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ABSTRACT

Two-stage sampling procedures for comparing two population means

when variances are heterogeneous have been developed by Chapman (1950)

and Ghosh (1975). Both procedures assume sampling from populations that

are normally distributed. The present study reports on the effect

sampling from non-normal distributions has on the type I error rates,

statistical power, and sample size requirements. Four factors were

manipulated in the simulation study: (1) distribution shape, (2) degree

of variance heterogeneity, (3) initial sample size, and (4) difference

in population means. The results indicate that Ghosh's procedure is

less sensitive to non-normal distributions but can be liberal when

sampling from distributions that are skewed and the initial sample size

is small. Average sample sizes needed remain constant across

distribution shapes but greater variability was found with heavy-tailed

distributions. Moderate to large sample sizes at the first stage of

sampling can reduce the overall total sample size needed and can

minimize the inflated type I error rate in situations where the sampled

distributions are extremely non-normal.
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3.

VP

Applied researchers generally rely on Student's t-test or the ANOVA

F-test when testing the null hypothesis of equal population means.

These procedures assume that the observations are normally and

independently distributed with constant variance a2. If the

assumptions are met, the t and F tests are unbiased and uniformly the

most powerful (UMP). However, violating homogeneity of variance

assumption can seriously affect the type I error rate and power chese

procedures (Box, 1954; Glass, Peckham, & Sanders, 1972; Brown &

Forsythe, 1974). Violations of the equal variance assumption is

particularly serious when sample sizes are unequal but several studies

have shown that test of mean equality may not be robust to variance

heterogeneity even when sample sizes are equal (Ramsey, 1980; Rogan &

Keselman, 1977; Wilcox, Charlin, and Thompson, 1986). The degree of

variance heterogeneity, the number of populations being compared, and

the sample size are factors affecting the robustness of the tests.

In addition to affecting the type I error rate, variance

heterogeneity affects the statistical power of the analysis (Wilcox, et.

al., 1986). Power and sample size estimation procedures assume variance

equality. When the population variances differ, the actual statistical

power can be less than that desired and required sample size may be

underestimated.

One solution to the problem of variance heterogeneity

has been to modify the test statistics and the corresponding

degrees of freedom to consider the degree of variance inequality.

Procedures developed by Welch (1937), and Brown and Forsythe (1974) are

well-known examples of this approach. They are however only approximate

tests since the risk of a type I err.,r will not be exactly equal to the
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nominal significance level. In addition, Wilcox, Charlin, and Thompson

(1986) have reported that these approximate tests still can provide

liberal hypothesis tests if the ratio of standard deviations is as large

as 4 to 1. Wilcox (1987a) has argued that such differences in

variances occur regularly in social science research. A further problem

with these procedures is that they do not give researchers precise

control over power nor can accurate minimal sample sizes be determined

(Wilcox, 1984).

An alternative solution to the heterogeneous variance problem

requires sampling observations from the populations of interest in two

steps or stages. These procedures require the researcher to randomly

select a sample from each population to estimate the variances and then

depending on the initial results additional data may be required from a

second sample. Population means are estimated using data from both

stages but confidence intervals and hypothesis tests use variance

estimates from only the first sampling stage. This two-stage sampling

approach is a compromise between the fixed sample size techniques like

the t-test or ANOVA F-ratio and pure sequential tests such as the

sequential probability ratio test (Mood, Graybill & Boes, 1974).

Although several two-stage sampling procedures have been developed

(Hewett & Spurrier, 1983) not all of the techniques allow the researcher

to control statistical power. The present study focules on two

procedures, one developed by Chapman (1950) and the other developed by

Ghosh (1975) to compare two population means. Both procedures provide

control over the statistical power and both are based on Stein's (1945)

two-stage sampling procedure for testing Ho:X4vAlo .
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Chapman (1950) extended Stein's approach to the estimation of the

difference in two population means. His confidence interval is

computed as the following:

(7
1 2

) + A.

