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ABSTRACT

The paper explains in user-friendly terms why multivariate

statistics are so important in educational research. The basic

logic of canonical correlation analysis is presented as a simple

or bivariate Pearson r procedure. It was noted that all statistical

tests implicitly involve the calculation of least squares weights,

and that all parametric tests can be conducted using canonical

analysis, since canonical analysis subsumes parametric methods as

special cases. Canonical analysis is potent because it does not

require the researcher to discard variance of any of the variables,

and because the analysis honors the complexity of a reality in

which variables interact simultaneously.

Three major classes of procedures for evaluating the

importance of specific variables in canonical correlation analysis

were explored. Various procedures in each class were illustrated

in a concrete fashion using a single small data set for heuristic

purposes. Appended SPSS-X and SAS program files may facilitate

further exploration of the concepts presented.
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Canonical correlation analysis is a powerful analytic method

that may best honor the complex nature of the reality to which the

researcher wishes to generalize. As Kerlinger (1973, p. 652)

suggests, "some research problems almdtt demand canonical

analysis." Similarly, Cooley and Lohnes (1971, p. 176) suggest that

"it is the simplest model that can begin to do justice to this

difficult problem of scientific generalization." Wood and Erskine

(1976) identified more than 30 applications of these methods. More

recently, Thompson (1989a) cited roughly 100 canonical applications

reported during the last decade.

Hinkle, Wiersma and Jurs (1979, p. 415) noted that "it is

becoming increasingly important for behavioral scientists to

understand multivariate procedures even if they do not use them in

their own research." And recent empirical studies of research

practice do confirm that multivariate methods are employed with

some regularity in behavioral research (Elmore & Woehlke, 1988).

There are two reasons why multivariate methods are so important in

behavioral research, as noted by Fish (1988).

First, multivariate mettWAA_Jalllitthaillthqj42112121UML_I

!e2mgriitvierrsiteg. The seriousness of "experimentwise"

error inflation, and what to do about it, are both matters

prompting some disagreement (e.g., Bray & Maxwell, 1982, p. 343,

1985, p. 10; Hummel & Johnston, 1986). But it is clear that,

"Whenever multiple statistical tests are carried out in inferential

data analysis, there is a potential problem of 'prooability

pyramiding" (Huberty & Morris, 1989, p. 306). And as Morrow and
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Frankiewicz (1979) emphasize, it is also clear that in some cases

inflation of experimentwise error rates can be quite serious.

Most researchers are familiar with "testwise" alpha. But while

"testwise" alpha refers to the probability of making a Type I error

for a given hypothesis tgat, "experimentwise" error rate refers to

the probability of having made a Type I error anywhere

study. When only one hypothesis is tested for a given group of

people in a study, "experimentwise" error rate will exactly equal

the "testwise" error rate.

But when more than one hypothesis Is tested in a given study,

the two error rates will not be equal. Witte (1985, p. 236)

explains the two error rates using an intuitively appealing example

involving a coin toss. If the toss of heads is equated with a Type

I error, and if a coin is tossed only once, then the probability

of a head on the one toss and of at least one head within the set

of one toss will both equal 50%. But if t1;e coin is tossed three

times, even though the "testwise" probability of a head on each

toss is 50%, the "experimentwise" probability that there will be

at least one head in the whole set of three flips will be inflated

to 87.5%. These dynamics are illustrated in Tables 1 and 2.

Researchers control "testwise" error rate by picking small values,

usually 0.05, for the "testwise" alpha. "Experimentwise" error rate

can be limited by employing multivariate statistics.

INSERT TABLES 1 AND 2 ABOUT HERE.

Paradoxically, although the use of several univariate tests
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in a single study can lead to too many null hypotheses being

spuriously rejected, as reflected in inflation of "experimentwise"

error rate, it is also possible that the failure to employ

multivariate methods can lead to a failure to identify

statistically significant results which actually exist. Fish (1988)

and Maxwell (in press) both provide data sets illustrating this

equally disturbing possibility. Thus, "correcting" the testwise

alpha level (e.g., with a Bonferroni correction--Huberty, 1987) so

as to control experimentwise error rate inflation is not a

satisfactory solution to this problem. The basis for this paradox

is beyond the scope of the present treatment, but involves the

second major reason why multivariate statistics are so important.

Multivariate methods are often vital in behavioral research

because multivariate methods best honor the reality to which the

researcher is purportedly trying to generalize. Since significance

testing and error rates may not always be the most important aspect

of research practice (Thompson, 1989c), this second reason for

employing multivariate statistics is actually the more important

of the two grounds for using these methods. Thompson (1986, p. 9)

notes that the reality about which most researchers wish to

generalize is usually one "in which the researcher cares about

multiple outcomes, in which most outcomes have multiple causes, and

in which most causes have multiple effects." Tatsuoka's (1973, p.

273) previous remarks remain telling:

The often-heard argument, "I'm more interested in

seeing how each variable, in its own right, affects
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the outcome" overlooks the fact that any variable

taken in isolation may affect the criterion

differently from the way it will act in the company

of other variables. It also overlooks the fact

that multivariate analysis--precisely by

considering all the variables simultaneously--can

throw light on how each one contributes to the

relation.

However, the potentials of canonical correlation analysis will

only be realized if researchers understand the logic underlying the

method and if some serious interpretation pitfalls are avoided.

Given a decision that results in hand involve noteworthy effects

(based on significance testing, effect sizes, or replicability/

invariance analyses--e.g., Thompson, 1989c), most researchers wish

to interpret the results to determine which variables in what ways

led to observed effects. The purpose of the present work is to

explore ways in which researchers can evaluate variable importance

in canonical correlation analysis. However, since canonical

analysis subsumes other parametric methods as special cases

(Bagozzi, 1981; Knapp, 1978; Thompson, 1988a), much of the

discussion will generalize to other methods, as will be illustrated

here with respect to multiple regression results. First, however,

some readers may appreciate a brief review of the basic logic of

canonical analysis.

The Basic Logic of Canonical Calculations

Thompson (1984) notes that canonical correlation can be
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presented in bivariate terms. This conceptualization is appealing,

because most researchers feel very comfortable thinking in terms

of the familiar bivariate correlation coefficient. The view is also

important because it forces realization that canonical analysis,

like all parametric methods, involves the creation of "synthetic"

scores for each person. In regression analyses the synthetic scores

are the predicted dependent variable scores of each of the

subjects, sometimes termed "YHAT"; the bivariate correlation

between the subjects' actual dependent variable scores and

synthetic dependent variable ("YHAT") scores is the multiple

correlation coefficient, while the sum of squares of the "YHAT"

scores equals the sum of squares explained. In factor analysis

these synthetic variables are the factor scores of each subject on

each of the factors. In discriminant analysis these synthetic

variables are the discriminant scores of each subject on each of

the discriminant functions.

Table 3 presents a small data set that will be employed to

illustrate how scores of individuals are converted into the

synthetic variables that are actually the focus of a canonical

correlation analysis. The 12 cases were randomly sampled from a

data base generated in one of the "Heart Smart" studies, an

offshoot of the Bogalusa Heart Study longitudinal examination of

the origins of cardiovascular disease during childhood. Readers who

want to develop a broader context for interp:ceting these heuristic

data can consult "Heart Smart" project descriptions by Downey,

Frank, Webber, Harsha, Virgilio, Franklin and Berenson (1987) and
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by Downey, Virgilio, S'arpas, Nicklas, Arbeit and Berenson (1988);

Thompson, Webber and Berenson (1987) represents an example of one

of the research reports originating from the project.

INSERT TABLE 3 ABOUT HERE.

The Table 3 data involve two criterion variables, total

("TOTCHOL") and HDL cholesterol ( "HDLCHOL ") - -HDL is the "good"

cholesterol. The Table 3 data involve three predictor variables:

(a) time in seconds for completing a one mile walk/run ("MILESEC");

(b) the average of six systolic blood pressure measurements taken

by a randomly assigned pair of nurses each taking three

measurements ("SYSTOLAV"); and (c) ponderosity ("POND"), or weight

in kilograms divided by the cubed value of height in meters. Table

3 also reports in parentheses the Z-score equivalents of each of

the 12 subjects' raw scores on the five variables. Of course, these

data are used here only to illustrate the logic of canonical

analysis, and the data set is too small to warrant any substantive

interpretation. Table 4 presents univariate and bivariate

statistics involving these five variables.

INSERT TABLE 4 ABOUT HERE.

Various analytic methods yield weights that are applied to

variables to optimize some condition - -such weights include beta

weights, factor pattern coefficients, and discriminant function

coefficients. These weights are all equivalent (e.g., Thompson &

Borrello, 1985; Thompson, 1988a), but in canonical correlation
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analysis the weights are usually labelled standardized function

coefficients. (Historically, the analogous weights employed in

classical parametric methods are given different names primarily

to confuse students who are trying to understand the methods and

their relationships.). These weights are applied to each

individual's data to yield the synthetic variables that are the

basis for canonical analysis.

