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Dimensicnality and CAT estimation

ABSTRACT

This study examined the effect of dimensionality on an adaptive test's ability estimation.
Two-dimensional data sets were generated which differed from one another in the interdi-
mensional ability association, the correlation among the difficulty parameters, and
whether the item discriminations were or were not confounded with item difficulty. The
generated data were used for Bayesian CAT simulations (three-parameter logistic model)
and the CAT ability estimates were compared with the the simulees known abilities (8Ts).
Results show that t:. dimensionality of the response data shifts the focus for the mini-
mization of measurement errors from 9T (with unidimensional data) to the average of the

latent abilities (with bidimensional data).

Running Head : Dimensionality and CAT estimation
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Coniputerized adaptive testing (CAT) is concermed with the minimization of mea-
surement errors in the estimation of an examinee's ability. To achieve this goal the exam-
inee is administered items based on his or her current ability estimate. These items are
selected such that the examinee is expected to have about a fifty percent chance of cor-
rectly answering the items. Some of CAT's benefits include equiprecise measurement
throughout the ability continuum and adaptive tests which are shorter than the corre-
sponding paper-and-pencil tests.

CATs typically are based on one of the dichotomous unidimensional IRT models,
such as the three-parameter logistic (3PL) or Rasch models (e.g., McBride & Martin, 1983;
Kingsbury & Houser, 1988). The development of the CAT item pool requircs the identifi-
cation of the data’s dimensionality before fitting the IRT model. That is, although some
items may be considered unidimensional, other test items may require more than one
ability to obtain a co.rect response. For instance, correctly answering a mathematical
word problem may be considered to be a function of reading and mathematical abilities.
Implications of the violation of unidimensionality for CAT item pool development (e.g.,
equating, scale shrinkage) may be found in Doody-Bogan and Yen (1983) as well as in Yen
(1985).

Multidimensional models have been developed in order to address the issue of
multiple latent dimensions (e.g., McKinley & Reckase, 1983; Sympson, 1978). These
models are classified as either compensatory or noncompensatory. Conceptually, a com-
pensatory model is one in which an examinee’s latent traits interact to produce » response
to an item. This interaction may take the form of an examinee’s facility in one latent trait
() compensating for a deficiency in another 6. In contrast, in a nc umpensatory model
the examinee's Os do not interact to yield a response. Although these models have been

used in some research they have yet to obtain widespread acceptance or use ir applica-

tions.
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Given that the dimensionality assumption of unidimensional IRT subsumes the
principle of local independence (Lord, 1980), violation of this assumption should affect
the likelihood function used for parameter estimation. A number of studies (e.g.,
Ackerman, 1989; Way, Ansley, & Forsyth, 1988; Ansley & Forsyth, 1985; Reckase, 1979)
have examined the effect of multidimensional response data on unidimensional IRT
parameter estimates. These studies have been piimarily concerned with the effects of
dimensionality on the calibration of a multidimensicnal data set by either LOGIST
(Wingerskey, Barton, & Lord, 1982) or BILOG (Mislevy & Bock, 1982). Although the
models used for data generation differed, the results of these studies have found that
dimensionality affects parameter estimation. *a general, when a compensatory multidi-
mensional IRT model was used for data generation § was forzd to be an estimate of the
average of the true bs (Way et al., 1988), & was an estimate of the sum of a] and 22 (Way et
al., 1988), and ability estimates @ 10 be an estimate of the average true 8s (Ackerman,
1989; Way et al., 1988). In contrast, data generation using a noncompensatory model
showed that & was an overestimate of or correlated more highly with &7 than with b2
(Ackerman, 1989; Way et al., 1988; Ansley & Forsyth, 1985), & was an estimate of the
average of the true as (Way et al., 1988; Ansley & Forsyth, 1985), and 8 to be an estimate
of the average true 0s (Ackerman, 1989; Way et al., 1988; Ansley & Forsyth, 1985). In
general, these conclusions come from correlational analyses of the parameters with their
estimates and an assessment of the accuracy of parameter estimation by the calculation of
the mean absolute difference (a.k.a., MAD or AAD) across whickever was pertinent,
examinees or items.

