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Abstract

A math methods course is a critical site for intervening on prospective teachers' past
experiences with mathematics, experiences that have often left them without meaningful
understandings of mathematical content, appreciation of what mathematics entails, or
confidence in their own ability to do and to learn mathematics. This paper examines the
role of a preservice mathematics methods course in helping beginning elementary teacher
candidates reexamine and move beyond these past experiences in order to help them learn
to teach mathematics for understanding. The paper combines a conceptual analysis of the
role of past experiences in learning to teach mathematics with description of new experiences
that were specifically designed to intervene on those experiences. The conceptual analysis
is elaborated with discussion of the prospective teachers' reactions.



BREAKING WITH EXPERIENCE IN LEARNING TO TEACH MATHEMATICS:
THE ROLE OF A PRESERVICE METHODS COURSE'

Deborah Loewenberg Ball2

This paper examines a particular problem in teacher education: helping prospective
elementary teachers learn to teach mathematics. As a mathematics teacher educator, my
goal is to help my students learn to do something different from--and better than--what they
experienced as pupils in mathematics classes. My problem is also framed by the kinds of
experiences with mathematics and with the teaching and learning of mathematics that my
students have had before I ever meet them and the ways in which those experiences
influence the trajectories on which they move in becoming teachers.

Although teacher educators sometimes speak of preservice teacher education as the
first stage in learning to teach, nothing could be further from the truth. In fact, before they
take their first professional course, future mathematics teachers have already clocked over
2,000 hours in a specialized "apprenticeship of observation" (Lortie, 1975, p. 61) which has
instilled not only traditional images of teaching and learning but has also shaped their
understandings of mathematics. My students are also almost all women, as are most
prospective elementary teachers, a fact that is significant, given what we know about the
widespread alienation of girls from mathematics during their precollege education.

In considering the problem, I focus on the role of a methods course in helping
prospective elementary teachers learn to teach mathematics. A methods course is a
particular curricular occasion, one that is different from other kinds of teacher education
courses in some significant ways. It is about acquiring new ways of thinking about teaching
and learning. But it is also about developing pedagogical ways of doing, acting, and being
as a teacher. And it is about a particular subject matter--one that brings its own set of
issues, different from those in writing or social studies, for instance. What do my students
bring to my course and what should I do in trying in influence the direction they move after
leaving it, as they develop into teachers of mathematics?

Experience and Learning to Teach Mathematics
I would just use this example (64-46) to present it, and just go through it. I
would say, you know, obviously these numbers, you can't subtract in your head.
Alright, you have to cross out one of the tens from the top. And put it over
in the ones column on the top. So you are able to subtract the two numbers.
And then when you cross out that, that tens number, change it, like subtract

'Paper presented at the annual meeting of the Ameri,:an Educational Research Association, San Francisco, March,
1989.
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one from it. So you change, like with 64, change it to a, you know, the 6 to a
5, and the 4 to a 14. And then maybe do a few more examples. Go step by
step through and show them how to do these. And then have them try a few
and if they don't understand it, do it a couple of more times slowly so that they
can see exactly what they are doing. Or maybe even take in an example, like
use pencils or something, like. maybe take 20 pencils and show them, alright,
I have this many, I'm taking away this many, how many does that leave? Just
so they have a visual example. And we'd just go from there. They would
practice and then when they are comfortable with it I would give them a test.
This subtracting is sort of a basic thing, it's not very hard, they either know it
or they don't.

Listening to this prospective teacher describe a teaching plan reveals that, although
she is just entering a teacher education program, she already has an image of herself
teaching math. She has specific ideas about things she could do to introduce students to
subtraction of two-digit numbers, including what she would say and how she would explain
it. She believes that using concrete materials is a good idea because it gives kids a "visual
example." Going slowly step by step is a good idea because they can "see exactly what they
are doing." This particular content seems a "basic thing" to her. She will be
"presenting"--mostly talking and showing her students how to go step by step. To ensure that
they learn, she will give them practice and then, to check on them, she will give them a test.
But, she believes, this is straightforward stuff--"either they know it or they don't."

This prospective teacher's image reflects ideas and assumptions about teaching and
learning and about pupils that she has picked up outside of any formal professional training.
Not surprisingly, these notions are consistent with the way in which mathematics is typically
taught in this country. They comprise the "folkways" of teaching mathematics (Buchmann,
1988).

