
(0.852)(0.800)(0.740)(0.674)(0.603)(0.527)(0.447)(0.360)(0.260)

6.3 0.812 0.805 0.801 0.801 0.805 0.814 0.831 0.360 0.907
(0.315)(0.290)(0.264)(0.238)(0.21:1)(0.188)(0.164)(0.139)(0.110)0.045 0.099 0.163 0.235 0.316 0.405 0.506 0.622 0.769
(0.676) (0.722) (0.730) (0.708) (0.660) (0.593) (0.509) (0.411) (0.293)

7.2 0.951 0.939 0.927 0.915 0.905 0.89C 0.896 0.905 0.932
(0.199)(0.209)(0.210)(0.204)(0189)(0.167)(0.140)(0.114)(0.093)0.023 0.061 0.116 0.185 0.259 0.367 0.479 ^.607 0.764
(0.418)(0.577)(0.691)(0.750)(0.755)(0.712)(0.631)(0.515)(0.:61)

8.1 0.996 0.993 0.988 0.982 0.974 0.966 0.958 0.955 0.964
(0.039)(0.053)(0.079)(0.099)(0.114)(0.119)(0.110)(0.088)(0.068)0.006 0.025 0.0E3 0.124 0.208 0.314 0.440 0.585 0.758
(0.159)(0.367)(0.597)(0.791)(0.914)(0.949)(0.896)(0.758)(0.528)
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Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

S.E. *SQRT(M) in the Beta-binomial Model
M Number of subjects
Number of items N 9

Mastery score C 6

HUYNH

Test KR21*
Mean .100 .200 .300 .400 .590 .600 .700 .800 .900

0.9 1.000 0.999 0.998 0.995 0.991 0.985 0.977 0.969 0.970
(0.007)(0.014)(0.025)(0.041)(0.061)(0.0Cn)(0.091)(0.082)(0.058)
0.001 0.009 0.031 0.075 0.146 J.248 0.381 0.542 0.737
(0.047)(0.174)(0.380)(C.620)(0.831)(0.961)(0.975)(0.857)(0.598)

1.8 0.990 0.985 0.978 0.968 0.957 0.945 0.934 0.929 0.940
(0.070)(0.091)(0.112)(0.131)(0.143)(0.145)(0.132)(0.105)(0.079)
0.008 0.029 0.067 0.125 0.205 0.306 0.428 0.572 0.748
(0.186)(0.356)(0.530)(0.671)(0.754)(0.766)(0.708)(0.587)(0.404)

2.7 0.939 0.927 0.914 0.901 1.889 0.380 0.877 0.885 0.915
(0.215)(0,223)(0.223)(0.215)0.199)(0.176)(0.148)(0.118)(0.095)
0.023 0.060 0.112 0.179 0.260 0.356 0.467 0.596 0.756
(0.405) (0.542) (0.641) (0.693) (0.696) (0.654) (0.574) (0.462) (0.320)

3.6 0.811 0.302 0.796 0.794 0.796 0.304 0.819 0.847 0.396
(0.314)(0.290)(0.264)(0.233)(0.212)(0.136)(0.162)(0.137)(0.110)
0.042 0.094 0.156 0.227 0.307 0.396 0.497 0.615 0.763
(0.640)(0.688)(0.702)(0.684)(0.640)(0.574)(0.490)(0.392)(0,276)

4.5 0.633 0.648 0.665 0.186 0.711 0.740 0.776 0.822 0.886
(0.339) (0.317) (0.295) (0.272) (0.243) (0.222) (0. 193) (0.161) (0. 122)
0.059 0.122 0.1C9 0.261 0.339 0.423 0.517 0.627 0.768
(0.324)(0.782)(0.729)(0.667)(0.599)(0.524)(0.443)(0.155)(0.256)

5.4 0.534 0.568 0.603 (...639 0.677 0.718 0.764 0.318 0.887
(0.455) (0.412) (0.371) (0.332) (0.293) (0.255) (0.216) (0.175) (0. 128)
0.067 0.135 0.205 0.278 0.354 0.436 0.527 0.634 0.772
(0.913)(0.826)(0.743)(0.664)(0.587)(0.510)(0.432)(0.349)(0.255)

6.3 0.624 0.644 0.667 0.692 0.721 0.753 0.791 0.837 0.899
(0.305)(0.356)(0.326)(0.297)(0.267)(0.236)(0.203)(0.168)(0.125)
0.063 0.130 0.199 0.272 0.350 0.433 0.527 0.635 0.773

(0.878) (0.820) (0.756) (0.689) (0.617) (0.542) (0 463) (0.377) (0.276)

7.2 0.83/ n 827 0.822 0,822 0.326 0.336 0.852 0.879 0.923
(0.311)(0.236)(0.261)(0.236)(0.211)(0.187)(0.164)(0.141)(0.111)
0.045 0.102 0.167 0.241 0.323 0.413 0.514 0.630 0.773
(0.700)(0.756)(0.771)(0.752)(0.707)(0.640)(0.557)(0.457)(0.330)

3 1 0.976 0.967 0.957 0.947 0.933 0.932 0.931 0.937 0.957
(0.144)(0.161)(0.171)(0.172)(0.163)(0.145)(0.123)(0.102)(0.083)
0.019 0.056 0.111 0.184 0.272 0.373 0.488 0.617 0.771
(0.339) (0.610) (0.778) (0.878) (0.909) (0.880) (0.798) (0.666) (0.473)

For the mastery score - 4 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.K.*SQRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M Number of subjects
Number of items N 9

Mastery score C 7

Test KR21'
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.9 1.000 1.000 1.000 0.999 0.997 0.994 0.989 0.980 0.975
(0.001)(0.002)(0.005)(0.012)(0.024)(0.042)(0.063)(0.074)(0.056)0.000 0.003 0.012 0.038 0.091 0.179 0.309 0.483 0.704
(0.010)(0.062)(0.193)(0.405)(0.659)(0.886)(1.007)(0.956)(0.688)

1.8 0.999 0.997 0.995 0.991 0.985 0.975 0.963 0.951 0.948
(0.014)(0.024)(0.038)(0.057)(0.079)(0.100)(0.112)(0.104)(0.071)0.002 0.010 0.031 0.071 0.137 0.232 0.360 0,520 0.720
(0.058)(0.165)(0.324)(0.506)(0.666)(0.764)(0.769)(0.669)(0.463)

2.7 0.987 0.981 0.973 0.963 0.951 0.936 0.922 0.913 0.923
(0.078)(0.098)(0.119)(0.139)(0.152)(0.1_4(0.145)(0.116)(0.083)0.008 0.027 0.062 0.115 0.190 0.287 0.407 0.553 0.733
(0.175)(0.318)(0.668)(0.596)(0.676)(0.694)(0.644)(0.530)(0.361)

3.6 0.940 0.928 0.914 0.900 0.886 0.875 0.868 0.873 0.901
(0.207)(0.218)(0.221)(0.217)(0.205)(0.183)(0.153)(0.120)(0.096)0.021 0.054 0.102 0.165 0.244 0.338 0.449 0 581 0.745
(0.363)(0.490)(0.589)(0.648)(0.661)(0.628)(0.554)(0.444)(0.304)

4.5 0.824 0.814 0.805 0.799 0.797 0.800 0.812 0.837 0.887
(0.311)(0.289)(0.265)(0.239)(0.211)(0.184)(0.159)(0.136)(0.112)0.038 0.087 0.145 0.214 0.293 0.382 0.484 0.604 0.755
(0.585)(0.644)(0.671)(0.665)(0.630)(0.570)(0.488)(0.388)(0.272)

5.4 0.651 0.660 0.673 0.690 0.711 0.737 0.771 0.817 0.882
(0.317)(0.297)(0.277)(0.257)(0.237)(0.216)(0.192)(0.164)(0.127)0.056 0.116 0.182 0.254 0.331 0.416 0.511 0.622 0.763
(0.787)(0.761)(0.720)(0.666)(0.602)(0.529)(0.449)(0.360)(0.260)

6.3 0.535 0.569 0.603 0.639 0.677 0.718 0.765 0.819 0.889
(0.448)(0.409)(0.372)(0.336)(0.300)(0.263)(0.226)(0.185)(0.136)0.067 0.135 0.205 0.277 0.354 0.436 0.528 0.634 0.770
(0.914)(0.831)(0.752)(0.675)(0.599)(0.523)(0.446)(0.364)(0.268)

7.2 0.634 0.656 0.680 0.706 0.735 0.768 0.806 0.852 0.911
(0.410)(0.377)(0.345)(0.313)(0.281)(0.249)(0.216)(0.179)(0.131)0.065 0.133 0.204 0.278 0.356 0.440 0.533 0.640 0.774
(0.911)(0.852)(0.788)(0.722)(0.652)(0.579)(0.502)(0.415)(0.308)

8.1 0.888 0.879 0.873 0.871 0.873 0.880 0.893 0.915 0.948
(0.288)(0.26')(0.244)(0.220)(0.197)(0.176)(0.157)(C.137)(0.106)0.043 0.100 0.168 0.245 0.329 0.422 0.524 0.638 0.777
(0.712)(0.820)(0.870)(0.874)(0.842)(0.782)(0.696)(0.583)(0.427)

For the mastery score a 3 eutet N-xbar in the test mean column
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Table of the Raw Agreement Index and its
::.E.*SQRT(M), the Kappa Index and its

S.E. *SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N = 9
Mastery score C = 8

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.9 1.000 1.000 1.000 1.000 0.999 0.998 0.996 0.989 0.980
(0.0i)

0.000 0.000 0.004 0.015 0.045 0.109 0.222 0.398 0.643
(0.001) (0.015) (0.071) (0.203) (0.422) (0.697) (0.942) (1.029) (0.812)

1.8

2.7

1.000 1.000 0.999 0.998 0.996 0.992 0.984 0.970 0.957
(0.002) (0.004) (0.008) (0.016) (0.029) (0.049) (0.075) (0.094) (0.074)
0.000 0.002 0.010 0.031 0.074 0.150 0.270 0.440 0.670

(0.011) (0.051) (0.143) (0.292) (0.479) (0.659) (0.770) (0.749) (0.548)

0.998 0.997 0.995 0.991 0.984 0.974 0.960 0.942 0.932
(0.015)(0.024)(0.037)(0.054)(0.076)(0.101r(0.120)(0.118)(0.081)
0.002 0.008 0.025 0.057 0.113 0.199 0.320 0.481 0.690
(0.043)(0.127)(J.251)(0.402)(0.549)(0.656)(0.685)(0.611)(0.427)

3.6 0.989 0.984 0.977 0.967 0.955 0.939 0.921 0.905 0.908
(0.065)(0.084)(0.105)(0.126)(0.145)(0.157)(0.153)(0.127)(0.085)
0.006 0.021 0.049 0.094 0.161 0.252 0.370 0.519 0.708
(0.135)(0.250)(0.381)(0.507)(0.601)(0.642)(0.616)(0.517)(0.354)

4.5 0.952 0.941 0.928 0.913 0.897 0.881 0.868 0.365 0.888
(0.175)(0.191)(0.203)(0.203)(0.205)(0.189)(0.161)(0.124)(0.096)
0.016 0.043 0.084 0.141 0.214 0.307 0.419 0.554 0.725

(0.288) (0.407) (0.512) (0.588) (0.624) (0.613) (0.553) (0.448) (0.307)

5.4 0.855 0.842 0.829 0.818 0.809 0.806 0.810 0.829 0.876
(0.297)(0.285".0.267)(0.244)(0.216)(0.186)(0.156)(0.132)(0.116)
0.032 0.074 0.127 0.192 0.269 0.358 0.462 0.535 0.740

(0.497) (0.574) (0.622) (0.639) (0.623) (0.575) (0.500) (0.400) (0.280)

6.3 0.634 0.686 0.692 0.701 0.716 0.737 0.767 0.310 0.876
(0.305) (0.281) (0.259) (0.239) (0.222) (0.206) (0.189) (0.169) (0.139)
0.050 0.107 0.170 0.240 0.318 0.403 0.499 0.611 0.753
(0.725)(0.726)(0.705)(0.667)(0.614)(0.546)(0.467)(0.377)(C.274)

7.2

8.1

0.539 0.570 0.603 0.639 0.677 0,719 0.767 0.823 0.894
(0.432)(0.404)(0.375)(0.346)(0,316)(0.233)(0.248)(0.207)(0.153)
0.066 0.134 0.204 0.277 0.354 0.436 0.527 0.632 0.764
(0.917)(0.845)(0.773)(0.701)(0.623)(0.555)(0.478)(0.595)(0.297)

0.671 0.694 0.718 0.744 0.773 0.305 0.841 0.883 0.934
(0.442) (0.407) (0.374) (0.342) (0.310) (0.277) (0.241) (0.199) (0.140)
0.069 0.140 0.213 0.289 0.368 0.452 0.544 0.647 0.773
(0.982)(0.935)(0.880)(0.821)(0.757)(0.686)(0.607)(0.513)(0,391)

For the mastery score = 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its

1.E.*SQNT(M) in the Beta-binomial Model
N .. Number of subjects
Number of items N .2 9

Mastery score C * 9

Test KR21m.
Mean .100 .200 .300 .400 .500 .600 .700 .300 .900

0.9 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.987
(0.000)(0.000)(0.000)(0.000)(0.001)(0.003)(0.011)(0.032)(0.060)
0.000 0.000 0.001 0.004 0.015 0.045 0.117 0.263 0.530
(0.000)(0.002)(0.015)(0.060)(0.172)(0.380)(0.675)(0.962)(0.972)

1.8 1.000 1.000 1.000 1.000 3.999 0.998 0.995 0.987 0.969
(0.000)(0.000)(0.001)(0.002)(0.005)(0.013)(0.031)(0.063)(0.085)0.000 0.000 0.002 0.008 0.026 0.067 0.151 0.304 0.561
(0.001)(0.003)(0.035)(0.100)(0.222)(0.401)(0.605)(0.749)(0.675)

2.7 1.000 1.000 0.999 0.999 0.997 0.994 0.987 0.971 0.946
(0.001)(0.003)(0.005)(0.010)(0.019)(0.036)(0.063)(0.097)(0.099)
0.000 0.001 0.006 0.017 0.044 0.097 0.192 0.343 0.590
(0.006)(0.026)(0.075)(0.164)(0.295)(0.452)(0.595)(0.653)(0.535)

3.6 0.999 0.998 0.9,7 0.994 0.990 0.982 0.968 0.946 0.920
(0.003)(0.013)(0.021)(0.033)(0.052)(0.077)(0.107)(0.129)(0.101)0.001 0.004 0.013 0.033 0.071 0.135 0.239 0.394 0.619
(0.024) (0.067) (0. 142) (0. 249) (0. 379) (0.505) (0. 590) (0.585) (0.446)

4.5 0.994 0.991 0.987 0.981 0.971 0.956 0.936 0.910 0.893
(0.035)(0.043)(0.064)(0.085)(0.109)(0.134)(0.153)(0.147)(0.095)0.003 0.012 0.028 0.059 0.108 0.183 0.291 0.441 0.646
(0.072)(0.143)(0.240)(0.352)(0.462)(0.547)(0.578)(0.52b)(0.383)

5.4 0.974 0.966 0.956 0.944 0.927 0.903 0.385 0.865 0.870
(0.103)(0.128)(0.148)(0.1671(0.183)(0.189)(0.179)(0.142)(0.095)
0.009 0.026 0.054 0.096 0.157 0.239 0.348 0.489 0.673
(0.170)(0.264)(0.365)(0.461)(0.534)(0.571)(0.555)(0.477)(0.339)

6.3 0.910 0.896 0.831 0.864 0.847 0.831 0.319 0.821 0.856
(0.237)(0.246)(0.249)(0.244)(0.230)(0.204)(0.167)(0.127)(0.120)
0.020 0.051 0.092 0.147 0.216 0.307 0.407 0.535 0.698
(0.339)(0.430)(0.508)(0.563)(0.588)(0.578)(0.527)(0.435)(0.311)

7.2 0.757 0.747 0.739 0.735 0.735 0.742 0.760 0.795 0.862
(0.319)(0.292)(0.263)(0.233)(0.206)(0.134)(0.174)(0.174)(0.167)0.039 0.086 0.143 0.208 0.283 0.369 0.467 0.580 0.722
(0.539)(0.635)(0.658)(0.656)(0.631)(0.532)(0.509)(0.417)(0.309)

8.1 0.549 0.576 0.605 0.639 0.677 0.721 0.771 0.820 0.903
(0.381)(0.333)(0.331)(0.375)(0.363)(0.344)(0.315)(0.270)(0.197)0.065 0.132 0.203 0.277 0.354 0.436 0.524 0.623 0.744
(0.927)(0.890)(0.841)(0.782)(0.715)(0.640)(0.557)(0.466)(0.367)

For the mastery score .. 1 enter N-xbar in the teat mean column
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Table of the Raw Agreement Index and its
S.E. *SORT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-Linomial Model

M Number of subjects
Number of items N .13
Mastery score C 5

Test KR2l
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 0.994 0.98.:: 0.983 0.976 0.967 0.958 0.951 0.950 0.961
(0.056)(0.077)(0.099)(0.117)(0.128)(0.120(0.114)(0.091)(0.071)
0.008 0.031 0.073 0.138 0.223 0.328 0.451 0.591 0.758
(0.199)(0.416)(0.634)(0.803)(0.897)(0.910)(0.846)(0.710)(0.497)

2.0 0.924 0.912 0.900 0.889 0.382 0.878 0.881 0.395 0.927
(0.245)(0.243)(0.234)(0.218)(0.196)(0.171)(0.145)(0.120)(0.096)
0.029 0.073 0.132 0.203 0.286 0.381 0.489 0.612 0.764
(0.499)(0.632)(0.714)(0.745)(0.730)(0.676)(0.592)(0.482)(0.341)

3.0 0.743 0.744 0.749 0.757 0.770 0.783 0.813 0.849 0.902
(0.324)(0.298)(0.273)(0.249)(0.225)(0.201)(0.175)(0.148)(0.113)
0.052 0.112 0.178 0.250 0.329 0.416 0.513 0.625 0.767
(0.756)(0.759)(0.736)(0.693)(0.633)(0.562)(0.480)(0.388)(0.278)

4.0 0.563 0.592 0.623 0.655 0.689 0.727 0.770 0,321 0.887
(0.421)(0.384)(0.349)(0.313)(0.278)(0.243)(0.206)(0.1f9(0.122)
0.066 0.133 0.202 0.274 0.350 0.432 0.523 0.630 0.768
(0.389)(0.811)(0.735)(0.660)(0.535)(0.503)(0.430)(0.346)(0.250)

5.0 0.553 0.587 0.617 0.649 0.684 0.722 0.765 0.816 0.884
(0.413)(0.376)(0.344)(0.311)(0.277)(0.242)(0.206)(0.167)(0.121)
0.065 0.132 0.201 0.272 0.343 0.431 0.522 0.629 0.767
(0.382)(0.806)(0.730)(0.655)(0.580)(0.503)(0.424)(0.340)(0.245)

G.0 0.722 0.724 0./30 0.739 0.753 0.772 0.798 0.835 0.892
(P.320) (0.295) (0.271) (0.243) (0.224) (0.201) (0. 175) (0. 147) (0. 113)
0.052 0.111 0.176 0.243 0.326 0.412 0.509 0.621 0.764
(0.747)(0.744)(0.713)(0.673)(0. 614 )(0.541)(0.459)(0.367)(0.260)

7.0 0.897 0.834 0.872 0.862 0.855 0.852 0.857 0.873 0.910
(0.272)(0.264)(0.249)(0.229)(0.206)(0.179)(0.151)(0.124)(0.099)
0.032 0.076 0.134 0.204 0.285 0.373 0.483 0.606 0.759
(0.515)(0.620)(0.681)(0.698)(0.676)(0.619)(0.535)(0.429)(0.299)

3.0 0.981 U.174 0.964 0.953 0.941 0.929 0.920 0.911 0.936
(0.109)(0.130)(0.149)(0.161)(0.164)(0.156)(0.136)(0.108)(0.082)
0.012 0.039 0.083 0.146 0.228 0.329 0.447 0.584 0.751
(0.256)(0.432)(0.590)(0.701)(0.751)0.737)(0.665)(0.544)(0.375)

9.0 0.999 0.998 G.996 0.993 0.987 0.980 0.971 0.964 0.967
(0 011)(0.021)(0.036)(0.055)(0.075)(0.092)(0.098)(0.085)(0.060)
0.002 0.012 0.038 0.083 0.164 0.268 0.399 0.555 0.742
(0.068)(0.218)(0.436)(0.665)(0.847)(0.941)(0.926)(0.799)(0.555)

For the mastery score 6 enter N-xbar in the test mean column

178



RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), t1 Kappa Index and its
S.E. *SQRT(!1) in the Beta-binomial Model

M Number of subjects
Number of items N -10
Mastery score C 6

Test KR2l
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 0.999 0.993 0.99G 0.993 0.987 0.980 0.971 0.964 0.967
(0.011) (0.021) (0.03G) (0.055) (0.075) (0.092) (0.098) (0.085) (0.060)
0.002 0.012 0.038 0.038 0.164 0.268 0.399 0.555 0.742
(0.063)(0.218)(0.436)(0.665)(0.347)(0.941)(0.926)(0.799)(0.555)

2.0 0.931 0.974 0.964 0.953 0.941 0.929 0.920 0.919 0.936
(0.109)(0.130)(0.149)(0.161)(0.164)(0.156)(0.136)(0.108)(0.082)
0.012 0.039 0.033 0.146 0.228 0.329 0.447 0.584 0.751
(0.256)(0.432)(0.590)(0.701)(0.751)(0.737)(0.665)(0.544)(0.375)

3.0 0.897 0.684 0.872 0.362 0.855 0.352 857 0.873 0.910
(0 272)(0.264)(0.249)(0.229)(0.206)(0.179) .51)(0.124)(0.099)
0.032 0.076 0.134 0.204 0.285 0.378 0.483 0.606 0.759
(0.515)(0.620)(0.681)(0.698)(0.676)(0.619)(0.535)(0.429)(0.299)

4.0 0.722 0.724 0.730 0.739 0.753 0.772 0.798 0.835 0.892
(0.320)(0.295)(0.271)(0.248)(0.224)(0.201)(0.175)(0.147)(0.113)
0.052 0.111 0.176 0.248 0.326 0.412 0.509 0.621 0.764
(0.747)(0.744)(0.718)(0.673)(0.614)(0.541)(0.459)(0.367)(0.260)

5.0 0.558 0.587 0.617 0.649 0.684 0.722 0.765 0.316 0.884
(0.413)(0.373)(0.344)(0.311)(0.277)(0.242)(0.206)(0.167)(0.121)
0.065 0.132 0.201 0.272 0.348 0.431 0.522 0.629 0.767
(0.832)(0.606)(0.730)(0.655)(0.580)(0.533)(0.424)(0.340)(0.245)

6.v 0.5G3 0.592 0.623 0.655 0.689 0.727 0.770 0.821 0.887
(:.421)(0.334)(0.349)(0.313)(0.278)(0.243)(0.206)(0.167)(0.122)
0.066 0.133 0.202 0.274 0.350 0.432 0.523 0.630 0.768
(0.689)(0.811)(0.735)(0.660)(0.585)(0.508)(0.430)(0.346)(0.250)

7.0 0.743 0.744 0.749 0.757 0.770 0.783 0.813 0.049 0.302
(0.324)(0.298)(0.273)(0.2!,9)(0.225)(0.20')(0.175)(0.143)(0.113)
0.052 0.112 0.173 0.250 0.329 0.416 0.513 0.625 0.767
(0.756)(0.759)(0.136)(0.693)(0.633)(0.562)(0.480)(0.388)(0.278)

3.0 0.924 0.912 0.900 0.389 0.882 0.378 0.831 0.395 0.927
(0.245)(0.243)(0.234)(0.218)(0.196)(0.171)(0.145)(0.120)(0.096)
0.029 0.073 0.132 0.203 0.286 0.381 0.489 0.612 0.764
(0.499)(0.632)(0.714)(0.745)(0.730)(0.676)(0.592)(0.482)(0.341)

9.0 0.994 0.939 0.933 0.976 0.967 0.953 0.951 0.950 0.961
(0.056) (0.077) (0.099) (0. 117) (0. 128) (0.127) (0. 114) (0.091) (0.071)
0.008 0.031 0.073 0.133 0.223 0.328 0.451 0.591 0.758
(0.199)(0.416)(0.634)(0.803)(0.897)(0.910)(0.846)(0.710)(0.497)

For the mastery score 5 enter N-xbar in the test mean column

179



HUYNH

Table of the Raw Agreement Index and its
S.E.*StIRT(M), the Kappa Index and its

S.E.*SQRT(M) in the Beta-binomial Model
M = Number of subjects
Number of items N =10
Mastery score C = 7

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 1.000 1.000 0.999 0.998 0.996 0.992 0.985 0.976 0.972
(0.002)(0.004)(0.010)(0.019)(0.034)(0.05:.)(0.073)(0.078)(0.056)
0.000 0.004 0.017 0.050 0.110 0.206 0.339 0.508 0.717
(0.017)(0.091)(0.251)(0.480)(0.722)(0.908)(0.977)(0.891)(0.627)

2.0 0.997 0.994 0.990 0.984 0.976 0.964 0.952 0.941 0.944
(0.030)(0.044)(0.063)(0.085)(0.105)(0.121)(0.123)(0.105)(0.073)
0.004 0.016 0.044 0.092 0.166 0.265 0.391 0.544 0.731
(0.098)(0.235)(0.410)(0.581)(0.709)(0.764)(0.732)(0.616)(0.421)

3.0 0.972 0.962 0.951 0.938 0.925 0.911 0.901 0.899 0.913
(0.136)(0.156)(0.171)(0.180)(0.181)(0.170)(0.147)(0.115)(0.J86)
0.014 0.041 0.084 0.145 0.225 0.322 0.438 0.575 0.743
(0.271) (0.422) (0.556) (0.650) (0.689) (0.672) (0.601) (0.485) (0.329)

4.0 0.833 0.870 0.358 0.847 0.839 0.836 0.841 0.857 0.897
(0.281)(0.271)(0.256)(0.235)(0.210)(0.182)(0.159)(0.126)(0.101)
0.032 0.075 0.131 0.199 0.279 0.371 0.476 0.599 0.753
(0.506)(0.599)(0.654)(0.670)(0.648)(0.593)(0.510)(0.405)(0.279)

5.0 0.714 0.716 0.720 0.729 0.742 0.761 0.788 0.826 0.885
(0.316)(0.291)(0.267)(0.244)(0.222)(0.199)(0.176)(0.149)(0.115)
0.051 0.109 0.173 0.244 0.322 0.408 0.504 0.616 0.760
(0.730)(0.729)(0.705)(0.663)(0.605)(0.534)(0.452)(0.359)(0.254)

6.0 0.555 0.533 0.613 0.645 0.680 0.713 0.762 0.814 0.983
(0.405)(0.373)(0.341)(0.310)(0.278)(0.244)(0.209)(0.170)(0.125)
0.065 0.131 0.200 0.271 0.347 0.430 0.521 0.628 0.765
(0.378)(0.804)(0.730)(0.656)(0.582)(0.506)(0.427)(0.343)(0.248)

7.0 0.573 0.602 0.632 0.664 0.698 0.736 0.778 0.828 0.893
(0.431)(0.392)(0.355)(0.319)(0.284)(0.248)(0.211)(0.172)(0.125)
0.066 0.134 0.203 0.276 0.352 0.435 0.526 0.&32 0.768
(0.900)(0.323)(0.747)(0.672)(0.598)(0.523)(0.446)(0.362)(0.265)

3.0 0.703 0.781 0.783 0.789 0.799 0.815 0.837 0.869 0.917
(0.323)(0.296)(0.271)(0.246)(0.222)(0.198)(0.174)(0.148)(C.114)
0.051 0.111 0.173 0.252 0.332 0.420 0.517 0.629 0.770
(0.758)(0.779)(0.768)(0.732)(0.677)(0.609)(0.527)(0.433)(0.315)

9.0 0.965 0.955 0.944 0.935 0.926 0.922 0.922 0.931 0.953
(0.175)(0.187)(0.191)(0.185)(0.171)(0.151)(0.128)(0.107)(0.087)
0.023 0.063 0.121 0.195 0.232 0.382 0.493 0.618 0.768
(0.441)(0,643)(0.786)(0.862)(0.875)(0.06)(0.753)(0.628)(0.449)

For the mastery score = 4 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

Table of the Raw Agreement Index and its
S.E.*SQRT(M), the Kappa Index and its
S.E.*SQRT(M) in the Beta-binomial Model

M Number of subjects
Number of items N 4210
Mastery score C 8

Test KR2l
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 1.000 1.000 1.000 1.000 0.999 0.997 0.993 0.985 0.978
(0.000)(0.001)(0.002)(0.005)(0.012)(0.025)(0.046)(0.065)(0.056)
0.000 0.001 0.006 0.024 0.065 0.143 0.268 0.446 0.681
(0.003)(0.029)(0.115)(0.289)(0.535)(0.794)(0.973)(0.974)(0.719)

2.0 1.000 0.999 0.998 0.996 0.992 0.985 0.975 0.961 0.952
(0.005)(0.010)(0.018)(0.031)(0.050)(0.073)(0.094)(0.100)(0.071)
0.001 0.005 0.019 0.049 0.105 0.194 0.321 0.488 0.700
(0.026)(0.096)(0.226)(0.402)(0.586)(0.725)(0.771)(0.693)(0.482)

3.0 0.995 0.991 0.987 0.979 0.969 0.956 0.940 0.926 0.927
(0.039)(0.055)(0.074)(0.096)(0.118)(0.134)(0.131)(0.117)(0.079)
0.034 0.017 0.043 0.087 0.156 0.250 0.373 0.526 0.717

(0.102) (0.221) (0.370) (0.519) (0.634) (0.687) (0.661) (0.554) (0.374)

4.0 0.968 0.958 0.947 0.933 0.918 0.903 0.890 0.885 0.904
(0.141)(0.160)(0.176)0.186)(0.188)(0.118)(0.155)(0.120)(0.089)
0.014 0.039 0.079 0.136 0.212 0.307 0.422 0.560 0.731
(0.255)(0.389)(0.512)(0.604)(0.648)(0.638)(0.574)(0.462)(0.311)

5.0 0.833 0.869 0.356 0.844 0.834 0.829 0.831 0.846 0.886
(0.278)(0.271)(0.258)(0.238)(0.214)(0.185)0.155)(0.127)(0.104)
0.029 0.071 0.124 0.189 0.267 0.358 0.464 0.588 0.744
(0.472)(0.564)(0.623)(0.646)(0.632)(0.583)(0.503)(0.399)(0.274)

6.0 0.718 0.717 0.720 0.726 0.737 0.754 0.780 0.818 0.879
(0.312)(0.286)(0.262)(0.239)(0.217)(0.197)(0.175)(0.152)(0.121)
0.049 0.104 0.147 0.237 0.315 0.400 0.497 0.610 0.754

(0.701) (0.709) (0.693) (0.657) (0.604) (0.536) (0.454) (0.362) (0.257)

7.0 0.554 0.531 0.611 n 643 0.677 0.716 0.760 0.814 0.834
(0.394)(0.367)(0.340)(0.312)(0.282)(0.251)(0.218)(0.180)(0.134)
0.064 0.130 0.199 0.271 0.347 0.429 0.520 0.627 0.763
(0.375)(0.306)(0.736)(0.664)(0.591)(0.517)(0.439)(0.356)(0.261)

8.0 0.591 0.619 0.649 0.680 0.714 0.751 0.793 0.842 0.905
(0.445)(0.405)(0.368)(0.331)(0.295)(0.259)(0.223)(0.183)(0.133)
0.067 0.136 0.206 0.280 0.357 0.439 0.530 0.636 0.769
(0.921)(0.847)(0.774)(0.702)(0.630)(0.557)(0.482)(0.399)(0.296)

9.0 0.860 0.853 0.850 0.851 0.856 0.866 0.882 0.907 0.944
(0.303)(0.279)(0.254)(0.230)(0.207)(0.186)(0.166)(0.144)(0.110)
0.048 0.107 0.175 0.251 0.335 0.425 0.525 0.637 0.773
(0.749)(0.821)(0.855)(0.844)(0.805)(0.742)(0.660)(0.553)(0.409)

For the mastery score 3 enter N-xbar in the test mean column
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Table of the Raw Agreement Index and its
S.E. *SQRT(H), the Kappa Index and its
S.E,*SQRT(M) in the Beta-binomial Model

M + Number of subjects
Number of items N 10
Mastery score C 9

Test KR21+
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.993 0.983
(0.000)(0.000)(0.000)(0.001)(0.003)(0.009)(0.022)(0.016)(0.058)
0.000 0.000 0.002 0.009 0.031 0.083 0.186 0.359 0.620
(0.000)(0.006)(0.039)(0.132)(0.317)(0.586)(0.867)(1.017)(0.840)

2.0 1.000 1.000 1.000 0.999 0.998 0.995 0.989 0.977 0.962
(0.001)(0.001)(0.003)(0.007)(0.016)(0.031)(0.056)(0.083)(0.076)
0.000 0.001 0.006 0.020 0.054 0.120 0.233 0.404 0.646
(0.004)(0.027)(0.090)(0.212)(0.369)(0.587)(0.737)(0.757)(0.570)

3.0 0.999 0.999 3.993 0.995 0.991 0.984 0.971 0.953 ).937
(0.006)(0.011)(0.019)(0.032)(0.050)(0.075)(0.101)(0.113)(0.083)
0.001 0.005 0.016 0.040 0.088 0.166 0.234 0.449 0.669
(0.024)(0.079)(0.178)(0.319)(0.478)(0.614)(07)(0.627)(0.443)

4.0 0.995 0.992 0.987 0.980 0.970 0.956 0.938 0.918 0.912
(0.v36)(0.050)(0.068)(0.090)(0.113)(0.133)(0.143)(0.129)(0.084)
0.004 0.014 0.035 0.073 0.133 0.220 0.338 0.492 0.691
(0.084)(0.173)(0.302)(0.437)(0.554)(0.625)(0.623)(0.535)(0.365)

5.0 0.972 0.963 0.953 0.939 0.923 0.906 0.888 0.877 0.890
(0.122)(0.142)(0.161)(0.176)(0.185)(0.182)(0.164)(0.127)(0.090)
0.011 0.032 0.066 0.117 0.187 0.278 0.392 0.532 0.710
(0.208)(0.325)(0.442)(0.540)(0.601)(0.612)(0.566)(0.463)(0.313)

6.0 0.398 0.834 0.870 0.855 0.842 0.831 0.827 0.836 0.874
(0.259) (0.260) (0.254) (0.241) (0.219) (0.191) (0.158) (0.126) (0.108)
0.025 0.061 0.109 0.170 0.245 0.335 0.442 0.568 0.728

(0.405) (0.501) (0.572) (0.612) (0.615) (0.581) (0.511) (0.408) (0.282)

7.0 0.739 0.733 0.731 0.732 0.739 0.751 0.773 0.809 0.872
(0.313)(0.286)(0.259)(0.234)(0.211)(0.191)(0.173)(0.157)(0.133)
0.044 0.096 0.156 0.225 0.301 0.387 0.485 0.599 0.743
(0.640)(0.673)(0.675)(0.653)(0.610)(0.548)(0.470)(0.377)(0.270)

3.0 0.555 0.J31 0.609 0.641 0.675 0.714 0.760 0.815 0.888
(0.377)(0.359)(0.339)(0.317)(0.294)(0.268)(0.238)(0.202)(0.152)
0.063 0.129 0.198 0.269 0.346 0.428 0.519 0.624 0.757
(0.874) (0.315) (0. 752) (0. 686) (0.6i7) (0.545) (0.469) (0.336) (0.288)

9.! 0.637 0.664 0.692 0.722 0.755 0.790 0.829 0.674 0.928
(0.470)(0.430)(0.393)(0.357)(0.322)(0.286)(0.248)(0.204)(0.143)
0.070 0.141 0.214 0.289 0.367 0.450 0.540 0.642 0.768

(0.980) (0.919) (0.857) (0.793) (0.727) (0.657) (0.581) (0.491) (0.375)

For the mastery score + 2 enter N-xbar in the test mean column
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RELIABILITY IN MASTERY TESTING

APPENDIX B

A Cikaputer Program To Compute the Reliability Indices
for Decision in Mastery Testing and Their Standard
Errors of Estimate Based on the Beta-Ilinomial Model

Disclaimer: The computer program hereafter listed has been written

with care and tested extensively under a variety of conditions using

tests with $0 or fewer items. The author, however, makes no warranty

as to its accuracy and functioning, nor shall the fact of its dis-

tribution tply et.ch warranty.
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RELIABILITY IN MASTERY TESTING

re***
C
C
C
C
C
C INPUT DATA ARE:
C FIRST CARD: TITLE CARD. ENTER ANYTHING YOU WANT.
C
C SECOND CARD: MUST CONTAIN THE FOLLOWING INFORMATION
C
C N NUMBER OF ITEMS

NUMBER OF SUBJECTS OR EXAMINEES
C K NUMBER OF CLASSIFICATION CATEGORIES
C XBAR MEAN or TEST SCORES
C St STANDARD DEVIATION OF TEST SCORES
C FORMAT FOR SECOND CARD ZS (315,2F10.5).
C
C THIRD CARD: MUST CONTAIN THE (K-1) CUTOFF SCORES.
C FORMAT IS (1615).
C

C
C REMARK: THIS PROGRAM IS SET UP FOR TESTS WITH
C UP TO 60 ITEMS. FOR LONGER TESTS USE THE FOLLOWING
C DIMENSION MODIFICATIONS IN SUBROUTINE KAPPA.
C
C LET N BE THE NUMBER OF TEST ITEMS.
C THEN THE DIMENSION OF F(.), XA(.) 72(.) AND CF(.) IS N+1.

A COMPUTER PROGRAM TO COMPUTE THE RELIABILITY INDICES
FOR DECISION IN MASTERY TESTING AND THEIR STANDARD
ERRORS OF ESTIMATE BASED ON THE BETA-BINOMIAL MODEL.

C
C
C
C
C
C

ALSn UP TO 17 CLASSIFICATION CATEGORIES CAN BE ACCOMMODATED.
FOR MORE CATEGORIES CHANGE L(17) TO L(K) IN THE MAIN
PROGRAM, K BEING THE NUMBER OF CATEGORIES.

C********shfrkintleirldrirle****in1-A-A
C

DIMENSION TITLE(20),L(17)
DOUBLE PRECISION A,B,F

1 READ(5,100,EUDI.99) TITLE
100 FORMAT (20A4)

WRITE(6,200) TITLE
200 FORMAT('1' //////T10,'ESTIMATES OF DECISION RELIABILITY'/

* TIO,'AND THEIR STANDARD ERRORS IN'/
* TIO,'MASTLItY TESTING BASED ON THE BETA-'/
* T10,'BINOMIAL MODEL'/
* T10,'TITLE OF THIS JOB IS:'/
* T10,20A4/)
READ(5,105)N,M,K,XBAR,SD

105 FORMAT(3I5,2F10.5)
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KM1K-1 510
READ(5,110) (L(I),I1,KM1) 520

110 FORMAT(16I5) 530
WRITE(6,205) N,M,XBAR,SD,K 540

205 FORMAT(T10,'INPLE DATA ARE:'// 550
* T10,'NUMBER OF ITEMS .. - ',I4/ 560
* T10,'NUMBER OF SUBJECTS " ',I4/ 570
* T10,'HEAN OF TEST SCORE " ',F10.5/ 580
* T10,ISTANDARD DEVIATION OF TESi SCORE - ',F10.5/ 590
* T10,'NUMBER OF CATEGORIES ',IA) 600
IF(X.EQ.2) WRITE(6,206) L(1) 610

206 FORMAT(T10,'CUTOFP SCORE ',I4) 620
IF(K.GT.2) WRITE(6,207) (L(I),I1,KM1) 630

207 FORMAT(T10.10TOFF SCORES ',I4,1615) 640
F N/(N-1.)*(1.-XBAR*(N-XBAR)/(N*SD**2)) 650
IF(F.GT.O.) GOTO 5 660
l'ITE(6,210) 670

210 FOXMAT( /T10,'NON-POSTTIVE ESTIMATE ER21.'/ 680
* T10.'MGMENT ESTIMATES FOR ALPHA AND BETA DO NOT EXIST.'/ 690
* T10,'COMPUTATIONS DISCONTINUED iT*THIS CASE.') 700
Gao 1 710

5 A(-1.+1./F)*X3AR 720
B-A=N /F-N 730
CALL KAPPA!N,A,B,K,LX,EP,S XIK,SDK) 740
WRITF(6,215) A,B,F,XP,SDP,XK,SDK 750

215 FORMA'a/T10,'OUTPUT DATA ARE:'// 760
* T10,1ALPHA ',F10.5/ 770
* T10.'BETA ',F10.5/ 780
* T10,'KR21 ',F10.5// 790
* T10,'RAW AGREEMENT INDEX P - '.F8.5/ 800
* T10,'STANDARD ERROR OF P.. - ',F8.5// 810
* T10,'KAPPA INDEX ',F8.5/ 820
* T10,'STAEDARD ERROR OF KAPPA ',F8.5) 830
WRITE(6,220) 840

220 FORMAT('0',//.T7,'" NORMAL END FOR THIS JOB **'/ 850
* T10,'PROGRAM WRITTEN BY HUM HUYNH7 860
* T10.'COLLEGE OF EDUCATION'/ 870
* T10.'UNIVERSITY OF SOUTH CAROLINA'/ 880
* T10.'COLUMBIA, SOUTH CAROLINA 29208'/ 890
* T10,'REVISED, DECEMBER 1979') 900
GOTO 1 91n

99 STOP 920
END 930
SUBROUTINE KAPPA(N,A,B,K,L,M,XP,SL ,XX,SDK) 940
DIMENSION F(61),CF(61),XA(61),W61),L(1) 950
DOUBLE ?RECISION A,B,F,CF,XA,XB,P,PC,A1,612,A3,VA,VB,VAB,TWO,VKP, 960

* VP,DPA,DPB,DPCA,DPCB,BFZ,DBFA,DBFB,DSA,DSB,SUM3F 970
TWO.I.DO 980

C 990
LCK)=V+1 1000
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C 1010
CALL NEHY(N.A.B.F,CF) 1020
CALL VARAB(N.A.B,VA,VB:A8,M,F,KA,X8) 1030
CALL ZERLAB(N.A.B.XA,KB,Fi 1040

C 1050
PCmCF(L(1))**2 1060
DPCATWO*CF(L(1))*XA(L(1)) 1070
DPCSTWO*CF(L(1))*KB(L(1)) 1080

C 1090
DO 5 I -2,K 1100
IM1I1 1110
AlCF(L(I)).C.F(L(IHI)) 1120
PCPC+A1 *A1 1130
DPCDPGA+TWO*A1*(XML(I))XA(L(IM1))) 1140

5 DPCBDPCB+TWO*A1*(701(L(I)).0(L(INI))) 1150
C 1160

IF(K.GT.2) GOTO 9 1170
C 1180
C OTHERWISE THERE ARE TWO CATEGORIES. 1190
C 1200

ICUT- L(1) -1 1210
IF(2*L(1).LE.N) GOTO 6 122C
ICUT- N -L(1) 1230
CALL BF(N,O,ICUT.B.A.BFLDBFB.DBFA,DSB.DSA.SUMBF) 1240
A1CF(L(2))...CF(L(1)) 1250
P1.D02.0*(A14UMBF) 1260
DPA2.D0*(XA(L(2)').KA(L(1))ftDSA) 1270
DP8-4.D0*(X8(L(2))4011(L(1)).DrB) 1280
GOTO 15 1290

C 1300
6 CALL PIF(N,O,ICUT,A,Br''Z,DBFA,DBFB,DSA,DSB,SUMBF) 1310
A1C.F(L(1)) 1320
P1.D0.2.D0*(A1.SUMBF) 1330
DP/v.. 2.D0*(XA(L(1))ftDSA) 1340
DPBm.'2.D0*(X8(L(1)) .DSP.) 1350
GOTO 15 1360

C 1370
9 DPA0.D0 1380
DPBm0.D0 1390
P0.D0 1400

C 1410
DO 10 I111( 1420
LL-0 1430
IF(I.GT.1) LL- L(I -1) 1440
LU- L(I) -1 1450
CALL P.F(N.LL,LU,A,B,PSZ,DBFA,DBFILDSA,DSB,SUMBF) 1460
PmP+SUMBF 1470
DPADPA+DSA 1480

10 DPBmDPB+DSB 1490
C 1500
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15 A11.D0 -PC
1510

A2s=1.D0 -P
1520

A3.41*A1
1530

DIA*(DPA*A1-DPCA*A2)/A3
1540

DKB,(DPB*A1-DPCB*A2)/A3
1550

C
1560

VICPNA*DRA**2+VB*D1C3**2+2*VAB*DKA*DKB
1570

VPVA*DPA**2+VB*DPB**2+2*VAB*DPA*DPB
1580

SDKVKP**.5
1590

XPaP
1600

SDPVP**.b
1610

70(.(P-P1)/A1
1620

C
1630

kETURN
1640

EAD
1650

SUBROUNE NEHY(N0A,B,F,CF)
'660

DINER -LON F(X),CF(1)
1670

DOUBLE PRECISION A,B,F,CF,21,22
1680

Z1- DFLOAT(N) +B
1690

Z2 -Z1 +A
1700

RO
1710

F(1)11,D0
1720

DO 5 I...1,N
1730

5 F( 1)F(1)*(21-DFLOKT(I))/(12-DFLOAT(I))
1740

10 KP1 -K +1
1750

XP2.4(+2
1760

F( KP2)F(171)*DFLOAT(N-K)*(A+DFLOAT(I))/
1770

* (EfLOAT(101)*(21-DFLOAT(101))) 1780

K -K +1
1790

IF(K -N) 10,15,15
1800

15 cF(1).17(1)
1810

DO 20 I1,14
1820

IP11+1
1830

20 CF(IP1)g.CF(I)+F(/P1)
1840

25 RETURN
1850

END
1860

SUIROUTINEBF(N,LL,LU,A,B,BFZ,DBFA,DBFB,DSA,DSB,SUM8F)
1870

DOUBLE PRECISION A,B,21,22,BFZ,SUMBF,AA,T,X,Y,DBFA,DBFB,DSA,
1880

* DSB,Z1M1,XA,M,DN,AAROLD,XAHOLD,XBROLD,DLL
1890

N2N+N
1900

IRLU-1,7+1
1910

DN*DFLOa(N)
1920

Z1*DFLOAT(N2)+3
1°..$0

Z1M121-1.D0
1940

2221+A
1950

DLLmDFLOAT(LL)
1960

C
1970

IF(LL.NE.0) GOTO 10
1980

C
1990

AA -1.D0
2000
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XA -O.DO
2010n0.D0
2020C
2030DO 5 I1,N2
2040TDFLT()
2050AAAA*O(AZ1IT)/(22-T)
2060XAXA-1.D0/(22-T1
20705 XBX8+1.D0/(21-T)
2080C
2090Xim1B+XA
2100C
2110GOTO 15
2120C
213010 X- DLL -1.D0
2140Y- DLL -1.D0
2150AABFZ*(DN-X)*(A+X+Y)/((X41.D0)*(Z1M1-X-Y))
2160XADBFA+1.D0/(A+X+Y)
2170XEmDBF8-1.D0/(21M1-X-Y)
2180C
2190X -LL

2200AAAA*(DN-Y)*(A4I+T)/((Y +1.D0)*(Z141-E-T))
2210XMXA+1.D0/(A+X+Y)
2220EBEB-1.D0/(21M1-X-Y)
2230C
224315 SUM8FAA
2250ESMICA*AA
2260DSB.,1(B*AA
2270C
2280IF(IR.EQ.1) GOTO 90
2290C
2300AAHOLD -AA
2310XAHOLDXA
2320XBHOLD-XB
2330C

2340DO 50 I2,IR
2350XDLL+DFLOAT(I-2)
2360Y -DLL
2370AA=AAHOLD*(DN-X)*(A+X+Y)/((X+1.D0)*(21141-R-Y)) 2380XAXAHOLD*1.D0/(A+X+Y)
2390X.BUP0LD-1.D0/(21M1-X-Y)
2400C
2410DSADSA+2.DO*XA*AA
2420DSBaDSi+2.D0 *XPAA
2430SUMBFSUMBF+2.D1*AA
7440C
2450AAHOLD -AA
2460XhHOLDXA
2470XBHOLDXE
2480C

2490X- X +1.DO

2500
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DO 50 J2,I 2510
Y- DLL+DFLOAT(J) -2.DO 2520

C 2530
AAAA*(DN-Y)*(A41+1) /((P+1.D0)*(21M1 -X-Y)) 2540xAmxkla .D0/ (A+X+Y)

2550
XIWCB-1.D0/(Z1MI-X-Y) 256r

C
2570

IF(I.EQ.J) GOTO 40 2580
SUMBF- SWWV +2. D0 *AA 2590
DSADSA+2.D0*XA*AA 2600
DSBDSL+2.00*XB*AA 2631
GOTO 50 262U

2630
2640
2650
2660
2670
2680

90 BFZ -AA 2690
DBFA -XA 2700
DBFBPXB 2710

2720
2730
2740
2750
2760
2770
2780

C 2790

C
2800

211(1)0.D0 2810
XB(1)0.D0 2820
21DFLOAT(N)+8 2830
Z221+A 2840
NP1 -N +1 2850
DO 5 I-1,N 2860
XA(1)XA(1)-OUE/(Z2-DFLOAT(I)) 2870

5 XB(1)X1(1)+ONI/(21-DFLOAT(I)) 2886
AB(1)7(B(1)+XL(1) 2890
DO 10 I -1,N 2900
IP1I+1 2910
1X -I -1 2920
XA(IP1)XA(I)+ONE/(A+DPLOAT(IX)) 2930

10 Xil(IP1)fla)-ONE/(21-DFLOAT(I)) 2940
XA(1)XA(1)*F(1) 2n50
XB(1)03(1)*F(1) 2960
DO 30 I2,NP1 2970
IM1I-1 2980
XA(I)4WINII+U(I)*?(I) 299030 :at (I)sX3atil)+53(I)*F(1) 3000

C

C

C

40 SUMBF=SUMBF+Ak
DSA,DSA+XA*AA
DSBDSB+70B*Ait

50 CONTINUE

RETURN
END
SUBROUTINE ZERLAB(Nok,B,D.,XB,F)
DIMENSION XA(1).701(1),F(1)
DOUBLE PRECISION A.B,21,22,XA,D.F,ONE
ONE -1.D0

C

RETURN
END

SUBROUTPE VARAB(N,A,B,VA,VB,VAB,M,F,DA,DB)
DIMENSION F(1),DA(1),L)B(1)

DOUBLE PRECISION A,B,DA,DB,F,B11,B12,B22,D,VA,VB,4AB
CALL DEtLAB (N,A,B,DA,DB)
1311..0.

512 -0.
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B22 -O.DC
3100NP1.41+1
3110DO 15 I-1,N121
3120B11.-B11+DA(I)*DA(I)*F(I)
3130812.-B12+DA(I)*DBW*F(I)
314015 822..B22+DB(I)*DB(I)*F(I)
3150B11.411*M
31608121312*M
3170B22B22*M
3180DieB11*B22-B12*B12
3190VA.4322/D
3200VBP/B11/D
3210

VA.B..-B12/D
3220RETURN
3230END
3240SUBROUTINE DERLAR(N,A,B,DA,DB)
3250DINENSION De1),DB(1)
3260DOUBLE PRECISION A,B,DA,DB,Z1.Z2
3270DOUBLE PRECISION nNE
3280ONE -1.D0 3291

DA(1)-0.D0
330G

DB(1)..O.D0
3310Z1mDFLOAT(N)+B
3320

Z2 -Z1 +A
3330NP1=11+1
3340
3350DO 5 I-1,N
3360DA(1)=DA(1)-ONERZ2-DFLOAT(I))
3370

5 DB(1)mDB(1)+ONERZ1-DFLOAT(I))
3380

DB(1).NDB(1)+DA(1)

C
3390
3400DO 10 I-1,N
3410

IP1 -I +1
3420IX=I-1
3430DA(IP1)4DA(I)+ONE/(A+DFLOAT(IX))
344010 DB(IP1)=DB(I)-ONER21-DFLOAT(I))
3450RETURN
3460END
3470
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ACCURACY OF TWO PROCEDURES FOR ESTIMATING
ULIABILITY OF MASTERY TESTS

Huynh Huynh
Joseph C. Saunders

University of South Carolina

Presented at the annual conference of the Eastern Educational
Research Association, Kiawah Island, South Carolina, February 22-24,
1979. A short version of this paper will appear in Journal of
Educational Measurement an press).

ABSTRACT

Single administration (beta-binomial) estimates for the raw

agreement index p and the corrected-for-chance kappa index in

mastery testing are compared with those based on repeated test

administrations in terms of estimation bias and sampling variabil-

ity. Across a variety c- test score distributions, test lengths,

and mastery (cutoff) scores. the beta - binomial estimates tend to

underestimate the corresponding popula,ion values. The percent of

bias is small (about 2.5) and p and somewhat larger (about la)

for kappa. Both beta-binomial estimates have standard errors about

one-half the size of the standard errors of estimates based on

repeated test administrations. Though the beta-binomial estimates

presume equality of item difficulty, the data presented indicate

that even gross departures from equality of item difficulty de not

affect the amount of bias of the estimates.

This paper has been distributed separately as RM 79-1, February,
1979.
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1. INTRODUCTION

In mastery testing reliability is urten viewed as the consis-

tency of mastery-nonmastery decisions across repeated test adminis-

trations (Huynh, 1976, 1978a; Subkoviak, 1976). Two reliability

indices have been proposed and studied for mastery tests. They are

the raw agreement index p and the corrected-for-chance kappa index

(K). The first index represents the proportion of examinees

consistently classified in the same (mastery or nonmastery) category

over two test administrations using the same form or two equivalent

forms. It is assumed, of course, that the first testing does not

induce any lasting change in the examinees. The second index,

kappa, is defined as K = (p-p
c
)/(1-p

c
), where p

c
is the proportion

of consistent classification expected under complete random assign-

ment. Thus kappa reflects the extent to which test scores will

improve the consistency of decisions beyond the level expected 'y

random classification. The relation3hip between kappa and other

parameters such as cutoff score and classical test reliability may

be found in Huynh (1978a).

