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A BSTRACT

The current inquiry reports an attempt to identify appropriate and robust location estimators for
situations that tend to occur among various types of empirical data. Emphasizing robustness
across broad unidentifiable ranges of contamination, an attempt was made to replicate, on a
somewhat smaller scale, the definitive Princeton Robustness Study (PRS) of 1972 to determine
how closely results produced in a laboratory environment represent the multiple contaminations
encountered among real world data. Contaminations included various mixtures of modalities, digit
preferences, tail-weights, sample spaces and asymmetry. Thanks at least partly to the almost
universal presence of asymmetry, the arithmetic mean in particular and L-estimators in general
proved comparatively robust for the situations investigated. Most so-called "robust" estimators
proved less efficient than the mean even in rather extreme conditions for these multinomial data sets
produced by empirical applications of ability and psychometric measures. These findings imply
that prior robustness researches that have found the arithmetic mean and its parametric counterparts
to be non-robust may be misleading, since the types of theoretical populations investigated in most
researches do not appear to exist among real world Psychometric and Education data sets.

thstorically, robustness studies investigating location estimators have found the arithmetic mean to

perform poorly. In fact. the seminal Princeton Robustness Study (PRS) of Andrews, Bickel,

I Iampel, Huber, Rogers and Tukey (1972) claimed the arithmetic mean was the best candidate as

the "worst" estimator among 65 investigated. Similar findings are reported in other studies dealing

with strictly theoretical data: David and Shu, 1978; Gastwirth and Rubin, 1975; Wegman and

Carroll, 1977; Jaeckel, 1971; Ansell, 1973; Carroll, 1979. The implications these studies have for

location dependent statistics are somewhat unnerving, especially in view of findings reporting the

non-robustness of statistics such as r (Kowalski, 1972; Wainer & Thissen, 1976) and t or F (Blair,

1981; Tan, 1982).

BEST COPY AVAILABLE



Although none can argue with the findings of the methodologically sound inquiries cited

here, the context within which they are conducted raises fundamental questions. Most of these

studies have limited themselves to a relatively narrow range of smooth, continuous theoretical

distributions. However, there is no reason to expect the parent populations of empirical data to be

smooth and continuous. Investigators of real world data consistently find it to differ from

tl ?,oretical forms and to exhibit discreteness, asymmetry, multimodalities, lumpiness and digit

preferences in generally unidentifiable combinations (Allport, 1934; Bradley, 1977; Hill & Dixon,

1982; Micceri, 1989; E.S. Pearson & Please, 1975; K. Pearson, 1895; Stigler, 1977; Tapia &

Thompson, 1978; Walberg, St.ykowski, Rovai & Hung, 1984). Stigler (1977) points out the

weakness in using only simulated mahematical functions to evaluate robustness:

"... no matter how clever the investigator is in his choice of specifications for sampling

distributions, there is no guarantee that the pseudo-samples he generates are actually

representative of real data."

Two limited robustness studies involving location estimators have been conducted using

real-world data. Stigler (1977), declared the arithmetic mean to be a reasonable estimator and the

10% alpha trimmed mean the optimal statistic for 20 empirical data sets drawn from 18th and 19th

century physical science measurements. Hill and Dixon (1982) in a study of four "typical" real

world biomedical distributions, recommend the 15% a trimmed mean as a "safe" estimator due to

good performance across all the real-world data sets in addition to high relative efficiency at the

Gaussian.

The studies cited above dealt with only a few exemplary distributions. The current study

attempts to expand the knowledge base of real world robustness and is based on findings from an

extensive survey of distributional characteristics for ability and psychometric measures, much of

which is reported in Micceri (1989). Twenty-five reputable location estimators were compared in

the presence of 37 different distributions. Three pragmatic considerations guided this study's

design: (1) the almost universal presence of at least some asymmetry among empirical data, (2) the

impact this has on the parameter issue and (3) the concept of robustness across a broad spectrum of

distributions because of the complexity found in discrete multinomial distribution,. The 37

distributions were chosen to represent ranges of contamination both common and uncommon that

have been shown to occur among the psychometric and ability measures that today arc so widely

used by researchers and decision makers in education, psychology, public health, business and

government. Investigators of other types of data suggest that similar contaminations occur

elsewhere (Allport, 1934; E.S. Pearson & Please, 1975; K. Pearson, 1895; Stigler, 1977; Tapia &

Thompson, 1978; Walberg, Strykowski, Rovai & Hung, 1c84). The purpose of this study was to

provide a map of performance that may be used by researchers when selecting estimators for

empirical investigations. Therefore, the distributions investigated were generally less extreme than
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those usually evaluated in robustness research because they were selected to represent the proven

and probable, rather than the theoretically possible.

