AUTHOR	Harsh, Herbert W.; Hocevar, Dennis
TITLE	The Kultidimensionality of Students' Evaluations of
	Teaching Effectiveness: The Generalicy of Factor
	Structures across Academic Discipline, Instructor
	Level, and Course Level.
PUB DATE	15 Jan 90
NOTE	1.8p.
2UB TYPE	Reports - Research/Technical (143)
EDRS PRICE	HFOl/PCOl Plus Postage.
DESCRIPTORS	College Curriculum; *College Faculty; *Factor
	Structure; *Graduate Students; Higher Education;
	Multidimensional Scaling; *Student Evaluation of
	Teacher Performance; *Teacher Effectiveness; Teaching
	Assistants; *Undergraduate Students
IRENTIFIERS	*Student Evaluation of Educational quality;
	University of Southern California

ABSTRACT

Factor analyses of student evaluations of teaching effectiveness were conducted for 24,158 courses at the University of Southern California and for each of 21 different subgroups derived from the total group. All classes evaluated by six or more students were included in the stuay. The subgrcups we e designed to differ in terms of instructor level (teaching assistants or regular faculty); course level (undergraduate or graduate), and academic discipline. The same 9 factors that the Student Evaluation of Educational quality instrument was designed to measure were consistently identified in each of the 22 different factor analyses, and all factor structures were remar:ably well-defined and consistent. Correlations between factor scores based on the total group factor analysis and the 21 subgrcup factor analyses were very high, and most were greater than 0.99. Because of the large number and diversity of classes in this study, the results provide stronger support for the generality of the factor structure underlying students' evaluations of teaching effectiveness than does any previous research. Five data tables are included. (TJH)

[^0]"PERMISSION.TO REPRODUCE THIS material. has been granted by Hebeget W. Marcs
\qquad
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

- Points of view or opinions statedintint docs Points oivew or options statedininis cocu
mint oo not necessarily represent official Tent do not necessarily
OERI position or policy EDUCATIONAL RESOURCES INFORMATION Fris document CENTER (ERIC)
received from the person reproduced as originating it
Q Minor changes have been made to improve reproduction quality The Generality of Factor Structures Across Academic Discipline, Instructor Level, and Course Level

Herbert W. Marsh
University of Sydney, NSW Australia
Dennis Hocevar
University of Southern California

15 January, 1990
Running Head: Multidimensionality of Students' Evaluations

Factor analyses of student evaluations of teaching effectiveness were conducted for a total group 24,158 courses and for each of 21 different subgroups derived from the total group. The subgroups were constructed to differ in terms of instructor level (teaching assistants or regular faculty), course level (undergraduate or graduate), and academic discipline. The same nine factors that the Student Evaluation of Educational Quality (SEEQ) instrument was designed to measure were consistently identified in each of the 22 different factor analyses and all factor structures were rerarkably well defined and consistent. Correlations between factor scores based on the total group factor analysis and the 21 subgroup factor analyses were very high and most very greater than .99. Because of the large number and diversity of classes in this study, the results provide stronger support for the generality of the factor structure underlying students' evaluations of teaching effectiveness than does any previous research.

Information from students' evaluations nocessarily depends on the content of the evaluation items. Studant ratings, like the teaching that they represent, should be viewed as a multidimensional construct (e.g., a teacher may be quite well organized but lack enthusiasm). This contention is supported by common-sense and a considerable body of empirical research. Unfortunately, most evaluation instruments and research fail to take cognizance of this multidimensionality. If a survey instrument contains an ill-defined hodge-podge of different items and student ratings are summarized by an average of these items, then there is no basis for knowing what is being measured, no basis for differentially weighting different components in a way that is most appropriate to the particular purpose they are to sarve, nor any tasis for comparing these results with other findings. If a survey contains separate groups of related items that ar'e derived from a logical analysis of the content of effective teaching and the purposes that the ratings are to serve, or from a carefully constructed theory of teaching and learning, and if empirical procedures such as factor analysis demonstrate that the items within the same group do measure the same trait and that different traits are separate and distinguishable, then it is possible to interpret what is being measured.

