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Abstract

Two strategies, derived from Schaffer (1986), were compared as tests of significance for a
complete set of planned orthogonal contrasts. The procedures both maintain experimentwise error
rate at or below alpha but differ in the manner in which they test the contrast wiih the largest
observed difference. One approach proceeds directly to the test of the contrast with the largest
difference at a reduced significance level. The other is a protected procedure, first evaluating the
complete rull hypothesis with an omnibus F test, and then proceeding to test the specific hypotheses
at a more liberal significance level given thzt the complete null hypothesis has been rejected.
Simulation results indicate that the relative power of the two procedures depends on the configuration
of the treatment effects contained in all contrasts. Specifically, the unprotected test favors
configurations with relatively small amounts of variability due to treatment effects, while the
protected test has more power in cases with a relatively large amount of treatment variability.
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Competing Strategies for Planned Orthogonal Contrasts

How should an experimenter conduct the tests of significance associated with a 2X2 factorial
design, a trend analysis, or any other design in which planned orthogonal contrasts provide the
answers to the questions of interest? Should the experimenter conduct an omnibus F test and then
proceed to the individual contrasts only if the omnibus test rejects the complete null hypothesis; or,
should the omnibus test be bypassed, making the individual constrasts the first tests of significance
conducted? In part the answers to these questions reflect researchers' position on the relative
importance of control over power and Type I error. If experimenters skip the omnibus test and
conduct each of the planned orthogonal contrasts at a particular per-comparison error rate (usually
.05), then they will have more power (and a greater chance of a Type I error) than colleagues who
use either an omnibus test as an additional control over Type I error or uses an experimentwise error
rate to control Type I error. The present paper is not concerned with entering into the power versus
Type I error debate. Rather, an exploration is presented of the relative power of two different
strategies for conducting planned orthogonal contrasts, both of which control experimentwise Type I
error for the complete null bypothesis or partial null hypotheses at a given alpha level. Thus, power
differences are not purchased at the expense of control over Type I error, but rather by the
configuration of the particular decision structures within each strategy.

The most common procedure for controlling the experimentwise Type I error rate is to use
Bonferroni's inequality to generate per-comparison error rates. Dunn (1974) suggested conducting
each of the m planned comparisons at the alpha/m level of significance; the sum of the m contrasts
each conducted at this level guarantees an experimentwise error rate of no more than alpha.
Following this approach, a set of k-1 planned orthogonal contrasts on k group means would involve
conducting each contrast at the alpha/(k-1) level of significance. In additicn, if an omnibus F test
were to be conducted prior to the individual tests, the experimentwise Type I error rate would be
even further reduced. This would be true whether conducting planned pairwise comparisons or
planned orthogonal contrasts.

Recently, Shaffer (1986) proposed an alternative procedure for pairwise comparisons that can
be applied to the testing of planned orthogonal contrasts among treatment groups. The procedure is a
modification of work by Holm (1979) on applications of Bonferroni's inequality, and involves

putting the test statistics T; for all m planned comparisons in order of decreasing magnitude of

absolute effect [IT;1 > Tyl > ..> IT,,}l. In Holm's procedure, the null hypothesis for largest test
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statistic H, is evaluated against a critical value at the alpha/m significance level. The null hypothesis
corresponding to the second largest test statistic H, is then tested if and only if the largest comparison

results in a rejected null hypothesis, and is evaluated at the alpha/(m-1) significance level. Thus, the
general form of Holm's procedure is to reject hypotheses H;...H; , where j is the largest integer from
1 to m, such that the test statistic T, exceeds the critical value at the alpha/(m-i+1) significance level
for all i from 1 to j. Shaffer's modification of Holm's procedure involves testing each comparison at
the alpha/t;* significance level, where t;* is the greatest number of possible true null hypotheses
remaining given the rejection of the null hypotheses for all previous comparisons. In a pairwise
comparison scheme, the logical implications of rejections of certain null hypotheses make the number
of possible true null hypotheses remaining t;* potentially smaller than Holm's (m-i+1), thereby

increasing the power at each stage of testing by using increasir.gly liberal sigrificance levels.

When applied to a complete set of planned orthogonal contrasts, the procedurss of Holm and
Shaffer become identical. Thus, for a set of k-1 planned orthogonal contrasts on k; group means, the
first contrast is evaluated at alpha/(k-1), the second at alpha/(k-2), and so on. Shaffer (1986) proved
that this "modified sequentially rejective Bonferroni" (MSRB) procedure controls the experimentwise
error rate below alpha for the complete null hypothesis or any pattern of true partial null hypotheses.
It is also uniformly more powerful than using the simple appiication of Bonferroni's inequality as
suggested by Dunn (1974). Because the MSRB is more powerful than Dunn's test under any
configuration of treatment effects while maintaining the sar.1e cezroi over Type I error, Dunn's
approach is not considered in the present investigation.