Estimators includes,

A group of 25 location estimators including L-estimators, M-estimators, R-estimators and adaptive

estimators were compared. L-estimators of location, are linear combination of order statistics. M-

estimators of location are solutions, T, of the equation

( xi T)
s )

j=1

where ig is an odd function and S is estimated from an equation of the form:

=0

A Huber one-step estimator (P15) as described in PRS was computed. This estimator is

specified by a preliminary estimate 0 (median), a parameter k (1.5) and a robust scale estimate (the
interquartile range/1.35).

Two other Huber MEstimators (H20, H15) are characterized by a xif function of the form:

and the function

where

-k x< j
(a) iii(x; k) x

k

--k < x < k

k < x

(b) X(x) = V2(x; k) 13(k)

p(k) = 1v(x;k)'14)(dx)

The equations (a) and (b) are solved simultaneously for S and T, iteratively starting with the

median and interquartile range/1.35 as initial values.

The Hampel estimators included here are M-estimators using

3
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with given by

med 1x1 50%1
=

.6745

NO) = sgn x

a

0

0 <a

<b

a <c

lx1?-c

The parameters a, b and c for the three such estimators used here are:

a

HMD 2.0 2.0 5.5

22A 2.2 3.7 5.9

12A 1.2 3.5 8.0

A sine fu, M-estimate (AMT) suggested by Andrews (Andrews et al., 1972) uses the
function:

sin(-2.--1 I x I < 2.17c2.1

otherwise

R-estimators are based on ranks, and adaptive estimators respond to characteristics of the sample.

Table 1 identifies each estimator and its type. More complete details for 18 of the estimators may

be found in the PRS.

Seven estimators not defined in the PRS include four L-estimators: a form of the median for

grouped data (P50), the outer-mean (OM) computed as the mean of the trimmings for a 25% a

trimmed mean and two Winsorized means (W05 and W15). Originating from the work of C.P.

Winsor, Winsorized means identify a proportion of sample points indexed either by n or a. The

Winsorized sample points are then assigned the value of that sample point immediately below or

4
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above the last point to be Winsorized, and the arithmetic mean is taken. Additionally, three Hogg-

type adaptive estimators Hogg (1974) are based on:

(U(.05)-L(.05)) (U(.20)-L(.20))
or Q1 (U(.50)- L(.50))Q (U(.50)-L(.50))'

where U(a)IL(a)] is the mean of the largest (smallest) [(N+1)a] observations. The exact form of

the three Hogg adaptive estimators is given below.

T38 Q>3.2
T19 2.6<Q5_3.2 T25 1.81<Q1 5_1.87

HG1 T= HG2 T= T25 1.81 <Q1<_1.87
M 2.0<Q 5_2.6 T10 Q1<_1.81
OM Q!-L.2.0

Hogg's adaptive Hampel (Wegman and Carroll, 1977) was defined as:

22A. Ql 5_2.00

HGH T=

12A Ql >2.00

Perf9rmanee Measures
To investigate robustness, most researchers evaluate the relative bias and variability of different

estirr itors' sampling distributions. For symmetric distributions, the center of symmetry defines a

unique true value (parameter). Under asymmetry, however, no generally agreed upon parameter

exists, and the estimand question becomes complex.

Defining a parameter of interest is therefore a central issue in this study. Several authors

recommend approaches to this problem. Doksum (1975) suggests using the mean/median interval

and the estimand's location within this interval. Ansell (1973) compared estimators against two

estimands, the mean and the median of a simulated population. Hill and Dixon (1982) averaged an

estimator's variability about the mean and the median. Bickel and Lehmann (1975) recommend the

use of that which the estimator estimates in the population (self). Thus, the mean's estimand is lt,

and the median's is the population median. Therefore, for the asymmetric data at issue here, at
least three estimands need to be considered: j_t, median and self.

Under asymmetry,µ is pulled in the direction of greatest skew, while the median remains

central. A statistician working with an empirical data set is most likely interested in an estimate

within this mean/median interval (Doksum, 1975; Bickel & Lehmann, 1975). Most robust

estimates are more likely to estimate the median than 1,t in this situation, and in fact probably

estimate a parameter between the two.
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TABLE 1

Selected Location Estimators and Their Identifying Labels

Label Estimator

L-Estimator.

M Arithmetic Mean
T05 5% Alpha Trimmed Mean
T10 10% Alpha Trimmed Mean
T15 15% Alpha Trimmed Mean
T25 25% Alpha Trimmed Mean
MED Median Continuous (ungrouped) Data
P50 Median Categorical (grouped) Data
W05 5% Winsorized Mean
W15 15% Winsorized Mean
GAS Gastwirth's Trimean
TRI Trimean
CST Iteratively -skipped trimean
OM Outmeari (25%)

M-Estimator.