Where: A is the acceptable margin of error (or half width
of the confidence interval);

X = (1-b
g
k
g lg

+ (b
g
k
g 2g

, g=1,2;

, 11. are the mean observations for group g
48 8 froze the initial sample and second sample

respectively, g=1,2;

b = {1 +[N (N d-s2
)11/2/(k a )1/2

J/NTg, g=1,2;
g 18 Tg lg g lg'

d= (A/C)2 where C is the 1-c4/2 percentage point
of the difference between two independent
sample t random variables;

N
1g

is the initial sample size randomly selected
from treatment group g, g=1,2;

NT is is the total sample size needed from group g
and is determined from:
max(NI +1, (s1 /d) +1 }, g=1,2;

ina/cates de integer value of the ratio,

s
21s the estimate of the sample
g

i

variance from the initial sample of N
1g

observations;

k is the additional number of observations
g needed in the second sample (k

g
= N

Tg lg
),

g=1,2.

For example, suppose a researcher wanted to compare two treatment

conditions. A .95 confidence interval was of interest with a margin of

error no greater than 2 points. If an initial sample size of 5

individuals were selected at random from each population with 11=15,

s
1
=2 and T(' '2 =12 s

2
=4 Then:
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C taken from tables provided by Wilcox (1987a)
with v

1
=4 and v

2
=4 equals 3.107;

d= (2/3.107)2
=.4144

N
T1

= max {5 +1, [4/.4144] +1}

= 10

N
T2

= max{5+1, [16/.4144] +1}
=39

k
1
= 5, k

2
= 34

b = {1+[5((10)(.4144)-4)]
V
4/[(5)(4)11 "MO

1
= .119

b
2
= (1+[5((39)(.4144)-16)] 21[(34)(16)i42)/39
= .0266.

Suppose the mean of the additional 5 subjects from treatment group 1

equalled 14 and the mean of the additional 34 subjects from treatment

group 2 equalled 13. The confidence interval would then be computed as:

= [1-(.119)(5)]15 + (.119)(5)14
= 14.405

X
2
= [1-(.0226)(34)]12 + (.0266)(34)13
= 12.904

(14.405 - 12.904) + 2

1.501 + 2

(-.499, 3.501).

Thus there would be insufficient evidence to reject the null hypothesis

of no difference between treatment population means.

Bishop and Dudewicz (1978) have extended this approach to the

single factor multiple group design and Tamhane (1977) has modified

Chapman's technique for multiple comparisons analyses in the multiple

group design.

Ghosh (1975) approached the problem a little differently. He

suggests sampling an equal number of observations from each population
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7.

of interest and to calculate the confidence interval based on the

following formula:

(X
) ± t (s2/

NT)1 2 v1-1$12 t T

Where X are the mean observations across the first and
g second sampling stages from each treatment

population, g=1,2

tv,1-4/2
is the 1-4/2 percentile point of Student's

t-distrnution with v degrees of freedom

v equals the first stage sample size minus 1, N1-1.

s
2

is the variance of the difference scores of the
randomly matched samples from the two popula ions
of interest

N
T

is the total sample size selected from each
population across the first and second stages. It
is determined from:

NT= max {N1, [(s:/d)*+1]),

N1 is the initial sample size at the first stage of sampling,

d is chosen by such that:

PraT<tv,1-
/2
-( 6/17)] +[T>t

v, 1-di 2
+( 6 /ri)])= 1 -e ;

is the minimal difference between population means
thought to be important.

When 6 >0 d can be determined by solving for T in Pr(T>t -(S/a)

and when 6 <0 d can be approximated using Pr(T>t
v,1-01p

+(6 /fd) (Wilcox,
.

1987b).

For example, suppose a researcher is interested in comparing the

effectiveness of two treatments and has decided that a difference of 2

points between population means was of practical significance. If the

following results:

researcher administers each treatment to 6 individuals with the



T
1

T
2

z=T
1
-T

2

10 12 -2

16 12 4

12 7 5

14 11 3

18 12 6

11 15 -4

The variance of the difference scores equals 4.05. If the significance

level is set equal to .05 and power was to equal .8 then 'or

Pr(T>t- 80)=.8, T=-.920 and d would be determined as:

-.920 = 2.571- 24-d-

d =.328.

The total number of subjects needed in the second stage from each

population would equal:

max(6,[4.05/.328]*+1)=13.

Since 6 observations had been collected, 7 additional observations from

each treatment condition is needed. Suppose the mean score from all 13

observations from treatment 1 equalled 13.5 and the mean of the 13

observations from treatment 2 equalled 11.5. Then the confidence

interval would be determined as:

(13.5 11.5) + 2.571 4.757.17

2 ± 1.435

(.564, 3.435)

Since 0 is not included in the interval estimate the researcher would

conclude that there is sufficient evidence to reject the null

hypothesis.

