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ABSTRACT

Generalizability theory provides a technique for most

accurately estimating the reliability of measurements. The

power of generalizability theory is based on the simultaneous

analysis of multiple sources of error variances. A comparison

of classical test theory and generalizability theory illustrates

how generalizability theory subsumes all other reliability

estimates as special cases. Further, a hypothetical data set

provides exa -iples of when the failure to use generalizability

theory can lead to seriously erroneous estimates of test

reliability.
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WHY GENERALIZABILITY THEORY YIELDS BETTER RESULTS

THAN CLASSICAL TEST THEORY

Behavioral measurements that yield reliable results are of

paramount importance for social scientists. Ghiselli (1964)

suggests that quantitative descriptions which compare traits

among and within individuals must give a precise

characterization of an individual in order to be very useful.

Nunnally (1982, p. 1589) notes that

Science is concerned with repeatable experiments. If

data obtained from experiments are influenced by random

errors of measurement, the results are not exactly

repeatable. Thus, science is limited by the

reliability of measuring instruments and by the

reliability with which scientists use them.

Historically, reliability of measurements has been determined by

theory first articulated decades ago. This body of thought has

come to be called classical test theory. Reliable information

about individual differences is obtained by measurements that

have minimum amounts of error variance and maximum amounts of

systematic variance. Within classical test theory various

coefficients are available for investigating single sources of

error variance.

However, in classical theory consideration of multiple

sources of error variance within one analysis is unavailable.

The inability to analyze more than one source of error variance

at a time severely limits classical test theory as a

psychometric technique. With the conceptualization and
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development of generalizability theory (Cronbach, Gleser, Nanda,

& Rajaratnam, 1972) the limitation of classical test theory,

i.e., the inability to examine multiple sources of error

variance simultaneously, was resolved. Further,

generalizability theory provides a technique for more accurately

estimating the reliability in measurements.

Reliability within classical test theory refers to how

consistently test scores are measured under various

circmstances (Gronlund, 1985; Nunnally, 1972). The importance

of reliable measurement lies in how much confidence can be

placed in the results. A measurement that consistently yields

similar results over several administrations is dependable.

Decisions based on the results can be made with confidence.

However, unreliable results indicate the presence of error in a

measurement. Data obtained from such a measurement are not

dependable and consequently are of little value. Yet, the quest

for the perfect test is a futile one. Measurement theorists

suggest that no perfectly Leliable measurement exists (Ebel &

Frisbie, 1986; Nunnally, 1972). Inconsistency or measurement

error is present in all instruments.

There is some confusion concerning the referent for

reliability coefficients. Frequently, an instrument or test is

referred to as having reliability. Such references are,

strictly speaking, incorrect. Data, not a test, have the

characteristics of reliability. To illustrate, if the

Scholastic Achievement Test (SAT) was administered in a city

that had suffered a devastating tornado the day before, test



scores would likely not reflect true abilities of the examinees.

Concentration on the SAT would have been hindered by the

emotional upheavel and fatigue caused by the disaster. Thus,

the data from the SAT would be unreliable, not the SAT.

Similarly, a high school history exam given immediately before

an important pep rally for a football district championship

might appear unreliable. In an otherwise dependable test, low

reliability must be attributable to the test results rather than

the actual test itself. In addition to these factors, other

common factors that contribute to inconsistency of test scores

are anxiety and guessing.

Understanding the functional characteristics of reliability

leads researchers to recognize that measurement error can also

invalidate significance testing. Nunnally (1972) states that

attentuation occurs because measurement error tends to reduce

correlations, i.e., makes them closer to zero. Thus,

measurement error obscures true effect sizes. For example, if a

student with a high ability for geography was measured by an

unreliable geography test, the observed score would not reflect

the student's actual ability. And systematic effects in

experimental investigations would have been blurred by the

prescence of error variance. Researchers strive to eliminate

error so that observed scores reflect the actual capabilities of

students, not extraneous factors. Thus, as information related

to measurement error sources is gained, the greater are the

chances of reducing measurement error and of detecting

systematic influences via significance testing.



Generalizability theory considers the multiple sources of

error that may influence scores. Although introduced as

generalizability theory by Cronbach, Gleser, Nanda, and

Rajaratnam (1972), related developments upon which

generalizabilicy theory was based were reported earlier (Hoyt,

1941; Lindquist, 1953; Medley & Mitzel, 1963). Generalizability

theory provides the framework to simultaneously examine multiple

sources of error variance. By so doing, measurement reliability

can be more optimally maximized through better informed test

revision.