P15
H2O
H15

Huber One-step, k=1.5, start=median
Huber proposal 2, k=2.0
Huber Proposal 2, k=1.5

HMD H Impel M, PSI bends at 2.0,2.0,5.5
22A Hampel M, PSI bends at 2.2,3.7,5.9
12A Hampel M, PSI bends at 1.2,3.5,8.0
ANT Andrew's sin function M-estimate

B-Estimator

HL Hodges-Lehmann R-estimator

Adaptive Estimators

JOH John's adaptive estimator
IIG1 Hogg's adaptive trimmed mean based on Q
HG2 Hogg's adaptive trimmed mean based on Q1
UGH Hogg's ada tive Hampel M, based on Q1

For this reason an additional estimand was computed to represent this desirable parameter
located somewhere between p. and the median under asymmetry. Termed E-robust (estimate of the
robust), it was computed by taking the 15% cc trimmed mean of all estimands. The expected value
for this statistic under asymmetry is somewhere between 11 and the median, a closer approximation

to that value many robust estimators seek in the population, and perhaps a value of most interest to
many researches. 'i approach of evaluating an estimator's performance against four different

estimands provides informatioi, of great use to the practitioner who must decide which point within

the mean/median interval is of most interest in a specific research.

6



In the following discussions, bias is defined as the distance between the mean of a

sampling distribution and the value of the distribution's (hereafter termed pseudo-population) target
parameter 0. Variability is the mean square error of a sampling distribution, an absolute measure
of dispersion, and MSE is the mean square error of a sampling distribution about the pseudo-

population target parameter 0.

Distributions
The distributions investigated by Micceri (1989) were exclusively multinomial in nature and were

frequently characterized by multiple forms of contamination including various multimodalities and
digit preferences as well as diverse tail weights and degrees of asymmetry. Figure 1 depicts two

common examples of psychometric distributions that exhibit mixed asymmetric contamination

combined with ceiling and floor effects.

1W

U

A

U I 2 3 4 5 6 7 0 9 10 II 13 14 15 16 17 10 19 20 21 22 23 24 25

0

0 I 2 3/ 5 6 7 8 9 11111 12 13 11 15 16 17 1019 20 21 22 23 21 25

Figure 1: Two asymmetric empirical distributions: Panel A (N=1258), Panel B (N=1231)

Micceri (1989) used robust estimates of tail weight and asymmetry to classify a broadly
representative group of large sample empirical distributions into one of four categories defining

symmetry or the lack thereof, and one of six categories defining various levels of tail weight (Table

2). The author notes (p. 158):

Cut points were set arbitrarily, and those defining "moderate contamination" ofeither tail

weight or asymmetry were selected only to identify distributions as DEFINITELY non-

Gaussian. The moderate contamination cut points (both symmetric and asymmetric) were

set at 5% and 15% contamination based on the support for the alpha trimmed mean and

trimmerl i in the research literature.
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A sample of 35 distributions was originally selected to represent the varying combinations

of asymmetry, tail weight, modality and lumpiness found among the real life pseudo-populations

represented in Table 2. To assure that the distributions well represented their parent populations,

either 1000 cases or at least 10 cases for each possible sample point was required for inclusion in

this study. Pseudo-population sample sizes ranged from 400 to 4994, with 28 (75%) including

more than 1000 cases. Sample spaces ranged from 4 to 262.

In an attempt to thoroughly investigate traditional issues, both symmetric and heavy tailed

symmetric distributions were oversampled relative to the proportions found among real data by

Micceri (1989). First run findings for the relatively symmetric, extremely heavy tailed situations

contradicted prior researches. Therefore, two additional such pseudo-populations were drawn as a

cross validation.

Real world distributions present interpretation problems due to their multiple

contaminations. Because of this and the complexity created by 37 different situations, these

pseudo-populations were not treated as unique entities, but rather were considered to represent

different mixtures of contamination: sample space, tail weight, asymmetry, multimodality and/or

digit preference. For' example, each of the four different pseudo-populations representing

moderate contamination of tail weight and asymmetry had a different combination of sample space,

modality and digit preference. One was unimodal and smooth, one multimodal and smooth, one

unimodal and lumpy, and one multimodal and lumpy, with sample spaces respectively of 21, 31,

45 and 137. Each sampled cell of Table 2 that includes four pseudo-populations contains a similar

mixture of contaminations. Thus, a variety of factors was averaged within a specific combination

of tail weight and symmetry conditions to assess general performance in the presence of real world
complexities.