Another approach to testing planned comparisons, a'so oudined in Shaffer (1986), is related to
her earlier work on pairwise comparisons (Shaffer, 1979). The omnibus F test is used to evaluate
the overall hypothesis that all means come from a common population. If this hypothesis is rejected
the null hypothesis for the comparison whose test statistic has the greatest absolute vaiue is evaluated
at the alpha/t;* significance level, where t;* is the number of possible true null hypotheses given that
the complete null hypothesis is false. Applying this strategy to a complete set of planned orthogonal

contrasts, t;* will be one less than the number of contrasts, or k-2, where k is the number of
treatment groups. The vaiue of t,* will also be k-2, since rejection of the null hypothesis for the first

contrast does not reduce the number of possible true null hypotheses remaining from that which was
expected based upon rejection of the overall null hypothesis. The procedure continues testing the
null hypotnesis for each contrast with successively smaller test statistics at the alpha/(k-i) significance




Competing Strategies
5

ievel if and only if all previous null hypotheses have been rejected. This method will be labeled the
"F modified sequentialiy rejective Bonferroni" (FMSRB) procedure.

The overall decision structures of the MSRB and FMSRB are summarized in Figure 1. It is the
purpose of this paper to evaluate the relative power of the MSRB and FMSRB, and to verify control
of Type I error rates. To accomplish this two series of simulations were undertaken -- the first series
involved k=3 treatment groups while the second series involved k=4 treatment groups.

Insert Figure 1 about Lere

Simulation

k=3 treatment groups

For three treatment groups there are two orthogonal contrasts. The centers of the ten bivariate
t-distributions manipulate the truth or falsehood of the null hypotheses for those contrasts, as well as
the magnitude of the treatment effect given a false null hypothesis. The origin of this distribution
(0,0) represents the case where both null hypotheses are true. One simulation looked at this case for
an evaluation of the control over Type I error. Another case is where one contrast represents a true
null hypothesis while the second contrast has a false null hypothesis. For this situation three
simulations estimated the Type I error rate for the true null hypothesis and the power to detect the
false null hypothesis, with the magnitude of the treatment effect built into the second contrast varied
to simulate small, medium, and large treatment effects. A final case, in which both null hypotheses
are false, was explored using six simulations, representing all combinations of small, medium, and
large treatment effects for two contrasts. For these simulations a small teatment effect is defined as
a difference whose expecied value is one standard error of the difference between means away from
the origin, (0,0), while m.dium and large treatment effects are defined as two and three standard
errors from (0,0), respectively.

For this series, each replication within each simalation consisted of three groups of ten
independent observations sampled from a noimal distribution. Individual obsesvations were
genera.sd by combining 24 randomly drawn numbers from the uniform distribution RANF available
on Fortran IV. After trans{ormati + to a distribution with mean 50, variance 10, the observations
were modified to reflect treatment ¢ ‘ects by the addition of the appropriate constants. Ten-thousand
replications were conducted for each simulation. The Type I error rates and power estimates for the
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MSRB and FMSRB within a simulation were calculated for the same 10,000 replications. Each of
the simulated conditions is based on different observations as a separate randomly chosen seed was
selected for each.

Results and Discussion for k=3

In the simulation witt both null hypotheses true, the obtained estimates of experimentwise
Type I error rate are .049 for the MSRB and .046 for the the FMSRB. For the case with one true
and one false null hypothesis, Table 1 presents the power estimates and Type I error rates for the
three simulation. Overall, the power of the MSRB is greater than that of the FMSRB for this
configuration. For small treatment effects the difference is less than 1%, for large effects slightly
less than 2%, while for medium effects the difference is 2.2%. The similarity of the result for the
large and medium treatment effects conditions reflects a less extreme definition of large effects
(approximately 75% chance of rejecting the null hypothesis) than of small effects (approximately
10%). In all configurations with true null hypotheses, contrel over Type I error was maintained.

Insert Tabie 1 about here

For the case of iwo false null hypotheses, the results of the six simulation configurations are
presented in Table 2. Four measures of power are reported: probability of rejecting contrast 1,
probability of rejecting contrast 2, probability of rejecting either of the contrasts, and probability of
rejecting both contrasts. All represent power estimates since, in these simulations, both null
hypotheses are false. The latter two measures correspond closely to any-pair power and all-pair
power as used by Ramsey (1978).