The purpose of the present paper is to provide an

introduction to the powerful measurement theory r:alled

generalizability theory. A comparison of classical test theory

and generalizability theory will illustrate how generalizability

theory subsumes all ether reliability estimates as special

cases. In addition, the paper will demonstrate that failure to

use generalizability theory can lead to seriously erroneous

estimates of test .aliability.

Classical Test Theory

In classical test theory observed score variance is

partitioned into true score variance and error variance. If

tests were perfectly reliable, true score variance would equal

observed score variance. However, since several error factors

exist, classical theory provides estimates for at least three

types of reliability: internal consistency, stability, and

equivalence. Each reliability estimate considers one source of

error either error in items, test occasions, or test forms. The
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estimated reliability is represented by a coefficient which

indicates the ratio of true score variance to total observed

score variance.

Clarification of the types of reliability coefficients will

be facilitated by the inclusion of a hypothetical measurement

situation. A subseauent generalizability analysis will be

performed on the same data to provide a comparison of the two

theories.

The hypothetical example depicts a researcher attempting to

establish a measurement protocol that reliably assesses college

student attitudes towards the teaching profession. The

instrument is administered to college seniors majoring in

education. The researcher, being rather ambitious, hopes for a

lucrative future as a psychometrician and therefore exerts

sufficient energy to design two parallel forms of the same test.

In a pilot study, six students are each administered the two

parallel forms in which each form contains a different set of

five items, i.e., items are nested in each test. Each of the

forms is administered on two occasions. A hypothetical data

set, describing the example, is presented in Table 1. The small

sample size of the data set was intentional so readers who wish

to pursue the paper's purpose may replicate these analyses.

INSERT TABLE 1 ABOUT HERE.

Classical reliability coefficients for the research

situation are presented in Table 2. Each of the three types of

reliability examines a separate source of variance. Internal
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consistency examines the homogeneity of performance of items

within a test. In internal consistency analysis the items can

be evaluated in a variety of ways depending on the coefficient

selected, e.g., split-half, coefficient alpha, and

Kuder-Richardson 20 (Ebel & Frisbie, 1986). A high reliability

suggests that the items are homogeneous with respect to

statistical characteristics of interest. Table 2 presents four

internal consistency reliabilities analyzed on each of the

parallal forms over the two occasions. The hypothetical young

researcher in the senario has found the varying reliabilities

disturbing. Form A's reliability estimate is 0.48 on occasion

one but 0.91 on occasion two. Cognizant that expertly designed

tests often yield reliability coefficients of 0.90 or tigher

(Ebel & Frisbie, 1986; Nunnally, 1972), the researcher is

perplexed about the true reliability of the data from Form A.

In addition, the reliability coefficients of Form B are more

stable but offer no consolation because of the estimates of 0.72

and 0.74 indicate the presence of substantial measurement error.

INSERT TABLE 2 ABOUT HERE.

Undaunted by the confusing internal consistency

reliabilities, this ambitious hypothetical researcher continues

with other reliability analyses. A second reliability estimate

was obtained by evaluating stability. Stability of a test

scores is estimated to determine how stable an instrument is

over time. A high degree of reliability indicates that

measurements given on two occasions are relatively the same.

6
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However, a low reliability coefficient, indicates instability is

present. The stability coefficients of 0.93 and 0.88 are

presented in Table 2. Encouraged by the high reliability, the

researcher infers that student attitudes have remained

consistent over the two occasions.

The researcher is now confidently ready to test for a third

type of reliability, equivalence. Equivalence reliability

indicates the degree to which parallel forms of a test measure

the same domain of interest. By correlating the scores of the

six students, each taking Form A and Form B, an equivalence

reliability coefficient is obtained. High reliability would

indicate that the rank ordering on the two forms remained

relatively unchanged and that the parallel forms could be used

interchangeably with confidence. Unfortunately for the aspiring

psychometrician, Form A and Form B were estimated to have a

relatively unstable equivalence reliability. The coefficients

of 0.88 and 0.72, presented in Table 2, indicate that the two

forms were measuring somewhat different attitudes in regard to

the teaching profession.