Studies of mathematics teaching suggest that the mathematics classrooms which
prospective teachers have experienced have many common denominators. Davis and Hersh
(1981) describe the "ordinary math class":

The program is fairly clearcut. We have problems to solve, or a method of
calculation to explain, or a theorem to prove. The main work will be done
in writing, usually on the blackboard. If the problems are solved, the theorems
proved, or the calculations completed, then the teacher and the class know they
have completed the daily task. (p. 3)

The teacher (or the textbook) is the authority, theorems are proved by coercion--not
reason--and confusions are addressed by repeating the steps in "excruciatingly fine detail"
(p. 279). While it makes mathematics educators wring their hands (Kline, 1987), this mode,
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elaborated below, represents the dominant approach to mathematics teaching in the United
States in which prospective teachers are steeped (Buchmann, 1988).

Stodolsky (1985), drawing from her own and others' findings (Fey, 1978; Good lad,
1984; Schwille et al., 1983), provides a picture of modal practice: Classrooms are dominated
by a recitation and seatwork pattern of textbook-centered instruction. In about 20 of the
classes that Stodolsky observed, for instance, students worked individually at their own pace,
although most time was spent on whole-group instruction. Rarely did students work in small
groups or with partners. Generally, math teachers "introduce new concepts to children and
teach and tell them how to do the arithmetic. . . . Once material has been presented to the
students, extensive periods of practice are provided" (Stodolsky, 1985, p. 128).

Textbooks dominate this approach to mathematics instruction. Although teachers
sometimes omit topics they perceive as "extras," they rarely add mathematical content not
covered in the textbook (Schwille et al., 1983). Stodolsky's (1988) analysis of elementary
math textbooks suggests that concepts and procedures are often inadequately developed,
with just one or two examples given, and an emphasis on "hints and reminders" to students
about what to do. She argues that this suggests that it is the teacher's responsibility to
develop the ideas in class. Yet, she reports, researchers observe little use of manipulatives
or other concrete experiences. Instead, students spend most of their time doing written
practice exercises from the textbook.

Known through the common experience of having "been through it," the folkways of
school mathematics assume qualities of both obviousness and necessity which "command a
moral and cognitive loyalty" (Buchmann, 1988, p. 155). Buchmann argues that, "in learning
the folkways, people do not simultaneously internalize the disposition to take a hard look
at what they do and what the consequences are" (p. 155). On one hand, teacher car didates
who have been successful in mathematics may think that the patterns they have seen are
appropriate and therefore may be uninterested in alternative ways of teaching. Those who
struggled in math may nevertheless assume that this is the way mathematics must be taught
and that they are simply among the "have-nots" in mathematics. On the other hand, they
may also aspire to teach differently. But even if prospective teachers are critical of their
own past teachers for teaching badly and for making them feel stupid, many of them lack
alternative images of mathematics teaching, having had no other models.

Furthermore, and equally serious, what we know about what students learn in
ordinary mathematics classes suggests that prospective teachers are unlikely to know math
in the ways that they will need to in order to teach. Their years in school have also shaped
their understandings of mathematics. As this is the mathematics they will teach, what they
have learned about the subject matter in elementary and high school turns out to be a
significant component of their preparation for teaching (Ball, in press; Ball and McDiarmid,
in press). For example, interviews with prospective elementary teachers revealed that few
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of them understood the conceptual principles underlying the procedure for subtraction of
multidigit numbers (i.e., "borrowing") [Ball, 1988]. "I don't really understand the technical,
you know, why's that you do it," explained one. And almost never have prospective teachers
had any opportunity to engage in mathematical discourse--make conjectures, to construct
arguments, to challenge others' claims--or to develop a sense of what it might mean to work
on mathematics within a mathematical community.

Finally, the picture painted above is even more dramatic in the case of women, whose
experience with mathematics in school tends to be still more alienating than that of students
in general. And prospective elementary teachers are predominantly female. This crrmot be
overlooked and it presents the mathematics teacher educator with yet another problem, a
problem related to the special nature of the population with whom we work. Unless
mathematics teacher educators are satisfied with what prospective teachers have learned
from their experiences as students in math classrooms (and most are not), this highlights a
need to interrupt, to break in, what is otherwise a smooth continuity from student to teacher.
In her paper, Margret Buchmann (1989) asks, "Are breaks with experience necessary in
teacher education?" In the case of helping people learn to teach mathematics, my answer
is yes, but also no.