In evaluating the need for multiple dimensions of students' evaluations it is important to consider the purposes that the ratings are intended to serve. Marsh (1984; 1987) noted that student ratings are used variously to provide and are recomended for purposes of: (a) formative feectbeck to faculty about the effectiveness of treir teaching; (b) a sumnative measure of teaching effectiveness to be used in personnel decisions; (c) Enformation for students to use in the selection of courses and instructors; (d) an outcome or a process description for research on teaching. Marsh (in press) argued that for 3 of these 4 recommended uses of students' evaluations all but personiel decisions - there appears to be general agreement that appropriately constructed multiple dimensions of are more useful than a single summery score.

For personnel decisions, there is considerable debate as to whether a single score is more useful than of profile on scores reflecting multiple dimensions (see Abrami, 1988; Marsh, 1987; 1989). Some researchers, while accepting the multidimensionality 'of students' evaiuations and the importance of measuring separate components for some purposes such as fredback to faculty, defend the unidimensionality of student ratings because "when student ratings are used in personnel decisions, one decision is made." There are, however, serious problens with this reasoning. First, the
use to which student ratings are put has nothing to do with their dimensionality, though it may influence the form in which the ratings are to be presented. Second, even if a single total score were the most useful form in which to summarize studant ratings for personnel decisions; - and there is no reason to assume that generally it is - this purpose would be poorly served by a ill-defined total score based upon an ad hoc collection of items that was not appropriately balanced with respect to the components. of effective teaching that were being measured. If a single score were to be used, it should represent a weichted average of the different components where the weight assigned to each omponent was a function of logical and empirical analyses. Third, implicit in this argument is the suggestion that administrators are unable to utilize or prefer not to be given multiple sources of information for use in their delitorations, but I know of no empirical research to support such a claim.

The Content of the Multiple Dimensions

An important issue in the construction of multidimensional rating scale instruments is the content of the dimensions to be surveyed. The most typical approach consists of a logical analysis of the content of effective teaching and the purposes of students' evaluations, supplemented perhaps with literature reviews of the characteristics other researchers have found to be useful, and feedback from suddents and faculty. An alternative approach based on a theory of teaching or learning could be used to posit the important dimensions, though such an approach does not seem to have been used in studenit evaluation research. However, with each approach, it is important to also use empirical techniques such as factor analysis to further test the dimensionality of the ratings. The most carefully constructed instruments combine both logical/theoretical and ampirizal analyses in the research and development of student rating instruments.

The student evaluation literature does contain several examples of well constructed instruments with a clearly defined factor structure that provide measures of distinct components of teaching effectiveness. Some of these instruments and the factors that they measure are:

1) Frey's Endeavor instrument (Frey, Leonard \& Beatty, 1975; alsc see Marsh, 1981, 1986): Presentation Clarity, Workload, Personal Attention, Class Disoussion, Organization/Planning, Grading, and Student Accomplishments;
2) The Student Description of Teaching (SDT) questionnaire ariginally developed by Hildebrand, Wilson and Dienst (1971): Analytic/Synthetic Approach, Organization/Clarity, Instructor Grruio Interaction, Instructor Individual Interaction, and Dynamiem/Enthusiasm;
3) Marsh's 'Student Evaluations of Educational Quality (SEEQ) instrument (Marsh, 1982b; 1983, 1984; 1987; also see Table 3 presented later): Learning/Value, Instructor Enthusiasm, Organization/Clarity, Individual Rapport, Group Interaction, Breadth of Coverage, Examinations/Grading, Assigments/Readings, and Workload/Difficulty;
4) The Michigan State SIRS instrument (Warringtoni, 1973): Instructor Involvement, Student Interest and Performance, Student-Instructor Interaction, Course Demands, and Course Organization. The systematic approach !ised in the deveiopment of these instruments and the similarity of the factors which they measure, supports their construct validity. Factor analyses of responses to each of these instruments provide clear support for the factor structure they were designed to measure, and demonstrate that the students' evaluations do measure distinct components of teaching effectiveness. More extansive reviews describing the components found in other research (Cohen, 1981; Feldman, 1976; Kulik \& MoKeachie, 1975) identify dimensions similar to those described here.