The definitions of oath p .nd kappa assume the feasibility of

repeated teat administrations. This may not be practical in many

instances. Under some conditions, p and kappa may be approximated

from a single test administration. There are at least two proce-

dures to accomplish this, namely, these described in Huynh (1976)

and Subkoviak (1976). The Huynh procedure assumes that the test

scores are distributed as predicted by a univariate or bivariate

beta-binomial model. On the other hand, the Subkoviak technique,

it its simplest form, asswes that test scores are distributed as

predicted by a binomial distribution and that the regression of

true score on observed test score is linear.

Subkoviak (1978) has provided a comparison of these two

procedures using simulations with fifty repetitions. The data

reported in Table 2 of his paper clearly indicate that both proce-

dures act almost identically ir. teams of estimation bias and

standard error. This is an expected result. Linear regression of
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true score on observed score in the binomial error model automatically

implies that the test score distribution under study must belong to

the negative hypergeometric (beta-binomial) family (Lord & Novick,

1968, p. 516). Hence it appears that the conditions underlying the

Subkoviak procedure are those of the beta-binomial distributio

assumed in Huynh's paper (1976). For ttis reason and for inherent

complexities in formulating inferential techniques associated with

the Subkoviak procedure, this paper will be restricted to the beta-

binomial model in the estimation of reliability for mastery tests.

The purpose of this paper is to compare th- accuracy of two

procedures for estimating reliability of decisions in mastery test-

ing. One procedure is based on two test administrations; the other

procedure relies on only one test administration and performs all

computations assuming the appropriateness of the bt.ta- binomial model

for the test data under study. Sections 2, 3, and 4 deal wi*h the

asymptotic (large sample of examinees) nature of the estimates.

Section 5 reports a simulation study for the case of small samples.

2. ASYMPTOTIC BIAS AND STANDARD ERRORS

Though the number of classification categories may be arbitrary,

we will consider only the Lase of two categories, labeled mastery

and nonmastery. The lowest score for which an examinee will be

classified as a master will be referred to as the mastery (or pass-

ing) score in subsequent discussion.

First let us consider estimating p and K by testing a sample

of m examinees twice. Let pij be the proportion of examinees clas-

sified in the i-th category on the first testing and in the j-th

category in the second testing. Here let i e 0 for a uonmaster and

i 1 for a master. Let the dot (.) bear the regular summation

meaning. For example, tae marginal proportion of masters on the

first testing is pl.
p10 + p11.

The observed proportion* of consistent classifications in the

sample at hand is pR * Poo + P11 and the kappa index for this sample is

The substript R means repeated testings.
01)
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A A A

KR = (PR-Pc)/(1-Pc) (1)

where pc = po.p.0 + pi.p.i. Under random sampling, pR is an effi-

cient statistic for the parameter p (Hogg & Craig, 1970, p. 372).

In other words, pR is unbiased and its standard error is equal to

the Rao-Cramer lower bound. This standard error is (p(1-p)/m)11.

It may also be noted that pR is also the maximum likelihood (ML)

estimate of the population value of p and that KR is an ML estimate

of the population value of K. Its asymptotic (large sample) prop-

erties are well known. For example, KR follows an 'pproximate

normal distribution with mean K and with a variance of

1
p(1-p) 2S1-p)(2pp

c
-a)

m
(1-pc)

2
(1-p

c
)
3

where

and

(1-p)2(b-4p2

(1-p )
4

a poo(Po. p.o) P11(P1. P.1)

b = E p (p + p )
2

if j.
i,j

(2)

(3)

(4)

(Bishop et al., 1974, p. 396). In these formulae, all quantities

listed are population values. Wnen sample proportions are used in

(2), the resulting value is an estimate for the variance of KR.

Finally, since the asymptotic mean of KR is K, KR is asymptotically

an unbiased estimate for this parameter.

Consider now estimating p and K from a single test administra-

tion. The estimates *, and K
B'

are described in detail in Huynh
'

(1976); the asymptotic standard errors of both estimates may be

obtained via the formulae, tables, or computer prounm described

elsewhere (Huynh, 1978b). In the latter paper it is also shown

that pB and K
B are asymptotically unbiased estimates of p and K.

3. A COMPARISON OF THE ASYMPTOTIC STANDARD ERRORS
OF ESTIMATE FOR BETA-BINOMIAL TEST DATA

Whether estimation is based on repeated or single testings,

Ai times the standard error (S.E.) of the estimate is (or is

*
The subscript B refers to the beta-binomial model.
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asymptotically) not a function of the sample size m. Thus m is not

a significant factor in any comparison of the estimates as long as

sufficiently large samples are to be considet.A. In this section

and most subsequent ones, only the quantity G = A; x S.E. will be

considered.

The comparisons described in this section are limited to test

score distributions that follow the beta-binomial distribution.

Strictly speaking, the procedure for estimating from a single

administration (Huynh, 1976) is formulated only for this type of

data.

The comparison was made for selected situations with n = 5,

10, 20, and 30 test items. 1--e test mean (p) and KR21 reliability

(a
21

) were chosen such that the resulting test score distribution

would be one of the following types: (i) U-shaped with the higher-

density mode at the upper end of the score range, (ii) apnetric,

(iii) unimodal with a mode somewhere between p and n, cr (iv) J-

shaped. The passing score c was chosen such that the ratio c/n

would be 60, 70, or 80%. The G-values for KR were computed via

Equations (2), (3), and (4) with the pij proportions generated by

the bivariate beta-binomial model. The G-values for p2. and Ka were

obtained via the computer program described in Huynh (1978b).

Table 1 reports the obtained G-values wt en the two procedures

fer estimating p and K are used. The G-values in the table clearly

demonstrate that the standard error associated with the single

administration (beta-binomial) procedure is uniformly smaller than

that encounered with the procedure using two test administrations.

Over the thirteen situations reported in Table 1, the standard

errors for the single administration procedure average 59.3% of

those from repeated administrations for the p index and 53.2% for

the kappa index.

4. A COMPARISON OF THE ASYMPTOTIC BIAS AND
STANDARD ERRORS OF ESTIMATE FOR C1BS TEST DATA

This phase of the study is motivated by the fact that real

test data rarely conform exactly to a well-specified model such as
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TABLE 1

G-Values for Beta-Binomial Test Data

a e Shape a c

Index p Kappa

P G(PB) G(PR) K G(KB) G(KR)

5.0 3.0 Unimoaal 5 3.125 1.301 3 .687 .320 .464 .270 .763 1.021

4 .645 .350 .479 .273 .752 .970

2.0 .5 J-Shaped 5 4.000 1.309 3 .872 .168 .334 .492 .713 1.226

4 .811 .265 .391 .526 .619 .953

.5 .2 U-Shaped 5 3.571 1.850 3 .907 .145 .291 .765 .379 .727

6.0 6.0 Symmetric 5 2.500 1.279 3 .605 .412 .489 .210 .823 .978

10.0 5.0 Unimodal 10 6.667 1.863 7 .644 .331 .479 .277 .663 .966

8 .661 .280 .473 .262 .660 .966

8.0 2.0 Unimodal 10 8.000 1.706 7 .799 .222 .401 .332 .677 1.175

8 .714 .295 .452 .357 .630 .984

4.5 .5 J-Shaped 10 9.000 1.500 7 .921 .135 .269 ./.64 .785 1.637

12.0 E.0 Unimodal 20 12.000 3.024 12 .678 .269 .467 .342 .550 .949

14 .704 .235 .456 .326 .561 .998

12.0 3.0 Unimodal 20 16.000 2.646 12 .918 .169 .275 .304 .677 1.796

14 .821 .192 .383 .370 .591 1.201

3.0 .5 J-Shaped 20 17.143 3.576 12 .940 .087 .237 .637 .478 1.369

16.0 14.0 Unim dal 30 16.000 3.801 20 .787 .212 .409 .290 .585 1.178

24 .964 .123 .185 .142 .557 2.448

18.0 2.0 Unimodal 30 27.000 2.535 20 .982 .081 .133 .246 .775 3.716

24 .888 .169 .315 .373 .650 1.496

19.5 .5 J-Shaped 30 29.250 1.319 24 .990 .062 .099 .273 1 105 5.038
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RELIABILITY OF MASTERY TESTS

the beta-binomial distribution. It is based on a portion of the

Comprehensive Tests of Basic Skills (CTBS) test data collected in

the 1978 South Carolina Statewide Testing Program. Table 2

describes the various tests artificially assembled from CTES sub-

tests or from the entire battery. For each test in the listing,

two alternate (hopefully equivalent) forms were created by pairing

items on the basis of content and/or difficulty and randomly assign-

ing th2 items in each pair to the alternate forms. For reasons

which will be obvious later on, a number of tests were deliberately

constructed of items of similar difficulty.

The number of items (n) was set at 5, 10, 15, and 20. The

number of students, selected by taking every tenth case from the

entire South Carolina file, ranged from m = 1684 to 6035. For each

test, the value Dix represents the maximum discrepancy between the

observed relative cumulative frequency and the corresponding ex-

pected frequency from the beta-binomial model. A significance level

(P-value) of more than .20 indicates that the test data follow

closely the beta-binomial distribution. On the other hand, P-values

of less than .05 or .01 reveal substantial departures from the

theoretical distribution.

For each test described in Table 2, the population values pR,

G(p
R

K
R'

and G(K
R) were computed using the bivariate frequency

distribution generated by the alternate forms. The corresponding

parameters p
B'

G(pB), KB, and G(K
B
) were obtained by imposing the

beta-binomial model on each of the two alternate forms and averag-

ing the two sets of results. Now both pB and KB are asymptotic

unbiased estimates of pB and KB (Huynh, 1978b). Also, since pR is

an unbiased estimate of pR, and KB is an ssymi)toticel unbiased

estimate of KR, only the asymptotic bias of p
3

and K
B

in estimating

p
R

and K
R
vas explored. Thus, it follows that the percent asymp-

totic bias for pp and KB is 100(pB - pR)/pR and 100(KB - KR)/KR,

respectively. A negative bias indicates underestimation whereas a

positive bias documents an overestimation. (We focused on pR and

K
R because test rell,:bility is typically approached from the stand-

point of equtvaleLt fools.) All computations reported in this

section were ca:_ried ut as in the previous section.
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TABLE 2

Description of the CTBS Data Used in Sections 4 and 5

Case n M diff

D
max
(%) P-value Glade Description

5.1 5 1684 .056 1.80 p.20 3 beading comprehension
(paragraph)

5.2 5 1684 .107 0.68 >.20 3 Language expression
5.3 5 5543 .003 0.50 .20 3 Total battery

10.1 10 1684 .060 2.24 >.20 3 Reading comprehension
(sentences)

10.2 le 6035 .081 1.54 .15 6 Reading vocabulary
10.3 10 5543 .007 2.02 .05 3 Total battery

15.1 15 1684 .175 1.72 .20 3 Science
15.4 15 1335 .022 3.85 .05 6 Total battery

20.1 20 1684 .099 4.01 .01 3 Mathematics
20.3 20 5543 .015 7.65 .01 3 Total battery

Table 3 details the results of the various estimates for p
R

and KR. The data indicate that the beta-binomial estimates (pB and

K
B
) tend to underestimate the alternate-form population values.

For the p index, the percent of bias ranges from -4.2 to 0.1 with

an average of -2.3. A larger degree of bias, however, occurs in

the estimation of kappa via K
B.

The percent cf bias for this esti-

mate ranges from -17.5 to 0.9 with an average of about -7.8.

The larger bias of KB as compared with that of pB is to be

expected. With the factor 1 - p (which cannot exceed .50) in the

denominator of Equation (1) defining kappa, the bias of K
B

is at

least twice as large as that associated with pB. For situations in

which a high proportion of examinees are to be classified either as

misters or nonmasters, 1 - p
c

is close to zero. As a consequence,

the bias of K
B
will beccme more pronounced in those cases.

The beta-binomial model assumes that test items are equally

difficult (Huynh, 1976). It would be natural to expect that the

bias of tht beta-binomial estimates would bear a positive (or

direct) relationship with variation in item difficulty. This is

not the case, however. The values of Dix in Table 2 clearly

indicate that departures from the beta-binomial distribution show

no resemblance to the standard deviation (o
cliff

) of item difficulty.
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TABLE 3

Percent Asymptotic Bias and G-Values for CTBS Test Data

Index p Kappa
Cutoff % . . . .

Case n Score Bias
G(pB) G(pR)

Bias
GC:13) G(KR)

5.1 5 3 -1.5 .174 .331 -7.1 .540 .403
4 -3.5 .236 .350 -9.2 .485 .774

5.2 5 3 -2.6 .192 .348 -13.7 .664 1.064
4 -4.7 .287 .391 -14.1 .593 .856

5.3 5 3 -2.8 .211 .364 -17.5 .734 1.148
4 -3.4 ,325 .429 -11.3 .667 .921

10.1 10 ti -2.9 .113 .256 -10.2 .329 .668
8 -4.2 .147 .281 -9.7 .294 .604

10.2 10 6 -1.3 .136 .330 -5.3 .384 .832
8 -3.6 .176 .347 -8.7 .345 .707

10.3 10 6 0.7 .136 332 2.5 .537 1.165
8 -1.2 .208 .385 -4.4 .441 .862

15.1 15 9 -2.6 .203 .403 -8.1 .407 .809
13 -3.7 .164 .317 -7.6 .530 1.300

15.2 15 9 -1.9 .168 .393 -4.0 .351 .881
13 -0.4 .141 .295 -7.1 .506 1.313

20.1 20 12 -2.7 .098 .241 -12.9 .412 1.040
14 -2.8 .115 .292 -7.7 .353 .880

20.2 20 12 0.1 .132 .370 0.9 .267 .751
14 -0.7 .121 .355 0.0 .283 .805

The same observation holds for the bias of pB and KB as displayed

it Table 3.

The G-values of Table 3 clearly show that the estimates based

on the 1-eta-binomial model have a smaller standard error of esti-

mate than those based on alternate forms. Over all the situations

considered, the standard error of p
B

is about 50.4% of that of p
R

;

the standard error of K
B

is about 50.2% of that of K
R.

These

results are consistent with those of Section 3.

5. A COMPARISON OF rINITE-SP BIAS AND STANDARD
ERRORS OF ESTIMATE FOR CTBS TEST DATA

A simulation was conducted to study the sampling fluctuations
A A

of the estimates pB, KB, and KR when sample sizes are of small or

moderate size. This was dcne for samples of size m --. 20, 40, and

60. For each test, one thousand replications were used to obtain

the observed percent of bias and C-value for KR. As for estimates
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based on the beta-binomial model, one thousand replications were

s:mulated for each alternate form and the averages of the two sets

of results were used to de..ermine the bias and G-value for p
B

and

153

Table 4 presents a summary of the results of simulation. The

adequacy of the random number generator (more specifically, the

IMSL (1977) subroutine GGUB) is documented by the near zero bias

of p
R and the small fluctuation of the G(p

R
) values for various

sample sizes around the corresponding true values (enclosed in

parentheses). The data reported in the table clearly show that,

as in the case of large samples, the beta-binomial model tends to

underestimate the parameters pR and KR. The bias of pre in estimat-

ing pR averages -2.6%. For kappa, the bias of KR fluctuates around

-11.0%. It is also interesting to note that the alternate form

estimate, KR, also tends to have a small negative bias.

TABLE 4

Percent Finite-Sample Bias and G-Values for CTBS Test Data

Case
Cutoff

n Score m

fli i)11
KB K

R
%

Bias G(p
B
)

%

Bias C(p
R
)

%

Bias
.

G(KB) Bias
.

C(K
R

)

5.1 5 3 20 -0.5 .186 -.4 .325 -8.6 .617 +1.5 1.005
40 -0.1 .184 -.1 .335 -7.7 .569 -1.3 .936
60 -1.1 188 -.1 .334 -7.4 .553 -0.3 .930

(Exact value 0 .331)

10.1 10 7 20 -3.6 .141 -.1 .225 -11.9 .376 -1.3 .678
40 -3.9 .146 .2 .269 -11.6 .327 -1.2 .644
63 -4.0 .145 -.1 .268 -11.4 .304 -0.4 .625

(Exact value 0 .259)

15.1 15 11 20 -3.4 .210 -.4 .395 -15.1 .543 -2.4 .949
40 -3.8 .206 .3 .402 -13.4 .525 -2.2 .927
60 -3.7 .203 -.2 .397 -13.0 .523 -0.1 .927

(Exact value 0 .392)

20.1 20 14 20 -0.7 .141 -.2 .293 -12.7 .585 -5.0 1.017
40 -2.6 .137 0 .306 -10.2 .519 -1.3 .961
00 -2.6 .142 .2 .312 -9.2 .499 -2.2 .942

(Exact value 0 .292)
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The data in Table 4 sho'i that the beta-binomial estimates have

smaller sampling fluctuations than the alternate form estimates.

For all situations reported in this table, the standard error of pR

is about 51.4% of that of pR; and the standard error of KB is about

56.9% of the standard error of K
R.

These trends are very similar

to those reported in the previous section.

6. DISCUSSION AND CONCLUSION

In this study the performance of a single administration esti-

mate of reliability for mastery tests is compared with the behavior

of the estimate based on two test administrations. The results

clearly indicate that the single administration (beta-binomial)

estimate for the raw agreement index p behaves very well. Not only

does it show a negligible amount of negative bias, its sampling

error is about half of that of the test-retest procedure. As for

the kappa index, a moderate degree of negative bias (about ten per-

cent) is displayed by the ,eta-binomial estimate. This estimate of

kappa also has a standarl error that is about one-half the corre-

sponding value for the alternate form estimate. Though the beta-

binomial estimates are originally derived for tests with items of

equal difficulty, the data presented indicate that the bias of

these estimates does not depend on the assumption of equal diffi-

culty for test items. Our conclusion is that for testing situa-

tions involving tests like the CTBS (with items of a wide range of

difficulty), the estimation for consistency of decisions in mastery

tests may be safely carried out via one test administration with

the beta-binomial model as a vehicle for computation.
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AN APPROXIMATION TO THE TRUE ABILITY
DISTRIBUTION IN THE BINOMIAL ERROR MODEL

AND APPLICATIONS

Huynh Huynh

Garrett K. Mandeville

University of South Carolina

ABSTRACT

Assuming that the density p of the true ability 8 in the

binomial test score model is continuous in the closed interval

:0,1], a Bernstein polynomial can be to uniformly approximate

p. Then via quadratic programming techniques, least-square esti-

mates may be obtained for the coefficients defining the polynomial.

The approximation, in turn will yield estimates for any indices
based on the univariate and/or bivariate density function associa-
ted with the binomial test score model. Numerical illustratiovq

are provided for the projection of decision reliability and pro-

portion of success in mastery testing.

1. INTRODUCTION

The binomial error model (Lord and Novick, 1968) has been used

extensely in analyses of mental test data. The model is deemed

suitable in computer-assisted testing in which each examinee is

This paper has been distributed separately as RM 79-5, June, 1979.
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given a random sample of items drawn from a large item universe.

When the same test is given to all examinees, the binomial distri-

bution implies that all items share the same difficulty level.

There are indications (Keats and Lord, 1962; Duncan, 1974) that

several test score distributions based on the same test fit the

binomial (or more specifically the beta-binomial) model quite well,

especially when similarity of item difficulty holds strictly or

nearly. Let x denote the test score obtained from the administra-

tion of an n-item test to an examinee with true ability e (the pro-

portion of items in the universe that he/she knows, or the probabi-

lity of answering each item correctly). Then the conditional density

of x given e is

f(x10) = (:) OY (1 0)n-x, x = 0,1,...,n.

Let p(0) be the density of the true ability for a population of

examinees. The marginal density of x for this population is given

as

f(x) = Po ex (1 - e)nx p(e) de.

As indicated in Lord and Novick (1968; Chapter 23), the knowledge

of f(x) implies the knowledge of the first n moments of the distri-

bution of e. Any distribution sharing these n moments will yield

the same marginal density f(x), hence the solution for p(e) given

f(x) is not unique. We will seek an approximation for p(e) via a

polynomial and will show how such approximation is useful in the

projection of decision reliability and proportion of successes in

mastery testing.

2. A SOLUTION BASED ON THE BERNSTEIN POLYNOMIAL

We shall assume that p(e) is contin'ous in the closed interval

[0,1]. Then (Feller, 1966, p. 220) p(e) can be uniformly approxi-

mated by a Bernstein polynomial of the form
m

Bm(e) = E z (m) ek (1 - 0)111
k

k k
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Thus given any arbitrarily small and positive e, there exists an

integer m and On + 1) constants zi such that IBm(0) - p(0) I < c

for all e e [0,1]. We propose to use Bra(e) to approximate p(0).

Procedures will be presented for the &termination of the constants
m z z z

m
.0' 1"

It may first be noted that the zk constants must be non -nega-

tive and satisfy the constraint )
0

Bra(e) de 1 in order for Bul(e)

to be a density. Hence

zk
1( 0

imIr

0

l
(1 - 6)m-k d6 1

'1e).2

or equivalently

z
k

m + 1.
k =0

The Bernstein approximated value for the marginal density of x is
now given as

f
B
(x) = (n) E z (m) J(n + m; x + k)

k -0
k k

where

J(n + m; x + k) f(1:11 e
x+k

(1 - e)
n+m-(x+k)

de.

The J integrals may be computed inductively by noting that

J(P0) = 1/(P + 1)

and

J(p ;y + 1) + 1) J(p;y)/(p - Y).

Now let

c(k,x) (:)(Z)J(x + k)

and

a(k,x) = c(k,x) - c(0,x).

Then the approximated marginal density of x becomes

fB(x) E a(k,x) zk + On + 1) c(0,x)
kiral

where the z
k'

k 1, 2,..., m are nonnegativr and sum up to no more
than la+ 1.
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To determine the constants m, z3, z2,..., zm, we focus on the

least-square criterion with the weight function w(x)

H(z1, z2,..., zm;m) = E w(x) [fB(x) - f(x)]
2

. (1)
x=0

In other words, we will seek these constants is such a way that the

H criterion is minimized. This may be done by first considering

in as fixed and computine the z constants along with the minimum Hm

of the criterion H. This process will be repeated many times

starting with m = 0 [p(e) and fB(x) are constant], 1, 2, etc. until

an integer m can be located at which Hm is minimized. Following

are the detaii3 for the algorithm.

2.1 Minimizing H at Each Integer m. Let

= (m + 1) c(0,x) - f(x).

Then (1) becomes

H = E [w(x) E a(k,x)z
k
+ 0(x)]

2
.

x=0 k=1
(2)

At each given integerm, the nonnegative z
1,

z
2

z
m

may be"
obtained by minimizing H under the constraint Eak < m + 1. Since

H is continuous and the z's are located in a closed region, the

solution for z always exists. To obtain such solution, standard

routines for quadratic programming may be called upon. In this

paper, Algorithm 431 (Ravindran, 1972) was used.

To enter into Algorithm 431, we note that the criterion H of

(2) may be written as

H = Z'DZ + 2BZ + C.

In this formula, Z is the vector (z1, z2,..., zm)', D = (dkk,)
is

the matrix defined by

n

d
kk

= E w(x) la(k,x))2
x=0

n

d
kk'

= E w(x) a(k,x) a(k',x)
x=0
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and B = (b
k
) is a vlctor with components

n
bk = E w(x) a(k,w) 0(x).

x=0

The remaining quantity C is the constant

C = E w(x) [0(x)]
2

.

xO

2.2 Searchin the Least S uare Solution. We note that when m = 0,

the minimum value H
0

of H is simply

where

n
H
0
= E w(x) [f(x) - /72

x=0

7 - Ew(x) f(x)/Ew(x).

As for other m values, the minimum may be deduced from the quadratic
programming. Thus the least square solution for the Bernstein poly-

nomial may be obtained by computing H0, H1, H2,... for several con-

secutive values of m, and locating the value of m at which Hul is the

smallest. Since the criterion for minimization H is non-negative,

all computations shall stop whenever Hm = O. In other situations,

a tolerance difference between H
m and 11

m-1 might have to be set up

in order to end the approximation process.

3. NUMERICAL ILLUSTRATION

To illustrate the computaticnal algorithm described in the

previous section, three score frequency distributions based on

n = 10 test items are used. For Data Set 1, almost all frequencies

are concentrated at the upper end of the score range. Data Set 2

is slightly asymmetric and Data Set 3 has two modes, one near each

end of the score range. Details regarding these data sets are

presented in Table 1.

It appears from Table I that the goodness of fit via the
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Bernstein polynomial improve:, when the degree of the polynomial

increases. For unimodal distributions, the algorithm tends to put

all the weights at only a few terms which correspond to tiJme

TABLE 1

Observed and Fitted Frequency Distributions
for Three Data Seta

Test Score Data Set 1 Data Set 2 Data Set 3
Observed

0 0
1 0
2 0
3 0
4 1

5 1

6 3
7 5

8 8
9 15

10 47

Fitted Observed Fitted Observed Fitted

.00 0 .06 4 6.09

.00 0 .37 10 10.28

.01 1 1.26 1; 10.16

.07 3 3.07 2 8.68

.23 6 5.97 6 9.16

.69 10 9.66 10 12.64
1.82 13 13.28 20 17.49
4.42 16 15.47 25 20.22
9.93 15 14.88 15 17.89
20.96 11 11.00 10 10.89
41.91 5 4.97 4 3.50

Degree of the Bernstetn
polynomial: 10

Minimum H
m

: .0106

The positive z constants:

z1011.0000

10 24

.0001 .0052

z7 = 9.8911

z
8
= 1.1088

z4 = 6,2830

z5 = 1.3349

z17 = 14.4010

z18
3.9830

consecutive z
i
values. On the other hand, for a bimodal distribu-

tion such as Data Set 3, the algorithm puts the total weight on

two blocks, each being formed by some conpscuove zi values.
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4. PROJECTION OF DECISION RELIABILITY

Consider ntm two equivalent tests X and Y, each with n items.

If the test score distributions are binomial, then the bivariate

density is given as

n n lf(x,y) ( )(,) f e (1
-
02n(x+y)

x y 0 p(8) do.

Let the density p be approximated from the data collected with one
test as

Bm(') = E zk k(m) ek (1 - 8)m-
k

k=0

Then f(x,y) will be given by the expression

fli(x9Y) (11)(n) E z () J(2n + m; x + y + k)x y k.0 k k

where the function J is defined as previously in Section 2. The

expressions for fB(x) and fB(x,y) may now be lsed to project prac-

tically all agreement indices for decisions in mastery testing.

Let the examinees now be classified in k categories Ai defined by

A
i
= {x;c

i-1
x < c1} where c

0
= 0 and c

k
= n + 1. For binary

classifications k = 2. In this case c
1
is usually referred to as

the cutoff (mastery) score. The raw agreement index

m
P= E P [(X,Y) E Ai x Ai]

1=1

can be computed by the formula

k
P= E C E f

B
(x,y)).c

1=1 i-1<x,y<ci

On the other hand, the corrected-for-chance kappa index is given as

K m (P - Pc)/(1 - Pc) where

P=E[k E f
B
(x)]

2
.

1=1 1-1<x<c
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4.1 Numerical Example. Consider the case where n = 5, w = 4 and

= 1.0, z1 = 1.5, z2 = 2.0, z3 = 0 and z4 = .5. The Bernstein

polynomial generates the marginal frequency density of .20040,

.21230, .20040, .16865, .12698 and .09127 at the test scores of

0, 1, 2, 3, 4,and 5. For the binary classifications with cutoff

score 4, the raw agreement index is .8197 and the kappa index is

.4716.

5. PROJECTION OF TEST SCORE DISTRIBUTIONS
FOR LENGTHENED TESTS

There are situations in which a test needs to be lengthened in

order to accomodate new conditions and data are available for the

short version of the test. If the binomial model holds, then it is

possible to project the test score distribution for a lengthened

test, assuming that the ability distribution of the examinees re-

mains unchanged. From the data for the short form, it may be possi-

ble to approximate the true ability distribution via the Bernstein

polynomial

B (e) = E z (
m
)e
k

(1 - e)m-
k

m
k=0

k k

For a lengthened test consisting of I. items, the projected density

function for the test score is given as

1
f(x) = (x) fo e

x
(1 e)2. -x p(e) de

,, m
= t, E Zk(k) J. + m, x + k)

k=0

5. 1 Numerical Example. Consider the case where the fitting via a

4th degree Bernstein polynomial (m = 4) yields the constants

z0 = 1.0,
1
= 1.5, z

2
= 2.0, z

3
= 0 and z

4
= .5. For a test with

= 10 items, the projected density is .10406, .11372, .11888,

.11905, .11422, .10489, .09207. .07726, .06244 and ,05012 at the

test scores of O. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

214
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ADEQUACY OF ASYMPTOTIC NORMAL THEORY IN ESTIMATING RELIABILITY
FOR MASTERY TESTS BASED ON THE BETA-BINOMIAL MODEL

Huynh Huynh

University of South Carolina

ABSTRACT

Simulated data based on five test score distributions indicate

that a slight modification of the asymptotic normal theory for the

estimation of the p and kappa indices in mastery testing will pro-

vide results which are in close agreement with those based on small

samples. The modification is achieved through the multiplication

of the asymptotic standard errors of estimate by the constant

1+m
3/4

where m is the sample size.

1. INTRODUCTION

A primary purpose of mastery testing is to classify examinees

in several achievement (or ability) categories. Typically, there

are two such categories, mastery and nonmastery. The reliability

of mastery tests is often viewed as the consistency of the various

classifications across two test administrations; this consistency

may be quantified via the raw agreement index (p) or the kappa

This paper has been distributed separately as RM 80-2, July, 1980.
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index (K). The raw agreement index is simply the combined pro-

portion of examinees classified consistently as masters or non-

masters (if there are only two categories) on the two test ad-

ministrations. The kappa index, on the other hand, expresses the

extent to which the test scores improve the consistency of de-

cisions beyond what would be expected by chance. Details regard-

ing the nature and use of these indices may be found in

Swaminathan, Hambleton, and Algina (1974), Huynh (1976, 1978a),

and Subkoviak (1976, 1980).

Although p and K are defined in terms of repeated testing,

practical considerations often necessitate their estimation on the

basis of test data collected from a single test administration.

This may be done, for example, via the beta-binomial model (Huynh,

1976, 1979). The data reported in Subkoviak (1978), and by Huynh

and Saunders (in press) tend to indicate that the beta-binomial

model yields reasonably accurate estimates for p and K in situa-

tions involving educational tests such as the Scholastic Aptitude

Test and the Comprehensive Tests of Basic Skills.

The beta-binomial model also provides a convenient way to

study the asymptotic sampling characteristics of the et.imates.

Let p and K denote the (moment or maximum likelihood) estimates
_ -

for p and K, and let m be the number of examinees. Then m (p - p)

and V; (K - K) follow asymptotically two normal distributions, each

with a mean of zero and a standard deviation of G(p) or G(K)(Huynh,

1978b, 1979). The constants G(p) and G(K) depend only on the

number of items (n), the mean (p) and standard deviation (a) of the

test scores, and the cutoff score (c). They are not functions of

the sample size m, and may be computed via formulae, tables, or

computer program (Huynh, 1978b, 1979).

The asymptotic considerations just summarized indicate that

the estimates p and K follow approximately normal distributions

with means of zero and standard deviations of o(p) = G(p)/iii and

o(K) = C(K)/A when the sample size m is sufficiently large.
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The extent to which these "asymptotic" standard errors reveal

adequately the corresponding values in small samples appears to be

unknown. Further, if s.(p) and s.(K) represent the asymptotic

standard errors computed from the sample data, asymptotic theory

holda that the sampling distributions of the two ratios, z(p) =

(p p)/s.(p) and z(K) = (K - K)/s.(K), are approximately normal

distributions with zero means and unit variances. The degree with

which this asymptotic normality is true for small samples has yet

to be investigated.

The purpose of this paper is threefold. It will first assess

the adequacy of using the asymptotic standard errors to approximate

the actual values encountered in small samples. Then, it will look

at the degree to which asymptotic normal distributions can be used

to describe the actual sampling distributions of the ratios z(p)

and z(K) when small samples are used. Finally, the paper also

suggests a slight adjustment to the results of the asymptotic

theory so that they will resemble more closely the results associ-

ated with small or moderate samples.

2. PROCEDURES

Let a
m
(p), and a

m
(K) be the actual standard errors associate

with a sample of size m. The closeness of the asymptotic approxi-

mations to these actual standard errors, when small samples are

employed, may be assessed by computing the relative errors of

approximation: c(p) = Ea
m
(p) - 0.(prila

m (p) and c(K) =. . .

(a
m(K) - a.(03/am

(K), respectively. Approximations are said to
. .

be good when the ratios, c(p) and c(K), are close to zero. In

most practical situations, a ratio falling between ±5% should pro-

bably be considered as evidence of acceptable approximation.

(

As stated in the introduction, the asymptotic standard errors.

a.(p) and aC(K)I may be computed for a given test score distribu-

tion. Since no simple formulae appeared available for the compu-

tation of the small sample standard errors a
m
(p) and a

m
(K), com-

puter simulation with 5000 replications was used in order to
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estimate their values as well as the relative errors of approxi-

mation e(p) and e(K).

Computer simulation with 5000 replications was also used to

assess the adequacy of using the unit normal distribution to de-
.

scribe the sampling distributions of the ratios z(p) and z(K).

The proportions of the simulated z-ratios which fell within

selected (two-sided) critical values were computed and compared

with the corresponding values expected from a normal distribu-

tion. The extent to which the proportions from the computer

simulated distributions resembled the corresponding normal dis-

tribution probabilities was used to assess the adequacy of the

asymptotic normal distribution. For this study, (two-sided)

critical values were selected so that the central portion of the

unit normal distribution was covered corresponding to probabilities

of 80%, 90%, 95%, and 99%.

Both the moment and maximum likelihood (ML) estimates were

used in this study. Moment estimates exist when the sample reli-

ability index, KR21, is positive. When this was not the case, it

was then assumed (as in Wilcox, 1977) that the beta-binomial model

degenerated to a binomial distribution with an estimated success

probability of A = ;:/n where x is the test mean. Under these con-

ditions, the estimate for K was taken as zero, and that for p was

computed via the expression p = p
o

2
+ (1 - p

o
)
2
where

po = E (n )X
x
(1-X)

n-x

x=o

In addition, following the intuitive reasoning that degenerate

cases only represent extreme situations, both the z(p) and z(K)

ratios were taken as extremely large whenever the degenerate case

occurred.

Although the moment estimates are considerably easier to com-

pute than the corresponding MI, estimates, ML estimates often have

been considered better than the moment estimates. (The asymptotic

sampling distributions of the moment and ML estimates are the same
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however.) Because of this, the comparisons previously described

for the moment estimates were also made for ML estimates. The ML

estimates were obtained via a Newton- Raphson iteration scheme de-

scribed elsewhere (Huynh, 1977). In the rare instances where the

ML iteration did not converge, the moment estimates were used.)

The data base for this study consisted of five beta-binomial

distributions. Four tests consisting of n = 5, 10, 15, and 20

items each were assembled by random selection of items from the

Comprehensive Tests of Basic Skills, Form S, Level 1, which had

been used in the South Carolina 1978 Statewide Testing Program.

The actual frequency distribution for each of these tests was

altered slightly so that the resulting distribution would conform

almost exactly to a (marginal) beta-binomial distribution.

Another beta-binomial distribution, with a = 8.970 and B = 1.994,

was patterned after the one used in the Wilcox (1977) study.

Details regarding these distributions and the selected cutoff

scores c may be found in Table 1. For each case listed in this

table, five thousand replications were simulated to estimate

various standard errors and sampling distributions. The sample

size m was selected to be 25, 50, 100, 200, and 400.

TABLE 1

Descriptions of the Five Tests used in the Simulation

Case Source n Mean SD a B KR21 c
1 CTBS 5 3.7066 1.5445 1.2512 0.4367 .7476 3

2 CTBS 10 7.4702 2.9435 1.1285 0.3822 .8688 6

3 Wilcox 10 8.1814 1.6147 8.9703 1.9940 .4770 8

4 CTBS 15 8.8630 3.3588 3.3273 2.3039 .7271 9

5 CTBS 20 11.1811 5.1115 1.9115 1.5077 .8540 12

Preliminary simulations indicated that the asymptot*c stan-

dard errors tended to underestimate the smaller sample standard

errors, and that an adjustment via the multiplicative constant,

h = 1 + 1/m
3/4

, would substantially improve the adequacy of the

221 ()./
4. I I)



HUYNH

results deduced from the asymptotic theory. Hence, adjusted

asymptotic standard errors of the form o = o (1 + 1/m
3/4

) and

adjusted z ratios of the type z = z/(1 + 1/P4) were also in-

corporated in the study.

3. RESULTS

Table 2 reports the relative errors of approximation, e(p)

and c(K), for the asymptotic standard errors of the moment and ML

estimates. Values associated with the adjusted asymptotic stan-

dard errors are enclosed within parentheses. The table reveals

the following points. (a) The unadjusted asymptotic standard

errors for both p and K are slightly closer to the finite-sample

standard errors of the ML estimates than to those associated with

the moment estimates. This result does not appear unexpected:

Strictly speaking, asymptotic theory deals mainly with ML esti-

mates which are asymptctically efficient (i.e., unbiased with

minimum variance). The asymptotic results, however, may be

applied to the less efficient moment estimates because these are

asymptotically equivalent to the ML estimates. Hence, the

asymptotic standard error should more accurately depict the

sampling variability of the ML than those of the moment cltimates.

However, the difference in accuracy is minimal when sample sizes

as small as 25 or 50 are used. (b) The unadjusted asymptotic

standard errors underrepresent the corresponding finite-sample

standard errors; the extent of underrepresentation is less for

c.(p) than for oco(K). As seen in the last four rows of Table 2,

the absolute relative errors of approximation e(p) average 8.3,

4.9, 3.3, 2.9, and 3.0 percent for sample sizes of 25, 55, 100,

200, and 400, respectively. For K, these percentages are 13.8,

7.6, 4.6, 4.0, and 2.9%. (c) As mentioned in the

the multiplicative adjustment via the constant 1 +

duced adjusted asymptotic standard errors o. which

last section,

1/m
3/4

pro-

were substan-

tially closer to their finite-sample values om. For these
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TABLE 2

Relative approximation errors associated with the asymptotic
standard errors and with the adjusted asymptotic standard errors

Case Index Estimate Relative approximation error (in percent)
at m =

25 50 100 200 400
1 p Moment 10.8( 2.8) 6.2( 1.2) 1.9(-1.2) 1.9( 0.0) 1.4( 0.3)

ML 8.2( 0.0) 3.6(-1.6) 0.3( -2.9) 0.3(-1.6) -.2(-1.3)

K Moment 13.1( 5.3) 7.9( 3.0) 2.3(-0.8) 2.6( 0.7) 1.9( 0.8)
ML 11.8( 3.9) 6.1( 1.1) 0.9( -2.2) 1.1( -0.8) 0.3(-C.8)

2 p Moment 7.8( -0.4) 5.7( 0.7) 5.7( 2.7) 5.9( 4.1) 5.9( 4.8)
ML 4.4(-4.1) 1.5(-3.8) 1.3(-1.9) 0.3( -1.6) 0.2(-0.9)

K Moment 20.4(13.3) 10.4( 5.6) 6.2( 3.2) 4.7( 2.9) 3.6( 2.5)
ML 17.8(10.4) 7.6( 2.7) 3.4( 0.3) 1.4( -0.5) 0.0(-1.1)

3 p Moment 6.0(-2.4) 4.0( 1.1) 3.2( 0.1) 2.9( 1.1) 2.7( 1.6)
ML 7.0(-1.3) 3.7(-1.4) 1.8( -1.2) 1.0(-0.9) 0.3(-0.8)

K Moment 6.7(-1.7) 6.8( 1.8) 5.8( 2.8) 4.8( 3.0) 3.7( 2.7)
ML 6.0(-2.4) 5.7( 0.6) 4.3( 1.3) 2.5( 0.6) 1.2( 0.1)

4 p Moment 8.8( 0.0) 4.3(-0.8) 2.5(-0.6) 2.8( 1.0) 2.4( 1.3)
ML 9.5( 1.4) 4.2(-0.9) 2.0( -1.1) 2.1( 0.2) 1.6( 0.5)

K Moment 14.9( 7.2) 6.3( 1.3) 4.3( 1.3) 3.6( 1.8) 2.6( 1.5)
ML 15.7( 8.2) 6.2( 1.2) 4.0( 1.0) 3.1( 1.2) 1.9( 0.8)

5 p Moment 7.9(-0.3) 4.3(-0.8) 3.2( 0.1) 3.7( 1.9) 2.4( 1.3)
ML 7.1(-1.3) 2.7(-2.5) 1.5(-1.7) 1.5( -0.4) 0.1(-1.0)

K Moment 13.7( 6.0) 6.6( 1.6) 4.6( 1.6) 4.4( 2.6) 2.8( 1.7)
ML 13.3( 5.6) 5.1( 0.0) 2.9(-0.1) 2.2( 0.3) 0.4(-0.7)

Average of absolute error

p Moment 8.3( 1.3) 4.9( 0.9) 3.3( 0.9) 2.9( 1.6) 3.0( 1.9)
ML 7.2( 1.6) 3.1( 2.0) 1.4( 1.8) 1.0( 0.9) 0.5( 0.9)

K Moment 13.8( 6.7) 7.6( 2.7) 4.6( 1.9) 4.0( 2.2) 2.9( 1.8)
ML 12.9( 6.1) 6.1( 1.1) 3.1( 1.0) 2.1( 0.7) 0.8( 0.7)

a
Values in parentheses represent relative errors of approximation when
the adjustment h is used.

I[;
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adjusted asymptotic standard errors, the absolute relative errors

of approximation of p average 1.3, 0.9, 0.9, 1.6 and 1.9 percent

for m = 25, 50, 100, 200, .nd 400, respectively. As for K, these

average absolute relative errors stand at 6.7, 2.7, 1.9, 2.2, and

1.8%. (d) As expected, the asymptotic standard errors resemble

more closely those estimated for finite samples as the sample size

m becomes larger. Sampling errors associated with the simulation

probably account for the erratic variation behavior of the esti-

mated finite-sample standard errors found at a few places in Table

2.

Table 3 reports the empirical percentages of simulated z and

z values which fall around zero with a nominal normal probability

of 80%, 90%, 95%, and 992 (The results are reported only for the

moment estimates, which differ only slightly from those associated

with the ML estimates.) Two major points may be inferred from the

reported data. (a) The use of unadjusted asymptotic standard

errors produces z ratios which show less concentration around 0

than that predicted from a unit normal distribution. This is con-

sistent with the results previously reported regarding the under-

approxim-Ation associated with the unadjusted asymptotic standard

errors. This under approximation produces z ratios with a stan-

dard deviation slightly larger than one; hence the corresponding

distribution for these z ratios would show less probability around

the central value of zero than that of a unit normal distribution.

(b) Adjustment via the factor 1 + 1/m
3/4

results in adjusted z

ratios which cluster around zero with (empirical) probabilities

very close to the nominal values predicted from the asymptotic

normal theory. The degree of similarity between the empirical

and nominal probabilities is quite adequate even with samples of

size m = 25. The empirical and nominal probabilities are, within

sampling error, nearly identical when the sample size is larger,

say when m is 50 or higher.
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TABLE 3

Empirical percentages of unadjusted (and adjusted) z(p) values
which fall around zero with selected nominal probabilities

Case
1

2

3

4

5

Nom-
inal
Prob.

(%)

Empirical percentage at m

25 50 100 200 400

80 75.1(79.6) 77.0(79.4) 79.1(80.1) 78.8(79.7) 78.9(79.4)
90 86.4(89.5) 87.0(88.8) 88.8(89.9) 89.2(89.8) 89.3(89.8)
95 92.0(94.0) 92.9(94.6) 94.7(95.3) 94.3(94.8) 95.0(95.3)
99 97.4(98.1) 98.1(98.7) 98.8(99.0) 98.7(98.9) 78.9(99.0)

80 74.7(78.6) 75.9(78.7) 76.3(78.0) 77.2(78.0) 77.0(77.5)
90 85.4(88.5) 86.6(88.5) 87.2(88.6) 87.7(88.4) 87.8(88.3)
95 91.3(93.1) 92.2(93.4) 92.9(93.6) 93.2(93.7) 93.8(94.1)
99 96.2(97.3) 97.7(98.0) 98.0(98.2) 98.2(98.4) 98.3(98.3)

80 75.7(79.8) 78.1(80.6) 79.2(80.6) 78.8(79.6) 78.7(79.3)
90 85.4(87.6) 89.0(90.6) 89.4(90.6) 89.2(89.7) 88.7(89.2)
95 89.7(91.0) 93.5(94.7) 94.5(95.3) 94.6(95.0) 94.4(94.6)
99 93.8(94.5) 97.8(98.2) 98.5(98.8) 98.7(98.8) 98.7(98.8)

80 77.4(81.3) 78.5(81.1)118:6-(16:0) 78.6(79.6) 79.3(79.9)
90 87.9(90.7) 8Er:5(16.2) 89.2(90.0) 88.9(89.5) 89.1(89.5)

93.3(954) 93.8(95.4) 94.1(94.9) *4.4(94.8) 94.4(94.6)
\p9 98./00'4.8) 98.7(99.0) 98.5(98.8) 98:5(98.7) 98.7(98.7)

i3O 78.0(80.1) 78.3(80.0) 78.7(79:6) 29.1(79.7)y71c8(79.9)
90-- 86.6(89.7) 88.2(89.9) 88.6(89.6) 88.5(89.1) 89'43(89.6)
95 92.3(94.7) 93.7(94.7) 94.2(95.0) 93.7(94.3) 94.5(94.7)
99 98.0(98.7) 98.3(98.8) 98.7(89.9) 98.5(98.6) 98.7(98.8)

4. SUMMARY AND CONCLUSION

The study indicates that the asymptotic normal theory for the

estimation of p and K via the estimates p and K produces asymptotic

standard errors which are slightly smaller than the actual standard

errors associated with small samples. As a result, the sampling

distribution of the z type ratios has fewer cases around zero than

is predicted by a normal distribution. However, multiplication of

the asymptotic standard errors by the constant 1 + 1/m
3/4

results

in adjusted asymptotic standard errors which show close agreement

with the actual finite-sample standard errors, even with samples

as small as 25 cases. In addition, the adjustment produces z
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ratios which follow very closely a normal distribution, at least

with respect to the combined tail probabilities. This conclusion

also holds for samples acc small as 25 cases.

All in all, it appears that, with the multiplicative adjust-

ment factor of 1 + 1/m
3/4

imposed on the asymptotic standard

errors, the asymptotic normal theory for the estimation of de-

cision reliability in mastery testing (Huynh, 1978b, 1979) can be

used safely with samples with as few as 25 cases. This con-

clusion, of course, is restricted to situations similar to these

considered here.
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ABSTRACT

In most reliability studies, the precision of a reliability

estimate varies inversely with the number of examinees (sample

size). Thus, to achieve a given level of accuracy, some minimum

sample size is required. An approximation for this minimum size

may be made if some reasonable assumptions regarding the mean and

standard deviation of the test score distribution can be made.

To facilitate the computations, tables are developed based on the

Comprehensive Tests of Basic Skills. The tables may be used for

tests ranging in length from five to thirty items, with percent

cutoff scores of 60%, 70%, or 80%, and with examinee populations

for which the test difficulty can be described as low, moderate,

or high, and the test variability as low or moderate. The tables

also reveal that for a given degree of accuracy, an estimate of

kappa would require a considerably greater number of examinees

than would an estimate of the raw agreement index.

This paper has been distributed separately as RM 80-3, March, 1980.
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1. INTRODUCTION

In many applications of educational and psychological testing,

an empirical demonstration of the reliability of the measuring in-

strument is desirable. Such demonstration is most meaningful when

the estimate for the reliability has been obtained with a reason-

able degree of accuracy. That is the standard error of estimate

must be within some acceptable limit. In most instances, the

standard error is a decreasing function of the number of examinees

(sample size) to be included in the reliability study. Thus, some

minimum sample size is needed to achieve a given level of precision.

The purpose of this paper is to illustrate how this sample size can

be assessed in estimating the reliability of mastery tests.

The paper consists of three major parts. The first part pre-

sents an overview of the procedures for estimating two reliability

indices for mastery tests by using data collected from one test ad-

ministration. The use of the estimation process to determine the

minimum sample size is illustrated in the second part. Finally, a

set of tables is developed to facilitate the determination of the

minimum sample size in reliability studies for mastery tests.

2. OVERVIEW OF SINGLE-ADMINISTRATION
ESTIMATES FOR RELIABILITY

Mastery tests are commonly used to classify examinees into two

achievement categories, usually referred to as mastery and non-

mastery. The reliability of such tests is often viewed as the con-

t,ncy of mastery-nonmastery decisions. It may be quantified vie

the raw agreement index (p) or the kappa index (K). The p index is

simply the combined proportion of examinees classified consistently

as masters or nonmasters by two repeated testings using the same

form or two equivalent forms of a mastery test. The kappa index,

on the other hand, takes into account the level of decision con-

sistency which would result from random category assignment. It

expresses the extent to which the test scores improve the con-

sistency of decisions beyond the chance level.

2302,21
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Though both p and K are defined in terms of repeated testings,

there are many practical situations in which they may be estimated

from the scores collected from a single test administration (Huynh,

1976). The estimation process assumes that the test scores con-

form to a beta-binomial (negative hypergeometric) model, and may be

carried out via formulae, tables, and a computer program reported

elsewhere (Huynh, 1978; 1979). The data reported by Subkoviak

(1978) and by Huynh and Saunders (1979) tend to indicate that the

beta-binomial model yields reasonably accurate estimates for p and

K in situations involvin; educational tests such as the Scholastic

Aptitude Test and the Comprehensive Test of Basic Skills.

The beta - binomial model also provides asymptotic (large sample)

standard errors for the estimates. Simulation studies indicate that

the asymptotic standard errors tend to underestimate the actual

standard errors when the sample size is small (Huynh, 1980). The

degree of underestimation is not substantial when the sample has

sixty or more examinees. Since the beta-binomial model will be

used throughout the remaining part of this paper, a minimum sample

size of sixty examinees will be assumed to hold uniformly for all

cases under consideration.

3. ILLUSTRATIONS FOR SAMPLE SIZE
DETERMINATION

The standard error (s.e.) of estimates for p and for K are

functions of sample size m. The quantity G s.e. x 17 is

asymptotically (i.e., in large samples) a constant, however. This

constant depends only on the number of items (n), the mean (u)

and standard deviation (a) of the test scores, and the cutoff score

(c). Given the availability of these parameters, the value of (3

may be determined via the tables or the computer program presented

elsewhere (Huynh, 1978). Once G is determined, a minimum sample

size m can be calculated which will restrict the standard error of

estimate to whatever tolerable range is required.

Suppose, for example, that an estimate of K is needed for a
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short (n = 6 items)test to be used with a particular population of

students. Passing or mastery on the test is to be granted if an

examinee attains a score of 5 or 6. Further, suppose that we want

the standard error of this estimate to be smaller than 10% of K,

that is, s.e. (K) < .10K.

What sample size would be needed to obtain the specified

degree of accuracy in the estimate? To answer this question using

the above mentioned Huynh procedure, a preliminary knowledge of

the test mean and standard deviation is needed. Suppose past data

suggest that the students are generally well-prepared on the con-

tent of the test in question and can be expected to be fairly

homogeneous in achievement. We might suppose that in the population

the mean will be 5.0 and the standard deviation will be 1.2. Using

these values, and the cutoff score of 5, a value of G can be read

from the tables (or computed): G(K) = .7390. If the population

mean and standard deviation are as given, then, assuming the beta-

binomial model, the population value of KiS .3778. These results

are then used to estimate the sample size needed to bring the

standard error of estimate with the desired limits (i.e. less than

.10K).

Since the standard error of estimate is approximately G/67,

the standard error must be such that

G(K) < .10K
AT

or, equivalently,

m > [G(K)/.10KJ 2
.

For this example, then,

m > 1.7390/(.10)(.3778)1
2
= 382.62.

Thus, to have no more than 10% relative error requires that at

lease 383 examinees be tested to estimate K.

A similar computation can be made for s.e. (p) < .10p when the

above assumed population values hold. Thus, using the tables,
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and

G(p) = .3210,

p = .7532,

m > [G(P)/.1002 = 18.16.

Because of the previously mentioned problems of underestimation in

small samples, a sample size of at least sixty is recommended re-

gardless of the above computation.

It might be disheartening to note that a much larger sample

size is needed to keep the standard error of the K estimate within

the desired limits than is required when an estimate of p is used.

However, the standard error for K is much larger than that of p

(Huynh, 1978). Thus, for the same relative size of errors of es-

timation, larger samples are needed to estimate K than to estimate

p. It could be argued that the same degree of accuracy of esti-

mation is not required. If so, then a less accurate estimate of K

would allow a smaller sample size.

The above illustration presumes that the mean and standard de-

viation of the test scores can be projected prior to the real test

administration. In a number of instances involving the use of

standardized tests fora heterogeneous group of students, reasonable

assumptions may be made, which will yield projected values for both

p and a. For example, when an n-item multiple-choice is built to

maximize the discrimination among individual examinees, it is not

unreasonable to assume that the test mean is half way between the

expected chance score and the maximum score n, and that the stand-

ard deviation is about one-sixth of the test score range from 0

to n. (If there are A options per item, the expected chance score

is n/A.) In other words, it is not unreasonable to presume that

and

p = (n+n/A) /2

a = n/6.

For example, consider a test consisting of 10 four-option items.

Then A = 4, and the projected mean and standard deviation are
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p 6.25 and a = 1.66667. Presuming a cutoff score of c = 6, it

may be found that p = .6140, G(p) = .3661, K - .1118, and G(r) -

.8213. If a relative error of 5% is acceptable for p, then a

sample of at least C.3661/(.05x.6140)]2 = 143 students would be

needed. On the other hand, a relative error of 25% for kappa

would require [.8213/(.25x.1118)12= 864 students.

4. PRACTICAL CONSIDERATIONS IN SETTING SAMPLE
SIZE IN BASIC SKILLS TESTING

Some general formulae are given for expressing the relation-

ships among s.e., G, m, p, k, and the proportion of sampling error

desired in an estimate. These general expressions will then be

used in a series of simulations designed to explore their typical

numerical values for real tests. Tables are developed to help the

practitioner decide on the sample size needed to obtain estimates

of p and K for various degrees of precision.

General expressioas

Since G = s.e. X 417 is a constant for large samples, this ex-

pression forms the basis for the formulations in this section. In

the previous section .10 and .05 were used as examples of desired

degrees of precision for a sample estimate of p. In general, we

will call this quantity y, using y and y to distinguish precisions

desired for p and K, respectively. Thus, the general expressions

for minimum sample size are:

]2
m >

and

G(r)

y K

A further simplification is to let R(p) = [G(P)/02 and

R(K) = [G(p) /K]
2

. The above expressions for minimum sample size,

m, become
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and

m > R(P)/(Y )
2

m > R(K)/(yK)2.