What Does It Mean to Break With Experience?
Past experience necessarily affects the present. As Dewey (1938) writes, "every

experience both takes up something from those which have gone before and modifies in
some way the quality of those which come after" (p. 35). What we have seen, thought, and
felt affects our immediate perceptions, interpretations, and habits. We think that it will rain
because we have seen dark, humid skies like this before. We walk cautiously on ice because
we have slipped before. Prospective teachers can behave like teachers; they can identify
and correct children's subtraction papers, tell who is paying attention, and assign
homework--ail based on past experience as students in classrooms. Experience allows us to
develop routines and frames of reference that simplify life; some things become automatic,
less puzzling, easier.

Yet herein lies the dilemma. What is learned from experience is not subject to
scrutiny, to appraisals of worth or defensibility; all conclusions are not equally desirable.
As Dewey (1938) notes, "experience and education cannot be directly equated to each other.
For some experiences are miseducative. Any experience is miseducative that has the effect
of arresting or distorting the growth of further experience" (p. 26). Experiences may inhibit
openmindedness, freeze ways of looking, or engender undesirable attitudes. Experiences can
therefore limit our possibilities for continued learning. In the case of prospective
mathematics teachers, their experiences have often persuaded them that mathematics is a
fixed body of rules, a dull and uninteresting subject best taught through memorization and
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drill, and that they themselves are not good at math. They have developed the idea that
math teaching involves giving directions about what to do, assigning work, and, as one of my
students wrote, "sit at the desk and wait for people to come up for extra help or to get their
papers checked." Consequently, prospective teachers, equipped with vivid images to guide
their actions, are inclined to teach just as they were taught. Given the widespread criticism
of mathematics education in this country (e.g., Dossey, Mullis, Lindquist, and Chambers,
1987; National Research Council, 1989; Pau los, 1988) this consequence is of substantial
concern.

If the principle of continuity of experience is inevitable, what does that imply for the
educator, one who wishes to shape and affect others' futures? The responsibilities are
twofold. First, educators must judge what prior learnings can contribute to future growth
and which may impede it. This implies a need to examine what learners bring--what they
already know, believe, assume, and are inclined to do. Educators must also have a vision
of where learners are headed and what ideas, beliefs, attitudes, and dispositions are likely
to prove useful for moving in that direction. Second, educators must be able to construct
the conditions for experiences which can foster future growth:

As an individual passes from one situation to another, his world, his
environment expands or contracts. He does not find himself living in a
different world but in a different part or a different aspect of one and the
same world. (Dewey, 1938, p. 44)

The educator's goal, therefore, is to intervene in the inevitable continuity of
experience in ways that affect its future quality and direction. This involves a kind of
conceptual change, perhaps as Petrie (1981) conceives it. He argues that conceptual
change--instances when individuals come to think or see differently--may involve one or
more of the following: changes in meaning, changes in perception, changes in methodology
(p. 46). Interestingly, most discussions of individual conceptual change treat it as
discontinuous, as a radical departure from prior ways of thinking.' In fact, conceptual
change may be seen as part of the continuity of growth. On one hand, future experiences
are affected, redirected, by such changes in ideas, ways of seeing, or ways of doing things.
On the other, however, past experiences can also be reinterpreted and reconstructed, given
new lenses, new assumptions, new ideas.

)This may derive from its origins in the history of science. Although conceptual change is most often used as a
theoretical perspective for individual learning and cognition, its roots are in the revolutionary paradigm shifts describedby Kuhn (1970) and other philosophers of science. As Buchmann (1989) points out, based on Kuhn, "after changing
their world view, scientists work in a different world" (p. 22). Prior scientific theories are dismissed as wrong or are
forgotten. This characteristic of change in a discipline may not apply well to changes in individuals.
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It is this notion of interrupting the continuity of experience with mathematics andthe teaching and learning of mathematics that underlies the work I have been doing withprospective elementary teachers in a preservice methods course. Does this represent abreak with experience? Yes, in the sense that I intervene. But no, given that my aim isto help my students reinterpret their past experiences with mathematics and to redirecttheir future experiences with it. In this latter sense, I respect the continuity of their learning,both as students and as teachers of mathematics. It is that past experience, however
reinterpreted, that necessarily provides the support and impetus for future learning. For
example, that the prospective teachers have themselves had such frustrating experiences withmathematics can serve to fill them with desire to provide their own students with a betteralternative.