However, in canonical analysis several sets of weights and the

resulting synthetic variables can be created. These canonical

functions are related to factors, are uncorrelated or orthogonal,

and can be rotated in various ways (Thompson, 1984; Thorndike,

1976a) . The number of functions that can be computed in a canonical

analysis equals the number of variables in the smaller of the two

variable sets, as explained by Thompson (1984). In the present

example, since the smallest variable set consisted of two

variables, two canonical functions could be computed. Table 5

presents the canonical function coefficients and other selected

results from the analysis produced using the SPSS-X program file

presented in Appendix A. Table 5 presents the information in a

useful format, since the arrangement of the table entries implies

some of the equations used to derive certain results.

INSERT TABLE 5 ABOUT HERE.

Table 6 defines commonly used canonical statistics as simple

bivariat' correlation coefficients. Table 7 illustrates the

computation of the synthetic variables for each of the 12 subjects

7
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using the Function I function coefficients; the reader may wish to

compute the corresponding values associated with the Function II

results. For a given function, two synthetic scores are produced

for each subject--one associated with the composite of weighted

criterion variables, and one associated with the composite of

weighted predictor variables. For example, as noted in Table 7, the

criterion synthetic variable score, "CRITC1", for subject one was

1.11 ((+0.64*(+0.69)] + (+1.17*(+0.57)]). By the same token, the

predictor synthetic variable score for subject 12 was -1.17

([+0.49*(+0.11)] + [+1.30*(-1.03)] + (+0.70*(+0.16))).

INSERT TABLES 6 AND 7 ABOUT HERE.

The canonical correlation (Rc) is nothing more (or less) than

the Pearson product-moment correlation between the two synthetic

variable scores of the subjects on a given function. This can be

illustrated in several ways using the present results. For example,

the bivariate correlation equals the sum of the cross-products of

the two variables, the sum then being divided by n - 1. The cross

products of the synthetic variables for each of the 12 subjects are

presented in Table 7, as is the sum of these cross products. The

sum divided by n - 1 (8.435684/11) equals, within rounding error,

the actual 12c result (+.767**2 = 58.8%) reported in Table 5 for

Function I.

An alternative presentation is graphic. Figure 1 presents the

scattergram in which the 12 pairs of synthetic variable scores from

Table 7 are arrayed. For example, note that the fourth subject's

8
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composite scores in Table 7 indicate that this subject is

represented by the point ("4") in the upper-right position within

the scattergram Figure 1 also presents the least squares

regression line best fitting these asterisks. In the two variable

casc, since the synthetic variables have means of zero, the slc e

of this regression line equals a beta weight, also equals the

bivariate correlation between the synthetic variables, also equals

the canonical correlation coefficient, i.e., .767.

INSERT FIGURE 1 ABOUT HERE.

Table 8 presents computations that illustrate the meaning of

two other canonical results, structure coefficients and index

coefficients. Structure coefficients have the same meaning in a

canonical analysis as in other analyses, i.e., structure

coefficients are bivariate correlation coefficients between a given

criterion or predictor variable and the synthetic variable

involving the variable set to which the variable belongs. For

example, since "ZMILESEC" was a predictor variable, the correlation

between "ZMILESEC" and "PREDC1" is the structure coefficient for

"ZMILESEC". Note that the sum of the crossproducts of "ZMILESEC"

and "PREDCI", labelled "XSTRUC" in Table 8, once divided by n - 1',

equals within rounding error the structure coefficient for

"MILESEC" presented in Table 5. An index coefficient is the

correlation coefficient between a variable and the synthetic

variable consisting of variables from the variable set to which the

variable does not belong. Table 8 illustrates the calculation of
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the index coefficient for "ZMILESEC" on Function I. Thompson (1984)

discusses the importance of index coefficients in greater detail.

INSERT TABLE 8 ABOUT HERE.

Canonical at .o An- sis s Ge e sod
Subsumina_Univariate Methods. Including Multiple Itegression

0 e

In a seminal article, Cohen (1968, p. 426) noted that ANOVA

and ANCOVA are special cases of multiple regression analysis, and

argued that in this realization "lie possibilities for more

relevant and therefore more powerful exploitation of research

data." Since that time researchers have increasingly recognized

that conventional multiple regression analysis of data as they were

initially collected (no conversion of intervally scaled independent

variables into dichotomies or trichotomies) does not discard

information or distort reality, and that the general linear model

...can be used equally well in experimental or non-

experimental research. It can handle continuous and

categorical variables. It can handle two, three,

four, or more independent variables... Finally, as

we will abundantly show, multiple regression

analysis can do anything the analysis of variance

does--sums of squares, mean squares, F ratios--and

more. (Kerlinger & Pedhazur. 1973, p. 3)

Discarding variance is not generally good research practice

(Thompson, 1988b). As Kerlinger (1986, p. 558) explains,

...partitioning a continuous variable into a
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dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other variables.

A good rule of research data analysis, therefore,

is: Do not reduce continuous variables to

partitioned variables (dichotomies, trichotomies,

etc.) unless compelled to do so by circumstances or

the nature of the data (seriously skewed, bimodal,

etc.).

Kerlinger (1986, p. 558) notes that variance is the "stuff"

on which all analysis is based. Discarding variance by categorizing

variables amounts to "squandering of information" (Cohen, 1968, p.

441). As Pedhazur (1982, pp. 452-453) notes,

Categorization of attribute variables is all too

frequently resorted to in the social sciences... It

is possible that some of the conflicting evidence in

the research literature of a given area may be

attributed to tbe practice of categorization of

continuous variables... Categorization leads to a

loss of information, and consequently to a less

sensitive analysis.

One reason why researchers may be prone to categorizing

continuous variables is that some researchers unconsciously and

erroneously associate ANOVA with the power of experimental designs.

Humphreys ;1978, p. 873) notes that:

11
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The basic fact is that a measure of individual

differences is not an independent variable, and it

does not become one by categorizing the scores and

treating the categories as if they defined a

variable under experimental control in a factorially

designed analysis of variance.

Similarly, Humphreys and Fleishman (1974, p. 468) note that

categorizing variables in a nonexperimental design using an ANOVA

analysis "not infrequently produces in both the investigator and

his audience the illusion that he has experimental control over the

independent variable. Nothing could be more wrong."

As Cliff (1987, p. 130) notes, the practice of discarding

variance on intervally scaled predictor variables to perform OVA

analyses creates problems in almost all cases:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa. In

addition, the "barely highs" are classified the same

as the "very highs," even thouqh they are different.

Therefore, reducing a reliable variable to a

dichotomy makes the variable more unreliable, not

less.

These various realizations have led to less frequent use of

OVA methods, and to more frequent use of general linear model

approaches such as regression (Elmore & Woehlke, 1983; Goodwin &

Goodwin, 1985; Willson, 1982). However, canonical correlation

12
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analysis, and not regression analysis, is the most general case of

the general linear model (Baggaley, 1981, p. 129; Fornell, 1978,

p. 168). In an important article, Knapp (1978, p. 410) demonstrated

this in some mathematical detail and concluded that "virtually all

of the commonly encountered tests of significance can be treated

as special cases of canonical correlation analysis." Thompson

(1988a) illustrates how canonical correlation analysis can be

employed to implement all the parametric tests that canonical

methods subsume as special cases.

Thus, canonical correlation analysis is a powerful analytic

paradigm that can be applied to quite a few research problems. The

method is valuable because it honors the complexity of reality by

simultaneously considering all relationships among variables, and

because the analysis does not require that intervally scaled

predictor variables be converted to nominal scale.

The linkage c- ;CA and multiple regression analysis is

particularly easy to see, since both procedures are happily

explicitly named correlational procedures. However, all classical

parametric methods are least squares procedures that implicitly or

explicitly (a) use weights, (b) focus on latent synthetic

variables, and (c) yield effect sizes analogous to r2, i.e., all

classical analytic methods are correlational (Knapp, 1978;

Thompson, 1988a).

The Table 3 data can be employed to illustrate these linkages

in a manner similar to the illustration by Thompson and Borrello

(1985). Knapp (1978) provides a more mathctiudtical treatment of the

13



linkages. Suppose that the researcher wanted to predict "HDLCHOL"

with "MILESEC", "SYSTOLAV" and "POND", and did so using both

regression and a canonical correlation procedures. When the

Appendix B SAS program file was applied to the Table 3 data to

yield these analyses, the results presented in Appendix C are part

of the printout.

The correlation coefficients are given different names and are

printed to a different number of decimal places, but the results

are the same. The same identities occur for, and p, values, as can

be seen by consulting Appendix C. At first pale the weights used

in the two analyses are different, but Table 9 illustrates that the

weights are merely in a different metric, and can be converted back

and forth. Clearly, regression is a special case of canonical

correlation analysis, and much of the forthcoming discussion

regarding the interpretation of canonical results will generalize

to regression situations as well.

INSERT TABLE 9 ABOUT HERE.

Estimating Variable Importance in Canonical Analysis

Canonical correlation analysis is a potent analytic method.

But the difficulty of interpreting canonical results can challenge

even the most seasoned analyst. As Thompson (1980, pp.1, 16-17)

notes, one

reason why the technique is rarely used involves the

difficulties which can be encountered in trying to

interpret canonical results... The neophyte student

14



of canonical correlation analysis may be overwhelmed

by the myriad coefficients which the procedure

produces... [But] canonical correlation analysis

produces results which can be theoretically rich,

and if properly implemented the procedure can

adequately capture some of the complex dynamics

involved in educational reality.