In general, studies which have investigated the operating characteristics of CAT
have involved the simulation of unidimensional data and item pools (e.g., Weiss, 1982;

McBride, 1977; Jenseina, 1974). However, given "..that no actual psychological mrasure-

ment instrument is likely to be exactly unidimensional..." the issue becomes ore of




Dimensionality and CAT estimation
4

"

whether the "..instrument is sufficiently unidimensional to allow application of IRT"
(Hulin, Drasgow, & Parsons, 1983, p. 40). In live testings, where the possibility of less
than ideal unidimensional data may exist, the primary concern has been with the estima-
tion of the reliability and validity of CAT (e.g., M:Bride & Martin, 1983; Wciss &
Kingsbury, 1984). Further, because in thesc .tudies the examinee's true ability is
unknown the influence of dimensionality on the accuracy of ability parameter estimation
cannot be investigated.

This study investigated the effect of varying degreee of dimensionality on CAT
ability estimation. That is, an adaptive test based on unidimensiona! item parameter was
administered to an simulee who used more than one ability to respond. Two-dimensional
data sets were generated which differed from one another in the interdimensional ability
assoc‘ation, the correlation among the difficulty parameters, and whether the item
discriminations were or were not confounded with item difficulty. This latter factor is
included because of Reckase, Carlson, Ackerman, anl Spray's (1986) finding that upper
deciles of a unidimensional ability differ mainly on @2 while at lower deciles the ability
differed primarily on @) (cited in Ackerman, 1989). Simulees with known abilities were
administered unidimensional ists and their abilities estimated on the basis of their
multidimensional responses. In contrast to the studies mentioned above (i.e., Ackerman,
1989; Way et al., 1988; Ansley & Forsyth, 1985), the accuracy and bias of the s at
various points along the ability continuum was assessed.

METHOD
Data : The data were generated according to a multidimensional 3PL (M3PL) model (Doody-
Bogan & Yen, 1983). This model requires a set of multidimensional 0s as well as a set of

(multidimensioral) item parameters. The multidimensional 6s were generated such that

the examinee's ability on dimension ! (01) was evenly distributed between -3.0 and 3.0

usirg 0.4 logit interval between successivc O levels (i.e., for 100 examinees 0] =-3.0, for
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100 examinees 0] =-2.6, etc.). The examinee's ability on the second dimension (02) was
derived from 0] by using Hoffman's (1959) technique for generating correlated data. For
each of the 160C simulees 82 was obtained by randomly sampling a normal deviate (Z) from
a unit normal curve and calculating :

02=0)+(k/nZ (1)
where k-ﬂl:r—z. and r is the desired intercorrelation between 6] and 63. Four
interdimensional 6 correlations (re10) were investigated from extreme bidimensionality
to almost unidimensionality; values for rg,e, were 0.03, 0.30, 0.60, 0.90.

In the following an item parameter's subscript refers to a dimension. The
difficulty parameters (b} and b2) were generated in a fashion analogous tc the generation
of 01 and 02. That is, the b7 for sets of four items was fixed at every 0.1 logit between -
3.5 and 3.3 (c.g., for 4 items b= -3.5, for 4 items bj= -3.4, etc.). The b) for each of the
284 jtems was derived from the item's b; ucing the correlated generation method
mentioned above. Three byb2 correlations (rpyp3) were used in the study, 0.03, 0.60,
and 0.90.

The discrimination parameters (a; and a2) were created by randomiy sampling
from a uniform distribution with a minimum value of 0.20 and 4 maximum value of 1.8.
This set of as was combined with the three sets of bs to form three item poois where all
item pools had the same set of as; this combination of the randomly ordered as with the bs
form form the nonconfounding condition. The confounding between as and bs was obtained
by sorting @; into ascending order and sorting a2 into descending order (cf., Ackerman,
1989). The pseudo-guesting parameter, ¢, was set tc 0.20.

The interdimensional correlations of 0.30, 0.60, and 0.90 were obtained from the

literature (Ackerman,1989; Way et al.,1988; Ansley and Forsyth, 1985); the rg,95 = 0.03
was used as an approximation to 19102 = 0.0 because this latter value could not be used

with the Hoffman's technique. The rpjpy = 0.03 was obtained from Yen (1985), whereas
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the rp;py = 0.60 (ra1b2 2-0.36) and th1b2 = 0.90 (tp b 2=0.81) were used to simulate
moderate and high linear relationships. The minimum and maximum as are the same as
those in Ackerman (198¥). The constant used ior ¢ came from Way et al. (1983).