Chapman's procedure has the advantage of allowing sample sizes to

be unequal aad Ghosh's procedure has the potential advantage of not

requiring the researcher to sample additional subjects. Both

procedures however assume that populations sampled have normal

9



distributions. Wilcox (1985) has examined the effect non-normality has

on Chapman's procedure when it is applied to the single factor multiple

groups design as suggested by Bishop and Dudewicz (1978). The results

of his study indicated that small departures from normality has little

effect on type I errors or statistical power. With large departures

from normality the type I error rate can be inflated. Increasing the

initial sample size can reduce the effect of non-normality but cannot

totally eliminate a liberal test in extreme non-normal distributions.

The purpose of the present study is to examine tha effect sampling

from non-normal populations has on Ghosh's procedure in terms of type I

error rates and statistical power. A second purpose is to study the

effect: non-normality has on total sample sizes needed in both Ghosh and

Chapman's procedure. Finally, the initial sample size used in the first

stage is studied as a moderator variable to determine the influence the

initial sample size has on type I errors, statistical power, and total

sample size.

Method

Computer simul,..-ion technique was employed. The data were

generated and analyzed by the SAS Proc Matrix routine (1985). Four

conditions were manipulated: (1) initial sample sizes, (2) population

variances, (3) distribution form, and (4) difference in population

means. A summary of the first three factors it provided in Table 1. All

combinations of initial sample size, variances, and distribution forms

were included. Population means either did not differ, in order to

study type I error rates or they differed by one point. For the

variance conditions studied, the one point mean difference corresponds

to a difference of one pooled standard deviation. The level of

statistical significance for all analyses was set equal to .05. Finally
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two levels of statistical power were considered, power of .8 and .9.

Normal random variables were generated with a mean of zero and

variance of one by using the normal random number generating function

(RANNOR) in SAS. The grand mean was set equal to 10. Non-normal

distributions were created by using a polynomial transformation

suggested by Fleishman (1978):

Y = a + bx + cx
2
+ dx

3
,

where x N(0,1), and a, b, c, and d modify the skewness and kurtosis

when mean and variance are unchanged.

For each condition, 1000 replications were performed and the

frequency of rejecting the null hypothesis was recorded. In addition,

the average, minimum, maximum, and the variance of the required sample

sizes were recorded. Empirical estimates of Type I error rates above

two standard errors from the nominal significance level are considered

as evidence that the procedures are not robust to the normality

assumption.

Results

Type I Error. Stem and leaf plots are reported in Table 2 for the

empirical type I error rates obtained for Chapman and Ghosh's

procedures. The 96 values rep.--ted are collapsed across all

distribution conditions considered and the desired power levels of .8

and .9. When initial sample size was small both procedures had fairly

sizable number of conditions where the type I error rate was

unacceptably high (greater than .063). The increased type I error rate

for Ghosh's procedure was found primarily in skewed distributions.

Twenty-two of the 25 empirical rejection rates were obtained from

distributions that had skew of at least .75. Chapman's procedure on the

other hand, had an unacceptable rate of rejection when distributions
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were lept ,Artic. Forty-nine of the 50 unacceptable rejection rates

were obtained from distributions that had kurtosis of at least 2.75.

When the initial sample size was increased to 16 the number of

conditions where unacceptable rejection rates observed was reduced in

half (11 conditions) 13r Ghosh's prccedure. Again it was extreme

skewness which affected the type I error rate. Chapman's procedure had

36 conditions where the type I error rate was unaccuptabie. Leptokurtic

distributions were the primary source of the inflated type I errors.

Although not reported in Table 2, when the initial sample size was

increased to 31, only 4 conditions had unacceptable type I error rates

for Ghosh's procedure and they were scattered across all distribution

shapes and variance ratios. Chapman's procedure resulted in 14

conditions where the type I error rate was unacceptably high and they

found with extreme leptokurtic distributions.

Statistical Power. Tabi.e 3 resents the empirical power estimates

for both techniques when the theoretical power was .8 and .9. Neither

non-normality nor variance inequality seriously affected the statistical

power of the tests. It might be noted that because of the way sample

size was determined for Ghosh's test, statistical power was expected to

be slightly greater than the nominal value. Chapman's procedure allows

for the exact control of statistical power, so we anticipated the power

estimates to be .8 or .9.