There are three major analytic choices with respect to evaluating

variable importance in canonical analysis: (a) interpretation based

on direct examination of sample results in hand at the function

level (e.g., function, structure, index and Rc2 coefficients such

as those presented in Table 3); (b) interpretation based on

mathematical aggregates of sample coefficients, including results

at the model level; and (c) interpretation based on estimates of

the generalizability of sample results to other samples of subjects

or of variables.

A. Interpretation Based on Sample Results at the Function Level

The two primary rivals for evaluating variable importance at

the function level are function coefficients and structure

coefficients, though index coefficients can be very useful in

certain specialized cases (Thompson, 1984). In terms of actual

contemporary analytic practice, Eason, Daniel and Thompson (1990)

found that in about one-third of the published canonical studies

researchers only report and interpret function coefficients, a

situation not unlike that with respect to some researchers'

preferences for beta weights in the related regression case.

15
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Some researchers have taken the position that structure

coefficients should be emphasized in interpretation, and have

grounded their position on the view that structure coefficients

should theoretically be more invariant from sample to sample than

function coefficients. For example, Darlington, Weinberg & Walberg,

1973, p. 443) argue that:

However, in most cases the choice between the two is

dictated by a practical rather than a theoretical

consideration: sampling error. By analogy to tha

situation in multiple regression (Darlington, 1968,

pp. 175-177), it can be inferred that the standard

errors of weights [function coefficients] are often

much higher than those of correlations [structure

coefficients]. This is especially true precisely in

those cases when the differences between weights and

correlations are greatest--when variables within a

set are highly intercorrelated.

Cooley and Lohnes (1971, p. 55) take the same position in the

related regression case, and do so on the same grounds. However,

Monte Carlo studies (Barcikowski & Stevens, 1975; Thompson, 1989b;

Thorndtke & Weiss, 1973) have not yet conclusively resolved these

issues.

Although these Monte Carlo studies may be criticized on

various ground (cf. Thompson, 1989b; Thorndike, 1976b), it appears

that neither function nor structure coefficients are more sensitive

to sampling error, and that indeed both function and structure

16



coefficients tend to be very unstable from sample to sample. Thus,

the value of one set of coefficients versus the other must be

determined against the standard of psychometric meaning rather than

invariance.

However, on psychometric grounds it can be argued that if one

inhabited an artificial world of forced-choices, the analyst might

interpret structure coefficients while ignoring function

coefficients. Structure coefficients are the most helpful

coefficients to consult when interpreting canonical results,

although many researchers do not interpret and some do not even

report structure coefficients. Since structure coefficients inform

the researcher of the correlation between each variable and the

synthetic variables, these coefficients are what inform the

researcher regarding the meaning of what is actually being

correlated in a given analysis. A variable may have a function

coefficient of zero but a structure coefficient of one, thus in

such a case interpretation based solely on the function coefficient

would be seriously misguided.

As noted previously, structure coefficients have the same

meaning in the canonical cases as in the other analytic methods

that the canonical methods subsume as special cases, i.e.,

structure coefficients are always correlation coefficients between

an observed variable and a latent or synthetic variable. For

example, in principal components analysis the correlation between

the scores on one variable and the factor scores on one factor is

the structure coefficient for that variable on that factor. And as

17
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Gorsuch (1983, p. 207) notes, "the basic matrix for interpreting

the factors is the factor structure." Similarly, in a discriminant

analysis, the correlation between the scores on a predictor

variable and the discriminant function scores on a given function

is the structure coefficient for that variable on that function.

In the regression case, the correlation between scores on a

predictor variable and the "YHAT" scores is the structure

coefficient for the predictor variable. Just as structure

coefficients are vitally important in interpreting results in other

analytic ca.4es, structure coefficients can be very important in

interpreting multiple regression results (Cooley & Lohnes, 1971,

pp. 54-55). Thompson and Borrello (1985) present an explanation of

this application and an rctual research example in which the

interpretation solely of beta weights rather than of structure

coefficients would conceivably have lead to incorrect conclusions.

Thus, with respect to canonical analysis, Meredith (1964, p.

55) suggested that, "If the variables within each set are

moderately intercorrelated the possibility of interpreting the

canonical variates by inspection of the appropriate regression

weights [function coefficients] is practically nil." Similarly,

Kerlinjer and Pedhazur (1972, p. 344) argued that, "A canonical

correlation analysis also yields weights, which, theoretically at

least, are interpreted as regression [beta) weights. These weights

[function coefficients] appear to be the weak link in the canonical

correlation analysis chain." Levine (1977, p. 20, his emphasis) is

even more emphatic:

18
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I specifically say that one has to do this

(interpret structure coefficients] since I firmly

believe as long as one wants information about the

nature of the canonical correlation relationship,

not merely the computation of the [synthetic

function] scores, one must have the structure

matrix.

The hypothetical results presented in Table 5 were useful in

explaining the logic of canonical analysis, but could lead the

naive researcher to conclude that function and structure

coefficients always yield the same interpretations for a given data

set. Such a conclusion would be dangerous! For example, Sexton,

McLean, Boyd, Thompson and McCormick (1988) present a canonical

analysis in which one variable had a function coefficient of +0.02

on Function I, but the same variable had a structure coefficient

of +0.89 on the same function.

In an artificial forced-choice world in which only one

coefficient could be consulted, structure coefficients might be

preeminent, notwithstanding the views to the contrary (Harris,

1989). But in the real world both coefficients should be reported

and consulted in interpretation. Interpretations of canonical

results based solely on function coefficients shogld be eschewed.

However, it should be noted that the function and structure

coefficients for a given variable on given functions approach each

other as the variables in a variable set approach being

uncorrelated (Thompson, 1984, pp. 22-23). In fact, the function and

19
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structure coefficient matrices for a given variable set are

identical when the variables in the set are perfectly uncorrelated,

as would be the case, for example, if the variables in a set

consisted of factor scores on orthogonally rotated principal

components.

B. Interpretation Based on Aggregates or at the Model Level

One argument in favor of evaluating variable importance at the

function level is that one may only be interested in one function

or in fewer than the full set of possible functions. However, good

arguments can also be made that interpretation o.ght to occur at

the full model level. For example, in some respects functions must

be interpreted in relation to each other, just as orthogonal

factors are interpreted in relation to each other. Since canonical

functions are perfectly uncorrelated, one can check the meaning

assigned to a given function by confirming that the same meaning

will not fit any other functions in the model. Furthermore, since

the variables were presumably selected based on a theoretical

premise that the variables made sense as a set, and since the

selection of multivariate methods presumes interest in the full

network of vari, ble relationships, it can be argued that evaluation

at the model level is more consistent with the analytic choice.

Several aggregates of sample results at a model level can be

readily envisioned. One way of aggregating coefficients within the

model is used in computing what are called redundancy coefficients

(Rd). If the squared structure coefficients for a given set of

variables on a single function are added and then the sum is
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divide, by the number of variables in the set, the result informs

the r!_,eaxcher regarding how much of the variance in the variables,

on the average, is contained within the synthetic scores for that

function. This result is called a variate adequacy coefficient

(Thompson, 1984). The calculations are illustrated in Table 5.

Stewart and Love (1968) suggested that multiplying the

adequacy coefficient times the squared canonical correlation yields

a coefficient that they labelled a redundancy coefficient (Rd).

Miller (1975) developed a partial test distribution to test the

statistical significance of redundancy coefficients. Cooley and

Lohnes (1976, p. 212) suggest that redundancy coefficients have

great utility. In reality, the interpretation of redundancy

coefficients does not make much sense i a conventional canonical

analysis, and thus would not be very useful in weighting other

results to evaluate a variable's importance.

As Cramer and Nicewander (1979) proved in detail, redundancy

coefficients are not truly multivariate (see also Thompson, 1988a) .

This is very disturbing, because the main argument in favor of

multivariate methods (for both substantive and statistical reasons)

is that these methods simultaneously consider all relationships

during the analysis (Fish, 1988; Thompson, 1986)!

A redundancy coefficient for a given variable set on a given

function equals the adequacy coefficient for the set times the

squared Rc for the function. The redundancy coefficient can only

equal one when the synthetic variables for the function represent

all the variance of every variable in the set, and the squared Rc
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also exactly equals one This does not usually occur in practice.

Thus, redundancy coefficients are useful only to test outcomes that

rarely occur and which may be unexpected (Thompson, 1980, p. 16;

Thompson, 1984). Furthermore, it seems contradictory to routinely

employ an analysis that uses functions coefficients to optimize Rc,

and then to interpret results not optimized as part of the

analysis, i.e., redundancy coefficients.

However, there are exceptions to most rules. The Sexton et al.

(1988) study was a concurrent validity study in which a very lam

Rc was expected on Function I, and in which all variables were

expected to be very highly correlated with the synthetic variables

defining Function I. In factor analytic language, G or General

structure was expected. In this rather unusual case, the Rd

coefficient was useful in testing a theoretical expectation. But,

again, such results are not usually expected.