Insert Table 2 about here

In these simulations the power of the FMSRB is slightly greater than for the MSRB o all
contrast configurations except [Large, Small]. When both contrasts contribute systematically to the
Mean Square Between Treatments, the omnibus E test is more likely to reject the complete rull
hypothesis, with the FMSRB then proceeding to the test of the two specific hypotheses. At that
point the critical value required of the contrast with the greater t value would be 2.365 (t ,5) for the

MSRB, while for the FMSRB the critical value would be 2.052 (t o5). The smaller contrast would be

evaluated agaiast a critical value of 2.052 () for both procedures. The "Any Contrast" column in
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Table 2 reflects the largest differences in power between the procedures for the largest test statistic,
since the tests of the smaller contrast are identical. These differences range from less than 1% to
greater than 5%, with the magnitude of the difference being greater when all contrasts have mocerate
and comparable treatment cffects.

k=4 treatment groups

The second series of simulation used four treatment groups each with n=10 randomly
generated scores. As before the scores were generated by summing 24 randomly chosen numbers
from the RANF uniiorm distribution. A complete set of three orthogonal contrasts was defined on
the four groups. Two contrasts were of the form ;=(>’<i->‘<j)/«l(_2K4§;/T). The first compared groups
i and 2 while the second compared groups 3 and 4. The remaining contrast was of the form
t=[X;+X)-X3+X)IN@MS ,/n). ’

£ ; before the treatment effect conditions were achieved by separating the means by zero, one,
two, and three standard errors for the null, small, medium, ard large treatment effects, respectively.
The Type I error rote and power for the 20 unique configurations of these four effects were estimated
by simulations. One simulation reflected the completely true null hypothesis. Thre= simulations
involved two true partial nall hypotheses, while six involved one true partial null hypothesis. The
remaining ten simuiations reflected situations where all three contrasts were of false null hypotheses.

Results and Discussion for k=4

The experimentwise Type I error rate for the simulation with all three null hypotheses true was
.047 for the MSRB and .037 for the FMSRB. For the case with two true and one false null
hypothesis, the observed power and experimentwise Type I error rates are preseated ir Table 3. In
all three such simulations the MSRB was more likely to detect the difference than was the FMSRB.
The difference exceeds 4-5% in those simulations with moderate and large treatment effects. In all
configurations control over Type I error was maintained.

Insert Table 3 about here
For the case where two null hypotheses were false and one was true, six simulations estimated
the power and experimentwise Type I error rates. These results are presented in Table 4,
demonstrating that the MSRB tends to be more powerful when there is little systematic variance
within the set of means. As more variability is introduced in medium and large treatment effect
conditions the FMSRB becomes slightly more powerful than MSRB. Both procedures provide
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conservative control over experimentwise Type I error rate.

Table 5 presents the results of the simulations for the condition where all three contrasts have
false null hypotheses. The first pair of columns presents, the any-pair power associated with
detecting one or more of the false nul! hypotheses. The middle pair of columns presents the
probability of detecting two cr more false null hypotheses, and the last two columns present the
probability of correctly detecting all three false null hypotheses. The FMSRB is generally more
powerful than the MSRB for detecting the first contrast, as iong as overall there is sufficient
systematic variation in the group means to reject the omnitus test. The two simulations where the
reverse was true are [Small, Small, Small] and [Large, Small, Small}, both of which include several
groups with small treatment effects. When attention is directed to detecting more than one of the
treatment effects, the MSRB and FMSRB have trivial differences.

Insert Table 5 about here

Conclusions

The Monte Carlo results for both three and four treatment groups support the following general
conclusions. First, both procedures provide adequate control over experimentwise Type I error
whether there is a complete or partial true null hypothesis. In no instance did an estimate of Type
error for any configuration of treatment effects exceed the alpha level chosen as the maximum
experimentwise error rate. In most instances the control over Type I error was quite conservative.
Second, when little overall systematic treatment variance is present, the FMSRB has less power than
the MSRB. But, as more systenaatic treatment variance is introduced either by more or larger effects,
the power of the FMSRB exceeds that of MSRB. And third, the difference between the procedures
is most clearly seen on the first contrast evaluated. Itis on this contras: that there is a difference in
the critical values required for significance; after this, both procedures use the same critical values at
each remaining stage of testing.

While the magnitude of the differences in are small, the researcher can achieve increased power
by selection of the approgriate decision structure. Where only one contras: is of importance the
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experimenter would be best served by using the MSRB; however, where two or more contrasts are
likely to contribute systematic variance to the overall F ratio, the experimenter will achieve greater
power by using the FMSRB.

Two questions of generalizability are of concern with the present findings. The first concerns
whether similar resulis would hold had a different set of orthogona! contrasts been explored. Power
differences between contrasts are a function of the magnitude of the treatment effect and the standard
error. To standardize the treatmen effect the current study imposed treatmeni effects in multiples of
the appropriate standard error. Thus, the differences due to the number of groups involved in the
contrast were eliminated since these differences would be reflected in the size of the standard errors.