What is a Methods Course?
A methods course faces a tension not faced by other courses: a tension that reflects

the fundamental nature of teaching. Teaching is about weaving together knowledge about
subject matter with knowledge about children and how they learn, about the teacher's role,
and about classroom life and its role in student learning. An educational psychology coursecan focus on theories of learning. A mathematics course can be about algebra, or geometry,
or combinatorics. But a methods course can be about the weaving that produces teaching.As such, a math methods course is about mathematics. It is also about children as learnersof mathematics, about how mathematics can be learned--and taught, about how classrooms
ma be environments for learning math. The complexity of teaching coupled with a senseof the continuum of learning to teach (Feiman-Nemser, 1983) makes a methods courseperhaps an impossible concept. I return to my original question: What can a math methods
course try to do?

Methods courses are the mainstay of traditional teacher education programs.Prospective teachers typically look forward to them because they expect that they will learn
how to teach specific things. These are the "practical" classes, unlike foundations or general
education courses. On the first day of c. , one of my students wrote that she hoped "to
get some creative ideas about how to teach math and ideas about how to help kids learntheir facts." Another said that "math is difficult to explain - -this is something I want to work
on this term." Many hoped to learn how to get better at "getting concepts across" tostudents, how to explain skills more clearly, and how to make math more fun and relevant.

My students' expectations seem both too high and too low to me. On one hand, they
hope they can learn how to teach math from this course, a course which lasts for only 10weeks, meeting about four hours a week. These are high expectations. On the other hand,
my students do not expect the course to challenge what they already know about teaching
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mathematics. They want to get better at what they know math teachers have to do: explain,
show, and tell. From my perspective, these expectations are low.

I have often thought of what I do in the space of 10 weeks as "launching." I have
thought that I am trying to "launch" them as learners of teaching, to equip them with ideas,
ways of thinking, commitments, and ways of acting that will serve them well in continuing
to learn on their own, from their own experience as teachers of mathematics.' Different
from a foundations course, a methods course is about more than ideas. It is about
developing ways of acting as well as ways of thinking. For example, my students come with
the habit of asking children about their answers to math problems only when the answer is
wrong. "Is 6 + 8 equal to 127' they are inclined to ask, in a tone and with an expression
that makes clear that 6 + 8 is most definitely not 12. They are not in the habit of asking,
"And how did you come up with 36?" when 36 is right. Instead, they approve the correct
answers without further discussion ("Good!") and query the incorrect ones.

When a child asks, "Is this one right?" my students are inclined to check the child's
answer and tell her if it's correct or not. They are not accustomed to returning the question,
for instance: "Can you show that it makes sense?" When a child asks for help with a
problem, they tell him how to do it. They are not in the habit of encouraging him to confer
with other children about the problem. A methods course is, in part, about ways of acting,
ways of doing--about methodology (Petrie, 1981).

Methods courses are of course also about ideas and about ways of seeing. When
watching children struggle with a difficult problem, many of my students infer that the
children are frustrated- -and, therefore, uncomfortable and unhappy. When they see children
disagree and argue about a solution to a problem, they think that the children are confused,
that the teacher should step in and explain. When they see a child revise a solution in front
of the class because of something that another child pointed out about his approach, many
of them assume that he is embarrassed about having been wrong. These interpretations,
these ways of seeing, are often projections of how they would feel in similar situations.