To summarize, the data generation was based on 6 different combinations of item
parameters (3 levels of rp;py by 2 levels of confounding) and four levels of interdimen-
sional ability association. The crossing of these three factors produced 24 response data
sets. For each data set the true 0Ts plus the relevant 284 true item parameters were used
1o generate binary response strings with a random error component for each simulated
examinee. Gceneration of the binary resporse strings was accomplished by calculating for
a given OT pair and a given item the probability of a correct response according to the
M3PL model. To create the random error component for a response, a random number was
selected from a uniform distribution [0,1] and compared to the calculated probability. If
the random number was less than or equal to the calculated probability, then a response of
1 was produced (a correct answer), otherwise a 0 was generated (an incorrect response).
Program : A computer program was written that simulated a CAT based on the 3PL mode!
and which used Bayesian ability estimation with Owens Bayes updating (i.c., Jensema's
(1974) alpha technique) for item selection. The adaptive testing simulation was termi-
nated when either of two criteria were met : a maximum of thirty items was reached or
when a standard error of estimate (SEE) of 0.05 or less was obtained.

A unidimensional item pool was created for use with the Bayesian CAT.
Discrimination, difficulty, and pseudo-guessing parameters were generated for 284 items.
The discrimination (a) and pseudo-guessing (c) parameters were generated by random
sampling from a uniform distribution with the following restrictions : (a) a were
restricted to the inclusive range of 0.80..2.00; and (b) ¢ were allowed to vary between 0.00
and 0.20. The difficuity parameters (b) were uniformly distributed between -3.5 and 3.5

(inclusive) with four items at each 0.10 of an interval (i.c., there were four items with b=
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-3.5, four iteris with b= -3.4, etc.). The use of multiple items at each 0.1 interval was
done to ensure that items of appropriate difficulty would always be available for the
Bayesian CAT's ability estimation. These item parameters values are consistent with
desirable item pool characteristics (Patience and Reckase, 1980; Urry, 1977). Therefore,
to each of the 1600 examinees in each of the 24- multidimensional response data sets a
Bayesian CAT was administered.
Analyses : Analysis of the CAT simulations involved using root mean square error (RMSE),
bias, and correlations (Pearson product-momeri, Spearman rank-order) between the & and
01, 62, and between 8 and the average of 01 and 62 (). Descriptive statistics were
calculated on the number of items administered, the 8s as well as on various item pool
characteristics,
RESULTS

For the 0.03, 0.30, 0.60, and 0.90 interdimensional ability conditions the observed
correlations were -0.028, 0.303, 0.590, and 0.964, respectively. Table 1 shows the item
parameters’ interdimensional correlations for the confounded and nonconfounded condi-
tions. As can be seen, for the desired rpjpy of 0.03, 0.60, and 0.90 the observed correla-
tions were 0.095, 0.678, and 0.946. in addition, for the confounded conditions the corre-
lation between a; and b} approached -1.00 and between a2 and b approximated 1.00. The
unidimensional item pool used for the CAT simulations had an average a of 1.410 (median
of 1.421) and a mean ¢ of 0.102 (mr-~1ian=0.101}. The Pearson product-moment correlation
between a and b for the unidimensional jtem pool was 0.077 (Spearman rank-order was

0.076).

Table 2 shows the correlational analyses between 6 and 01,02, and & for the

nonconfounded conditions. As can be seen, for each level of the rp;p, factor the

association between CAT 8 and 9] and with 82 became increasingly stronger as rg;09

do)
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increased. The intercorrelation between bs appeared to have a slight effect on the corre-

lation betwsca 8 and 61 and between 8 and ©2. Further, there was a slight decrease in the

average number of items administered with increasing intercorrelation between the bs.

Although for the rp;py = 0.90 and r9162 = 0.90 conditions there were minimal
differences between r6§. réel. and r692. for all combinations of the rp 1b2 and 19199

factors the linear association between 8§ and § was greater than for either l’601 or r692.

Figure 1 shows the RMSE analysis for the three levels of rp 1b2 and the rg 09 =
0.03 and 19182 = 0.90 conditions; the differences in the plotted 8 values reflect the differ-
eaces in the rgy gy conditions. As can be seen, thc RMSE with respect to § was less than
that of the RMSE of either 81 or 62 for all nonconfounded conditions. In fact, the RMSE
with respect to § for the rgy99 = 0.90 condition is comparable t> RMSE for when 19102 =
0.03, rg}0 = 0.30, and 19169 = 0.60; the RMSE plots for these latter two conditions are the
intermediate steps in the progression from rg;g = 0.03 RMSE plots to those of rgj94 =

0.90. The RMSE with respect to & decreased slightly as rp 1b2 increased. As rg;0,

increased, the RMSE of @] or 97 approached that of 8.

