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Abstract

Determination of the intention of the test developer is fundamental to the choice
of the analytical model for a rating scale. For confirmatory analysis, they
inform the choice of the general form of the model, representing the manner in
which the respondent interacts with the scale, and elso of the precise statement
of that form, representing the intention of the analyst to construct, say, an
"equal-interval" scale. Examples of general forms, and precise statements are
given.

Key words: Rating Scale; Rasch Measurement

Introductions The nature of a Likert rating scale

The construction of a rating scale is rarely haphazard, but is rather the result
of careful tbsught by the test developer, who has in mind a firm idea of the
manner in %,..ich the categories represent different levels of the intended
variable of knowledge, attitude, experience etc. For instance, the test
developer ay intend to construct an equal-interval scale in order to study, say,
"completion of homework assignments". Then Figure 1 portrays the test
developer's intention. The categories of the rating scale are equal spaced
reflecting the intention that the distances between the categories represent
equal distances in the function of the category definitions. As Likert (1932)
demonstrates, this straight-forward conceptualization has considerable merit.

Closer examination of the scale, however, reveals that this approach may be
somewhat naive. Some children who are rated "None" may regularly almost complete
an assignment or two; other children, also rated "none", may never have started
even one assignment. We are forced to the conclusion that each extreme category
of the scale must represent an infinite continuum of performance above or below
the scale, and further that it is unlikely that our definition of the
intermediate categories is exactly equal-interval.

Figure 2 portrays graphically what this might mean in terms of actual zones of
performance on the necessarily infinite continuum of the underlying variable.
Each extreme category (1 or 5 In this case) represents a conceptually infinite
range of performance. Intermediate categories (2, 3 or 4 in this case) represent
ranges of performance for which the end-points are determined by the definitions
of the adjacent categories. Empirically, no two intermediate categories will
have ranges of exactly the same length on the infinite variable.

Consideration of rating scale observations has often proceeded in one of two
directions. Much analysis ignores the nature of the Infinite continuum and
follows Likert in treating the ratings themselves as an equal-interval scale.
This frequently produces useful, if approximate results, but can be misleading
if the observations are not towards the center of the scale, or the scale layout
is far from uniform. Other analysis has appreciated the infinite nature of the
continuum, but has proceeded in an exploratory manner, allowing the

idiosyncracies of the data to mandate the form of the scale.

This paper is a step towards resolving this conflict between the developer's
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intention and the empirical realization of the rating scale, suggesting that a

confirmatory approach to rating scale be considered, one in which the developer's
intentions play the major role in the analysis.

Following this line of reasoning, the problem of modelling rating scales thus has
several aspects:

1) the measurement problem:
What is the general form of the measurement model which gives objective

calibrations based on the developer's conception of the data?

2) the problem of intention:
In constructing the scale, the developer had some intention, usually

expressed in terms such as "the categories should be equally spaced". In what
way can these intentions be expressed as a special form of the measurement model,
so that calibrations based on the developer's intentions can be obtained,
together with fit strtistics and other diagnostic information as to the extent
to which the empirical data reflects those intentions ?

the communication problem:
How can interaction between the developer, the user and the data be

promoted so that the greatest advantage is taken of both the information provided
by the developer and that provided by each particular, but somewhat
idiosyncratic, set of observations.

.. 'The, fob of the measurement mom

1. The dichotomous case

The simplest form of the rating scale is the dichotomous item, for which the
scale has merely two categories, 0 and 1. For convenience of conceptualization,
we can think of a person responding to a test item with 1 (a "success")
representing a higher performance level than 0 (a "failure").

The production of such ordinal observations (counts) into linear from a linear
combination of the underlying parameters requires a model of the form:

where

F(Pni) Bn - Di (1)

Pni is the probability of success of person n on item i
Bn is a parameter representing the ability measure of person n, where

n-1,N
Di is a parameter representing the difficulty calibration of item i, where

F() is a function which monotonically transforms a value in the range
(0,1) into a value in the range -infinity to +infinity.

The precise form of function F() for the dichotomous case, of which a general
shape is pictured in Figure 3, has implications for the principles underlying the
modelling of rating scales.
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The measurement model derived by Rasch can be expressed as

log(Pni/(1-Poi)) -.Br,- Di (2)

in which the estimation is based on the ratio of the probability of success and
the probability of failure, the logarithm of the odds.