Sample Size. The average total sample size needed remained c.nstant

across distribution shapes and both procedures required approximately

the same total number of cibservations. Table 4 presents ne average,

minimum, and maximum sample size needed across the eight distribution
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forms studied when power equalled .9 and .8. The values listed for

Ghosh's procedure are the number of observations needed from each

population When the initial sample size equalled 6 and desired power

was .9, the sample size need for the entire study was approximately 68.

The values listed for Chapman's procedure are the number of

observations needed from the population with the greatest variability.

To determine the total sample size needed for Chapman's procedure it

would be necessary to add the number of observations needed from the

less variable population. So when the population variances were equal

to 1, for example, Chapman's procedure would require approximately 34

observations from each population for a total sample size of 68 when the

initial sample size was 6 and desired power equalled .9. If the

population variances differed by a ratio of 11 to 1, approximately 63

observations would be needed from the more variable population but the

initial 6 observations would be sufficient data for the less variable

population. The total sample size across both groups would then equal

approximately 69 observations. For different variance ratios the total

sample size needed remained constant at approximately 68 observations.

As the initial sample size increased to 16, the total sample size

needed decreased by almost 25 percent when power equalled .9 and by

almost 20 percent le-en power equalled .8. But if the initial sample

size equalled 31 no additional observations were needed for Ghosh's

procedure for the given effect size and power requirements.

In addition to the average sample size needed across distribution

forms, the sample size variability within a distribution is of some

interest. Values reported in table 5 are the standard deviations of the

distribution of sample sizes across the 1000 r,..)lications for each

distribution form. Distributions 4 through 8 were heavy-tailed

13
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dist-'hutions. Distribution 2 was the light-tailed distribution. These

results combined with those reported in table 4 indicate that although

the average sample size needed remained constant across distribution

form, the sample size needed are less stable with heavy tailed

distributions than normal or light-tailed distributions.

It also appears that with Chapman's procedure, the stability of the

sample sizes needed is a function of the variance ratio. However, as

the population variance increases the sample size needed also increases.

When this factor is considered by examinir the coefficient of variation,

variance ratio does not appear to appreciably affect the stability of

the needed sample size.

Conclusions

The two-stage sampling procedures developed by Chapman (1950) and

Ghosh (1975) provide valid tests for comparing population means with

specified statistical power when variances differ but only when

population distributions are normal or do not depart greatly from

normality. Inflated type I error rates can result when the initial

sample size is small and the population distributions are moderately

non-normal. Distribution shape however affects the two procedures

differently. Chapman's procedure appears to be affected by heavy-tailed

distributions. Even when the initial sample size was large, the type I

error rates were inflated. Our results are consistent with those

reported by Wilcox (1985) which showed that the two-stage procedure

developed by Bishop and Dudewicz's (1978), based on Chapman's approach,

can provide a liberal hypothesis test when populations are leptokurtic.

The present results which show that Wilcox's findings generalize down to

two group studies have important implications for the two-stage multiple
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comparison procedure developed by Tamhane (1978). Our results indicate

that Tamhane's procedure many not be appropriate with heavy-tailed

distributions since it is also based on Chapman's approach.

Non-normality also affects Ghosh's procedure, but not to the same

degree as Chapman's. In addition the type of non-normality which

affect's Ghosh's test differs from Chapman's. Asymmetric distributions

led to inflated type I error rates for Ghosh's procedure but the problem

could be minimized by increasing the initial sample size. This result

suggests that a two-stage multiple comparison test based on Ghosh's

technique may be a useful development.

Statistical power for the two procedures was not reduced as a

result of sampling from non-normal distributions. And perhaps

surprisingly, the total sample size needed was not affected by the

distribution form. Distribution form however did affect the stability

of the required sample sizes. With heavy-tailed distributions the

variability of sample sizes was greater than with normal or light-tailed

distributions.