As would be expected from a Bayesian CAT, the CTAT overestimated low ability on
6} and 02 (i.e., 8T < -2.0) and underestimated high ability on @] =2ad 02 (i.e., 6T > 2.0);

Figure 2 shows the bias plots for the nonconfounded condiiions presented in Figure 1. As

rg} 0, increased the bias with respect to 6] and 62 decreased. For all combinations of the
19162 and rp1ph2 factors, minimal bias was obtained when 6 was considered an estimate of

8. The rpyp2 factor does not appear to have a meaningful effect on bias for 6}, 82, and 8.

10
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Table 3 presents the results from the confounded conditions. As was the case with
the nonconfounded condition, # is more highly related to 8 than to either ) or 2. In

general, l’661 tends to be larger than r632 for rg 109 values of 0.03 and 0.30, whereas for
the 19102 = 0.60 and 19169 = 0.90 conditions the opposite is true. Unlike the
nonconfounded condition, when 19162 = 0.90 the r692 and rfg corrclations are more
similar to one one another and higher in magnitude than réol. Further, for all
combinations of the rp 1b2 and 1919 factors the average test length in the confounded

condition was slightly less than the corresponding nonconfounded condition test length.

The pattern of decreasing test length with increasing rpjp2 association was not as evident

with the confounded condition as it was under the nonconfounded condition.

Inspection of the confounded conditions’ RMSE vlots showed the same relationship
between 8, 8,01, and 62; Figure 3 contains the confounded condition sample RMSE plots for
the same conditions presented in Figure 1. For the rpjp2 = 0.03 and rp;p2 = 0.60
conditions and for the approximate range -2.0 <0 < 2.0, the RMSE for the confounded
conditions are lower than those for the nonconfounded conditions, regardless of the rg;07
condition; as rp;p2 increases the difference in RMSEs diminishes. As was the case for
the nonconfounded cord‘tion, the RMSE of 62 was less than that of 8; for high ability
examinees for the rpyp2 = 0.03 condition. In contrast to the nonconfounded cendition,
the RMSE with respect to @) was less for lower ability examinees than that of the RMSE 02.
For all combinations of interdimensional ability and difficulty association the RMSE of &

was less than that of 6] and 62.

Figure 4 presents the corresponding bias plots to those in Figure 2's, but for the

confounded condition. As can be seen, compared to the nonconfounded condition there was

11
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less bias for 8] at low abilities, but no meaningful difference at upper abilities. Although
at the rpyp2 = 0.03 and rp;p, = 0.60 conditions there is no difference between the
confounded and nonconfounded conditions in bias with respect to 02, for the rpyp2 = 0.90
there was an increase in bias for 6 < -1.0. For all interdimensional difficulty levels there
was an increase in bias for 62 in the © range 1.0 to 3.0. In general, as 1910, increased this
pattern was evident, although with decreasing levels of bias in the sstimation of ] and 02.
As was the case with the nonconfounded condition, the bias in 8 with respect to § was less
than that of estimating either 6] or 62, except when 19102 = 0.90. In this latter condition,
the differences in bias with respect to 61,02 and &, may not be considered meaningful by
some; for this 1916, condition there does not appear to be any difference in bias beiween

the confounded and nonconfounded conditions. For 19102 = 0.90 and regardless of rp;p2

level, the CAT overestimated low ability more than it underestimated high ability.

As stated above, for the nonconfounded condition there was a slight decrease in the
average number of items administered with increasing rp;p,. although this pattern was
not as evident with the confounded condition. Calculation of the average number of items
administered at cach of the 16 levels of 6 showed that, in general, shorter tesis were
administered for 6 < 0.0 (c.g., average test lengths of 15-16 items depending on the condi-

tion) to longer tests for 6 > 2.0 (e.g., mean test lengths of 17-20 items depending on

particular data set; the rp 1b2 = 0.03, rg109 = 0.90 condition had an atypical meau test
length of 22 items for @ = 3.0). With increasing rp 1ba and rg 99 the mear. test lengths
became less variable across 6. Of the 38,400 adaptive tests simulated the absolute maxi-
mum and minimum test lengths were 28 and 11 items, respectively.
Conclusion and Discussion
In general, increasing interdimensional difficulty association produced a slight

decrease on test length and an increase in the accuracy of ability estimation us assessed