But other coefficient aggregates at a model level that may be

more useful can be formulated. For example, Rim (1972) suggested

that the squared canonical correlation coefficient on a given

function might be used to weight other coefficients, LA then

aggregates of these products might be formed across functions. One

particularly intriguing possibility involves the squared structure

coefficients of the variables, since squared structure coefficients

are pregnant with meaning in the canonical context, and since Rc2

and squared structure coefficients are both correlation

coefficients and are in the same metric.

Consider for illustrative purposes the results for "MILESEC"
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presented in Table 3. "MILESEC" shares almost no variance (0.39%)

with the function with the largest Bc2
(58.81%), notwithstanding

the fact that the variable has 56.10% of its variance in common

with the synthetic variable that yielded a meager Bc2 of 3.84% on

Function II. The proposed weighted aggregate for "MILESEC" would

accurately reflect these dynamics (2.38% = .0238 = (.0039 x .5881)

+ (.5610 x .0384) = .0023 + .0215).

A second intriguing variation invokes a canonical commonality

analysis (cf. Thompson, 1988a; Thompson & Miller, 1985). This

analysis can be conducted using aggregates constructed at a

function level, or by pooling commonality results across functions.

Only the construction of aggregates in canonical commonality

analysis at a function level will be illustrated here, since the

basic logic of canonical commonality analysis can be sufficiently

explained with the simpler example. The example employs the Table

3 data and analyses conducted using a portion of the SAS program

file presented in Appendix B.

The first step in a canonical commonality analysis is to

create the synthetic variable scores for the variable set of

primary interest in the research. Presume for the current example

that the researcher was interested in predicting scores on both

types of cholesterol as a set. Thus, the researcher is willing to

consider variations in the predictor variable set. The synthetic

criterion variable scores ("CRITC1") for the 12 subjects on

Function I are presented in both Tables 7 and 8; Appendices A and

B both illustrate their calculation.
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The next step in the analysis requires that various

combinations of the predictor variables be used to predict the

synthetic variable scores using a regression analysis. Table 10

presents these results for the current example. Of course, the le

using all three predictor (.588108) equals the Rc2 (58.81%)

presented in Table 5, and actually is a canonical correlation

coefficient.

INSERT TABLE 10 ABOUT HERE.

Finally, the Table 10 results must be manipulated to determine

how much explained variance in "CRITC1" is uniquely provided by

each predictor, and how much is common to the predictors in various

combinations. Mood (1969) presents the algorithms to determine how

to compute these estimates, but Cooley and Lohnes (1976, p. 222)

have tabled the required computations for cases involving up to

four variables. la addition to reporting a regression cancer study

that might have been grossly misinterpreted absent a commonality

analysis, Seibold and McPhee (1979, p. 358) table the procedures

for cases involving up to five variables. Table 11 illustrates the

computations for the current example.

INSERT TABLE 11 ABOUT HERE.

Table 12 summarizes the analysis in a manner that helps to

clarify what a canonical commonality analysis does--canonical

commonality analysis decomposes the squared index coefficients for

the variables used to predict a synthetic score composite. In this
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approach a variable is deemed important if its accounts for a

preponderant portion of the synthetic variable composite,

particularly if it does so uniquely. This approach is most

informative when the use of index coefficients would also make

sense (Thompson, 1984). Such use presumes (a) interest in one

variable set taken as a given but (b) willingness to use the

variables in the other set in various combinations. This is not

sensible if the analyst believes that both variable sets in a given

situation must be treated as inviolate wholes in the circumstances

at hand. Sometimes canonical commonality analysis will be useful;

sometimes it won't.

INSERT TABLE 12 ABOUT HERE.

A third plausible aggregate of coefficients focuses on

evaluating variable importance at a full model level. One good

candidate for such interpretation is the sum of the squared

structure coefficients for a variable, summed across all possible

functions, i.e., the canonical communality coefficient (h2).

Variables with large commurality coefficients have variance that

was (or could have been) used in forming the synthetic latent

variables that are related in the analysis. However, variables can

have relatively large communality coefficients and still not be

terribly valuable. For example, as noted in Table 3, "MILESEC" has

a communality coefficient of 56.49%, but most of this variance

arises on Function II with its Rc2 of .0384. "MILESEC" has a

squared structure coefficient of less than one percent (.0039) on
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Function I, the function with a rguared canonical correlation of

58.81%.

Thus, communality coefficients are primarily useful is

evaluating variable importance in an observe sense, i.e., in

evaluating which variables are pot, important in a given model.

Variables with extremely low communality coefficients do not add

much to the solution on any functions. In fact, it has been

suggested that communality coefficients can be used to eliminate

variables from an analysis (Thompson, 1982, 1984), though other

criteria for isolating less valuable variables have also been

proposed (Rim, 1972; Thorndike & Weiss, 1969, 1983). Such logics

move toward discussion of the third system for evaluating variable

importance.

Interpretation Based on Generalizability of Sample Results
to Other Samples of Subjects or of Variable

The business of science is formulating generalizable insight.

No one study, taken singly, establishes the basis for such insight.

As Neale and Liebert (1986, r. 290) observe:

No one study, however shrewdly designed and

carefully executed, can provide convincing support

for a causal hypothesis or theoretical statement

Too many possible (if not plausible) confounds,

limitations on generality, and alternative

interpretations can be offered for any one

observation. Moreover, each of the basic methods of

research (experimental, correlational, and case
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study) and techniques of comparison (within- or

between-subjects) has intrinsic limitations. How,

then, does social science theory advance through

research? The answer is, by collecting a diverse

body of evidence about any major theoretical

proposition.

Thus, the ultimate test of a variable's importance is how well the

variable leads to noteworthy insights that generalize across

samples of subjects and samples of variables.

Evaluating the generalizability of canonical results to other

samples of subjects or of variables is a daunting task, but a task

which the serious scholar can ill-afford to shirk. Prior to

presenting several logics for evaluating result generalizability,

it may be worthwhile to explore the extent to which canonical

correlation analysis capitalizes on sampling error. As Nunnally

(1)78, p. 298) notes, "one tends to take advantage of chance in

any situation [all parametric methods) where something is optimized

from the data at hand", as in least squares methods.

For illustrative purposes a population of 10,000 cases of Z-

scores with the same correlation matrix as that presented in Table

4 was created using the program written by Morris (1975). Three

random samples of n=50 were then drawn from this population. The

three samples were essentially independent in terms of overlapping

membership; only one case was randomly selected to be in more than

one sample, i.e., the case was selected to be in two of the

samples. Table 13 presents canonical results associated with both

27



the full population and the three samples.

INSERT TABLE 13 ABOUT HERE.

Note that the three samples do tend to slightly overestimate

population Ec2 values. However, even when the sample ratio of

subjects to variables is as small as 10:1, the capitalization on

sampling error is relatively small for both functions. This pattern

is generally consistent with reports in previous Monte Carlo work

(Thompson, in press).

But coefficients for individual variables tend to be less

invariant across samples, though both function and structure

coefficients tend to be equally unstable. For example, compare the

function and structure coefficients for "MILESEC" on Function II

in sample two (.565 and .600, respectively) and in sample three

(.957 and .977, respectively). The results in the last sample

suggest that "MILESEC" is substantially more important with respect

to this function, e.g., the squared structure coefficients are

36.0% (.6002) versus 95.4% (.9772). Again, this pattern of greater

variability for function and structure coefficients (as against

Rc2) is consistent with previous Monte Carlo work (cf. Thompson,

1989b). One important implication of such findings is that

researchers must be very cautious in generalizing about variable

importance based on a single sample of data.

A second implication is that formulas that correct sample

estimates to support generalization to the full population or to

other samples might be useful in constructing the weighted
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aggregates discussed previously. For example, one might employ

Wherry's (1931) correction formula to Rc2, as suggested by Cliff

(1987, p. 446). Thompson's (in press) empirical results support the

use of such a correction. The Wherry correction can be expressed

as:

R2 - ( (1 - R2) * (V / (11 - V - 1))).

When applied to the most inflated Rc2 result for Function I

presented in Table 13, i.e., the result for sample #2, the

corrected population estimate is:

.6228 - ((1 - .6228) * (5 / (50 - 5 - 1)))

.6228 - ( .3772 * (50 / 44 ))

.6228 - ( .3772 * .113636 )

.6228 - .042863

.579936,

a result which slightly overcorrects in estimating the true, known

population value of .5927.

However, Stevens (1986, pp. 78-84) incisively implies that

researchers usually ground their work in empirical findings from

previous samples, and in actual practice usually want their work

to generalize to future samples in future research rather than to

the unknowable population. Herzberg (1969) provides a correction

for this estimate that also might be used in creating coefficient

aggregates to evaluate variable importance:

1 - ((n-1)/(n-v-1)) ((n-2)/(n-v-2)) ((n+1)/n) (1-R2) .

For these data the correction for the first Rc2 would be:

1 ( 49 / 44 ) ( 48 / 43 ) ( 51/50)(1-.6226)
1 - 1.1136363 * 1.1162790 * 1.02 * 0.3772
1 - 1.2431289 * 1.02 * 0.3772
1 - 1.2679915 * 0.3772
1 - 0.4782864
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0.5217135,

a result which even further overcorrects the estimate, and is thus

still more conservative.