We compared the average sample size needed in the present

simulation study with the required sample size needed for the

independent samples t-test when the populations sampled are normal and

have equal variances. For the effect size considered in the present

study (1 standard deviation unit), the independent sample t-test would

require 22 and 17 observations per group for power of .9 and .8

respectively (Cohen, 1977). The Ghosh procedure required an average of

33.5 and 25.7 observations per group when initial sample size was 6. If

the initial sample size was 16 the average sample size needed was 25.4

and 20.6 for .9 and .8 power respectively. The two-stage procedure

15
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typically requires more observations than the independent samples t-test

but as the initial sample size increases the difference in sample size

requirements diminishes. We have examined this relationship for

different effect sizes and found it consistent. Additional analyses

comparing the two-stage procedures with the independent samples t-test

may be a useful exercise.

Two-stage sampling procedures have been available for some time but

have rarely been used by researchers in the social sciences. Only

recently (Wilcox, ,987b) have they been presented in textbooks used by

students in introductory or intermediate statistical methods classes.

Although there may Jr.1 some practical restrictions in applying the

procedures, Lhe results of Lhe presenL study as well as others indicate

that the techniques can be useful. As with all statistical procedures

the indiscriminate use of the techniques can result in invalid

conclusions. Variance heterogeneity may no longer be a problem but

distribution form should be considered carefully.
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Table 1.

Summary of conditions investigated.

Initial
Sample N

Variance
ratio

611761.

Form
Skew Kurtosis Distribution

6 1:1 1/1 0.0 0.0 Normal 1

16 1:3 .5/1.5 0.0 -1.0 Platykurtic 2

31 1:7 .25/1.75 0.75 0.00 Skewed 3

1:11 .167/1.837 0.0 2.75 Leptokurtic 4

1:15 .125/1.875 0.0 3.75 Leptokurtic 5

1:19 .1/1.9 0.75 3.75 Skewed / Leptokurtic 6

1.4: 3.75 Skewed/Leptokurtic 7

1.75 3.75 Skewed/Leptokurtic 8



Table 2.

an

Stem-and-leaf plot of empirical type I error rates across different
distribution shapes and variance ratios for Ghosh and Chapman's

two-stage tests when a=.05, 1- =.8 and ,9

Chapman Ghosh

N
1
=6

N
1
=16

unit=0.001, 51 represents 0.051

9

31

99887
2

221

75

4300

99877666
443211111

9988886655555
443322100

9988777666555
4431111
99996555
4333220

9986

3

966
200

9865
433000000

998877776655555
422111000

999999998888877666666
4444322221111100

999887
42200
999

4

12141 013

11.: 5
11*1 13
10.: 5
10*:

9.: 5
9*:

8.:

8*1

7.; 567
7*: 113
6.: 66777888
6*: 000012233344

15 .1 5555567777778999
5*: 00000011222333444444

'4 .1 55556666677777888899

4141 0122

3.: 9
3*:

9.:

9*:

8.: 6
8*: 023
7.: 9
7141 0

6.: 6899
01 01111222234
5.: 5556666777888899
5*1 0111222233334444

'4 .1 5555556666677788999

01 112222233344444
3.: 7889
3*: 0134
2.: 9
2*:

Note. Values included in the leaf are rounded to the thousandths place.
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Table 3.

Empirical pcwer for Ghosh and Chapman's two --tage tests when initial
sample sizes are six per group and nominal power equals .9 and .8