12
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by RMSE. The associations oetween 8 and 8, 61, and 82 inct-ased as the correlation
between interdimensional difficulties and interdimensional avility increased. The
largest associations were between 8 and 5; 0.957 and 0.961 for the nonconfounded and
confounded conditions, respectively. For comparative purjoses, a Bayesian CAT
(maximum test length of 20 items and termination SEE of 0.05) using a unidinensional
data set (generated according to the 3PL model anc¢ using this item pool) had a r§g of 0.988
(for both Pearson and Spcarman coefficients) and an average test length of 15.613.

When discrimination was confounded with difficulty, the ability estimates showed

a differential association with one of the two latent traits, however, the correlation

between 8 and § was always greater than that of rfe, and rfg,. For all combinations of the

Th1b2 and 19,9, factors the correlation between 6 and 8 for the confounded conditior. was

always greater than for the correlation for the corresponding nonconfounded condition.
From the recults of the studies on the effects of dimensionality on the calibration
of compensatory multidimensional data it may be hypothesized that the finding that ¢ was
an estimate of the average true ©s was, in part, a result of the fact that §' was an estimate of
the average of the true bs. That is, because b and A are on the same scale, when the
separate dimensions are collapsed in the estimation of b, the subsequent stage of
estimatir - * will also reflect the coliapsed difficulty scale; ooth BILOG and LOGIST obtain
bs prior to estimating 6. However, given that in CAT the item parameters are assu'ned true

then the collapsing of the two difficulty scales does not account for é being an estimate of

the average OTs.

Con :eptually, the item pool may be considered to have come from the calibration of
a unidimension?i data set. However, the results should be generalizable to those
siiuations where item parareters are obtained from data which are not truly unidimen-
sional (i.e., the situations investigaied by Ackerman, 1989; Way, et al, 1988; Ansley &

Forsyth, 1985). For item selection it is the distribution of b and the magnitude of a and ¢

13
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which are important; CAT makes no distinction with respect to whether S=borb =(b1+
b2)/2 and & =a or & =a} + a3.

As stated above, CAT is concerned with minimizing the measurement errors
associated with the estimation of an examinee's ability. It was shown that the dimen-
sionality of the response data shifts the focus for the minimization of measurement errors
from 8T (with unidimensional data) to the average of the latent abilities (with bidimen-
sional data). Although the results may be considered problematic by some, there may be
situations where one is only inteiested in ordering examinees on their ability to perform
or solve certain types of problems and not in ordering them on the separate latent
abilities which may be required to solve the problems. For example, on a statistics exam
the instructor may only be interested in a student's understanding of the appropriateness
and use of t-tests. The problems may be stated as word problems and require stating the
appropriate statistical hypotheses, identification of and calculating the relevant t-
statistic, arriving at co'clusions concerning the truth or falsity of hypotheses, etc. Most
likely the instructor is not interested in the student's standing on the separate abilities
required to answcr the problem (e.g., his or her reading ability, math ability, etc), but in
the swdent’s understanding of t-tests. Reckase, Ackerman, and Carlson (1988) have
concluded that IRT's unidimensionality assumption does not necessarily require test
items to measure a single ability, but rather the unidimensiorality assumption requires

the test items to measure the same composite of abilities. For this study, this composite

of abilities was (' average of 0] and 62.
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Table 1. Item parameters interdimensional correlations3.

Condition
rb1b2 = 0.03
th1ba = 0.60
th1b2 = 0.90

Item Farameter
al

a2z

b}

aj

a2

b}

aj

a2z

L

a2z
-0.990
(-0.032)

-0.990
(-0.032)

-0.990
(-0.032)

bi b2
-0.995 -0.088
(-0.022) (0.055)
0.997 0.112

(0.014) (-0.034)
0.095

(0.095)

-0.997 -0.677
(-0.022) (0.027)
0.995 0.671

(0.014) (-0.016)
0.678

(0.678)

-0.997 -0.944

(-0.022) (-0.002)
0.995  0.940
(0.014)  0.002)
0.946

(0.946)

3pearson product-moment correlations for confounded and (nonconfounded) conditions.
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Dimensionality and CAT estimation

Table 2. Intercorrelations® between € and 0], 02, 8 and the average number the of items
administered (Mean NIA) for the nonconfounded conditions.