Factor analysis is a useful technique for determining what factors are being measured, but it cannot determine whether the obtained factors are important to the understanding of effective teaching. Consequently, carefully developed surveys - even when factor analysis is to be used typically begin with item pools based upon literature reviews, and with systematic feedback from students, faculty, and administrators about what items are important and what type of feedback is useful (e.g., Hildebrand, Wilson \& Dienst, 1971; Marsh, 1982b). For example, in the development of SEEQ a large item pool was obtained from a literature review, instruments in ourrent usage, and interviews with faculty and students about: characteristics which they see as constituting effective teaching. Then, students and faculty were asked to rate the importance of items, faculty were asked to judge the potential usefulness of the items as a basis for feedback, and oper-ended student comments on pilot instruments were examined to determine if important, aspects had been excluded. These criteria, along with psychometric properties, were used to select items and revise subsequent ve"sions. This systematic development constitutes evidence for the content validity of SEEQ and makes it unlikely that it contains any irrelevant factors.

Feldman (1976; also see Feldiman, 1983, 1984, 1986, 1987) categorized the different characteristics of the superior university teacher from the student.'s point of view with a systematic review of research that either asked students to apectfy these characteristics or inferred them on the
basis of correlations between specific characteriatics and students' overall evaluations. On the basis of euch studies, and also to facilitate presentation of this material and his subsequent reviews of other student evaluation research, Feldman derived a set of categories shown in Table 1. This list provides the most extensive and, perhaps, the best set of characteristics that are likely to underlie students' evaluations of effective teaching. Nevertheless, Feldman used primarily a logical analysis based on his examination of the student evaluation literature, and his results do not necessarily imply that students can differentiate these characteristics. Also, to actually measure all these rharacteristics as separate scales would require an instrument that contained as many as 10 n items and this would be unacceptable in most sattings. This set of characteristics does, however, provide a useful basis for evaluating the comprehensiveness of the set of evaluation. factors on a given instrument. Insert Table 1 About Here
Feldman (1976) noted that factors actually identified by factor analysis typically correspond to more than one of his categories. The highest loading itens on any given factor often come from more than one of his categories. In Table 1 I have attempted to match Feldman's categories to the SEEQ factors. The only categories that are apparently unrelated to any of the SEEQ factors are teacher elooution (category 7) and, perhaps, teacher sensitivity to class level and progress (category 9). All of the SEEQ factors represent at least one of Feldman's categories and most reflect two or more categories. In contrast, none of Feldman's categories reflect more than one of the SEEQ factors. This logical analysis of the content of the seed factors and Feidman's categories demonstrates that there is substancial overlap between the two but that Feldman's categories reflect more narrowly defined constructs than do the SEEQ factors.

The Present Investigation

The purpose of the present investigation is to extend previous work on the factor structure of SeEd responses. Factor analysis provides tests of whether: (a) students are able to differentiate among components of effective teaching, (b) the empirical factors confirm the factors that an instrument is designed to measure, and (c) the same factors are identified consistently in different settings, and in different academic disciplines. Factor scores derived from factor analysis also provide potentially useful scores for summarizing the results of students' evaluations.

SeEQ has been used across a diverse array of academic disciplines at the University. of Scuthern California since 19%. For present purposes ratings from 24, 158 different classes were divictad into 21 different groups varying
in terms of instructor level (teaching assistant or regular academic staff), the course level (undergraduate or graduate), and the academic discipline. Twenty-two separate factor analyses were conducted; one for the total group and one for each of the 21 different subgroups. The factor structure of SEEQ responses was evaluated by comparing the results of these factor analyses and conparing empirically derived factor scores based on these factor analyses. The availability of such a large data base using on a psychometrically sound instrument provides much stronger tests of ihe comparability of the factor structures across instructor level, course level, and academic discippine than any previous research.

Methods

Sample and Procedures.

During the period 1976-1988, SEEQ forms were administerec in approximately 40,000 courses at the University of Southern California. Al though the use of the SEEQ form is voluntary, the University requires that each academic unit collect some form of students' evaluations of teaching effectiveness for all courses and staff are not considered for promotion. unless studentis' evaluations are provided. Most of the academic urits that do use SEEQ require that all their staff are evaluated in all courses. The evaluation forms are typically distributed to staff shortly before the end of each academic term, administered and collected by a student in the clas: or by a member of the academic staff according to printed instructions, and taken to a central office where they are processed. This program, the SEEQ instrument on which it is based, and research that led to its development are described by Marsh (1987).

