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Methods for detecting differential item functioning (DIF) across

multiple examinee populations have been under development for several

decades. We can classify the available methods in two categories. The

first category _ncludes methods that rely solely on observed

measurements (item scores, subtest scores, or external measurements) for

the detection of DIF. This category includes methods using transformed

item difficulties (Angoff, 1982; Angoff & Ford, 1973) and also methods

that examine the conditional association between item scores and

population membership within ability groups defined by an observed

measure (Holland & Thayer, 1986; Ironson, 1982; Marascuilo & Slaughter,

1981; Scheuneman, 1979; Shepard, Camilla, & Averill, 1981). We will

focus on these conditional methods, which will be denoted "conditional

observed score" (COS) methods. The second category includes methods

which model the response to an item as a function of an unobserved,

hypothetical latent ability or trait. Within tne hypothesized model,

DIF is defined by population differences in the function relating the

item response to the latent trait (Lord, 1980). Methods within this

category will be denoted "latent trait" (LT) methods.

COS and LT methods rest on different definitions or DIF. For the

case of dichotomous test items, the COS approach defines DIF by

population differences in the conditional probabilities of responding

correctly to the item, conditioning on the observed ability measure.

The LT approach defines DIF by population differences in the conditional

probabilities of responding correctly to the item, conditioning on the

latent trait. When can these two definitions be considered equivalent



in theoretical terms'? If the definitions are equivalent, the COS

approach has , n advantage in eliminating the need for computer-intensive

model-fitting and estimation. If the methods are not equivalent,

investigators may reach differ ent conclusions regarding DIF depending on

the method chosen.

In the following, we explore the conditions under which the COS and

LT definitions of DIF will be equivalent. Although DIF detection

methods are usually applied to dichotomous ability or achievement test

items, the discussion will be at a more general level, and the results

may have applications for general questions of measurement invariance in

multiple populations.

Conditions for Equivalence

Let u, v, and w be three random variables, possibly vector-valued.

We will assume w to be a latent variable of interest, and u to be an

observable variable that is intended to measure w. Concern for DIF will

center on u. A second observable variable v will be used in studying

the possible DIF in u through COS methods. The variables u, v, and w

may be discrete or continuous, but our notation will treat all variables

as continuous except where needed in discrete examples.

Let hi(w) be the density function for w (the prior density)

defined with respect to the ith population of interest, 1=1..S. These

populations will ordinarily be defined in terms of observed variables

sucn as ethnicity, gender, or age. Let gi(u:w) De the conditional

density function for u given w in the ith populaLion. We can also

define the conditional density f unctions f i(u:v), ti(v:w),



qi(v,u,w), and ci(u;v,w). Finally, let di(u,v;w) be the

conditional joint density function for u and v given w.

We define measurement invariance or lack of DIF to hold for u as a

measure of w when

gi(u;w) = g(u;w) ( 1

for 1=1..S. If u is a dichotomous test item, this definition is

identical to the LT definition of DIF if the notation is altered to

reflect the discrete nature of u:

gi(u;w) = P1(u=1:%) = P(u=1:w).

Invariance holds when the item characteristic curves are identical among

the populations of int -est (Lord, 1980). If u is continuous, we could

define weaker forms of invariance than that given in (1). For example,

if u is a vector of observed measures and w is a vector of factor scores

within the common factor model, the usual definition of factorial

invariance would involve only the conditional first and second moments

of u (Meredith, 1964a, 1964b).

COS definitions of DIF employ the conditional density fi(u;v L.

We can define COS invariance for u with respect to v as

f i(u;v) = f(u;v) (2

for 1=1,.S. If u is a dichotomous test item and v is the unweighted

total test score (possibly omitting u), the definition in (2) reduces to

the null hypothesis examined in most chi-square-based COS procedures if

f i(u;v) = Pi(u=11v) = P(u=1;v).

When will measurement invariance as defined in (1) be equivalent to

invariance as defined in (2)7 Is it possible to have invariance in
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g(u:w) but not in f(u:v)? Is the converse possible?

First, it can be easily shown that the two definitions need not be

equivalent generally. Assume that invariance holds as in (1). Also

assume local independence between u and v with respect to w. In other

words, if cli(u,v;w) is the conditional Joint density for u and v, we

have

di (1.1, v;w) = g(u:w) ti (v:w). (3

Then we can express fi(u:v) as

g(ti;w) ti (v ;w) h1(w) dw
f i(u:v) (4

5 ti(v:w) hi(w) dw
w

From this equation, it is clear that (2) will generally hold only if the

product ti(v:w) hi(w) is invariant. In particular, population

differences in the prior densities hi(w) can result in differences

in the conditional densities t i(u:v).

A practical example of this sort would occur it u is a dichotomous

item score in a test containing p items, v is the sum of the remaining

p-1 item scores on the test, and all items follow the Rasch model with

latent trait w. In this case, u and v are locally independent with

respect to w. Invariance in 2) may not hold even if the condition in

(1) does hold.