Prospective teachers make other assumptions as well: When children help each other
with problems, they are not really learning the material. If students use manipulatives or
draw a picture to solve a problem, they don't yet fully understanc it. Word problems are
what is meant by problems. Kids can't solve problems which they haven't been shown how
to do. Learning to reconsider these conclusions and to understand their sources is part of
what a methods course must be about. Learning alternative frames of reference is another.

this metaphor, however, is flawed, for it suggests that this is the beginning. In fact, as I have argued above, my
methods course comes in the middle, following years of constructing assumptions about mathematics and what it means
to know and to do mathematics, about themselves in relation to mathematics, about the roles of teachers and students,
and about classrooms as contexts for learning.
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Learning to Teach Mathematics: Breaking the Continuity
In designing a mathematics methods course, I have chosen two broad areas in which

to intervene: (a) prospective teachers' knowledge, assumptions, and feelings about
mathematics and about themselves in relation to mathematics and (b) their assumptions
about classrooms and the roles of teachers and students in learning mathematics--and their
associated ways of acting based on these assumptions. These obviously overlap, for as we
work on mathematics together as a class, we are also operating within a classroom
community that represents notions about learning and teaching that I want them to notice
and consider. The interplay between these is reminiscent of Schwab's (1971) point about
the two meaaings of "learning community": One may learn about the notion of community,
and one may learn within a learning community. Similarly, prospective teachers may learn
about learning mathematics while they are themselves learning mathematics.

We work within two learning communities: the methods class itself and the public
school third-grade mathematics class in which I teach daily and in which the prospective
teachers participate intermittently throughout the term. Using the school classroom affords
an instructional opportunity whose nature is uniquely between field experience and
videotape. Its texture of reality and interactive nature embody the power 9f field
experience. The prospective teachers can work with children, ask them questions, try things
out and examine their consequences. For example, they interviewed the chilireti to learn
more about what they were learning as well as to learn what it's like to try to rind out what
pupils are thinking. That the experience is both shared and controlled resembles videotape.
We can discuss what happened in the class because we w,t e all there. And, despite the
obvious uncertainties of classroom teaching, I have a great deal of control over what the
prospective teachers encounter in my classroom. This is not the case with their regular field
experiences, many of which represent more of the same mathematics teaching and learning
on which the prospective teachers were raised and, although good sites for experimenting
with mathematical pedagogy, are not well suited to interrupting the continuity of their
experience.

In certain ways, the methods classroom and the third-grade classroom mirror each
other. My role in each looks very similar: I pose tasks, encourage people to collaborate,
to generate solutions and supporting justifications. I orchestrate group discussion of the
problems and their solutions, encouraging students to participate by questioning, challenging,
corroborating others' ideas.3 The third-grade class gives the prospective teachers a vision of
what this might look like in a regular classroom, a sense of possibility. As a mirror, it helps
to focus attention on features of our classroom community--what I do in my role as teacher,
for example. It also helps them to learn to learn mathematics in some new ways. They

See Ball (1989) for an extended narrative example of this m the third-grade class,
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giggle when they first notice that they have picked up ways of talking from the little kids,
saying, for instance, "I'd like to challenge v l'iat Jenny said."

The third-grade class does not, however, just mirror the methods class. It also
contrasts with it, for the third graders do not bring the same baggage to the learning
experience as do the prospective teachers. For example, the third graders depend on me
less and on one another more. They do not construe that as cheating but as a sensible way
to work. They employ and invent a wide variety of strategies for solving problems: in their
innocence, they are not bound to find "the formula." They have considerably more
confidence in their solutions and speak with noticeably more authority. They challenge one
another freely, revise their ideas without apparent embarrassment, and use sophisticated
mathematical language and ideas (e.g., conjectures, negative numbers). The third graders
provide a challenge to prospective teachers' assumptions about what young children can do
and understand, about what school learning of mathematics must entail (e.g., lots of practice,
a quiet environment, sugar-coating to make the mathematics interesting or fun).

This double experience with learning mathematics provokes some of the prospective
teachers to reinterpret their own past experience with mathematics. It suggests to them, for
the first time, that the reason they feel anxious about and incompetent with mathematics is
not due to some shortcoming on their part. That they feel the way they do, that they lack
the understandings they do, may instead be the product of the math classrooms in which
they were students. This is an encouraging new interpretation, one that teems to inspire
some renewed confidence as well as some disposition to learn (or relearn) mathematics.
Many students comment on this. One student wrote, "I have a brand new outlook. . This
class has totally changed my math thinking from my past 22 years of learning it technically
the wrong way. . . . I have established a confidence in myself." And another wished she
could now "go back and really understand" the math she had been taught in high school.