For present purposes all classes taucht by regular academic staff or by teaching assistants that were evaluated by 6 or more students were considered. Excluded were classes evaluated by 5 or fewer students and classes taught by teachers who wize not graduate student teaching assistants or regular academic staff (i.e., had acaciemic iitles other than assistant, associate, or full profess.). This resulted in a sample of 24,158 classes. Each of these classes !was then clessified into 21 subsamples such that each subsample had at least 400 classes. All classes were first categorized into three general grouns consisting of classes taught by teaching assistants, undergraduate classes taught by regular faculty, and graduate 'sourses taught by regular faculty. Classes were then classified into divisions or schools (e.g., Social sciences, Engineering) and then into specific departments le.g., psychology, systems enginee' ing) wherever there were more than 400 classes. Thus, each class was assigr, to the most specific subgroup for which there
was at least 400 classes. All classes were classified into one and only, one sibgroup. This procedure resulted in 7 groups of classes taught by teaching assistants, 7 groups of undergraduate classes taught by regular faculty, and 7 groups of graduate classes tauyt by regular faoulty (see Table 2).

Insert Table 2 About Here

Statistical Analysers

All analyses were performed on class-average responses for the total sample and for each of the 21 subsamples. The factor analyses of the 35 SEEQ. items zonsisted of principal axis factoring with a Kaiser normalization and iterations followed by an oblique rotation (see SPSS, 1986). Fur each factor analysis empirically defined factor scores were generated using the regression method (SPSS, 1986).

Everett and Entrekin (1980; Everett, 1983) noted that factors extracted from responses to the same items administered to different samples should be comparable if they are to be used as summary measures. They went on to argue that correlations between factor scores derived from two different factor analyses "provides a coefficient of factor comparability, which is a more direct measure than the coefficient of congruence based upon factor loadings" (p. 165). Everett (1983) further demonstrated that this procedure provided a useful indication of the number of factors that should be retained. When factor scores based on a large number of different groups are considered, Marsh (1988) proposed a variation of this procedure that is used in the present investigation. In this variation, factor scores based on the total groip and those based on each separate group are compared. Thus, for each case there is a set of factor scores based on the total group and a set of factor scores based on the par ticular grour to which that case belongs. Correlations between matching factors in the two sets of factor scores provide an index the factor comparability between the facter analysis based on the total sample and that based on each subsample.

Results

The factor analysis based on the total sample of 24,258 classes is summarized in Tables 3 and 4. The factor analysis clearly identifies each of the 9 factors that SEEQ is designed to measure and the factor structure 15 very well defined. The 35 target loadings -- factor loadings for items designed to measure each factor (ipresented in boxes in Table 3) - are consistently large; the mean ia .650 and every one is at least . 382 . The 290 nontarget loadings are consistently small; the mean is .067 and rone is larger than . 245. Whereas the factor pattern correlations indicate that the factors are positively correlated (mean $r=.318$), the largest correlation is

Insert Tables 3 and 4 About Here
The set of 21 factor analyses oonducted on each subsample is sumarized in Table 4. For each of the 21 factor anelyses the target loadings are consistently high (means of .578 to .712), nontarget loadings are consistently low (means of . 052 to . 076), and factor correlations are moderate (means of .257 to .399). The results ars similar in the 7 sets of courses taught by teaching assistants, the 7 sets of undergraduate courses taught by regular faculty, and the 7 sets of graduate courses taught by regular faculty. The similarity of the factor structures across the 22 different factor analyses provides remarkably strong support for the generality of SEEQ factor structure and much stronger support than has been demonstrated with any other student evaluation insitruments.

Although not emphasized in Table 4, there is also a consistent pattern for the nontarget loadings in the 22 factor analyses. The overall instructor rating and the overall course rati:ig are most strongly related to the Instructor Enthusiasm and Learning/Values factors respectively. Not surprisirigly, however, thess overall rating items typically have moderate factor loadings on several other factors. For example, in the total group factor analysis (Table 3) the largest two nontarget loadings are for the overall instructor item on tru: Organization/Clarity factor and the for the iverall course item on the Instructor Enthusiasm factor. Across all the factor analyses one of the overall rating items had the largest nontarget loadings in 13 of the 22 analyses. These results demonstrate that particularly the overall rating items are not pure indicators of any of the factors.