These expressions will allow minimum sample size to be determined

from knowledge of two quantities, R and y.

Determining typical values of R(p) and R(K)

In practical applications, the values R(p) and R(K) depend on

a test score distribution which is not yet available. So, as in the

previous section, conjectures must be made regarding the mean and

standard deviation of the test scare in order to project the minimum
sample size.

In this section, typical values for R(p) and R(K) will be re-

ported for practical testing situations involving the assessment of

basic skills. Several combination of test length, difficulty,

variability, and cutoff scores will be used. To arrive at the

values of R(p) and R(K) reported in Tables 1-'3, the following series

of steps was taken.

First, a series of subtests was developed, using items found

in the Comprehensive Test of Basic Skills (CTBS), Form S, Level 1.

The items composing each subtest were randomly selected from one of

five CTBS content areas, to reflect a variety of subjects and
skills. For each content area, subtests were constructed with 5,

10, 15, 20, 25, and 30 items, producing a total of 30 subtests.

Second, the administration of the subtests was simulated

using actual student responses. Data for the simulation came from

5,543 students, comprising a systematic sample (every tenth case)

of the third grade students tested using Level 1 of the CTBS by

the 1978 South Carolina Statewide Testing Program. From the

students' responses to each item in the CTBS, raw scores were gen-

erated for each student on all 30 subtests.

Third, values of the mean and standard deviation of raw scores
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on each test were obtained. District means and standard deviations

were calculated for each school district with 40 or more students

in the sample. For each of the 30 subtests, means and standard

deviations were plotted in a bivariate scatter diagram. The

scatter-plots were divided into areas representing different cate-

gories of test difficulty and variability. Then districts were

selected with means and standard deviations considered to be typical

of six categories of difficulty and variability. These six cate-

gories (tests of low, moderate, and high difficulty, with low and

moderate variability) were chosen to represent types of test score

distributions typically encountered in mastery testing.

Fourth, the typical values obtained in the previous step were

used to determine R(p) and R(K). For each of the 30 subtests, the

computer program described elsewhere (Huynh, 1978) was used to

obtain estimates of G(p), p, G(K), and K when the cutoff scores

were equivalent to 60%, 70%, and 80%. These data were used to

calculate R(p) and R(K) in each case.

Finally, the values of R(p) and R(K) obtained above were

averaged over the five CTBS content areas and the resulting values

were compiled in tabular form. Tables 1, 2, and 3 provide values

of R(p) and R(K) for percent cutoff scores of 60%, 70%, and 80%,

respectively.

The data needed to enter the tables are: (1) test length

(n), (2) an idea of test difficulty (high, moderate, or low), (3)

test variability (low or moderate), and (4) percentage cutoff

:wore (60%, 70%, or 80%). The minimum sample size needed -'ss simply

R/y
2

, that is, the value of R obtained from the tables divided by

the square of the acceptable proportion of sampling error in the

estimate.

Numerical example

Suppose a study is planned to assess the reliability of a

twenty-item test (n = 20) using the kappa index when a cutoff score

of 14 (c = 70%) is employed. The students for whom the test is
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TABLE 1

Values of R for p and K for Six Categories of
Tests at the Percent Cutoff Score of 60%

Test Category
(diff) (var) 5 10

Number of Items
15 20 25 30

High Low (p) 0.219 0.075 0.050 0.031 0.023 0.018
(K) 5.349 1.623 0.666 0.391 0.307 0.209

High Mod (p) 0.164 0.061 0.036 0.025 0.018 0.014
(K) 2.589 0.908 0.327 0.280 0.209 0.139

Mod Low (p) 0.244 0.085 0.056 0.032 0.025 0.020
(K) 5.809 1.485 0.613 0.367 0.269 0.200

Mod Mod (p) 0.148 0.068 0.036 0.027 0.021 0.015
(K) 2.215 0.838 0.312 0.266 0.198 0.126

Low Low (p) 0.199 0.095 0.044 0.031 0.025 0.020
(K) 5.502 1.345 0.560 0.365 0.247 0.186

Low Mod (p) 0.142 0.068 0.032 0.024 0.020 0.016
(K) 2.371 0.770 0.298 0.249 0.176 0.128

intended are known to be a homogeneous group of relatively high

ability. Thus, it might be expe-ted that the test would be of low

difficulty (i.e.,easy), with low variability. Let us say that a

fairly precise estimate of K is desired, so yK is set at .05.

Entering Table 2, in the row corresponding to low difficulty and

low variability, it if found that R(K) for n 20 items is .362.

The minimum sample size needed to estimate kappa with 5% allowable

error is then computed as m R(K)/yK2 .3621(.05)2 144.8.

Thus, a sample of at least 145 students is necessary to achieve the

desired degree of precision. If reliability is to be determined

via the raw agreement index p, a similar procedure is followed

using R(p) and y . Again, at least 60 students should be used in

the sample, e--a if it is found that m < 60.
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TABLE 2

Values of R for p and K for Six Categories of
Tests at the Percent Cutoff Score of 70%

Test Category
(diff) (var) 5

Number of Items
10 15 20 25 30

High Low (p) 0.219 0.075 0.046 0.029 0.022 0.017
(K) 5.349 1.623 0.776 0.455 0.410 0.272

High Mod (p: 0.164 0.061 0.033 0.023 0.017 0.013
(K) 2.589 0.908 0.360 0.324 0.276 0.178

Mod JJW (p) 0.244 0.085 0.053 0.031 0.023 0.019
(K) 5.809 1.485 0.646 0.396 0.322 0.242

Mod Mod (p) 0.148 0.068 0.035 0.026 0.019 0.014
(K) 2.215 0.838 0.321 0.289 0.237 0.149

Low Low (p) 0.199 0.095 0.050 0.031 0.024 0.019
(K) 5.502 1.345 0.512 0.362 0.265 0.203

Low Mod (p) 0.142 0.068 0.036 0.023 0.019 0.015
(K) 2.371 0.770 0.280 0.254 0.190 0.137

Some observations on the tabled values

In every case R(K) > R(p). This fact implies that the sample

size necessary to estimate kappa will be larger than that needed to

estimate p, for any fixed degree of precision, y. As noted previous-

ly, practical limitations may require that larger proportions of

error be tolerated when estimating kappa than when estimating p.

R-values for the case of low variability are larger than those

for moderate variability. If there is doubt about the expected

degree of variability, the value of R for the low variability case

would produce the more conservative estimate of m.

R decreases as the number of test items increases. The re-

lationship between R and n is not linear, however. Hence, linear

interpolation would not be appropriate for determining R for non-
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TABLE 3

Values of R and p and K for Six Categories of
Tests at the Percent Cutoff Score of 80%

Test Category
(diff) (var) 5 10

Number rf Items
15 20 25 30

High Low (p) 0.132 0.063 0.032 0.021 0.018 0.013
(K) 7.076 2.805 1.494 1.055 0.887 0.660

High Mod (p) 0.098 0.045 0.024 0.018 0.015 0.011
(K) 3.510 1.678 0.608 0.717 0.568 0.404

Mod Low (p) 0.174 0.064 0.038 0.025 0.020 0.015
(K) 6.831 2.283 1.087 0.812 0.640 0.558

Mod Mod (p) 0.113 0.047 0.026 0.021 0.017 0.012
(K) 2.633 1.337 0.484 0.571 0.458 0.311

Low Low (p) 0.189 0.060 0.044 0.029 0.022 0.017
(K) 5.849 1.906 0.652 0.611 0.471 0.417

Low Mod (p) 0.122 0.046 0.029 0.023 0.018 0.014
(K) 2.675 1.113 0.348 0.430 0.325 0.248

tabled values of n. The valloi of R listed for the largest tabled

n less than the actual number of items should yield a conservative

estimate for m. For example, suppose the test considered in the

numerical example above actually contained 22 items. The tabled

value of R corresponding to n = 25 would produce an underestimate

of m, and the resulting proportion of error in estimating kappa

would exceed 1K. The R-value for it - 20 would overestimate m, and

the observed proportion of error would then be less than yK.

The relationships between R and test difficulty or cutoff scores

are more complex. No simple trends can be observed in the tables.

In many testing situations, the cutoff score typically ranges from

60% to 80% correct. For cutoff scores falling between the values

in the tables, find R for both bracketing values and use the larger.

Again, consider the situation in the numerical example above.

239 At) 1")



SAUNDERS & HUYNH

Suppose the cutoff score was 13 (65% correct). From Tables 1 and

2, the values of R corresponding to c = 60% and 70% are .365 and

.362, respectively. The larger of these (corresponding to c = 60%)

should provide a reasonable value for R.

4. CONCLUSIONS

In this paper, an approximation method has been presented for

determining the minimum sample size necessary to achieve a speci-

fied degree of precision in estimating raw agreement (p) and kappa

(K) indices of reliability for mastery tests. ThA method uses the

quantity R which can be calculated for known test score distri-

butions. Tables of R have been constructed for test score dis-

tributions typically found in mastery testing, for a variety of

test lengths and cutoff scores. In addition, suggestions have been

made for obtaining reasonable estimates of R for situations not

directly covered by the tables.

Of course, precision is only one of the factors that must be

considered in any study. Feasibility, cost, and classroom manage-

ment considerations also play important roles. However, knowledge

of necessary sample sizes should facilitate and simplify the

planning of reliability studies. The tables presented here should

be particularly useful for tests involving the basic skills, and

perhaps other tests of similar construction.
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ABSTRACT

This paper describes an asymptotic inferential procedure "or

the estimates of the rlse positive and false negative error rates.

Formulae and tables are described for the computations of the stan-

dard errors. A simulation study indicates that the asymptotic

standard errors may be used even with samples of 25 cases as long

as the Kuder-Richardson Formula 21 reliability is reasonably large.

Otherwise, a large sample would be required.

1. INTRODUCTION

A primary purpose of mastery testing is to use test data in

order to classity an examinee in one of severs! achievement (or

ability) categories. Typically there are two such categories,

mastery and nonmastery. For example, let e be the true ability of

a person. Then true nonmastery status is defined by the condition

<
o

and true mastery by 0 > ©o,, e
o
being a given constant often

referred to as a criterion level. In the reality of testing,

This paper has been distributed separately as RM 79-6, July, 1979.
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however, decisions are normally made on the basis of the observed

test data. Let x be the test score and c an appropriately chosen

passing(or mastery) score. Then nonmastery status is declared if

x < c and mastery status is granted if x > c. A correct decision

on the basis of test data is made when 0 <
o
and x < c or when

0 > 0 and x > c. The other two situations represent errors in
o

classification: a false positive error is committed when 0 <

and x > c; a false negative error is encountered when 0 > 00 and

x < c.

The likelihood (or rate) of false positive and false negative

errors may be assessed via several schemes. For example, using the

binomial error model and the notion of an indifference zone, it is

possible to compute the maximum error rates in classification for

an individual (Wilcox, 1976). On the other hand, the error rates

for a group of examinees my be assessed if a reasonable form for

the (group) distribution of 0 is available. Such is the case of

the beta-binomial model (Keats & ...ord, 1962) explored by Huynh

(1976a, 1976b, 1977a, 1978) and Wilcox (1977) in several technical

problems regarding mastery testing.

The beta-binomial model requires that test items be exchange-

able, i.e., they can replace each other without changing he

distribution of test scores. Item exchangeability implies that the

items are equally difficult. This condition can be considered only

as approximately satisfied in most testing situations. However,

there are indications (Keats & Lord, 1962; Duncan, 1974) that

q0veral test score distributions fit into the beta-binomial model

adequately. There are more complex models (Lord, 1965, 1969) which

take into account variation in item difficulty. However, as far as

estimation of error rates is concerned, the data in Wilcox (1977)

seem to suggest that the more complex models do not increase sul-

stantially the accuracy of the estimates.

The purpose of this paper is to &scribe an ac-mptotic infer-

ential procedure for false positive and false negative error rates.

The beta-binomial model is used as a vehicle for computation.
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2. COMPUTATIONS FOR ERROR RATES

Let n be the number of test items randomly selected from an

item pool, 6 (true ability) be the true proportion of items in the

total item pool that would be answered correctly by an examinee,

and x be the examinee's observed test score. Then the conditional

density of x is given as

X = 0,1,...,n.

Let the density p of a be of the beta form with parameters a and 8,

i.e.,

6
a-1

(1-0)
8-1

p(e) = 0 < 6 < 1.B(a,B) '

Both a and S are positive constants. The joint density of (x,6) is

given as

(:) n+0-x-1g(x,6) 13(x7(T)- 0 (1-6)

With the criterion level 6
o

and passing score c, the false positive

error rate is given as

Fr = P(x > c,6 < 60)

Let

Then

1 (n) re( ea+x-1(i_e)n+B-x
-1d6.B(a,B) o

n(u,v;6
o
)

J6
tu-1(1-0v-idt.

0

n
F
p

=
B(a,8)

E () D(a+x, -x; 0
o
).

x=c

As for the likelihood F
n of a false negative error, it may be

noted that

F
n = P(x < c-1,6 > 6 )

o

1
c-1 1

. to\ r a+x-1
(1-6)

n4B-x-1
de.B(a.8) \x' )6

o

2"
f j
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Let E = 1-0, En = 1-00, y = n-x, and d = n-c+1. Then it may be

verified that

F =

y=d

1 fnl rEo ,B+y-1(i_on+a-y-ldE.
n B(a,B) `y1 Jo

From this it may be seen that Fn may be computed in exactly the

same way as F .

The computations of F can be carried out with some degree of

efficiency by noting that

D(u+1,v-1;00) = (-0101(1-00)v-1 + uD(u,v;00))/(v-1)

and that

D(u,v;00) = B(u,v) I(u,v;00).

In this formula, I(u,v;0) denotes the incomplete beta function as

tabulated in Pearson (1934) and implemented via the IBM subroutine

BDTR (1970) or the IMSL subroutine MDBETA (1977).

3. ASYMPTOTIC STATIS-TCAL INFERENCE FOR ESTIMATES

Maximum likelihood estimation for a and S has been considered

by several authors including Griffiths (1973). A fairly efficient

computer routine is described in Huynh (1977b). The data generated
ti

by Huynh indicate that the maximum likelihood estimates a and 8 and

the moment estimates a and B do not differ markedly from each other

when the number m of examinees is reasonably large. Hence, for the

numerical examples described in this paper, only a and 8 shall be

used. They are to be computed as follows. Let x and s be the mean

and standard deviation of the test score, and let

a
21

=
n-1

iL(2:1)2
J2

n I

ns

be the estimated KR21 reliability. Then the moment estimates are

a = (-1 4 1/a21)x

8 = -a + n/a
21

- n.
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The estimates are positive when 0 <
a21

< 1. (If the computed

value for a
21 is zero or negative, replace it by the smallest posi-

tive estimate of reliability which happens to be available.)

For reasons previously mentioned, general sampling properties

appropriate for the maximum likelihood estimates would be applicable

to a and 8. For example, Ai(a-a,0-0) follows asymptotically a

bivariate normal distribution with zero mean and covariance matrix

= (a
ij

) =
Pq

11-1 where

and

bll

b
12

=

b
22

=

E
x=o

n

)2

aaa I/f
(x)i

aaL/f(x),of (x)E

x=o

n
E

x=o

9a

21
2

/f(x).(22J0
3

Now let F = Z(a,8) be the function of (a,8) defining the
A A

false positive error rate. Let F = Z(a,8) be the estimate of F
A A

computed on the basis of (a,8). Then it may be deduced (Rao, 1973,

p. 386-387) that Ai(F
P

- F
P
) asymptotically follows a normal dis-

tribution with zero mean and with variance

9F 9F 9F aF
v2

p
= a 11(

)
2 + 2a

12
_

90
o22(90

It may then be said that the estimate F has an approximate normal

distribution with mean F and standard deviation (standard error)

of a (F
P
) = V

fp
/AT. An estimated standard error for F , namely

s (Fp), may be obtained by replacing (a,8) by the estimates (a,8)

in the above formula defining a
00
(F

p
).

The computations described above. also apply to the rate of

false negative error. Let Fn and Fn be the true and estimated

values for this error rate. Then 'G(Fn - F
n
) asymptotically follows

a normal distribution with zero mean and with variance

2

'722'30 '

aF
n 2

aF
n

aF
n

aF
ni2

Vfn on(aa) 2712 3a -r
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In addition, let p be the correlation between the estimated false

positive and false negative error rates. Then it may be noted that

p = cov(F
p
,F
n
)/V

fp
V
fn

where

aF aF aF
f.

ala aF aFD.F2. aF
nl

aF
cov(F .F ) = a

p n 11 as as 12 as as as ' a22 DO as

4. COMPUTATIONS FOR THE PARTIAL DERIVATIVES

The computation of Vfp, Vfa, and p requires the partial deriva-

tives of Z(a,O) with respect to a and O. These derivatives, in

turn, are based on the partial derivatives of D(a+x,n+e-x;00) and

B(a,O) with respect to a and O.

4.1. Partial Derivatives of B(a03)

With

B(a,O) = fa
1

t
a-1

(1-t)
8-1

dt

it may be deduced that

as -1

as Jo t
a-1

(1-t)B-1

and that

DB
=

(1 ta-10...00-1
DB )0

log t dt

log (1-t) dt.

Let T be the Euler psi function as defined and tabled in Abramowitz

and Stegun (1968, p. 258, Section 6.3 and Table 6.1). Then accord-

ing to Gradshteyn and Ryzhik (1965, p. 538, Section 4.253, Formula 1),

as
DB

= B(a,B,,w(a) - T(a+B))

and

DB

as
= B(a,B)(T(0) T(a+B)).

Formulae are also available in these texts which are useful in

computer programming the psi function. For the present paper, the

following steps have been adopted.

1. First the argument of 'V(.) is reduced to a value in the

half closed interval (1,2) by using the formula

4'(z+1) = 'V(z) + 1/z.
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2. If z = 1, then T(1) = -.5772156649.

3. For 1 < z < 1.75, the following series expansion is used

OD

T(l+z) = T(1) + E (-1)nE(n)z
n-1

n=2

where E(.) is the Riemann zeta function tabulated in

Abramowitz and Stegun (1968, p. 811, Table 23.3). If the

series is stopped at the term z
N-1

, the error cannot exceed
N

E(N)z
-1

< 1.21z
N-1

, (N > 4). For this paper, ten signifi-

cant decimals are adopted for T. The value for N is

-23.21647129/log z + 1 which cannot exceed 82.

. For 1.75 < z < 2, the four-point Lagrange interpolation is

used to compute T on the basis of tabled values of IF for

z = 1.745 (.005) 2.010. Let 11_1, T0, Ti, and T2 be four

consecutive tabled values of V with V
o

corresponding to z
o

.

Then for any p, 0 < p < 1,

T(z0 + .005p) = P(P-16 )(P-1LT (P2-1)2 (P-2)T

2
p(p+1)(p-2). 4. PO -1) w

2 11. 6 '2

(Abramowitz and Stegun, p. 879, Section 25.2.13). Accord-

ing to these authors (p. 270), this procedure yields ten

significant decimals for the psi function.

4.2. Partial Derivatives of D(a+x,n+B-x;801

With

0....on+8-x-D(a+x,n+8-x;30) = )0
o

t
a-1

ldt,

it may be deduced that

3D r
e
o

(1-0 n+$-x-1log t dt3a Jo

and

reo m+x-1
(1-On+a-x-llog (1-t) dt.)o

With x > c > 1 and 0 < 0 < 1, the integrating functions for both

partial derivatives are continuous with respect to t provided they
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are taxen as zero at t - O. Hence, the process of differentiation

under the integral sign is legitimate. Let

I

o
o , ,G(u,v;8 ) = ) t

u-1
kl-t)

v1
log t dt, u > 1, v > O.

Then

al)
aTt G(a+x,n+8-x;00).

To compute the partial derivative Wm let z = 1 - t in the

previous integral defining this derivative. It follows that

al) = (1 zn+0x-1
(1-z)

a+ x-flog
z dzas )1-0

o

= f
1

z
n+0-x-1

(1-z)
a x-

llog 2 dz - G(n+e-x,o+x;1-8 0)

From Section 4.1, it may then be deduced that

as
ars

= B(n+0-x,a+x)(T(n+0-x) - T(n+a+0)) - G(n+0-x,a+x;1-80).

The computation of G(u,v;00) is carried out as follows.

1. For i < u < 2 and 0 < v < 2, the 32-print Gaussian-Hermite

quadrature is used to integrate the function t
u-1

(1-t)
v-1

log t on the interval (0,00), then on the two interval:

(0,8 0/2) and (0
o
/2,0

o
). If the relative change between

the two resulting G integrals is less than a tolerance

error EPS, then the numerical quadrature *art s. Otherwise,

it will be carried out on the four subintervals (0,00/4),

(0
o
/4,0

o /2), (0 0/2.30 0/4), and (30o
/4,8

o
) and the result-

ing integral will be compared with the one obtained via

two subintervals. The orocess continues until the rela-

tive change between these integrals is less than EPS. The

tolerance error EPS is set at .00005 in this paper.

2. For other values of u and v, the following lemma is used

to reduce u and v to two values u' and v' such that

1 < u' < 2 and 0 <v' < 2.

Lemma. We have

G(u,v-1;00) + G(u+1,v;80) = G(u,v;80)

and
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uG(u,v+1;00) - vG(u+1,v;80) = H

where

H = 00(1 ((log 00-1)/(u+v))-vD(u,v;00)/(u+v).

Proof. The proof for the first formula is as follows.

t
G(u+1,v;00) = )0

eo

t
u
(1-0v-1log t dt

f0 °(-(1-0tu-1 + tu-1)(1-0v-ilog t dt

-r 0 tu-1(1-t)v.og
t dtJo

r 00 t0-10...
1log t dt

J

= -G(u,v+1;00) + G(u,v;00).

As for second formula, let us integrate in parts the

integral

Let

and

G(u,v+ipi
o
) =

00

t
u-1

(1-t)
v
log t dt.

Y = t
u-1

(1-0
v

dZ = log t dt.

Then

dY = ((u-1)tu-2(1-0vdt - vtu-1(1-0v-i)dt

and

Hence

Z = t log t - t.

G(u,v+10 0) = YZ1 ° - f
o
° ZdY

t=o

= 00(1-00)v(log 00 - 1)

- (u-l)foo
tu-1

(1-Ovlog t dt

0

+ vf ° tu(1-0v-1log t dt
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(e
+ (u-1))0

0
t
u-1

(1-t)vdt

0
-

- vf
o

o
t
u
(1-t

)v ldt.

Algebraic manipulations will yield

G(u,v+1;0) = -(u-1)G(u,v+1;0) + vG(u+1,v;00) + H

where H is defined in the lemma. The second formula of the

lemma is just proved.

The reduction of the range of u and/or v may now be

accomplished by using the following recurrence formulae:

G(u+1,v;0) = (u1G(u,v;00) - H)/(u + v)

and

G(u,v+1;0) = (vG(u,v;0) + H)/(u + v).

4.3. Partial Derivatives of Frialll

From the expression

n

FP B (a, B)
E (:)D(a+x,n+B-x:0

o
)

x=c

it follows that

3F In
--II= E (:)31:1(a+x,n+B-x;00)/aa - F 3B(a,B)/aa /B(a,B)Da

x=c

[

n

= E (:)G(a+x,...13-x030) /B(a,B) F (T(a) - T(n+B))
x=c P

and

3F n

--2- = E (:)(B(a+x,n+B-x) - G(n+B-x,a+x,0))/B(a,B)
3$

x=c

F (T(0 T(a+B))

The computations may be simplified by noting that

,

D(a+x+1,n+B -x -1;0) = (-00
a+x(1-00)n+ B-x-1

+ ( n+x ) D ( a+x , n+B-x;0))/(n+B-x-1)

and hence
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G(a+xl,n+0 -x -1;0) = (-00a(1 -00)n+0-x-flog Oo

+ D(a+x,n+0-x;00)

+ (a+x)G(a+x,n+0 -x;00))/(n+0-x -1).
Also,

G(n+$-x-1,a+x+1;00) =
(I)

: (1-00)
mi.x

log 0

- D(n+0-x-1,a+x+1;0)

+ (m+x)G(n+8-x,a+x;00))/(n+0-x-1).

4.4. Partial Derivatives of Fu(a,$)

From the e.:pression of Fn in Section 2, namely

1 (tFn(a,$) =
B(a,8) E (n v1)0

o

E

ftfy-1

(1-)
n+a-y-1

dt,
y=d

it follows that

Hence

and

Fn(a,)

DF
n

=

Y=

n
E

/B(a,$) - FniV(0) - T(m+0))

G(n+a-y,8+y;00))/8(a,0)

- Fn(' (a) - T(a+8)).

i717,0 E ()D(0+y,n+a-y;E0).
'" ' y=d

(n)GWY,n+a-Y;E0)
y

(n)(B(0+y,n+a-y) -

=
9$

DF
n
=

9a
y=d

5. NUMERICAL ILLUSTRATION

Suppose that on a five-item test, the number of students

having scores of 0, 1, 2, 3, 4, and 5 are 4, 14, 9, 17, 21, and 26

respectively. Altogether there are m = 91 students. It follows

that x = 3.264 and s = 1.562. The moment estimates for a and 0 areA A
A A

a = 1.611 and $ = .857. The estimated covariance luatrix of (a,$)
A A

is defined by the elements on = .18859, 012 = .08318, and

0
22

= .05035. Let 90 -A.80 and c = 4. The estimated error rates

are then F = .180 and F
n
= .031. The values of the partial
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derivatives evaluated at (mai) are DF
P
/am - .02281, DF

P
/as - .06926,

aF
n
/am . .01229, and aF

n
/DS = -.01464. Thus, the estimated standard

errors for F
P

and F
n

are sm(Fp) = .025 and s (F ) = .003 respective-

ly. The estimated correlation between F
P

and F
n

is p = .597. These

data may be of use in estimating other parameters. For example,

let y be the proportion of examinees classified correctly by the
- - -

test scores. Then an estimate for y is y = 1 - (F + F
n
) = .789

P
which is associated with an estimated standard error of s.(y) =

(82(Fp) + s:(in) + 2;8.6
p
)s.(i ))15 = ((.025)2 + (.003)2

I. n

+ 2x.597x.025x.00312 = .061.

6. TABLES FORFVF111-- V
fie

AND p

Tables are presented in Appendix A which facilitate the compu-

tations for the false positive and false n Ave error rates, their

standard errors of estimate, and their corre.ucion. As indicated

previously, this information may serve as the basis for the compu-

tation of statistics such as the proportion of correct decisions

and its standard error. All computations were carried out via the

Amdahl V-6 System with the double precision mode in use whenever

feasible.

Input to the tables are (i) number of test items n, (ii) cri-

terion level 0
o

, (iii) passing score c, (iv) test mean x, and

(v) the KR21 reliability a21. It may be noted that if a and S are

estimates of the parameters a and S other than the moment estimates,

then the entries for test mean and KR21 are simply na/(a + (3) and
A A

n/(n + a + S) respectively.

For each entry (n, 00, c, x, a21), five values may be read

out. They are Fp, Vfp, Fn, Vfn, and p.

The tables are constructed for n = 5(1)10 and a21 = .10(.10).90.

For each n, the test mean is chosen such that x/n = .10(.10).90.

The criterion level is set at 0
o
= .60, .70, and .80, and the pass-

ing score is one or two values approximately equal to or larger

than nO
o
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Numerical Example 1

Let n = 10, 0 = .6, and c = 6. For x = 5.0 and,a21 = .60,

the tables yield the values Fp = .1667, V
fp

= .1858, F
n
= .0504,

V
fn = .0548, and p = .2941. If the data are obtained from 100

examinees, then the estimated standard errors are s
co
(Fp) =

.1158/10 = .0186 and s.(Fo) = .0055. It may be deduced that the

proportion of correct decision is .7829 for which the standard

error is estimated as .0241.

It may be observed from these tables that the relationship of

each of the quantities F
p
, V

fp
, F

n'
V
fn

, and p with respect to

either x or a
21 is rather unpredictable. Hence interpolation for

nontabulated entries should be carried out with care since the

relationship is obviously not linear. For such a case it is

recommended that Lagrange interpolations with three or four points
be used whenever possible. Details regarding interpolations of

this type may be found in Abramowitz and Stegun (1968, Section 25.2).
The four-point Lagrange interpolation has been described in

Section 4.1.

Numerical Example 2

Let n = 10, 0 = .6, and c = 6, along with Ti = 4.0 and
a
21

= .22. Using th four-point Lagrange interpolation for tae

false positive error, we have 4' = .1784, To = .1883, Ti = 1886,

and T
2

= .1799. With p = (.22-.20)/.1 = .2, it may be found that

the interpolated false positive error is .1891.

7. FINITE-SAMPLE PERFORMANCE OF THE
ASYMPTOTIC STANDARD ERRORS

So far only an asymptotic treatment has been presented for

the estimates of the false positive and false negative errc. rates
and F

n
. An obvious question which needs to be answered is, atp

what minimum sample size m will the asymptotic standard errors
s (Fp ) = Vfp

/lc and s
=
(F
n
) = V

fn
/AT _epresent adequately the actual

standard errors? A theoretical consideration of this issue is

rather complex since it involver a joint examination of the spee.
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A .

at which W = Qa-a,0-0) converges to its asymptotiE bivariate

normal distribution and of the adequacy of representing the

functions F (a,E) and Fn(a,8) by their Taylor expansions based on

the first partial derivatives. Some work regarding the convergence

speed of univariate maximum likelihood estimates are summarized in

Kendall and Stuart (1967, Vol. 2, p. 46-48). An extension of this

work would be needed for any theoretical consideration of the

finite-sample behavior of the asymptotic errors.

For this report, RiM lations employing the IMSL random genera-
.

tor GGUB were used to assess the performance of s.(F ) and s
=
(F
n
).

An additional issue under study was the degree of bias of F and F
n

as estimates of the parameters F
p
and F. (It may be recalled that

both estimates are asymptotically unbiased.)

Five ieta- binomial distribution.s (summarized in Table 1) were

used in the simulation study. Four tests consisting of n = 5, 10,

15, and 20 items each were formed by random selection of item's .rom

the Comprehensive Tests of Basic Skills, Form S, Level 1, which had

been used in a large statewide testing program. The frequency dis-

tribution for each of these tests was then altered slightly so that

the resulting distribution would conform to almost exactly that of

a (marginal) beta-bilou'al distribution. Relevant information

regarding these distributions is listed in Table 1. The other

beta-binomial distribution, with a = 8.970 and fi = 1.994, is

similar to the one used in the Wilcox study (1977).

TABLE 1

Descriptions of the Five Test nate u-ed in the Simulation

Case Source n Mean SD a 0 a
21

eo

1 CTBS 5 3.7066 1.5445 1.2515 0.4367 .7476 .5 3

2 CTBS 10 7.4702 2.9435 1.1285 0.3822 .8688 .6 6

3 CTBS 15 8.8630 3.'1688 3.3273 2.3039 .7271 .8 12

4 CTBS 20 11.1811 5.1115 1.9115 1.5077 .8540 .6 12

5 Wilcox 10 8.1814 1.6147 8.9703 1.9940 .4770 .8 8
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The criterion levels 0
o were chosen to be .5, .6, and .8 and

the passing score c is nut at n60. The sample size m is set at 25,

50, 100, 200, 400, and 800.

For each situation listed in Table 1, two thousand r lications

were used to estimate the means of F and F
n, and their finite-P

sample standard errors of estimate s
m (F

p
) and s

m
(F
n
). The moment

estimates were used when a
21

was positive. For a
21 negative or

zero. the procedure used by Wilcox (1977, p. 295) was adopted. In
other words, for these situations, the beta-binomial is considered

to have degenerated to a binomial distribution (n,X) where A = x /n.

If A > 6
o, only false negative errors may be committed, for which

the likelihood is

c-1
frxxx(i_A)n-x
xl

x=o

When A < 6
o

, only false positive errors may occur with a rate of

n
F = E (

n
)),
x
(1-X)

n-x

x=c

The moment estimates receive more attention than the ML esLimates in

this discussion because (i) they are likely to be used in practical

situations, especially where computer facilities are not available,

(1i) they are asymptoticall7 equivalent to the maximum likelihood

(ML) estimates, and (iii) iteration for ML estimates (which are the

best asymptotically normal estimates) is time consuming and may not

converge in small samples. (See Zacks (1971, Section 5.2) for

additional remarks ML estimates.) However, simulations for

the ML estimates were also conducted to provide comparative data

for the ML and moment estimates. (In the rare instances where the

ML iteration did not converge, the moment estimates were used.)

Table 2 reports the empirical means of the estimates F and

F. Enclosed within parentheses are the empirical means based on
the ML estimates. The data indicate that the means of the moment

estimates and the corresponding means of the ML estimates are

almost identical when m is at least 50. The degree of bias (as

measured by the discrepancy between the empirical means and their
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TABLE 2

Empirical Means of the Estimates Fp and Fn
(and of their Maximum Likelihood Counterparts)

Case Error
Pop.

Value
Empirical mean at m =

25 50 100 200 400 800
1

2

3

4

5

Fp

F
n

Fp

F
n

F
p

F
n

Fp

F
n

F

F
n

.040

.061

.051

.027

.120

.024

.078

.041

.157

.072

.037

(.037)

.059

(.062)

.049

(.050)

.027

(.028)

.118

(.120)

.023
(.022)

.078

(.081)

.041
(.042)

.151

(.149)
.078

(.080)

.038

(.039)

.060

(.061)

.050

(.051)

.027

(.028)

.119

(.119)

.024

(.023)

.078

(.079)

.041

(.042)

.153

(.154)

.076

(.077)

.039
(.039)

.060

(.061)

.051

(.051)

.027

(.027)

.119

(.120)

.024

(.023)

.078

(.079)

.041

(.042)

.156

(.157)

.073

(.074)

.040

(.040)

.060

(.061)

.051

(.051)

.027

(.027)

.119

(.119)

.024

(.024)

.078

(.078)

.041

(.041)

.156

(.156)
.073

(.073)

.040

(.040)
.060

(.061)

.051

(.051)

.027

(.027)

.119

(.120)

.024

(.024)

.078

(.078)

.041

(.041)

.157

(.157)

.072

(.072)

.040

(.040)
.061

(.061)

.051

(.051)

.027

(.027)

.119

(.120)

.024

(.024)

.078

(.078)

.041

(.041)

.157

(.157)
.072

(.072)

population values) appears noticeable only in some instances when

m = 25. In practically all instances, the bias seems negligible.

Table 3 reports the empirical values of AW sm(Fp) and AW sm(Fr)

along with the corresponding values simulated for the ML estimates.

The data indicate that for the situations under study, the moment

estimates and the ML estimates behave almost identically in terms

of sampling variability. The data also show that the asymptotic

values
.
V
fp

and V
fn

tend to underestimate the finite-sample values

.Tm and )G-sm(Fr). The reader may deduce from the line

A
o
= .80 of Table II of Wilcox (1977) that - s

m
(F
p
) =

= .411 for m = 10, and = .072)(150 = .394 for m = 30. The asymptotic

value is .212. Thus the asymptotic standard error tends to be

smaller than the actual error. The magnitude of underestimation

is substantial when m is small and a
21

is moderate. (See Case 5
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TABLE 3

Empirical Values of sim(ip) and p sm(in)
(and of their Maximum Likelihood Counterparts)

Case Error

Asymp-
totic
Value

Empirical values at m =
25 50 100 200 400 800

1 F .052 .060 .057 .054 .053 .053 .054p
(.059) (.056) (.055) (.054) ( 052) (.052)

F
n

.088 .092

(.092)
.091

(.089)
.091

(.089)
.092

(.088)
.090

(.088)
.091

(.091)

2 F .058 .063 .061 .060 .060 .060 .060p
(.063) (.059) (.058) (.057) (.058) (.058)

Fn .033 .036 .035 .035 .035 .035 .035
(.036) (.035) (.034) (.033) (.034) (.034)

3 Fp .102 .117 .109 .105 .103 .101 .103
(.122) (.104) (.106) (.105) (.104) (.102)

F
n

.040 .039

(.043)
.041

(.042)

.039

(.041)
.041

(.040)
.040

(.042)
.040

(.041)

4 F .068 .072 .070 .070 .071 .072 .070p
(.076) (.070) (.069) (.069) (.068) (.068)

F
n

.041 .r s8

(.039)
.036

(.035)

.035

(.036)
.036

(.036)
.036

(.035)
.036

(.035)

5 F .212 .375 .287 .233 .221 .218 .211p
(.375) (.264) (.234) (.215) (.205) (.216)

F
n

.105 .177

(.192)
.156

(.168)
.125

(.123)
.115

(.115)
.111

(.111)
.108

(.108)

with m = 25 or 50.) In other situations where a21 is reasonably

large, the degree of underestimation is not large even with

samples of size 25.

8. SUMMARY

This paper describes an asymptotic inferential procedure for

the estimates of the false positive and false negative error rates.

Formulae and tables are described for the computations of the

standard errors. A simulation study indicates that the asymptotic

standard errors may be used even with samples of 25 cases as long

as the Kuder-Richardson Formula 21 reliability is reasonably large.

Otherwise, a large sample would be requ.red.
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APPENDIX A

Tables of the False Positive Error and Its Standard
Error (times 4) the False Negative Error and Its Standard
Error (times AM), and the Correlation Between F and F

n
(M = number of subjects, denoted by m in the text)

Input to the tables are (i) number of test items n, (ii) cri-

terion level 0 (iii) mastery (passing) score c, (iv) test an x,

and (v) the KR21 reliability estimate. It may be noted that if a

and B are estimates of the parameters a and 0 other than the moment

estimates, then the entries for test mean and KR21 are simply

na/(a + 0) and n/(n + a + B), respectively.
_ -

For each entry (n, g0, , c, x, a21), five values may be read

out. They are Fp, Vfp, Fn, Vfn, and p, respectively.

Numerical Example

Let n = 10, 00 = .60, and c = 6. For x = 5.0 and
a21

.60,

the tables yield the values Fp = .1667, V
fp

= .1858, F
n
= .0504,

V
fn = .0548, and p = .2941.
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FNNumber of Items: 5, Theta Zero: .60, Mastery Score: 3

Test KR21g.
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900
0.5 .0129 .0184 .0249 .0321 .0384 .0419 .0411 .0347 .0215.0881 .1081 .1264 .1321 .1198 .0979 .0801 .0710 .0583.0000 .0000 .0000 .0003 .0011 .0026 .0045 .0058 .0050.0000 .0000 .0011 .0063 .0145 .0208 .0210 .0157 .0116.8848 .9009 .9126 .9025 .8605 .7584 .5915 .5751 .91511.0 .0676 .0784 .0890 .0965 .0986 .0943 .0833 .0651 .0386.2162 .2289 .2172 .1835 .1506 .1288 .1151 .1012 .0777.0000 .0000 .0005 .0022 .0051 .0086 .0115 .0124 .0096.0000 .0016 .0125 .0274 .0361 .0357 .0284 .0198 .0164.7526 .7898 .7710 .6851 .5356 .3799 .3490 .6038 .9460
1.5 .1740 .1835 .1851 .1776 .1630 .1430 .1182 .0882 .0508.3255 .2897 .2405 .2157 .1970 .1755 .1508 .1228 .0885.0000 .0r08 .0042 .0093 .0146 .0186 .0205 .0193 .0135.0009 .0264 .0554 .0627 .0554 .0426 .0303 .0231 .0203.6040 .5073 .2413 .0267 -.0338 .0586 .3290 .7330 .96752.0 .3221 .3056 .2755 .2421 .2082 .1742 .1392 .1016 .0579.3616 .4107 .3941 .3363 .2756 .2218 .1754 .1344 .0934.0010 .0088 .0184 .0258 .0302 .0317 .0302 .0254 .0163.0607 .1329 .1143 .0828 .0579 .0418 .0328 .0282 .0238.0066 -.5539 -.5704 -.4354 -.1844 .1766 .5701 .8560 .9799
2.5 .4346 .3565 .3001 .2549 .2156 .1789 .1427 .1043 .05971.3267 .8222 .5504 .3964 .2980 .2290 .1768 .1341 .0934.0235 .0425 .0497 .0511 .0492 .0448 .0385 .0298 .0179.4264 .1924 .1057 .0732 .0586 .0494 .0420 .0350 .0268-.9434 -.3048 -.4868 -.0663 .3055 .5830 .7820 .9159 .9857
3.0 .2833 .2548 .2299 .2060 .1819 .1565 .1286 .0964 .0564.7927 .5035 .3719 .2911 .2341 .1904 .1545 .1227 .0891.1160 .0990 .0858 .0744 .0638 .0535 .0429 .0314 .0180.3734 .2206 .1541 .1149 .0884 .0639 .0537 .0410 .0288-.0492 .1276 .2843 .4323 .5745 .7095 .3317 .9294 .98713.5 .0475 .0934 .1148 .1227 .1220 .1145 .1006 .0795 .0483.9558 .5065 .3073 .2169 .1699 .1415 .1213 .1036 .0806.1451 .1163 .0954 .0792 .0654 .0531 .0414 .0295 .0164.4909 .3112 .2044 .1434 .1049 .0786 .0592 .0436 .0292-.8742 -.7223 -.4448 -.1015 .2386 .5316 .7585 .9100 .9850
4.0 .0011 .0139 .0327 .0493 .0609 .0664 .0651 .0557 .0358.0811 .2505 .2560 .2100 .1603 .1206 .0948 .0813 .0679.0670 .0694 .0652 .0582 .0503 :0419 .0330 .0235 .0129.1811 .1187 .1065 .0944 .0802 .0664 .0534 .0408 .0273.7006 .1539 -.1596 -.1668 -.0239 .2364 .5732 .8535 .97934.5 .0000 .0005 .0039 .0105 .0184 .0254 .0293 .0280 .0194.0003 .0231 .0749 .1085 .1128 .0967 .0735 .0573 .0492.0129 .0180 .0222 .0243 .0240 .0219 .0183 .0135 .0074.0880 .0947 .0767 .0568 .0456 .0407 .0368 .0311 .0217.9065 .9064 .8432 .6873 .4667 .3415 .4494 .7633 .9691
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HUYNH

Table of the FalsE Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 5, Theta Zero: .60, Mastery Score: 4

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.5 .0011 .0023 .0041 .0066 .0093 .0113 .0120 .0106 .0069
.0143 .0237 .0351 .0425 .0413 .0338 .0257 .0215 .0182
.0000 .0000 .0001 .0006 .0027 .0008 .0122 .0167 .0157
.0000 .0001 .0026 .0153 .0373 .0572 .0625 .0498 .0357
.9487 .9614 .9686 .9641 .9434 .8839 .7387 .6091 .8852

1.0 .0100 .0145 .0197 .0243 .0271 .0275 .0254 .0205 .0124
.0647 .0802 .0827 .0702 .0541 .0421 .0354 .0312 .0247
.0000 .0001 .0012 .0054 .0130 .0228 .0321 .0368 .0303
.0000 .0037 .0297 .0688 .0967 .1028 .0880 .0628 .0497
.8902 .9246 .9168 .8729 .7727 .6047 .4588 .5653 .9230

1.5 .0383 .0462 .0511 .0520 .0495 .0446 .0376 .0284 .0166
.1498 .1347 .0972 .0741 .0627 .0550 .0476 .0392 .0287
.0000 .0019 .0099 .0231 .0378 .0507 .0587 .0581 .0428
.0019 .0610 .1365 .1655 .1573 .1297 .0961 .0703 .0615
.8506 .8199 .6593 .4105 .2184 .1710 .3055 .6542 .9534

2.0 .0973 .0972 .0895 .0793 .0685 .0574 .0459 .0335 .0190
.1945 .1405 .1324 .1140 .0935 .0749 .0588 .0447 .0309
.0021 .0206 .0451 .0661 .0810 .0888 .0885 .0780 .0525
.1361 .3228 .3021 .2375 .171 .1301 .0985 .0823 .0729
.6031 -.1545 -.3693 -.3240 -.1643 .0976 .4539 .7991 .9728

2.5 .1654 .1324 .1090 .0908 .0755 .0617 .0485 .0350 .0198
.5614 .3450 .2237 .1556 .1130 .0840 .0629 .0463 .0314
.0536 .1032 .1269 .365 .1370 .1301 .1160 .0933 .0583

1.0248 .5299 .3155 .2175 .1667 .1370 .1174 .1019 .0835
-.9025 -.7726 -.5290 -.2062 .1389 .4563 .7147 .8937 .9829

3.0 .1220 .1040 .0901 .0781 .0669 .0561 .0450 .0330 .0189
.4025 .2371 .1652 .1230 .0945 .0737 .0574 .0438 .0305
.2823 .2565 .2333 .2105 .1870 .1618 .1337 .1007 .0592
.7452 .4755 .3536 .2791 .2267 .1863 .1532 .1236 .0917

-.1005 .0816 .2465 .4039 .5552 .6984 .8267 .9282 .9870
3.5 .0216 .0403 .0474 .0487 .0467 .0424 .0361 .0277 .0163

.4163 .1963 .1115 .0787 .0633 .0535 .0455 .0377 .0280

.4126 .3398 .2863 .2430 .2050 .1694 .1342 .0970 .0545
1.2271 .7850 .5350 .3910 .2980 .2319 .1811 .1382 .0956
-.9293 -.7730 - 4391 -.0234 .3378 .6080 .7997 .9244 .9871

4.0 .0005 .0062 .0140 .0203 .0241 .0253 .0239 .0197 .0122
.0375 .1082 .1029 .0788 .0570 .0421 .0340 .0296 .0238
.2655 .2537 .2296 .2015 .1723 .1425 .1119 .0795 .0435
.3562 .3708 .3618 .3190 .2694 .2222 .1787 .1370 .0919
.0802 -.4077 -.4606 -.3387 -.0933 .2628 .6363 .8843 .9836

4.5 .0000 .0002 .0017 .0044 .0075 .0099 .0110 .0101 .0067
.0001 .0104 .0320 .0437 .0427 .0345 .0254 .0204 .0174
.0902 .0982 .1023 .1004 .0929 .0810 .0656 .0470 .0254
.2508 .2423 .2056 .1785 .1646 .1526 .1355 .1106 .0751
.6534 .6331 .4798 .2606 .1258 .1669 .4299 .7997 .976G
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E. *SQRT(H), and the Correlation between FP and FN
Number of Items: 5, Theta Zero: .70, Mastery Score: 4

Test KR21,-
Mean .100 200 .300 .400 .500 .600 .700 .800 .900

0.5 .0011 .0023 .0041 .0070 .0109 .0149 .0178 .0176 .0125.0143 .0237 .0367 .0514 .0610 .0593 .0478 .0365 .0314.0000 .0000 .0001 .0001 .0005 .0018 .0043 .0074 .0082.0000 .0000 .0001 .0021 .0092 .0209 .0302 .0284 .0187.9501 .9509 .9650 .9669 .9606 .9360 .8594 .6854 .82511.0 .0100 .0145 .0204 .0275 .0344 .0392 .0400 .0353 .0231.0647 .0823 .0999 .1066 .0972 .0783 .0605 .0509 .0435.0000 .0000 .0001 .0007 .0028 .0069 .0124 .0170 .0161.0000 .0001 .0026 .0136 .0311 .0455 .0479 .0368 .0254.8990 .9158 .9275 .9222 .8918 .8141 .6567 .5425 .8727

1.5 .0383 .0474 .0573 .0654 .0697 .0690 .0530 .0509 .0314.1507 .1677 .1632 .1363 .1068 .0858 .0737 .0648 .0520.0000 .0000 .0009 .0041 .0100 .0175 .0245 .0231 .0233.0000 .0027 .0215 .0492 .0676 .0698 .0577 .0394 .0312.3997 .8629 .8515 .7877 .6581 .4790 .3581 .5083 .92242.0 .0985 .1101 .1165 .1157 .1089 .0975 .0821 .0624 .0368.2538 .2268 .1712 .1396 .1233 .1096 .0948 .0782 .0579.0000 .0012 .0066 .0157 .0259 .0348 .0401 .0396 .0291.0011 .0392 .0909 .1100 .1024 .0815 .0579 .0414 .0375.7619 .7176 .5057 .2311 .0637 ,0545 .2335 .6426 .9583
2.5 .1991 .1956 .1797 .1595 .1381 .1160 .0930 .0681 .0390.2908 .2501 .2470 .2165 .1796 .1450 .1146 .0877 .0611.0012 .0129 .0292 .0432 .0529 .0576 .0569 .0496 .0330.0786 .2096 .1975 .1512 .1081 .0763 .0571 .0490 .0444.4486 -.3180 -.4854 -.4253 -.2470 .0563 .4669 .8238 .9781

3.0 .3000 .2443 .2033 .1708 .1429 .1174 .0926 .0670 .0379.9205 .5972 .3986 .2834 .2098 .1537 .1207 .0901 .0616.0333 .0666 .0818 .0872 .0864 .0808 .0708 .0560 .0342.6796 .3447 .1934 .3.280 .0981 .0825 .0722 .0630 .0508-.9248 -.0151 -.5697 -.1999 .1991 .5321 .7696 .N.75 .98703.5 .2029 .1767 .1554 .1362 .1178 .0994 .0800 .0586 .0334.6328 .3887 .2799 .2145 .1694 .1355 .1081 .0840 .0587.1877 .1653 .1465 .1291 .1122 .0949 .0766 .0563 .0321.5358 .3331 .2429 .1884 .1506 .1218 .0982 .0773 .0553-.0266 .1658 .3325 .4848 .6255 .7529 .8620 .9441 .9900

4.0 .0263 .0560 .0696 .0739 .0724 .0666 .0570 .0436 .0254.6083 .3371 .2006 .1402 .1112 .0948 .0825 .0697 .0517.2366 .1933 .1600 .1332 .1101 .0890 .0687 .0482 .0261.7130 .4997 .3462 .2526 .1910 .1469 .1129 .0839 .0554-.8693 -.7243 -.4250 -.0348 .3381 .6266 .8216 .9368 .98964.5 .0002 .0047 .0132 .0213 .0270 .0294 .0283 .0233 .1142.0197 .1118 .136, .1187 .0908 .0678 .0548 .0485 .03b9.0900 .0931 .0883 .0792 .0681 .0559 .0431 .0298 .0156.2374 .1814 .1647 .1539 .1378 .1182 .0967 .0733 .0469.6138 .2436 -.0868 -.1407 -.0041 .2937 .6576 .3984 .9863
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HUYNH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Item: 5, Theta Zero: .80, Mastery Score: 4

Test KR21..
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.5 .0011 .0023 .0041 .0071 .0116 .0174 .0234 .0263 .0212
.0143 .0237 .0368 .0542 .0735 .0857 .0809 .0618 .0500
.0000 .0000 .0000 .0000 .0000 .0003 .0010 .0023 .0032
.0000 .0000 .0000 .0001 .0011 .0043 .0094 .0119 .0080
.9410 .9961 .9681 .9630 .9631 .9536 .9173 .7893 .7400

1.0 .0100 .0145 .0205 .0285 .0384 .0485 .0556 .0549 .0399
.0647 .0824 .1033 .1248 .1369 .1297 .1052 .0804 .0700
.0000 .0000 .0000 .0000 .0003 .0012 .0031 .0055 .0064
.0000 .0000 .0001 .0010 .0049 .0117 .0174 .0166 .0103
.9394 .9455 .9222 ,,9271 .9232 .8962 .8137 .6277 .7737

1.5 .0383 .0474 .0586 .0713 .0836 .0920 .0930 .0825 .0552
.1507 .1709 .1903 .1961 .1790 .1467 .1152 .0973 .0856
.0000 .0000 .0000 .0003 .0014 .0036 .0068 .0097 .0096
.0000 .0000 .0009 .0059 .0148 .0227 .0244 .0185 .0120
.9760 .9437 .8681 .8674 .8353 .7503 .5841 .4519 .8448

2.0 .0986 .1118 .1260 .1380 .1440 .1417 .1296 .1057 .0661
.2548 .2696 .2635 2278 .1849 .1526 .1333 .1193 .0985
.0000 .0000 .0003 .0017 .0045 .0084 .0123 .0145 .0123
.0000 .0007 .0082 .0216 .0318 .0339 .0279 .0181 .0142
.8124 .7782 .7737 .7083 .5696 .3803 .2494 .4091 .9172

2.5 .2007 .2141 .2216 .2191 .2068 .1861 .1576 .1207 .0717
.3512 .3291 .2680 .2292 .2098 .1921 .1701 .1432 .1083
.0000 .0003 .0025 .0067 .0118 .0164 .0194 .0193 .0143
.0002 .0132 .0386 .0512 .0491 .0387 .0264 .0180 .0173
.6408 .6136 .4094 .1292 -.0502 -.0693 .1190 .6061 .9625_

3.0 .3469 .3412 .3172 .2846 .2485 .2101 .1693 .1243 .0712
.3826 .3611 .3834 .3555 .3069 .2554 .2068 .1612 .1138
.0003 .0043 .0124 .0195 .0245 .0270 .0267 .0231 .0152
.3223 .0906 .0943 .0730 .0505 .0337 .0247 .0222 .0209
.3417 -.3553 -.5572 -.5239 -.3604 -.0309 .4594 .8470 .9830

3.5 .4841 .4047 .3415 .2893 .2433 .2005 .1583 .3141 .0640
1.2241 .9085 .6410 .4728 .3607 .2801 .2179 .1654 .1133
.0134 .0302 .0381 .0407 .0401 .0370 .0319 .0247 .0147
.3240 .1735 .0911 .0565 .0435 .0382 .0345 .0304 .0241

-.9401 -.8653 -.J438 -.2240 .2585 .6127 .3245 .9401 .9906

4.0 .2976 .2640 .2352 .2079 .1808 .1528 .1227 .0891 .0498
.9037 .5804 .4338 .3443 .2811 .2321 .1903 .1501 .1041
.0942 .0794 .0679 .0581 .0490 .0403 .0315 .0224 .0123
.3147 .1884 .1336 .1012 .0792 .0628 .0495 .0377 .0255
.0776 .2704 .4316 .5740 .7002 .8091 .8969 .9593 .9927

4.5 .0182 .0527 .0731 .0821 .0829 .0773 .0663 .0501 .0285
.6065 .4677 .3049 .212/ .1662 .1437 .1292 .1115 .0814
.0817 .0687 .0565 .0462 .0373 .0292 .0218 .0146 .0075
.2148 .1987 .1514 .1152 .0887 .0684 .0517 .0371 .0228

-.5847 -.6145 -.3945 -.0524 .3344 .6510 .8484 .9502 .9920
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INFERENCE FOR ERROR RATES

Table of the False PosiAve Error and its
S.E. *SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .60, Mastery Score: 4

Test KR21..
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.6 .0026 .0046 .0077 .0120 .0169 .0212 .0233 .0216 .0146.0269 .0403 .0567 .0709 .0746 .0661 .0517 .0411 .0345.0000 .0000 .0000 .0002 .0009 .0028 .0057 .0085 .0084.0000 .0000 .0005 .0046 .0144 .0260 .0317 .0268 .0181.9315 .9386 .9551 .9553 .9426 .9032 .8021 .6626 .87041.2 .0227 .0299 .0383 .0464 .0522 .0541 .0511 .0424 .0266.1117 .1309 .1398 .1281 .1051 .0?30 .0681 .0588 .0471.0000 .0000 .0003 .0020 .0055 .0107 .0160 .0192 .0164.0001 .0007 .0094 .0282 .0455 .0526 .0472 .0338 .0249.8744 .8671 .8899 .8615 .7899 .6637 .5266 .5727 .9114

1.8 .0811 .0923 .1004 .1024 .0987 .0900 .0770 .0593 .0355.2293 .2208 .1764 .1399 .1185 .1036 .0896 .0743 .0548.0000 .0005 .0039 .0105 .0185 .0259 .0309 .0311 .0233.0003 .0206 .0608 .0832 .0837 .0707 .0526 .0373 .0308.7972 .7603 .6386 .4385 .2669 .2102 .3182 .6369 .94652.4 .1903 .1897 .1766 .1585 .1383 .1171 .0947 .0700 .0408.2989 .2403 .2323 .2063 .1731 .1408 .1115 .0851 .0590.0006 .0091 .0224 .0346 .0434 .0481 .0481 .0424 .0287.0469 .1609 .1654 .1331 .0989 .0718 .0535 .0433 .0366.4964 -.1337 -.3604 -.3278 -.1706 .0939 .4479 .7877 .9686

3.0 .3098 .2548 .2133 .1800 .1514 .1252 .0997 .0731 .0424.8709 .5865 .3954 .2818 .2084 .1570 .1185 .0877 .0598.0277 .0579 .0722 .0775 .0771 .0724 ,0639 .0510 .0319.5905 .3145 .1816 .1226 .0937 .0768 .0645 .0538 .0419-.9105 -.7966 -.5491 -.2002 .1628 .4738 .7149 .8855 .9794

3.6 .2149 .1893 .1682 .1489 .1301 .1111 .0909 .0681 .0402.6301 .3834 .2799 .2141 .1682 .1335 .1055 .0814 .0575.1779 .1559 .1379 .1216 .1059 .0901 .0734 .0549 .0323.5184 .3165 .2266 .1725 .1350 .1067 .0840 .0646 .0458-.0780 .0991 .2553 .'024 .5439 .6800 .8068 .9140 .98294.2 .0288 .0626 .0792 .0857 .0855 .0804 .0708 .0561 .0345.6522 .3694 .2223 .1541 .1189 .0976 .0821 .0684 .0522.2329 .1913 .1594 .1337 .1117 .0916 .0722 .0522 .0296.6562 .4568 .3109 .2225 .1549 .1246 .0944 .0699 .0471-.8719 -.7455 -.4849 -.1435 .2016 .4993 ,7324 .8947 .9812

4.8 .0004 .0070 .0191 .0310 .0399 .0447 .0447 .0389 .0255.0300 .1434 .1671 .1447 .1123 .0846 .0647 .0534 .0439.1091 .1129 .1077 .0978 .0857 .0723 .0578 .0418 .0234.2475 .1800 .1596 .1436 .1241 .1040 .0846 .0655 .0445.6397 .2285 -.0909 -.1360 -.0263 .2025 .5245 .8251 .97425.4 .0000 .0002 .0017 .0054 .0107 .0158 .0193 .0193 .0138.0000 .0078 .0361 .0625 .0722 .0660 .0513 .0382 .0317.0218 .0287 .0350 .0388 .0395 .0370 .0317 .0239 .0136.1194 .1317 .1179 .0930 .0741 .0638 .0573 .0492 .0354.8936 .8825 .8443 .7378 .5656 .4188 .4483 .7209 .9608
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HUYNI1

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6,

Test KR21..