The second concern is the generalizability of the findings to more than four treatment
cond:dons. The differences between the two strategies are almost exclusively reflected in the
evaluation of the contrast with the largest treatment effect. The critical value for this contrast will
differ for the two strategies with the t-value required by FMSRB smaller than by MSRB regardless
of the number of treatment groups involved. Likewise, regardless of the number of treatment groups
involved the probability that the overall null hypothesis will be rejected will increase when several
contrasts contribute systematic variance rather than just a single contrast. Thus, the same
conclusions would be reached concerning the relative power of the two strategies reg...dless « .ne
number of groups. These conclusions are that when few contrasts contribute systematic variance the
omnibus F test would result in a number cf incorrectly retained null hypotheses. This would more
than counter any reduction in the § value for the largest contrast, and hence would result in more
power with the MSRB. However, when severzl contrasts contribute systematic variance the
complete null hypothesis is likely to be rejected and increased power will be achieved by the FMSRB
due to the lower critica: value for the contrast with the largesi treatment effect.

Would an experimenter know enough about the treatment effects to capitalize on the differential
power of the two strategies? While this information may not always be available, it is similar to that
needed to conduct any power analysis to decide on an appropriate samipic size. Where the
experimenter is uncertain, a careful review of the literature may provide the required information.

10
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Table 1
Power and experimentwise Tvpe [ error rate 'wvhen one contr-st null hypothesis is true and one is
false,
Observed Power Type I error
Treatment Effect FMSRB MSRB FMSRB MSRR
Small (S) 102 .106 .033 028
Medium (M) 364 386 .041 .035
Large (L) 731 749 .050 .045

12
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Tabie 2

Power when both contrast_null hypotheses are false,

Contrast Observed Power
Effect Contrast 1 Contrast 2 Any Contrast Both Contrasts

12 FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSRB MSRB

S 117 A12 d12 .106 .199 191 030 028
S .400 393 147 127 458 .438 .089 082
S 758 761 159 .149 78 76 138 134
465 432 .458 424 665 .612 258 244
M .803 T74 480 457 .870 828 414 403
L .833 814 827 .808 956 927 703 695

ol ol ol

13
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Table 3
Power and experimentwise Tvpe I error rate when one contrast null hypothesis is false and two are

frue,

Observed Power Type I Error
Treatment Effect of False Hy FMSRB MSRB FMSRB MSRB
Sma'i (¥) 063 073 032 031
Medivn (M) .284 326 .039 037
Large (L) .649 705 .046 .044

14
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Table 4
Power and experimentwisz Type I error rate when two contrast aull hypotheses are false and one is
e,
Observed Power
Effects Contrast 1 Contrast 2 Any Contrast All Contrasts Type I error

FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSRB MSRB

S§2 .076 .080 069 072 135 144 010 009  .018 018
MS 305 326 088 084 .350 368 .042 042 026 .023
MM .352 .340 352 343 550 532 154 150 .028 026
LS .662 .697 100 096 681 713 .081 080  .025 024
LM .716 J12 378 365 798 785 296 292 033 032
LL 746 735 741 731 919 900  .568 566 037 036

a These symbols refer to the relative magnitude of the treatment effects contained in the first and

second contrasts, respectively.
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Table 5
Power when all 1hree contrast null hypotheses are false,

Observed Power

Lffects One or more contrasts Two or more contrasts All three contrasts

FMSRB MSRB FMSRB MSRB FMSRB MSRB
SSSa 199 200 029 028 003 .003
MSS 421 412 .080 078 012 012
MMS 587 556 195 191 040 .039
MMM .699 .64¢ 320 315 116 114
LSS 726 730 143 140 019 019
LMS .810 789 348 344 .064 .064
LMM .861 .827 486 .482 193 192
LLS 918 .897 605 .601 112 11
LM 925 906 686 .682 321 319
LLL 956 942 .830 .827 564 .563

a These symbols refer to the relative magnitude of the treatment effects contained in the first,
second, and third contrasts, respectively.

16




Figure 1
Decision structures for the MSRB and the FMSRB.
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For a complete set of k-1 orthogonal contrasts on k groups means, with t2st statistics ranked in descending
the decision structure for both proced ures is presented below. Note thatin both procedures, advancing to
the next stage of testing is contingent upon rejection of ell previous null hynotheses.

MSRB

FMSRB

. Test contrest with largest test statistic at

°%k_1> significance level.

. Test contrast with next largest test <-atistic at

% fx-2) Significance level.

Test contrest with next Jargest test statistic at
%x-3) Significance level.

. Testcontrast with smallest test statistc at

o%k-(k-l)] (ie. o) significance level.

1. Testcomplete null hypothesis at

K-1.

o significance level.

Test contrast with largest test statistic at
0%]{-2) significance level.

. Testcontrast with next largest test statistic at

% x-2) Significance level.

. Testcontrast with next largest test statistic at

% (i-3) Significence level.

Test contrast with smallest test statistic at
o%k-(k-l)] (i.e. o) siyaificance level.