The researcher has now obtained three types of reliability

coefficients: internal consistency, stability, and equivalence.

However, the coefficients have confused rather than clarified

the reliability of the attitude measure because different

estimates yield contradictory results. The coefficients of

internal consistency and equivalence perplex the researcher as

to what to do to increase the reliability of the attitude

measurement. Zealous to be,7ome famous, the researcher

7
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determines by reading the scientific jourhals that

generalizability theory is more appropriate than classical

theory and can better address the inconsistencies presented by

the data.

Generalizability Theory

Generalizability theory (G theory) subsumes classical

theory as a special case. G theory encompasses the con "epts of

classical theory as well as accomodating complex measurement

designs. The power of G theory lies in the consideration of

multiple sources of error variance simultaneously. Classical

test theory is limited to analyses of single sources of error

variance (Thompson, 1989a; Webb, Rowley, & Shavelson, 1988).

The two theories estimate measurement characteristics using

different frameworks. A reliability coefficient in classical

theory concerns the dependability of an instrument or procedure

that is to be used on different occasions or with different

forms. If over several test administrations the results remain

relatively the same, the instrument is said to yield reliable

information. Contrastingly, G theory looks not at how reliable

an instrument is over varying situations but rather how

generalizable the results are to a universe. A generalizability

coefficient represents the ratio of universe score variance

(systematic variance) to observed score variance. The

fundamental differences between classical test theory and

generalizability theory have been stated by Shavelson, Webb, and

Rowley (1989, p. 922):

The concept of reliability, so fundamental to classical

8
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theory, is replaced by the broader and more flexible

notion of generalizability. Instead of asking how

accurately observed scores reflect their corresponding

true scores, generalizability theory asks how

accurately observed scores permit us to generalize

about persons' behavior in a defined universe of

situations.

The framework of generalizability theory incorporates two

stages of analyses. The first stage analyzes the degree that

results are generalizable to a population and is termed a

generalizability study (G study). The second stage, decision

study (D study), uses information from the G study to determine

other generalizability coefficients for variations of the

measurement protocol. In other words, a G study estimates

magnitudes of error variance and a D study uses the information

to determine the best measurement design to get the most

reliable scores in the most efficient manner.

The conceptual toundation of a G study is based on a

universe of admissible observations. This universe is an

infinite set of conditions from which the sampling is

representative. Within the universe of admissible observations

are variables or areas of measurement called facets. Facets

provide information about the multiple sources and amounts of

error in a measurement. Facets can be of many types. Items,

tests, occasions, raters, or observers are facets typically of

interest to researchers. For example, in a G study designed to

measure the oral English proficiency of foreign teacning

9
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assistants, the facets of raters and occasions formed the

universe of admissible observations (Bolus, Hinofotis, & Bailey,

1982). Facets are simples from a universe of all possible

items, tests, occasions, raters, or observers, i.e., from the

universe of admissible observations. Further, each facet is

composed of conditions which vary. Thus, a G study takes into

consideration a representative sample from a population of

factors or variables, i.e., facets, with each having a range of

conditions. Shavelson, Webb, and Burstein (1986) present

generalizability studies that illustrate these issues.

G Study Analyses

Bringing the previous example of the tenure seeking

researcher into a generalizability context, the measurement

design provides concrete examples of the terms germaine to

oeneralizability theory. The researcher, somewhat mystified and

weary from estimating individual reliabilities in the classical

approach, hopes to salvage the remains of previous efforts. To

further pursue the noble goal of a highly generalizable attitude

measure, the researcher determines that the universe of

admissible observations of the G study will contain the facets

of items, forms, and occasions. After careful thought, the

researcher defined the facets. Items would reflect attitudes

toward the teaching profession with two forms of the test given

on two occasions three weeks apart.

The development of a comprehensive design was due to the

researcher's extensive knowledge newly ce.-ined from the library.

Coefficients of generalizability can only be estimated to the
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l



degree that the universe of admissible observations has been

defined (Brennan, 1983; Shavelson, Webb, & Rowley, 1989).

Desiring the highest generalizability, the researcher optimizes

the research design by including all facets that could affect

generalizability. For example, without testing for error from

forms or from more than one occasion, information is

unattainable as to the error that may originate from this source

(Thompson, 1989a). In summary, for a G study to provide the

most accurate estimate of generalizability, all facets,

representing error variance within the measurement design, must

be included in the analysis.