Theta Zern: .60, Mastery Score: 5

Mean .1.00 .200 .300 .400 .500 .600 .700 .800 .900

0.6 .0002 .0005 .0011 .0022 .0037 .0053 .0063 .0061 .0043
.0032 .0067 .0124 .0187 .0219 .0204 .0159 .0120 .0100
.0000 .0000 .0000 .0003 .0018 .0057 .0122 .0193 .0207
.0000 .0000 .0009 .0087 .0238 0553 .0728 .0670 .0452
.9611 .9695 .9800 .9800 .9723 .9475 .8721 .7074 .8264

1.2 .0028 .0047 .0075 .0105 .0131 .0145 .0143 .0123 .0'19
.0242 .0347 .0425 .0415 .0344 .0262 .0202 .0169 .0138
.0000 .0000 .0006 .0037 .0110 .0222 .0351 .0446 .0408
.0001 .0012 .0176 .0550 .0943 .1166 .1133 .0865 .0610
.9198 .9496 .9521 .9356 .8903 .7918 .6305 .5606 .8702

1.8 .0150 .0201 .0245 .0269 .0272 .0256 .0224 .0175 .0106
.0783 .0824 .0653 .0476 .0367 .0305 .0260 .0218 .0163
.0000 .0010 .0073 .0204 .0375 .0551 .0690 .0736 .0588
.0005 .0376 .1168 .1697 .1828 .1662 .1318 .0937 .0744
.8980 .8985 .8351 .6929 .4995 .3486 .3333 .5516 .9180

2.4 .0490 .0526 .0508 .0465 .0410 .0350 .0284 .0211 .0123
.1431 .0843 .0701 .061/ .0521 .0425 .0337 .0257 .0178
.0011 .0168 .0431 .0694 .0909 .1054 .1106 .1026 .0733
.0834 .3049 .3369 .2926 .2335 .1780 .1325 .1026 .0887
.7924 .3481 -.0752 -.1727 -.1119 .0531 .3291 .6943 .9529

3.0 .1022 .0831 .0686 .0572 .0476 .0390 .0308 .0224 .0129
.3036 .2075 .1374 .0957 .0692 .0510 .0377 .0274 .0184
.0500 .1103 .1442 .1618 .1681 .1648 .1518 .1266 .0826

1.1078 .6619 .4181 .2925 .2207 .1755 .1453 .1239 .1032
-.8525 -.7564 -.5606 -.3021 -.0058 .3041 .5992 .8376 .9721

3.6 .0808 .0679 .0583 .0502 .0428 .0358 .0288 .0212 .0123
.2768 .1584 .1080 .0789 .0596 .0456 .0349 .0251 .0179
.3413 .3169 .2936 .2697 .2438 .2149 .1812 .1399 .0850
.85C8 .5560 .4181 .3333 .2731 .2265 .1878 .1531 .1158

-.1869 -.0187 .1411 .3005 .4609 .6199 .7708 .8988 .9803
4.2 .0114 .0237 .0238 .0301 .0292 .0267 .0229 .0177 .0107

.2502 .1281 .0725 .0500 .0393 .0327 .0273 .0223 .0164

.5224 .4406 .3770 .3242 .2769 .2318 .1862 .1371 .0791
1.2797 .8958 .6313 .4711 .3647 .2876 .2271 .1752 .1230
-.9352 -.8121 -.5234 -.1289 .2399 .5303 .7472 .8983 .9813

4.8 .0001 .0027 .0072 .0113 .0140 .0152 .0148 .0125 .0079
.0121 .0546 .0600 .0490 .0364 .0267 .0207 .0173 .0140
.3439 .3315 .3050 .2718 .2356 .1975 .1574 .1137 .0636
.3972 .4 1 .4159 .3795 .3288 .2765 .2259 .1758 .1200
.0258 -.3551 -.4446 -.3588 -.1550 .1634 .5439 .8421 .9765

5.4 .0000 .0001 .0006 .0020 .0038 .0055 .0065 .0063 .0043
.0000 .0031 .0136 .0225 .0247 .0214 .0161 .0121 .0101
.1224 .1300 .1347 .1335 .1256 .1117 .0922 .0676 .0374
.2811 .2805 .2542 .2241 .2041 .1887 .1699 .1419 .0989
.5333 .5686 .4862 .3261 .1900 .1754 .3584 .7284 .9650
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

8.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .70, Mastery Score: 5

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.6 .0002 .0005 .0011 .0024 .0044 .0072 .0100 .0112 .0089.0032 .0067 .0127 .0219 .0319 .0372 .0339 .0250 .0197.0000 .0000 .0000 .0000 .0003 .0014 .0041 .0084 .0110.0000 .0000 .0000 .0009 .0058 .0180 .031 .0382 .0258.9640 .9637 .9750 .9794 .9784 .9690 .9360 .8201 .77831.2 .0028 .0047 .0077 .0119 .0170 .0217 .0245 .0236 .0167.0242 .0351 .0490 .0610 .0639 .0564 .0434 .0323 .0275.0000 .0000 .0000 .0004, .0020 .0062 .0130 .0205 .0221.0000 .0000 .0010 .0085 .0261 .0472 .0594 .0524 .0335.9235 .9308 .9521 .9541 .9432 .9088 .8187 .6522 .8075
1.8 .0150 .0205 .0271 .0345 .0400 .0426 .0414 .0354 .0230.0784 .0957 .1056 .0980 .0799 .0615 .0484 .0407 .0335.0000 .0000 .0005 .0030 .0089 .0179 .3282 .0358 .0327.0000 .0009 .0135 .0419 .0703 .0843 .0790 .0575 .0395.9861 .9066 .9111 .8877 .8252 .7049 .5404 .5005 .86822.4 .0494 .0592 .0672 .0709 .0702 .0654 .0569 .0447 .0273.1684 .1688 .1346 .1016 .0819 .0700 .0604 .0504 .0380.0000 .0006 .0051 .0146 .0271 .0399 .0497 .0527 .0418.0003 .0250 .0818 .1195 .1265 .1113 .0844 .0576 .0469.8542 .8340 .7467 .5657 .3556 .2252 .2511 .5290 .9271
3.0 .1214 .1256 .1202 .1095 .0966 .0825 .0671 .0500 .0293.2482 .1658 .1509 .1367 .1169 .0961 .0766 .0587 .0410.0006 .0109 .0293 .0478 .0627 .0723 .0750 .0686 .0482.0486 .2067 .2330 .1985 .1524 .1110 .0801 .0629 .0562.6907 .1661 -.2289 -.2942 -.2082 -.0055 .3281 .7290 .9634
3.6 .2172 .1793 .1 /C .1256 .1051 .0864 .0685 .0499 .0287.5796 .4193 .2 -4 .2035 .1497 .1121 .0841 .0619 .0418.0325 .0752 .0986 .1097 " "5 .1084 .0979 .0799 .0508.7704 .4598 .2755 .1833 .-J)1 .1085 .0921 .0799 .0659-.8820 -.8033 -.6085 -.3172 .0363 .3870 .6779 .8788 .98004.2 .1559 .1341 .1170 .1020 .0879 .0740 .0596 .0440 .0254.4989 .2991 .2112 .1590 .1234 .0970 .0761 .0581 .0402.2421 .2179 .1966 .1761 .1554 .133/ .1098 .0824 .0484.6425 .4060 .3001 .2357 .1906 .1558 .1270 .1011 .0735-.1039 .0848 .2534 .4116 .5615 .7014 .8263 .9259 .9858
4.3 .0154 .0375 .0486 .0528 .0524 .0487 .0422 .0326 .0194.4061 .2509 .1511 .1038 .0803 .0669 .0572 .0479 .0355.3177 .2661 .2238 .1886 .1576 .1289 .1008 .0719 .0398.7817 .6053 .4352 .3239 .2481 .1929 .1496 .1124 .0752-.8598 -.7485 -.4864 -.1223 .205 .5583 .7793 .9182 .98585.4 .0001 .0022 .0074 .0133 .0180 .0204 .0203 .0173 .0103.0053 .0587 .0867 .0827 .0665 .0499 .0386 .0330 .0266.1223 .1263 .1219 .1114 .0975 .0814 .0639 .0448 .0240.2759 .2313 .2060 .1923 .1748 .1529 .1276 .0989 .0646.5384 .3087 .0114 -.0884 -.0123 .2225 .5740 .8631 .9812
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 6, Theta Zero: .80, Mastery Score: 5

Test KR21.
Mean .100 .200 .300 .400 .500 .600 ,700 .800 .900

0.6 .0002 .0095 .0011 .0024 .0047 .0085 .0135 .0179 .0166
.0032 .0067 .0128 .0227 .0373 .0531 .0600 .0500 .0356
0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0043
.0000 .0000 .0000 .0000 .0005 .0031 .0093 .0153 .0120
.9653 .9659 .9641 .9752 .9774 .9750 .9605 .8979 .7463

1.2 .0028 .0047 .0077 .0123 .0189 .0273 .0356 .0395 .0120
.0242 .0351 .0499 .0688 .0873 .0953 .0856 .0632 .0493
.0000 .0000 .0000 .0000 .0002 .0009 .0030 .0065 .0090
.0000 .0000 .0000 .0004 .0032 .0105 .0198 .0233 .0150
.9151 .9131 .9443 .9516 .9537 .9444 .907^ .7858 .7238

1.8 .0150 .0205 .0278 .0373 .0483 .0586 .0647 .0623 .0452
.0784 .0964 .1173 .1347 .1373 .1212 .0943 .0714 .0608
.0000 .0000 .0000 .n002 .0010 .0033 .0074 .0122 .0137
.0000 .0000 .0004 .0037 .0127 .0243 .0315 .0278 .0166
.9990 .9058 .9093 .9165 .9069 .8692 .7719 .5908 .7653

2.4 .0494 .0597 .0720 ,0848 .0950 .0997 .0966 .0832 .0550
.1686 .1883 .2003 .1884 .1576 .1241 .0992 .0846 .0715
.0000 .0000 .0002 .0012 .0041 .0089 .0147 .0193 .0180
.0000 .0002 .0050 .0185 .0340 .0425 .0401 .0282 .0186
.9990 .8443 .8550 .8341 .7672 .6368 .4591 .4111 .8560

3.0 .1219 .1360 .1482 .1540 .1518 .1418 .1242 .0982 .0605
.2787 .2800 .2373 .1886 .1572 .1382 .1222 .1042 .0806
.0000 .0002 .0019 .0063 .0128 .0196 .0251 .0269 .0215
.0000 .0080 .0346 .0569 .0631 .0557 .0409 .0264 .0223
.8464 .7519 .6711 .4851 .2617 .1179 .1436 .4732 .9341

3.6 .2466 .2520 .2421 .2227 .1980 .1700 .1390 .1038 .0609
.3604 .2757 .2645 .2527 .2252 .1912 .1563 .1222 .0867
.0001 .0041 .0128 .0224 .0304 .0355 .0370 .0336 .0233
.0129 .0893 .1145 .1005 .0758 .0526 .0363 .0292 .0275
.5758 .1153 -.2963 -.3877 -.3160 -.1010 .2977 .7586 .9726

4.2 .3979 .3379 .2862 .2427 .2043 .1686 .1336 .0970 .0553
.8441 .7126 .5174 .3332 .2908 .2237 .1720 .1290 .0878
.0133 .0356 .0484 .0542 .0552 .0525 .0466 .0372 .0229
.3740 .2439 .1396 .0866 .0620 .0511 .0454 .0404 .03,

-.8941 -.8488 -.6809 -.3649 .0691 .4753 .7553 .9154 .981-4

4,8 .2585 .2273 .2014 .1774 .1539 .1300 .1047 .07(,5 .0434
.7921 .4988 .3665 .2862 .2300 .1870 .1513 .1182 .0816
.1302 .1121 .0^75 .0846 .0724 .0603 .0480 .0347 .0194
.3959 .2419 .1742 .1339 .1060 .0850 .0677 .052` ,0360
.0162 .2124 .3780 .5258 .6592 .7770 .8756 .9489 .9904

5.4 .0108 .0381 .0564 .0657 .0678 .0644 .0561 .0431 .0249
.4112 .3768 .2574 .1799 .1367 .1142 .100' .0870 .0641
.1152 .0997 .0836 .0693 .0566 .0450 .0.39 ,0231 .0121
.2488 .2497 .1986 .1546 .1209 .0944 .0724 .0527 .0329

-.4671 -.5964 -.4193 -.1209 .2449 .5805 .8113 .9369 .9896
-------------------------------------------------------------------
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .60, Mastery Score: 5

Test KR21...
mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.7 .0005 .0011 .0023 .0044 .0073 .0105 .0130 .0133 .0098
.0070 .0131 .0224 .0337 .0420 .0423 .0350 .0259 .0209
.0000 .0000 .0000 .0001 .0007 .0026 .0062 .0107 .0120
.0000 .0000 .0002 .0028 .0122 .0274 .0400 .0389 .0256.9514 .9519 .9716 .9743 .9700 .9528 .9010 .7702 .83061.4 .0073 .0109 .0160 .0218 .0271 .0306 .0310 .0273 .0181
.0494 .0650 .0792 .0816 .0720 .0572 .0439 .0356 .0289
.0000 .0000 .0002 .0015 .0052 .0115 .0194 .0256 .0239
.0001 .0003 .0061 .0248 .0487 .0652 .0660 .0508 .0343
.9023 .9271 .9349 .9255 .8920 .8186 .6906 .6075 .8701

2.1 .0361 .0447 .0528 .0577 .0587 .055-i .0496 0395 .0245.1413 .1501 .1288 .0995 .0781 .0646 .0548 0456 .0343
.0000 .0003 .0032 .0103 .0204 .0313 .0401 .0432 .0347.0001 .0139 .0573 .0939 .1068 .0990 .0784 .0549 .0417
.8490 .8595 .8113 .6948 .5328 .3975 .3773 .5727 .91812.8 .1077 .1135 .1101 .1015 .0903 .0777 .0637 .0478 .0284
.2410 .1644 .1400 .1255 .1077 .0889 .0710 .0543 .0376.0004 .0083 .0239 .0405 .0542 .0632 .0662 .0610 .0434
.0315 .1672 .2033 .180i5 .1432 .1074 .0768 .0602 .0498.7106 .3273 -.0637 -.1646 -.1013 .0748 .3601 .7115 .9530

3.5 .2125 .1766 .1479 .1246 .1046 .0863 .0688 .0507 .0298
.5349 .3973 .2731 .1945 .1428 .1064 .0792 .0577 .0387.0288 .0690 .0914 .1021 .1049 .1014 .091? .0755 .0488.7127 .4349 .2664 .1810 .1351 .1076 .0887 .0735 .0578-.8578 -.7749 -.5723 -.2838 .0454 .3639 .6381 .8477 .9712

4.2 .1583 .1371 .1204 .1055 .0915 .0777 .0634 .0476 .0283.4857 .2912 .2053 .154' .1188 .0925 .0717 .0541 .0375.2388 .2140 .1927 .1125 .1525 .1316 .1089 .0829 .0500.6481 .4054 .2959 .2291 .1819 .1457 .1159 .0899 .0643-.1233 .0509 .2068 .3553 .5000 .6412 .7761 .8954 .97774.9 .0170 .0411 .0536 .0585 .0589 .0556 .0491 .0391 .0243.4301 .2630 .15.82 .10E1 .0823 .0667 .0553 .0453 .0340.3266 .2742 .2315 .1963 .1655 .1369 .1090 .0798 .0462.7747 .5890 .4150 ,3031 .2279 .1740 .1327 .0988 .0670-.8707 -.7688 -.5286 -.1951 .1534 .4581 .7006 .8762 .9763

5.6 .0001 .0035 .0110 .0191 .0257 .0296 .0303 .0268 .0180.0107 .0794 .1060 .0974 .0780 .0588 .0441 .0352 .0285
,157q .1623 .1563 .1436 .1272 .1085 .0877 .0644 .0368.2986 .2396 .2133 .1911 .1703 .1445 .1187 .0528 .0637.542 .2489 -.0501 -.1188 -.0352 .1669 .4729 .7912 .96756.3 .0000 .0000 .0007 .0027 .0060 .0097 .0125 .0130 .0097.0000 .0025 .0169 .035C .0449 .0440 .0354 .0257 .0205.0330 .0413 .0494 .0551 .0569 .0544 .0477 .0368 .0213.1496 .1645 .1570 .1315 .1064 .0900 .0797 .0690 .0509.9156 .8510 .8310 .7547 ,6201 .4770 .4544 .6780 .9499
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Table of the False Positive Error and its
S.E.*SQRT(14), the false Negative Error and its

S.E.*SQRT(M), and tha: Correlation between FP and FN
Number of Items: 7, Theta Zero: .60, rastery Score: 6

Test KR21.-
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.7 .0000 .0001 .0003 .0007 .0015 .0024 .0032 .0035 0027
.0006 .0018 .0041 .0076 .0107 .0116 .0099 .0071 .0056
.0000 .0000 .0000 .0002 .0012 .0044 .0112 .0204 .0250
.0000 .0000 .0003 .0046 .0203 .0484 .0759 .0813 .0556
.9690 .9702 .9855 .9870 .9838 .9717 .9321 .8045 .7812

1.4 .0008 .0015 .0028 .0045 .0062 .0075 .0080 .0073 .0050
.0083 .0138 .0200 .0226 .0208 .0166 .0124 .0096 .0078
.0000 .0000 .0003 .0024 .0086 .0200 .0354 .0498 .0504
.0000 .0004 .0096 .0405 .0839 .1196 .1310 .1097 .0728
.9389 .9623 .9680 .9614 .9384 .8823 .7624 .6141 .8118

2.1 .0058 .0086 .0116 .0137 .0147 .0146 .0132 .0107 .0067
.0377 .0456 .0410 .0311 .0231 .0130 .0148 .0123 .0094
.0000 .0005 .0051 .0168 .0348 .0557 .0"51 .0860 .0742
.0002 .0215 .0923 .1594 .1929 .1921 .1641 .1195 .0864
.9154 .9327 .9057 .8298 .6931 .5254 .4157 .4997 .8708

2.8 .0242 .0280 .02E5 .0269 .0244 .0212 .0175 .0132 .0079
.0941 .0581 .0407 .0344 .0294 .0244 ,0195 .0150 .0104
.0006 .0129 .0387 .0681 .0950 .1160 .1276 .1243 .0940
.0477 .2665 .3442 .3275 .2790 .2228 .1684 .1246 .1022
.8656 .6568 .2559 .0266 -.0129 .0669 .2596 .5915 .9249

3.5 .0619 .0514 .0427 .0357 .0298 .0245 .0194 .0142 .0083
.1576 .1219 .0832 .0585 .0423 .0310 .0228 .0164 .0109
.0443 .1110 .1535 .1788 .1916 .1934 .1834 .1581 .1075

1.1093 .7555 .5047 .3627 .2750 .2157 .1737 .1441 .1204
-.7663 -.7257 -.5636 -.3498 -.0994 .1816 .4838 .7697 .9574

4.2 .0528 .0439 .0374 .0320 .0272 .0227 .0183 .0135 .0080
.1872 .1045 .0700 .0504 .0375 .0284 .0214 .0157 .0107
.3871 .3658 .3442 .3210 .2947 .2640 .2267 .1790 .1121
.9524 .6240 .4733 .3798 .3131 .2611 .2178 .1790 .1376

-.2560 -.1053 .0442 .2003 3649 .5363 .7081 .8639 .9715
4.9 .0060 .0138 .0174 .0185 .0181 .0167 .0144 .0113 .0069

.1472 .0824 .0468 .0317 .0245 .0201 .0166 .0134 .0098

.6173 .5314 .4610 .4011 .3464 .2933 .2387 .1785 .1055
1.2565 .9609 .6999 .5330 .4193 .3352 .2679 .2090 .1437
-.9406 -.8448 -.5976 -.2289 .1428 .4504 .6909 .8686 .9740

5.6 .0000 .0012 .0037 .0062 .0081 .0091 .0091 .0078 .0051
.0033 .0270 .0343 .0299 .0230 .0169 .0127 .0103 .0082
.4138 .4055 .3776 .3407 .2983 .2534 .2044 .1498 .0855
.4201 .4402 .4529 .4259 .3781 .3240 .2688 .2121 .1470

-.0564 -.3295 -.4362 -.3779 -.2064 .0786 .4533 .7939 .9675
6.3 .0000 .0000 .0002 .0009 .0020 .0030 .0038 .0038 .0028

.0000 .0009 .0057 .0113 .0139 .0131 .0102 .0074 .0060

.1567 .1632 .1675 .1665 .1584 .1429 .1199 .0895 .0507

.3075 .3096 .2930 .2650 .2411 .2222 .2014 .1712 .1221

.6254 .4923 .4601 .3500 .2305 .1881 .3103 .6553 .9507
.



INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .70, Mastery Score: 5

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .300 .900

0.7 .0005 .0011 .0023 .0045 .0079 .0128 .0182 .0214 .0179
.0070 .013. .0225 .0363 .0529 .0E49 .0638 .0492 .0367
.0000 .0000 .0000 .0000 .0001 .0004 .0015 .0035 .0049
.0000 .0000 .0000 .0002 .0016 .0061 .0132 .0169 .0117
.9531 .9521 .9547 .9709 .9719 .9660 .9421 .8566 .78421.4 .0073 .0109 .0161 .0232 .0319 .0406 .0465 .0460 .0339
.0494 .0652 .0845 .1034 .1120 .1045 .0842 .0631 .0512
.0000 .0000 .0000 .0001 .0006 .0022 .0052 .0689 .0101
.0000 .0000 .0002 .0023 .0089 .0187 .0258 .0240 .0150
.9033 .9317 .9286 .9356 .9304 .9053 .8377 .6988 .7995

2.1 .0361 .0450 .0558 .0672 .0769 .0321 .0806 .0702 .0469
.1413 .1611 .1755 .1701 .1465 .1172 .0927 .0765 .0624
.0000 .0000 .0001 .0010 . 033 .0073 .0122 .0160 .0151
.0000 .0002 .0037 .0149 ..287 .0371 .0362 .0267 .0175
.8861 .3593 .8699 .8566 .8076 .7115 .5755 .5260 .85762.8 .1081 .1212 .1326 .1382 .1367 .1281 .1126 .0896 .0559
.2608 .2635 .2274 .1830 .1517 .1308 .1129 .0942 .0711
.0000 .0002 .0017 .0057 .0115 .0177 .0226 .0242 .0194
.0000 .0071 .0313 .0518 .0580 .0521 .0397 .0267 .0206
.8348 .7512 .6811 .5277 .3485 .2366 .2662 .5294 .9204

3.5 .2385 .2421 .2316 .2124 .1887 .1623 .1332 .1003 .0600
.3476 .2746 .2613 .2430 .2122 .1771 .1425 .1097 .0767
.0002 .0042 .0127 .0218 .0292 .0338 .0351 .0319 .0224
.0139 .0879 .1097 .0958 .0733 .0527 .0377 .0291 .0247
.5318 .0814 -.2638 -.3197 -.2249 -.0070 .3378 .7278 .9594

4.2 .3928 .3320 .2816 .2396 .2027 .1685 .1350 .0998 .0587
.8671 .6859 .4871 .3563 .2675 .2035 .1546 .1147 .0780
.0146 .0368 .0438 .0540 .0548 .0521 .0464 .0374 .0237
.3806 .2359 .1368 .0887 .0654 .0529 .0444 .0371 .0289

-.2.,964 -.8273 -.6308 -.3093 .0736 .4211 .6884 .8736 .97654.9 .2619 .2332 .2089 .1861 .1637 .1405 .1155 .0870 .0517
.7532 .4726 .3453 .2673 .2124 .1703 .1358 .1055 .0743
.1327 .1146 .1002 .0875 .0755 .0638 .0516 .0384 .0225
.4010 .2403 .1697 .1278 .0990 .0776 .0605 .0460 .0320

-.0721 .1044 .2593 .4047 .5444 .6788 .8042 .9111 .9815

5.6 .0188 .0545 .0767 .0879 .0912 .0881 .0790 .0634 .0392
.5700 .4290 .2815 .1977 .1498 .1207 .1011 .0849 .0649.1451 .1233 .1035 .0868 .0722 .0589 .0460 .0329 .0184
.3200 .2309 .2053 .1514 .1139 .0868 .0660 .0487 .0322

-.6813 -.6713 -.4685 -.1326 .1388 .4476 .7052 .8858 .97956.3 .0000 .0021 .0092 .018P .0278 .0341 .0362 .0326 .0217.0035 .0652 .1224 .1351 .1206 .0961 .0730 .0587 .0481
.0330 .0398 .0429 .0423 .0391 .0340 .0276 .0199 .0110
.1477 .1256 .0911 .0734 .0646 .0575 .0496 .0399 .0270
.8430 .7845 .5860 .3497 .2307 .2812 .5043 .8036 .9712
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HUYNH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E. *SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .70, Mastery Score: 6

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.7 .0000 .0001 .0003 .0008 .0018 .0034 .0055 .0070 .0062
.0006 .0018 .0041 .0087 .0155 .0217 .0230 .0180 .0128
.0000 .0000 .0000 .0000 .0001 .0009 .0035 .0087 .0134
.0000 .0000 .0000 .0003 .0034 .0l!0 .0324 .0456 .0340
.9699 .9696 .9762 .9854 .9861 .9821 .9659 .8988 .7701

1.4 .0008 .0015 .0029 .0051 .0083 .0119 .0148 .0156 .0120
.0083 .0139 .0223 .0323 .0390 .0386 .0316 .0227 .0178
.0000 .000C .0000 .0002 .0014 .0051 .0126 .0227 .0278
.0000 .0000 .0004 .0049 .0200 .0443 .0657 .0669 .0431
.9421 .9500 .9646 .9689 .9650 .9479 .8979 .7618 .7592

2.1 .0058 .0087 .0128 .0179 .0227 .0260 .0269 .0243 .0167
.0377 .0505 .0627 .0654 .0578 ,0455 .0342 .0268 .0219
.0000 .0000 .0002 .0021 .0074 .0170 .0299 .0418 .0421
.0000 .0003 .0078 .0327 .0663 .0917 .0965 .0768 .0488
.9339 .9295 .9389 .9306 .8988 .8271 .6921 .5566 .8075

2.3 .0243 .0312 .0381 .0429 .0447 .0434 .0392 .0318 .0201
.1036 .1146 .1009 .0774 .0590 .0474 .0398 .0331 .0254
.0000 .0003 .0037 .0126 .0264 .0423 .0568 .0644 .0549
.0001 .0147 .0674 .1180 .1411 .1363 .1112 .0769 .0560
.8737 .3864 .8505 .7500 .5853 .4121 .j294 .4676 .8849

3.5 .0726 .0794 .0791 .0743 .0670 .0581 .0480 .0363 .0218
.1943 .1289 .0991 .0080 .0767 .0642 .0517 .0398 .0278
.0003 .0086 .0275 .0492 .0689 .0836 .0909 .0870 .0644
.0278 .1870 .2498 .2350 .1934 .1474 .1066 .0784 .0670
.7918 .5267 .0912 -.1114 -.1210 -.0046 .2434 .6301 .9430

4.2 .1542 .1296 .1087 .0915 .0767 .0632 .0502 .0368 .0215
.3521 .2879 .2022 .1451 .1066 .0794 .0591 .0430 .0288
.0298 .0794 .1105 .1279 .1353 .1341 .1245 .1046 .0690
.8022 .5554 .3547 .2417 .1765 1372 .1127 .0961 .0802

-.3086 -.7747 -.6167 -.3795 -.0775 .2582 .5796 .8316 .9709
4.9 .1184 .1008 .0374 .0758 .0651 .0547 .0441 .0327 .0191

.3886 .2280 .1584 .1176 .0901 .0698 .0540 .0407 .0278

.2910 .2667 .2443 .2220 .1987 .1713 .1447 .1106 .0666

.7368 .4712 .3515 .2786 .2272 .1374 .1542 .1240 .0915
-.1735 .0072 .1745 .3366 .4947 6468 .7874 .9051 .9807

5.6 .0090 .0249 .0333 .0375 .0377 .0354 .0319 .0242 .0146
.2660 .1839 .1123 .0767 .0582 .0476 .0400 .0332 .0246
.3962 .3391 .2892 .2463 .2079 .1717 .1358 .0982 .0554
.3076 .6877 .5119 .3886 .1,017 .2371 .1856 .1409 .0954

-.8497 -.7688 -.5390 -.2004 .1665 .4908 .7351 .8974 .9813
.0000 .0010 .0042 .0083 .0118 .0141 .0145 .0127 .0081
.0017 .0302 .0539 .0565 .0479 .0367 .0277 .0227 .0184
.1566 .1606 .1565 .1451 .1288 .1091 .0368 .0619 .0337
.3057 .2748 .2456 .2287 .2098 .1861 .1579 .1247 .0831
.4519 .3216 .0749 -.0445 -.0102 .1730 .4975 .8227 .9749
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S,E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 7, Theta Zero: .80, Mastery Score: 6

Test KR21.
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.7 .0000 .0001 .0003 .0008 .0019 .0040 .0077 .0120 .0128
.0006 .0013 .0041 .0089 .0177 .0306 .0417 .0401 .0269
.0000 .0000 .0000 .0000 .0000 .0001 .0007 .0025 .0053
.0000 .0000 .0000 .0000 .0002 .0020 .0082 .0175 .0166
.9632 .9687 .9772 .9833 .9842 .9841 .9777 .9458 .79471.4 .0008 .0015 .0029 .0052 .0092 .0152 .0225 .0281 .0253
.0083 .0139 .0225 .0354 .0518 .0654 .0567 .0521 .0363
.0000 .0000 .0000 .0000 .0001 .0007 .0027 .0070 .0114
.0000 .0000 .0000 .0002 .0019 .0035 .0202 .0289 .0210
.9365 .9397 .9452 .9643 .9681 .9652 .9474 .8768 .7267

2.1 .0058 .0037 .0130 .0192 .0275 .0368 .0445 .0466 .0365
.0377 .0507 .0674 .0860 .0981 .0956 .0786 .0565 .0443
.0000 .0000 .0000 .0001 .0007 .0028 .0074 .0140 .0179
.0000 .0000 .0001 .0021 .0099 .0236 .0362 .0371 .0225
.9621 .9990 .9316 .9405 .9393 .9213 .8672 .7222 .71202.8 .0243 .0314 .0405 .0512 .0617 .0693 .0713 .0648 .0453
.1036 .1227 .1410 .1453 .1304 .1047 .0796 .0629 .0527
.0000 .0000 .0001 .0008 .0035 .0087 .0162 .0234 .0241
.0000 .0001 .0028 .0144 .0328 .0479 .0512 .0398 .0238
.9457 .8817 .8952 .8915 .8590 .7816 .6356 .4855 .7868

3.5 .0727 .0849 .0974 .1066 .1100 .1069 .0969 .0792 .0506
.2073 .2208 .2028 .1633 .1284 .1058 .0907 .0773 .0608
.0000 .0001 .0014 .0056 .0127 .0216 .0298 .0343 .0294.0000 .0044 .0282 .0572 .0727 .0713 .0569 .0372 .0274
.9990 .8197 .7922 .6907 .5166 .3276 .2359 .4034 .8945

4.2 .1724 .1828 .1820 .1720 .1561 .1364 .1132 .0859 .0515
.3187 .2430 .1978 .1835 .1665 .1441 .1192 .0938 .0668
.0001 .0032 .0122 .0239 .0348 .0430 .0470 .0447 .0326
.0067 .0803 .1258 .1241 .1014 .0741 .0508 .0374 .0341
.6902 .4634 .0329 -.1953 -.2213 -.0998 .1968 .6601 .95824.9 .3215 .2780 .2370 .2016 .1700 .1406 .1118 .0818 .0473
.5673 .5483 .4127 .3088 .2344 .1794 .1369 .1018 .0688
.0123 .0391 .0569 .0665 .0700 .0686 .0624 .0511 .0326
.3947 .3087 .1916 ,1222 .0849 .0662 .0568 .0504 .0419

-.8097 -.8201 -.6866 -.4380 -.0700 .3411 .6763 .8853 .9815

5.6 .2225 .1942 .1711 .1502 .1300 .1098 .0886 .0651 .0373
.6898 .4269 .3092 .2382 .1890 .1518 .1213 .0939 .0646.1668 .1462 .1291 .1134 .0982 .0829 .0668 .0490 .0281
.4728 .2932 .2138 .1661 .1329 .1076 .0866 .0676 .0472-.0411 .1558 .3251 .4782 .6184 .7448 .8536 .9377 .98776.3 .0065 .0274 .0433 .0521 .0551 .0532 .0470 .0366 .0215
.2743 .2993 .2145 .1514 .1132 .0920 .0795 .0684 .0509.1508 .1336 .1139 .0956 .0789 .0633 .04P3 .0333 .0177
.2805 .2955 .2444 .1943 .1540 .1217 .09',4 .0696 .0441

-.3539 -.5758 -.4350 -.1720 .1702 .5135 .7725 .9222 .9870
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HUY NH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .60, Mastery Score: 5

Test KR21.
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 .0010 .0021 .0040 .0071 .0115 .0167 .0212 .0226 .0173
.0125 .0213 .0333 .0496 .0635 .0676 .0591 .0441 .0343
.0000 .0000 .0000 .0000 .0003 .0011 .0030 .0057 .0068
.0000 .0000 .0000 .0009 .0048 .01,3 .0209 .0220 .0144
.9414 .9460 .9595 .9664 .9649 .9524 .9132 .8058 .8214

1.6 .0147 .0204 .0278 .0364 .0449 .0509 .0523 .0471 .0322
.0812 .1000 .1184 .1254 .1157 .0956 .0744 .0591 .0476
.0000 .0000 .0001 .0006 .0023 .0057 .0102 .0141 .0137
.0000 .0001 .0020 .0104 .0237 .0346 .0370 .0294 .0190
.8648 .3960 .9116 .9086 .8835 .8251 .7193 .6294 .8564

2.4 .0679 .0793 .0904 .0977 .0995 .0954 .0855 .0690 .0435
.2049 .2156 .1957 1595 .1286 .1069 .0905 .0752 .0568
.0000 .0001 .0013 .0049 .0705 .0169 .0223 .0245 .0200
.0000 .0048 .0261 .0437 .0592 .0567 .0455 .0316 .0230
.8056 .8046 .7712 .6731 .5335 .4122 .3890 .5638 .9084

3.2 .1856 .1918 .1861 .1725 .1545 .1337 .1104 .0837 .0506
.3176 .2462 .2176 .1989 .1736 .1453 .1170 .0898 .0623
.0001 .0038 .0125 .0223 .0306 .0362 .0381 .0352 .0252
.0110 .0852 .1150 .1058 .0844 .0630 .0458 .0344 .0275
.5955 .2630 -.0841 -.1817 -.1183 .0611 .3496 .6996 .9475

4.0 .3421 .2899 .2460 .2094 .1773 .1477 .1187 .0883 .0528
.7323 .5895 .4192 .3056 .2232 .1723 .1296 .0949 .0638
.0155 .0404 .0544 .0609 .0623 .0598 .0537 .0439 .0284
.4134 .2639 .1619 .1079 .G800 .0636 .0521 .0422 .0320

-.6674 -.7988 -.6005 -.2989 .0480 .3711 .6376 .8402 .9670

4.8 .2400 .2137 .1915 .1709 .1506 .1298 .1075 .0821 .0501
.6769 .4209 .3051 .2342 .1843 .1460 .1147 .0875 .0612
.1553 .1352 .1191 .1047 .0912 .0777 .0636 .0481 .0291
.4582 .2757 .1950 .1466 .1133 .0883 .0682 .0512 .0354

-.1192 .0505 .2011 .3442 .4842 .6224 .7572 .8811 .9728
5.6 .0197 .0551 .0768 .0879 .0914 .0889 .0807 .0662 .0426

.5635 .4054 .2613 .1818 .1367 .1084 .0884 .0721 .0549

.1877 .1593 .1343 .1134 .0952 .0785 .0624 .0458 .0267

.4042 .3420 .2453 .1784 .1325 .0996 .0747 .0546 .0364
-.7575 -.7159 -.5177 -.2402 .0705 .3715 .6355 .8427 .9687

6.4 .0001 .0034 .0129 .0250 .0362 .0443 .0476 .0443 .0311
.0072 .0879 .1417 .1455 .1258 .0995 .0748 .0570 .0455
.0660 .0740 .0761 .0731 .0668 .0584 .0482 .0361 .0211
.2016 .1581 .1183 .0997 .0867 .0742 .0616 .0487 .0340
.7780 .6552 .3304 .1795 .1342 .2211 .4324 .7336 .9545

1.2 .0000 .0000 .0006 .0029 .0073 .0131 .0183 .0207 .0165
.0000 .0016 .0159 .0411 .0613 .0675 .0593 .0434 .0326
.0082 .0124 .0175 .0223 .0255 .0263 .0245 .0199 .0121
.0602 .0773 .0847 .0766 .0618 .0484 .0399 .0343 .0264
.9041 .9290 .9261 .8964 .8271 .7067 .5894 .6585 .9292
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .60, Mastery Score: 6

Test KR21
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 .0001 .0003 .0007 .0016 .0031 .0052 .0072 .0081 .0065
.0016 .0039 .0081 .0148 .0220 .0255 .0232 .)171 .0128
.0000 .0000 .0000 .0000 .0005 .0022 .0062 .0122 .0156.0000 .0000 .0001 .0016 .0093 .0258 .0447 .0504 .0342.9623 .9610 .9789 .9830 .9817 .9732 .9452 .8521 .80601.6 .0022 .0039 .0065 .0100 .0139 .0171 .0186 .0174 .0122.0196 .0294 .0409 .0480 .0466 .0390 .0296 .0224 .0179
.0000 .0000 .0001 .0011 .0045 .0114 .0212 .0309 .0317.0000 .0001 .0036 .0197 .0468 .0720 .0819 .0691 .0445
.9195 .9456 .9563 .9539 .9368 .8944 .8024 .o736 .8281

2.4 .0155 .0210 .0271 .0319 .0344 .0343 .0316 .0260 .0167
.0788 .0923 .0876 .0705 .0539 .0422 .0344 .0283 .0216.0000 .0002 .0024 .0093 .0206 .0344 .0473 .0545 .0468.0r11 .0086 .0488 .0953 .1218 .1235 .1050 .0752 .0528
.9122 .9060 .8876 .8241 .7099 .5670 .4693 .5460 .88273.2 .0590 .0661 .0671 .0638 .0581 .0509 .0423 .0323 .0196.1767 .1237 .0906 .0776 .0670 .0561 .0452 .0347 .0241.0002 .0069 .0235 .0434 .0617 .0157 .0828 .0791 .0594
.0194 .1575 .2246 .2191 .1854 .1450 .1075 .0786 .0627
.8087 .6220 .2582 .0398 .0057 .0988 .3092 .6364 .9326

4.0 .1415 .1195 .1005 .0848 .0712 .0588 .0469 .0347 .0206.3120 .2597 .1831 .1313 .0962 .0713 .0527 .0379 .0251
.0277 .0756 .1060 .1230 .1302 .1292 .1201 .1014 .0677.7585 .5392 .3504 .2435 .1808 .1413 .1140 .0933 .0737-.7690 -.7415 -.5728 -.3310 -.0420 .2639 .5563 .8026 .9606

4.8 .1141 .097/ .0846 .0736 .0635 .0537 .0437 .0328 .0197
.3648 .2132 .1474 .1088 .0827 .0635 .0484 .0360 .0245
.2942 .2688 .2459 .2233 .2000 .1750 .1469 .1136 .0702
.7609 .4845 .3589 .2815 .2264 .1834 .1474 .1153 .0833-.1750 -.0072 .1470 .2972 .4464 .5949 .7402 .d735 .97135.6 .0099 .0265 .0356 .0395 .0400 .0379 .0336 .0269 .0169
.2757 .1832 .1109 .0749 .0564 .0452 .0370 .0299 .0222.4197 .3591 .3071 .2629 .2235 .1865 .1499 .1110 .0654.8434 .6973 .5082 .3789 .2892 .2233 .1718 .1288 .0879-.8705 -.7914 -.5732 -.2519 .0980 .4108 .6645 .8550 .9705

6.4 .0000 0017 .0062 .0116 .0163 .0193 .0202 .0182 .0125
.0037 .0427 .0657 .0642 .0530 .0404 .0300 .0232 .0185
.2114 .2152 .2083 .1931 .1726 .1486 .1213 .0901 .0523.3364 .2919 .2638 .2428 .2160 .1854 .1537 .1212 .0841.4526 .2347 -.0320 -.1131 -.0492 .1308 .4208 .7532 .95937.2 .0000 .0000 .0003 .0014 .0034 .0058 .0079 .0086 .0067.0000 .0008 .0077 .0190 .0272 .0286 .0241 .0173 .0133
.0466 .0559 .0653 .0725 .0755 .0733 ,0653 .0513 .0304.1782 .1934 .1917 .1637 .1402 .1179 .1030 .0895 .0672.9990 .8143 .8081 .7535 .6A69 .5167 .4633 .6382 .9361
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HUYNH

Table of the False Positive Error and its
S.E. *SQRT(M), the False Negative Error and its

S.E.SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .60. Mastery Score: 7

Test KR21...
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 .0000 .0000 .0001 .0002 .0006 .0011 .0017 .0020 .0016
.0001 .0004 .0013 .0029 .0050 .0063 .0060 .0044 .0032
.0000 .0000 .0000 .0001 .0007 .0033 .0098 .0204 .0285
.0000 .0000 .0001 .0023 .0136 .0397 .0736 .0913 .0669
.9741 .9732 .9882 .9907 .9894 .9827 .9601 .8730 .7600

1.6 .00O2 .0005 .0010 .0019 .0029 .0039 .0044 .0043 .0031
.0027 .0052 .0089 .0116 .0120 .0103 .0077 .0057 .0045
.0000 .0000 .0001 .0015 .0065 .0173 .0340 .0526 .0587
.0000 .0001 .0050 .0283 .0703 .1147 .1407 .1301 .0855
.9466 .9694 .9766 .9742 .9613 .9280 .8458 .6873 .7596

2.4 .0022 .0036 .0054 .0069 .0079 .0082 .0078 .0065 .0042
.0172 .0235 .0241 .0197 .0148 ,0111 .0087 .0071 .0055
.0000 .0002 .0034 .0134 .0308 .0536 .0776 .0950 .0882
.0001 .0118 .0692 .1413 .1909 .2071 .1903 .1454 .0984
.9254 .9506 .9391 .8964 .8072 .6652 .5156 .4915 .8157

3.2 .0117 .0146 .0157 .0155 .0144 .0127 .0107 .0082 .0050
.0570 .0400 .0257 .0201 .0169 .0141 .0114 .0088 .0062
.0003 .0096 .0335 .0641 .0948 .1215 .1397 .1425 .1138
.0261 .2213 .3321 .3441 .3115 .2609 .2034 .1482 .1142
.9018 .8029 .5244 .2430 .1140 .1160 .2325 .5049 .8883

4.0 .0369 .0314 .0263 .0221 .0185 .0153 .0121 .0090 .0053
.0801 .0702 .0497 .0354 .0257 .0189 .0138 .0099 .0065
.0379 .1074 .1565 .1887 .2081 .2157 .2102 .1867 .1321

1.0573 .8133 .5720 .4234 .3259 .2557 .2026 .1632 .1350
-.6144 -.F306 -.5491 -.3689 -.1564 .0904 .3788 .6936 .9379

4.8 .0342 .0281 .0238 .0203 .0172 .0143 .0115 .0086 .0051
.1249 .0682 .0450 .0320 .0236 .0176 .0132 .0096 .0064
.4216 .4039 .3850 .3637 .3385 .3077 .2688 .2165 .1396

1.0234 .6812 .5207 .4203 .3480 .2913 .2438 .2014 .1569
-.3072 -.1760 -.0400 .1080 .2713 .4503 .6399 .8234 .9606

5.6 .0031 .0080 .0105 .0113 .0112 .0104 .0090 .0071 .0044
.0551 .0523 .0300 .0200 .0152 .0123 .0101 .0081 .0059
.6969 .6106 .5362 .4714 .4112 .3519 .2898 .2199 .1327

1.1342 .9837 .7439 .5779 .4617 .3742 .3023 .2390 .1724
-.9456 -.3723 -.6626 -.3226 .0468 .3688 .6311 .8352 .9653

6.4 .0000 .0005 .0019 .0034 .0047 .0054 .0055 .0049 .0033
.0012 .0131 .0193 .0180 .0143 .0107 .0079 .0062 .0049
.4?88 .4743 .4457 .4063 .3600 .3085 .2515 .1868 .1086
.4306 .4538 .4752 .4590 .4171 .3640 .3066 .2452 .1726

-.1452 -.3243 -.4345 -.3971 -.2513 .0049 .3680 .7411 .9566
7.2 .0000 .0000 .0001 .0004 .0010 .0017 .0022 .0023 .0018

.0000 .0002 .0023 .0056 .0077 .0078 .0064 .0045 .0035

.1923 .1972 .2005 .1992 .1908 .1739 .1479 .1122 .0647

.3309 .3331 .3233 .2999 .2749 .2531 .2303 .1983 .1444

.9990 .4131 .4157 .3476 .2511 .1988 .2770 .5860 .9330
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S,E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .70, Mastery Score. 6

Test KR21.,
'lean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.3 .0001 0003 .0007 .0016 .0034 .0065 .0106 .0142 .0132.0016 .0039 .0082 .0158 .0275 .0399 .0453 .0378 .0260
.0000 .0000 .0000 .0000 .0000 .0003 .0014 .0040 .0066
.0001 .0000 .0000 .0001 .0010 .0052 .0141 .0219 .0169.9658 .9642 .9619 .9793 .9816 .9795 .9676 .9184 .79811,6 .0022 .0039 .0065 .0107 .0166 .023( .0298 .0322 .0256.0196 .0294 .0430 .0596 .0730 .0756 .0651 .0476 .0358.0000 .0000 .0000 .0001 .0005 .0021 .0056 .0108 .0138.0000 .0000 .0001 .0014 .0075 .0192 .0311 .0333 .0213.9205 .9269 .9483 .9561 .9558 .9435 .9053 .7990 .7740

2.4 .0155 0211 .0285 .0375 .0466 .0534 .0557 .0512 .0361.0788 .0968 .1150 .1222 .1127 .0926 .0710 .0548 .0441
.0000 .0000 .0001 .0007 .0030 .0077 .0143 .0206 .0211.0000 .0001 .0024 .0128 .0297 .0442 .0483 .0388 .0239.9497 .8958 .9108 .9088 .8840 .8254 .7158 .5980 .81293.2 .0591 .0702 .0815 .0898 .0931 .0908 .0825 676 .0436.1853 .1989 .1837 .1493 .1181 .0964 .0809 .0671 .0512.0000 .0001 .0014 .0055 .0124 .0208 .0284 .0324 .0276.0000 .0046 .0283 .0562 .0710 .0699 .0569 .0389 .0274.3242 .8289 .8037 .7149 .5710 .4221 .3564 .4961 .8876

4.0 .1574 .1664 .1647 .1549 .1403 .1224 .1018 .0777 .0473
.3006 .2283 .1883 .1714 .1517 .1286 .1044 .0806 .0563.0031 .0037 .0112 .0249 .0355 .0433 .0468 .0444 .0325.0087 .0874 .1294 .1249 .1021 .0764 .0545 .0400 .03286774 .4312 .0392 -.1386 -.1322 .0056 .2768 .6571 .9439

4.3 .3037 .2600 .2211 .1881 .1590 .1321 .1059 .0785 .0467.5887 .5190 .3782 .2779 .2080 .1571 .1181 .0865 .0581.0148 .0431 .0607 .0698 .0728 .0710 .0647 .0534 .0348.4356 .3147 .i947 .1283 .0927 .0727 .0599 .0497 .0391-.8272 -.7993 -.6354 -.3670 -.0233 .3267 .6243 .8429 .9697i.6 .2163 .1902 .1688 .1493 .1306 .1116 .0915 .0690 .0413.6392 .3932 .2827 .2157 .1690 .1336 .1050 .0802 .0557.1765 .1552 .1377 .121? .1062 .0907 .0743 .059 .0334.4995 .3058 .2197 .1678 .1317 .1043 .0821 .0628 .0440-.1046 .0726 .2289 .3758 .5173 .6543 .7840 .8982 .9777

6.4 .0120 .0395 0578 .0675 .0708 .0689 .0621 .0502 .0314.4015 .3366 .2249 .1572 .1178 .0937 .0773 .0641 .0486.1993 .1725 .1466 .1240 .1040 .0854 .0673 .0486 .0276.3767 .3574 .2705 .2031 .1546 .1187 .0907 .0673 .0447-.6497 -.6773 -.4938 -.2202 .0976 .4098 .6764 .8702 .97577.2 .0000 .0011 .0056 .0126 .0198 .0252 .0276 .0255 .0173.0011 .0362 .0815 .0982 .0921 .0752 .0570 .0443 .0359.0466 .0548 .0593 .0592 .0554 .0489 .0402 .0296 .0166.1774 .1624 .1247 .1003 .0871 .0773 .067.2 .0547 .0377.8033 .7707 .6163 .4106 .2788 .2913 .4740 .7722 .9653

---------------------------------------Zr7D
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and tlie Correlation between FP and FN
Number of Items: 8, Theta Zero: .70, Mastery Score: 7

Test KR21'.