Efforts to estimate the sampling specificity of coefficients

for specific variables are more difficult, or at least more

tedious. Some researchers randomly split their sample data, conduct

separate analyses for the two subgroups, and then subjectively

compare the results to determine if they appear to be similar. Two

points need to be emphasized about such an approach.

First, such procedures almost always overestimate the

invariance or generalizability of results, as Thompson (1984, p.

46) emphasizes. Most researchers work with samples of convenience

that are homogeneous in several if not many respects, e.g.,

geographic location. The members of the random subgroups, then,

have more in common with each other than will independent future

samples drawn by other researchers. This is not said to discourage

the practice of replicability analysis, but is emphasized only to

give a context for interpretation of results. It is always better

to have an empirical overestimate of result replicability than to

have merely a dogmatic attachment to the presumption that sample

results will generalize.

Second, it is emphasized that inferences regarding

replicability must be made empirically rather than subjectively,

e.g., flat by visually comparing coefficients across two randomly

identified sample subgroups. Subjective comparisons will not do,

because the functions in the two solutions may not occupy a common
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factor space. Functions that appear to be quite different may in

fact yield quite similar synthetic variable scores--apparent

differences in functions yielding comparable values for the

synthetic variables actually related in canonical analysis are not

very noteworthy (Thompson, 1989c). Cliff (1987, pp. 177-178)

suggests that such cases involve "insensitivity" of the weights to

departures from least squares constraints.

Three of the many possible logics to empirically estimate

which variables yield variance that generalizes as being useful in

the canonical solution are discussed here. The first two logics

involve randomly splitting the sample into two subgroups (Thompson,

1984, pp. 41-47). Appendix D presents an SPSS-X program file that

was applied to the Table 3 data for illustrative purposes.

The first method of evaluating result invariance is cross-

validation. In the present example separate analyses were conducted

for both the two subgroups each consisting of a different set of

six subjects. These results are presented in Table 14. The first

technique requires that the weights of each be applied both to the

subgroup's own data as well was to the other subgroup's data, as

illustrated in Appendix D. The cross-validation is only reported

here for the first canonical function, but the same logic could be

applied to other functions. The result is eight synthetic variables

(e.g., "PREDCOO" is the latent variable for the predictor variable

set constructed using subgroup zero's data and its own function

coefficients; "PREDC01" is the latent variable for the predictor

variable set constructed using subgroup zero's data and the
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function coefficients from the other subgroup).

INSERT TABLE 14 ABOUT HERE.

These eight variables are then correlated to yield the results

presented in Table 15. When results are invariant the difference

(called shrinkage) between the "actual" Rc2's and the "shrunken"

Rc2's will be small. These values for the present example are

identified in the footnotes to Table 15. The tabled results

indicate that even virtually perfect canonical correlation

coefficients can shrink even to virtually zero when sample size is

small. Of course, the current heuristic example involves analyses

of five variables across only six subjects, and invariance would

hardly be expected in such cases.

INSERT TABLE 15 ABOUT HERE.

The second logic compares results at the full model level. In

this logic the function coefficients are rotated to "best fit"

position so that the functions occupy a common factor space

(Thompson, 1984, pp. 43 -46). The RELATE program written by Veldman

(1967) can be used for this purpose. Table 16 presents the

functions coefficients for subgroup one rotated to best fit

position with the function coefficients for subgroup zero. The

cosines of the angles between the functions across the subgroups

(1.941) suggest that the two functions can be successfully rotated

to best fit. However, before the analyst can legitimately interpret

this result, the cosines of individual variables across the
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subgroups must be consulted (cf. Gorsuch, 1983, p. 284). For the

current example these values were: -0.0258, 0.9607, 0.8305,

-0.5624, and 0.1268. One expects the cosines of the variables to

be homogeneous and large, preferably greater than .90. Thus, these

coefficients too suggest that the example results are not invariant

across samples.

INSERT TABLE 16 ABOUT HERE.

With respect to both these first two logics, it needs to be

emphasized that the results for the full sample are always the best

basis for substantive interpretation, sine', the full sample

involves the largest sample size. That is, the results front the

two subgroups are not themselves subjected to any substantive

interpretation. The results for subgroups are merely consulted to

get some idea of how much confidence to vest in the results for the

full sample.

One problem with both the sampling splitting logics is that

for any given sample there are usually many possible splits

available, and different splits may yield different and even

contradictory results for the same data sample. A more

sophisticated logic relies on the bootstrap approach popularized

by Efron (1979; Diaconis & Efron, 1983; Lunneborg, in press). In

this approach what is conceptually done is to copy the data into

a "megaset" over and over again many times. Then one draws numerous

random samples (often 500 or 1,000) from the "megaset" and pools

(averages) results across the samples. Since the different samples
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each involve different configurations of subjects, the analyst is

evaluating the degree to which idiosyncratic characteristics of a

few subjects may limit the generalizability of the results to

future samples.

Lunneborg (1987) presents some excellent computer programs

that can be used on a PC to conduct analyses for many research

situations. However, this application in the canonical case

involves some special problems. Results from each random sample

must be rotated to best fit position with some target solution

before results are pooled across samples. If this is not done,

unbeknownst to the researcher a function may emerge as Function I

in sample one but as FumItion II in another sample, and the

researcher will be averaging apples and oranges and will reach

unnecessarily dire predictions regarding the sampling specificity

of results. The target solution can be defined in several ways,

e.g., a theoretically expected matrix (usually consisting of +1's,

0's, and -1's) or the actual results in hand can be used as the

target solution. Such an approach could be developed by

generalizing the routines presented in the related factor analytic

case by Thompson (1988c).

Another approach involves bootstrap estimation of the

population bivariate correlation matrix. If this matrix turns out

so that the correlation submatrix for the variables in the

predictor set and the correlation submatrix for the criterion

variable set can both be "inverted" (see Thompson, 1984, p. 13),

then the bootstrap estimated correlation matrix might be subjected
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to canonical analysis in the stead of the sample r matrix in hand.

Table 17 presents such bootstrap estimates of the population

correlation matrix derived from 500 random samples from the

conceptual "megaset" for the Table 3 data.

INSERT TABLE 17 ABOUT HERE.

The standard deviations about mean estimates in bootstrap

applications are especially useful. These are sophisticated

estimates of the standard errors of results, informed by the data

in hand rather than by paltry assumptions about the likely

distribution of sample-estimates of parameters. Thus, Lunneborg

(1987, p. 38, his emphasis) characterizes these as "real"

estimates.

Of course, in most studies researchers wish to generalize to

other samples of variables also measuring specified constructs, and

not only to other samples of subjects. Thus, many researchers find

it useful to conduct leave-one-out (L-0-0) analyses for different

subsets of variables. When variables that are most important to a

given solution are removed, the coefficients (including Rc2) will

change appreciably. The backward variable elimination strategies

discussed previously can be characterized as falling with this

genre, though the methods focusing on communality coefficients do

not require supplementary analyses. These various L-0-0 strategies

become especially potent when they are themselves used in

conjunction with replicability analysis procedures, e.g., cross-

validation.
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Summary

The paper has explained the basic logic of canonical

correlation analysis. It was noted that all statistical tests

implicitly involve the calculation of least squares weights, and

that all parametric tests can be conducted using canonical

analysis, since canonical analysis subsumes parametric methods as

special cases. Canonical analysis is potent because it does not

require the researcher to discard variance of any of the variables,

and because the analysis honors the complexity of a reality in

which variables interact simultaneously.

Three major classes of procedures for evaluating the

importance of specific variables in canonical correlation analysis

were explored. Various procedures in each class were illustrated

in a concrete fashion using a single small data set for heuristic

purposes. Appended SPSS-X and SAS program files may facilitate

further exploration of the concepts argued here.

Krus, Reynolds and Krus (1976, p. 725) argue that, "Dormant

for nearly half a century, Hotelling's (1935, 1936) canonical

variate analysis has come of age. The principal reason behind its

resurrection was its computerization and inclusion in major

statistical packages." The potentials of canonical analyses will

be fully realized when this sophisticated method is understood and

at least some of the interpretation aids identified herein are

thoughtfully invoked.
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Table 1
All Possible Families of OutconiJs
for a Fair Coin Flipped Three Times

Flip #
1 2 3

1. T : T : T
2. H : T : T p of 1 or more H's (TW error analog)
3. T : H : T in set of 3 Flips = 7/8 = 87.5%
4. T : T : H
5. H : H T or
6. H : T : H where TW error analog = .50,
7. T : H H EW p = 1 - /1 - .5)3
8. H H : H = 1 -.5 = 1-.125 = .875

p of H on
each Flip 50% 50% 50%

Note. The probability of one or more occurrences of a given outcome
in a set of events is 1 - (1-p)k, where 2 is the probability of the
given occurrence on each trial and h is the number of trials in a
set of perfectly independent events.