Itern  Pool réey réo, 165 Mean NIA
Characteristics (SD NIA)

Th1b2 10,62

0.03 0.03 0.500 0.645 0.821 17.206

(0.518) (0.520) (0.785) (2.577)

0.30 0.611 0.752 0.844 17.187

(0.630) (0.660) (N.825) (2.649)

0.60 0.741 0.816 0.873 17.146

(0.751) (0.825) (0.854) (2.587)

0.90 0.890 0.893 0.900 17.408

(0.890 ) (0.880) (0.891) (2.773)

0.60 0.03 0.513 0.694 0.866 16.896

(0.539) (0.564) (0.840) (2.390)

0.30 0.678 0.779 0.903 16.878

(0.697) (0.686) (0.888) (2.440)

0.60 0.799 0.849 0.924 16.703

(0.801) (0.863) (0.902) (2.442)

0.90 0.922 0.929 0.934 16.926

(0.921) (0.915) (0.924) (2.543)

0.90 0.03 0.552 0.723 0.914 16.407

(0.562) (0.601) (0.889) (2.249)

0.30 0.727 0.794 0.942 16.323

(0.734) (0.707) (0.925) (2.243)

0.60 0.829 0.874 0.955 16.265

(0.823) (0.886) (0.928) (2.257)

0.90 0.945 0.251 0.957 16.428

(0.940) (0.935) (0.942) (2.408)

8pearson product-moment correlation coefficient (Spearman rank-order correlation
cocfficient)
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Dimensionality and CAT estimation

Table 3. Intercorrelaticns® beiween 8 and 61,02, § and the average number the of items
administered (Mean N.A) for the confounded conditions.

Item Pool
Characteristics

Th1b2 16162
0.03 0.03

0.30
0.60
0.90
0.60 0.03
0.30
0.60
0.90
0.90 0.03
0.30
0.60

0.90

ré‘m

0.628
(0.674)
0.692
(0.747)
0.765
(0.801)
0.907
(0.907)
0.663
(0.720)
0.760
(0.797)
0.834
(0.850)
0.928
(0.927)
0.704
(0.749)
0.787
(0.802)
0.840
(0.845)
0.944
(0.939)

{17

0.623
(0.437)
0.768
(0.617)
0.850
(0.836)
0.921
(0.910)
0.620
(0.422)
0.750
(0.614)
0.856
(0.851)
0.942
(0.933)
0.608
(0.418)
0.756
(0.635)
0.874
(0.868)
0.955
(0.945)

169

0.897
(0.851)
0.905
(0.886)
0.905
(0.883)
0.922
(0.909)
0.920
(0.877)
0.926
(0.923)
0.948
(0.916)
0.943
(0.930)
0.941
(0.907)
0.956
(0.942)
0.96i
(0.923)
0.958
(0.941)

Mean NIA
(SD NIA)

16.433
(2.213)
16.689
(2.379)
16.703
(2.495)
17.394
(3.178)
16.337

(2.300)
16.293

(2.209)
16.276
(2.214)
16.730
(2.582)
15.917

(2.110)
16.066
(2.085)
16.031

(2.056)
16.230
(2.235)

3pearson product-moment correlation coefficient (Spearman rank-order correlation

coefficient)




Dimensionality ai.d CAT estimation

Figure Captions

Eiguie 1. RMSE analysis for the nonconfounded condtions for rp 1b2 = 0.03, rp ;55 = 0.60,
Thybz = 0.90 and rg;09 = 0.03, 19102 = 0.90.
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Dimensionality and CAT estimation

Figure Captions

Eigure 2, Bias analysis for the nonconfounded condtions for Thyby = 0.03, rp;p, = 0.60,
l’b]bz = 090 and 18id9 = 0.03, 19109 = 0.90.
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Dimensionality and CAT estimation

Figure Captions

Eigure 3, RMSE analysis for the confounded condtions for rp 1b2 = 003, rp;po = 0.60,
l’blbz = 0.90 and 19,02 = 0.03, 19102 = 0.90.
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Dimernsionality and CAT estimation

Figure Captions

Eigure 4. Bias analys's for the confounded condtions for rp 1b2 = 005, 1p;p, = 0.60,
Thyb2 = 0.90 and rg18, = 0.03, r9109 = 0.90.
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