HUYNH ]
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.R .0000 .0000 .0001 .0003 .0007 .0016 .0030 .0044 .0043
.0001 .0004 .0013 .0033 .0072 .0120 .0149 .0129 .0086
.0000 .0000 .0000 .0000 .0001 .0006 .0029 .0085 .0154
.0000 .0000 .0000 .0001 .0019 .0102 .0294 .0500 .0428
.9769 .9754 .9755 .9837 .9902 .9884 .9796 .9401 .7917

1.6 .0002 .0005 .0010 .0021 .0040 .0064 .0089 .0102 .0085
.0027 .0052 .0097 .0162 .0226 .0252 .0226 .0164 .0118
.0000 .0000 .0000 .0001 .0009 .0040 .0115 .0237 .0328
.0000 .0000 .0001 .0026 .0143 .0388 .0674 .0788 .0540
.9484 .9507 .9719 .9770 .9761 .9667 .9373 .8411 .7384

2.4 .0022 .0036 .0059 .0091 .0127 .0158 .0174 .0166 .0121
.0172 .0253 .0350 .0411 .0399 .0332 .0249 .0183 .0145
.0000 .0000 .0001 .0013 .0058 . 1 .0300 .0460 .0508
.0000 .0001 .0043 .0240 .0585 .u,../ .1091 .0955 .0592
.9242 .9432 .9542 .9524 .9350 .8913 .7944 .6358 .7526

3.2 .0118 .0162 .0213 .0256 .0282 .0286 .0268 .0224 .0147
.0604 .0729 .0712 .0579 .0439 .0337 .0270 .0221 .0171
.0000 .0002 .0025 .0104 .0243 .0425 .0612 .0741 .0676
.0000 .0082 .0522 .1092 .1465 .1547 .1358 .0979 .0653
.8985 .9145 .9010 .8447 .7329 .5729 .4322 .4524 .8341

4.0 .0427 .0494 .0515 .0499 .0461 .0407 .0342 .0263 .0161
.1417 .1031 .0711 .0588 .0510 .0432 .0352 .0272 .0191
.0001 .0066 .0246 .0482 .0719 .0916 .1040 .1040 .0809
.0151 .1596 .2510 .2592 .2276 .1822 .1349 .0953 .0770
.8432 .7172 .3363 .1022 -.0016 .0350 .2032 .5407 .9161

4.8 .1075 .0926 .0783 .0662 .0556 .0459 .0366 .0270 .0160
.2095 .1940 .1413 .1026 .0757 .0563 .0417 .0301 .0200
.0262 .0600 .1179 .1416 .1541 .1569 .1494 .1290 .0881
.7857 .6274 .4255 .2990 .2197 .1682 .1341 .1116 .0934

-.6800 -.7355 -.6071 -.4091 -.1523 .1534 .4820 .7768 .9593
5.6 .0392 .0752 .0648 .0560 .0479 .0402 .0325 ,0241 .0143

.2997 .1725 .118: .0867 .0657 .0504 .0385 .0287 .0194

.3332 .3101 .2879 .2649 .2401 .2122 .1797 .1398 .0862

.8203 .529 .3978 .3173 .2604 .2163 .1793 .1454 .1089
-.2337 -.0644 .0983 .2615 .4259 .5891 .7453 .8817 .9747

6.4 .0052 .0165 .0233 .0264 .0270 .0256 .0226 .0178 .0109
.1715 .1332 .0836 .0565 .0423 .0340 .0282 .0232 .0172
.4701 .4098 .3538 .3043 .2592 .2160 .1725 .1262 .0726
.3019 .7454 .5746 .4448 .3502 .2782 .2199 .1684 .1155

-.8396 -.7863 -.5847 -.2709 .0909 .4241 .6891 .8746 .9760
7.2 .0000 .0005 .0023 .0051 .0078 .0096 .0102 .0092 .0061

.0005 .0154 .0331 .0330 .0341 .0268 .0200 .0158 .0128

.1923 .1955 .1915 .1793 .1610 .1381 .1112 .0804 .0445

.3303 .3107 .2820 .2626 .2424 .2173 .1868 .1498 .1017

.4109 .3041 .1101 -.0118 -.0051 .1379 .4302 .7733 .9674
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 8, Theta Zero: .80, Mastery Score: 7

Test KR21...
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.8 .0000 .0000 .0001 .0003 .0007 .0019 .0043 .0079 .0098
.0001 .0004 .0013 .0034 .0080 .0168 .0276 .0313 .0212
.0000 .0000 .0000 .0000 .0000 .0001 .0005 .0023 .0061
.0000 .0000 .0000 .0000 .0001 .0012 .0067 .0184 .0215
.9684 .9738 .9681 .9825 .9881 .9889 .9858 .9683 .84981.6 .0002 .0005 .0010 .0022 .0044 .0083 .0140 .0197 .0199
.0027 .0052 .0097 .0174 .0293 .0427 .0498 .0427 .0277
.0000 .0000 .0000 .0000 .0000 .0004 .0023 .0071 .0135
.0000 .0000 .0000 .0001 .0011 .0064 .0190 .0330 .0277
.9466 .9597 .9939 .9717 .9761 .9759 .9665 .9249 .7633

2.4 .0022 .0036 .0060 .0098 .0154 .0'28 .0303 .0345 .0293
.0172 .0253 .0369 .0521 .0665 .0720 .0641 .0465 .0331
.0000 .0000 .0000 .0000 .0004 .0022 .0070 .0151 .0218
.0000 .0000 .0000 .0011 .0072 .0212 .0385 .0455 .0297
.9238 .9263 .9446 .9544 .9565 .9476 .9159 .8150 .69603.2 .0118 .0162 .0224 .0305 .0396 .0477 .0522 .0501 .0370.0604 .0761 .0940 .1060 .1033 .0873 .0662 .0489 .0395
.0000 .0000 .0000 .0005 .0028 .0081 .0168 .0267 .0302.0000 .0000 .0015 .0105 .0295 .0500 .0603 .0513 .0300.9990 .9036 .9187 .9219 .9059 .8597 .7559 .5838 .7253

4.0 .0428 .0523 .0631 .0729 .0790 .0800 .0751 .0634 .0420.1468 .1647 .1638 .1391 .1089 .0852 .0697 .0584 .0463
.0000 .0000 .0009 .0046 .0121 .0224 .0335 .0412 .0377
.0000 .0023 .0216 .0536 .0779 .0843 .0729 .0493 .0328.9990 .8593 .3543 .3001 .6840 .5117 .3566 .3889 .8454

4.3 .1190 .1308 .1351 .1314 .1221 .1086 .0916 .0706 .0433.2669 .2187 .1620 .1387 .1248 .1093 .0916 .0726 .0520.0000 .0024 .0111 .0241 .0377 .0492 .0562 .0559 .0427
.0033 .0677 .1290 .1420 .1252 .0968 .0678 .0469 .0404
.7547 .6547 .3362 .0335 -.0906 -.0553 .1479 .5656 .93935.6 .2562 .2262 .1945 .1661 .1405 .1166 .0930 .06E5 .0401
.3796 .4150 .3257 .2474 .1885 .1441 .1095 .0808 .0544.0109 .0407 .0634 .0772 .0839 .0843 .0787 .0661 .0434
.391,' .3634 .2430 .1609 .1115 .0337 .0690 .0603 .0510-.6566 -.7783 -.6745 -.4724 -.1639 .2222 .5917 .6498 .9752

6.4 .1902 .1648 .1445 .1264 .1093 .0922 .0745 .0550 .0319.5973 .3640 .2604 .1983 .1556 .1236 .0978 .0751 .0514.2027 .1805 .1613 .1434 .1255 .1071 .0874 .0651 .0380.5447 .3416 .2515 .1972 .1592 .1300 .1055 .0331 .0589-.0954 .1005 .2723 .4303 .5771 .7119 .8307 .9256 .98477.2 .0038 .0196 .0331 .0412 .0445 .0437 .0391 .0309 .0184.1806 .2345 .1769 .1266 .0939 .0746 .0632 .0541 .0406.1877 .1694 .1464 .1242 .1035 .0838 .0646 .0450 .0242.3106 .3355 .2875 .2331 .1872 .1494 .1171 .0873 .0561-.2714 -.5543 -.4456 -.2119 .1073 .4508 .7323 .9060 .9840

285



HUYNH

Table of the False Positive Error and its
S.L.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 9, Theta Zero: .60, Mastery Score: 6

Test KR21.
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

0.9 .0002 .0005 .0013 .0027 .0051 .0086 .0123 .0145 .0121
.0033 .0070 .0134 .0234 .0350 .0427 .0413 .0314 .0227
.0000 .0000 .0000 .0000 .0002 .0010 .0033 .0070 .0094
.0000 .0000 .0000 .0005 .0040 .0130 .0250 .0303 .0208
.9553 .9576 .9732 .9777 .9782 .9721 .9507 .8781 .8140

1.8 .0050 .0079 .0121 .0i78 .0243 .0300 .0332 .0318 .0229
.0365 .0503 .0666 .0787 .0794 .0692 .0538 .0403 .0316
.0000 .0000 .0000 .0004 .0022 .0061 .0121 .0184 .0194
.0000 .0000 .0013 .0039 .0245 .0411 .0491 .0425 .0268
.9172 .9239 .9409 .9426 .9301 .8959 .8213 .7064 .8260

2.7 .0321 .0405 .0498 .0576 .0620 .0622 .0578 .0482 .0315
.1291 .1458 .1429 .1205 .0954 .0756 .0615 .0503 .0384
.0000 .0001 .0011 .0048 .0115 .0202 .0285 .0333 .0289
.0000 .0032 .0240 .0533 .0726 .0759 .0652 .0465 .0317
.9990 .8697 .8600 .8060 .7067 .5814 .4928 .5599 .8795

3.6 .1112 .1205 .1217 .1161 .1061 .0933 .0781 .0600 .0369
.2556 .1930 .1534 .1337 .1169 .0903 .0802 .0613 .0429
.0001 .0035 .0133 .0259 .0379 .0469 .0515 .0494 .0368
.0073 .0865 .1371 .1384 .1177 .0913 .0670 .0487 .0376
.7300 .5630 .2302 .0269 -.0013 .0998 .3191 .6438 .9309

4.5 .2466 .2115 .1798 .1529 .1293 .1076 .0864 .0645 .0388
.4724 .4206 .3063 .2241 .1667 .1250 .0931 .0673 .0446
.0162 .0432 .0687 .0797 .0838 .0823 .0757 .0633 .0420
4312 .3605 .2305 .1565 .1148 .0896 .0722 .0581 .0442

-.7792 -.7624 -.5941 -.3363 -.0234 .2951 .5797 .8087 .9589

5.4 .1372 .1640 .1452 .1284 .1122 .0961 .0792 .0603 .0370
.5497 .3338 .2375 .1794 .1390 .1085 .C839 .0629 .0431
.2077 .1843 .1648 .1468 .1292 .1113 .0922 .0706 .0435
.5763 .3552 .2559 .1956 .1534 .1210 .0945 .0715 .0496

-.1406 .0265 .1791 .3226 .4631 .6023 .7392 .8679 .9680
6.3 .0124 .03P5 .0552 .0639 .0668 .0651 .0592 .0486 .0315

.3379 .3026 .1962 .1352 .1006 .0792 .0640 .0515 .0386

.2616 .2256 .1922 .1636 .1383 .1148 .0918 .0679 .0402

.4685 .4445 .3291 .2439 .1835 .1392 .1050 .0771 .0515
-.7476 -.7303 -.5454 -.2716 .0433 .3497 .6172 .8294 .9641

7.2 .0000 .0018 .0079 .0165 .0246 .0311 .0340 .0321 .0230
.0027 .0508 .0940 .1024 .0911 .0729 .0546 .0408 .0318
.0964 .1057 .1086 .104(J .0967 .0852 .0710 .0537 .0319
.2452 .2073 .1621 .1375 ."01 .1033 .0362 .0685 .0482
.71C2 .6264 .3892 .1985 .1440 .2166 .4119 .7090 .9475

8.1 .0000 .0000 .0003 .0016 .0044 .0085 .0125 .0147 .0121
.0000 .0005 .0073 .0239 .0396 .0466 .0427 .0316 .0228
.0125 .0179 .0244 .0309 .0356 .0374 .0355 .0294 .0183
.0796 .0985 .1099 .1042 .0874 .0696 .0565 .0480 ,1374

-.6261 .9112 .9137 .8924 .8375 .7377 .6223 .6506 .9173
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lt:FERENCE FOR ERROR ::AYES

Table of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
I;umbe...- of Items: 9, Theta Zero: .60, Mastery Score: 7

Test KR21.-
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900
0.9 .0000 .0001 .0002 .0005 .0013 .0025 .0039 .0049 .0043.0004 .0011 .0028 .0062 .0109 .0146 .0149 .0115 .0030.0000 .0000 .0000 .0000 .0003 .0018 .0058 .0130 .0188.0000 .0000 .0000 .0009 .0066 .0225 .0460 .0599 .0437.9695 .9708 .9840 .9878 .9878 .9830 .9666 .9043 .80031.8 .0007 .0014 .0026 .0045 .0070 .0094 .0110 .0110 .0081.0072 .0124 .0198 .0265 .0286 .0257 .0200 .0145 .0111.0000 .0000 .0001 .0007 .0036 .0105 .0218 .0348 .0391.0000 .0000 .0020 .0146 .0418 .0736 .0935 .0868 .0557.9353 .9542 .9681 .9687 .9592 .9332 .8704 .7433 .7925
2.7 .0065 .0096 .0136 .0173 .0199 .0208 .0199 .0170 .0113.0408 .0527 .0557 .0430 .0373 .0284 .0222 .0136.0000 .0001 .0018 .0079 .0196 .0355 .0523 .0642 .0589.0000 .0050 .0388 .0899 .1286 .1421 .1297 .0969 .0642.9415 .9315 .9258 .8399 .8146 .6952 .5672 .5502 .34243.6 .0315 .0376 .0401 .0396 .0369 .0329 .0278 .0216 .0133.1197 .0919 .0627 .0496 .0421 .0354 .0287 .0222 .0155.0001 .0055 .0217 .0437 .0661 .0850 .0970 .0973 .0760.0112 .1337 .2308 .2460 .2215 .1814 .1378 .0991 .0752.8607 .7730 .5173 .2557 .1360 .1514 .2391 .5700 .9067
4.5 .0920 .0793 .0672 .0569 .0478 .0396 .0317 .0235 .0141.1768 .1644 .1199 .0870 .0639 .0473 .0348 .0249 .0163.0253 .0783 .1158 .1392 .1516 .1542 .1470 .1273 .0878.7662 .6201 .4264 .3049 .2282 .1763 .1402 .1127 .0390-.6164 -.6950 -.5579 -.3533 -.1026 .1795 .4743 .7513 .9474
5.4 .0,-,07 .0680 .0586 .0507 .0435 .0366 .0298 .0224 .0136.2680 .1531 .1040 .0757 .0569 .0432 .0325 .0238 .0160.3418 .3175 .2946 .2711 .2459 .2119 .1855 .1458 .0920.8577 .5539 .4148 .3287 .2670 .21n4 .1772 .1399 .1019-.2255 -.0679 .0821 .2324 .3858 .5423 .6993 .8481 .96356.3 .0056 .0168 .0234 .0263 .0268 .0255 .0227 .0183 .0116.1726 .1254 .0767 .0514 .0383 .0304 .0247 .0197 .0144.5077 .4417 .3821 .3301 .2330 .2381 .1929 .1444 .0865.3679 .7774 .5858 .4457 .3454 .2699 .2098 .1584 .1089-.3715 -.8128 -.6168 -.3108 .0380 .3589 .6249 .8311 .9636
7.2 .0000 .0008 .0034 .0070 .0102 .0125 .0133 .0123 .0085.0012 .0225 .0399 .0416 .0355 .0275 .0203 .0153 .0120.2676 .2700 .2621 .2445 .2202 .1910 .1573 .1130 .0696.3643 .3346 .3085 .2875 .2591 .2250 .1883 .1496 .1049.3547 .1930 -.0314 -.1168 -.0674 .0945 .3694 .7119 .94958.1 .0000 .0000 .0001 .0007 .0019 .0035 .0050 .0057 .0045.0000 .0002 .0034 .0102 .0162 .0183 .0161 .0117 .0086.0623 .0722 .0824 .0908 .0949 .0930 .0841 .0671 .0406.2049 .2192 .2216 .2027 .1733 .1464 .1268 .1100 .0339-.3332 .7761 .7781 .7411 .6564 .5413 .4717 .6029 .9196
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HUYNH

Table of the False Positive Error and its
S,E,*SQRT(M), the Falce Negative Error and its

S,E,*SQRT(M), and the Correlation betveen FP and FN
Number of Items: 9, Theta Zero: ,70, h,..itery Score: 7

Test KR21.
Mean .100 ,200 ,300 .400 .500 .600 .700 .800 .900

0.9 .0000 .0001 .0002 .0005 .1014 .0032 , ,o1 .0393 .0097
.0004 .0011 .0023 ,0065 .0136 .0233 .0307 .0287 .0189
.0000 ,0000 ,0000 .0000 .0000 .0002 .0013 .0042 .0081
.0000 .0000 .0000 .0000 .0006 .0041 .0138 .0258 .0228
.9732 .9716 .9713 .9811 .9868 .9864 .9798 .9506 .8288

1.8 .0007 ,0014 .0026 .0043 .0085 .0135 .0189 .0223 .0192
.0072 .0124 .0206 .0324 .0451 .0522 .0490 .0367 .0256
.0000 .0000 .0000 .00'1 .0003 .0018 .0056 .0122 .0175
.0000 .0000 .0000 ')0C .0058 .0182 .0344 .0421 .0288
.9402 .9349 .9596 .9673 .9694 .9630 .9401 .8661 .7706

2.7 .0065 .0097 .0143 .0206 .0273 .0343 .0382 .0371 .0275
.0403 .0545 .0707 ,0827 .0823 .0117 .0553 .0406 .0314
.0000 .0000 .0000 .0005 .0026 .0076 .0156 .0245 .0274
.0000 .0000 .0014 .0101 .0284 .0484 .0589 .0518 .0314
.9517 .9203 .9340 .9366 .9238 .8875 .8086 .6779 .7758

3.6 .0315 .0397 .0491 .0574 .0626 .0636 .0599 .0506 .0337
.1231 .1404 .1400 .1192 .0939 .U735 .0593 .0483 .0370
.0000 .0000 .0011 .0050 .0125 .0228 .0334 .0404 .0366
.0000 .0023 .0237 .0563 .0800 .0859 .U749 .0531 .0348
.8773 .8733 .3673 .8175 .7177 .5736 .4611 .496.

4.5 .1016 .1120 .1151 .1114 .1030 .0914 .0771 .0r-7 .0370
.2441 .1946 .1451 .1237 .1090 .0932 ,0764 .0J/.. .0414
.0000 .0030 .0129 .0266 .0404 .0517 0582 .0573 .0438
.0051 .0804 .1410 .1496 .1306 .1022 .0741 .0525 .0412
.7618 .6407 .3272 .0712 -.0114 .0492 .1472 .5920 .9246

5.4 .2299 .2001 .1 10 .1458 .1233 .1026 .0824 .0613 .0348
.3390 .3322 .LJ75 .2133 .15r8 .1203 .0899 .0652 .0433
.0142 .0474 .0707 .0843 .0904 .0903 .08/1 .0710 .0475
.4631 .3363 .2547 .1723 .1239 .0951 .0766 .0630 ,0497

-.7099 -.7606 -,6249 -.3979 -,0959 .2409 .5571 .8079 .9616
6.3 .1,31 .1531 .1348 .1185 .1031 .0878 .0719 .0543 .0327

.5347 .3228 .2237 .1723 1334 .1042 .0808 .0609 .0418

.2199 .1966 .1767 .1579 .1394 .1202 .0995 .0759 .0462

.5916 .3684 ,2682 .2074 .1646 .1317 .1046 .0806 .0569
-.1419 .0338 .1908 .3400 .4847 .6259 .7615 .3839 .9732

7.2 .0076 .0283 .0431 .0514 .0544 .0533 .0484 .0394 .0249
.2774 .2600 .1775 .1239 .0920 .0724 .0590 .0483 .0364
.2569 .2259 .1940 .1655 .1397 .1155 .0916 .0668 .0385
.4220 .4275 .3345 .2359 .1970 .1524 .1172 .0874 .0585

-.6166 -.6837 - .518: .0551 .3704 .6459 .3530 .9713
8.1 .0000 .0005 .0034 .0084 .0139 .0185 .0203 .0197 .0137

.0003 .0197 .0534 .0703 .0693 .0533 .0443 .0335 .0268

.0623 .0715 .0772 .0777 .0736 .0653 .0543 .0408 .0232
2046 .1961 .1583 .1291 .1113 .0985 .0058 .0707 .0496
.7613 .7473 .6261 .4490 .3159 .3020 .4491 .7395 .9583
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E. *SQET(M), and the Correlation between FP and FN
Number of Items: 9, Theta Zero: .60, Mastery Score: R

Test KR21.
Mean .100 .200 .300 .400 .500 .600 .700 .300 .900

0.9 .0000 .0000 .0000 .0001 .0002 .0005 .0008 .0011 .0010.0000 .0001 ..004 .0011 .0022 .0033 .0035 .0027 .0019.0000 .0000 .0000 .0000 .0004 .0024 .0082 .0196 .0310.0000 .0000 .0000 .0011 .0087 .0312 .0677 .0968 .0783.9778 .9791 .9905 .9929 .9925 .9835 .9746 .9161 .76211.8 .0001 .0002 .0004 .0008 .0014 .0020 .0024 .0025 .0019.0002 .0019 .0038 .0057 .0066 .0062 .0049 .0034 .0026.0000 .0000 .0001 .0009 .0048 .0144 .0%14 .0534 .0655.0000 .0000 .0026 .0191 .0566 .1050 .1434 .1463 .0991.9557 .9724 .981.8 .9815 .9738 .9524 .8961 .7567 .7222

2.7 .0008 .0015 .0025 .0035 .0042 .0046 .0045 .0039 .0027.0075 .011r .0134 .0120 .0094 .0070 .0053 .0042 .0032.0000 .0001 .0022 .0104 .0265 .0500 .0773 .1008 .1004.0000 .0062 .0502 .1°04 .1808 .2127 .2097 .1697 .1109.9340 .9614 .0574 .9317 .8730 .7638 .6111 .5129 .75883.6 .0056 .0076 .J086 .0038 .0084 .0076 .0065 .0051 .0032.0327 .0263 .0169 .0122 .0099 .0083 .0067 .0052 .0037.0001 .0070 .0282 .0586 .0917 .1230 .1474 .1570 .1320.0139 .1777 .3083 .3462 .3317 .2909 .2353 .1726 .1253.9225 .8743 .6980 .4398 .2524 .1862 .2351 .4402 .3437

4.5 .0217 .0190 .0161 .0136 .0115 .0095 .0076 .0056 .0034.0415 .0399 .0194 .0213 .0156 .0115 .0084 .006n .0039.0318 .1014 .155i .1931 .2185 .23'0 .2313 .2120 .1556.9750 .8416 .6204 .4726 .3708 .2938 .2315 .1'1 .1476-.3596 -.6190 -.5216 -.3695 -.1882 .0258 .2898 .8.'0 .9136

5.4 .0220 .0179 .0151 .0128 .0103 .0090 .0073 .0054 .0032.0&24 .0441 .0287 .0202 .0148 .0110 .0081 .0058 .0039.4467 .4327 .4169 .3932 .3750 .31" .3065 .2517 .16661.0888 .7237 .5614 .4557 .3788 .3179 .2665 .2207 .1737-.3446 -.2303 -.1100 .0268 .1339 .3649 .5678 .7776 .94716.3 .001.6 .0046 .0063 .0069 .0069 .0064 .0056 .0045 .0028.0405 .0328 .0191 .0126 .0095 .0076 .0062 .0049 .0035.7620 .6781 .6020 .5341 .4702 .4063 .3383 .2602 .16021.0340 .9880 .7677 .6081 .4932 .4051 .3319 .2652 .1939-.9503 -.3953 -.7189 -.4094 -.0472 .2359 .5634 .7985 .9550

7.2 .0000 .0002 .0009 .0019 .0027 .0032 .0033 .0030 .0021.0004 .0063 .0107 .0107 .0089 .0067 .0049 .0038 .0029.5532 .5374 .5086 .4677 .4182 .3617 .2977 .2237 .1321.4318 .4563 .4851 .4802 .4463 .3967 .3392 .2750 .1964-.2196 -.3339 -.4381 -.4165 -.2916 -.0601 .2874 .6845 .94378.1 .0000 .0000 .0000 .0002 .0005 .0009 .0013 .0014 .0011.0000 .0001 .0009 .0027 .0042 .0046 .0039 .0028 .0021.2238 .2319 .2336 .2315 .2224 .2043 .1758 .1351 .0793.3515 .3529 .3472 .3288 .3047 .2812 .2565 .2231 .1654.9990 .3632 .3626 .3239 .2564 .2043 .2534 .5227 .9118
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HUYNH

Table of the Fal..1 Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items: 9, Theta Zero: .70, Mastery Score:

Test KR21=
Mran .100 .200 .300 .400 .500 .600 .700 .800 .900

0.9 .0000 .0000 .0000 .0001 .0003 .0007 .0016 .0027 .0030
.0000 .0001 .0004 .0012 .0032 .0064 .0093 .0091 .0059
.0000 .0000 .0000 .0000 .0000 .0004 .0023 .0080 .0169
.0000 .6)00 .0000 .0000 .0010 .0071 .0253 .0517 .0515
.9808 .9797 .9799 .9903 .9925 .9919 .9866 .9622 .8268

1.3 .0001 .0002 .0004 .0009 .0019 .0035 .0053 .0066 .0060
.0008 .0019 .0040 .0078 .0126 .0159 .0157 .0119 .0080
.0000 .0000 .0000 .0000 .0006 .0030 .0101 .0236 .0369
.0000 .0000 .0000 .0014 .0098 .0323 .0654 .0875 .0656
.9594 .9537 .9763 .9819 .9825 .9770 .9585 .8921 .7429

2.7 .0008 .0015 .0027 .0046 .0071 .0095 .0112 .0113 .0086
.0075 .0122 .0188 .0247 .0265 .0236 .6182 .0129 .0098
.0000 .0000 .0001 .0009 .0044 .0133 .0289 .0484 .0586
.0000 .0000 .0022 .0168 .0493 .0890 .1166 .1123 .0709
.9336 .9482 .9637 .9650 .9550 .9269 .8589 .7126 .7127

3.6 .0056 .0083 .0117 .0152 .0176 .0137 .0132 .0157 .0107
.0339 .0442 .0478 .0419 .0326 .0245 .0189 .0150 .0116
.0000 .0001 .0017 .0083 .0217 .0412 .0634 .0817 .0797
.0000 .0044 .0388 .0964 .1448 .1663 .1568 .1192 .0753
.8897 .9319 .9289 .8961 .8218 .6934 .5360 .4696 .7797

4.5 .0249 .0303 .0331 .0333 .0315 .0284 .0242 .0189 .0118
.0982 .0798 .0537 .0410 .0345 .0293 .0241 .0137 .0131
.0001 .0049 .0213 .0457 .0'12 .0965 .1143 .1191 .0971
.0079 .1307 .2409 .2719 .2543 .2135 .1633 .1148 .0864
.3743 .8147 .5970 .3131 .1364 .0995 .1951 .4638 .8826

5.4 .0745 .0655 .0560 .0476 .0401 .0332 .0266 .0197 .0118
.1261 .1283 .0977 .0722 .0536 .0399 .0295 .0212 .0139
.0224 .0781 .1215 .1510 .1690 .1762 .1719 .1523 .1074
.7446 .6761 .4848 .3518 .2624 .2004 .1566 .1267 .1054

-.11627 -.6318 -.5847 -.4181 -.1988 .0728 .3914 .7163 .9449
6.3 .0667 .0558 .048 .0411 .0351 .0295 .0238 .0177 .0106

.2292 .1297 .0877 .0637 .0478 .0363 .0275 .0203 .0136

.3639 .3478 .3266 .3040 .2786 .2492 .2139 .1690 .1066

.F937 .5817 .4396 .3522 .2n03 .2423 .2021 .1652 .1252
-.2844 -.1283 .0270 .1831 .3561 .5289 .7000 .8556 .9675

.00A ,0109 .0161 .0186 .0192 .0186 .0164 .0131 .0081

.1090 .0954 .0615 .0415 .0107 .0243 .0199 .0162 .0120

.5379 .4764 .4159 .3611 .3i00 .2605 .2100 .1553 .0907

.7749 .7808 .6231 .4919 .3927 .3154 .2517 .1946 .1350
-.8299 -,;017 -.6252 .3353 .0172 .3581 .6418 .8497 .9699

8.1 .0000 .0002 .0013 .0031 .0051 .0065 .0072 .0066 .0045
.0001 .0077 .0200 ,3253 .0240 .0194 .0145 .0111 .0089
.2288 .2308 .2264 .2136 .1936 .1677 .1365 .0999 .0561
.3513 .3396 .3141 .2935 .2'24 .2463 .2140 .1740 .1201
.3444 .2692 .1241 .0098 -.0005 1116 .',720 .7:112 .9584
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INYERENCE FOR ERROR RATES

Table of the False Positive Error and its
8.E.*SQRT(M), the False Negative Error and its

S.L.*S0.RT(M), and he Correlation between FP and FN
Number of Items: 9, Theta zero: .80, Mastery Score: 0

Test KR21
Mean .100 .200 .300 .400 .500 .600 ,700 .800 .900

0.9 .0000 .0000 .0000 .0001 .0003 .0009 .0024 .0052 .0074
.0000 .0001 .0004 .0012 .0035 .0089 .0176 .0236 .0172
.0000 .0000 .0000 .0000 .0000 .0000 .0003 .0021 .0067
0000 .0000 .0000 .0000 .0000 .0007 .0052 .0181 .0262
.9768 .9747 .9917 .9739 .9900 .9916 .9902 .9798 .3945

1.8 .0"1 .0002 .00C4 .0009 .0021 .0045 .0087 .0133 .0155
.0003 .0019 .0040 .0083 .01:39 .0268 .0359 .0345 .0219
.0000 .0000 .0000 .0000 .0000 .0003 .0018 .0068 .0153
.0000 .0000 .0000 .0000 .0006 .J046 .0170 .0354 .0348
.9479 .9300 .9246 .9769 .9611 .9821 .9768 .9510 .3105

2.7 .0005 .0015 .0027 .0049 .0036 .0141 .0205 .0254 .0233
.0075 .0122 .0195 .0304 .0433 .0523 .0510 .0386 .0254
.0000 ,0000 .0000 .0000 .0003 .0017 .'J063 .0156 .0254
.0000 .0000 .0000 .0006 .050 .0181 .0387 .0525 .0378
.9456 9403 .9534 .9632 .9666 .9625 .9428 .8741 .7105

3.6 .0056 .0063 .0123 .0180 .0252 .0326 .0379 .0385 .0300
.0339 .0455 .0603 .0741 .07A6 .0710 .0553 .0393 .0299
.0000 .0000 .0000 .0003 .0 1 .0072 .0167 .0292 .0361
.0000 .0100 .0007 .0073 .0252 .0494 .0663 .0636 .0375
.8903 .95'7 .9338 .9401 .9325 .9038 .8321 .6765 .6831

4.5 .0249 .0319 .0405 .0493 .0562 .0594 .0579 .0505 .034
.1001 .1179 .1263 .1147 .0922 .0707 .0552 .0448 .0355.n000 .0000 .0006 .0037 .0110 .0224 .0359 .0471 .0461
.0000 .0011 .0108 .0478 .0790 .0941 .0880 .0637 .0387
.9990 .8353 .3900 .3209 .7859 .6505 .4790 .4122 .7911

5.4 .0813 .0926 .0992 .0996 .0948 .0860 .0737 .0577 .0361
.2148 .1910 .1396 .1101 .0956 .0837 .0708 .0565 .0406
.0000 .0017 .0098 .0234 .0392 .0539 .0644 .0667 .0532
.0015 .0546 .1258 .1538 .1459 .1192 .0864 .0581 .0466
.8030 .7579 .5528 .2613 .0'18 .0176 .1370 .4859 .91536.3 .2020 .1823 .1584 .1360 .11J5 .0961 .0770 .0570 .0338
.2639 .3102 .2547 .1970 .1513 .1158 .0877 .0645 .0431
.0093 .0410 .0680 .0861 .0963 .0992 .0948 .0816 .0552
.3709 .4059 .2912 .2005 .1405 .1034 .0821 .0702 .0598

-.4041 -.7205 -.6496 -.4835 -.2238 .1260 .5064 .8092 .9677

7.2 .1616 .1391 .1214 .1059 .0914 .0771 .0623 .0462 .0270
.5146 .3091 .2187 .1649 .1282 .1009 .0791 .0602 .0411
.2371 .2139 .1934 .1737 .1536 .1324 .1092 .0824 .0490
.6120 .3872 .2371 .2267 .1844 .1516 .1241 .0987 .0708

-.1457 .0468 .2196 .3818 .5350 .6780 .8068 .9126 .98138.1 .0023 .0140 .0252 .0324 .0358 .0356 .0323 .0259 .0156
.1176 .1821 .1447 .1053 .0779 .0608 .0506 .0429 .0324
.2252 .2062 .1804 .1546 .1299 .1060 .0824 .0580 .0316
.3384 .3698 .3270 .2703 .2198 .1771 .1400 .1055 .0686

-.2091 -.5335 -.4530 -.2443 .0534 .3925 .6916 .3835 .9806
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HUYNH

Table of the False Positive Error and its
S.E.*8QP.T(M), the False Negative Ern.r. and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .60, Mastery Score: 6

Test KR21,-
Wean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0004 .0010 .0021 .0041 .0076 .0126 .0183 .0221 .0191
.0058 .0111 .0197 .0327 .0488 .0613 .0621 .0490 .0345
.0000 .0000 .0000 .0000 .0001 .0005 .0017 .0038 .0055
.0001 .0000 .0000 .0002 .0016 .0062 .0133 .0175 .0124
.9494 .9449 .9521 .9713 .9733 .9693 .9520 .3922 .8148

2.0 .0095 .0139 .0199 .0279 .0371 .0456 .0508 .0494 .0364
.0565 .0755 .0952 .1117 .1154 .1039 .0830 .0621 .0478
.0000 .0000 .0000 .0002 .0010 .0031 .0066 .0105 .0115
.0001 .0000 .000/' .0038 .0121 .0223 .0283 .3254 .0159
.3872 .3992 .9217 .9273 .9192 .8910 .8276 .7231 .8151

3.0 .0566 .0674 .0794 .0898 .0960 .0964 .0901 .0758 .0502
.1325 .1994 .1987 .1742 .1423 .1149 .0939 .0766 .0582
.0000 .0000 .0005 .0024 .0061 .0113 .0164 .0196 .0173
.0000 .0011 .0111 .0282 .0412 .0448 .0392 .0281 .0135
.9026 .8234 .8222 .7769 .6888 .5768 .4961 .5558 .8684

4.0 .1784 .1883 .1886 .1799 .1650 .1457 .1225 .0948 .0590
.3181 .2673 .2195 .1957 .1736 .1484 .1214 .0939 .0652
.0000 .0017 .0072 .0148 .0222 .0279 .0308 .0297 .0222
.0026 .0447 .0791 .0833 .0717 .0557 .0406 .0292 .0220
.6275 .4821 .1798 -.0055 -.0269 .0796 .3046 .6317 .9244

5.0 .3643 .3170 .2724 .2337 .1990 .1667 .1349 .1014 .0619
.6066 .5753 .4330 .3235 .2446 .1858 .139° .1018 .0676
.0090 .0290 .C.22 .0491 .0515 .0504 .04b .0383 .0254
.2368 .2234 .1450 .0968 .0704 .0543 .0441 .0350 .0259

-.7948 -.7867 -.6245 -.3606 -.0333 .2941 .5772 .8017 .9543

A.0 .2603 .2335 .2106 .1891 .1677 .1455 .1215 .0939 .0586
.7163 .4484 .3267 .2518 .1986 .1575 .1234 .0935 .0647
.1381 .1195 .1049 .0921 .0800 .0682 .0560 .0427 .0263
.4124 .2454 .1720 .1283 .0983 .0759 .0580 .0429 .0290

-.1455 .0163 .1650 .3055 4440 .5824 .7206 .8533 .9624
7.0 .0134 .0475 .0725 .0874 .0943 .0944 .0881 .0743 .0496

.4589 .4162 .2889 .2053 .1535 .1196 .0953 .0760 .0.'72

.1523 .1338 .1146 .0976 .0324 .0684 .0547 .0406 .0242

.2589 .2530 .1969 .1468 .1101 .0829 .0619 .0450 .0297
-.5209 -.6531 -.5067 -.2767 -.0016 .2859 .5594 .7947 .9550

..0 .0000 .0016 .0086 .0197 .0318 .0421 .0484 .0477 .0357
.0015 .J508 .1124 .1361 .1)03 .1099 .0846 .0639 .0468
.0407 .0490 .0541 .0550 .0526 .0476 .0406 .0313 .0190
.1539 .1401 .1046 .0810 .0673 .'570 .0477 .0382 .0272
.E419 .8060 .6662 .4768 .3450 .3232 .4265 .6678 .9315

9.0 .0000 .0000 .0002 .0015 .0049 .0103 .0166 .0210 .0186
.0000 .0003 .0066 .0252 .0480 .0629 .0630 .0491 .0337
.0031 .0055 .0088 .0128 .0165 .0188 .0190 .0166 .0108
.0290 .0424 .0550 .0583 .0521 .0418 .0323 .0261 .0206
.9346 .9435 .9530 .9439 .9153 .8532 .7461 .6845 .3948
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INFERENCE FOR ERROR RATES

Table of the False Positive Frror and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the correlation between FP and FN
Number of Items:10, Theta Zero: .60, Mastery Score: 7

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0000 .0001 .0004 .0010 .0023 .0044 .0071 .0092 .0034
.0003 .0021 .0050 .0104 .0183 .0257 .0278 .0224 .0152
.0000 .0000 .0000 .0000 .0001 .0009 .0033 .0079 .0120
.0001 .0000 .0000 .0003 .0030 .0120 .0273 .0380 .0283
.9655 .9620 .9717 .9840 .9852 .9820 .9693 .9214 .8212

2.0 .0016 .0030 .0052 .0086 .0130 .0175 .0203 .0211 .0161
.0150 .0234 .0349 .0464 _0517 .0483 .0383 .0281 .0211
.0000 .0000 .0000 .0003 .0019 .0060 .0133 .0220 .0253
.0000 .0000 .0007 .0070 .0233 .0446 .0595 .0565 .0358
.r)220 .)339 .9574 .9607 .9543 .9332 .8821 .7755 .8032

3.0 .0146 ,'200 .0267 .0332 .0380 .0400 .0386 .0333 .0224
.0748 .0913 .0975 .0874 .0703 .0545 .0426 .0339 .0259
.0000 .0000 .0008 .0044 .0118 .0223 .0337 .0417 .0385
.0000 .0020 .0203 .0536 .0817 .0930 .0854 .0635 .0411
.8875 .9062 .9065 .8764 .8103 .7061 .5935 .5782 .8481

4.0 .0645 .0737 .0778 .0766 .0718 .0643 .0546 .0426 .0266
.1908 .1572 .1138 .0921 .0790 .0669 .0547 .0423 .0294
.0000 .0030 .0132 .0281 .0435 .0564 .0644 .0642 .0498
.0045 .0811 .1502 .1658 .1500 .1216 .0911 .0650 .0483
.8046 .7277 .4878 .2445 .1351 .1608 .3112 .5943 .9107

5.0 .1727 .1507 .1288 .1097 .0928 .0772 .0621 .0465 .0282
.2947 .2892 .2170 .1602 .1193 .0892 .0661 .0474 .0310
.0159 .0535 .0804 .0967 .1044 .1051 .0988 .0844 .0576
.5174 .4430 .3002 .2093 .1539 .1186 .0942 .0751 .0572

-.6312 -.7145 -.5757 -.3547 -.0772 .2253 .5138 .7723 .9489

6.0 .1427 .1232 .1080 .0947 .0823 .0701 .0576 .0438 .0270
.4359 .2588 .1809 .1347 .1030 .0794 .0606 .0447 .0301
.2583 .2133 .2115 .1907 .1697 .1478 .1238 .0960 .0601
.6842 .4297 .3144 .2437 .1935 .1544 .1219 .0930 .0649

-.1720 -.0063 .1437 .2883 .4313 .a74' .7160 .8520 .9622
7.0 .0077 .0264 .0390 .0457 .0480 .0469 .0428 .0352 .0230

.2598 .2209 .1448 .0991 .0731 .0572 .0459 .0365 .0270

.3392 .2966 .2553 .2190 .1862 .1555 ,1253 .0934 .0560

.5525 .5370 .4103 .3099 .2363 .1810 .1376 .1015 .0680
-.7416 -.7466 -.5752 -.3083 .0083 .3203 .5937 .8133 .9586

8.0 .0000 .0009 .0048 .0106 .0167 .0215 .0240 .0230 .0167
.0010 .0286 .0609 .0706 .0648 .0526 .0395 .0290 .0221
.1318 .1417 .1449 .1406 .1303 .1156 .0970 .0741 .0445
.2822 .2531 .2059 .1768 .1553 .1344 .1128 .0901 .0637
.6712 .5844 .3805 .2030 .1442 .2058 .3879 .6812 .93899.0 .0000 .0000 .0001 .0008 .0026 .0054 .0084 .0102 .0088
.0000 .0002 .0037 .0136 .0250 .0315 .0302 .0228 .0159
.0181 .0246 .0324 .0404 .0467 .0496 .0478 .0403 .0256
.1001 .1198 .1341 .1316 .1144 .0928 .0750 .0628 .0493
.3783 .8915 .8981 .8838 .8396 .7555 .6462 .6439 .9031
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HUYNH

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .60, mastery Score: 8

Test KR21..
nean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0000 .0000 .0001 .0002 .0005 .0012 .0021 .0029 .0028
.0001 .0003 .0009 .0025 .0052 .0081 .0092 .0076 .0050
.0000 .0000 .0000 .0000 .0002 .0013 .0052 .0132 .0215
.0001 .0000 .0000 .0004 .0044 .0:86 .0445 .0667 .0536
.9751 .9725 .9831 .9907 .9912 .9884 .9780 .9360 .8101

2.0 .0002 .0005 .0010 .00..0 .0035 .0051 .0065 .0068 .0054
.0025 .0050 .0092 .0140 .0169 .0165 .0i34 .0096 .0070
.0000 .0000 .0000 .0005 .0028 .0093 .0214 .0373 .0458
.0000 .0000 .0011 .0103 .0354 .0710 .1005 .1026 .0677
.9459 .9559 .9754 .9773 .9718 .9549 .9113 .8027 .7683

3.0 .0027 .0043 .0067 .0093 .0114 .0125 .0124 .0110 .0075
.0200 .0285 .0335 .0313 .0253 .0192 .0145 .0113 .0086
.0000 .0000 .0012 .0065 .0179 .0351 .0552 .0719 .0704
.0000 .0023 .0295 .0805 .1284 .1541 .1508 .1188 .0760
.9131 .9470 .9473 .9261 .8758 .7835 .6553 .5751 .8008

4.0 .0165 .0210 .02:6 .0242 .0232 .0211 .0181 .0143 .0090
.0762 .0651 .0443 .0328 .0263 .0224 .0183 .0142 .0099
.0001 .0042 .0193 .0423 .0677 .0911 .1082 .1130 .0923
.0062 .1165 .2252 .2612 .2497 .2142 .1679 .1206 .0871
.8923 .8513 .6873 .4490 .2748 .2220 .2925 .5167 .8756

5.0 .0587 ,0513 .0443 .0377 .03iJ .0264 .0212 .0158 .0096
.1014 .1013 .0771 .0568 .0420 .0312 .0229 .0163 .0106
.0223 .0779 .1212 .1507 .1685 .1756 .1713 .1522 .1083
.7386 .6762 .4903 .3614 .2745 .2129 .1o69 .1318 .1032

-.3679 -.6326 -.5306 -.3579 -.1414 .1122 .3981 .6951 .9310

6.0 .0562 .0469 .0401 .0345 .0295 .0248 .0201 .0151 .0092
.1933 .1081 .0724 .0521 .0387 .0291 .0217 .0157 .0104
.3810 .3591 .3373 .3141 .2884 .2587 .2231 .1780 .1148
.9402 .6141 .4641 .3707 .3034 .2501 .2047 .1629 .1197

-.2712 -.1257 .0171 .1652 .3209 .4646 .6537 .8194 .9543
7.0 .0032 .0105 .0151 .0173 .0178 .0170 .0152 .0123 .0079

.1060 .0844 .0525 .0350 .0258 .0203 .0163 .0129 .0094

.5877 .5191 .4538 .3955 .3417 .2897 .2361 .1790 .1088

.8574 .8293 .6457 .5014 .3945 .3123 .2454 ,1869 .1295
-.8737 -.8331 -.6537 -.3704 -.0252 .3032 .5820 .8048 .9555

8.0 .0000 .0004 .0019 .0041 .0063 .0080 .0087 .0081 .0058
.0004 .0116 .0238 ,0265 .0235 -1,45 .0136 .0101 .0077
.3251 .3254 .3161 .2964 .2686 .2346 .1946 .1 73 .0880
.3852 .3673 .3461 .3267 .2984 .2621 .2214 .1774 .1255
.3049 .1471 -.0439 -.1278 -.0891 .0580 .3191 .6683 .9380

9.0 .0000 .0000 .0000 .0003 .0010 .0020 .0031 .0037 .0031
.0000 .0001 .0015 .0053 .0095 .0115 .0107 .0078 .0055
.0799 .0903 .1000 .1099 .1143 .1132 .1034 .0837 .0515
.2296 .2423 .2471 .2328 .2044 .1744 .1504 .1301 .1004
.9990 .7549 .7425 .7206 .6541 .5540 .4777 .5722 .9003
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INFERENCE FOR ERROR RATES

Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .70, Mastery Score: 7

Test KR21...
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0000 .0001 .0004 .0010 .0024 .0051 .0098 .0153 .0167
.0008 .0021 .0050 .0106 .0208 .0357 ,0490 .0485 .0322.0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0041.0001 .0000 .0000 .0000 .0002 .0015 .0060 .0125 .0118.9670 .9644 .9626 .9757 .9827 .9832 .9783 .9546 .34682.0 .0016 .0030 .0052 .0088 .0146 .0226 .0315 .0377 .0334.0150 .0234 .0355 .0522 .071C .0837 .0815 .0631 .0430.0000 .0000 .0000 .0000 .0001 .0007 .0025 .0059 .0080.0000 .0000 .0000 .0002 .0022 .0079 .0164 .0214 .0150.9283 .9238 .9350 .9558 .9599 .9562 .9375 .8760 .7800

3.0 .0146 .0201 .0274 .0370 .0480 .0584 .0650 .0637 .0482.0748 .0926 .1131 .1299 .1323 .1180 .0936 .0692 .0526.0000 .0000 .0000 .0002 .3011 .0034 .0075 .0123 .0141.0000 .0000 .000'. .0039 .0127 .0235 .0300 .0270 .0162.8998 .9142 .9072 .9146 .9062 .8753 .8069 .6927 .77314.0 .0645 .0760 .0890 .10G, .1083 .1096 .1033 .0879 .0593.1933 .2107 .2116 .1870 .1527 .1226 .0999 .0814 .0621.0000 .0000 .0004 .0022 .0060 .0113 .0170 .0209 .019]..0000 .0008 .0098 .0266 .0403 .0447 .0394 .0279 .0178.9990 .8172 .8194 .7758 .6844 .5597 .4586 .5010 .8452

5.0 .1348 .1962 .1987 .1915 .1772 .1576 .1334 .1038 .0651.3252 .2791 .2249 .1990 .1784 .1545 .1278 .0995 .0695.0000 .0013 .0062 .0135 .0210 .0272 .0306 .0301 .0229.0016 .0369 .0724 .0799 .0702 .0546 .0392 .0276 .0211.6504 5346 .2405 .0139 -.0486 .02)3 .2451 .5959 .9214

6.0 .3742 .3298 .2850 .2450 .2089 .1750 .1415 .1062 .0n46.5491 .5717 .4442 .3370 .2569 .1962 .1483 .1085 .0723.0070 .0256 .0389 .0463 .0493 .0487 .0449 .0375 .0249.2463 .2186 .1419 .0937 .0666 .0512 .0414 .0335 .0254-.7472 -.7908 -.6558 -.4146 -.0868 .2649 .5734 .8088 .95847.0 .2651 .2370 .2132 .1908 .1687 .1459 .1212 .0930 .0572.7450 .4670 .3405 .2627 .2076 .1651 .1301 .0994 .0690.1318 .1139 .0999 .0875 .0759 .0645 .0527 .0398 .0242.3923 .2338 .1C43 .1230 .0947 .0735 .0566 .0423 .0288-.1218 .0463 .1952 .3365 .4768 .6115 .7458 .8714 .9685

8.0 .0084 .0370 .0607 .0758 .0834 .0344 .0789 .0661 .0432.3397 .3802 .;'818 .2052 .1543 .1201 .0961 .0778 .0594.1262 .1142 .0990 .0848 .0716 .0592 .0471 .0344 .0200.2037 .2106 .1709 .1319 .1013 .0778 .0592 .0433 .0291-.1346 -.5443 -.4412 -.2348 .0258 .3098 .5864 .8189 .96349.0 .0000 .0005 .0037 .0105 .0190 .0270 .0322 .0321 .0235.0001 .0191 .0648 .0972 .1053 .0950 .0752 .0557 .0432.3181 .0243 .0297 .0326 .0328 .0307 .0265 .0204 .0119.1000 .1076 .0904 .0'43 .0547 .0459 .0395 .0331 .0239.3965 .8897 .8391 .7291 .5833 .4757 .4962 .7028 .9447
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .70, Mastery Score: 8

Test KR21=

HUYNH

Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0000 .0000 .0001 .0002 ,0006 .0016 .0035 .0060 .0071
.0001 .0003 .0009 .0026 .0064 .0131 .020. .0213 .0141
.0000 .0000 .0000 .0000 .0000 .0002 .0011 .0042 .0095
.0001 .0000 .0000 .0000 .0003 .0030 .0127 .0284 .0292
.9764 .9745 .9726 .9o58 .9900 .9903 .9864 .9681 .8633

2.0 .0002 .0005 .0010 .0021 .0043 .0077 .0119 .0153 .0143
.0025 .0050 .0094 .0169 .0267 .0348 .0359 .0283 .0186
.0000 .0000 .0000 .0000 .0002 ,0014 .0053 0131 .0210
.0000 .0000 .0000 .0005 .0043 .0162 .0357 .0497 .0372
.9508 .9472 .9634 .9749 .9774 .9740 .9594 .9084 .7845

3.0 .0027 .0043 .0071 .0111 .0164 .0218 .0259 .0266 .0208
.0200 .0292 .0414 .0534 .0584 .0540 .0429 .0307 .0226
.0000 .0000 .0000 .0004 .0021 .0071 .0161 .0277 .0336
.0000 .0000 .0008 .0076 .0256 .0498 .0674 .0648 .0401
.9189 .9273 .9484 .9532 .9465 .9231 .8671 .7490 .7511

4.0 .0165 .0221 .0291 .0362 .0417 .0442 .0431 .0376 .0259
.0775 .0940 .1014 .0919 .0741 .0571 .0444 .0351 .0269
.0000 .0000 .0008 .0043 .0121 .0238 .0372 .0477 .0458
.0000 .0016 .0188 .0532 .0847 .0990 .0925 .0687 .0428
.9990 .9016 .903° .8755 .8085 .6956 .5623 .5194 .3114

5.0 .9643 .0741 .0793 .0791 .0749 .n677 .0579 .0455 .0287
.1080 .1615 .1166 .0924 .0791 .0677 .0559 .0436 .0305
.0000 .0024 .0120 .0272 .0438 .0586 .0687 .0702 .0559
.0028 ,0704 .1449 .1685 .1567 .1284 .0955 .0666 .0497
.3144 .7573 .5438 .2802 .1264 .1144 .2423 .5369 .9016

6.0 .1711 .1517 .1307 .1118 .0948 .0790 .0635 .0475 .0287
.2571 .2754 .2147 .1615 .1215 .0915 .0681 .0491 .03-3
.0131 .0497 .0734 .0968 .1066 .109 .1037 .0895 .0615
.4665 .4476 .3129 .2183 .1580 .197 .0946 .0766 .0604

-.5172 -.7090 -.6032 -.4101 -.1463 .1672 .4897 .7690 .9519
7.0 .1415 .1213 .1065 .0931 .0807 .0685 .0560 .0423 .0257

.4414 .2618 .1830 .1353 .1045 .0808 .0620 .0462 .0313

.2613 .2370 .2155 .1947 .1736 .1512 .1265 .0977 .0605

.6762 .4268 .3143 .2454 .1967 .1589 .1272 .0988 .0702
-.1817 -.0094 .1475 .2987 .4474 .5940 .7366 .8681 . '681

8.0 .0047 .0201 .0319 .0337 .0415 .0409 .0374 .0306 .0196
.1883 .1980 .1387 .0969 .0715 .0557 .0449 .0364 .0273
.3159 .2815 .2442 .2099 .1783 .1483 .1184 .0870 .0508
.4560 .4882 .3945 .3074 .2396 .1869 .1446 .1085 .0731

-.5891 -.6904 -.5431 -.2958 .0117 .3295 .6139 .8345 .9664
9.1 .0000 .0003 .0020 .0055 .0097 .0134 .0156 .0151 .0107

.0001 .0105 .0344 .0496 .0315 .0446 .0343 .0254 .0199

.0799 .0897 .0964 .0976 .0932 .0841 .0708 .0533 .0308

.2294 .2261 .1918 .1586 .1365 .1204 .1052 .0873 .0621

.8150 .7162 .6228 .4706 .3425 .3113 .4234 .7064 .9501



IFFERENCE FOR ERROR RATES

Table of the False Positive Error and its
8.E.*SQRT(M), the False Negative Error and its

S,E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .80, Mastery Score: 8

Test KR21
Mean .100 .200 .300 .400 .5. .600 .700 .800 .900

1.0 .0000 .0000 .0001 .0002 .0006 .0017 .0044 .0097 .0146
.0001 .0003 .0009 .0026 .0067 .0158 .0314 .0446 .0345
.0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007 .0026
.0000 .0000 .0000 .0000 .0000 .0002 .0017 .0068 .0107
.9718 .9662 .9634 .9594 .9874 .9835 .9880 .9796 .91122.0 .0002 .0005 .0010 .0022 .0045 .0090 .0167 .0265 .0307
.0025 .0050 .0094 .0173 .0304 .0492 .0666 .0670 .0436
.0000 .0000 .0000 .0000 .0000 .0001 .0006 .0026 .0062
.0000 .0000 .0000 .0000 .0001 .0014 .0061 .0140 .0144
.9464 .9656 .9364 .9674 .9730 .9756 .9724 .9512 .8351

3.0 .0027 .0043 .0071 .0114 .0183 .0282 .0402 .0499 .0467
.0200 .0292 .0420 .0597 .0808 .0970 .0971 .0763 .0498
.0000 .0000 .0000 .0000 .0001 .0006 .0023 .0062 .0104
.0000 .0000 .0000 .0001 .0015 .0064 .0151 .0215 .0156
.9372 .9732 .9259 .9470 .9525 .9511 .9351 .8773 .73694.0 .0165 .0221 .0297 .0400 .0526 .0656 .0754 .0767 .0605
.0775 .0951 .1160 .1361 .1442 .1333 .1072 .0777 .0581
.0000 .0000 .0000 .0001 .000) .0027 .0066 .0119 .0150
.0000 .0000 .0002 .0023 .0092 .0196 .0277 .0266 .0155
.9990 .9119 .9026 .9115 .9081 .8833 .8197 .6377 .7032

5.0 .0643 .0760 .0897 .1.037 .1146 .1195 .1160 .1013 .0701
.1896 .2038 .2185 .2029 .1695 .1348 .1077 .0877 .0689
.0000 .0000 .6002 .0013 .0043 .0092 .0150 .0198 .0192
.0000 .0003 .0052 .0184 .0327 .0400 .0374 .0267 .0161
.9990 .8216 .8334 .3086 7367 .6120 .4664 .4330 .8041

6.0 .1810 .1949 .2025 .2005 .1898 .1719 .1476 .1162 ,0733
.3257 .2999 .2390 .2017 .1808 .1607 .1370 .1098 .0787
.0000 .0006 .0039 .0098 .0169 .0233 .0277 .0283 .0222.0003 .0201 .0531 .0676 .0643 .0516 .0366 .0247 .0194
.7019 .6364 .4258 .1582 -.0001 -.0070 .1535 ,5261 .91977.0 .3829 .3476 3048 .2640 .2258 .1893 .1528 .1141 .0685
.4292 .5335 .4517 .3573 .2792 .2170 .1664 .1234 .0831
.0038 .0135 .0313 .0394 .0434 .0438 .0410 .0346 .0230
.1622 .1912 .1341 .0888 .0608 .0451 .0365 .0308 .0247

-.5402 -.7680 -.6867 -.4964 -.1898 .1979 .5635 .8251 .9667

8.0 .2741 .2640 .2185 .1947 .1712 .1470 .1209 .0913 .0546.7931 .4995 .3659 .2839 .2259 .1814 .1448 .1123 .0783
.1203 .1035 .0903 .0787 .0678 .0572 .0463 .0344 .0203
.3614 .2161 .1526 .1150 .0893 .0701 .0548 .0416 .0285

-.0758 .1014 .2561 .4003 .5382 .6705 .7946 .9026 .97799.0 .0025 .0196 .0389 .0533 .0616 .0640 .0603 .0500 .0314
.1443 .2841 .2520 .1965 .1499 .1162 .0938 .0785 .0608.0785 .0767 .0692 .0603 .0513 .0422 .0330 .0235 .0129
.1734 .1360 .1222 .1031 .0845 .0683 .0540 .0408 .0267
.4953 -.1424 -.2467 -.1395 .0673 .3393 .6279 .8561 .9745
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Table of the False Positive Error and its
S.E.*SQRT(M), the False Negative Error and its

S.E.*SQRT(M), and the Correlation between FP and FN
Number of Items:10, Theta Zero: .80, Mastery Score: 9

Test KR21=
Mean .100 .200 .300 .400 .500 .600 .700 .800 .900

1.0 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0034 .0056
.0000 .0000 .0001 .0004 .0015 .0046 .0109 .0174 .0141

-.0000 .0000 .0000 .0000 .0000 .0000 .0002 .0018 .0070
.0000 .0000 .0000 .0000 .0000 .0004 .0039 .0171 .0304
.9784 .9741 .9635 .9704 .9920 .9934 .9928 .9863 .9262

2.0 .0000 .0000 .0001 .0004 .0010 .0024 .0053 .0095 .0120
.0003 .0007 .0016 .0038 .0085 .0164 .0251 .0272 .0178
.0000 .0000 .0000 .0000 .0000 .0002 .0014 .0064 .0167
.0000 .0000 .0000 .0000 .0003 .0031 .0145 .0362 .0418
.9530 .9751 .9496 .9800 .9844 .9860 .9330 .9661 .8541

3.0 .0003 .0006 .0012 .0024 .0047 .0086 .0138 .0186 .0184
.0032 .0057 .0100 .0172 .0274 .0368 .0395 .0319 .0199
.0000 .0000 .0000 .0000 .0002 .0013 .0055 .0155 .0285
.0000 .0000 .0000 .0003 .0033 .0149 .0371 .0577 .0464
.9370 .9402 .9594 .9692 .9735 .9717 .9589 .9112 .7424

4.0 .0027 .0042 .0067 .0105 ,0159 .0221 .0274 .0294 .0242
.0134 .0264 .0375 .0501 .0580 .0562 .0459 .0322 .0230
.0000 .0000 .0000 .0002 .0016 .0062 .0160 .0308 .0416
.0000 .0000 .0004 .0049 .0207 .0468 .0708 .0743 .0459
.9990 .9990 .9442 .9519 .9490 .9304 .8801 .7520 .6636

5.0 .0143 .0192 .0257 .0J31 .0397 .0438 ,0444 .0400 .0283
.0663 0319 .0939 .0914 .0769 .0593 .0448 .0350 .0274
.0000 .0000 .0004 .U029 .0097 .0217 .0373 .0522 .0543
.0000 .0006 .0111 .0411 .0769 .1004 .1013 .0780 .0455
.9990 .9023 .9126 .8974 .8482 .7474 .5874 .4579 .7377

6.0 .0551 .0649 .0723 .0750 .0732 .0677 .0591 .0470 .0299
.1677 .'606 .1212 .0910 .0751 .0648 .0550 .0442 .0319
.0000 .0012 .0083 .0221 .0396 .0572 .0713 .0768 .0640
.0007 .0425 .1180 .1599 .1626 .1402 .1056 .0707 .0527
.8402 .8179 .6903 .4538 .2225 .1089 .1527 .4256 .8863

7.0 1579 .148 .1281 .1108 .0945 .0789 .0635 .0472 .C283
.2010 .2300 .1977 .1561 .1210 .0930 .0704 .0516 .0344
.0078 .0401 .0708 .0931 .1071 .1130 .1104 .0972 .0676
.3395 .4360 .3341 .2393 .1709 .1249 .0963 .0802 .0683
.0746 -.6418 -.6135 -.4787 -.2593 .0509 .4250 .764]. .9583

8.0 .1367 .1169 .1016 .0884 .0761 .0642 .0519 .0386 .0227
.4412 .2615 .1332 .1370 .1056 .0824 .0641 .0484 .0329
.2692 .2459 .2247 .2036 .1817 .1582 .1313 .1007 .0609
.6748 .4299 .3206 .2545 .2082 .1723 .1421 .1140 .0828

-.1919 -.0050 .1674 .3327 .4918 .6430 .7817 .8987 .9776
9.0 .0013 .0100 .0192 .0255 .0286 .0290 .0266 .0215 .0132

.0758 .1401 .1174 0872 .0645 .0497 .0406 .0341 .0259

.2629 .2435 .2153 .1861 .1576 .1296 .1014 .0721 .0397

.3631 .3936 .3626 .3052 .2512 .2042 .1628 .1237 .0814
-.1701 -.5140 -.4586 -.2716 .0065 .3383 .6505 .8697 .9768
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APPENDIX B

SUBROUTINE ERRFPN

This subroutine computes the false positive error estimate and

its standard error, the false negative error estimate and i-

standard error, and the correlation between the two estimate . The

beta-binomial distribution is used at the vehicle for computations.