Inspection of Table 3 i., jicates that most of the nontarget loadinys are close to zero or modestly positive. However, nearly half nontarget loadings for the Workload/Difficulty items on the remaining SEEQ factors and the nontarget loadings for the remaining 31 items on the Workload/Difficulty factor are negative. Similarly, the lowest correlations anong seed factors consistently irvolve the Workload/Difficulty factor. These patterrs observed for the total group factor analysis are found consistently in the 21 subgroup factor analyses..

Two sets of factor scores representing the nine SEEQ factors were generated for each of the 24,155 , classes. One set of factor scores was based on the factor analysis of the total sample , esented in Table 3 and the second set of factor scores was based on the particular subsample to which the class belonged. These two sets of factor scores were then correlated fur each of the 21 different subsamples. High correlations between factor scoreo representing the same factor provide support for the comparability of the

Multidimansionalitv of Students' Evaluations 8

different factor structures. Nearly all of these 189 correlations are greater than . 95 and a majority are larger than . 79 (Table 5). Low correlationa between factor scores representing different factors provide support for the differentiation among the factors. The means correlations among these normatching factor scores vary from .254 to .446 for the 21 subsamples.

Discussion
Research reviewed here suggests that most -- if not all - of the recommended purposes of students' evaluations of teashing effectiveness are better served by an appropriately conseructed set of multiple dimensions than by a single summary score. Most evaluation instruments, however, do not measure a well-defined set of evaluation factors and nost research does not incorporate this multidimensional perspective. An important exception to this generalization is the SEEQ instrument and research based upon it that are the focus of the present investigation. Four observations support the appropriateness of the factors used to summarize SEEQ responses. First, empirical research supports the SEEQ factor structure. Second, the systematic development of the SeEQ instrument supports the content validity of its factors. Third, factor analyses of other instruments designed to measure multiple dimensions of teaching effectiveness result in factors like those identified by SEEQ responres. Finally, there is substantial agreement between the content of empirically derived SeEQ factors and the categories of effective teaching developed by Feldman (1976).

The purpose of the present investigation was to excend previous research by evaluating the generality of tine BEEQ factor structure zeross a very large and diverse set of different classes. The SEER factor strucícure was well defined for the total sample of 24,150 classes and this result replicates $\overline{p i c v i g u s}$ researicin based on smaller samples. Of particular importance, was the finding that the factor structure was also well defined for 21 subgroups that varied in termis of instructor level, course level, and academic discipline. The nine factors that SEEQ is designed to measure we:e identified in all 22 factor analyses and factor scores based on the total group analysis were almost perfectly correlated with those based on each of the 21 subgroup analyses. Because of the psychometric properties of the seed instrument and because of the sika and diversity of the data base considered here, the results provide much stronger support for the generality of the factor structure underlying students' evaluations of teaching effectiveness than does any previous research.

REFERENCES

Abrami, P. C. (1-). SEEQint the truth about student ratings of iistruction. Educational researcher, 81, 43-45.
Cohen, P. A. (1981). Sturient ratings of instruction and st jent achievement: A meta-analysis of multisection validity studies. Reviow of Educational Research, 51, 281-309.
Everett, J. E. (1983). Factor comparability as a means of determining the num'er of factors and their rotation. Multivariate Behavioral Research, 18 197-218.

Everett, J. E., Entrekin, L. V. (1990). Factor comparability and the advantages of multiple group factor analysis. Multivariate Behavioral Pesearch, 2 165-190.

Feldman, K. A. (1976). The superior college teacher from the stuclent's view. Research in Hic'rer Eoucation, 5,243-288.

Feldman, K. A. (1983). The seniority and instructional experience of college teachers as related to the evaluations they receive from their students. Research in Higher Education, 18, 3-124.
Feldman, K. A. (1984). Class size and students' evaluatior:s of college teacher and courses: A clcser look. Research in hiutirer Education, 2i, 45116.