Variance Ratio

Test Distribution 1:1 1:3 1:7 1:11 1:15 1:19

Power = .90
Ghosh

Normal (0,0) .91 .90 .91 .92 .92 .91

Platykurtic (0,-1) .93 .93 .92 .91 .9') .90

Skewed (0.75, 0) .90 .92 .93 .94 .95 .94

Leptokurtic (0,2.75) .91 .92 .91 .91 .92 .92

Leptokurtic (0,3.75) .93 .93 .91 .92 .91 .:3

Skew/Leptokurtic (.75, 3.75) .92 .92 .92 .93 .92 .94

Skew/Leptokurtic (1.25, 3.75) .91 .93 .93 .93 .S- .93

Skew/Leptokurtic (1.75, 3.75) .93 .95 .94 .95 .95 .96

Chapman
Normal (i3O) .89 .90 .92 .90 .90 .90

Platykurtic (0,-1) .90 .91 .92 .90 .91 .90

Skewed (0.75, 0) .89 .91 .91 .91 .92 .92

Leptokurtic (0,2.75) .88 .90 .87 .90 .89 .90

Leptokurtic (0,3./5) .89 .90 .89 .91 .89 .89

Skew/Leptokurtic (0.75, 3.75) .89 .87 .90 .89 .89 .89

Skew/Leptokurtic (1.25, 3.75) .86 .88 .89 .91 .90 .8q

Skew/Leptokurtic (1.75, 3.75) .85 .88 .91 .93 .92 .93

Power = .80
Ghosh

Normal (0,0) .83 .82 .83 .80 .85 .82

Platykurtic (0,-1) .82 .84 .84 .80 .82 .83

Skewed (0.75, 0) .83 .86 .86 .85 .86 .84

Leptokurtic (0,2.75) .84 .83 .83 .84 .84 .84

Leptokurtic (0,3.75) .83 .84 .85 .84 .85 .82

Skew/Leptokurtic (0.75, 3.75) .83 .87 .86 .84 .84 .88

Skew/Leptokurtic (1.25, 3.75) .82 .85 .86 .85 .89 .88

Skew/Leptokurtic (1.75, 3.75) .85 .86 .88 .88 .87 .88

Chapman
Normal (0,0) .82 .83 .81 .81 .81 .81

Platykurtic (0,-1) .80 .83 .81 .82 .84 .83

Skewed (0.75, 0) .79 .80 .85 .83 .85 .83

Leptokurtic (0,2.75) .81 .81 .80 .79 .80 .82

Leptokurtic (0,3.75) .79 .80 .78 .81 .81 .73

Skew/Leptokurtic (0.75, 3.75) .81 .81 .84 .82 .82 .82

Skew/Leptokurtic (1.25, 3.75) .78 .80 .82 .83 .84 .84

Skew/Leptokurtic (1.75, 3.75) .78 .79 .83 .85 .87 .83

Note: Power estimates are rounded to the hundredths place.
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Table 4.

Average, minimum, and maximum mean of sample size requirements across
different variance ratios for Ghosh's test and on the group with large
variance for Chapman's test across all distribution forms.

Power=.9 Power=.8

Ave Min Max Ave Min Max

N
1
=6 Ghosh 33.5 33.0 33.9 25.4 25.1 25.9

1:1 34.1 32.2 35.2 26.6 25.9 28.2

Chapman 1:3 50.7 48.0 51.9 39.6 37.5 42.4

1:7 59.3 57.9 61.3 45.7 43.5 48.5

1:11 62.9 59.9 65.1 48.3 46.0 51.4

N
1
=16 Ghosh 25.7 25.3 26.1 20.6 19.8 21.2

1:1 26.6 25.7 27.0 23.1 21.9 23.9

Chapman 1:3 39.6 35.5 38.3 32.1 31.8 32.7

1:7 45.7 42.3 44.1 36.7 35.1 37.5

1:11 48.7 44.7 46.7 38.5 38.2 39.5

r.r
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Table 5.

Standard deviation of sample size requirements across different
variance ratios for Ghosh's test and on the group with large variance

for Chapman's two-stage test.

Distributions

Power II] Test 1 2 3 4 5 6 7 8

b
.90 6 Ghosh 21 17 21 28 30 30 29 30

Chapman

16 Ghosh

1:1 22 17 20 26 33 29 36 30

1:3 32 24 32 47 46 48 51 48

1:7 38 28 38 55 56 60 57 61

1:11 38 29 40 61 68 57 64 54

8 7 7 10 12 12 12 12

1:1 8 6 8 12 14 14 14 13

1:3 13 10 13 18 21 20 21 22
Chapman

15 11 16 24 25 23 25 24

1:11 16 12 16 23 24 27 29 27

.80 6 Ghosh 15 13 15 20 23 22 23 22

Chapman

16 Ghosh

Chapman

1:1 16 12 12 22 28 27 25 26

1:3 25 18 23 32 38 39 40 37

1:7 29 22 27 40 42 38 48 43

1:11 30 23 29 44 50 48 43 51

5 4 5 7 8 9 8 8

1:1 6 5 6 9 11 11 11 11

1:3 11 8 11 16 19 19 19 18

1:7 13 10 13 18 21 21 21 20

1:11 14 10 14 21 23 22 21 23

Note.
4
1. Normal (0,0), 2. Platykurtic (0,-1), 3. Skewed (0.75,

0), 4. Leptokurtic (0,2.75), 5. Leptokurtic (0,3.75), 6. S/L

(0.75, 3.75), 7. S/L (1.25, 3.75), 8. S/L (1.75, 3.75).

bNumbers are rounded.

24