Disclaimer: The computer program hereafter listed has been written

with care and tested extensively under a variety of conditions

using tests with 60 or fewer items. The author, however, makes no

warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.

Q
(1 V )
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SUBROUTINE
ERRFPN(D,A,B,M,TT,IM,FP,SEFP,FN,SEFE,RHO) 10C

20C

30C THIS SUBROUTINE COMPUTES THE FALSE POSITIVE ERROR ESTIMATE AND ITS 40C STANDARD ERROR, THE FALSE NEGATIVE ERROR ESTIMATE AND ITS STANDARD 50C ERROR, AND THE CORRELATION BETWEEN THE TWO ESTIMATES. THE BETA- 60C BINOMIAL DISTRIBUTION IS USED AS THE VEHICLE FOR COMPUTATIONS. 70C
80C INPUT DATA ARE:
90C

100C N.... NUMBER OF ITEMS
110C A....ALPHA OF THE BETA DISTRIBUTION 120C B....BETA OF THE BETA DISTRIBUTION 130C :'.....NUMBER OF EXAMINEES
140C TT...THETA ZERO, THE CRITERION LEVEL SET IN THE TRUE SCORE 150C IM...TEST CUTOFF SCORE (MASTERY SCORE) 160C
170C A, B, ADD TT ARE IN TEE DOUBLE PRECISION FORMAT. 180C
190C OETPUT DATA ARE:
200C
210C FP....FALSE POSITIVE ERROR ESTIMATE 220C SEFPSTANDARD ERROR OF FP
230C FN....FALSE NEGATIVE ERROR ESTIMATE 240C SETESTANDARD ERROR OF FN
250C RHO...CORRELATION BETWEEN FP AND FN
260C
270C ALL OUTPUT DATA ARE IN TEE DOUBLE PRECISION FORMAT. 280C
290C THE SUBROUTINE IS SET UP FOR TESTS WITH UP TO 60 ITEMS. 300C FOR LONGER TESTS, SIMPLY CHANGE TEE DTMENSIONS OF DF(.), DA(.), 310C AND DB(.) TO DF(N+1), DA(N+1), Ara DB(N+1). 320C
330C EXTERNAL SUBROUTINES REQUIRED: DQG32 OF SSP 340C

MDBETA OF IMSL 350C
360C
370DOUBLE PRECISION A,B,TZ, BETA,GFCT, DFCT,U,V,DX,ONE,F,PSI,GA,GE,Y1, 380

*Y2,Y3,Y4,VMONE,Z1,22,8B,DF(61),DA(61),DB(61),FP,SEFP,Z3,FN,SEFE, 390* H1,H2,113,E(2),S(2),TT,P1,BA,PA,B1,W1,W2,RHO
400EXTERNAL BETA,BI,GFCT,DFCT,PSI
410C
420ONE-1.D0
430YlBETA(A,B)
440Y2PSI(A+B)
450Y3- PSI(A) -Y2
460Y4- PSI(B) -Y2
470PlPSI(DFLOAT(N)+A+B)
480CALL NEHY2(N,A,B,DF)
4S0CALL VARAB(N,A,R,H1,H2,H3,14DT,DA,DE) 500C
510C SET UP FOR FALSE POSITIVE ERRORS 520TZI.TT
530IC=IM
540UA+DFLOAT(I0)
550VB+DFLOAT(N-IC)
560
570W21.0.
530C
590DO 40 1.1,2
600C
610FONE-TZ
620DXDFCT(U,V,TZ)
630GAmGFCT(U,V,TZ)
640GBGFCT(V,U,F)
650C
660
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BB=B1(N.IC) 670
E(L)=DX*BB 680
DEPA=GA*BB 690

C 700
BA- BETA(U,V) 710
PA- PSI(V) 720
DEPB=(BA*(PA-P1)-GB)*BB 730

C 74C
C 750

IF(IC.EQ.N) GO TO 30 760
C 770

10 IZ=N-IC 780
DO 15 I -1,IZ 790
IX -IC +I 800
VMONE -V -ONE 810
Z1=-(TZ**U)*F**VMONE 820
Z2=Z1*DLOG(TZ) 830
Z3=(F**VMONE)*(TZ**U)*ILOG(F) 840

C 850
CA- (Z2 +DX +L' *GA) / VMONE 860

C 870
C 880

DX=(7.1+U*DX)/VMONE 890
900

BBBE*(N-IX+1)/IX 910
C 920

1=V-ONE 930
AA=DA*U/V 940

C 950
GB=(Z3-(BA-DX)+U*GB)/VMONE S60

C 970
U=U+ONE 9E0
PA -PA -ONE /V 99C

C 1000
C 1010

E(L)=E(L)+BB*DX 1020
DF.A=DEPA+BB*GA 1030
DEPB=DEPB+88*(BA*(PA-P1)-GB) 1040

15 CONTINUE 1050
30 IF(L.EQ.1) COTO 35 1060

C 1070
C INTERCHANGE DFPA AND DFPB FOR FALSE NEGATIVE ERROR 1000
C 1090

F=DFPA 1100
DEPA=DFP° 1110
DEPL=F 1120

C 1130
35 E(L)- E(L) /Y1 1140

DFPA=DFPA/Y1-E(L)*Y3 1150
DEPB=DEPB/Y1-E(L)*Y4 1160
W1 -W1 +DFPA 1170
W2 -W2 +DFPB 1180

C 1190
C 1200

S(L)=(H1 *DFPA**2+112*DFPB**2+2*H3*DTPA*DFIT)**.5D0 121C
C 1220
C SET UP FOR FALSE NEGATIvE iRRORS 1230

TZ=ONE-TT 124(
INN-IM+1 1250
C=B+DFLOAT(IC) 1260
V -A +DFLOAT(N -IC) 1270

C 1280
4) COATINUE 1290

C 1300
FP -E(1) 1310
TT-E(2) 1320
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SEFP -S(1)

1330SEFN -S(2)
1340RHO

*(Hl*W1**2+H2*W2**2+2.*H3*Wl*W2-S(1)**2-S(2)**2)/(S(1)*S(2)*2)1350C
1360C
1370RETURN
1380END
1390DOUBLE PRECISION FUNCTION BI(N,M)
1400BI -1
1410

IF(M*(N-M).EQ.0) GOTO 20 1420MCI *MIN(N,N-M)
1430DO 15 J*1,112.1
144015 BI*BI*(N-J+1)/J
145020 RETURN
1460END
1470

SUBROUTINE NEHY2(U,A,B,F) 1480DOUBLE PRECISION A,B,F(1),Z1,Z2
1490Z1*DFLOAT(N)+B
1500Z2*L iA.
1510K -0
1520F(1)*1.D0
1530DO 5 I*1,N
15405 F( 1)*F(1)*(Z1-DFLOAT(I))/(Z2-DFLOAT(I)) 155010 KP1 *K+1
1560KF2=K+2
1570

F(KP2)*F(KP1)*DFLOAT(N-K)*(A+DFLOAT(K))/ 1580*
(DFLOAT(KP1)*(Z1-DFLOAT(.21))) 1590K=K+1

1600
IF(K-N) 10,15,15

161015 RETURN
1620END
1630

SUBROUTINE VARAB(N,A,B,VA,VB,VAB,M,E,DA,DB) 1640
DIMENSION F(1),DA(1),DB(1) 1650
DOUBLE PRECISION A,B,DA,DB,F,B11,B12,B22,D,VA,VB,VAI 1660CALL DERLAB(Nok,B,DA,DB) 1670
B11 -O.DO

1680
B12 -O.DO

1690B22*O.D0
1700

NP1 -N+1
1710DO 15 I*1 NP1
1720

Bll*B11+DA(I)*DA(I)*F(I) 1730
B12*B12+DA(I)*D3(I)*F(I) 174015 B22*B22+DB(I)*DB(I)*F(I) 1750
B11 *B11*M

1760
B12*B12*M

1770B22*B22*M 1780
D*311*322-1112*B12 1790
VA -B22 /D 1800
VB -B11 /D 1810
VAB*-B12/D 1820
RETURN

1830END 1340
SUBROUTINE DERLAB(N,A,B,DA,DB) 1850
DIMENSION DA(1),DB(1) 1860
DOUBLE PRECISION A,B,DA,DB,Z1,Z2 1370
DOUBLE PRECISION ONE 1880
ONE -1.D0 1890
DA(1) -O.DO 1900
DB(1)*O.D0 1910
Z1*DFLOAT(N)+B 1920
Z2 -Z1 +A 1930
NP1*N+1 1940

C
1950

DO 5 I -1,N
1960

DA(1)- DA(1)- ONE /(Z2- DFLOAT(I)) 1970
5 DB(1)*DB(1)+ONE/(Z1-DFLOAT(I)) 1980
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DB(1)- DB(1) +DA(1) 1990
C 2000

DO 10 I -1, t1 2010
IP1=I+1 2020
IX -I -1 2030
DA(IP1)=DA(I)+0AERA+DFLOAT(IX)) 2040

10 DB(IP1)=DB(I)-ONERZ1-DFLOAT(I)) 2050
RETURN 2060
END 2070
DOUBLE PRECISION FUNCTION PSI(X) 2080
DOUBLE PRECISION Z,A,P,ZETA(99),Y(54),PSILPM1,PP1,PM2,P21`1 2090

C 2100
ZETA(2) =1.64493406684822643647D0 2110
ZETA(3) =1.20205690315959420540D0 2120'
ZETA(4) =1.03232323371113819152D0 2130
ZETA(5) =1.03692775514336992633D0 2140
ZETA(6) - 1.01734306198444913971D0 2150
ZETA(7) =1.00834927738192282684D0 2160
ZETA(8) - 1.00407735619794433938D0 2170
ZETA(9) =1.00200839282608221442W 2180
ZETA(10)=1.00099457512781808534D0 2190
ZETA(11)=1.00049418860411946456D0 2200

ZETA(12)-1.00024608655330804830D0 2210

ZETA(13)=1.00012271334757848915D0 2220

ZETA(14)=1.00006124813505870483D0 2230
ZETA(15)=1.00003058823630702049D0 2240
ZETA(16)=1.00001528225940865187D0 2250
ZETA(17)=1.0000C7637i9763789976D0 2260

ZETA(18)=1.00000381729326499984D0 2270

ZETA(19)=1.00000190821271655394D0 2280
ZETA(20)=1.00000095396203387280D0 2290-
ZETA(21)=1.00000047693298678781D0 2300
ZETA(22)=1.00000023845050272773D0 2310
ZETA(23)=1.0000001192199259653/D0 2320
ZETA(24)=1.00000005960818905126D0 2330
ZETA(25)=1.00000002980350351465D0 2340
ZETA(26)=1.00000001490155482837D0 2350
ZETA(27)=1.00000000745071178984D0 2360
ZETA(28)=1.00000000372533402479D0 2370
ZETA(29)=1.00000000186265972351D0 2380

ZETA(30)=1.00000000093132743242D0 2390

ZETA(31)=1.00000000046566290650D0 2400

ZETA(32)=1.00000000023283118337D0 2410

ZETA(33)=1.000000011641550173D0 2420
ZETA(34)=1.00000000005820772088D0 2430

ZETA(35)=1.00000000002910325044D0 2440

ZETA(36)=1.00000000001455192189D0 2450
ZETA(37)=1.00000000000727595984D0 2460
ZETA(38)=1.00000000000363797955D0 2470

ZETA(39)=1.00000000000181898965D0 2480
ZETA(40)=1.0000000100009094947M0 2490
ZETA(41)=1.0000000000004547473810 2500

ZETA(42)=1.00000000000022737368D0 2510
C 2520

Y(1) =.24364490381)0 2530
Y(2) - .2474724535D0 2540

Y(3) - .2512859559D3 2550
Y(4) =.2550855103D0 2560

Y(5) - .2588712154D0 '.570

Y(6) - .2626431686D0 2560
Y(7) - .2664014664D0 2590
1:(£) - .2701462043D0 2600
Y(9) =.2738774769D0 2610

Y;10)=.2775953776D0 2620

Y( 11)=.2812999902D0 2630

Y(12)=.2C69914333D0 2640
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C

C

G

G

C

C

C

C

Y(13)=.2886697707D0 2650
Y(14)=.2923351012D0 2660
'1(15)=.2959875138D0 2670
Y(16)- .2996270966D0 2680
Y(17)=.3032539367D0 2690
Y(12)=.3068681205D0 2700
Y(19)=.3104697335 E0 2710
Y(20)=.31405b86C2DO 2720
Y(21)- .3176355 &46D0 2730
Y(22)- .3211999895D0 2740
Y(23)- .3247521572D0 2750
Y(24)- .3282921591D0 2760
Y(25)- .3318201056D0 2770
T(2g)=.3353360467W 2780
Y(2/)=.338a40071314 2790
Y(2&)- .3423322577D0 280C
Y(29)=.3458126835D0 2810
7(30)=.3492614255D0 2820
Y(31)=.3527365596E0 2E30
Y(32)=.3561841612E0 284e
Y(33)=.35961830491)0 2E:0
Y(34)=.3630410646D0 2360
Y(35)=.3664525136D0 2870
Y(36)=.3698527244D0 2880
Y(37)=.37321.176681)0 2t90
Y(38)=.376619717M0 2f00
Y(39)=.3799866424E0 2910
Y(40)=.3833426119D0 2920
Y(41)=.3266876959D0 2930
Y(42)=.3900219627D0 2940
Y(43),.3933454C05D0 2950
Y(44)=.3966583163D0 2960
Y(45)- .3999605371D0 2970
Y(46)- .4032522088D0 2980
Y(47)=.40653:3970D0 2990
Y(40)=.40980416600 3000
Y(49)=.4130645C16D0 3010
Y(50)=.4163147060D0 3320
Y(51)=.4195546030D0 3030
Y(52)=.4227843351D0 3040
Y(53)=.426003S643E0 3050
Y(34)=.4292135520D0 3060

3()70
A..:: 3080
IF(X.LT.1.DO) A. +1.D0 3090
PS11.-.5772156649D0 3100

3110
IF(A.GT.1.D0)G0 TO 5 3120

3130
3140
3150
n60
3170
3180

IF(A.LT.2.D0)G0 TO 20 3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3240
3300

PSI=PSI1
RETURN

5 PSI -0.1)0

10 A=A-1.D0
PSI=PSI+1.D0 /A
IF(A.LT.2.D0)G0 TO 20
GO TO 10

20 IF(A.GT.1.75D0)G0 TO 35
IF(A.GT.1.D0) GOTO 21
PS1=PSI+PSI1
RETURN
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21 A=A-1.D0 3310
L=-23.21647129DO/DLOG(A)+1 3320
IF(L.LT.2)L=2 3320
M=MINC(L,42) 3340

C 3350
DO 25 N=2,11 3360

Z5 PSI =PSI+(-1)**N*ZETA(N)*A**0-1) 3370
PSI=PSI+PSI1 :,380
IF(M.EQ.L) GOTC 40 3390

C 3400
M1=+1 3410
DO 30 N=M1,L 3420
ZETA(N)=(ZETA(N-1)+1.D0)*.5D0 3430

30 PSI =PSI+(-1)**N*ZETA(N)*A**(N-l) 3440
GOTO 40 3450

C 3460
35 P..(A-1.745D0)*200.D0 3470

IZ=DIUT(P+1.D-10) 3460
IF(IZ.LT.1) IZ -1 3490

C 3500
P- P- DFLOAT(IZ) 3510
IZ -IZ +1 3320

C 3530
IF(P.NL.O.D0) GOTO 37 2540

C 3550
PSI -Y(IZ) 3560
GOTO 40 2570

C 3580
37 PH1- P -1.D0 3590

PP1=P+1.D0 3600
- PM2=P-2.D0 3610

P2M1=PM1*PP1 3620
PSI=-P*PM1*PM2/6.DO*Y(I7-1)+P2M1*PM2/2.DO*Y(IZ)- 3630
CiP*PP1*PM2/2.DO*Y(IZ+1)+P*P2M1/6.D0 *Y(IZ+2)+PSI 3640

C 3650
40 IF(X.LT.1.0) PSI=PSI-1.D0 /X 3660

RETURN 3670
END 3680
DOUBLE PRECISION FUNCTION GFCT(U,V,TZ) 3690
EXTERNAL FCT,DFCT 3700
DOUBLE PRECISION U,V,TZ,VP,UP,DFCT,ONE,H,XL,XU,FCT,Y,Y1,YNOLD,EPS 3710
DOULLE PRECISION DX,TWO 3720
COMMON UF,VP :.730
TWC=2.D0 37L0

C 3750
C 3760

3770
378:;
3790
3800
3b10
3C20
3830
3340
3850
3860
3370
3880

C 389C
3900

C 3910
3920

c 393)
3940

C 3950
3960

:ER -0

XU -TZ
ONE=1.D0
EPS=.00005
KL -15
IU=U-TWO
IF(U.LE.TWO) IU -0
UP=U-DFLOAT(IU)
IV -V -TWO

IF(V.LE.T110) IV -0
VP=V-DFLOAT(Iv)

DX- DFCT(UP,VP,TZ)

IF(L.LT.ONE) UP=UP+ONE

CALL DQG32(XL,XL,FCT,YHOLD)

DO 6 J=2,KL

2 9 2
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Y -0.D0
3970ML=2**J
3980R=TZ/DFLOAT(2/L)
3990C
4000DO 5 I=1,ML
4010

XL=DFLOAT(I-1)*H 4020XU=XL+H
4030CALL DQG32(XL,XU,FCT,Y1)
40405 Y -Y +Y1
4050

IF(DABS((Y-YHOLD)/YHOLD).LE.EPS) GOTO 7 40606 YIIOLD -Y
4070C
4080IER -1
4090C
41007 GFCT -Y
4110C
4120

IF(IER.NE.0)WRITE(6,100)U.V.TZ,ML,EPS 4130
100 FORMAT(' ERROR IN GFCT AT U,V,THETA ZERO = ',3F10.5/ 4140*' AFTT.W.I9,' PARTITIONS, A TOLERANCE ERROR OF',F9.6,' CANNOT BE R4150*EACHED' /' COMPUTATIONS CONTINUED') 4160C

4170
IF(U.GE.ONE) GOTO 9 4180UP -UP -ONE

4190
YHOLD=TZ**UP*(ONE-T2)**VP 4200
11=YHOLD*(DLOG(TZ)-ONE/(UP+VP))-DX*VP/(UP+VP) 4210
GFCT=(UP+VP)*GFCT/UP+H/UP 4220C

42309 IF(IU.EQ.0) GC TO 20 4240c
4250DO 10 I -1,IU
4260

YHOLD=TZ**UP*(ONE-T2)**VP 4270
H=YHOLD*(DLOG(TZ)-ONERUP+VP))-DXVP/(UPOP) 4280
GFCT=(UP*GFCT-H)/(UP+VP) 4290
DX=(-YHOLD+UP*DX)/(UP+VP) 430010 UP- UP+ONE

4310

C 432020 IF(IV.EQ.0) RETURN
4330C
4340DO 30 I=1,IV
4350

YROLD=TZ**U*(ONE-TZ)**VP 4360
H=YHOLD*(DLOG(TZ)-OUE/(U+VP))-DX*VP/(U+VP) 4370
GFCT=(GFCT*VP4g)/(U+VP) 4380
DX=(YHOLD+VP*DX)/(U+VP) 439030 VP- VP+ONE

4400C
4410RETURN
4420END
4430

DOUBLE PRECISION FUNCTION DFCT(A,B,TZ) 4440EXTERNAL BETA
4450DOUBLE PRECISION A,B,TZ,BETA
4460C
4470AA=A
4480BB=B
4490TZZ=TZ
4500

CALL 21DBETA(TZZ,AA,B3,P,IER) 4510C
4520

IF(IER.NE.0) WRITE(6,100)A,B,TZ,IER 4530100 FORMA:('O' , ' ERROR IN BDTR, A B TZ IER ARE ',3F20.10,15) 4540
DFCT=DBLE(P)*BETA(A,B) 4550RETURN

4560END
4570

DOUBLE PRECISION FUNCTION BETA(X,Y) 4500
DOUBLE PRECISION A,B,CON,X,Y,F 4590F=5.00

4600A=X
4610B=Y
4620
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CON1.D0 4630
IF(A.LE.F) GOTO 2 4640

I AA-1.D0 4650
CONCON*A/(A+B) 4660
IF(A.LE.F) GOTO 2 4670
GOTO 1 4680

2 IF(B.LE.F) GOTO 4 4690
3 BB-1.D0 4700
CONCON*B/(A+B) 4710
IF(B.LE.F) GOTO 4 4720
GOTO 3 4730

4 BETA DGAMMA(A)*DGAMMA(B)/DGAMMA(A+B)*CON 4740
RETURN 4750
END 4760
DOUBLE PRECISION FUNCTION FCT(T) 4770
COMMON U,V 4780
DOUBLE PRECISION T,U,V 4790
FCTO.D0 480G
IF(T.EQ.O.D0) RETURN 4810
IF(T.EQ.I.D0) RETURN 4820

C 4830
FCTT**(U-1.D0)*(1.30-T)**(V-1.00)*DLOG(T) 4840
RETURN 4850
END 4860
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RELATIONSHIP BETWEEN DECISION ACCURACY AND
DECISION CONSISTENCY IN MASTERY TESTING

Huynh Huynh
Joseph C. Saunders

University of South Carolina

ABSTRACT

In mastery testing, decision accuracy refers to the proportion

of examinees who are classified correctly, in one of several

achievement categories, by test data. Decision consistency express-

es the extent to which decisions agree across two test administra-

tions. Based on twelve cases involving a wide range of an reli-

abilities, it was found that decision accuracy and decision con-

sistency were almost perfectly related.

1. INTRODUCTION

In classical measurement theory and practice, the reliability

of a set of measurements (often, albeit unfortunately, refe:Ted to

as the reliability of a test) is typically defined as the ratio of

true-score variance to observed-score variance. The asPumptions

of classical test theory imply reliability can also be viewed as

the correlation between two sets of parallel measurements

This paper has been distributed separately as RM 80-8, August, 1980.
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(Lord & Novick, 1968). Capitalizing upon this property, several

writers (Carver, 1970; Hambleton & Novick, 1973; Huynh, 1976c;

Subkoviak, 1976) have proposed that reliability (of decisions) in

mastery testing be considered from the standpoint of decision

consistency (i.e., consistency of individual decisions across two

test administrations). It has also been argued (Huynh, 1976b,

[for the case of Q=1]; Livingston & Wingersky, 1979; van der Linden &

Mellenbergh, 1978; Subkoviak & Wilcox, 1978; Wilcox, 1977) that the

quality of the decision-making process would be more appropriately

assessed via the agreement between decisions based on test data

and those based on true scores, had these been known. Such agree-

ment, in its simplest form, may be expressed as the proportion of

examinees who are correctly classified by the test scores. This

quantity will be referred to as decision accuracy in subsequent

sections of this paper. In a slightly different form, it has been

called a validity coefficient by Berk (1976). Decision accuracy,

in this context, presumes that false positive and false negative

errors are weighted equally. When the weights (losses or utilities)

are not equal, then coefficients b..sed on decision theory, such ass

(Huynh, 1976b), 6 (van der Linden & Mellenbergh, 1978), or y (Wilcox,

1978) may be more appropriate. However, decision consistency re-

gards both types of inconsistent decision as being of equal severity.

Thus, only the case involving equal (and constant) losses will be

considered in this paper, so that comparisons might be anchored in

the same framework.

The purpose of this paper is to study the relationship between

decision consistency and decision accuracy for a variety of situa-

tions involving mastery tests. For reason of computational sim-

plicity, the study is restricted to test score distributions which

follow a beta-binomial form.

2. COMPUTATIONAL PROCEDURES

Let x and 8 denote the observed and true score for a subject,

310

2 9i;



DECISION ACCURACY AND CONSISTENCY

and let c and e
o

denote the corresponding passing scores for

mastery classification. in addition, let y be the observed score

for the same subject on a second (parallel) test administration.

The raw index of decision consistency is defined as p =
xy

Pr(x<c,y<c) + Pr(x>c,y>c), and an index of decision accuracy may

be taken as pxo = Pr(x<c,e<80) + Pr(x>c,0>0). (Other indices

similar to Cohen's kappa may also be used; however, since the

marginal probabilities of the mastery and nonmastery categories as

defined by the test scores x and y, and by the true score e are

identical or almost identical, any relationship between the p

indices would hold for the kappa indices.)

When the test data can be described via a beta-binomial model,

both indices p
xY

and pace may be computed via formulae, tables, and

computer programs reported in Huynh (1979a, 1979b, 1980b, 1980c).

Additionally, in the context of decision-making, it seems logical

:o select a (test) passing score c which reflects the true cutoff

score 0
o and the two (equal and constant) losses under consideration.

When the beta-binomial model holds, the value c may be obtained via

the incomplete beta functions (Huynh, 1976a). Let n be the number

of items, and a and 8 be the two parameters of the beta distri-

bution. Then the Bayesian passing score is the smallest integer c

at which the incomplete beta function I(a+c,n+0-c;0) is less than

or equal tc .5. In most instances involving minimax decisicns

(Huynh, 1980b), the value of c is very close to neo; this simple

expression will be used throughout this paper.

3. DATA BAS:

Two sets of test data were used in this study, one fictitious

and the other derived from responses to the Science Research

Associates Mastery Tests (SRA, 1974, 1975). The fictitious data

set consists of eight beta-binomial distributions, each of which

was selected to yield a testing situation in which the a21 re-

liability was low or moderate. Table 1 contains descriptions

of these cases.
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TABLE 1

A Comparison of Decision Accuracy and
Decision Consistency based on

Moderately Reliable Beta-Binomial Test Scores

Case Shape n u a a
21

Ao c p
xe

p
xy

1 Unimodal 5 3.125 1.301 .385 .5 3 .768 .687
2 Symmetric 5 2.500 1.279 .24:4 .5 3 .693 .605

3 Unimodal 10 8.000 1.706 .500 .7 7 .845 .799
4 J-Shaped 10 9.000 1.500 .667 .7 7 .941 .921
5 Unimodal 20 12.000 3.024 .500 .7 14 .773 .678
6 Unimodal 20 16.000 2.646 .571 .7 14 .868 .821
7 Unimodal 30 16.000 3.801 .500 .8 24 .979 .964
8 J-Shaped 30 29.250 1.319 .600 .8 24 .993 .990

Table 2 describes the second data set which consists of four

SRA-comp4led tests. The SRA data were obtained from the South

Carolina State Department of Education. The data, consisting of

the item responses of approximately 3000 sixth grade students for

the SRA Mathematics (form X) and SOBAR Reading (form L) cests,

were collected in a field testing conducted in the spring of 1978.

Artificial subtests of 10, 20, 30, and 40 items were created from

the SRA data by random selection of items from sets of homogeneous

objectives.

TABLE 2

Description of the SRA Mastery Tests Data

Case Subject
Area

Number of
Items

Mean S.D. ail

9 Reading 10 7.016 2.391 .704

10 Reading 20 12.268 4.787 .835

11 Math 30 15.666 5.901 .812

12 Math 40 19.552 7.439 .840

4. RESULTS AND DISCUSSION

The data regarding decision accuracy and decision consistency

are reported in the right side on Table 1 for the fictitious data
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set and in Table 3 for the SPA-compiled tests. In all situations

under consideration,
pry

is smaller than p
xe

; the ratio of p
xy

to

p
xe

averages about .96. However, the correlation between the two

indices is .993, which represents an almost perfect linear re-

lationship. For the 12 cases under study, decision accuracy

relates to decision consistency via the empirical formula
p = .25 + .75p .

xy

TABLE 3

A Comparison of Decision accuracy and
Decision Consistency Based on Zeal Data

Case True Test Decision Decision
Cutoff e

o Cutoff c Accuracy Consistency

9 .50 5 .894 .858
470 7 .828 .780

10 Ao 10 .892 .852
.70 14 .870 .826

11 .50 15 .863 .812
.70 21 .893 .853

12 .50 20 .872 .823
.70 28 .922 .892

This study indicates that there is little difference between

the indices of decision accuracy and decision consistency in terms

of ranking the quality of different test-based decision-making

processes. Decision accuracy can be predicted with very little

error from decision consistency. The relationship between the two

indices thus parallels that of the two approaches to classical re-

liability discussed in the introduction to this paper.

The basic result of this study casts doubt on the conjecture

by Mellenbergh and van der Linden (1979, p. 263) that "the con-

sistency of decisions is not related in the same way to the

association between decisions and true states as consistency of

measurements as related to the reliability coefficient." The very

basic assumption which underlies our conclusion is that the test
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passing score must reflect in some way the true cuff score and

the various losses which are incorporated in the decision-making

process. If this assumption is tenable, any comparison between

decision accuracy and decision consistency would have no useful

meaning if the test passing score and the true cutoff score were

selected independently of each other. The counterexample pre-

sented by Mellenbergh end van der Linden (1979, p. 263) seems to

reflect this type of selection. In addition, the above conjecture

appears to be contradicted by the theoretical results reported by

Huynh (1976c, 1978a), namely the fact that under fairly general

assumptions, the raw agreement index and the kappa index for

decision consistency are increasing functions of the classical

relability. Thus, both these indices of decision consistency

across two test administrations reflect the nature of the relation-

ship between true scores and observed scores.

It should be pointed out that the indices of decision accuracy

and of decision consistency are defined for a set of test scores

collected from the administration of a test to a group of examinees.

Both indices thus represent internal characteristics of the data.

As may be recalled, the decision accuracy index considered in this

paper presumes that losses associated with incorrect decisions are

equal (and constant); it should be replaced by appropriate effi-

ciency indices when losses do mt have this simple form. In this

case, the Huynh efficiency indices (Huynh, 1975, 1976b, 1980a), the

(5 index proposed by van der Linden and Mellenbergh (1978), or the

Wilcox y index (1978) might be used. Because losses are often de-

fined as a function of the true ability (which is typically esti-

mated from test data), all these indices actually represent the

internal characteristics of the data; they do not appear to be re-

flective of any other trait which might relate to the test itself.

Decision accuracy and other similar efficiency indices seem to act

as counterparts of reliability in classical test theory.

Finally, it may be noted that in many practical situations,

314

30i-)



DECISION ACCURACY AND CONSISTENCY

losses are very hard to assess, and loss-based coefficients may

not be useful. For example, procedutus for setting passing scores

are often based on an examination of the test iteme or on a con-

sideration of the objectives underlying the teat. For situations

in which these procedurta Ore appropriate, only the test passing

score is available for the evaluation of the internal character-

istics of the test data; hence decision consistency may very well

be the only characteristic of the data which could feasibly be

used to assess reliability. The argument seems convincing that

decisions based on test data would not be acceptable if they

could not be replicated to a satisfactory degree by use of the

data collected from another test administration. The practical

implications of this study seemly contradict the assertion by

itilenbergh and van der Linden that "decision consistency and

reliability are not equivalent concepts" (1979, p. 270). Based

on the results of this study, it appears that decision consistency

acts very much like a counterpart of classical test reliability.
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A NOTE ON DECISION-THEORETIC

COEFFICIENTS FOR TESTS

Huynh Huynh

University of South Carolina

ABSTRACT

A modification is suggested for the decision-theoretic co-

efficient 6 proposed by van der Linden and Mellenbergh. Under

reasonable assumption;, the modified index varies from 0 to 1 in-

clusive. It is argued that in many practical applications of

mastery testing, coefficients such as 6 are not readily available,

and consistency of decisions may serve as evidence of the quality

of the decision-making process.

1. INTRODUCTION

Coefficients for tests (or strictly speaking, for a set of

measurements) derived from decision theory have been formulated

in a variety of ways (Huynh, 1975, 1976; van der Linden &

Mellenbergh, 1978). These coefficients are based on the reduction

in the proportion of expected loss (or Bayes risk) which would

result from using test scores in the decision-making process.

The efficiency coefficient proposed by Huynh is defined as c =

(R* - R
o
)/R* where R

o
is the expected opportunity loss associated

This paper has been distributed separately as RM 80-4, July, 1980.
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with the best use of test scores. The denominator R* is the

minimum of a similar loss whict would be incurred if decisions

were based on information having no relationship to the true

ability of the individual subject. (It may be noted that the

opportunity losses associated with perfect information, i.e.,

when decisions are always correct, are zero.) Using the notion

of monotone decisions along with the assumption of monotone like-

lihood ratio for the test score density, Huynh was able to prove

that the efficiency index c ranges between 0 and 1 inclusive.

The lowest value 0 occurs when test information is unrelated to

the ability of the subject, and the upper bound 1 is reached when

test scores reveal faithfully the ability of the subject.

The decision-theoretic coefficient proposed by van der Linden

and Mellenbergh (1978) is defined as d (Rn - RB)/(Rn - Rc).

where RB represents the expected loss associated with the use of

test scores. R
c
and R

n
, on the other hand, are the expected

losses for situations in which the test contains crmplete and no

information about the true scores, respectively. These losses

are not necessarily opportunity losses. As defined, the coeffi-

cient 6 is 0 when test scores are unrelated to true ability, and

reaches the value 1 when test scores contain complete information

about true ability. However, as noted by van der Linden and

Mellenbergh (1978), the coefficient 6 may not always lie within

the interval defined by 0 and 1. To overcome this deficiency,

Wilcox (1978) proposed that Rn and Rc be replaced with the upper

and lower bounds of the expected loss RB. His index y, then,

will range between 0 and 1. However, it is not known if these

bounds have direct interpretations in terms of the degree of re-

lationship between test score and true ability.

The purpose of Olis note is to modify the index 6 slightly,

and to describe the situations in which the resulting index falls

between 0 and 1. The assumptions are presented only for the case

of binary (mastery versus nonmastery) classification; however,

they may be generalized in a fairly simple manner to situations
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involving more than two classification categories.

2. GENERAL CONSIDERATIONS

Consider a population of subjects for whom the true ability

e is distributed according to the density p(0) with a as range.

If there is only one subject in the population, then p(0) repre-

sents the prior density in the context of Bayesian statistics.

Let x represent the observed test score and f(x10) be its condi-

tional density with the real line as the range. Let al be the

action of denying mastery status (the nonmastery category) and a2

be the action of granting mastery (the mastery category). Follow-

ing the notation used in Ferguson (1967, chapter 6), let L(0,a1)

and L(0,a2) be the losses associated with the actions al and a2.

In most formulations of mastery testing, it is usually assumed

that there exists a true cutoff ability eo such that action al is

better than action a
2
when 9 < 0

o
and the reverse is true when

>
o

. To be consistent with these assumptions, the losses would

have to satisfy the following inequalities: L(0,a1) < L(0,a2)

for 9 < 0
o and L(0,a1) > L(0,a2) for 0 Leo. Under these con-

ditions, the binary decision problem involving the actions al and

a
2
is said to be monotone.

In practical situations, however, mastery/nonmastery decisions

are usually based on observed test data. In general, it seems

reasonable that mastery should be granted if the test score x is

high, and nonmastery should be presumed if the test score is low.

In order that this type of classification be optimum in most

decision-theoretic contexts, it is traditionally assumed that the

conditional density f(x10) has monotone likelihood ratio. This

condition is fulfilled for test models involving the exponential,

Poisson, normal, negative binomial, gamma, and beta distributions,

and in general, distributions belonging to the one-parameter ex-

ponential family (Ferguson, 1967, p. 208-209). In addition, the

assumption of monotone likelihood ratio for f(x10) implies

(Lehmann, 1966; Dykstra, Hewett, & Thompson, 1973, p. 679,
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definition) that x is positive likelihood ratio dependent upon 0.

This result, in turn, implies that x and 6 are stochastically

increasing in sequence (Dykstra et al., Theorem 2); that is, the

conditional distribution of x, F(x10) is nonincreasing in 8.

Thus, when the monotone likelihood ratio assumption is fulfilled,

the probability that a subject achieves a test score of x or lower

is greater for subjects with lower ability.

When f(x10) has monotone likelihood ratio, it is best co de-

clare mastery if the test score x is at least c, and declare non-

mastery if the test score x is smaller than c. The expected loss

(or Bayes risk) associated with the cutoff test score c is

or

R = f ff. 11(6,a1)f(x16)p(0)dxd8

+ fn f: L2(6,a2)f(x16)p(0)dxd8,

R = L1(0,a1) Pr(x<c16)p(0)d0

(1)

+ f L
2
(6,a

2
) Pr(x>c16)p(0)d0.

Consider now the first extreme case where x carries no in-

formation about 6, i.e., when x and 6 are independent. For this

situation, the two probabilities Pr(x<c le) and Pr(x>c10) are free

of 6, and the expected loss may be written as

Rn = [f

+ [f L2(6,a2)delPt(x>c).

The relationship between R and Rn may be stated as follows.

Theorem 1. Let L1(6,a1) be nondecreasing in 6 and L2(0,a2) be

nonincreasing in 6. In addition, let f(x16) have monotone like-

lihood ratio. Then R <ft
n

Proof. Equation (1) may be written as

-R = E
6-
r-L

1
(6,a

1
) Pr(x<c16)]

+ E
6 2

(6,a
2
) {-Pr(x>c16}].

(2)
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All the functions -11(6,a1), Pr(x<c16), L2(6,a2), and -Pr(x>c10)

are nonincreasing in 6, hence (Dykstra et al., 1973, p. 678)

-R CEeLl(6,a2)] yr(x<c16)

- [EeL2(6,a2)] EePr(xlc16),

or

-R > -R
n

. Q.E.D.

The assumptions regarding the variations of 11(6,a1) and

L2(6,a2) with respect to al and a9 seem intuitively justified.

The denial of mastery status probably should cause less harm to a

subject with lower ability than to someone with higher ability.

Granting mastery status, on the other hand, should entail lesser

consequences for a high ability subject than to someone with

lower ability.

Consider now the second extreme case where the test score x

reveals fully the ability a of the subject. It appears rea-

sonable to impose a strictly increasing function relating x to 0.

Let. 6
c
be the image of the test cutoff score c on the true ability

scale e. Then it may be deduced that P(x<c16) = 1 when 6 < 6e and

0 when 6 > 6
c

. On the other hand, P(x>c le) . 0 when 6 < 6
c

and 1

otherwise. Thus, under the assumption of complete information,

the expected loss as expressed in (1) will be equal to

f c L 0 a )p(6)d6 + L 0 a )p(e)de.. ' 0
c

2 ' 2

Under the monotone-decision conditions imposed previously on the

loss functions, it may be shown that this loss is minimized when

6
c
=

o
. Hence the minimum complete-information expected loss may

be taken as
0

R = f ° L ce,a )p(e)de + L (e,a )p(e)de.
0

c . 1 e 2 2 (3)

Theorem 2. Under the monotone-decision assumptions, the expected

loss R, computed at any test cutoff score, and the minimum

complete-information expected loss, Re, satisfy the inequality

R < R.
c
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Proof. Consider the expected loss R of (1) which can be written

as

R = f ° L
1
(6,a

1
) Pr(6<c16)p(6)d6 + J8° L

2
(6,a

2
) Pr(6>118)p(6)d6-= -=

+ fc°
6

L
1
(8,a

1
) Pr(8<c16)1)(6)d0 + je L

2
(6,a

2
) 'r(6>c16)p(6)d6.

o o

When 0 < 6
o
, L

1
(6,a

1
) < L

2
(6,a

2
) and when 8 >

o
, L

2
(8,a

1
) <

L
1
(8,a

2
). By noting that Pr(x<cle) + Pr(x>c18) * 1, it may then

be verified that R > R
c

. Q.E.D.

The following corollary is immediate.

Corollary. Let the loss L1(a1,6) be nondecreasing in 6, the loss

L
2
(a

2'
6) be nonincreasing in 6, and let the graphs of these

functions cross at a given point 'ithin the positive-probability

range of 6. In addition, let f(x16) have monotone likelihood ratio.

Then the index 6 = (R - Re)/(Rn - Rc) in which Rc is the minimum

complete information expected loss will be between 0 and 1 in-

clusive.

3. RATIONALE FOR THE USE OF MINIMUM EXPECTED LOSS

The use of the minimum expected loss for the case of a strict-

ly increasing relationship between x and 8 guards against the seem-

ing contradiction in which the use of perfectly reliable test data

would cause more harm than the use of less-than-perfectly reliable

test data.

The bounds R
n
and R

c
for the expected loss R have fairly

straight-forward psychometric interpretations. The lower limit

R
n would occur if nonmastery and mastery status were randomly

assigned to examinees regardless of the test scores, keeping the

proportion of nonmasters equal to that of examinees having test

scores smaller than c, and the proportion of masters equal to that

of .2xamtnees having a test score of c or greater. The upper limit

R
c
corresponds to the best use of completely reliable test data.

It may be noted that both bounds (Rn and Re) are easy to com-

pute, given the quantities p(6), f(x18), L1(8,a1) and L2(6,a2).

Thus, the index 6 as defined in this note may be estimated in a
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fairly straight-forward manner for most situations involving the

use of test data to make decisions. This represents an advantage

over the Wilcox y (Wilcox, 1978, p. 610) which seems to involve

rather complex calculations.

4. SOME ADDITIONAL REMARKS

As additional remarks regarding the index 6 proposed by van

der Linden and Mellenbergh (1978), some departures appear apparent

between its formulation and the various illustrations. The

authors argued that their index 6 seemed more realistic than the

coefficient e defined in Huyrh (1976) because 6 was defined on

any chosen cutoff score while the c index relied on the optimum

cutoff score. But, in both illustrations based on squared-error

and linear losses, the optimum cutoff score was us,.1 in order to

reach the conclusion that the 6 index was equal to the classical

reliability index. In addition, 6 was presented as a coefficient

that represented the optimality of decisions (p. 133). Thus the

use of a less-than-optimal cutoff score in the formulation of 6

5eemed to contradict the very characteristic which 6 was thought

to embrace.

Finally, the use of any decision-theoretic coefficient for

tests presumes the availability of the losses (or utilities)

associated with the various actions. In a number of practical

situations, however, decisions regarding cutoff scores are not

based on losses because they are not readily quantified or be-

cause the decision-maker is not willing to use them. In many in-

stances, for example, cutoff scores are derived from an exami-

nation of item content or a consideLation of the educational

objectives. For these cases, the decision-theoretic coefficients

as described in this paper are not available and the consistency

of various decisions across two test administrations may serve as

evidence of the quality of the decision-making process. It may

be argued that decisions regarding success or failure for each

subject may not be acceptable if they cannot be replicated to a
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reasonable extent on a second test administration. It is

cautioned, of course, that test-retest consistency for decisions

does not necessarily imply that the corresponding decisions are

reflective of the purposes that the decision-maker nas in mind.

This line of reasoning is reminiscent of the well-accepted fact

that in measurement, reliability is a necessary but not a

sufficient condition fur validity.
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ASSESSING EFFICIENCY OF DECISIONS
IN MASTERY TESTING

Huynh Huynh

University of South Carolina

ABSTRACT

Two indices are proposed for assessing the efficiency of

decisions in mastery testing. The indices are generalizations of

the raw agreement index and the kappa index. Both express the

reduction in the proportion of average loss (or the rain in utility)

resulting from the use of test scores to make decisions. Empirical

data are presented which show little discrepancy between estimates

based on the beta-binomial and compound binomial models flr one
index.

1. INTRODUCTION

A primary purpose of mastery testing is to classify examinees

in several achievement or ability categories. Typically, there are

two such categories, which are often referred to as mastery (res..),

competent, or instructed) and nonmastery (nonready, incompetent, or

uninstructed) groups. Ideally, these categories are defined on the

basis of the true ability (0) of the subjects; however, in reality,

This paper has been distributed separately as RM 80-5, July, 1980.
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observed test scores are used to make mastery/nonmastery decisions.

Since observed test data are often fallible, decisions based there-

upon are less than completely accurate or efficient.

In the simplest formulation of mastery testing (Hambleton &

Novick, 1973; Huynh, 1976a), the categories of true mastery and

true nonmastery are defined respectively by the -onditions e > eo

and 6 < 6
o

, e0 being a constant referred to as a criterion level by

Hambleton and Novick and a true mastery score by Huynh. A test is

given, and the observed test score x is obtained for each individual

examinee. A suitable test passing (cutoff, mastery) score c will

be chosen, and the examinee will be granteu or denied mastery status

if the observed test score x is such that x > c or x < c. The two

combinations (e < e
o
; x < c) and (e 20

o
; x c) represent correct

decisions; they entail no (opportunity) losses in the decision

process. The other two possible combinations correspond to a false

positive error (e < e
o
; x > c) and a false negative error (e >0

o
;

x < c). Some form of loss function, such as constant, linear: or

squared error loss, is typically assigned to each of these errors

in most decision-theoretic formulations of mastery testing

(Hambleton & Novick, 1973; Huynh, 1976a, 1980b; van der Linden 6

Mellenbergh, 1977).

Given various parameters defining the decision situation (such

as e
o

; the number of test items; the losses incurred by misclassifi-

cation; and, when available, prior information regarding the indi-

vidual examinee or the group of examinees), a test passing score

may be determined by minimizing either the average loss (Bayesian

or empirical Bayes passing score) or the maximum loss (minimax

passing score). For example, where classification errors are

weighted equally (e.g., when the false positive loss and the false

negative loss are identical), an optimum passihg score may be deter-

mined by minimizing the sum of the probabilities of making such

errors. Details regarding the determination of passing scores may

be found in Huynh (1976a, 1980b).

Once a passing score has been set for a test, an obvious ques-

tion concerns the extent to which the test itself contributes to

the quality of the decision-making process. The question may be

330



EFFICIENCY OF DECISIONS

answered in a variety of wee.... For example, if the test scores are

used to identify students who need instructional remediation, then

the detection of poor achievers (nonmasters) is important, and

therefore a substantial false positive error rate may not be

acceptable. In this context, a mastery test may be considered as

effective or efficient if it yields a small false positive error

rate. In most situations, however, some combination of false posi-

tive error, false negative error, and their corresponding losses

would be desirable in assessing the efficiency of using test scores

to make decisions regarding individual examinees.

2. REVIEW OF LITERATURE

The consideration of decision efficiency was introduced by

Huynh (1975, 1976c) for the case involving constant losses. Let Ro

be the expected loss associated with the best use of test data and

n
be the smallest expected loss encountered in the case of no

relationship between true ability and test score. Huynh's effi-
*

ciency coefficient, defined as c = 1-R
o
/R

min'
was interpreted as

the proportion of reduction in random loss which would result from

the best use of test data in the decision-making process. Under

fairly general conditions regarding the nature of test data, Huynh

proved that c was included between 0 and 1. The lower bound occurs

when there is no relationship between test score and true ability;

the upper bound is reached when there is a perfect increasing rela-

tionship between these two variables.

The concept of decision efficiency was later extended under a

slightly different form by van der Linden and Mellenbergh (1978)

and Mellenbergh and van der Linden (1979). These writers proposed

the use of the coefficient 6 = (R
n
-R_)/(R

n
-R

c
), which may be written

equivalently as 6 = 1 - (RB-Ro)/(R -R
c
), r .orm similar to Huynh's

original E. In these formulae, RI, represents the expected loss

associated with any predetermined test passing score; Rc and Rn are

the expected losses encountered in situations in which the test

scores contain complete and no information about the true score,

respectively. As shown by var. der Linden and Mellenburgh, there is

a direct relationship between 6 and the classical reliability index
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when 6 is computed for linear losses at the optimum test passing

score. In addition, the two special vaItes 6 = 0 and 6 = 1 have

the same meaning as e. However, van der Linden and Mellenbergh

correctly stated that their proposed 6 may not always be included

between 0 and 1, as would be typically desirable in the formulation

of indices to be used in educational and psycho1,gical measurement.