Feldmarı. K. A. (1986). The perceived instructional effectiveness of college teachers as related to their personality and attitudinal characteristics: A review and synthesis. Research in Higher Education, 24, 139-213.
Feldman, K. A: (1987). Research productivity and scholarly acco plishment: A review and exploration. Research in Higher Education, 227-298.
Frey, P. W., Leonard, D. W., \& Beatty, W. W. (1975). Student ratings of instruction: Validation research. American Educational Research Journal. 12. 327-336.

Hildebrand, M., Wilson, R. C., \& Dienst, E. R. (1971). Evaluating university teaching. Berkeley: Center for Research and Development in Higher Education, Universaty of California, Berkeley.
Kulik, J. A., \& MoKeachie, W. J. (i975). The evaluat:ion of teachers in higher education. In Kerlinger (Ed.), Review of Research in Eduration, (Vol. 3). Itasca, IL: Peacock.
Marsh, H. W. (1981). Students' Evaluations of tertiary instruction: Testing the applicability of American surveys in an Australian setting. Australian Journal of Education, 25. 177-192.
Marsh, H. W. i1982b). SEEQ: A reliable, valid, and useful instrument for collecting students' evaluations of university teaching. British Journal of Etucational Psychology, 52. 77-95.

Marsh, H. W. (1984). Students' evaluations of university teaching: Dimensionality, Reliability, Validity, Potential Biases, and Utility. Journal of Educational Psychology, 76, 707-754. Marsh, H. W. (1936). Applicability paradigm: Students' evaluations of teaching effectiveness in different countries. Journal of Educational Psychology. 78, 465-473.

Marsh, H. W. (1987). Students' evaluaticns of university teaching: Research findings, methodological issues, and directions for future researcti International Journal of Educational Research, 11, 253-389. (Whole Issue No. 3)

Marsh, H. W. (1989). Respmnses fr reviews of "Students' evaluations of university teaching: Research findings, methodological issues, and directions for future research" Instrustional Evaluation, 10, 5-9. SPSS (1986). SPSSX User's Guide. New York: MCGraw-Hill. Warrington, W. G. (1973). Student evaluation of instruction at Michigan State University. In A. L. Sockloff (Ed.), Proceedings: The first invitational conference on faculty effectiveness as evaluated by students (pp. 164-182). Philadelphia: Measurement and Research Center, Temple University.

Table 1
Categories of Effective Teaching Adapted From Feloman (1976, 1983. 1984 1986, 1987) an: hee Seen factors Most Closely Related to Each Category

Fel dman's Categories

1). Teacher's stimulation of interest in the course and subject matter.
2) Teacher's enthusiasm for subject or for teaching.
3) Teacher's knowledge of the subject.
4) Teacher's intellectual expansiveness and breadth of coverage.
5) Teacher's preparation and organization r.f the course.
6) Clarity and understindableness of presentations and explanations.
7) Teacher's elocutionary skills.
8) Teacher's sensitivity to, and concern with, class level and progress.
9) Clarity of course objectives and requirements.
10) Nature and value of the course material
including its usefulness and relevance.
11) Nature and usefulness of supplementary materials and teaching $\equiv i d s$.
12) Perceived autcome or impact of instruction.
13) Teacher's fairness and impartiality of evaluation of students; quality of exams.
14) Personal Characteristics (personality)
15) Nature, quality and frequency of feedback fron teacher to students.
16) Teacher's encouragement of quesicions and discussion, and openness to the opinions of others.
17) Intel lectual challenge and encouragement of independent thought.
18) Teacher's concern and respect for students; friendliness of of the teacher.
19) Teacher's availability and helpfulness.
20) Difficulty and workload of the course.

SEEQ Factors

Instructor Entiusiasm
Instructor Enthusiasm
Breadth of Coverage
Breadth of Coverage
Organization/Clarity
「ganization/Clarity

None

None

Organization/Clarity
Assigments/Readirgs
Assigrments/Readings
Learning/Value
Examinations/Grading
Instructor Enthusiasm
Examinations/Grading
Group Interaction
Learning/Value
Individual Rapport
Individual Rapport
Workload/Difficulty

Note. The actual categories used by Feldman in different studies (e.g., Feldman, 1976. 1793, 1984, 1986, 1987) varied sonewhat. Categories 12 and i4 were nci included in. Feldman (1976) but were inciuded in subsequent studies Wh:ereas category 20 was included by Feldman (1976) but not subsequent studies. One other category (classroom management) was only included by Fel dman (197b).
a Whereas these SEEQ factors most closely match the corresponding categories, the match is apparently not particularly close.