Results for variability, bias and MSE were computed separately for each pseudo-

population. These were then combined within five major contamination strata each containing
between two and four substrata:

(1) four relatively symmetric tail weight groups: lighter than Gaussian, about Gaussian,

moderately heavy tailed and extremely heavy tailed (cross validated once);

(2) four levels of symmetry: relatively symmetric, moderately asymmetric, extremely

asymmetric and exponentially asymmetric;

(3) three categories comparing increasingly greater mixtures of asymmetric contamination and

tail weight (Gaussian level, moderate contamination of both tail weight and asymmetry,

and extreme contamination of both tail weight and asymmetry);

(4) three different types of symmetric modality characteristics: smooth unimodal, lumpy

unimodal and smooth multimodal and

(5) symmetric and asymmetric small sample space situations (fewer than 10 scale Points).

8
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The purpose of creating so many categories was to provide a matrix of results from which

specific applications can be evaluated. The reason for collapsing complex combinations within

cells was twofold: (1) to simplify interpretation and reporting and (2) tomore closely represent the

indefinable complexity of the real world, where isolated contaminations are rarely found.

One thousand estimates were computed for each of the 25 location estimators for each of

the 37 pseudo -populations for samples of size 5, 10, 20 and 40 using the IMSL uniform ranerlm

number generator (GGUD). Algorithms for location estimators came primarily from the PRS,

with minor modifications (mainly in transferring from FORTRAN 66 to FORTRAN 77). More

elegant algorithms for three estimators (CST, P15 and OM) result from the work of Keller-

McNulty & Higgins (1987). Subroutines for P50 were written by the author.

Since sample spaces, means, medians and variability differed for each pseudo-population;

variability, bias and MSE were standardized by the respective population's standard deviation.

Following the tradition established by the PRS, deficiencies were then used to compare estimators

on bias, variability and MSE. Deficiencies are defined as 1 - efficiency, where:

rformance of optimumefficiency performance of estimator of
estimator

interest

Although not symmetric about zero (Wegman and Carroll, 1977), deficiencies show deviations

from optimum, emphasize values close to 0.00, are easily understood and cause only limited

problems with accuracy, at least when below .25.

9



Table 2

Values of Tail Weight and Asymmetry
For All Pseudo-Populations

Values of
Tail Weight

Values of Asymmetry

Near
Symmetry
n

5%
Asym.

Contam.
n

15%
Asym.

Contam.
n

Expo-
nential

n
Totals
N Pct..

Uniform 0 (0) * 4 (0) 5 (1) 5 (0) 14 (1) 3.2%

1,(!ss than Gaussian 21 (2) 33 (1) 8 (1) 3 (0) 65 (4) 14.8%

Near Gaussian 30 (6) 29 (2) 7 (3) 1 (1) 67 (12) 15.2%

5% Symmetric Contam 30 (2) 35 (4) 11 (1) 2 (1) 78 (8) 17.8%
2 std dev from mean

15% Symmetric Contam. 41 (4) 64 (1) 35 (1) 3 (0) 143 (5) 32.5%
3 std dev from mean

Double Exponential 3 (2) 14 (1) 20 (2) 36 (1) 73 (5) 16.6%

Totals 125 (14) 179 (9) 86 (9) 50 (3) 440 (35)

Pct. 28.4% 40.7% 19.6% 11.4% 100.0%

* Number of pseudo- populations included in comJarison of location estimators
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Kvalluant Discussion
Much like other studies investigating asymmetric situations (i.e. David and Shu, 1978) the results

of this study for variability and bias tended to contradict each other. In relati ely symmetric

situations, the less varh.e estimators for all four parameters tended to exhibit greater bias, and

vice versa. Both absolute standardized variability and differences among estimators on variability

tended to be considerably greater than either absolute standardized bias or differences among

esimators on bias. Variability of the sampling distributions averaged respectively for sample., of
size: 5 (.50sx of the pseudo-population), 10 (.35sx), 20 (.25sx) and 40 (.20sx). Although OM

exhibited rather extreme bias from the median in the exponential situation, bias from E-robust was
generally small (> .05sx).

Overall, M and OM were the least variable estimators. For almost every situation, M was

either the least variable or one of the least variable estimators. All estimators were both relatively

and absolutely quite unbiased relative to their own estimand (self) for all sample sizes and

distribution shapes. As asymmetry increased, M exhibited increasingly greater bias from both the
median and E-Robust, yet generally remained a comparatively unbiased estimator of .t. As

asymmetry increased, most "robust" estimators exhibited less bias from the median than .t and in

fact appeared to estimate E-Robust. For the small sample situation (n=5), under both symmetric

and asymmetric conditions, several rather drastic estimators (MED, P50, JOH, GAS, TRI, CST,
12A and AMT) performed well in terms of bias (particularly from the median), but exhibited
relatively great variability. As sample size increased, these estimators tended to lose their

advantage of lesser bias while retaining their disadvantage of greater variability. For almost every
situation, little change in relative performa ice occurred past sample size 20. Detailed results for

bias and variability can be found in Micceri (1987).