One additional generalizability term not previously

introduced is object of measurement. Object of measurement

usually refers to persons and in the above scenario specifically

refers to senior education students. However, in a study on

school-level variables, schools were the object of measurement

(O'Briva & Jones, 1986). An object of measurement is the

variance which the researcher considers legitimate, e.g.,

student ability variations on a posttest in an experiment, and

about which the researcher wishes to generalize. Facets contain

error variance. Objects of measurement contain systematic

variance and are analogous to the classical true score variance.

In generalizability the estimated variance component for persons

is the universe score variance. The remaining variance

components represent error variance.

A G study employs the statistical procedure of analysis of

variance (ANOVA) to estimate variance components. Variance



components are central to the framework of generalizability

theory. Brennan (1983) suggests the importance of variance

components: "generalizability theory emphasizes the estimation,

Ase, and interpretation of variance components associated with

universes" (p. xiii). For several years variance components

were employed in statistical an,:lyses (Guilford, 1950).

However, the use of mean squares from which variance components

are determined changed as F statistics and F tests became more

popular (Brennan, 1983). The overriding concern of researchers

became statistical significance testing. The importance of such

tests appear to be prevalent today. In a recent article,

Thompson (1989b) suggests that too many researchers attend only

to statistical significance disregarding other important issues

such as effect size and replicability. Consequently,

researchers may be unfamiliar with the use of mean squares for

estimating variance components. Nevertheless, the concept of

estimated variance components, not statistical significance, is

important in generalizability theory.

The hypothetical researcher's measurement study

incorporates 6 x 2 x 2 x 5 design with items nested within the

tests. Nested items (I:T) refer to each person responding to a

different set of items for each test (the score of person P on

item I nested in both test T) in contrast to a crossed design

where each person would respond to the same items on each test

(the score of person P on item I in both test Tl and T2).

Partitioning through a factorial ANOVA provides estimated

variance components for the sources of variation in this

12
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example: Persons (P), Occasions (0), Tests (T), and Items

nested in the Test (I:T), the two-way interactions P0, PT, PI:T,

OT, and OI:T, and the three-way interactions POT and POI:T and

error. Table 3 presents the ANOVA for Table 1 data. The GENOVA

computer program was used to calculate the analysis (Brennan,

1983).

INSERT TABLE 3 ABOUT HERE.

Using an ANOVA, specifically using the mean squares, a G

study determines the estimated variance components. Of concern

within these various methods of estimating variance components

is a means to treat negative estimates. Estimates with negative

variance sometime occur but are conceptually not possible.

Variance can never be negative. Several methods ate available

to calculate variance components and to resolve negative

estimates (Shavclson, Webb, & Rowley, 1989). In some methods

the components are converted to zero. GENOVA uses the two

methods of (a) algorithms and (b) expected mean square equations

(EMS) to estimate variance components. These estimates are

presented in Table 4. Thompson (1989a) provides a non-technical

discussion with mathematical examples of variance components.

INSERT TABLE 4 ABOUT HERE.

The generalizability calculations for the data in Table 1

are presented in Table 5. Since the objective of the

researcher's measurement was to obtain scores refleccing

13

it;



individual differences of attitudes toward the teaching

profession, a relatively large variance ^omponent (0.59) for the

object of measurement, persons, was reassuring. The astute

researcher knows that in an accurately measuring instrument most

of the observed variance is systematic variance. Drawing more

careful consideration from the researcher were the error

components. Although seven of the variance components reflected

little or no error, three components were troublesome. A

two-way interaction between persons and items involved an error

component of 0.65. The relatively large component suggested

that persons were inconsistent in their attitudes across items.

Another variance component represented the three-way interaction

of persons by occasions by items (0.33) was troublesome.

Interactions, especially three-way interactions, are difficult

to explain. For this data set, the explanation may have been

that individual attitude items by individual persons across

occasions lacked consistency. The final variance component

which reflected error in measurement was the main effect

variance component for test (0.17). The estimate indicated that

Form A and Form B were correlated, but not so highly as might be

hoped. With all of the information from the variance

components, the researcher is anxious to obtain the long awaited

coefficient of generalizability. Was fame and fortune just one

coefficient away?

INSERT TABLE 5 ABOUT HERE.