Table 2
Surmary of the 21 Subsamples of Courses
N of Classes Academic Unit
Undergraduate Courses Taught By Teaching Assistants

1	431	General
2	610	日usiness
2	565	Humanities
4	1606	Social Sciences
5	683	Spanish and Portuguese
6	688	Economics
7	902	Comunication

Undergraduate Courses Taught By Regular Faculty

1	1421	General
2	2326	Business
3	956	Hunanities
4	2320	Sacial Sciences
5	1693	Engineering
6	590	History
7	538	Psychology

Graduate Courses Taught By Regular Faculty

1	757
2	2049
3	1157
4	957
5	1213
6	457
7	1559

General
2049 Business
1157 Social Sciences
97 Engineering
Education
Systems Engineering
Safety and Systems Management
Total
24158

Note. For present purposes all classes with 6 or more sets of ratings were classified into 21 subsamples such that each sut-sample had at least 400 classes. All classes were firṣt categorized into general groups consisting of classes taught by teaching assistants, undergraduate classes taught by regular faculty, and graduate courses taught by regular faculty. Classes were then classified into divisions or schools (e.g., Social sciences or Engineering) and then into sperific departments (e.g., psychology or systens engineering) whenever there were more than 400 classes. All classes were classified into one and only one subsample.

Table 3
Factar Analysis Regults For the Total Suaple of 24,15L 3ets of Cluss-average Responses:
Factor Loading ind factor Corralations Factor Loadings ind fictor Correlations

SEED Scales and Itens (paraphrased)
Learning/valus

Instructor Enthusiase
Enthusjastic about teaching
Dynanic end energatic
Enhancec prasentation with hunor
Teaching style held yeur interest
Overall Instructor Rating
SEEP Factors
Lrn Enth Orgn Gra Ind Brd Exan Asgn Hork

	. 168	. 103	. 015	. 014	. 15	. 099		,
. 607	. 083	. 100	. 026	. 050	. 103	. 085	. 147	3
	. 078	. 034	.039	. 058	. 169	. 074	. 131	
	. 211	. 173	. 152	. 045	. 047	. 112	$\cdot 149$	
	. 2	.173	.041	. 042	. 085			

. 095	1.544: 129	. 072	. 195	. 115	. 05	. 069	025
. 064	1.714. 094	. 055	. 085	. 083	. 069	. 071	. 042
. 087	1.650: -. 023	. 103	. 078	. 129	. 090		
. 172	1.5814 $\cdot 187$. 131	. 026	. 050	.110	. 073	. 017
. 172	. 3922 . 245	. 083	. 141	.0\%	.140	. 075	. 039
. 146	. 1651.5101	176	. 060	. 075	. 079		
. 069	. 0771.6771	. 060	.075	. 075	. 099		. 005
. 128	. 626 . 5299	. 055	. 070	. 055	. 175	. 184	. 024
. 031	. 0401.58	. 093	. 049	. 175	.146	.044	. 020

Group Interaction

	. 058	. 103								
	. 06									
En	. 05	. 105			. 15	. 09				
Encouraged expression of idaas	. 04	. 069								

Individul Rappart
Friendly tombuts individual students
Velconed studenta seaking help/advice
Interisted in individual stucents
Accessible to individual students
Breadth of coverage
Contrasted various isplications
Gave background of jdias/concepts
Gave differ ent points of viey
Discussed current developients
Examinations/Grading
Exanination faedback valuable
Evaluation rathode 'fair/appropriate
Tested course content as enphasized

Assigntents/Readings

Readings/texts yere valuable $\quad-.008-.004 .017$. 022 .018 . 053 . 025 1.8851-.003
They contributed to understanding . 127 .021 .036 .027 .039 .012 . 140 i. 7161.072
Workload/Difficulty
Course difficulty (easy-hard)
Course morkload (light-heavy)
Course pace (slou-fast)
Hours per meek outside of class