While the experience gives prospective teachers a vision and provokes them to
reexamine their own past experiences, it is also unsettling. As long as the image of
mathematics teaching looks much like what they remember from school, they can imagine
being able to do it. This alternative, and the accompanying evidence that eight-year-olds can
understand negative numbers, come up with insightful conjectures, and invent novel
strategies is a bit scaly. This tension between instilling new confidence and unsettling old
assumptions is perhaps inherent in breaking the continuity of prospective teachers' learning.
On one hand, their reinterpretation of their past gives them new encouragement. On the
other, the alternative vision suggests that teaching mathematics, even to young children, may
be less straightforward than it looked before. I will return to this tension below.

A course about the teaching and learning of mathematics is necessarily about
mathematics: particular content as well as epistemological issues. Once again, I want to
provide experiences that lead them to reconstruct what has come before as well as to
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redirect the course of their future with the subject. One day, for instance, I asked the
prospective teachers to calculate 21/4 + 1/2. Although some felt anxious and said they were
"rusty," they were all able to remember the principle of "invert and multiply" and to get the
answer of 41/2. Then I asked them to write some kind of story that would go with 21/4 + 1/2.
Several wrote stories such as the following: "I had 21/4 pizzas and I gave half to my friend.
We each got 41/2 pieces of pizza." Their pictures looked like this, showing that they divided
the pizza into nine fourths and then divided those nine fourths in half to get 41/2 fourths or
11/8:

Others struggled with the task and, working together, could not produce a story that seemed
to go with 21/4 ÷ 1/2. The 41/2 just did not seem to fit. They began to wonder if their original
answer had been right. Maybe it should be 11/8. As they discussed the problem and
examined different possible solutions, several began to understand that the question was
about how many halves there were in 21/4. They tried to explain this to others. Slowly,
flickers of understanding grew until the group reached a shared sense of what it meant to
divide 21/4 by 1/2. Many of them wrote about this experience later. For example, one wrote:

I realize now that I didn't really understand many of the manipulations that
I could produce the correct response for. Working with the [fraction problem]
was a real eye opener for me. While I could quickly come up with a correct
answer to the problem, I had no idea how to write a story for it. Finally,
through discussion with others and my own thinking out loud, I realized what
the problem was asking me to do. After 16 plus years of school I understood
division of fractions for the first time.

Experiences like this can serve to help prospective teachers revisit and reconstruct
mathematical ideas they have "learned" before. Through this and other experiences, these
students had an opportunity to think about and understand division in a way they never had
before. They were able to talk about what division means, and to write stories that
illustrated different meanings of division in different contexts, and to integrate, for the first
time, division of fractions with division of whole numbers.

Experiences like this can also help prospective teachers acquire a new sense of what
it means to "understand" something in mathematics: That understanding does not mean
simply knowing "how to do it." Several students identified the fraction problem as one of
the two or three key experiences of the term, not for what they learned about division of
fractions, but for what they learned about what it means to understand something in
mathematics. For example:
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I thought of math as rigid. There was always only one answer and you got it
the easiest way possible, usually by an algorithm. Now I see math as much
more flexible as a subject. . . . I think what mainly changed it was the lesson
we did on fractions. . . I felt extra good when I did understand it. . . . It seems
to me that I know more about math as a subject than I did before.

Two class quizzes offered another opportunity to consider what mathematical knowing
entails. Students were asked to work both alone and with others to solve problems and to
write explanations to justify their solutions. One student struggled with articulating a
justification for her manipulations in a standard subtraction problem:

I can easily calculate the problem

261
:145

However when I had to explain how I understood the problem, I could not.
I was merely a victim of rules and procedures. I could not explain the problem
in terms of tens and ones. When I finally figured it out, it seemed so easy to
me.

Another wrote:

When I walked into this class this fall, mathematics to me was knowing how
to get the right answer--not so much even HOW to get it as merely GETTING
it!! I felt that the best way to know math was to have a photogenic
memory. . . . My greatest nuisance was story problems. I grew up hating them.
Now my ideas are completely different. Mathematics is not memorization, it's
more like methodical reasoning. Now one of my favorite kinds of problems is
story problems because I can take it apart and figure out what it is asking for.
Before I would take on the whole problem at once and hope I got it right. I
was never able to look at it and say, "Yes! For sure that is right because . . "
Now I know WHY it's correct or if it's not.