RESULTS FOR MSE
Because results for bias and variability tended to produce different conclusions and since most
estimators proved relatively unbiased estimates of self, further emphasis here is placed on the MSE
of each estimator's sampling distribution about three population parameters: 1.t, median and the "in

between" E-Robust. Table 3 shows the most efficient estimators for each sampling situation only

for samples of size 5 and 20 since results were quite consistent as sample size increased. Only

eight estimators proved most efficient in more than a single situation (M, OM, T05, T10, T13,

T25, H15 and H20). M (58 of 96 situations) is most frequently the most efficient estimator.

Under symmetry, M is optimum for all parameters for every tail weight situation except the light
tailed and moderately heavy tailed situations. As estimators of j.t, one of M, OM or T05 is always

most efficient. As estimators of E-Robust, M(19), OM(6), T05(3), T10(2) and T15(2) dominate.

As estimators of the median, M, OM and T05 are most efficient for the majority of symmetric

situations, with 1'15 and T25 proving most efficient for extreme asymmetry or ninations of

extreme asymmetry and heavy tail weight.



Where they are more efficient, traditional robust estimators become increasingly more

efficient as sample size increases. However, almost all statistics performed fairly well in an

absolute sense for the large sample situation. Tables 4 to 6 show the deficiencies of the seven

overall best estimators (OM, M, T05, T10, T15, H2O and H15) from the optimum estimator of the

three parameters across the 16 sampling situations for samples of size 5 and 20.

In the following discussion, estimators in parenthesis are optimum for the situation. Table

4 shows that as an estimator of µ, M is either most efficient or within 1% of the most efficient

estimator for all situations except the symmetric light tailed (OM), and the symmetric small sample

space (OM). Table 5 shows that as an estimator of E-Robust, M exhibits deficiencies greater than

1% only for symmetric light tails (OM), small sample spaces both symmetric (OM, 1-115) and

asymmetric (T05) and exponential asymmetry or extreme mixed contamination (T15, T10). As an

estimator of the mediaa (Table 6), results are similar with greater deficiencies, particularly as either

sample size or asymmetric contamination increases.

As expected, Tables 4 to 6 show that for all relatively symmetric situations all estimators

attempt to estimate approximately the same parameter. Under relative symmetry, only for light

tailed or small sample space pseudo-populations is M more than 1% deficient from the optimum

estimator.

Results under asymmetry are quite consistent. As contamination increases, M remains the

most efficient estimator of p, however, as an estimator of F-Robust or the median, M's deficiency

increases as asymmetry increases. Among trimmed means, as asymmetry and/or sample size

increase, the more efficient estimators tend to be those that trim increasingly greater percentages of

the sample. Note that the mixed contamination class includes distributions exhibiting both extreme

and exponential asymmetry, thus having on average less extreme asymmetry than those classified

as exponentially asymmetric.



TABLE 3

Most Efficient Estimator of Three Pseudo-Population
Parameters for Samples of Size 5 and 20 Across a

Variety of Sampling Situations

Pseudo-
Population
Types N

Most Efficient Estimator

Sample Size 5 Sample Size 20

Abt.
Mcan

Abt.
E-Rb

Abt.
Med

Abt.
Mean

Abt.
E-RB

Abt.
Med

SYMMETRIC
Light Tail 2 OM OM OM OM OM OM
Gaussian 6 M* M M M M M
Mod. Tails 2 T05 T05 T05 T05 T05 T05
Heavy Tails 6 M M M M M M

SYMMETRY TO
ASYMMETRY
Symmetric 14 M M M M M M
Mod. Asym. 9 M M M M M H2O
Ext. Asym. 9 M M M M W05 T15
Expn. Asym. 3 T05 T15 T25,GAS M T10 T25

MIXED Callad.t
Gaussian 6 M M M M M M
Mod. Contam. 4 M M M M M M
Ext. Contam. 4 T05 T10 T15 M T15 T25

MODALITY AND
DIGIT PREF.
UNDER SYMMETRY
Smth. Unimode 5 OM M, OM OM OM r1 M

Lmpy. Unimode 4 M
Smth. Mltimod 2 M M M OM

FEWER THAN 10
SCALE POINTS
Symmetric 3 OM OM OM OM OM OM
Asymmetric 3 M M Hi5 M T05 T15

