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Methods for detecting differential 1tem functioning (DIF) across

multiple examinee populations have been under development for several
decades. We can classify the availlable methods 1n two categories. The
first category .ncludes methods that rely solely on observed
measurements (item scores, subtest scores, or external measurements) for
the detection of DIF. This category includes methods using transformed
1tem difficulties (Angoff, 1982; Angoff & Ford, 1973) and also methods
that examine the conditional association between item scores and
population membership within ability groups defined by an observed
measure (Holland & Taayer, 1986; Ironson, 1982; Marascullo & Slaughter,
1981, Scheuneman, 1979; Shepard, Camilli, & Averill, 1981). We will
focus on these conditional methods, which will be denoted "conditional
observed score' (COS) methods. The second category includes methods
which model the response to an 1tem as a tunction of an unobserved,
hypothetical latent ability or trait. Wwithin the hypothesized model,
DIF 13 defined Dby population differences i1n the function relating the
1tem response to the latent trait (Lord, 1980). Methods within this
category will Dbe denoted “latent trait" (LT) methods.

COS and LT methods rest on different definmitions ot DIF. For the
case of dichotomous test 1tems, the COS approach defines DIF by
populavion differences i1n the conditional probabilities of responding
correctly to the 1tem, conditioning on the observed ability measure.
The LT approach defines DIF by population differences 1n the conditional

probabilities of responding correctly to the 1tem, conditionlng on the

latent trait. When can these two definitions he considered equivalent
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In theoretical terms? [f the definitions are <equivalent, the COS
approach has n advantage 1n eliminating the need for computer-intensive
model-fitting and estimation. If the methods are not equivalent,
1nvestigators may reach different conclusions regarding DIF depending on
the method chosen.

In the following, we explore the conditions under which the C0S and
LT defimtions of DIF will be equivalent. Although DIF detection
methods are usually applied to dichotomous ability or achievement test
1tems, the discussion will be at a more general level, and the results
may have applications for general questions of measurement invariance 1n
multiple populations.

conditions for Equivalence

Let u, v, and w be three random variables, possibly vector-valued.
wWe will assume w to be a latent variable ot interest, and u to be an
observable variable that 1s 1ntended to measure w. Concern for DIF will
center on u. A second observable variable v will be used 1n studying
the possible DIF 1n u through COS methods. The variables u, v, and w
may be discrete or continuous, but our notation will treat all variables

as cortinuous except where needed 1n discrete examples.

Let hl(w) be the density function for w (the prior density)

defined with respect to the 1th population of 1nterest, 1=1.S. These
populations will ordinarily be defined 1n terms of observed variables
such as ethnicity, gender, or age. Let g;(uiw) Dpe the conditional
density function for u given w 1n the 1th population. We can also

define the conditional density functions f;(uiv), t;(Viw),




g;(v.u,w), and cy(uiv,w). Finally, let d,(u,viw) be the
conditional joint density function for u and v given w.

wWe define measurement invariance or lack of DIF to hold for u as a

measure of w when

guiw) = gu.w) (1
for 1=1.5. If u 18 a dichotomous test 1tem, this definition is
ldentical to the LT definition of DIF 1f the notation 1s altered to
reflect the discrete nature of u:

g(uiw) = Pj(u=liw) = P(u=l.w).
Invariance holde when the 1tem characteristic curves are identical among
the populations of 1nt -est (Lord, 1980). If u 1s continuous, we could
define weaker forms of invariance than that given 1n (1). For example,
1f u 1s a vector of observed measures and w 15 a vector ot factor scores
within the common factor model, the usual definition of factorial
Invariance would involve only the conditional first and second moments
of u (Meredith, 1964a, 1964Db).
COS definiticns of DIF employ the conditional density f,(uv).

‘4e can define COS 1nvariance for u with respect to v as

fi(uivy = f(ulv) (2
for 1=1.8. If u 18 a dichotomous test item and v 1S the unweightcd
total test score (possibly omitting u), the definition 1n (2) reduces to
the null hypothesis examined 1n most chil-square-based COS procedures 1f

fi(uiv) = Py(u=1iv) = P(u=liv).

when will measurement invariance as defined in (1) be equivalent to

invariance as defined in (2)? Is 1t possible to have 1nvaria.ice in




g(uiw) but net in f(uwv)? [s the converse possible?
First, 1t can Dbe easily shown that the two definitions need not be
equivalent generally. Assume that invariance holds as in (1). Also
assume local i1ndependence between U and v with respect to w. In oiher
words, 1f d,(u,viw) 18 the conditional Joint density for u and v, we
have
d, (W VW) = g(uiw) t,(vViw). (3

Then we can express fy(uv) as

Sgiu:w) ti(viw) hj(w) dw
w

t)(uv) = (4

Sal(v:w) hy(w) dw
w

From this equation, 1t 1s clear that (2) will generally hold only 1if the
product t,(viw) hy;(w) 1s 1nvariant. In particular, population
differences 1n the prior densities h,(w) can result 1n differences
1n  the conditional densities f,(u,v).

A practical example of this sort would occur 1t u 1is a dichotomous
1tem score 1n a test containing p 1tems, Vv 1S the sum o1 the remaining
P-1 1tem scores on the test, and all 1tems follow the Rasch model with
latent trait w. In thls case, u and v are locally independent with
respect to w. Invariance in 2) may not hold even 1f the condition 1in
(1) does hold.