An alternative model which would appear to be just as useful is:

tan-1(((Pni (l-Pris))s./2) Bn - Di (3)

in which the comparison is based on the difference between the probability of
success and the probability of failure.

However, though both models express each component (person or item) by one
parameter, and are of linear form, there is a fundamental difference in their
statistical properties. In Reach's model, the person parameters can be
conditioned out of the estimation of the item parameters, and vice versa. Thus,
ignoring the statistical bias introduced by the possibility 9f extreme scores,
it is not necessary to know which particular persons answered an item correctly
in order to estimate the item difficulty. The margins of the response matrix, the
raw scores, are sufficient statistics for estimating the parameters.

For the inverse tangent model, no sufficient statistics exist, so that, in order
to estimate the parameters, it is necessary to know the details of the responses
made. This threatens the basic concept of useful measurement, that the measure
be essentially independent of the details of the device used to obtain it.

For a polytomous rating scale, this concept becomes yet more complex, because
there appear to be many alternative, yet reasonable, ways to express a rating
scale. Three are considered here, all of which can be developed from the Rasch
model for the dichotomous case, but with different hypotheses about the nature
of the measurement situation.

2. The Andrtoh Model for wholistic scales

Following Andrich (1978), the model built most closely on the work of Rasch can
be expressed as

where

log (Fnwelonij_i) D for j-1,J (4)

Plifj is the probability of an observation in category j
Pnfj_i is the probability of an observation in category J-1
Bn is the ability of person n
Di is the difficulty of item i
Fj is the step difficulty or threshold between categories J-1, where the

categories are numbered, say, 0,J, where, for the purposes of this
discussion, all items have the same category structure.

Conceptually, this model requires that the relationship between any two adjacent
categories is a dichotomous Rasch model. For J.1, the Andrich model becomes the
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Rasch dichotomous model. The conceptual underpinning of the model is that each
category represents a qualitatively different level of the variable, but that
comprehension of all levels is required in order to place the person in any one
of them. Merging adjacent categories in the data together into one category, or
splitting a category into two adjacent categories, necessarily changes the
meaning of all the categories, and so the frame of reference of all the
parameters. For estimates from data which are in accord with the Andrich model,
collapsing categories lessens the discrimination of the measuring system and so
contracts the estimates towards the mean, establishing a new frame of reference.
Thus, even though the category thresholds are parameterized independently, they
must be considered together when interpreting them.

The sufficient statistics for the person measures and item calibrations are the
margins of the score matrix, and the sufficient statistics for the category
parameters are the gross counts of the number of responses observed in each
category. Details of particular ratings are not need for estimation, though they
are required for analysis of the fit of the data to the model, as always. A
furthor important feature of this model is that, if the categories are reversed,
i.e. counted from the other end of the scale, the measures are merely reversed
in Since the direction of a scale is arbitrary, this is an essential
feature for measurement.

The unavoidable redefinition of the frame of reference when the rating scalf
amended motivates an exploration for alternative models which allow for Ae
addition or removal of categories without grossly disturbing the parameter
estimates.

3. The Glas model for incremental scales

Glas and Verhelst (1989) present a "steps" model for rating scales also based on
the Rasch dichotomous model. The rating scale item is conceptualized as a multi-
stage testing item, in which success on the previous category is required before
a person is considered to have attempted the next higher category. This model
can be written as:

log(Pni / (1-Proj)) Fin - Di - Fj

where

for j-1,J when Xr,->-j-1 (5)

XIV is the observation resulting from person n interacting with item
i.

Each item is thus considered to be a sequence of notional category-items. The
easiest category-item is administered first, followed by successively more
difficult category-items are administered until either the person fails a
category-item or the sequence is exhausted. Table 1 depicts the ways in which
the possible responses on a scale consisting of the 4 categories 0,1,2 and 3 are
decomposed into category-items.

For Glas's model is also the Rasch dichotomous model. But since each
category-item is modelled to fit the Rasch dichotomous model, local independence
is required to exist, conceptually, across the category-items comprising each

5



rating scale item. Consequently estimates of measures for the Gies model can be
obtained using any software for estimation of the Rasch dichotomous model which
allows missing data. If dependency between category-items exists because of the
sequencing, then this will be reflected in the fit statistics. Though si'fficient
statistics exist for this model, the form of the data is such that fully
conditional estimation fails.