However, before the researcher's curiosity could be

satisfied, another theoretical source of great importance became

apparent. The researcher became aware of two types of G

coefficients. One important feature of generalizability theory

that classical test theory is unable to address is the

distinction between relative and absolute decisions (Shavelson,

Webb, & Rowley, 1989). Relative decisions are based solely on a

person's rank order within a group, such as a score in the 90th

percentile on a norm-referenced test. For instance, the

California Achievement Test provides percentiles for the purpose

of comparing the ability of one student to the ability of other

students in several academic areas. A specific score is not

used as a reference. The researcher cares only whether the

relative position of the object of measurement is consistent

across measurements, and does not care about the scores per se.

Absolute decisions, on the other hand, involve concerns

both about consistency of relative placement and about

consistency of placement in relation to some absolute criterion

such as a cutoff score or reference point. Several professions

come to mind where competence must be demonstrated in relation

to an absolute standard. Medical personnel, certified public

accountants, and lawyers must achieve a passing score before

being granted a license to practice. Similarly, an applicant

for a driver's license must demonstrate a set leval of

competency on a driving test before legally getting behind the

wheel of a car. For example, in a generalizability study on

constructing diagnostic test profiles, the major purpose of



testing was to assess individual status with respect to the

knowledge domain of pronoun usage (Webb, Herman, & Cabello,

1987). Mastery of the domain provided the basis for decisions

from the diagnostic test. In short, the purpose of the

measurement determines which type of coefficient is appropriate.

Error variance for relative and absolute decisions is

estimated using different combinations of variance components.

A relative decision is determined only by the variance

components that affect the relative standing of an individual in

a group. For instance, in the hypothetical aspiring

researcher's nested design, a relative decision was determined

by the variance components which interact with the object of

measurement. i.e., PO, PT, PI:T, and error. Main effect

variance components are not reflective of the relative standing

of an individual and are not included in the analysis. At last,

with unbounded enthusiasm the researcher obtains from Table 5

the generalizability coefficient, 0.86. Although not as high as

might be hoped, the researcher accepts the coefficient with a

degree of relief. The powerful measurement technique of G

theory has resolved the confusing conflicting reliability

coefficients of classical test theory by yielding one

coefficient representing the generalizability of the attitude

instrument. The generalizability coefficient of (3.86 represents

the degree that scores are generalizable for a relative

decision.

However, if an absolute decision had been the researcher's

focus, all facet variance components including main effects

16
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would have been used in the generalizability calculations: 0, T,

I:T, P0, PT, PI:T, OT, OI:T, POT, and POI:T, and error.

Needless to say, the researcher was relieved that absolute

decisions would not be necessary since the generalizability

coefficient of 0.77 declined, as represented by phi in Table 5.

Further discussion and formulas relating to relative and

absolute decision are available by Brennan (1983), Gillmore

(1983), or Webb, Rowley, and Shavelson (1988). Classical test

theory, unlike generalizability theory, cannot distinguish the

differential reliability of scores employed for relative as

against absolute decisions (Brennan, 1983, p. 18), again

reflecting the limits of classical theory.

D Study Analyses

The newly energized researcher forges ahead to the second

stage of generalizability theory, the decision study (D study).

D studies use variance components information from the G study

to design a measurement protocol that both minimizes error

variance and is most efficient, i.e., yields the most reliable

scores with the least effort. Shavelson, Webb, and Rowley

(1989, p. 925) state, "In distinguishing a G study from a D

study, G theory recognizes that the former is associated with

the development of a measurement procedure whereas the latter

then applies the procedure."

A concept central to a D study is the universe of

generalization. The concept refers to the universe the

researcher wishes to generalize. A D study can include all of

the facets in the universe of admissible observations, or a

17
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reduction in one level or condition of a facet, or a facet can

even be eliminated. However, a D study cannot include facets

that were not present in the universe of admissible observations

during the G study. Conditions to be sampled can vary in a D

study but must be present in the G study so that the necessary

variance components are available to estimate the effects of

various changes 'n the measurement protocol.