* At sample size 5, H2O and M are equivalent.

t Mixed contamination of both tail weight and asymmetry.
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Table 4

Deficiencies of Seven Estimators from the
Most Efficient Estimator of the Arithmetic Mean for Sixteen Situations

Pseudo-Populations

T e

Percent Deficiency of MSE
Sample Size 5

from Optimum Estimator
Sample Size 5

OM M T05 T10 T15 H20* H15 OM M T05 T10 T15 H2O H15
SYMMETRIC
Light Tail 2 0 16 19 23 28 16 22 0 27 36 43 46 27 33
Gaussian 6 2 0 1 3 6 0 4 1 0 3 6 9 1 4
Mod. Tails 2 9 1 0 1 1 1 2 12 1 0 6 1 1 1
HE. avy Tails 6 9 0 1 1 3 0 2 8 0 2 4 5 1 3

SYMMETRY TO
ASYMMETRY
Symmetric 14 2 0 1 3 5 0 3 2 0 3 6 8 1 3
Mod. Asym. 9 3 0 1 2 5 0 3 5 0 3 6 9 1 3
Ext. Asym. 9 0 0 2 4 8 0 4 11 0 6 13 18 4 9
Expn. Asym. 3 19 1 0 1 4 1 2 39 0 6 16 25 5 12

MIXED CONTAM.t
TAIL WT & ASYM
Gaussian 6 2 0 1 3 6 0 4 1 0 3 6 9 1 4
Mod. Contam. 4 2 0 1 3 5 0 4 3 0 3 7 10 1 4
Ext. Contam. 4 13 1 0 1 3 1 3 31 0 6 13 19 6 12

MODALITY AND
DIGIT PREFERENCE
UNDER SYMMETRY
Smth. Unimode 5 0 1 1 3 7 1 4 0 1 4 8 11 1 4
Lmpy. Unimode 4 7 0 1 1 3 0 2 9 0 1 3 4 1 2
Smth. Mltimod 2 1 0 1 3 6 0 3 0 1 4 8 11 2 5

FEWER THAN 10
SCALE POINTS
Symmetric 3 0 5 J 7 10 15 5 9 0 8 14 20 24 9 15
Asymmetric 3 1 0 3 5 11 0 0 16 u 8 18 26 5 J 11

* At sample size 5, H20 and M are equivalent,
t Mixed contamination of both tail weicht and as mrnetr .



Table 5

Deficiencies of Seven Estimators from the
Most Efficient Estimator of E-Robust for Sixteen Situations

Pseudo-Populations

Type N

Percent Deficiency of MSE
Sample Size 5

from Optimum Estimator
Sample Size 20

OM M T05 T10 T15 H20* H15 OM M T05 T10 T15 H2O H15
SYMMETRIC
Light Tail 2

Gaussian 6

0
,.,

,..

14

()

17

1

20
3

25
6

14

0

19
4

0

1

20
0

27
3

33
6

37
9

21
1

25
4

Mod. Tails 2 9 1 0 1 2 1 2 12 1 0 1 2 1 1

Heavy Tails 6 6 0 1 1 3 0 2 9 0 2 3 5 1 3

SYMMETRY TO
ASYMMETRY
Symmetric 14 2 0 1 3 5 0 3 3 0 3 6 8 1 3
Mod. Asym. 9 4 0 1 2 4 0 3 9 0 1 4 6 1 2
Ext. Asym. 9 3 0 1 3 6 0 3 21 1 1 3 7 1 2
Expn. Asym. 3 27 5 3 1 0 5 1 56 22 6 0 1 14 6

MIXED CONTAM.t
TAIL WT & ASYM
Gaussian 6 2 0 1 3 6 0 4 1 fl 3 6 8 1 4

Mod. Contam. 4 3 0 1 2 5 0 3 6 0 2 5 7 1 4

Ext. Contam. 4 18 2 1 0 1 2 1 44 12 4 1 0 5 3

MODALITY AND
DIGIT PREFERENCE
UNDER SYMMETRY
Smth. Unimode 0 0 1 3 7 0 4 1 0 4 8 11 1 4

Lmpy. Unimode 4 7 0 1 3 0 2 10 0 1 2 4 1 2
Smth. Mltimod 2 1 0 1 3 6 0 3 1 0 4 7 10 2 5

FEWER THAN 10
SCALE POINTS
Symmetric 3 0 5 7 10 14 5 8 0 6 12 17 21 7 11
Asymmetric 3 7 0 3 4 8 1 1 30 3 0 5 12 2 2

* At sample size 5, H2O and M are equiwIlent.
t Mixed contamination of both tail weight and as mmetr
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Table 6