The decomposition of the rating scale into category-items, expressed in Table 1,
is strongly directional and not reversible without changing the meaning of the
frame of reference and the calibrations in a comprehensive manner. The higher
up the rating scale a person scores, the more category-items were encountered and
so the more information is obtained. Reversing the category numbering would
result in the person being analyzed on a test of different length. For scales
in which the direction of numbering of the categories is arbitrary, Glas's model
would give ambiguous results.

For scales, however, which are not wholistic, but rather incremental, Glas's
model offers the possibility of splitting or merging the top category without
changing the meaning of the scale. It is not necessary to know anything of the
higher categories in order to interpret the meaning of the lower ones.

3) The McCullagh model for incidental scales

McCullagh (1980) presents the "proportional odds" model for rating scales in a
number of versions. The version which is of interest here is that which is
analogous to the Rasch dichotomous model. This model can be written as:

J j-1
log( E Pnik / E Pnik) " Bri Di for j-1,J (6)

k-j k-0

Thus every category boundary is considLred to be equivalent to a dichotomous
item, not just for the adjacent categories, as in the Andrich model, but for all
the categories. The rating scale is conceptualized as being based on parallel
logistic ogives, Figure 4, rather than the non-parallel ogival shapes resulting
from Andrich's model (cf. Figure 7).

For this is also the Rasch dichotomous model. For polytomous scz-les,
however, the probability of scoring in any intermediate category is given by

exp(Bn-Dg-Fil exp(Bn-Di-Fi+i)

Pnij (i+exp(Bn-Di )) (1+exp(Br,-01-44.1))
(7)

meaning that the probability of an observation in category j is the probability
of succeeding on a dichotomous item associated with category j, less the
probability of succeeding on one associated with category j-1. Thus, since
Fnip-0, then necessarily Fj +1>'Fj, so that the parameters for the ogives are
monotonic with the category ordering.

This model has the desirable property that reversing the category numbering
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maintains the scaling system, but it is not strictly a Rasch measurement model
since it lacks sufficient statistics.

An advantage of this model is that redefining the rating scale by merging or
splitting categories does not change the frame of reference. Consequently
initial calibrations and measures can be estimated by bisecting the rating scale,
forming a group of higher categories, and another group of lower categories, and
then scoring all items as dichotomies based on which group the observed rating
belongs to. More precise estimates can then be obtained by successively
bisecting each of the groups, until the groups each comprise one category of the
rating scale. The stability of the measures across bisections is an indication
of the fit of the model.

This model is advantageous if the category boundaries are entirely arbitrary, so
that instituting a category boundary at one position is just as good as another.
Further, the category boundaries are independent, so that the presence or absence
of one does not affect calibrations based on an adjacent boundary, apart from
estimation considerations.

II. Modelling and commupicating the intentional form of the scale

The rating scale models considered here, and others (e.g. Samejima 1972), have
the drawback that the calibrations related to the categories may not be
immediately comprehensible to the developer. To illustrate the problem and to
provide a basis for some graphical solutions, Table 2 and Table 3 present the
rating scale calibrations for two structurally similar rating scales analyzed
using the Andrich model. The Figures in this section were excerpted from the
output of the BIGSCALE (Wright et al. 1989) Rasch analysis computer program.

Consider a scale in wh4.ch each category clearly represents a qualitatively higher
level of the variable. The test developer is thinking in terms of Figure 1. The
calibrations for such a scale are presented in numerical form in Table 2. The
step calibrations in column 2 are in ascending numerical sequence and can be
thought of as the transition points in Figure 2. In fact, the Andrich
calibrations correspond to the points in Figure 5 at which the probability curve
for each category internects with the curve for the category below it, indicated
by +19 signs.

Table 3 presents the calibrations for a less clearly defined scale. The Andrich
step calibrations are no longer in sequence with the categories. The matching
category probability curves are shown in Figure 6. The correspondence between
the calibrations and the intersection points is still the same, being the points
of intersection between the curve for one category and that for the category
below it, marked by "+" signs. Since, however, each categories is not in turn
the most probable, the curves do not form a procession of "hills". This means
that the intersection points are disordered with respect to the category numbers.
This disordering of intersection points is true for all rating scale models, but
is reflected in different manners by the parameters.