As this example illustrates, local independence between u and v

with respect to w is an important consideration in evaluating the

equivalence of (1) and (2). Equation 4 suggests that the two

definitions need not be equivalent when u and v are locally independent.

Clearly, special cases may exist in which the two definitions are

6



5

equivalent in spite of local independence between u and v. For example,

if both the prior densities hi(w) and the conditional densities

ti(v:w) are invariant, the definitions are equivalent.

Suppose that local independence does not hold for u and v. Then

(4) can be written

i'ci(u:v,w) ti(v:w) hi(w) dw
fi(u:v) = s"

Sti(v;w) hifw) dw
w

(5

Now consider the special case in which v is a sufficient statistic for

w. Then c,(u:v,w) = fi(u:v), and this conditional density does

not involve w. Population differences in the prior densities hi(w)

v'Ill not prevent invariance in fi(u:v). Suppose that (1) also

holds. Must (2) then hold in this case?

The answer is no, not in general. Given sufficiency, we know that

g(u:w) qi(v:u, w)
ci(u:v, w) :- f i(u:v) (6

ti(v:w)

Note that we cannot have qi(v:u,w) = ti(v:w) because this

implies local independence of u and v. Then (2) will hold only if the

ratios

q 1 ( v : u, w)

t1 (v : w)

are also invariant for 1=1..S.

As an example, suppose that u is a dichotomous item score, v is the

sum of p item scores including u, and all items follow a Rasch model

with latent trait w. Then v is sufficient for w, but u and v are not

locally independent. In this case,

p-
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qi(v:u,w) = qi(vp_i:w),

where vp_i is the sum of the p-1 items excluding u. Then the

fi(u:v) are invariant if the ratios

qi(vp-1:w)

ti(v:w)

are invariant. Since g(u:w) is assumed invariant, the ratios are

invariant if the numerators of the ratios are invariant, or (1) holds

for the p-1 items excluding u.

In the above case, we have assumed that v is a sufficient statistic

for w. Suppose that v is not sufficient for w. If local independence

does not hold for u and v, when are definitions (1) and (2) equivalent'?

In this case, (5) does not reduce to any simple form in general. The

definition in (2) generally holds only if the prior densities are

invariant, and if ci(u:v,w) and ti(v:w) are both invariant.

Again it is possible that for some specific choices of prior densities,

ci(u:v,w) and ti(v;w), the two definitions can be made

equivalent.

A familiar example of the general case occurs when u is a

dichotomous item score, v is the unweighted sum of p item scores

including u, and all items follow a two-parameter logistic model with

latent trait w. Local independence does not hold between u and v, and v

is not sufficient because it is an unweighted sum. Algebraically, it

can be shown that if (1) holds, (2) generally holds only if (1) also

holds for the p-1 items excluding u and if the prior densities are

invariant.
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The foregoing results show that when u and v are not locally

independent, the sufficiency of v with respect tc w is an important

consideration in determining the equivalence of definitions (1) and (2).

When sufficiency holds, equivalence does not require invariance of the

prior densities hi(w). If v is not sufficient for w, population

differences in these densities will generally prohibit the equivalence

of (1) and (2).

Conclusion

The conditions under which the COS and LT definitions are

equivalent are quite specialized. First, equivalence generally requires

invariance of the conditional densities ti(v:w). In the COS

approach, this enta]ls careful selection of the observed measure v to

avoid diffential functioning in this measure. This fact is generally

recognized (Ironson, 1982). Secondly, the precise conditions for

equivalence depend on both the local independence of u and v, and tr,

possible sufficiency of v for the latent trait w. If u and v are

locally independent, equivalence generally requires invariance in the

prior densities and in the conditional densities ti(v:w). Note that

local independence of u and v precludes sufficiency of v for w in the

cases of interest. But if local independence does not hold, the

sufficiency of v for w is important. Given sufficiency, the equivalence

of (1) and (2) does not require invariance of the prior densities.

In practical applications, v is typically an unweighted sum of item

scores. If local independence can be assumed among these items with

respect to a latent trait w, local independence between u and v simply

s
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depends on whether u is included in the summation leading to v. There

is an advantage to including u in the summation for v, thereby removing

the local independence. This point was demonstrated by Holland and

Thayer (1986) in a slightly different context. On the other hand, an

unweighted sum of item scores will be sufficient for w only when the

items fit the Rasch model with latent trait w, or when all items have

identical discrimination parameters. Hence considerations of

sufficiency may have limited practical value.

If v is not sufficient for w, population differences in the prior

densities hi(w) will generally prevent the equivalence of (1) and

(2). Precise invariance of the prior densities can rarely be assumed in

practice. Since sufficiency of v is also unusual, we must conclude that

formal equivalence between (1) and (2) will be the exception, rather

than the rule.
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