Deficiencies of Seven Estimators from the
Most Efficint Estimator of the Median for Sixteen Situations

Pseudo-Populations

Type N

Percent Deficiency of MSE from Optimum Estimator
Sample Size 5 Sample Size 20

OM M T05 T10 T15 H20* H15 OM M T05 T10 T15 H2O H15
SYMMETBIC
Light Tail 2 0 14 16 20 25 14 19 0 19 26 32 36 20 24
Gaussian 6 2 0 1 3 6 0 4 1 0 3 6 9 1 4

Mod. Tails 2 9 1 0 1 2 1 2 12 1 0 1 2 1 1

Heavy Tails 6 6 0 1 1 3 0 2 9 0 2 3 4 1 2

SYMMETRY TO
IMES/LIR'
Symmetric 14 2 0 1 3 5 0 3 3 0 3 6 8 1 3

Mod. Asym. 9 5 0 1 2 4 0 3 12 1 1 2 4 0 1

Ext. Asym. 9 7 0 1 1 3 0 1 30 8 3 1 0 6 3

Expn. Asym. 3 33 12 9 6 2 12 6 61 37 23 12 4 30 21

MIXED CONTAM.t
TAIL WT & ASYM
Gaussian 6 2 0 1 3 6 0 4 1 0 3 6 9 1 4

Mod. Contam. 4 3 0 1 2 5 0 3 7 0 2 4 6 1 2
Ext. Contam. 4 21 5 3 1 0 5 2 51 26 17 10 5 22 16

MODALITY AND
DIGIT PREFERENCE
UNDER SYMMETRY
Smth. Unimode 5 0 1 1 3 7 1 3 0 0 4 8 10 1 4

Lmpy. Unimode 4 7 0 1 1 3 0 -)
,, 2 0 1 2 3 1 2

Smth. Mltimod 2 1 0 1 3 6 1 3 1 0 4 7 10 2 5

FEWER THAN 10
iCALE POINTS
Symmetric 3

Asymmetric 3

C

13
5

3

7

3

10

2

14

3

,

J

3

8

0

0

41
6

16
11
7

16
2

20

0

7

12
11

8

* At sample size 5, H2O and M are equivalent.
t Mixed contamination of both tail wei ht and as mmetry.
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OM exhibits relatively low deficiencies until contamination becomes extreme. 1120

performs much like M, with slightly lower deficiencies for the extremely contaminated situations
and greater deficiencies for all other situations. T05 exhibits slightly greater deficiencies than M
for those situations in which OM is optimal, and somewhat lower deficiencies when estimating
either the median or E, Robust under extreme contamination. T10 and T15 exhibit comparatively

poor properties for the light tailed symmetric situations and are almost never comparatively efficient
estimators of the mean. However, as estimators of E-Robust or the median (particularly T15)

under all non-symmetric situations they perform well. H15 exhibits at least small deficiencies (3%

to 5%) almost everywhere, and appears to be a slightly less efficient estimator of E-Robust than

T05 under most conditions.

Limited scale point situations were not investigated thoroughly; however, among the three
relatively symmetric, light tailed pseudo-populations, M exhibits noticeable deficiencies from OM

in the estimation of all pseudo-parameters. Even in the asymmetric small sample space situations,
OM is an efficient estimator of[t for sample size 5, and a reasonably efficient estimator of E-

robust. These findings support expectations (Wegman and Carroll, 1977). H15 and T15 are
optimum estimators for the median in the asymmetric, small sample space situation respectively for
samples of size 5 and 20.

Table 7 shows the deficiencies of the previously tabled estimators under two extremely
asymmetric situations. It is clear from this table that as an estimator of II, M stands out for both of

these situations, and as an estimator of both E-Robust and the median, T15 stands out. Thus, for
the researcher expecting an extremely asymmetric distribution and wishing to estimate the most

commonly occurring score, T15 appears the most appropriate estimator. Micceri (1989), found
that 52% of the psychometric distributions investigated to exhibit this level of asymmetry (p. 163).