Rather than consider the probability of any individual category, the cumulative
probability curves, or "zone" curves (Masters 1980), corresponding to the
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probability of observing that category or below could be drawn. These are shown
in Figure 7 for the clearly-defined scale. Disordering of the Andrich
calibrations is reflected by the close proximity of some of the cumulative curves
in Figure 8. For the McCullagh model, these curves would always be parallel
logistic ogives, the complement of Figure 4, and the points of intersection
between the ogives and the .5 probability line would be the McCullagh'category
calibrations, a very clear pictorial representation of the scale. The Andrich
and Clas models can also be depicted as plots of parallel logistic ogives, in
which again the .5 probability line intersects each ogive at the category
calibration point, but these plots are more tortuously related to t;-e expected
responses, and, through them, to the empirical scores.

An alternative approach to the scale is not iv terms of the occurrence of any
particular category, but in terms of what score the person is expected to make
on the item. Fnr the calibrations in Tables 2 and 3, these are shown by the
ogives in Figures 9 and 10. For the models considered here, the score ogives
must be monotonic ascending. They are calculated by summing the products of the
category number and its probability for each point on the variable. Disordering
of Andrich calibrations is reflected by marked changes in slope of the ogive.
The sectors of the ogive, which, when rounded to the nearest integer, correspond
to each of the possible expected scores on the item, are indicated by "I" bands.
The "*" bands indicate the point at which an expected score exaztly corresponds
to a category number, the value of the expected score.

In many respects, Figure 1 is conceptualized by the developer in terms of
observed score intervals, rather than category probabilities, so that the
expected score bands in Figures 9 and 10 most closely correspond to the

idealization in Figure 2. The numerical details of the integral expected score
intervals are presented in the right-hand columns of Tables 2 and 3. These score
interval calibrations can then be compared with the person measures and item
calibrations to determine what category score the person is expected to achieve
on the item. The score ogives for all the models have much the same appearance.

Ingarmuting_be 4eyeloper's intentions

The conventional Rasch-based analysis of Rating Scales is based on the premise
that nothing is known, a priori, about the structure of the Rating Scale apart
from the fact that numerically higher rating scale categories represent "more"
of the latent variable. The general approach (e.g. MULE, 1986) is to collapse
a scale into ascending ordinally counted categories and estimate the calibrations
of the steps between the observed categories strictly on the basis of the
observations in the data set at hand. For many applications this is sufficient
to lead to useful calibration of the rating scale structure.

In examining and describing the models to this point, the relationship between
the empirical data and the developer's intentions have been down-played. The
empirical data, however, always depart to some extent from the developer's ideal.
Consequently, parameter estimates obtained from the data only give an
approximation to the rating scale structure. For instance, no observations of
a particular category may occur at all in the data set under examination, though
that category has good theoretical grounds to exist, and has been observed in
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other data sets.

It is rarely the case in modelling rating scales that the developer is interested
in describing a particular set of empirical data as precisely as possible.
Rather, the empirical data which is being used to calibrate or validate the scale
is known to be but one manifestation of the use to which the scale is to be put,
and so long as the data does not markedly challenge the developer's intentions,
it is those intentions which are superordinate, not the characteristics of the
particular data set being analyzed. The next stage, therefore, is to constrain
the step calibrations in accord with the developer's intentions, which are always
an idealization of the scale. The fit of the data to the resulting model will
indicate the degree to which the ideal is challenged by the actual.

The concept of modelling the developer's intentions by means of algebraic
relationships between the category calibrations is well known. Rasch
(1960/1980), Wright and Masters (1982), Masters and Wright (1984) present certain
scale structures chick could be regarded as rating scales, such as Poisson counts
and counts of successful Bernoulli trials. The concept of choosing the most
useful model is also well established. If it is not clear whether all the trials
involve situations of equal difficulty then a decision must be made as to whether
to fit the data to a Bernoulli model or a more general rating scale model.

Anchoring the vele calibrations

The most extreme distortion to a rating scale in an empirical data set occurs
when a category is not observed. The missing category can be forced into the
analysis and calibrated, merely by including in the analysis a dummy data record
containing such an observation. This will lessen the distortion introduced into
the frame of reference by the omission of the category, and so improve the
overall quality of all the calibrations, but it is unlikely to lead to an
accurate set of calibrations for the rating scale.