Huynh (1980c) proposed a revised 6 in which Re represented the

expected loss associated with the best use of completely infallible

data and proved that 0 < 6 < 1 under fairly general conditions.

Wilcox (1978) had also advanced a modification of 6; his index y

ranged between 0 and 1. However, these boundary values of y did

not appear to bear direct interpretations in terms of the relation-

ship between test scores and true ability.

Livingston and Wingersky (1979) proposed the assessment of the

quality of pass/fail decisions (mastery testing) on the basis of

the probabilities of making correct and incorrect decisions and on

the basis of an efficiency index involving these probabilities and

the corresponding utilities. The issue of errors in decisions has

been considered at length in the literature (Hambleton & Novick,

1973; Huynh, 1976a; Wilcox, 1977). In addition, the Livingston-

Wingersky index varies from -1 to +1, a range which often compli-

cates the interpretation of the index. Est4mates for the various

quantities considered by these authors are based on the compound

binomial model, which typically requires the responses of at least

1000 examinees. The requirement seems quite stringent in ms.ny

cases involving field testing or the use of mastery tests. (Actual-

ly, as can be seen later in this paper, the Livingston-Wingersky

index relates directly to the raw efficiency index c2; there is

little difference between estimates of e2 based on the compound

binomial and beta-binomial models.)

The purpose of this paper is to provide a general formulation

of decision efficiency in mastery testing, to provide illustrations

based on the beta-binomial model, to describe ways to estimate the

proposed efficiency indices, and to report data comparing estimates

based on the compound binomial and beta-binomial models.
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Figure I provides the motivation for the general formulation

of decision efficiency as presented in the subsequent section. Let

us consider the simplest case in which the losses encountered by

both the false positive and false negative errors are constant and

equal (and are set at Q). With the cell probabilities pij as pre-

viously defined, the expected loss (Hayes risk) In using test

scores to make decisions is equal to

R Q(1301 D10) (1)

Let us presume now that there is no relationship between ability

and test score x, hence mastery/nonmastery decisions are based on a

random process independent of the examinee's ability. For this

situation, the loss is expected to be

R
e
= Q(p

.1
p
O.

+ p
Av-

) . (2)o

This quantity will be referred to as random- decision risk. In

addition, over all possible values for 60 and c, the worst decision

would occur when a true master is always denied mastery status and

a true nonmaste,. is always granted mastery status. For these ex-

treme situations, the risk stands .,- the maximum R
m

= Q. Under

fairly general conditions (see Section 3), it may be verified that

R <R
e

From the three expected losses R, Re, and Rm, two efficiency

indices may be formulated. First, Re - R represents the amount of

reduction in the random-decision risk which could be achieved by

sing test data. Hence, an index of decision efficiency may be

defined via the ratio

e
1
= (R

e
- R)/R

e
(3)

which is the extent to which the reliance on test scores will reduce

the expected loss which would be encountered if no test data (or

completely fallible data) were used in the decision situation de-

fined by 60 and c. From Equations (1) and (2), it may be deduced

that

el (P-Pc)/(1-Pc)

where P = p00 + pit and Pc = p0.p.0 + ply.]: This index, el, is

actually the kappa index proposed by Cohen (1960) and studied
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extensively in the context of mastery testing by Swaminathan,

Hambleton, and Algina (1975) and Huynh (1976b, 1978, 1979a).

A second efficiency index may also be formulated, using R and

R. It is

E
2

(R
m
-R)/R

m.

This index represents the extent to which the use of test scores

will reduce the maximum risk which is common to all situations.

From Equation (1), it may be verified that

2
= p

00
+ p

11
= P.

(4)

Thus c
2
is simply the combined probability of making a correct

decision. In the context of reliability of mastery tests, £2 (or

P) is often referred to as the raw agreement index (Subkoviak, 1976;

Huynh, 1979a).

With the rationale for E
1
and E

2
as stated, a general formula-

tion of decision efficiency will now be presented.

4. A GENERAL FORMULATION OF DECISION EFFICIENCY

Let 8 be the true ability of a given examinee and CI be its

range. For the binomial error model (Lord & Novick, 1968, ch. 23),

6 may be taken as the proportion of items in a large item pool that

the examinee is expected to answer correctly, and the range 0 is

the interval[0,1]. Let x be the test score observed for the exami-

nee, and let x be distributed according to the conditional density

f(x(8). In addition, let p(8) be the density of 6.

A referral task (Huynh, 1976a) is assumed to exist and is used

as an external criterion for the determination of a passing score.

The task is defined operationally via a nondecreasing function s(8)

which describes the probability that an examinee with true ability

8 Jill succeed in completing the task. As noted in the author's

previous writing (Huynh, 1976a, 1980b), the referral task may be

real or hypothetical. For example, in individualized instructional

programs where a student proceeds from one content unit to the next

(presumably more complex) unit, each succeeding unit may serve as a

referral task for the previous unit. In other situations, where no

hierarchy can be logically or empirically assumed to hold, a
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consensus on what constitutes an acceptable level of performance

may be translated into a hypothetical referral task. To be spe-

cific, let us suppose that there exists a constant 00 such that

mastery is equivalent to the condition 0 > 00 and nonmastery is

described by the inequality e < 00. The corresponding referral

task is operationally defined by the nonincreasiug function

s(0) = 0 for 0 < e
o

and s(0) = 1 for 0 > 0 .

o

On the basis of the observed test score x and by relying on a

decision rule c, the examinee will be classified in the mastery

status (action a
1
) or in the nonmastery status (action a

2
). Let

C
f
(e) be the opportunity loss incurred in granting mastery status

to an examinee who will eventually fail to perform the referral

task (a false positive error). Likewise, let Cs(0) be the loss

associated with the denial of mastery to someone who will succeed

in completing the task (a false negative error). In most practical

situations, action al is taken when x > c, and action a2 is taken

where x < c. Here, the constant c is referred to as a test passing

(cutoff, mastery) score.

Within the decision framework as stated, the expected loss

(Bayes risk) associated with the passing score c is given as

R=1
ft
C
s
(0)s(0)Pr(x<cle)p(0)04-

f
(0)(1-s(0))Pr(x>cle)p(e)de. (5)

When the test score x is discrete, the integration sign in each of

the two terms on the right side of (5) is to be replaced by the

summation (E) sign. For the special 0-1 form for s(e) as defined

previously, the Bayes risk is given as

0oco

R = to
s
(0)Pr(x<cle)p(e)de + f-m C

f
(0)Pr(x>clOp(0)de . (6)

o

In both Equations (5) and (6), the two separate terms on the right

define the individual Bayes risk for the false negative error and

the false positive error.

Consider now the situation where test data do not reflect the

ability of the examinees and therefore are useless in the decision-

making process. For such a case, there would be no relationship

between ability 0 and test score x; in other words, 0 and x would be

independent of each other. The expected loss may now be written as
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Re = (.12 Ce(e)s(0)p(e)de)Pr(x<c)

+ (f C
f
(e){1-s(e)}P(e)de) Pr(x>c) , (7)

and, for the special 0-1 case for s(e), as

Re = Ce(e)p(e)de)Pr(x<c) + Gr; Cf(e)p(e)de)Pr(x>c) . (8)

Let p = Pr(x>c) so that 1-p = Pr(x<c). Then for the situation in

which no relationship exists between x and e, the decision process

is carried out by randomly assigning individuals to mastery and

nonmastery categories according to the proportions p and 1-p,

respectively. As in the previous section, the Bayes risk Re will

he referred to as the random-decision risk, or simply, random risk.

It may be verified from Equation (5) that the Bayes risk R

cannot exceed the quantity

Rm = IQ Cs (8)s(0)p(8)d0 + IQ Cf (0)(1-s(0))p(e)de. (9)

This risk is encountered when mastery/nonmastery decisions based on

test data are always incorrect, that is, a true master is always

denied mastery status and a true nonmaster is always granted mastery

status.

With the three risks R, R
e
, and R

m
as defined, the two decision

efficiency indices el and e2 may now be written as

e
1

= 1-R/R
e (10)

and

e
2

= 1 -R/R
m

.

Since el is a generalization of the corrected-for-chance kappa index,

it seems appropriate to refer to it as the corrected-for-chance

efficiency index. Likewise, with e2 as a general case of the raw

agreement index, it may be referred to as the raw efficiency index.

Just as in the case of kappa and P, there are fundamental

differences between el and e2. The e2 index is formulated on the

basis of the baseline risk R
m which expresses the worst possible

risk which could occur in the decision-making process. This risk

is incurred when decisions regarding mastery/nonmastery are always

incorrect. Thus e
2
equals 1 when decisions are always correct and

reaches the minimum 0 where decisions are always incorrect.
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On the other hand, cl assumes the random risk R
e

to be the

baseline risk and expresses the extent to which the use of test

scores will reduce this random risk. As is the case of kappa, cl

reveals the magnitude by which the test scores will improve the

effectiveness of the decision-making process beyond the level which

could be expected from random classification. ', lie random assign-

ment of examinees to the mastery and nonmastery categories, however,

keeps intact the proportions of masters and of nonmasters as defined

by the observed test score frequencies.) Thus el attains the maxi-

mum value of 1 when decisions are always correct. It will be equal

to zero when the decision-making process is carried out by random

classification (i.e., when test scores have no relationship with

the ability of the examinees).

It should be clear from the above elaboration that decision

efficiency depends not only on the characteristics of the test (as

reflected in the dependency between x and 8), but also on the par-

ticular circumstances under which the test scores are used to make

decisions regarding the individual examinees. Such circumstances

are reflected in the referral success function s(8), the two loss

functions C
s
(8) and cf(e), and the prior or group ability density

p(0).

To complete this section, it may be noted that under all

circumstances 0 < c2 < 1 and cl < c2. In addition, since the

referral success function s(8) enters in the definition of R and

R
e

, but not in that of R
m

, it is expected that s(8) will have more

inflL nce on El than on c2. Thus, in the simplest formulation of

mastery testing which involves the true mastery score 80, this

score 0
o
will probably have more bearing on c than on e2.

5. CONDITIONS UNDER WHICH
E1

IS POSITIVE

In the most general situation, c1 may be negative. This

section will describe the conditions under which this index is

positive.

From the definition of losses presented at the beginning of

Section 3, it seems reasonable. to assume that both s(8) and C
f
(8)
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are nondecreasing and that Cs(6) is nonincreasing. In fact, if the

referral task is chosen appropriately, then examinees of higher

ability should be more likely to succeed in performing the task than

those of low ability. In addition, the denial of mastery status

should cause less harm for subjects with low ability than for those

with high ability. Likewise, granting mastery status to a low

ability examinee would cause more harm than granting mastery to a

high ability examinee. Thus, it seems sensible to assume that

C
s
(0)s(0) is nondecreasing with respect to 6 and that C

f
(6)(1-s(6))

is nonincreasing with respect to 6.

Now let us focus on the relationship between ability 6 and

test score x. If the test is reasonably well constructed, then the

probability Pr(x<c 10) is nonincreasing in its argument 6. In other

words, examinees with low ability are more likely to get low test

scores than those with high ability. This assumption is tenable if

the density f(x16) belongs to the monotone likelihood ratio (Esary,

Proschan, & Walkup, 1967; Dykstra, Hewett, & Thompson, 1973). It

follows from Theorem 1 of Dykstra et al. that

IQ Cs (e)s(0)Pr(x<cle)p(0)de

< (I C
s
(8)s(8)p(8)0) (I Pr(x<c16)p(6)d6) . (12)

The last integral is simply the unconditional probability Pr(x<c).

By using the same theorem, it may be verified that

fc2Cf(6)(1-s(6))Pr(x>cle)p(0)de<UlaCf(6)(1-s(6))p(6)0}Pr(x>c). (13)

It follows that, at each test passing score c, R < Re, and hence

0< c
1

< 1.

6. AN ILLUSTRATION BASED ON THE BETA-BINOMIAL MODEL
WITH CONSTANT LOSSES AND 0-1 REFERRAL SUCCESS

Consider now the simple case in which the test score x obtained

from the administration of an n-item test to a subject with ability

6 is distributed according to the binomial density

f(x10) x .5-0,1,,n

In addition, let it be assumed that the subject comes from a popula-

tion of examinees for whom the ability 0 is distributed according to

the beta density
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(15)

Then the unconditional distribution of the test score x is defined

by the negative hypergeometric density

n,
( ,B(a+x,n-x+0)

f(x) x (16)
B(o,0)

Let 0
o

be the minimum passing level in the ability continuum,

and let C
f
(e) - 1 and C

s
(0) = Q. In other words, Q is the ratio of

the constant loss due to a false negative error to the one produced

by a false positive error. The two Bayes risks R and Re may now be

computed via the following formulae:

R = Pr(0<0
o
,x1c) + Q Pr(0>0

o
,x<c-1) (17)

and

Re= Pr(0<0
o
)Pr(x>c) + Q Pr(0>0

o
)Pr(x<c-1). (18)

The two probabilities listed in (17) may be obtained from tables of

the incomplete beta function (Pearson, 1934), by use of the formu-

lae presented in Huynh (1976a, p. 71), or from tables and a computer

program documented in Huynh (1979b, 1980a). The two probabilities

in Equation (18), on the other hand, may be secured by applications

of the inductive formulae reported in Huynh (1976b). It may also

be noted that R
m

= Pr(0<0
o
) + Q Pr(0>0

o
).

Numerical Example 1

Consider the situation in which a 10-item test is administered

to a group of examinees and the resulting test scores have a mean

of p = 7.00 and a KR21 index of a
21

= .40. From the formulae in

Huynh (1976a), it may be deduced that the parameters defining the

beta true ability are a = (-1 + 1 /a21)P 10.5 and 0 = -a+n/a21-n

= 4.5. Let 0 = .60, c = 8, and Q = .50. Then, by using the

tables reported in Huynh (1979b), the rates of false positive error

and of false negative error may be found to be

Pr(0<0
o
,x>c) = .0173

and

Pr(0>0
o
,x<c) = .3955.

Hence the Bayes risk in using the test scores to make decisions is
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R = .0173 + .30 x .3955 = .2151. On the other hand, Pr(x<c) = .5713

and Pr(6<0
o
) = .1931, and hence R

e
= .1931 x .4287 + .50 x .8069

x .5713 = .3133. In addition, Rm = .1931 + .50 x .8069 = .5966.

The decision efficiency indices are el = 1-.1931/.3133 = .384 and

2
= 1-.2151/.5966 = .639

7. DECISION EFFICIENCY FOR THE BETA-BINOMIAL MODEL
WITH POWER LOSSES AND 0-1 REFERRAL SUCCESS

Consider now the beta-binomial model along with the special

0-1 referral success and the losses defined by

cf(e) = (e0-0)
pl

for 6 < e0

and

= 0 for 6 > 0
o

C
s
(6) = Q(6-6) P2 for 0 > 6

o

= 0 fore <
o

.

(19)

(20)

Then, apart from the denominator B(a,0), the Bayes risk at the test

passing score c is given as

P1 a-1 0-1 c-1 nR = Q to (6-60) e (1-e) x (i_e)n-xde

o x=0

6
P 0-1

0

o

o

2-10 x n-x

x=0

Similarly, apart from the denominator B(a,0), the random-decision

Bayes risk is given as

1 P -1
c-1

Re = 0-60) le" (1-08-1de)( E f(x))
o x=0

P2 a-1 8-1 NI

x=
+ (I

0
° (6 -6) 6 (1-6) deg E f(x)) ,

and the maximum risk as

(21)

Rm = Q I! (e-e
0

)
Pi

0
cg-1

(1-e)
13-1

de
v0

o

o I
u
2_a

(1-6)8-1d6.0

(22)

(23)

When pi (or p2) is an integer such as in the case of linear or

quadratic. losses. the integrals in (21), (22), and (23) which

341 325



HUYNH

involve pl (or p2) may be computed via the incomplete beta function

(Pearson, 1934) and the recurrence formula described as follows. Let

o(0,v;e0) fociru-1(1-t)v-idt (24)

= B(u,v)I(u0,00) .

Then

D(124-1,v-1;00 1)= (-001(1-00)v-1 + uD(u,v;00))/(v-1) . (25)

The computations for R, R
e

, and R
m

are simplified considerably

when losses are of the linear form. The Bayes risk R of Equation (21)

may now be written as
c-1

R=-9---fl (8(144-1(1-8)8-1-8 8(1-1(1-08-1) E inNex(1-0)n-xde
B(a,0) e

o
k 0 `xi

x =O

1 o (e 00-1(1_00-1_00+1-1(14) ) n-x
de.

0-1
B(«,0) 0 k o

x=c

Let F
n
(n,a,8,8 0,c) and F (n,a,0,8

o
,c) denote the false negative and

false positive error rakes associated with the beta true ability

distribution with parameters a and 0. By noting that

= r(a +l)r(B) ar(a)r(0) aB(a,0)
r(a+0+1) (a+0)r(a+0) a+0

it may be verified that the Bayes risk R is Riven as

R = Fn(n,a+1,0,00,c) - 00Fn(n,a,0,00,c)) (26)

a
+ 0 F

p
(n,a,0,0

o
,c) =

a+8
F
p
(n,a+1,0,8 0,c) .

Formulae, tables, and a computer program are available (Huynh, 1979a,

1980a) for the computation of the false positive and false negative

error rates.

As for R
e
and R

m
, they may be expressed via the incomplete beta

function as follows:

and

R =Q(a+0 (1-4(1-T(a+1,80
n
)) -e

0
(1-I(a,0;80))} (27)

e

C-1 ) n
E f(x)) +

x=0
o
I(a030

o a+
)- -21-0 I(a+1,0;80)1

j

E f(x)} ,

x=c

342 :3 c;



EFFICIENCY OF DECISIONS

1R = QPI-U-I(a+1,8;60)] 6
o
[1-I(a,B;00)Jja+B

a
+ 0 I(a,B;6 ) -

a+B
I(a+1,B;6 ) .

Numerical Example 2

(28)

For the basic data described in the first numerical example,

the use of linear losses (p1 = p2 = 1) will result in the Bayes

risks R = .02165, R
e

= .03865, and R
m = .07118. Hence the values

of the efficiency indices are el = 1-.02165/.03865 = .440 and

2
= 1-.02165/.07118 = .696.

8. RELATIONSHIP BETWEEN e2 AND THE
LIVINGSTON-WINGERSKY EFFICIENCY INDEX

Recently, Livingston and Wingersky (1979) proposed an index of

efficiency for situations in which the consequences of granting or

denying mastery status are expressed in terms of utility. For the

simplest case involving linear and opposite utility, the utility of

granting mastery status is 0-60 and the utility of denying mastery

status is 6 0 6. Here 6 is the true ability of the examinee, and 0
o

is a given constant. As before, let x be the observed test score

and c be the test passing score. The efficiency index proposed by

Livingston and Wingersky (1979) is the ratio

E(e-e
o
)sign(x-c)

e = (29)E16-6 1

where the summation sign (E) is extended over all examinees. This

index reaches the maximum value of 1 when decisions based on test

data are always correct and the minimum value of -1 when these

decisions are always incorrect.

We will show that a linear relationship exists between the

Livingston-Wingersky efficiency index e and the raw efficiency

index e2 computed from the corresponding (opportunity) loss func-

tions. These loss functions are expressed as

C
f
(0) = 2(0 -0) for 6 < 6

o

= 0

and

for 6 > 6 ,

0
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C(6) =

=

2(6-6)

0

for

for

6

6

>

<

6

6o .

Then the raw efficiency index e2 is given as

E 7. (6-6
o
) + E E (6

o
-6)

e>0 x>c 0<6 x<c
o o

c2
Ele-eon

(30)

With the losses as defined, it will now be shown that e 2a2-1.

In fact, apart from the denominator Ele -001, the quantity 2E2-1 is

equal to

2 E E (6-60) + 2 E E (60-6) -
e>0 x>c 6<6

o
x<c

o

( E E 0-00) + E E 0-00) + E E 00-0 + E E (00-0))
0>o x>c e>e x<c e<03 x<c eo)

o
x>c0 0 0

E E (0-00) E (0-e
o

ol E ( E (0-0o) E (0-001
x>c 6>6 6<e x<c e>e )c>oe

o o
= E(6-6)sign(x-c) .

This quantity defines the numerator of the Livingston-Wingersky

efficiency index. Thus the relationship e = 2E2-1 holds for linear

and opposite utilities. For other opposite utilities which define

the Livingston-Wingersky general index of efficiency, and with the

corresponding (opportunity) loss functions, it may also be verified

that the same relationship will hold.

As a passing remark to end this section, it may be noted that

Livingston and Wingersky (1979, p. 258) appear to imply that "if

examinees' chances of passing the test were completely unrelated

to their trua scores, the efficiency index would have an expected

value of zero." T'is assertion regarding e apparently is not

complete, as may be seen from the following argument. If there is

complete independence between true ability 6 and observed score x,

then it may be verified that at each given pair (60,c), the numera-

tor of e in (26) is given as

Z(6-60)sign(x-c) = (E(6-60))Pr(x>c) - (E(6-80))Pr(x<c) .

Hence, when E(6-60) # 0, e is 0 if and only if the test passing

score c is set up such that half of the subjects will pass and the

other half will fail. (This observation also holds for situations

344
r) I )
t) L)



EFFICIENCY 3F DECISIONS

in which the action of granting mastery and the action of denying

mastery have opposite utilities other than opposite linear ones.)

9. ESTIMATION PROCEDURES BASED ON THE BETA-BINOMIAL
AND COMPOUND BINOMIAL ERROR MODELS

The estimation of the decision efficiency indices el and
E2

may be carried out on the basis of the observed test data if rea-

sonable assumptions can be made regarding the functional forms of

the conditional probability Pr(x<c18) and of the density p(e) of

Cne true ability.

Wh..n the beta-binomial error model (Lord & Novick, 1968,

ch. 23) is appropriate, the estimation of decision efficiency under

constant or power losses may be carried out via the formulae de-

scribed in Sections 6 and 7. In using these formulae, the param-

eters a and 0 of the beta distribution are to be replaced by their

corresponding estimates based on sample data. A commonly used set

of estimates is the moment estimates which are obtained as follows.

Let x and s be the mean and standard deviation of the test scores,

and let the =21 reliability be defined as

ct
n [, 7.11i(n-761=

21 n-1 2
ns

(31)

Then the moment estioates of a and S are given as

a = (-1 + 1/a21)1c
(32)

and

= -a + n/a
21

- n. (33)

While the beta-binomial model has been found to fit several

test score d'.'ributions reasonably well (Keats & Lord, 1962;

Duncan, 1974), and to provide useful results in mastery testing

(Puynh, 1976a, 1976b, 1977, 1979, 1980a), the compound binomial

error model (Lord, 1965, 1969) has been advocated as a more real-

istic model far the description of actual test data. Livingston

and Wingerski (1979) used the latter model to obtain estimates for

the false positive and false negative error rates, estimates for

decision accuracy (proportir- of examinees who are correctly clas-

sified), and estimates of the decision efficiency index e under

linear and opposite utilities. A basic feature of the estimation
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process is the use of Lord's Method 20 (Lord, 1969) as implemented

by Wingersky, Lees, Lennon, and Lord (1969). Its use is recommended

for data from at least 1000 examinees.

In small-scale testing programs such as those associated with

field testing for mastery tests or those conducted at the school-

district level, the requirement of 1000 examines cannot be easily

fulfilled. In addition, the data presented in Wilcox (1977) seem

to indicate that as far as error rates (and therefore efficiency

under constant losses) are concerned, the use of the more complex

compound binomial model instead of the simple beta-binomial model

does not improve substantially the accuracy of the estimates.

This section will compare estimates of c2 based on the beta-

binomial model with those computed from the compound binomial model

as implemented by Livingston and Wingersky (1979). (These authors

proposed the use of the index e which is 2c2-1.) For the case of

cc: 'taut and equal losses, the estimate ft c2 is simply the sum

of the two probabilities of making a correct decision. Hence, in

using the output described by Livingston and Wingersky, the

compound binomial estimate for c2 may be obtained by summing the

probabilities which appear in the two cel2s "Should Pass/Will Pass"

and "Should Fail/Will Fail." For the first output reported in

Figure 1 of the Livingston-Wingersky paper, this estimate is

55.9% + 24.3% = 80.2% or .802. The output also reports the com-

pound binomial estimate for the efficiency index e under linear and

opposite utilities. The (raw) efficiency index c2, in turn, may be

deduced from e via the formula c2 (1+e)/2. For the output just

referenced, the value of e is 0.81, hence the estimate for c2 is

(1+0.81)/2 = .905.

The compound binomial estimates for efficiency index c2 under

constant and linear losses with Q = 1 (or under constant and linear,

but opposite utilities) were derived from the computer programs

provided by Livingston and Wingersky. The corresponding Pstimates

base( on the beta-binomial model were obtained via the computer

program listed in Appendix A. The comparison of the two sets of

estimates was made using the basic test data summarized in Table 1.

These data were extrac,ed from the Comprehensive Tests of Basic
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Skills data file collected in the 1978 South Carolina statewide

testing program. In this table, s
d
represents the variance of the

item difficulty (defined as the proportion of examinees who cor-

rectly answered the item).

TABLE 1

Description of Test Data Used to Compare the Beta-Binomial
and Compound Binomial Estimates of c2

Case n Mean S.D. s
diff

(x10
4
) a 8 a

21
A 10 7.2315 2.6888 64.87 1.7693 0.6774 .8034
B 15 8.6247 3.1932 301.61 3.9433 2.9148 .6862
C 20 16.1621 3.8987 97.93 3.1278 0.7427 .8379

D 30 18.0707 6.3192 202.90 3.2300 2.1323 .8484
E 40 23.5658 8.3406 281.87 3.1258 2.1799 .8829
F 50 30.4848 10.7558 205.92 2.8152 1.8022 .9155

Table 2 reports the estimates of c2 for a variety of combina-

tions of e
o
and c. The data reveal only negligible discrepancies

between the beta-binomial estimates and those based on the compound

binomial model. Since the beta-binomial estimates only ,equire

estimation of the two parameters of the beta distribution, they may

be safely obtained from the responses of a small or moderate sample

of examinees. For a sample of this type, estimation via the com-

pound binomial model may not be appropriate.

TABLE 2

Estimates of E
2

Based on the Beta-Binomial (BB)
and Compound Binomial (CB) Models

Case e
o

c

Opposite & Constant
Utility

Opposite & Linear
Utility

BB CB BB CB
A .70 7 .874 .893 .948 .950
B .70 10 .792 .798 .898 .905
C .70 14 .912 .923 .972 .975

D .80 24 .901 .9G6 .977 .980
E .80 32 .920 .917 .985 .985
F .80 40 .925 .934 .987 .990
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10. COMPUTER PROGRAM

A FORTRAN IV program which provides an analysis of decision

efficiency for the case of constant and linear losses is listed in

Appendix A. For each problem, the input data are to be "keypunched"

on three cards detailed as follows.

First Card

This card contains the title of the problem, keypunched between

columns 1 and 80.

Second Card

This card provides data on number of items (n), the alpha (a)

and beta (0) parameters of the true ability distribution, the true

mastery score (00), the test passing score (c), and the loss ratio

(Q). These must be keypunched according to the format (15, /r10.5,

F5.3, 15, F5.2).

For example, the efficiency analysis described in numerical

examples 1 and 2 may be performed via the computer program using

the following two input cards.

1 1 2 2 3 3 4

Column:

First card: AN r'6,111,E OF DECISION EFFICIENCY ANALYSIS

Second card: 10 10.5 4.5 .60 8 .50

Table 3 lists the output for tl problem.

Several problems may be performed ir. one run by stacking the

input cards together.

11. SUMMARY

This paper describes two indices which pertain to the effi-

ciency of decisions in mastery testing. The indices are gener-

alizations of the raw agreement index and the kappa index. Both

express the reduction in proportion of losses (or the gain in pro-

portion of utility) resulting from the use of test scores to make

decisions. Empirical data reveal only negligible discrepancies

between the beta-binomial and compound binomial estimates or these

indices.
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TABLE 3

An Output of the Computer Program

ANALYSIS OF DECISION EFFICIENCY BASED ON THE
BETA-BINOMIAL MODEL. THE TITLE OF THIS PROBLEM IS:
AN EXAMPLE OF DECISION EFFICIENCY ANALYSIS
INPUT DATA ARE:

NUMBER OF ITEMS 10
ALPHA 10.50000
BETA 4.50000
THETA ZERO 0.60000
TEST PASSING SCORE 8
LOSS RATIO Q 0.50000

FOUR-CELL TABLE WITH PROBABILITIES

SHOULD FAIL AND WILL FAIL 0.1758
SHOULD PASS AND WILL PASS 0.4113
SHOULD FAIL BUT WILL PASS
(A FALSE POSITIVE ERROR) 0.0173
SHOULD PASS BUT WILL FAIL
(A FALSE NEGATIVE ERROR) 0.3955

FOR LINEAR LOSSES, THE OUTPUT ARE:

RISK FOR USING TEST SCORES 0.02165
RANDOM-DECISION RISK 0.03865
MAXIMUM RISK 0.07118

DECISION-EFFICIENCY INDICES:

CORRECTED-FOR-CHANCE INDEX El = 0.440
NO CORRECTION FOR CHANCE
(RAW) INDEX E2 = 0.696

** NORMAL END OF PROGRAM **
PROGRAM WRITTEN BY
HUYNH HUYNH
COLLEGE OF EDUCATION
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SOUTH CAROLINA 29208
MAY 1980
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APPENDIX A

A Computer Program for the Analysis of the Efficiency
of Decisions in Mastery Testing

Based on the Beta-Binomial Model

Disclaimer: The computer program hereafter listed has been written

with care and tested extensively under a variety of conditions using

tests with 50 or fewer items. The author, howeer, makes no war-

ranty as to its accuracy and functioning, nor shall the fact of its

distribution imply such warranty.
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C A COMPUTER PROGRAM FOR IAE COMPUTATION OF DECISION-EFFFICIENCYC WITH CONSTANT OR LINEAR LOSSES AND WITH BETA- BINOMIAL TEST DATA.
C CONSTANT LOSSES INCLUDE CONSTANT UTILITIES, AND LINEAR LOSSES
C INCLUDE LINEAR AND OPPOSITE UTILITIES.
C
C INPUT DATA ARE:
C
C FIRST CARD: TITLE OF THE PROBLEM (ENTER ANYTHING YOU WANT)

10
20
30
40
50
60
70
SO

C 90
C SECOND CARD: ENTER THE FOLLOWING INFORMATION, USING THE FORMAT 100
C (15,2F10.5,F5.2,I5,F5.2) 110
C N .... NUMBER OF TEST ITEMS 120
C A .... ALPHA PARAMETER OF THE BETA DISTRIBUTION 130
C B .... BETA DISTRIBUTION OF THE BETA DISTRIBUTION 140
C TT ... THEv1 ZERO (MINIMUM TRUE SCORE FOR PASSING) 150
C IM ... TEST PASSING SCORE 160
C Q .... LOSS RATIO 170
C 180
C SEVERAL PROBLEMS MAY BE RUN CONSECUTIVELv BY STACKING THE INPUT 190
C CARDS TOGETHER. 200
C 210
C SUBROUTINE REQUIRED: THE BDTR OF THE SCIENTIFIC SUBROUTINE 220
C PACKAGE. 230
C 240

DOUBLE PRECISION A,B,TT,FP,FN,FP1,FN1,SUM 250
DIMENSION W(20) 260

1 READ(5,100,END -99) W 270
100 FORMAT(20A4) 280

WRITE(6.200) W 290
200 FORMAT( 11,1ANALYSIS OF DECISION EFFICIENCY BASED ON THE'/ 300

*T2,'BETA-BINOMIAL MODEL. THE TITLE OF THIS PROBLEM ISO/T2,20A4) 310
READ(5,110) N,A,B,TT,IM,Q 320

110 FORMAT(15,2F10.5.F5.2,15.F5.2) 330
C 340

WRITE(6,230) N,A,B,TT,IM,Q 353
230 FORMAT(T2,'INPUT DATA ARE:'// 360

* T6,'NUmBER OF ITEMS ',ILO/ 370
* T6,IAL,AA ',F10.5/ 380
* T6,'BETA ' F10.5/ 39%1'* T6.'THETA ZERO ' F13.5/ 400* T6,'TEST PASSING SCORE ',I10/ 410
* T6,11.0SS RATIO Q ',F10.5//) 420
CALL ERRFPN(N,A,1,TT,IM,FP,FN) 430
CALL ERRFPN(N,A+1.DO,B,TT, 114,FP1,FN1) 440
CALL MDBETA(TT,A,B,P1,IER) 450
CALL MDBETA(TT,A+1.DO,B,P2,IER) 460
ZZ- A /(A +B) 470
RI*Q*(ZZ*FN1-TT*FN)+TT*FP-ZZ*FP1 480
AAQ*(ZZ*(1. -P2) -TT*(1. -P1)) 490
BBTT*P1-22*P2 500
RMaNAA+BB 510
CALL NEHY3(N,A,B,IM,SUM) 520
REAA*SUll+BB*(1.-SUM) 530
E1- ?.-R/RE 540
E21. -R/RM 550
P1- SUM -FN 560
P2 -1. -SUM - FP 570
WRITE(6,236) P1,P2,FP,FN 580

236 FORMkT(T2,'FOUR-CELL TABLE WITH PROBABILITIES'// 590
* T6,'SHOLLD Mil AND WILL FAIL ',F10.4/ 600
* T6,'SHOULD PASS AND WILL PASS ' F10.4/ 610
* T6,'SHOULD FAIL BUT WILL PASS 1/ 620
* T6,'(A FALSE POSITIVE ERROR) ',F10.4/ 630
* T6,'SHOULD PASS BUT WILL FAIL'/ 640
* T6.1 NEGATIVE ERROR) ',F10.4// 650
* T2,'FOR LINEAR LOSSES, THE OL_PUT ARE :' /1) 660

355
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WRITE(6,240) R,RE,RM,E1,E2 670
240 FORMAT(T6,'RISK FOR USING TEST SCORES ',F10.5/ 680

* T6,'RANDOM-DECISION RISK ',F10.5/ 690
* T6,IMAXIMUM RISK ',F10.5// 700
* T2,'DECISION-EFFICIENCY INDICES:'// 710
* T6,'CORRECTEDFOR-CHANCE INDEX ... El ',F6.3/ 720

* T6,'NO CORRECTION FOR CHANCE'/ 730
* T6,I(RAW) INDEX E2 ',F6.3) 740

GOTO 1 750

99 WRITE(6,150) 760
150 FORMAT(T2,1** NORMAL END OF PROGRAM **'/ 770

* T2,' PROGRAM WRITTEN BY'/ 780

* T2,' HUYNH HUYNH'/ 790

* T2,' COLLEGE OF EDUCATION'/ 800
* T2,' UNIVERSITY OF SOUTH CAROLINA'/ 810
* T2,' COLUMBIA, SOUTH CAROLINA 29208'/ 820
* T2,' MAY 1980') 830
STOP 840
END 850
SUBROUTINE ERRFPN(N,A,B,TT,IM,FP,FN) 860
DOUBLE PRECISION A,B,TZ,BETA,DFCT,U,V,DX,ONE,Y1, 870
*VMONE,BB,DF(61),FP,FN, 880
*E(2),TT,P1,BA,BI 890
EXTERNAL BETA,BI,DFCT 900

C 910
ONE -1.D0 920
Y1- BETA(A,B) 930

C SET UP FOR FALSE POSTITIVE ERRORS 940
TZ -TT 950
IC -IM 960
U -A +DFLOAT(IC) 970
V- B +DFLOAi. N -IC) 980
DO 40 L -1,2 990

C 1000
FONE -TZ 1010
DXDFCT(N,V,TZ) 1020
BBBI(N,IC) 1030
E(L)..DX*BB 1040

C 1050
BABETA(U,V) 1060

C 1070
IF(IC.EQ.N) GO TO 30 1080

C 1090
10 IZ -U -IC 1100

DO 15 I -1,IZ 1110
IX -IC +I 1120
VMONE -V -ONE 1130
21-(TZ**U)*F**VMONE 1140

C 1150
DX(Z1+U*DX)/VMONE 1160

C 1170
BB3B*(N-IX+1)/IX 1180

C 1190
V- V -OjiE 1200
BABA*U/V 1210

C -
1220

U -U+ONE 1230
C 1240

E(L)..E(L)+BB*DX 1250
15 CONTINUE 1260
30 IF(L.EQ.1) ono 35 1270

C 1280
C INTERCHANGE DFPA AND DFPB FOR FALSE NEGATIVE ERROR 1290

C 1300
35 E(L)- E(L) /Y1 1310

C SET UP FOR FALSE, NEGATIVE ERRORS 1320

35En
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TZ- ONE -TT
IC4N-1M+1
U4B+DFLOAT(IC)
1/4A+DFLOAT(N-IC)

1330
1340
1350
1360

C 1370
40 CONTINUE 1380

C 1390
FP -E(1) 1400
FN -E(2) 1410

C 1420
RETURN 1430
END 1440

C 1450
DOUBLE PRECISION FUNCTION BI(N,M) 1460
BI -1 1470
IF(M*(N-M).EQ.0) GOTO 20 1480
MMN 1490
IF(N.GT.(N-M)) MM*N-M 1500
DO 15 J -1,MM 1510

15 BI4BI*(N-J+1)/J 1520
20 RETURN 1530

END 1540
C 1550

SUBROUTINE NEHY3(NiA,B,IM,SUM 1560
DOUBLE PRECISION A,B,F,21,Z2,SUM 1570
Z1- DFLOAT(N) +B 1580
Z2 -Z1 +A 1590
K -0 1600
F41.D0 1610
DO 5 I -1,N 1620

5 F4F*(Z1-DFLOAT(I))/(22-DFLOAT(I)) 1630
SUM-F 1640

10 '1114K+1 1650
_F(KPLGE.IIM) RETURN 1660
F4F*DFLOAT(N-K)*(A+DFLOAT(K))/ 1670

* (DFLOAT(KP1)*(21-DFLOAT(K111))) 1680
SUM4SUM+F 1690
K -K +1 1700
GOTO 10 1710
END 1720

C 1730
DOUBLE PZECIS/ON FUNCTION DFCT(A,B,TZ) 1740
EXTERNAL BETA 1750
DOUBLE PRECISION A,B,TZ,BETA 1760

C 1770
CALL MDBETA(TZ,A,B,P,IER) 1780

C 1790
IF(IER.NE.0) WRITE(6,100)A,B,TZ,IER 1800

10G FORMAT('0'.' ERROR IN BDTR, A B 7d; IER ARE ',3F20.10,15) 1810
DFCT4DBLE(P)*BETA(A,B) 1820
RETURN 1830
EaD 1840
DOUBLE PRECISION FUNCTION BETA(X,Y) 1.15u
DOUBLE PRECISION A,B,CON,X,Y,F 1860
F45.D0 1870
A -X 1880
B4Y 1890
CON -1.D0 1900
IF(A.LE.F) GOTO 2 1910

1 A4A-1.D0 1920
CON4CON*A/(A+B) 1930
IF(A.LE.F) GOTO 2 1940
COTO 1 1950

2 IF(B.LE.F) GOTO 4 1960
3 13413-1.D0 1970
CON4CON*B/(A+B) 1980
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IF(B.LE.F) GOTO 4 1990

GOTO 3 2000
4 BETA*DGAMMA(A)*DGAMMA(B)/DGMIA(A+B)*CON 2010

RETURN 2020

END 2030

C 2040

SUBROUTINE MDBETA(X,A,B,P,IER) 2050

DOUBLE PRECISION A,B,X,BETA 2060
EXTERNAL BETA 2070
IF(A.GT..5 .AND. B.GT..5) GOTO 10 2080
IF(A.GT..5 .AND. B.LT..5) GOTO 20 2090
IF(A.LT..5 .AND. B.GT..5) GOTO 30 2100

C OTHERWISE BOTH A AND B ARE SMALLER THAN .5 2110

AA*A+1. 2120

BB -B+1. 2130
XX -X 2140

CALL BDTR(XX,AA,BB,P,D,IER) 2150

P*X**A*(1.DO-X)**BRA*BETA(A,B))+X**B*(1.DO-X)**(A+1.00)/ 2160

* (B*BETA(A+1.DO,B)) + P 2170

RETURN 2180

10 AA -A 2190
BB-B 2200
XX -X 2210

CALL BDTR(XX,AA,BB,P,D,IER) 2220

RETURN 2230

20 AA -A 2240

BB -B+1. 225(
XX -X 2260

CALL BDTR(XX,AA,BB,P,D,IER) 2270

P*X**B*(1.DO-X)**A/(B*BETA(A,B))+ P 2280

RETURN 2290

30 AA -A +1. 2300
BB-B 2310

XX*X 2320

CALL BDTR(XX,AA,BB,P,D,IER) 2330
P*X**A*(1.DO-X)**BRA*BETA(K,B)) + P 2340

RETURN 2350

END 2360

34
358



PART SIX

TEST SENSITIVITY

4 :2



16

ASSESSING TEST SENSITIVITY IN MASTERY TESTING

Huynh Huynh

University of So'ith Carolina

A preliminary version of this paper was presented as part of the sym-
posium "Approaches to test design for the assessment of the effect-
iv6ness of educaz:onal programs" sponsored by the ,'merican Educational
Research Association at its annual meeting in Boston, April 7-11, 1980.

ABSTRACT

This paper addresses the concept of test sensitivity within the

context of masts:.:i testing. It is argued that correlation-based

indiL,:.; may not be appropriate for the assessment of test sensitiv-

ity. Global assessment of test sensitivity may be carried out via

'ndices such as p-max or d max. Local measures of sensitivity may

be described via a two-parameter logistic model. Procedures are

described to check the tenability of test sensitivity on the basis

of observed test data.

1. INTRODUCTION

-ducational tests which are used for student or program evalua-

tion are often described using terms such as "criterion-referenced,"

"domain-referenced," or "mastery" tests (Harris, Alkin, and Popham,

1974; Berk, 1980). It is important to note, however, that these

different labels often refer to different aspects of the same proc-

ess; depending on the context, all might be used to describe the

same test. For example, test items can be deliberately constructed

(or selected from an item bank) to reflect specific educational

This paper has been distributed separately as R: 80-7, August, 1980.
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object ves; the resulting test scores are referenced to these

objectives for interpretation and may then be used to assess the

competency or mastery status of the individual student with respect

to each of the objectives. For reasons of specificity, the term

mastery testing. will be used in this paper. By mastery testirg, it

is meant that, at the end of the testing proces, test scores are

used to make decisions regarding the individual student. In most

testing for instructional purposes (such as formative testing or

basic skills assessment programs) and for certification (in the

professions or in minimum competency testing programs), there are

two decision categories based on test scores, namely mastery and

nonmastery. Students with high test scores are granted mastery

status (in the domain of performances or educational objectives

underlying the test) and perhaps are permitted to move to a more

advanced or complex instructional unit. Other students with low

scores will be placed in the nonmastery category and will perhaps

be provided with the opportunity of remedial instruction.

In the light of the above discussion, it appears clear that a

mastery test is most useful if it can differentiate students who

have mastered the educational objectives from those who have not.

The extent to which the test fulfills this specific requirement

will be referred to as instructional sensitivity (Harris, 1977;

Haladyna and Goid, 1980). Of course, the concept of test sensitiv-

ity cannot be detached from the unique purposes and/or circumstances

for which the test scores are to be used.

Another situation in which the concept of test sensitivity is

called upon involves the use of test scorn for admission or place-

ment purposes. Here, decisions are made on whether or not the test

scores show sufficient evidence that the student or applicant has

the prerequisite skills or knowledge for a succf9sful performance

in the training or instructional program. For example, admission

to a statistics course may require a minimal level of performance

in arithmetic; hence arithmetic test scores may be used as a cri-

terion fir admission to such F., course. In this case, test sensi-

tivity may be framed within the context of predictive validity; a

test may be said to be sensitive to the content of a course to the

362



TEST SENSITIVITY

exteut that test scores can separate those who, given effective

instruction, will succeed in the course from the others who will not.

The purpose of this paper is to address the conept of test

sensitivity within the context of mastery testing (Huynh, 1976),

and to propose new ways to assess the degree to which a test is

sensitive to the particular purpose for which it is intended.

2. POSSIBLE MISUSE OF CORRELATION
TO ASSESS TEST SENSITIVITY

A variety of designs has been proposed to assess test sensi-

tivity. Most involve the use of two contrasting groups of test

scores. For example, a pretest-posttest design may be in order if

there are reasons to assume that instruction is effective. In

other words, a mastery test is given prior to instruction and

again at the completion of instruction. The mastery test is

sensitive to the instructional objectives to the extent that the

distribution of pretest scores and that of posttest scores can be

separated from each other. Another contrasting groups design

involves the use of an unina-ructed group and an instructed group.

This design is appropriate for a test to be used to admit students

to a course; in this case the instructed group would consist of

students who have successfully completed the course and the un-

instructed group would be formed of students who have failed the

course.

Now should test sensitivity be assessed on the basis of the

separation between the test score distributions of the two contrast-

ing groups? Is the point biserial correlation an appropriate

choice for test sensitivity? (The reader may note that this corre-

lation may be obtained by assigning the dummy code X = 0 to the

lower score group and X = 1 to the higher score group and then by

computing the Pearson correlation between X and the test scores.)

Correlation, typically, is influenced by the variability in the

test scores, yet test score variation usually does not play a

major role in mastery testing (Millman and Popham, 1974). To

substantiate this point, let a mastery test be such that all pre-

test scores are below the score of 20 and all posttest scores are
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above this score 20. Then, for classification purposes, a passing

score of 20 would be selected. It should take no imagination to

see that the test is completely sensitive (i.e., completely sepa-

rates the pretest score distribution from the posttest score

distribution). Yet, the point biserial correlation between the

dummy code X and the test scores will change ac..,rding to the means

and standard deviations of the pretest and posttest scores. Follow-

ing are two examples based on contrasting groups of ten subjects each.

Pretest Posttest Point
BiserialMean S.D. Mean S.D.

14.10 2.21 23.00 2.68 .88

10.40 5.52 31.00 12.05 .74

3. A SIMPLE ALTERNATIVE TO POINT MSERIAL CORRELATION

The above numerical illustration clearly indicates that the use

of point biserial correlation (or of similar indices) may not be

appropriate if the distribution of the pretest scores or that of

the posttest scores shows a large degree of variability. Unfor-

tunately, it is a common experience that the pretest scores tend to

show ..ubstantial variation. This is probably true for the case

involving an uninstructed group, as well. (This occurs mainly

because of railoom guessing and differences in input student

characteristics.)

Thus, alternatives to point biserial correlation may be needed

to assess test sensitivity in the use of test scores to make educa-

tional decisions. There are a variety of ways to approach the

issue. For example, something like the maximum raw agreement index

(p-max) may be appropriate. This index is very simple to concep-

tualize and to compute. At each possible cutoff score, compute the

raw agreement index p between the grouping categories (pretest

versus posttest, uninstructed versus instructed) and the decisions

based on the test data (nonmastery versus mastery). Then search

for the maximum of these raw agreement indices. This maximum p

value corresponds to the situation in which the test scores are put

to the best use. For both data sets in the previous illustration,

the maximum of p (or p-max) is exactly 1.
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FIGURE I

Configuration of Decisions Based
on Contrasting-Group Data

Test
data

Contrasting
groups

Nonmastery Mastery Marginal
sum

Posttest

(instructed)
1=1

Pretest
(uninstructed)

i=0

n
10 n

11 n
1

n00 n0
0

(j=0) (j=1)

cutoff
score

Figure I depicts the configuration of decisions based on

contrasting-group data. Let the index i take the value 0 when the
individual test score belongs to the pretest (or uninstructed)

group, and the value 1 when the test score belongs to the posttest

(or instructed) grot?. On the other hand, let the index j be 0
when the test score is smaller than the cutoff score c (nonmastery

status), and 1 Olen the test score is at least c (mastery status).

The number of test scores in the combined contrasting groups in
each (i,j)-cell will be denoted as nil In addition, let
n
0
= n

00
+ n

01 be the number of pretest (uninstructed) scores and
n
1
= n

10
+ n

11 be the number of posttest ( instructed) scores. For
the pretest-posttest design with no dropouts (experimental mortali-
ty), n0 = n1. For the most general situation, particularly when
the instructed-uninstructed design is contemplated, n

0
and n

1
are

not typically equal.

With the negation as defined, the p index at each cutoff score
is given as

nil
I n

1
n
0
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and the p-max index is simply the maximum of p when the cutoff score

varies in its range of possible scores.

Numerical Illustration 1

Let n
00

5,= 5 n
01

= 10
'
n

0
= 15, and n

11
= 20. Then n0 = 15

and n
1

= 35. Hence p = .452.

Numerical Illustration 2

Table 1 reports the frequency distributions of the pretest and

the posttest scores of 50 students on a four-item test. The p in-

dices are listed as follows.

Cutoff score I 1 2 3 4

p-index 1 .67 .76 .77 .64

From this list, it may be deduced that p-max is .77.

TABLE 1

Frequency Distributions of Pretest and Posttest Data
for Fifty Students

Test score Pretest frequency Posttest frequency

0 20 3

1 10 1

2 8 7

3 7 20

4 5 19

The p-max index does not tak. directly into account changes

within individual students from pretesting to posttesting. Other

indices may be more appropriate, particularly for the pretest-

posttest design. Harris (1977), for example, argues that in

studies of item sensitivity, an appropriate index would involve the

difference between the proportion of students who have learned the

item and the proportion of those who have forgotten it. The first

proportion is the probability of responding correctly on the post-

test, given that the student responded incorrectly on the pretest.

The second proportion represents the probability of responding

incorrectly following instruction, given that the response prior to

instruction was correct. This index was referred to as the Index

of Depai.Lure from Symmetry (0. To use this index for the assess-

ment of test sensitivity, a cutoff score c may be selected, and
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students are then classified into the two categories of mastery and

nonmastery. A 6 index may then be computed, considering nonnastery

as an incorrect response and mastery as a correct one. Then, the

maximum of 6, 6-max, may be determined by locating the maximum of 6

when the cutoff score c va,ies within its range of possible values.

For both sets of data considered in Section 2, the 6-max indices

are exactly 1.

Figure II depicts the configuration of decisions based on pre-

test and posttest data. With c as a cutoff score, each student is

classified twice, once based on pretest data and again based on

posttest data. Let i = 0 (for nonmastery) and 1 (for mastery) be

the decision based on pretest data, and j = 0 or 1 for the decision

based on posttest data. In addition, let nil be the number of

students in each (i,j) -cell, n
0

= n
00

+ n
01

be the number of stu-

dents who fail the pretest, and nl =
n10 nll

be the number of

students who pass the pretest. Then the index 6 is defined a

n01 n10
no nl

As previously stated, 6-max is the maximum value that 6 can take

within the range of possible cutoff scores.

FIGURE II

Configurr ion of Decisions Based
on Pretest-Pcsttest Data

(2)

Posttest

Pretest
Nonmastery

cutoff
score

Mastery Marginal
sum

Mastery

cutoff
score

Nonmastery

n
10

n
11

n
1

n00 n00
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Numerical Illustration 3

Table 2 reports the bivariate pretest-posttest frequency

distribution of 50 students on a four-item test. At the cutoff

score 3, the cell and pretest marginal frequencies are given as

n
00

= 8, n
01

30,= 30 n
10

's 3, and n
11

9;= 9. n
0
= 38 and n

1
= 12.

Hence the 6 index is 6 = .539. At all possible cutoff scores, the

6 indices are listed as follows.

Cutoff score 1 2 3 4

6-index I .833 .867 .539 -.400

From the list it may be deduced that 6-max is .867.

TABLE 2

Bivariate Frequency of Pretest- Posttest Data

0

Posttest score
1 2 3

4 0 0 3 1 1 5

Pretest 3 0 0 0 2 5 7

score 2 0 0 0 4 4 8

1 2 0 1 3 4 10

0 1 1 3 10 5 20

7 20 19 50

4. AN OVERALL APPROACH TO TEST SENSITIVITY

It may now be pointed out that point biserial correlation,

r-max, 6-max, and other similar indices provide only a global (over-

all) measure of test sensitivity. They do not provide an assessment

of the extent to which the test is sensitive at a particular ability

or test score level or in a given range of ability. For example,

it is well known that one test may protride a smaller error of mea-

surement than another; however, its relative efficiency with respect

to the other test varies as a function of examinee ability level

(Lord, 1974). The same situation may appear in test sensitivity.

It is conceivable that a test is able to separate too contrasting

groups more effectively at one level of ability than at another.

(insider now the case of instructional sensitivity. If the

test items faithfully reflect the objectives underlying the instruc-

tional unit, then a posttest score (or the score of a student who

368
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has completed the unit) is more likely to be high than a pretest

score (or the score of a noninstructed student). Let the qualifier

"success" be applied to any posttest score and "failure" to any

pretest score. The following definitions apply to test sensitivity.

Definition 1

Let s(8) be the probability of success at the ability (or test

score) level 0. A test is said to be sensitive to the instructional

unit (or to the task for which the test is used as a predictor) in

a range of ability if s(8) is nondecreasing (but not a constant

uniformly) within this range.

The function s(8) may take any shape, as long as it is non-

decreasing. As defined, s(e) is reminiscent of the concept of item

characteristic curve (Lord & Novick, 1968) and of the notion of

referral success (Huynh, 1976). The second notion is more relevant

to the psychometric foundation of mastery testing.

Now, at the ability level 0, a test is more sensitive if the

probability s(8) changes sharply at this point. The following

definition applies to the case where s(8) has a derivative.

Definition 2

Let c(e) denote the derivative of s(e) with respect to 0. This

derivative is said to be the test sensitivity at the ability level 8.

It follows from the second definition that test sensitivity is

a non-negative function since s(e) is nondecreasing. It may be

noted that c(e) acts like the density of a cumulative distribution

function; hence estimation procedures associated with density

functions (Wegman, 1974) would be applicable to E(0).

5. TEST SENSITIVITY AND ITEM INFORMATION

Within the context of mastery testing (Huynh, 1976), a two-

parameter logistic form has been proposed for s(8), namely

ea(0-0)
s(0)

1+ea(e-8) '
(3)

where a > 0 and 8 are suitably chosen constants. The test sensi-

tivity function is now given as
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a(0-8)
E(0) = s'(e) as(e)(1s(0)) . (4)

11+ea("))2

Let P(e) = s(8) and Q(0) = 1-s(8). Then it may be verified that

E(0)
P(0)Q(0)

The quantity on the right of this expression represents the informa-

tion provided by a test item for which the item characteristic curve

is P(0) = s(8) (Birnbaum, 1968, p. 454).