Table 2
Formula for Estimating Experimentwise Type I Error Inflation

When Hypotheses are Perfectly Uncorrelated

1
1

(

(

1

TW
alpha

- 0.05
0.95

)

)

**
**

Tests
1

1

Experimentwise
alpha

=
= a

1 - 0.95 = 0.05000
Range Over Testwise (TW) alpha = .01
1 ( 1 - 0.01 ) ** 5 = 0.04901
1 - ( 1 - 0.01 ) ** 10 = 0.09562
1 - ( 1 - 0.01 ) ** 20 = 0.18209

Range Over Testwice (TW) alpha = .05
1 ( 1 - 0.05 ) ** 5 = 0.22622
1 - ( 1 - 0.05 ) ** 10 = 0.40126
1 - ( 1 - 0.05 ) ** 20 = 0.64151

Range Over Testwise (TW) alpha = .10
1 - ( 1 - 0.10 ) ** 5 = 0.40951
1 - ( 1 - 0.10 ) ** 10 = 0.65132
1 - ( 1 - 0.10 ) ** 20 = 0.87842

Note. "**" = "raise to the power of".

°These calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rate
equals the testwise error rate, as should be expected if the
formula behaves properly.
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Table 3

n MILESEC
Data Set for Heuristic Example

SYSTOLAV POND TOTCHOL HDLCHOL

1 890(+0.18) 94.0(-1.04) 11.5(-0.91) 180(+0.64) 80.1(+1.17)
2 1097(+1.16) 108.7(+1.42) 12.0(-0.69) 142(-1.56) 51.1(-1.02)
3 1300(+2.12) 97.7(-0.42) 13.1(-0.21) 165(-0.23) 63.3(-0.10)
4 948(+0.45) 90.3(-1.66) 12.6(-0.43) 199(+1.74) 75.7(+0.84)
5 940(+0.41) 100.7(+0.08) 19.3(+2.49) 187(+1.04) 61.0(-0.27)
6 760(-0.44) 104.3(+0.69) 14.7(+0.48) 148(-1.22) 76.0(+0.86)
7 740(-0.53) 95.3(-0.82) 14.2(+0.26) 164(-0.29) 78.5(+1.05)
8 571(-1.33) 97.7(-0.42) 13.6(+0.00) 174(+0.29) 54.3(-0.78)
9 748(-0.50) 102.7(+0.42) 10.9(-1.17) 190(+1.22) 62.2(-0.18)10 640(-1.01) 96.0(-0.70) 11.4(-0.95) 161(-0.46) 67.4(+0.21)

11 642(-1.00) 107.0(+1.14) 14.6(+0.44) 159(-0.58) 34.8(-2.25)
12 957(+0.49) 108.0(+1.30) 15.2(+0.70) 159(-0.58) 70.8(+0,47)

Table 4
Descriptive Statistics and Correlation Coefficients

MILESEC SYSTOLAV POND TOTCHOL HDLCHOL PREDC1 CRITC1Mean 852.8 100.2 13.6 169.0 64.6 0.0 0.0SD 211.0 6.0 2.3 17.3 13.2 1.0 1.0MILESEC .052 .046 -.047 .140 .063 .048SYSTOLAV .244 -.624 -.559 -.981 -.752POND .008 -.121 -.084 -.064TOTCHOL .243 .637 .830HDLCHOL .569 .742PREDC1
.767

Note. The bivariate correlation (.767) between PREDC1 and CRITC1 isalso called Rc.

Table 5
Canonical Coefficients for Table 3 Data

Func.

Function I Function II
Squared Squared 2

Index Struc. Struc. Func. Index Struc. Struc. hMILESEC .108 .048 .063 .39% -.813 -.156 -.749 56.10% 56.49%SYSTOLAV -1.026 -.753 -.981 96.28% -.106 .001 .005 .00% 96.28%POND .161 -.064 -.084 .70% .625 .110 .562 31.57% 32.27%Adequacy 32.46% 29.22%Redundancy 19.09% 1.12%
2

R 58.81% 3.84%

Redundancy 36.47% 1.46%Adequacy 62.01% 37.99%TOTCHOL .691 .637 .830 68.95% .765 .109 .557 31.05% 100.00%HDLCHOL .574 .569 .742 55.07% -.856 -.131 -.670 44.93% 100.00%
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Table 6
Bivariate Equivalents of Canonical Coefficients

Variable Type Variable Type Result

CRITC1 Latent PREDC1 Latent Function I Rc

CRITC2 Latent PREDC2 Latent Function II Rc

CRITC1 Latent CRITC2 Latent r = 0

CRITC1 Latent PREDC2 Latent r = 0

TOTCHOL Observed CRITC1 Latent Structure Coef. for
TOTCHOL on Function I

HDLCHOL Observed CRITC1 Latent Structure Coef. for
HDLCHOL on Function I

MILESEC Observed PREDC1 Latent Structure Coef. for
MILESEC on Function I

SYSTOLAV Observed PREDC1 Latent Structure Coef. for
SYSTOLAV on Function I

TOTCHOL Observed PREDC1 Latent Index Coef. for
TOTCHOL on Function I

HDLCHOL Observed PREDC1 Latent Index Coef. for
HDLCHOL on Function I

MILESEC Observed CRITC1 Latent Index Coef. for
MILESEC on Function I

SYSTOLAV Observed CRITC1 Latent Index Coef. for
SYSTOLAV on Function I

Table 7
"Synthetic" Variate Scores for Function I

ZMILESEC ZSYSTOLA ZPOND ZTOTCHOL ZHDLCHOL PREDC1 CRITC1 PRxCR

0.18 -1.04 -0.91 0.64 1.17 0.94 1.11 1.04
1.16 1.42 -0.69 -1.56 -1.02 -1.45 -1.66 2.41
2.12 -0.42 -0.21 -0.23 -0.10 0.62 -0.22 -0.13
0.45 -1.66 -0.43 1.74 0.84 1.68 1.68 2.82
0.41 0.08 2.49 1.04 -0.27 0.36 3.56 0.20

-0.44 0.69 0.48 -1.22 0.86 -0.67 -0.35 0.23
-0.53 -0.82 0.27 -0.29 1.05 0.83 0.40 0.33
-1.33 -0.42 0.00 0.29 -0.78 0.29 -0.25 -0.07
-0.50 0.42 -1.17 1.22 -0.18 -0.67 0.74 -0.49
-1.01 -0.70 -0.95 -0.46 0.21 0.46 -0.20 -0.09
-1.00 1.14 0.44 -0.58 -2.25 -1.20 -1.69 2.04
0.49 1.30 0.70 -0.58 0.47 -1.17 -0.13 0.15

8.435684

Note. The sum of the cross-products (8.435684) divided by
is, within rounding error, the canonical col-relation, i.e.,
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Table 8
Calculation of Structure and Index Coefficients

ZMILESEC PREDC1 CRITC1 XSTRUC XINDEX

0.18 0.94 1.11 0.17 0.20
1.16 -1.45 -1.66 -1.67 -1.93
2.12 0.62 -0.22 1.32 -0.46
0.45 1.68 1.68 0.76 0.76
0.41 0.36 0.56 0.15 0.23

-0.44 -0.67 -0.35 0.30 0.15
-0.53 0.83 0.40 -0.44 -0.22
-1.33 0.29 -0.25 -0.38 0.33
-0.50 -0.67 0.74 0.33 -0.37
-1.01 0.46 -0.20 -0.46 0.20
-1.00 -1.20 -1.69 1.20 1.69
0.49 -1.17 -0.13 -0.58 -0.06

Sum 0.689188 0.528548

Note. The sum of the cross-products of "ZMILESEC" and "PREDC1"
(0.689188) divided by n-1 (11) is +.062653, within rounding error,the structure coefficient of "ZMILESEC" on Function I. The sum of
the cross-products of "ZMILESEC" and "CRITC1" (0.528548) dividedby n-1 (11) is +.048049, within rounding error, the indexcoefficient of "ZMILESEC" on Function I.
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Table 9
Canonical and Regression Linkages

Canonical

Variable
Function Regression
Coefficients (F) beta Weights

Structure
r with DV Coefficients

MILESEC 0.2891 x R = 0.16885304 / R = F 0.1399 0.2395
SYSTOLAV -0.9760 x R = -0.570042 / R = F -0.5590 -0.9571
POND 0.0164 x R = 0.009583643 / R = F -0.1214 - .2078

Rc 0.584047 Mult R Sq 0.3411
(R = 0.5840 )

Note. These results are isolated from Appendix C--the printout from
applying Appendix B's SAS program to the Table 3 data. The beta weight
for MILESEC (.16885304) equals, within rounding error, the function
coefficient for the variable multiplied by Rc (or E), i.e., 0.1688479
= .2891 x .584047. The function coefficient for MILESEC (.2891)
equals, within rounding error, the beta weight for the variable
divided by E (or Bc), i.e., 0.2892086505 = .16885304 / .584047. The
structure coefficients for the variables are the same in both
analyses, though with most computer package regression programs the
analyst must compute the structure coefficients by hand. In the
regression case, as explained by Thompson and Borrello (1985), a
variable's structure coefficient equals the r between the predictor
and the dependent variable divided by R, e.g., .2395 = .1399 /
.584047.
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Table 10
Rc2 for all Combinations of Predictors

Used to Predict PREDC1

Coef. # Squared Rc Combination
1 0.002308 MILESEC (1)
2 0.566202 SYSTOLAV (2)
3 0.004119 POND (3)
4 0.573166 MILESEC SYSTOLAV
5 0.006727 MILESEC POND
6 0.581260 SYSTOLAV POND
7 0.588108 MILESEC SYSTOLAV POND