TABLE 7

Deficiencies from Most Efficient Estimators for
Two Forms of Extreme Asymmetric Contamination

for Samples of Size 20

Extreme Asymmetry
and Tail Weight

Exponential
Asymmetry

Mean E-Rb Med Mo.an E-Rb Med
NI 0 12 26 0 22 37
OM 31 44 51 39 56 61
T05 6 4 17 6 6 23
T10 13 1 10 16 0 12
T15 19 0 5 25 1 4

1120 6 5 22 5 14 30
H15 12 3 16 12 6
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iladohmsandimatisatheas
It is obvious that M and T05 are the overall most efficient estimators. M is an excellent estimator

of the population mean except in the relatively symmetric light tailed situation, where OM

dorr:aates. Additionally, T15 is a good choice to estimate either the median or E-Robust under

extreme asymmetry, at least for the pseudo-populations studied, which should be a fairly

representative sample of distribution types found among ability and psychometric measures. For

samples of size 5, the rather radical estimators (MED, P50, JOH, GAS, TRI, CST, 12A, AMT)

perform well in terms of bias, but exhibit severe variability and therefore do not appear good

choices to estimate any parameter investigated. Those estimators that perform worst overall, again,

largely due to their variability, are MED, JOH, GAS, TRI, CST. The L-estimators outperform the

M-estimators, R-estimator and adaptive estimators, with few exceptions. All estimators usually

exhibited small absolute biases from their personal estimands (self).

Although the results of this study appear to differ from prior researches, the differences

occur mostly because of approach and context. Most prior researches sought elegant solutions.

Note that Andrews et. al. (1972, p. 109) investigated two asymmetric situations and found the

arithmetic mean to be the least variable (best) estimator for both. This finding was never again

mentioned because the authors "... were not able to agree, either between or within individuals, as
to the criteria to be used." (p. 226) Similar findings are reported by David & Shu (1978). Hill and
Dixon (1982) averaged MSE about both p. and the median. The arithmetic mean proved the most

efficient estimator for their single relatively symmetric distribution, but when variability was
averaged about both m and the median for three exceedingly asymmetric populations, the arithmetic

mean proved less efficient than the trimmed means and others. This probably resulted because the

mean was an efficient estimator ofp and a relatively inefficient estimator of the median, while the

robust estimators were moderately inefficient estimators of both parameters. This penchant for

seeking elegant solutions can prove misleading in the decidedly inelegant world of reality.

Although more complicated and time consuming, treating each of three possible parameters that

span the mean/median interval independently provides a clearer perspective on an estimator's

performance in specific situations. From a practitioners standpoint, a good estimate of one
parameter or two good estimates of two different parameters (II and median) are probably more

useful than a single estimates that combines error about two different parameters.

Another very interesting finding involves symmetric distributions. Results for extremely

heavy tailed situations, in which M proved the most efficient estimator, differed substantially from

historic robustness studies (particularly Andrews et. al., 1972), where M tended to be one of the

least efficient estimators. For this reason, detailed investigations of the relevant pseudo-

populations' distributional characteristics were conducted, and brought to light the fact that the two

"moderately" heavy tailed examples were among the 10 most symmetric of the 440 distributions

studied in Micceri (i989). Their tails were almost perfectly balanced even at the 90th, 95th and

18
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97th percentiles. Among the 44 relatively symmetric extremely, heavy tailed distributions under

study, only one exhibited such perfect symmetry. Prior robustness researches investigating have

dealt exclusively with perfectly symmetric, theoretical populations. In the universally asymmetric

real world, results differ. This explains why the moderately heavy tailed cases produced results

more in keeping with earlier studies than did the extremely heavy tailed pseudo-populations, in that

M was n It the most efficient estimator, Under perfect symmetry and increasingly heavy tail

weights, M becomes increasingly less robust. However, in the real world, as tail weight

increases, it tends to do so in a nonsymmetric fashion Micceri (1989).

In addition, a general lack of distant extremes occurred among the relatively symmetric,

heavy tailed distributions, which rarely had remote cases exceeding four standard deviations from

the pseudo-population median. This further supports the notion that extremely long-tailed,

symmetric distributions are quite rare in the real world (Micceri, 1989; Walberg et al., 1984).

Certainly the radically asymmetric distributions explored here included distant extremes, with

several of the pseudo-populations having remote observations more than six standard deviations

from the median.

Studies such as the PRS have investigated robust estimators in theoretical realms, and

particularly in the face of types of contamination for which those estimators were designed.

Almost none of the empirical distributions studied evidence either smoothness or continuity.

Certainly characteristics similar to the Cauchy, rectangular and T with one degree of freedom were

almost nonexistent. Despite claims for their robustness at Normality, few estimators that

performed well in Andrews, et al. (1972) and other researches also performed well for the

empirical, multiply contaminated populations considered here. If is quite possible that these resin,-
will generalize to tests of significance and regression. Some preliminary investigations by the

author and a colleague suggest that even Pearson's r proves quite robust for these real world types

of contaminations. These findings suggest that much robustness research has been conducted on

smooth and rather extreme theoretical distributions that simply fail to exist in the real world.

Among the more mou,:rate and complex contaminations that occur in distributions of Education and

Psychology, it is probable that typically applied test statistics are relatively robust, and that we only

rarely need feel guilty for our use of them.
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