(5)

6. STATISTICAL INFERENCE REGARDING TEST SENSITIVITY
AS A MONOTONE REGRESSION PROBLEM

Consider now a range of ability (or test score) in which a

test is suspected to be sensitive to a given instructional unit or

to a task which it is intended to predict. An inferential proce-

dure will now be presented for checking the hypothesis that s(8) is

nondecreasing.

Let the mentioned range of ability be partitioned into k

mutually exclusive and exhanstive sets, namely A1,A2,...,Ak in such

a way that the number of test scores in each of the k categories in

the combined pretest-posttest or instructed-noninstructed sample

are as nearly equal as possible. Let ni,n2,...,nk be the number of

test scores which fall into each of the A sets, and let s
i
be the

corresponding proportion of students belonging to the success

category.

Under the assumption that s(e) is nondecreasing, the sample

proportions si must be adjusted if necessary to reflect this pre-

imposed trend. This may be do-i' via the Pool-Adjacent-Violator

algorithm described in Barlow, Bartholomew, Bremner, and Brunk

(1972). In essence, whenever two consecutive sample values si and

s
i+1

are in the unexpected direction (decreasing), they are taken

as the weighted average (n
isi

+ ni
+1si +1)/(ni

+ n
1+1

). This common

value will then be compared with si+1. If these two quantities are

not in the expected direction, then the si, s
1+1

, and s
i+2

values

will be taken as equal, and equal to their weighted average.
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-*
Once the set of monotone-adjusted s

i
has been obtained, the

standard chi square test for association in a 2 X k contingency

table may be applied. The null hypothesis (independence) corre-

sponds to the case ,:Here 8(0) is a constant for all the A cells;

the alternative (dependence) expresses the nondecreasing nature of

s(0) with respect to e. The use of the standard chi square test in

this case was suggested by Bartholomew (1959) and Shorack (1967)

for the case where the n
i
are equal. Presumably the test should

hold approximately when the n
i

are nearly equal.

Numerical Illustration 4

Table 3 presents detailed compLcations for the chi squ:',-e test

based on the data of Table 1. In this table, the A categories are

taken as the test score levels of 0, 1, 2, 3, and 4. As explained

the total number of cases, si
-*

and s
i
the monotone-adjusted

same test score, the monotone-*
success and n

i
(1-s

i
) for

frequencies are n
i
p and n

i
(1-p)

where p is the proportion of success in the combined sample of test

scores. (In the case of pretest-posttest, p = If.) The value of x
2

previously, at each score, ni denotes

the unadjusted proportion of success,

proportion of success. Thus, at the

adjusted number of cases is nisi for

failure. The corresponding expected

is now

2
k (n

i
s
i

- n
i
p)2 k (n

i
(1-8

i
) - n

i
(1-p))2

X = + E

iiE
n p

=1 1=1
n
i
(1-p)

k n
i
(s

i
-p)

2

nisi -p)2+ E

1=1 P i=1
1-p

k
2 ,^* ,2.

P(1-P) 1.E
n 0
i i

-P) (6)

With the data of Table 1, the n
i
are equal to 23, 11, 15, 27, and

24 at the rest scores of 0, 1, 2, 3, and 4. The adjusted frequen-

cies of success are 2.71, 1.29, 7.00, 20.00, and 19.00. In addi-

tion, p = .5. Hence x
2
- 17.18. With a standard chi-square

distribution of k-1 = 5 degrees of freedom, the upper tail proba-

bility at this observed x
2
value is smaller than .01. Hence the

hypothesis of test sensitivity is supported by the test data.
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TABLE 3

An Example of the Adjusted Chi Square Test
for Test Sensitivity

Ability/
Test score

(6 ) ni
Si

(x100)

Si
*

(x100)

Cell frequency
Chi-square

contribution
Adjusted
observed' Expected

0 23 13.04 11.76 2.71 11.50 6.72
1 11 9.09 11.76 1.29 5.50 3.22
2 15 46.67 46.67 7.00 7.50 0.03
3 27 74.07 74.n7 20.00 13.40 3.13
4 24 79.17 79.17 19.00 12.00 4.08

Total 100 100 100 = 17.18
tt

t
computed as nisi

tt
df = 4; p < .01

7. ESTIMATING TEST SENSITIVITY VIA
THE TWO-PARAMETER LOGISTIC MODEL

Let it be assumed now that the function s(6) can be satisfac-

torily represented by the two-parameter logistic curve

s(e)
ea (0-0

1+ea(0-8)'

and hence the test sensitivity curve will take the form

E(6) = as(6)(1-s(6)).

There are at least two ways to estimate the two parameters a

and 6, namely the minimum logit square method and the maximum like-

lihood (ML) proccdure. The first procedure is less elegant than

the second one; however, the computations are much less demanding.

To apply the minimum logit square technique, let p
i
be the

natural logarithm of the ratio si/(1-si). (Preferably, the log of

the ratio s
i
/(1-s

i
) should be used.) Let 6

i
denote the typical

ability of the test score category Ai. Then, at each i

P
i
= a(e

i
-6) ,

hence a and 8 may be estimated via standard linear regression tech-

nique. They are given as

NE6ipi-(E6i)(Epi)
a = (7)

NE6
i

2
- (E6 )

2 '

and
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aE
i
- Ep

i
=

Na (8,

In these formulae, N is the number of cases in the combined sample.

Strictly speaking, the procedure does not work if s
i
= 0 or 1 for

some score category, since pi would then be equal to or +=. To

proceed with the estimation, however, it has been recommended

(Berkson, 1953) that si be set to a small constant when it is ex-

actly zero, and a number near 1 when it is actually one.

A more direct procedure to estimate a and B would be an appli-

cation of the ML principle. To do this, let ei denote a test score

in the combined sample and ui be 1 for the success category and 0

for the failure category. Then, assuming local independence for

the success/failure classification, the likelihood function for the

combined sample may be written as

N u 1-u,
L = II [s(e )) 11-8(e ))

i=1

a(6)
i
-8)u

i

II

i=1 1+ea(P -B)

Hence the log of the likelihood function will take the form

N N a(8-8)
log L = E a(ei-Oui - E log(l+e ) . (9)

i=1 i=1

The partial derivatives of log L with respect to a and B are given as

a(ei-B)
N N (A -8)e

aloa g L i
a

i=1 i=1 a(e
i
-8)

1+e

and

(10)

N N a(e -8)
212.8.1. _ ae

E au
i
+ E

i
(11)ae

i=1 i=1 a(eB)
14e

By setting these two partial derivative. to zero, the values for a

and B may be found. The process will lead to the following simpler

equations;
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N a(e 1-0) N

G(a,8) =
1

E

1

e
-

1E1

u= 0
a(e

i
-0) i==

1+e

a(e 1-0)
N 0

i
e N

F(a,0) = E g E 0 u. = 0.
e
i
-0) i 1

-

11 1=1
1+e
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(12)

(13)

Equations (12) and (1."..) may be solved via iteration procedures such

as the Newton-Raphson process. The process requires the following

partial derivatives:

N

G' = E (0(0)s(Oi)(1-s(Oi)) , (14)

1=1

and

N

GS -a E s(0
i
)(1-s(0

i
)) , (15)

0
1=1

N

Fa = E 01.(0i-0)s(01.)(1-s(0i)) , (16)

1=1

N

F'
0
= -a E 0

i
s(0

i
)(1-s(e

i
)) .

1=1

(17)

Let a
u

and Bo be two starting values for a and B. Then the Newton-

Raphson iterated values al and B1 satisfy the linear equations

1

(ai-a0)GCc(ao'Bo) + (B1-80)q(ao'Bo) -G(ao'Bo)

(al-aO)FC.(ao'Bo) -I- ($1-80)1"13(ao'Ro) -F(ao'Bo)

Hence a
1
and a

2
are given as

al = ao - (G(a0,00)ya0,00) - F(a0,00)0;(a0,00))/A

and

(18)

1 % -I- (G(ao'Bo)FC:(ao'Bo) F(ao'Bo)GC:(ao'Bo))/A

where A = G'(a
o,O o)F'(a o,0o

) F'(a
o
03 )G1(a

o03o
).a0 ao8

The iteration process continues until convergence is assured

to a satisfactory degree.
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Nuerical Illustration 5

For the data of Table 1, the logit square procedure based on

the unadjusted proportions s
i yields the estimates a = .982 and

a = 2.397. The maximum likelihood procedure results in the esti-

mates a = .947 and 8 = 2.244.

Within the logistic model the traditional asymptotic likelihood

ratio test may be used to check the hypothesis of test sensitivity.

The log likelihood associated with ML es-imation for a and 8 is

equal to log L(a,8), where log L is given in Equation (9). Whcl

the test shows no sensitivity, then the probability s(0i) is uni-

formly equal to po = n0 /(n0+n1). (This probability is equal to

for the pretest-posttest design.) The corresponding log likelihood

is given as log Lo = n0 log po + n1 log (1-po). one asymptotic

likelihood ratio test is carried out via the quantity

X
2

log L(a,8) log Lo which is distributed approximately as a

chi square distribution with one degree of freedom. With the data

referred to in Numerical Illustration 5, for example, it was found

that log L(a,8) = -51.718, and log Lo = -69.315. Hence x2 = 17.597,

which corresponds to an upper tail probability of less than .01.

Thus, the data show strong evidence of test sensitivity.

Appendix A provides a listing of a computer program for the

computations described in this section.

8. SUMMARY

This paper has discussed test sensitivity in mastery testing.

Arguments have been presented to show that correlation-bated

indices may not be appropriate for assessing the sensitivity of

mastery tests. Instead, indices such as p-max or 6-max are advo-

cated for the global assessment of test sensitivity, while local

measures of sensitivity may be obtained using a two-parameter

logistic model. Finally, procedures are described to test the

tenability of the hypothesis of test sensitivity on the basis of

observed test data.
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APPENDIX A

Listing of a Computer Program for Assessing Test Sensitivity
via the Two-Parameter Logistic Model

Disclaimer: The computer program here,cter listed has been written

with care and tested extensively under a variety of conditions

using tests with 60 or fewer items. The author, however, makes no

warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

THIS PROGRAM COMPUTES THE MAXIMUM LIKELIHOOD ESTIMATES OP THE
ALPHA AND BETA PARAMETERS WHICH FORM THE BASIS FOR ASSESSING
TEST SENSITIVITY.
INPUT DATA ARE LISTED AS FOLLOWS.

FIRST CARD: TITLE CARD (ENTER ANYTHING YOU WANT.)
SECOND CARD: NUMBER (M) OF TEST SCORE/ABILITY LEVELS (15)
THIRD CARD: FORMAT CARD FOR EACH OF THE M FOLLOWING CARDS
M CARDS: EACH CONTAINS THE TEST SCORE LEVEL, THE FREQUENCY

OF THE PRETEST/UNINSTRUCTED GROUP, AND THE
FREQUENCY OF THE POSTTEST /INSTRUCTED GROUP. EACH
CARD IS TO BE KEYPUNCHED ACCORDING TO THE FORMAT
ENTERED VIA THE THIRD CARD.

SEVERAL PROBLEMS MAY BE PERFORMED IN ONE RUN BY STACKING THE
INPUT CARDS TOGETHER.
THIS PROGRAM IS WRITTEN FOR TESTS WITH UP TO 61 LEVELS OF TEST
SCORE OR ABILITY. FOR LONGER TESTS, REDIMENSION T AND N TO BE
T(M) AND N(M), A BEING THE NUMBER OF LEVELS.

DIMENSION T(61),N(61),FCT(20)
DOUBLE PRECISION A,B,EA,EB,EPS,DELTA
EPS40.00001
NTOT0
SU0.
STU -0.

ST-0.
ST24.
SR-0.
STR -0.

5 READ(5,95,END -99) FCT
95 FORMAT(20A4)

WRITE(6,195) FCT
195 FORMAT(T2,IANALYSIS OF

T2,********
T2,'TITLE OF

READ(5,96) A
96 FORIAT(I5)

WRITE(6,196) M
196 FORMAT(T2,'NUMBER OF

READ(5,97) FCT
97 FORMAT(20A4)

WRITE(6,197) FCT
197 FORMAT(T2,'/NPUT FORMAT FOR FREQUENCY

WRITE(6,198)
198 FORMAT(T2,'FREQUENCY DISTRIBUTION'/

T2,' SCORE PRETEST/UNINSTRUCTED
/T2,' LEVEL GROUP
T2,' ***** iddrihWhIrirksh*****

DO 20 K11,M
READ(5,FCT) T(K),NLOWER,NUPPER
WRITE(6,200) T(K),ULOWER,NUPPER

200 rORMAT(T2,F8.2T21,I3,T44,I3)
N(K)NLOWER+NUPPER
NTOT- NTOT+N (K)
RFLOAT(NUPPER)/FLOAT(N(K))
SUSU+OUPPER
STUSTU+T(K)*NUPPER
RAHAU.(.01,R)
RAMIN1(.99,R)
P.ALOG(R/(1.-R))
STST+T(K)
ST2ST2+T(K)**2
SRSR+R

20 STRSTR+T(K)*R
.1(M*STR-ST*SR)/(11*ST2-ST*ST)
13,(A*ST-SR)/(M*A)
WRITE(6,215) A,B

215 FORMAT(T2,'STARTING VALUES BASED ON MINIMUM LOGIT'/
T17,IALPHA ',F10.5/T17,'BETA ',F10.5)

30 CALL NEUTOU(M,N,T,SU,STU,A,B,EA,EB)
DEL1".DMAll(EA,EB)
IF(DABS(UELTA).LT.EPS) GOTO 40
AA+EA
BB+EB

TEST SENSITIVITY VIA THE

THIS PROBLEM IS:'/T2,20A4)

LOGISTIC MODEL'/
'/

TEST SCORE /ABILITY LEVELS:',I5)

DATA:I/T2,20A4)

POSTTEST/INSTRUCTED'
GROUP'/

***************
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10
20
30
40
50
60
70
80
90

100
110
120
130
140
153
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
48U
490
5G0
510
520
530
540
550
560
570
58u
590
600
510
620
630
640
650
660
670
680
690
700
716
720
730



GOTO 30
40 WRITE(6,220) A,B
220 FORMAT(T2,'FINAT. RESULTS: ALPHA ',F10.5/

* T2,' BETA ',F10.5//)

HUYNH

740
750
760
770

HlA*(STU-B*SU) 780
PSU/NTW 790
DO 50 I......,K 800

50 H1[ i1-V(I)*DLOG(1.+DEXP(A*(T(I)-B))) 810
HOSU*ALOG(P)+(NTOT-SU)*ALOG(1.-P) 820
CHISQ..H1 -HU 830
WRITE(6,21) H1,HO,CHISQ 840

221 FORILAT(T2,ILOG OF THE LIKELIHOOD FUNCTION'/ 850
& T2,' WITH TEST SENSITIVITY: ',F10.5/ 860
& T2,' NO TEST SENSITIVITY": ',F10.5/ 870
& T2,'CHI-SOUARE STATISTIC ...: ',F10.5/ 880
& T2,'WITH ONE DEGREE OF FREEDOM.') 890
GOTO 5 900

99 WRITE(6,225) 910
225 FOMIAT(T2,' **NORMAL END OF JOB**'/ 920

& T2,' PROGRAM WRITTEN BY HUYNH HUYNH'/ 930
& T2,' COLLEGE OF EDUCATION'/ 940
& T2,' UNIVERSITY OF SOUTH CAROLINA'/ 950
& T2,' COLUMBIA, SOUTH CAROLINA 29208'/ 960
& T2,' JULY 1980') 970
STOP 980
END 990

C 1000
SUBROUTINE NEWTON(K,N,T,SU,STU,A,B.EA,EB) 1010
DIMENSION N(1),T(1) 1020
DOUBLE PRLCISION S,G,F,GA,GB.FA,FB.D,E,P.A,B,EA,EB 1030
G - -SU 1040
F - -STU 1050
Fit..O.D0 1.060
FB -O.DO 1070
GA -O.DO 1080
GB -O.DO 1090

C 1100
DO 10 I -1,K 1110
EDEXP(A*(T(I)-B)) 1120
P- E /(E +1.DO) 1130
SP*(1.D0 -P) 1140
G=G+P*N(I) 1150
FF+N(I)*T(I)*P 1160
GAGA+N(I)*(I(I)-B)*S 1170
GBGB-A*S*N(T) 1180
FAFAH1(I)*T(I)*(T(I)-B)*S 1190

10 FBFB-A*T(I)*S*N(I) 1200
DGA*FB-FA*GB 1210
EA.. -(G*FB-F*GB)/D 1220
EB..(G*FA-F*GA)/D 1230
RETURN 1240
END 1250
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SELECTING ITEMS AND SETTING PASSING SCORES FOR MASTERY TESTS

BASED ON THE TWO-PARAMETER LOGISTIC MODEL

Huynh Huynh

University of South Carolina

Presented at the Informal Meeting on Model-Based Pdgchological
Measurement sponsored by the Office of Naval Research, Iowa City,
Iowa, August 17-22, 1986.

ABSTRACT

Three issues in mastery testing are considered, using a

minimax decision framework, based on the two-parameter logistic

model. The issues are: (1) setting passing scores, (2) assessing

decision efficiency, and (3) selecting items to maximize decision

efficiency. The losses or disutilities under consideration have a

constant or normal ogive form. It is found that, in the context of

minimax decisions, the item selection procedure based on maximum

information may not provide the best decision efficiency.

1. INTRODUCTION

A primary purpose of master, testing is to classify each

examinee in one of several achievement (or ability) categories.

Typically there are two such categories, commonly labeled mastery

and n.rnmastery. Let e be the ability or trait being measured. On

the 0 scale, the status of mastery is defined by the condition

9 > 90, and that of nonmastery by 9 < e
o
, where 0

o
is a prespecified

constant often referred to as a true mastery score. (As can be seen

This paper has been distributed separately as RM 80-6, August, 1980.
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later, the postulated existence of 00 is justified when the losses

or utilities associated with the decision problem fulfill fairly

reasonable assumptions.) In most practical situations, however, 0

is not known, and mastery/nonmastery decisions are usually based on

the responses of the examinee to a relevant set of items. Three

issues thus emerge, which deal with (1) scoring item responses,

(2) setting a test passing score, and (3) selecting test items which

serve best (in some sense) the process of classification (mastery

testing).

Within the context of Bayesian decision theory as applied to

the case of constant losses, and considering tolerable limits on

the probabilities of making false positive (a) and false negative

(0) errors, Birnbaum (1968) and Lord (1980) have given considerable

attention to the three issues mentioned above. The treatment devel-

oped by Birnbaum does not seem to lead to an easy generalization to

situations involving other than constant losses, and the discussion

by Lord, at times, moves from Bayesian decision theory to confidence

interval estimation without a strong link of continuity.

The purpose of this paper is to provide a consideration of the

aforementioned issues in mastery testing, using a minimax decision

framework. Consideration is restricted to a two-parameter logistic

model in which a sufficient statIstic exists for the estimation of

ability. A minimax treatment of mastery testing which involves the

simple binomial error model may be found in Huynh (1930), and in

Wilcox (1976) in another form.

2. SUFFICIENCY, MONOTONE LIKELIHOOD RATIO
AND MONOTONE DECISION PROBLEMS

Consider a test consisting of n items (indexed by i = 1,2,...,n)

for which the item response u
i
of an examinee with ability 0 follows

a two-parameter logistic model with item difficulty bi and item

discrimination ai. It is well known that the composite test score

x = E aiui is a sufficient statistic for estimating e, and that
1=1

the conditional density f(x10) has the monotone likelihood ratio

property (Birnbaum, 1968, sec. 19.4). Sufficiency implies
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(Ferguson, 1967, p. 120, Theorem 1) that any decision problem

focusing on 0 may be simply based on the test score x since the set

of decision rul..s based on x forms an essentially comp'ete class.

In other words, for any decisior, rule based on the vector of re-

sponses (ul,u2,...,u
n
), there is always a decision rule based on x

which performs at least as well as the given rule in terms of risk

(or expected loss).

Consider now the action (a
1
) of granting mastery status and

the action (a
2
) of denying mastery status to an 3xaminee with

ability O. Let L1(0) and L2(0) be the losses (disutilities) asso-

ciated with the two actions al and a2. In practical situations, it

seems reasonable to assume that L
1
(0) is nonincreasing in 0 and

L
2
(0) is nondecreasing in O. In other words, granting mastery

status should cause less harm to an examinee with high ability than

to someone with low ability. The reverse should hold for the act

of denying mastery status. When the graphs of L1(0) and L2(0) do

not cross, either action a or action a
2
is uniformly better than

the other at all ability levels 0; hence the choice for the best

course of action would be either a
1
or a

2
regardless of the observed

test score x. This "degenerate" case does not represent a typical

use of test data; hence it seems reasonable to assume that the

graphs of L1(0) and L2(0) cross at least at one point. Due to the

nondecreasing nature of the difference L2(0) - L1(0), crossing can

occur only once. Hence, there exists one ability level eo such

that L
1
(0) I L

2
(0) for 0 < e

o
and L1(0) < L

2
(0) for 0 > 0 Under

these conditions, the decision problem is said to be monotone

(Ferguson, 1967, chap. 6). It may then be noted that, in terms of
loss, action is best when 0 > 00, and action a2 is best when
0 < 0

o
.

Within the monotone decision problem as stated and with the

monotone likelihood ratio property for the density f(x10), it is

well known (Ferguson, 1967, p. 286; Zacks, 1971, ch. .) that the

search for an oltimum decision rule may be restricted to the (essen-

tially complete) class of decision rules defined by al = {x; x > c}
and a

2
= {x; x < c}, where c is a suitable test passing score. At

387



each potential passing score c, the expected loss is

R(c;8) = L
1
(0)P(x>c10) + L

2
(0)P(x<c10) .

HUYNH

(1)

A minimax passing score co is the score which minimizes the maximum

of R(c;8) with respect to 8. (For the sake of simplicity, it is

assumed that the search for maximum and minimum can be accomplished.)

Consider now the maximum G(0) of the two losses L
1
(8) and

L2(8). It is given as G(0) = L1(8) for 0 < 00, and G(0) = L2(0)

for 0 2
o

. The expected loss R(c;0) may now be written as

R(c;8) = G(8) + (L2(8) - L1(0))P(x<c10)

for 0 < 8 and as

R(c;8) = c(e) + (Li(e) - L2(8))P(x>c18)

for 0 2.
o

. The quantity Cf(0) = L2(0) - L1(0), 0 <
o

, represents

the opportunity loss due to a false negative error, and the quantity

Cs(8) = L2(8) - L1(8), 8 < 0 , denotes the opportunity loss due to

a false positive error. Opportunity losses are zero when correct

decisions, namely the two combinations (0<80,x<c) and (0>80,x>c),

are made. Thus, as indicated in this special case, solutions for a

monotone decision problem may be found by looking at the original

losses, or at the corresponding opportunity losses. Additional

examples of this duality may be found in elementary textbooks such

as Schleifer (1969).

Due to the duality as presented, both losses and opportunity

losses will be considered in the remaining part of this paper.

Thus, for opportunity losses Cf(0) will be taken as zero when

0 > e
o
, and C

s
(8) as zero when 0 <

o
. In all ot)-1r cases, both

C
f
(8) and C

s
(8) are nonnegative, with C

f
(0) being nonincreasing and

C
s
(8) nondecreasing in 8.

3. MINIMAX PASSING SCORE AND DECISION EFFICIENCY

The risk R(c;0)

R(c;0) =

Now let

L
1
(c) = sup

0<0

may now be written as follows:

'Cf(8)P(x>c18) for 0 < 0

Cs(0)P(x<c10) for 8 > 80.

C
f
(0)P(x>c10)

(2)

(3)

0
388
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and

L
2
(c) = sup

s
(op(x<cle)

.

6>6
o

Then the maximum (or supremum) of R(c;6) over 6 is

M(c) = raax{L1(c),L2(c)} .

The optimum (minimax) passing score is the test score co at which

M(c) is minimized. The minimum (or infinimum) value of M(c), hence-

forth denoted as R
o

, is traditionally referred to as the minimax

value of the decision problem (Ferguson, 1967, p. 33).

Consider now the extreme case where the score x does not

reveal the true ability 0, e.g., when x and 6 are stochastically

(4)

independent. Let

C
f
= sup C

f
(6)

6<6

and
0

*
C
s
= sup C

s
(8) .

6>6o
In the case where both C

f
and C

s
are finite, the minimax passing

*
score c satisfies the equation

C
f
P(x>c ) = C

s
P(x<c ) .

In other words, when there is no relationship between x and 6, it

is best to randomly assign mastery with a probability of
* * * *Cs/(Cs + Cf) and nonmastery with a probability of Cf/(Cs + Cf).

The minimax value of the decision situation is then
* * *
R = CfCs

*
/(C

f
+ C

s

*
) . (5)

It may be recalled that opportunity losses are zero when the

decisions are correct. Hence, when the test score x reveals fully

the nature of the ability 6, the minimax value is zero. This obser-

vation along with the nature of R and R
*

suggests the use of the* o
quantity n = (R -R

0
)/R as an index to measure the efficiency of

using test scores in making mastery/nonmastery decisions. This

efficiency index measures the extent to which the best use of test

data will reduce the amount of risk which would be expected had the
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test data not been used at all. It is a function of the opportunity

losses Cf(0) and C
s
(0), and of the item parameters ai and bi.

As defined, the efficiency index n is computable only when both

C
f
and C

s
P.re finite. This means that the opportunity losses C

s
(0)

and C
f
(0) are not allowed to drift out of bounds when 0 goes to

infinity. Hence, efficiency is not defined for linear or quadratic

losses if these are expressed as a direct function of 0. However,

as Novick and Lindley (1978) point out, it seems sensible to demand

that losses or utilities be bounded, at least in the context of

educational and psychological testing. This assumption will be

made throughout the remaining part of this paper.

With the efficiency index now defined, the design of a mastery

test may be accomplished by deciding on the number of test items,

n, and selecting the test items such that tne resulting efficiency

index would be equal or nearly equal to a specified level.

It seems intuitively true that as the n "nber of test items

increases, the efficiency index will increase. However, when the

situation permits, a short test is preferable to a lengthy one.

Hence, a balance seems appropriate between efficiency and test

length. As a passing remark, one may express the latter trait as a

function of n, say k(n), and then search for an n value at which

the product of i(n) with the efficiency index n(n) is maximized.

4. DESIGNING A MASTERY "'EST FOR
THE CASE OF CONSTANT LOSSES

For technical reasons which should be ar: -ent from the work of

Birnbaum (1968, ch. 19), the case of constant losses in minimax

decision problems may be represented by the following functions:

if 0 < 0
o

Cf(0) =

0 if 0 > 0
o

,

and

Q if 0
o

_<

C
s
(0) =

0 if 0 < 0
o
+6 ,

390 ,,.,
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where Q is a constant. The region {6;6
o
<6<6

o
+0 is an indifference

zone. For any examinee whose true ability falls within this rLrtge,

it does not matter whether action a
1
or a

2
is taken. The constant

Q is the ratio of the false negative error to false positive error.

(It may also be said simply that the false negative error and the

false positive error are weighted according to the ratio Q 4 1.)

The risk R(c;0) of Equation (2) may now be expressed as follows:

P(x>c10) for 6<60

R(c;0) =
(8)

QP(x<c10) for e>o .

o

As elaborated in Section 2, the conditional density f(x16) belongs

to the monotone likelihood ratio family. It follows from Dykstra,

Hewett, and Thompson (1973) that x and 0 are stochastically increas-

ing in sequence; hence the maximum value of P(x<c16) occurs

at 0 = 6
o
-1-c and that of P(x >cIO) occurs at 0 = 6 Thus the expres-

sions L1(c), L2(c), and M(c) of Equations (3), (4), and (5) become

L1(c) = P(x>c16 = 60),
(9)

L
2
(c) = QP(x<c16 = 6

o
+c) , (10)

and

M(c) = max{Li(c),L2(c)}
.

It may be noted that, as a function of c, L1(c) is nonincreas-

ing and varies from 1 to 0. As for L2(c), it is nondecreasing and

varies from 0 to Q. If the test score x can be a.sumed to be

continuous, then the minimum of M(c) will occur at c
0
where

L
1
(c
o
) = L

2
(c
o
).

Consider now the special case where c = 0. Then the minimax

passing score c0 satisfies the equation

P(x1c016 = 6
o
) = QP(x<c016 = 60) ,

or

P(x<c016 = 00) = 1/(Q+1)

The minimax value of the decision problem is Ro = Q/(Q+1) regardless

of the nature of the items which form the test. In addition, the

minimax value encountered when the test data are not used is
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R = Q/(Q+1); thus the decision efficiency index n is zero. (This

conclusion is consistent with the observation by Wilcox (1977) that

when n = 0, the process of randomly assigning an exaoinee to mastery

and nonmastery status, each with a probability of .5, 't'd encoun-

ter no more maximum error than any attempt to use test data.) Thus,

when there is no indifference zone separating m.Inters and nonmastery

on the ability scale, there is no way to dasign a test which will

add any efficiency to the minimax decision -- making process. For

this reasor, the constant c shall be assumed to be sr-ictly positive

in tf remaining part of this section.

As may be seen 2rom Equations (9) and (10), L1(c) decreases

from 1 to 0 and L,,(c) increases from 0 to Q when the passing score

c spans the range of possible values. If the test score can be

assumed to be continuous, then the minimal passing score co is the

one at which L
1
(c) = L

2
(c). Otherwise, c

o
is one (or both) of the

two scores which lie nearest to the location at which Cie graphs of

L
1
(c) and L

2
(c) meet. As before, the minimax passing score is the

test score at kihich M(c) is the smallest.

5. APPROXIMATE SOLUTION FOR MINIMAX
PASSING SCORE FOR CONSTANT LOSSES

Let the tont now consist of n items. Each item is associated

with a characteristic function defined by tt_ probability that the

item response ui is correct, namely

a
i
(e-b )

Pike)
a
i
(e-b )

1 + e

n
Let the (composite) test score be x = E aiui. The mean and the

1=1
variance of the test score x are given respectively as

n
11(6) = F aipi(e)

1=1

and

0
2
(0) = E a P (0)q (0) ,

1=1 "
where qi(0) = 1 - p1(0).

392
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When there are a sufficient number of items forming ti test,

the conditional distribution of x, given e, may be approximated by

the normal distribution with me,li p(e) and standard deviation a(0).

The minimax passing score now sati,fies the equation

P(x>cole=e0) = QP(x<c013=e0+0 . (14)

Let (.) denote the cumulative distribution function of a unit

normal variable (with zero mean and unit variance). Then c
o

is the

solution of the equation

ic-u(00)

cc-U(e+c)1 - ml

0
(1.{---c76-74-7T (15)

This equation may be solved numerically via the Newton-Raphson

iteration process. To do this. let the function H be defined as

(16)

The derivative of H with respect to c is given as

c-11(e 0) (c -11(00+c)

11 (17)1(c) -c(11-V oleo) a(0 +c)1

where (PC) is the density of the unit normal variable. In other

words,

H(c) =
c-1(0 )

+ Q0
a(e +c)

1.a(e )
o

22

0(z) =
1

e
2

. (18)

To proceed with the Newton-Raphson process, s starting value

c
1

for the passing score must be found. This may be taken as the

average of the two c values at which

and

{c-1 (ed.

a(0) 1+Q

o 1

a(e
o+c)

1411

Once c
1

has been computed, the updated c
2
value is given as

c2 = cl - H(c1)/10(c1) .
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Using c2 as a starting value, the updated c1 value may be found.

The process will end when the change in the L value is sufficiently

small.

Numerical Illustration

Let a test consist of ten items with parameters listed as

follows:

Item 1 2 3 4 5 6 7 8 9 10

a
i

3.0 1.0 1.0 0.6 0.6 0.3 0.3 0.2 0.2 0.1

bi -2.0 -2.0 -1.5 -1.0 0.3 0.6 0.8 2.0 3.0 5.0

In addition, let 80 = 1.2, e = 1.0, and Q = 2. Then n(80) = 6.2875,

0(8 0) = .7795, 11(8
o
+e) = 6.5424, and 0(8

o
+e) = .6943. The unit nor-

mal z score at which 4)(z) = 1/(1+0 = 1/3 is z = .432, hence the

starting value for the Newton-Raphson process is cl = 6.7333. The

first updated value is c2 = 6.1280. If a tolerance error of .00001

is acceptable, then the iteration process ends at the solution

c
o

= 6.1.487. At this minimax passing score, the minimax value of

the decision problem ie R
o
= M(c

o
) = P(x>c

o
18

o
) = .5707. With

*

R = Q/(1+Q) = 2/3, the efficiency index 71 is 1 - R0 /R = .1440.

6. AN ITEM SELECTION PROCEDURE FOR CONSTANT LOSSES

Consider now the task of sel °cting n items for a test from a

pool consisting of N items. (Conceptually, N may be infinite.)

Which items should be selected? Lord (1980) proposes that items

should be selected in such a way that the item responses would show

the highest degree of information at 80 (for the case where e = 0).

W Ile it appears clear that there is a direct relationship between

test information and the reduction of decision errors, it seems

desirable to base the selection of test items on the efficiency

index n, which is derived from (minimax) decision theory in a more

dtrect way than is test information.

Since the efficiency index is n = 1-R l R and since R is

constant, the highest efficiency would occu: when the minimax value

R
o

is at its minimum. When the test score can ue assumed to be

continuous, R0 is either P(x>c
o
18=8

o
) or QP(x<c:

o o
1)=8 +e). Thus,

the selection of the items must be such that there two quantities

are simultaneously as small as possible.
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Except for the case of equal item difficulties and equal item

discriminations, the probabilities which define the minimax value

R
o

involve the item parameters in a rather complex manner. Hence,

the optimu% selection of items would require the complete enumera-

tion of all the
n) possible item combinations. The number of

combinations may be very large; thus, for large-item pools, optimal-

ity in selection of items e^^s not appear to justify the computing

costs at the present time.

An approximate solution for item selection may be obtained by

noting that, at each passing score c, P(x>c010=00) is an increasing

function of each individual probability pi(00), and that

QP(x<c010=00+0 is an increasinc, function of each individual compo-

nent Oq
i
(0
o
+c)=Q(1-p (e

o
+0). Hence, at each c, the maximum value

M(c) would be Mall if p (0 ) and Q(1-p
i
(0
o
+0) are simultaneously

small. (This cannot be true if c=0.) Hence, the selection .1f

items 11.,47 be accomplished as follows. (i) For each item i, %.ompute

the maximum di of p (0 0) and Q(1-p
o
+0). (ii) Select the n items

for which the d
i
values are the smallest.

Numerical Illustration

With the item parameters documented in the numerical illustra-

tion found in Section 5, tbe d
i
values are given as follows:

Item 1 2 3 4 5 6 7 8 9 10
S
i

1.00

1

.96 .94 .79 .63 .76 .79 .98 1.08 1.14

Thus, if five items are to be selected for the decision sitxtion

under consideration, they would be the ones indexed by the numbers

3, 4, 5, 6, and 7. The efficiency index computed from the normal

approximation is n = .1411. It may be interesting to note that the

selection procedure based on maximum information (at 00+i) would

result in the items with numbers 4, 5, 6, 7, and 8. The efficiency

index for this selection is .1163. To gain some insight in the

selection procedure based on 0, a random selection of items was

conducted and resulted in the items 1, 3, 4, 8, and 10. The cor-

responding efficiency index was found to be .1086.

The numerical illustration seems to imdicate that the procedure

based on maximum item information may not be the best way to seleett

395 3'14

-.....M11111 Ml



HUYNH

-.est items in the context of minimax decisi. theory. In addition,

though this procedure and the one based or minimum 6 value appear

to select a fair number of common items, the 6 procedure seems to be

more consistent with the minimax decision approach to mastery testing.

7. A COMPUTER PROGRAM FOR THE CASE OF CONSTANT LOSSES

Appendix A provides the listing of a FORTRAN computer program

which is written for the analysis of decisions based on the minimax

principle. Input data to the program are (i) a title card; (ii) a

card providing the data for n, e, e0+ C, and Q, (iii) an input format

card for reading each pair (ai,bi); and (iv) n cards of item

parameters. For example, the input data for the numerical example

of Section 5 is listed in Table 1. Table 2 lists the outpu, of the

program.

TABLE 1

An Example of Input Data

AN EXAMPLE OF MINIMAX DECISION ANALYSIS

10 1.20000 2.20000 2.00000 .43200

(2F10.5)

3.0 -2.0
1.0 -2.0
1.0 -1.5
0.6 -1.0
0.6 0.3
0.3 0.6
0.3 0.8
0.2 ?.0

0.2 3.0

0.1 5.0

S. AN APPROXIMATE SOLUTION FOR MINIMAX
PASSING SCORES UNDER NORMAI LOSSES

Novick and Lindley (1978) indicated that in most practical

applications, a more realistic form of utility (and consequently,

of the loss function) would be the normal ogive family. Let
exia+ex,

) be the logistic function. Then (Haley, 1952, p. 7)

4)(1.7z) and the unit normal distribution 0(z) differ by less than

.01 uniformly in z. For this reason, and for the computational
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TABLE 2

An Example of Output from the Computer Program

MINIMAX DECISION ANALYSIS FOR THE TWO-PARAMETER
LOGISTIC MODEL. TITLE OF THIS PROBLEM IS:
AN EXAMPLE OF MINIMAX DECISION ANALYSIS
NUMBER OF ITEMS 10

INDIFFERENCE ZONE ON THE ABILITY THETA SCALE
LOWER LIMIT (THETA-ZERO). 1.2000n
UPPER LIMIT (THETA-ZERO

PLUS EPSIL)N). 2.20000

LOSS RATIO Q 2.00000
TOLERANCE ERROR 0.00001

ITEM PARAMETERS
ITEM ID DISCR. DIFF.

1 3.000 -2.000
2 1.000 -2.000
3 1.000 -1.500
4 0.600 -1.000
5 0.600 0.300
6 0.300 0.600
7 0.300 0.800
8 0.200 2.000
9 0.200 3.000

10 0.100 5.000

NORMAL APPROXIMATION FOR TEST SCORES
AT LIMITS OF INDIFFERENCE ZONE

LOWER LIMIT : MEAN 6.288
S.D 0.694

UPPER LIMIT : ME1/2.N 6.542
S.D 0,694

MINIMAX VALUES
WITH USE OF TEST SCORES 0.57067
WITH NO USE OF TEST SCORES .. 0.66667

FINAL RESULTS

FINAL MINIMAX PASSING SCORE 6.14872
DECISION EFFICIENCY 0.14400

simplicity associate.: with the logistic function, he two functions

')(z) and *(1.7z) will be used interchangeably in this section.

The normal (or logistic) form for the two loss functions (dis-

utilities) L1(0) for action al and L2(0) for action a2 may be

written as

397
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ai (040
L1(9) = 1/(1+e )

a (0-6 ) a (0-6 )

2

2 2 /(14.e 2 2
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(21)

(22)

In these expressions, al and a2 are positive constants. Constant

losses correspond to the degenerate case in which 81 = e2 and

a
1

. a
2

=

Now let 0
o
be the solution of L

1
(0
o
) = L

2
(0 0). This quantity

may be obtained via a typical Newton -- Raphson iteration process.

Given 0 the opportunity losses are given as follows:

and

L
2
(0)-L

1
(0) for 010

Cs(0) = (23)

0 for 0<00

Cf(0) =

(L
1
(0)-L

2
(0) for 0<0

0.

for 0.1..0
o

(24)

At each potential passing score c, the risk R(c;0) of Equation (2)

is equal to

(1,1(0)-L2(6)P(x>c10) for 0<0
o

R(c;0) =

{

(25)

(L
2
(0)-L

1
(0))P(x<c10) for 010

o.

Consider first the situation where 0<0
0

. At 0 =
o

,

(L1(0)-L2(0))P(x>c10) is zero. As 0 approaches this (positive)

quantity moves to 0. Hence there exists a value 0
1
at which this

function reaches a maximum. Let L
1
(c) be this maximum. Likewise,

let L
2
(c) be the maximum of (1.,

2
(0)-L

1
(0))P(x<c(0) when 0

o
.

Then M(c) = max {ye), L2(c)}, and the minimax passing score is

the test score c0 at which M(c) is the smallest.

Given c, both L1(c) and L2(c), and hence M(c), may be obtained

via numerical procedures such as the Newton-Raphson iteration proc-

ess. The process is rather involved; however, it can be simplified

by replacing the two probabilities P(x>c10) and P(x<c10) by two

appropriate logistic functions. Let p(0) and o(0) be the mean and
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standard deviation described in Section 5. Then, approximately,

P(x<c18) = eY/(1+eY)

and

P(x >LIe) = 1/(1+J)

where y = 1.7(c-11(0))/a(0). By using these logistic expressions,

the two derivatives with respect to a Ihich form the basis for the

Newton-Raphson process will involve only ratipnal forms of the

exponential functions, and thus can be obtained without undue

difficulty.

The location of the test score c
o
at which the maxim= risk

M(c) is minimized is somewhat tedious, since the algebraic form of

M(c) as a function of c is not known explicitlr. Hence numerical

procedurec such as the Newton-Raphson iteration may no be appli-

cable. It may be noted, however, that the test score x varies from
n

0 to the maximum of xm = E ai via only a finite number of points.
1=1

(When all item discriminations are equal, x cat take only n+1

points; these may be taken conveniently as 0,1,2,...,n.) The loca-

l-on of the minimax passing score co may now be accomplished by

competing the value of M(c) at several equally spaced points in the

interv1 (0,x
m), and then by selectin3 the point at which M(c) is

the smallest. A refinement of this approach may be carried out by

plott.r.ng M(c) against c, and then by drawing a smooth curve through

the points (c,M(c)). The place at which the smooth curve is peaked

may then be taken as the minimax passing score.

9. ITEM SELECTION UNDER NORMA LOSSES

The item selection process described in Section 6 for the case

of constant losses may be generalized to normal losses as follows:

1. For each item, compute the maximum risk defined as

di = max (L1(8)pi(6) + L2(0)01-pi(0))} (26)

where

p (0) a exp (a (6-b ))/{1+exp (a
i
(0-b '1} .

2. Then select the n item' which show the highest 6 values.
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10. SUMMARY

This paper provides a minimax decision framework in which

three issues in mastery testing based on the two-parameter logistic

model are approached. The issues deal with setting passing scores,

assessing decision efficiency, and selecting it s to maximize

decision efficiency. The losses or disutilities under consideration

have constant or normal ogive form. It is found that, within the

context of minimax decisions, the item selection procedure based on

maximum information may not provide the best decision efficiency.
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APPENDIX A

A Computer Program for Minimax Decision Analysis
for the Two-Parameter Logistic Model

under Constant Losses

Disclaimer: This program has been written with care and tested

under a variety of conditions. The author, however, makes no

warranty as to its accuracy and functioning, nor shall the fact of

its distribution imply such warranty.
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10
C A FORTRAN PROGRAM FOR THE COMPUTATION OF MINIMAX PASSING SCORE 20
C AND DECISION EFFICIENCY FOR THE TWO-PARAMETER LOGISTIC MODEL 30
C WITH CONbTANT LOSSES WHICH ARE EQUAL TO ZERO OVER A SELECTED 40
C INDIFFERENCE ZONE. THE NORMAL APPROXIMATION IS USED TO DESCRIBE 50
C THE CONDITIONAL DISTRIBUTION OF THE TEST SCORE AT EACH ABILITY 60
C LEVEL, HENCE THE PROGRAM IS APPROPRIATE WHEN THE NUMBER OF TEST 70
C ITEMS IS SUFFFICIENTLY LARGE. 80
C

90
C INPUT DATA CARDS ARE: 100
C FIRST CARD: TITLE OF THE PROBLEM. ENTER ANYTHING YOU WANT. 110
C SECOND CARD; ENTER THE FOLLOWING DATA, USING THE FORMAT 120
C (110,5F10.5) 130
C N ... NUMBER OF ITEMS 140
C T1... LOWER LIMIT OF THE INDIFFERENCE ZONE 150
C T2 .. UPPER LIMIT OF THE INDIFFERENCE ZONE 160
C Q ... LOSS RATIO 170
C THIRD CARD: INPUT FORMAT FOR THE READING OF EACH PAIR 0 180
C ITEM PARAMETERS. AN EXAMPLE IS (2F10.5). 190
C FOLLOWING IN THE INPUT DECK ARE N CARDS, EACH CARD 200
C CONTAINING THE DISCRIMINATION AND DIFFICULTY OF ONE 210
+. ITEM, KEYPUNCHED IN THAT ORDER. 220
C 230
C THE PROGRAM IS SET UP FOR TESTS WITH UP TO 200 ITEMS. IF THERE 240
C ARE MORE THAN 200 ITEMS, SIMPLY CHANCE THE DIMENSIONS OF A AND B 250
C IN THE FOLLOWING DIMENSION STATEMENT TO A(N) AND B(N). 260

270
DIMENSION A(200),B(200),FCT(20)

5 READ(5,95,END -99) (A(I),I -1,20)
95 FORMAT(20A4)

WRITE(6,195) (A(I),I-1,20)
195 FORMAT(' 1',41INIMAX DECISION ANALYSIS FOR THE TWO -PARAMETER'/

T2,'LOGISTIC MODEL. TITLE OF THIS PROBLEM IS:'/T2,20A4)
READ(5,100) N,T1,T2,0.

100 FORMAT(I10,3F10.5)
TOLP.00001
READ(5,95) FCT
WRITE(6,200) N,T1,T2,Q,TOL

200 FORMAT(T2,'NUMBER OF ITEMS ',I4//
T2,'INDIFFERENCE ZONE ON THE ABILITY THETA SCALE'/
T2,' LOWER LIMIT (THETA-ZERO).',F10.5/
T2,' UPPER LIMIT (THETA-ZERO '/
T2,' PLUS EPSILON).',F10.5//
T2,'LOSS RATIO Q ',F10.5/
T2,'TOLERANCE ERROR ' F10.5//
T2, 'ITEM PARAMETERSI/
T2, IITIM ID DISCR.

DO 10 /*Lill
READ(5,FCT) A(I),B(I)
Pl*EXPO(I)*(TI-B(I)))
P1mPl/(1.+Pl)
P2*EXP(A(I)*(T2-B(I)))
P2*Q*(1.-P2/(1.+P2))
D*P1
IF(P1.LT P2) D-P2
FOR*EXP(A(L)*((T1+T2)/2-8(I)))
FORmA(/)*FOR/((1470R)**2)

10 WRITE(6,220) I,A(I),B(I)
220 FORMAT(T4,I4,F12.3,F12.3)

CALL SCOR1 (N,A,B,T1,T2,TOL,Q,CZERO,ETA)
WRITE(6,230) CZERO,ETA

230 FORMAT(//T2,'FINAL RESULTS'//
T2,'FIrAL MINIMAX PASSING SCORE',F1(1.5/
T2,'DECISION EFFICIENCY ' F10.5//)

GOT': 3
99 WRIIE(6,245)
245 FOlUtAT(T2 '** NORMAL END OF JOB **I/

Ti,' PROGRAM WRITTEN BY'/
T2,' HUYZiH HUYNH'/
T2,' COLLEGE OF EDUCATION'/
T2,' UNIVERSITY OF SOUTH CAROLINA'/
T2,' COLUMBIA, SOUTH CAROLINA 29208'/
T2,' JULY 1980')

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

DIFF.'/) 470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
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STOP 740
END 750

C 760
SUBROUTINE SCORE(N,A,B,T1,T2,TOL,Q,CZERO,ETA) 770
DIMENSION A(1),B(1) 780
AM1./6.28318*.5 790
1:11./(Q+1.) 800
CALL NORHAL(P,CZERO) 810
XM10. 820
7142 -0. 830
SD10. 840
SD20. 850
DO 10 I -1,N 860
P1 -EXP(A(I)*(T1-B(I))) 870
P1P1/(1.+P1) 880
P2EXP(A(I)*(T2-8(I))) 890
P2P2/(1.+P2) 900
Mil XMl+A(I)*P1 910
7112-XM2+A(I)*P2 920
SD1-SD1+A(I)*P1*(1.-P1) 930

10 SD2SD2+A(I)*P2*(1.-P2) 940
SD1SD1**.5 950
SD2-SD2**.5 960
WRITE(6,200) X111,SD2,XM2,SD2 970

.00 FORMAT(.ZT2 'NORMAL APPROXIMATION FOR TEST SCORES'/ 980
* T2,IAT LIMITS OF INDIFFERENCE ZONE'// 990
* T2,'LOWER LIMIT : ?MAN ',F10.3/ 1000
* T2,' S.D ',F10.3// 1010
* T2 'UPPER LIMIT : MEAN ' F10.3/ 1020
* T2,1 S.D. ',F10.3/) 1030

C 1040
CZERO(7C11 +CA2+(SD1+SD2)*CZERD)/2. 1050

C 1060
C WRITE(6,205) CZERO 1070
C 205 FORMAT(T2, 'STARTING CZERO',F10.5) 1080

20 21(CZERO-xta)/sp1 1D90
22 -(CZERO -XM2)/SD2 1100
H .5*ERFC(-.7071068*Z1)+Q*.5*ERFC(-.7071068*Z2)-1. 1110
HPAA*(1./SD1 *EXP(-Z1**2/2)+Q/SD2 *EXP(-22**2/2)) 1120
0.1/HP 1130
IF(ABS(D).T.T.TOL) COTO 30 1140
CZEROCZERO-D 1150

C WRITE(6,210) CZER() 1160
C 210 FORMAT(T2. 'UPDATED CZERO ',F10.5) 1170

GOTO 20 1180
30 RZEROQ*.5*ERFC(-.7071068*Z2) 1190

RSTAR- Q /(Q+1.) 1200
WRITE(6,220) RZERO,RSTAR 1210

220 FORJ1AT(T2,'1INIMAX VALUES'/ 1220
* T2,' PITH USE OF TEST SCORES ',F10.5/ 1230
* T2,' WITH NO USE OF TEST SCORES ',F10.5) 1240

C 1250
ETA 1.-RZEXO/RSTAR 1260
RETURJ 1270
END 1280
SUBROUTINE NORMAL(P,X) 1290
D 11 1300
IF(D-.5) 9,9,8 1310

8 D-1.-D 1320
9 T2..ALOC(1./(D*B)) 1330
TSQRT(T2) 1340
14T-(2.515517+0.802835*T+41.010328T2)/(1.0+1.432788*T+0.189269*T2 1350
* +O.001308*T*T2) 1360
IF(P-0.5) 10,10,11 1370

10 X - -X 1380
11 RETURN 1390

END 1400
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A VIEW ON THE FUTURE OF MASTERY TESTING

Anthony J. Nitko

University of Pittsburgh

These remarks were made as part of the symposium "First year of
the Mastery Testing Project. Technical advances, applications, and
conjectures" at the annual meeting of the American Educational
Research Association, Boston, April 7-11, 1980.

As is pointed out in the Overview, the Mastery Testing Project

has made important strides in solving several psychometric problems

associated with setting cutting scores on tests for the purpose of

making mastery decisions. It has been encouraging that the research

has taken as its central concern making effective and consistant

decisions. This focus has contributed to the reformulation of test-

ing issues in the decision context--away from the traditional view

of the measurement of individual differences and toward a view of

classification decisions within the context of instruction.

A second encouraging aspect which contributes to a future view

of mastery testing is the project's use of the binomial error model

and the beta-binomial distribution. In the past, most testers have

applied decision theoretic statistical methods to a normal distri-

bution model, assuming that both measurement error and ability are

distributed normally. The Mastery Testing Project has broken with

this tradition. In a formal and rigorous way, the project has shown

that other assumptions about the mathematical form of human behavior

can be plausible. Thus, solutions to testing and classification

problems can be modeled on distributions other than the normal dis-

tribution. Eventually, this work will help to dispel the en-

chantment of test users with the nineteenth century view that human

abilities are "naturally" normally distributed. Unleashed from the

constraints of a Gaussian view, new vistas of human accomplishments

are possible in the future.

The strong true score model adopted by the Mastery Testing

Project has helped to advance a broader view of what it means to
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have a "reliable" test. This means that in the future test develr?ers

will be more concerned with the consistency of decisions made using

test scores than they have in the past. Further, wider use of the raw

agreement and kappa indices are to be expected. In addition, since

these indices have a broader application than in mastery testing alone,

and since their statistical form has been rigor sly traced by the

studies of the Mastery Testing Project, there should be a spillover of

the technical knowledge gained in this project to other areas.

The Mastery Testing Project has focused on only one view of what

it means to be a master. The findings of the studies reported here

will give tremendous creditability to this one view of Lastery because

they have put it on a technically rigorous psychometric foundation.

In this view of mastery, a "master" is one who can perform correctly

more of essentially the same kind of task. What is to be learned is

conceived of essentially as a large domain of test items. The test

administrator selects a random (or representatively random) sample

of items from this domain and administers them to the examinee. This

teste.'s interest is in estimating either the number or percentage of

the tasks in the domain to which the examinee can respond correctly.

This is a useful model for a number of learning objectives,

especially at an elementary, minimal competence level. E'it the model

tends to equate mastery with information store and to limit this store

to verbal information. This view is appropriate, for example, when

estimating the proportion o; simple addition facts known, or number

of three digit, two addend arithmetic problems that can be solved.

In the future, one can speculate that such a view will not be

applicable to other important learning problems. Cognitive

psychologists, for example, have studied the differences between

"expert" and "novice" performers of complex, p-oblem solving tasks.

They find that experts differ from novir-..s on qubtitative attributes,

not Just on the amount of information stored. Fo_ example, on in-

ductive reasoning tasks, Pelligreno and Glaser (1979) found that

competent performers have (a) better management of memory, (b) better

knowledge of the constraints in a given problem solving situation,

and (c) beti.er representation of the structure or organization of the
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knowledge base that is relevant to the problem at hand.

Teaching and learning directed toward this latter, more cognitive

view of what it means to have competence or mastery, is quite different
than the "domain of tasks" view currently adopted by most educationists.

In the future, we can expect that the cognitive view will offer in-
sights into how to diagnose learning problems and design teaching

qualitative aspects of competence, not just its quantitative aspects.

But these newer cognitive views of mastery are not yet ready to

be applied. A great deal of research remains to be done before the

state of knowledge is at a level where application to test develop-
ment is possible. Thus, the lag between these psychological views

and development of psychometric theory is to be expected and we cannot

fault the Mastery Testing Project for not attending to these issues.

It is the nature of the beast, that psychometric theorists have to

wait until psychological problems are better formulated before

attempting to apply quantitative methods to their solutions. Perhaps
at the end of the fourth year of the Mastery Testing Project, it can

be reported that Huynh and his colleagues have applied their tre-

mendous talents to the measurement of a new kind of mastery or

expertise.
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