A third experience that offered opportunities for reconsidering what knowing
mathematics entails was observing and working with the third graders. One student said
that it made her feel "really weird" seeing the children discussing mathematical ideas; she
had never thought of mathematical ideas as discussable. After all, as many remarked, "if
math is a simple matter of right or wrong, what's to discuss'?" Gradually they began to see
subtleties in the content, significant issues worth debating. The third graders were embroiled
for several days in a discussion of whether zero is even, odd, or neither. Children,
individually and in small groups, marshalled arguments in attempts to persuade others of
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their views. Other issues which the third graders were working out and in which the
prospective teachers became engaged included what it means to subtract a negative number
and the definition of even numbers. The children's work on these issues, the class
discussions, the efforts to achieve community consensus pushed the prospective teachers to
reconsider their assumptions about mathematical knowledge and ways of knowing. One of
my greatest pleasures of the term was finding a small group of them sitting in the lobby of
the College of Education arguing about whether or not 1 was a prime number.

Having a different notion of what "knowing" entails may make a difference in what
prospective teachers try to learn as well as what they strive for with their own students. In
this way, the experience of learning mathematics can serve to break the continuity of their
experience with the subject in ways that have the potential to affect both their past and
future.

Again, however, there is a tension here. Although such experiences may have effects
that enhance prospective teachers' capacity to grow, they may also discourage: After all, if
this is what is entailed in understanding mathematics, then I really know even less than I
thought I did. And where will I ever learn all the things I need to understand if I want my
own students to understand the mathematics they are learning?

Problems in Attempting to Break the Continuity
Preservice teacher education is fraught with tensions and dilemmas. Two stand out

in trying to interrupt the continuity of prospective teachers' learning to teach mathematics:
one related to prospective teachers' thin understanding of mathematics, the other related to
time.

Prospective teachers' thin understanding of subject matter produces one major
tension. Years of memorization, of focusing on answers, of inattention to meanings, have
yielded reliably algorithmic ways of knowing and doing mathematics. Furthermore, the
surrounding culture is no less oriented toward mathematical sense-making. Certainly in 10
weeks we can revisit and unpack a very few--although, if carefully chosen, powerful--ideas
means that prospective teachers are left to reinterpret and learn a lot of mathematics. Can
they take additional courses that will help them to do more of this? Not likely at most
universities (Kline, 1977). And, if the continuity of learning to teach mathematics involves
an interplay of learning mathematics themselves with learning about learning, then the limits
of what prospective teachers understand may prove a substantial obstacle to learning to
teach mathematics for understanding.

Ten weeks, four hours a week, is a minuscule, almost trivial, amount of time to
contemplate the agenda I have set. The risk is that the tension between unsettling
assumptions and generating future growth will be left unbalanced and that the continuity
will be therefore uninterrupted. Prospective teachers may come away even less confident
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than they were before, more worried that they will not be able to teach mathematics so
that kids can understand. They may see classrooms and children as daunting, mathematics
as a vast sea of things they really do not understand. Thus unsettled, the most logical course
of action would be to return to the safety of the old assumptions and habits. They are
comfortable and familiar. It is risky business to foster the kind of conceptual change that
Petrie (1981) describes, for it entails changes in meanings, ways of seeing, and ways of
acting, but within a very familiar world. The old world view is comfortingly just around the
corner should the new one prove inadequate. Continuity is easily restored, the trajectory
of future growth unaffected.

Furthermore, in a short period of time, only some things change. For instance, many
of my students became persuaded that representation was a key part of learning to
understand mathematics. They may have, however, had time only to develop the idea that
pictures, stories, concrete materials, and the like are helpful. They may have developed a
dogmatic view of "manipulatives." They are probably not prepared to learn from practice
the relative merits of alternative representations. When are bundling sticks a better choice
than base 10 blocks? Or does it matter?

At the end of the term there is evidence that the experience has had an impact on
the prospective teachers' ideas, ways of seeing, and ways of acting. The extent to which
this impact in fact can help to redirect the continuity of their learning to teach mathematics
is an empirical question, well worth asking. But, skeptical in any case of the adequacy cf
a 10-week course, I think it equally worth pursuing how one might extend its duration and
form in ways that would make it more likely that we could prepare teachers to learn from
their own practice.
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