A more useful approach to distortion of the rating scale, for whatever reason,
may be to preset or anchor the rating scale calibrations. If the rating scale
is well understood, it is likely that a useful set of calibrations for the scale
has already been obtained. These can be forced into the analysis, and the degree
to which the data reflect the mandated structure can be determined by means of
fit statistics and residuals. Some analysis software, e.g. FACETS (Linacre,
1988) and BIGSCALE, permit the precalibration, ( "anchoring "), of category
calibrations for both observed and unobserved categories.

More general structural concepts.

Scale designer° may intent to construct their scales in terms of
interval", "skewed", or "clustered" categories. Operationalizing this
mathematically, however, is a c'nsiderable challenge.

qual
deas

If the design of the rating scale was intended to meet some goal (e.g. the scale
is to be "equal interval"), the analyst may wish to assert this in the scale
calibrations, both to estimate such an "equal interval", and to force any
conflict between the design intention and the observed data to manifest itself

9
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in fit statistics. In this way, it can be determined whether the empirical data
contradicts or supports the intended design of the scale.

Andrich (1978) includes in his discussion the case of rating scales with
"equidistant thresholds'. However, his thresholds are conceptualized in terms
of the intersections of the probability curves, shown in Figure 5. These may not
correspond to what the scale designer considers to be "equal interval" in terms
of Figure 9. Nevertheless, once the external considerations have been reduced
to a mathematical expression involving Rasch rating scale parameters, such as
Andrich's equidistant threshold model, it is relatively straight-forward to
construct estimation equations. Their form will be close to those given in
Wright and Masters (1982). Suitable fit statistics can also be calculated to
report how significantly the data diverge from the intended design model for the
scale.

h_sample design problem

An example is now presented of a number of ways in which a notionally "equal
interval" scale could be parameterized for the Andrich model. The intention here
is to indicate to the analyst the nature of the information needed from the
designer in order to be able to put into explicit mathematical form the scale
designer's conceptualization of the rating scale. A more complex design would
yield an even greeter number of possible mathematical realizations.

i) The r-usl probability thresholds of adjacent categories are at equal
intervals. (Andrich's equidistant threshold case).

Using the Rasch rating scale parameterization:

log(Pnii ) Bn "" Di - Fj

in which Fo 0, and E(Fj) 0, where j-O,J

(8)

Then an equal interval scale would be one in which, (Fj Fj_i) - C, a constant
across all j, except the extreme. Then

Fj C((j-1) - (3-1)/2) (9)

Such a set of (FJ, j-1,5) would be -2, -1, 0, 1, 2, producing Figure 11. The
value, C, could be either pre-set or estimated from the data. If the thresholds
according to the empirical data are very disordered, then the estimate of C could
be negative, indicating that only the extreme categories are most probable to be
observed.

ii) If the rating scale is intended to represent counts of successes on
similar, exchangeable, tasks, then it can be represented by a Bernoulli trials
model. The Bernoulli trial model for a 6 category scale yields a rating scale
of probability structure shown in Figure 12, with parameter values, following
Wright and Masters (1982 p.51), of (F), ja.1,5) -1.61, -.69, 0, .69, 1.61

10
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iii) The maximum probability points of non-extreme categories are at equal
intervals, i.e. the "hill tops" in Figure 13 are equally spaced. The condition
is;

6

(exp(j *Xk E Fli)/(standardizing factor)) 0 (10)
6311k

when 4 Xk-i a constant across all k, except the extremes.

Such a set of (Fj, J-1,5) is -2, -1.24, 0, 1.24, 2.

iv) The points on the variable where the expected score is equal to the category
value are equally spaced, i.e. the "*' bands in Figure 14 are equally spaced.
The condition is:

E exp(j*4 - E Fh)/(standardizing factor) - k (11)
h.1

when 4 - 4_1 - C, a constant across all k, except the extremes.

Such a set of (F), J-1,5) is -2, -1.24, 0, 1.24, 2.

For the Andrich model, these points on the variable are also the points of
maximum probability for the form modelled in (iii).

v) The equal intervals are intended to represent uniform spacing of the levels
representing equal probabilities of being scored in or above a certain category.
The condition is:

E exp(J*4 E FO/(standardizing factor) - 0.5
h-0

when 4 - 4_1 - C, a constant across all k, except the extremes.