Table 11
Variance Partitions for Unique and Common Variance

U(1) = R7
.006847= 0.588108

J(2) = R7
0.581381= 0.588108
U(3) = R7
0.014342= 0.588108

- R6
- 0.581260

115

- 0.006727
- R4
- 0.573766

C(1,2) = R5 + R6 - R3 - R7
-0.00423= 0.006727 + 0.581260 - 0.004119 - 0.588108
C(1,3) = R4 + R6 - R2 - R7
0.000716= 0.573766 + 0.581260 - 0.566202 - 0.588108
C(2,3) = R4 + R5 - R1 - R7
-0.00992= 0.573766 + 0.006727 - 0.002308 - 0.588108
C(1,2,3)= R1 + R2 + R3 + R7
-0.00101= 0.002308 + 0.566202 + 0.004119 ± 0.588108

- R4 - R5 - R6
0.573766 - 0 006727 - 0.581260

Table 12
Canonical Commonality Summary Table

Unique
Unique

to MILESEC (1)
to SYSTOLAV (2)

MILESEC
0.006847

SYSTOLAV POND

0.581381
Unique to POND (3) 0.014342
Common to (1,2) -0.00423 -0.00423
Common to (1,3) 0.000716 0.000716
Common to (2,3) -0.00992 -0.00992
Common to (1,2,3) -0.00101 -0.00101 -0.00101

Sum of Partitions 0.002308 0,566202 0.004119
Table 5 Index Coef. 0.048 -0.753 -0.064
Squared Index Coef. 0.002304 0.567009 0.004096
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Table 13
Canonical Results for Modelled Population (N=10,000)
and Three Random Samples (n=50) from the Population

N=10,000
Func. Struc.

Squared
Struc. Furs. Struc.

Squared
Struc.

2

h
MILESEC 0.109 G.064 0.40% -0.821 -0.797 63.57% 63.98%
SYSTOLAV -1.026 -0.981 96.31% -0.109 0.001 0.00% 96.31%
POND 0.159 -0.088 0.77% 0.621 0.556 30.94% 31.71%
Adequacy 32.50% 31.51%
Rd 19.26% 1.23%
2

R 59.27% 3.89%

Rd 36.89% 1.47%
Adequacy 62.23% 37.77%
TOTCHOL 0.688 0.830 68.88% 0.769 0.558 31.13% 100.00%
HDLCHOL 0.576 0.746 55.59% -0.856 -0.666 44.41% 100.00%

n=50 #1 Squared Squared 2
Func. Struc. Struc. Func. Struc. Struc. h

MILESEC 0.018 0.223 4.97% 0.937 0.887 78.61% 83.58%
SYSTOLAV -0.968 -0.984 96.84% 0.101 -0.055 0.30% 97.14%
POND 0.177 0.245 6.00% -0.447 -0.392 15.36% 21.35%
Adequacy 35.93% 31.42%
Rd 22.20% 1.51%
2

R 61.78% 4.79%

Rd 39.07% 1.76%
Adequacy 63.24% 36.76%
TOTCHOL 0.715 0.859 73.83% -0.754 -0.512 26.17% 100.00%
HDLCHOL 0.532 0.726 52.64% 0.893 0.688 47.36% 100.00%

n=50 #2 Squared Squared 2
Func. Struc. Struc. Func. Struc. Struc. h

MILESEC 0.219 0.346 11.99% 0.565 0.600 35.98% 47.96%SYSTOLAV -0,:88 -0.960 92.22% 0.311 -0.027 0.07% 92.29%POND 0.198 -0.123 1.50% -0.838 -0.799 63.80% 65.31%Adequacy 35.24% 33.28%
Rd 21.94% 1.04%
2

R 62.28% 3.12%

Rd 38.17% 1.21%
Adequacy 61.29% 38.71%
TOTCHOL 0.431 0.633 40.01% -0.939 -0.775 59.99% 100.00%HDLCHOL 0.800 0.909 82.57% 0.654 0.417 17.43% 100.00%
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n=50 #3
Func. Struc.

Table 13 (continued)

Squared
Struc. Func. Struc.

Squared
Struc.

2

h
MILESEC 0.260 0.120 1.44% 0.957 0.977 95.50% 96.95%
SYSTOLAV -1.017 -0.961 92.35% 0.106 0.272 7.38% 99.73%
POND 0.102 -0.081 0.66% 0.166 0.218 4.76% 5.42%
Adequacy 31.48% 35.88%
Rd 18.03% 1.63%
2

R 57.26% 4.55%

Rd 36.83% 1.62%
Adequacy 64.33% 35.67%
TOTCHOL 0.512 0.725 52.61% -0.913 -0.688 47.39% 100.00%
HDLCHOL 0.721 0.872 76.04% 0.759 0.489 23.96% 100.00%

Note. On two of the three samples the second function was computed
with opposite signs than occurred in the population or the third
sample. However, the signs of a function ae arbitrary--one can
always reverse a function by multiplying all the function and
structure coefficients for the function by -1.
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Table 14
Canonical Solutions Across Two Subgroups

Sample #1
Squared

Func. Struc. Struc. Func. Struc.

(n1=6 + n2=6

Squared 2

Struc. h

= 12)

MILESEC 0.325 0.388 15.09% 0.832 0.643 41.32% 56.41%SYSTOLAV 0.942 0.922 85.07% -0.321 -0.138 1.90% 86.97%POND -0.148 -0.034 0.11% 0.788 0.535 28.59% 28.70%Adequacy 33.43% 23.94%
Rd 33.38% 13.60%
2

R 99.86% 56.84%

Rd 71.33% 16.24%
Adequacy 71.43% 28.57%
TOTCHOL -0.666 -0.888 78.82% 0.888 0.460 21.18% 100.00%HDLCHOL -0.511 -0.800 64.03% -0.986 -0.600 35.97% 100.00%

Sample #2
Squared Squared 2

Func. Struc. Struc. Func. Struc. Struc. hMILESEC 1.059 0.508 25.77% 0.000 -0.225 5.06% 30.83%SYSTOLAV -0.996 -0.457 20.90% 0.268 -0.179 3.20% 24.09%POND -0.062 -0.113 1.28% -1.081 -0.970 94.04% 95.33%Adequacy 15.98% 34.10%Rd 15.94% 15.30%
2

R 99.72% 44.86%

Rd 49.85% 22.44%
Adequacy 49.99% 50.01%
TOTCHOL -0.017 0.004 0.00% 1.000 1.000 100.00% 100.00%HDLCHOL 1.000 1.000 99.97% -0.0C4 0.017 0.03% 100.00%
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Table 15
"Actual" and "Shrunken" Rc2 Values

as Bivariate Correlation Coefficients (Appendix D)

PREDC00
a

PREDC01 PREDC11 PREDC10

CRITC00 .9993 -.3477
b

CRITC01 -.7904 .0255
C

CRITC11 .9986 -.2273
d

CRITC10 -.6049 .1854

Note. There are no cases for correlations for which only a decimal
is presented.

athe "actual" Rc for invariance group 0 subjectsb
the "shrunken" Rc for invariance group 0 subjects when group l's
weights are used
`the "actual" Rc for invariance group 1 subjects
dthe "shrunken" Rc for invariance group 1 subjects when group 0's
weights are used
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Table 16
Function Matrix for Subgroup 1 Rotated to Best Fit

with Function Matrix for Subgroup 2

NEW B: 1 2
1 -0.9961 0.3603
2 0.8451 -0.5908
3 0.4262 0.9950

4 -0.3245 -0.9461
5 -0.9392 0.3439

Table 17
Bootstrap Estimates of r's for Table 3 Data

Table 4
Coef. Estimate Mean Median SD

1 0.052 0.0514 0.0417 0.2819
2 0.046 0.0421 0.0603 0.2287
3 -0.047 -0.0233 -0.0489 0.2690
4 0.140 0.1135 0.1551 0.3092
5 0.244 0.2598 0.2428 0.2343
6 -0.624 -0.5878 -0.6196 0.2135
7 -0.559 -0.5430 -0.5737 0.2166
8 0.008 -0.0649 -0.0519 0.3541
9 -0.121 -0.0971 -0.1198 0.2224

10 0.243 0.2189 0.2486 0.2560
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Figure 1
Scattergram of Latent Composite Scores on Function I
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Appendix A:
SSPS-X Program File Used to Compute Reported Results

TITLE 'RANDOM SAMPLE OF n=12 OF N=367 "HEART SMART" ##'
FILE HANDLE BT /NAME= 'CANONHPE.DTA'
DATA LIST FILE=BT/OBS 1-3 SEX 10 RACE 12 HEIGHT 18-23 (2)
WEIGHT 25-29 (2) MILESEC 5-8 SYSTOLAV 31-35 (1) POND 45-48 (1)
TOTCHOL 14-16 HDLCHOL 17-40 (1)

LIST VARIABLES=ALL/CASES=12/FORMAT=NUMBERED
CORRELATIONS VARIABLES=MILESEC TO HDLCHOL
MANOVA MILESEC TO POND WITH TOTCHOL HDLCHOL/