As this example 1llustrates, lccal i1ndeperdence between u and v
with respect to w 1s an 1important consideration in evaluating the
equivalence of (i) and (2). Equation 4 suggests that the two
definitions need not be equivalent when u and v are locally independent.

Clearly, special cases may exist 1n which the two definitions are




)

equilvalent 1n spite of local independence between u and v. For example,
1f Dboth the prior densities h,(w) and the conditional densities
t,(viw) are 1nvariant, the definitions are equivalent.
Suppose that local independence does not hold for u and v. Then
(4) can be written
fi(uiv) = == (5
S tiviw) hyrw) dw

w
Now consider the special case 1n which v 1s a sufficient statistic for

w. Then c,(uiv,w) = f;(uiv), and this conditional density does
rnot 1nvolve w. Population differences 1n the prior densities h;{w)
vi1ill not prevent invariance 1n fi{uv). Suppose that (1) also
holds. Hust (2) then hold in this case?
The answer 1s no, not 1n gdeneral. Given sufficiency, we know that
guiw) q;(viu,w

cyluiv,w> = fi(uiv) = (6
ti(viw)

Note that we cannot have q,(Viu,w) = t,(viw) Dbecause this
implies local indepenacnce of u and v. Then (¢) will hold only 1f the
ratios

q;(Viu,w)

t(viw)
are also 1nvariant for 1=1.S.

As an example, suppose that u 1s a dichotomous item score, v 1s the

sum of p 1tem scores i1ncluding u, and all 1tems follow a Rasch model

with latent trait w. Then v 1s sufficient for w, but U and v are not

locally independent. In this case,
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QYL W) = q(Vp_1:W),
where Vp-1 18 the sum of the p-1 1tems excluding u. Then the

f,(ulv) are 1nvariant 1f the ratios

q1 (Vp-l:W)

ti(V.w)
are i1nvariant. since g(uiw) 1s assumed 1nvariant, the ratios are
invariant if the numerators of the ratlos are invariant, or (1) holds
for the p-1 1tems excluding u.

In the above case, we have assumed that v 1s a sufficient statistic
for w. Suppose that v 1s not sufficient for w. If local i1ndependence
does not hold for u and v, when are definitions (1) and (2) equivalent?
In this case, (5) does not reduce to any simple form 1n general. The
definition 1n (2) dgenerally holds only 1f the prior densities are
invariant, and 1t c;(uiv,w) and t,(viw) are both 1nvariant
Again 1t 1s possible that for some specific choices of prior densities,
C(uv,w) and t;(viw), the two definitions can be made
equivalent.

A familiar example of the general case occurs when u 1s a
dichotomous 1tem score, v 18 the unweighted sum of p :item scores
including u, and all 1tems follow a two-parameter logistic model with
latent trait w. Local independence does not hold between u and v, and v
18 not sufficient because 1t 18 an unwelghted sum. Algebralcally, 1t
can be shown that 1f (1) holds, (2) generally holds only 1if (1) also
holds for the p-1 1tems excluding u and 1f the prior densities are

invarilant.




The foregoing results show that when u and v are not locally
independent, the sufficiency of v wilth respect tc W 1s an important
consideration 1n determining the equivalence of definitions (1) and (2).
wWhen sufficiency holds, equivalence does not require invariance of the
prior densities h,(w). If v 1s not sufficient for w, population
differences 1n these densities will generally prohibit the equivalence
of (1) and ().

Conclusion

The conditions under which the COS and LT definitions are
equivalent are quite specialized. First, equivalence generally requires
Invariance of the conditional densities t,(viw). [n the COS
approach, this entaills careful selection o0f the observed measure v to
avold diffential functioning 1n this measure. This fact 1s generally
recognized (Ironson, 198¢2). Secondly, the precise conditions for
equivalence depend on both the local independence of u and v, and th°
possible sufficiency of v for the latent trait w. If u and v are
locally 1ndependent, equivalence generally requires 1lnvariance 1n the
prior densities and 1n (he conditional densities t;(viw). Note that
local i1ndependence of u and v precludes sufficiency of v for w in the
cases of 1nterest. But 1f local 1ndependence doces not hold, the
sufficiency of v for w 18 1mportant. Given sufficiency, the equivalence
ot (1) and (2) does not require invariance of the prior densities.

In practical applications, v 1s typically an unweighted sum of item

scores. If local independence can be assumed among these items with

respect to a latent trait w, local 1ndependence between u and v simply
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depends on whether u 1s 1ncluded 1n the summation leading to v. There
1s an advantage to including u 1n the summation for v, thereby removing
the local 1independence. This point was demonstrated by Holland and
Thayer (1986) 1n a slightly different context. On the other hand, an
unweighted sum of 1tem scores will be sufficient for w only when the
1tems fit the Rasch model with latent trait w, or when all i1tems have
1dentical discrimination parameters. Hence considerations of
sufficiency may have limited practical value.

If v 18 not sufficient for w, population differences in the prior
densities h;(w) will generally prevent the equivalence of (1) and
(2). Precise 1nvariance of the prior densities can rarely be assumed 1n
practice. Since sutficiency of v 15 also unusual, we must con;:lude that
formal equivalence between (1) and (2) will be the exception, rather

than the rule.
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