(12)

A set of parameters is (Fi, J-1,5) -2, -1.22, 0, 1.22, 2, depicted in Figure
15.

For the Andrich model, these parameters are close to those for options (iii) and
(iv). For this same constraint applied to the McCullagh model, the parameter
values would be

(Fj - -2, 0,

vi) The half-point expected score thresholds are equally spaced, i.e. the

bands in Figure 16 are equally spaced. The condition is:

11
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E exp(i*Xt E FO/(.4tandardizing factor) aie k + 0.5

when 4 - C, a const,Ant across all k, except the extremes.

Such a set of irj, j...1,5) is -2, -1.77, 0, 1.77, 2.

f) Conclusions and implications:

(13)

Analysis of rating scales has tended to ignore the intentions of the designer of
the scale. Thus it is has not been possible to answer the question "Does the
empirical data support or refute the hypothesis that the rating scale is
functioning in accord with the intentions of its designer ?" ihe challenge to
the analyst is to discern the designer's intentions and to convert them into the
mathematical model, which can most usefu''y advance the understanding of the
scale.
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Table 1. Scoring of a 4 category item according to the alas model.
"N" indicates that the category item is considered not to be
administered.

CATEGORY
LABEL

STEP
CALIBR.

STEP
ERROR

EXPECTED SCORE CALIBRATIONS
STEP -.5 AT STEP STEP+.5

0 NONE EXTREME -.3.69
1 -3.50 .ad -3.69 -2.31 -1.19
2 -1.00 .04 -1.19 -.25 .69
3 .50 .03 .69 1.81 3.19
4 3.00 .20 3.19 EXTREME

Table 2. Calibrations for an empirically clearly-defined rating
scale fitted to the Andrich model. The step calibrations are in
ascending sequence.

CATEGORY
LABEL

STEP
CALIBR.

STEP
ERROR

EXPECTED SCORE CALIBRATIONS
STEP-.5 AT STEP STEP+.5

0 NONE EXTREME -2.23
1 -1.00 .07 -2.23 -1.51 -.84
2 ..s2.00 .06 .-.84 .15 .98
3 3.00 .02 .98 1.53 2.13
4 .00 .10 2.13 EXTREME

Table 3. Calibrations for an empirically ill-defined rating scale
fitted to the Andrich model. The step calibrations are not in
ascending sequence.
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Figure 1. A scale developer's idealized conception of a rating
scale
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Figure 2. The rating scale expressed in terms of performance on
the underlying variable.
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Figure 3. A. simple ogtve representing a dichotomy, expressing the relationship
between a measure and an expected score.



p

R

0

A
B

I

1

T

0
F

E

S

p

0
N

E

1 1

1

11.0 11111111111111 2222222262223331V
11111111111 2222222222233333 44444444441

111111 22222233333 44444455555
1111 2222 3333 4444 5555

111 222 333 444 555

111 222 333 444 555
11 22 33 44 55

11 22 33 44 55

11 22 33 44 55

11 22 33 44 55

.5 - 111 222 333 444 555
11 22 33 44 55

11 22 33 44 55

11 22 33 44 55

11 22 33 44 55
111 222 333 444 555

111 222 333 444 555
1 2222 3333 4444 5555

22222233333 44444455555

2222222222233333 4444444444455555
.0 -22222222233333 4444444444444455555

1

-5.0 -4.0 -3.0 -2.0 -1.0 .0 1.0 2.0 4.0 5.0

Figure 4. Parallel ogival curves. The means of obtaining measures from ratings.
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Figure 5. Probability of responding in each category of the clearly-defined
Andrich scale for a person whose measure is indicated below the x-axis. The
points of equal probability of adjacent categories are shown by "+".
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equal probability of adjacent categories are shown by "+", and are disordered
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clearly-defined scale, accrrding to the Andrich model.
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Figure 8. Probability of responding in a given category or below, for the ill-
defined scale, according to the Andrich model.
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Figure 9. Expected score ogive for the clearly-defined scale.
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Figure 10. Expected score ogive for the ill-defined scale.
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Figure 12. An "equal-interval" scale interpreted as counts of successes on
Bernoulli trials.
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Figure 14. An "equal-interval" scale interpreted as equally spaced integral
expected score values, which are indicated by the vertical "*" lines.
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