Factor Pattern Carrelations Lrn Enth Orgn Erp Ind Brd Exan Asgn Hork
Leapning/Value
1.000

.043	. 037		. 059	. 068		. 077				
			. 02	. 04						
			. 12	. 101						
207	113	. 018	. 086							

Instrucfor Enthusiasn
Organization/Clarity
Group Interactjon
Individual Rapport
Breadth of Ceverage
Exasinations/6rading
Assignaents/Readings
HorkloadDifficulty
.4341 .000
. 407.4271 .000
.350 .364 .2101 .000
.263 .400 .331 .4551 .000
$.449 \quad .419 .454 .327 \quad .3521 .000$
.026 .014 -.072 -.009 . 106 .033 1541.000
whes Target loadings, the factor loadings itens designed to define each
SEE日 factor, are presented in boxes.

Table 4
Sumary of Factor Analyses Contucted on the Total Sample and on Each of the 21 Sussamoles: Target Loadings, Nontarget Loadings, and Factor Correlations

Undergraduate Courses Taugitit By Teaching Assistants

Total Sample

| .907 | .392 | .650 | $.245 a$ | -.218 | .067 | .512 | -.073 | .318 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 24158

Note. Factor analyses were conducted on the total sample (see Tavle 1) and each of 21 subsamples. Factor loadings and factor correlations from these 22 factor analyses are summarized here.
a The largest nontarget loading was for either the overall teacher rating or the overall course rating.

Table 5
Correlations Between Factor Scores Based on the Total Sample and Based on the 21 Individual Samples
Student Evaluation Factors
Lrn Enth Orgn Erp Ind Brd Exam Asgn Work Match Match Mean Mean Undergraduate Courses Taught By Teaching Assistants

1	.995	.991	.986	.994	.987	.989	.989	.992	.996	.991	.446
3	.796	.990	.995	.993	.997	.997	.988	.996	.996	.994	.310
4	.990	.973	.979	.975	.993	.990	.990	.903	.986	.994	.338
5	.984	.994	.990	.995	.994	.994	.996	.997	.996	.995	.314
6	.980	.999	.995	.998	.998	.993	.983	.992	.993	.991	.344
7	.990	.995	.995	.995	.997	.994	.995	.995	.995	.993	.368
$M n$.960	.990	.990	.991	.994	.994	.991	.998	.991	.993	.360

Undergraduate Courses Taught By Regular Faculty

1	.993	.996	.990	.999	.998	.997	.997	.993	.992	.995	.318
2	.997	.996	.996	.997	.999	.996	.999	.991	.996	.996	.341
3	.993	.996	.991	.997	.997	.995	.996	.995	.994	.995	.379
4	.996	.999	.998	.999	.999	.996	.999	.999	.996	.998	.350
5	.936	.994	.992	.997	.998	.995	.997	.998	.992	.995	.328
6	.982	.980	.972	.995	.997	.984	.991	.946	.995	.982	.272
7	.913	.970	.956	.980	.990	.990	.994	.953	.995	.973	.359
$M 11.981$.993	.985	.995	.997	.993	.996	.982	.994	.991	.335	

Giraduate Courses Taught By Regular Faculty

1	.987	.991	.965	.997	.991	.991	.986	.994	.995	.989	.322
2	.990	.996	.992	.998	.998	.991	.998	.993	.993	.994	.311
3	.976	.994	.977	.996	.995	.987	.998	.789	.997	.990	.329
4	.948	.983	.992	.994	.996	.982	.975	.763	.917	.951	.323
6	.979	.996	.991	.789	.792	.994	.997	.997	.996	.991	.318
7	.994	.994	.994	.993	.994	.983	.995	.994	.994	.993	.254
$M n$.980	.981	.983	.995	.995	.993	.993	.999	.996	.991	.354

Note. Factor scores were generated from the factor analyses of the total sample and each of 21 subsamples comprising the total. Correlations between matching factor scores from the total sample and sutsample analyses are presented for each factor along with the mean of the correlations among nonmatching factors.

[^0]: * Reproductions supplied by EDRS are the best that can be made