PRINT=SIGNIF(DIMENR EIGEN) DISCRIM(STAN COR ALPHA(1.00))/DESIGN
descriptives variables=milesec to hdlchol/statistics=all/save
compute predc1=(.10812*zmilesec)+(-1.02600*zsystola)+(.16110*zpond)
compute critc1=(.69095*ztotchol)+(.57439*zhdlchol)
compute predc2=(-.81751*zmilesec)+(-.10555*zsystola)+(.62539*zpond)
compute critc2=(.76497*ztotchol)+(-.85597*zhdlchol)
print formats zmilesec to critc2 (F9.5)
list variables=milesec zmilesec systolav zsystola pond zpond
totchol ztotchol hdlchol zhdlchol predcl critc1 predc2 critc2/
cases=12/format=numbered

correlations variables=milesec to hdlchol predcl critc1
predc2 critc2/statistics=descriptives

plot title='Scattergram of Latent Composite Scores on Function I'/
vertical=reference(0,1) min(-3) max(5)/
horizontal=reference(0,1) min(-3) max(4)/
plot = critcl with predcl

Note. Command lines in upper case are required for usual canonical
analyses. The commands in lower case were used for heuristic
purposes, i.e., to make explicit the logic of canonical analysis.
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Appendix B:
SAS Program File Used to Demonstrate CCA to R Linkages

TITLE 'CCA AND R LINKAGE';
DATA CCA; INFILE CANONHPE;
INPUT OBS 1-3 SEX 10 RACE 12 HEIGHT 18-23 WEIGHT 25-29
MILESEC 5-8 SYSTOLAV 31-35 POND 45-48 TOTCHOL 14-16 HDLCHOL 37-40;

PROC PRINT; VAR OBS MILESEC SYSTOLAV POND TOTCHOL HDLCHOL;
TITLE 'CCA SUBSUMES R';
PROC REG; MODEL HDLCHOL=MILESEC SYSTOLAV POND/STB;
PROC CANCORR ALL; VAR HDLCHOL; WITH MILESEC SYSTOLAV POND;
TITLE 'CCA COMMONALITY ANALYSIS';
PROC CANCORR ALL; VAR TOTCHOL HDLCHOL; WITH MILESEC SYSTOLAV POND;
DATA CCANEW; SET CCA; ZTOTCHOL=(TOTCHOL-169.)/17.2837286;
ZHDLCHOL=(HDLCHOL-64.6)/13.2:448961;
CRITC1=(.691*ZTOTCHOL)+(.5144*ZHDLCHOL);

PROC PRINT;
PROC RSQUARE; MODEL CRITC1=MILESEC SYSTOLAV POND;

Note. SAS is more useful in demonstrating CCA linkages, because it
follows a multivariate approach if the user requests one, even if the
problem really defaults to a simpler model. SPSS used to do so, but in
the more recent version will change procedures to the simplest model
possible.

The SAS RSQUARE procedure is particularly useful when conducting
a commonality analysis to partition variance, since the procedure
computes results for all possible combinations of predictors.
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Appendix C:
Abridged (but Unchanged) Printout from Applying
the Appendix B Program File to the Table 3 Data

SOURCE
MODEL
ERROR
C TOTAL
ROOT MSE
DEP MEAN
C.V.

ANALYSIS OF VARIANCE
SUM OF MEAN

DF SQUARES SQUARE F VALUE
3 658.24063413 219.41354471 1.381
8 1271.45937 158.93242073
11 1929.70000

12.60684 R-SQUARE 0.3411
64.6 ADJ R-SQ 0.0940

19.51523

VARIABLE DF
INTERCEP 1

MILESEC 1
SYSTOLAV 1

POND 1

STANDARDIZED
ESTIMATE

0
0.16885304

-0.570042
0.009583643

CORRELATIONS AMONG THE 'WITH' VARIABLES
MILESEC SYSTOLAV

MILESEC
SYSTOLAV
POND

CORRELATIONS

HDLCHOL

CANONICAL
CORRELATION
0.584047

LIKELIHOOD
RATIO

0.65888965

STANDARDIZED

MILESEC
SYSTOLAV
POND

1.0000
0.0516
0.0463

BETWEEN THE
MILESEC
0.1399

0.0516
1.0000
0.2435

'VAR' VARIABLES
SYSTOLAV
-0.5590

ADJUSTED
CANONICAL
CORRELATION
0.498980

TESTS OF HO:
F
1.3805

APPROX
STANDARD
ERROR

0.198663

NUM OF
3

POND
0.0463
0.2435
1.0000

PROB>F
0.3170

AND THE 'WITH' VARIABLES
POND

-0.1214

SQUARED
CANONICAL
CORRELATION
0.341110

DEN DF PR > F
8 0.3170

CANONICAL COEFFICIENTS FOR THE 'WITH' VARIABLES
W1

0.2891
-0.9760
0.0164

CORRELATIONS BETWEEN THE 'WITH' VARIABLES AND THEIR CANONICAL
VARIABLES

MILESEC
SYSTOLAV
POND

W1
0.2395

-0.9571
-0.2078
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Appendix D:
SPSS-X Program File to Conduct Cross-Validation Invariance Study

TITLE 'RANDOM SAMPLE OF n=12 OF N=367 "HEART SMART" ##'
FILE HANDLE BT/NAME='CANOMHPE.DTA'
DATA LIST FILE=HT/OBS 1-3 SEX 10 RACE 12 HEIGHT 18-23 (2) WEIGHT 25-29 (2)
MILESEC 5-8 SYSTOLAV31-35 (1) POND 45-48 (1) IINCH01,14-161.00CH01,37-40 (1)

LIST VAIUAICASES=12/FORMAT-41UMBERED
CORRELATIONS VARIABIES-14ILESEC TO HDLCHOL
MANOVA MILESEC TO POND WITH =CHOI, HDICHOL/PRINT=SIGNIF(DEKRIR
EIGEN) DISCRIM(STANCORALPHA(1.00))/DET:GN

compute inv =1
if (obs It 7) inv=0

camment *****in real research invariance groups RANDOMLY created
subtitle 'invariance group 0 n=1 to 6'
Crary
select if (inv eq 0)

descriptives variables=milesec to hdlchol
if (inv eq 0)zmilese0=(milesec-989.167)/186.927
if (inv eq 0)zsystol0=(systolav-99.283)/6.737
if (inv eq 0)zpand0=(pand-13.867)/2.881
if (inveq0)ztatch(tatchol-170.167)/22.463
if (inveq0)zhdlchoC(hdlchol-67.867)/11.192
temporary
select if (inv eq 0)

manova milesec to pond with totchol hdlcholiprint=signif(dimenr
eigen) discrim(stan cor alcha(1.00))/design

subtitle 'invariance group 1 n=7 to 12'
temporary
select if (inv eq 1)

descriptives variable-milesec to hdlchol
if (inv eq 1)zmilese1=(milesec-716.333)/135.615
if (inv eq 1)zsystoll=(systolav-101.117)/5.589
if (inv eq 1)zpand1=(pond-13.317)/1.765
if (inv eq 1)ztabdhol=ltatchol-167.833)/12.222
if (inveql)zhdlchol=(hdlchol-61.333)/15.332
temporary
select if (inv eq 1)

manova milesec to pond with totahol hdlchol/print=signif(dimenr
eigen) discrim(stan cor alpha(1.00))/design

descriptives variables=zmilese0 to zhdlcbol/
subtitle 'true Rc and cross - validation Rc results'
compute

predc00=(.32523*zmilese0)+1.94178*zsystol°)+(-.14830*zpond0)
compute

predc01=(1.05927*zmilese0)+(-.99572*zsysto10)+(-.06219*zpandu)
compute

pradc11=(1.05927*zmilesel)+(-.99572*zsysto11)+(-.06219*zpandl)
compute predc10=(.32523*zmilesel)+(.94178*zsystoll)+(-.14830*zpondl)
compute critc0(-.66584*ztotcho0)+(-.51092*zhdlchoO)
compute critc01=(-.01683*ztatcho0)+(1.00021*zhdlcho0)
compute critc11=(-.01683*ztatchol)+(1.00021*zhdlchol)
ampule critc1(-.66584*ztotchol)+(-.51092*zhdlchol)
variable labels pre&0O 'grp 0 data with grp 0 weights'

predc01 'grp 0 data with grp 1 weights'
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predc11 'grp 1 data with grp 1 weights'
predc10 'grp 1 data with grp 0 weights'
critc00 'gip 0 data with grp 0 weights'
critc01 'grp 0 data with grp I weights'
critcll 'grp 1 data with grp 1 weights'
critc10 'grp 1 data with grp 0 weights'

print formats =nese° to critc10 (f5.2)
list variables=obs zmilese0 to critc10/casel2
correlaticns variables=predc00 to aritc10/

statistics=descriptives

Note. The analysis requires two runs. The first uses only the content not in
bold. This printout is used to find the coefficients needed to add the bolded
content used in the second run. In general it is best to not split the sample
into exactly equal groups, as was done here (o that there would be sufficient
degrees of freedc to run the small example) ; using groups of slightly different
sizes facilitates printout interpretation.
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