Within the D study analysis, the researcher alters the

measurement design of the G study by varying the conditions of

the facets. The analysis is performed by dividing the variance

components estimated in the G study by the number of level-, in

their facet design. For example, one D study analyzed a design

with one occasion, one form, and five items and yields an

estimated generalizability coefficient of 0.70. In another

analysis with a similar design containing 10 items, the

coefficient increased to 0.79. By increasing the items to 25 in

one test, one occasion design, the coefficient increased to

0.85. The improvement in the coefficient by increasing the

items is reasonable since in the present example a large error

component was present for person by items nested in a test

interaction. The use of more items divides the variance from

this measurement error source by a larger number, resulting in a

larger estimated generalizability. Therefore, the D study

provided two measurement designs by which the researcher can

achieve a similar degree of generalizability; either two tests

with five items each given on two occasions (0.86) or one test

with 25 items given once (0.85). If the researcher is satisfied

18
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with this outcome, the protocol which is most efficient or

practical can now be selected in an informed manner.

Failure to use G theory, however, could have led the

researcher to very seriously erroneous estimates of test

reliability (Thompson, 1989a). If the researcher had

administered only Form A of the test on the first occasion, the

classical reliability of 0.48 would have suggested to the

researcher that the project be abandoned. In addition, if the

researcher had measured for stability of Form A, a 0.93

reliability estimate would have stimulated unwarranted

confidence in the measure. Deflated estimates of reliability

would have been obtained if only Form B's internal consistency

on occasion one (0.73) and occasion two (0.74) had been

computed. Importantly, a total of four of the eight

coefficients in Table 2 would have been lower than the

generalizability coefficient of 0.86.

One final interesting data set will further clarify the

discussion concerning potentially erroneous classical

reliabilities. Table 6 presents a similar data set representing

the same measurement design. However, subjects score identical

results for Form A and Form B on each occasion. A classical

reliability of equivalence yields an incredible 1.0--perfectly

reliable forms! Conversely, a G study indicates that the

measurement's generalizability is 0.82. Error, present in the

measurement design, went undetected by the single-source

reliability estimate in the classical approach. Although both

the single analysis and the identical scores in the data set are
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unrealistic, they do demonstrate a point. Multiple sources of

error variance are important. Generalizability theory provides

the framework needed to determine the influence of measurement

error. Only generalizability theory can simultaneously consider

all the multiple sources of measurement error.

INSERT TABLE 6 ABOUT HERE.

Put differently, a researcher may calculate internal

consistency, stability, and equivalence reliability coefficients

to all be 0.90 for a data set, and yet the generalizability

coefficient for the same data might be 0.60 because only

generalizability theory considers the interaction of measurement

error sources. Only generalizability theory honors complex

reality in which measurement error sources may interact to

compound each other!

Conclusion

Measurement theory has advanced beyond classical test

theory. A more powerful analysis, generalizability theory,

considers all sources of error variance simultaneously. Equally

important, generalizability theory considers relationships among

the sources of measurement error. Just as multivariate

inferential statistics considers relationships among variables

that univariate statistics cannot detect, generalizability

theory considers relationships of error measurement that

classical theory cannot. Nunnally (1982) suggests that

generalizability theory goes even beyond the evaluation of



measurement error:

There really is no sharp borderline dividing studies

of reliability from studies of validity. Consequently,

the concepts and mathematical models relating to

generalizability theory can be extended to wider, more

important issues in the behavioral sciences than just

the investigation of measurement error. (p. 1600)

Thus, there is every possibility that reflective researchers

will increasingly turn to generalizability theory as the

measurement model of choice.
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Table 1

Occasion

Data

Form

for Study Example

Items Total

PERSON 1 1 A 4 4 3 5 2 18
B 2 3 2 2 3 12

2 A 4 4 4 5 3 20
B 2 2 1 2 3 10

PERSON 2 1 A 5 2 5 4 5 21
B 4 3 4 4 2 17

2 A 5 2 5 4 4 20
B 5 3 4 5 2 19

PERSON 3 1 A 4 3 4 4 4 19
B 5 3 3 2 3 16

2 A 3 4 4 4 4 19
B 5 4 3 2 4 18

PERSON 4 1 A 4 1 3 2 2 12
B 3 1 2 1 1 8

2 A 2 2 2 2 1

B 2 2 1 3 2 10
PERSON 5 1 A 2 3 4 2 4 15

B 3 1 3 3 2 12
2 A 2 3 3 2 2 12

B 1 1 3 2 1 8
PERSON 6 1 A 5 4 5 3 2 19

B 3 2 4 5 5 19
2 A 5 4 5 4 4 22

B 2 2 5 5 5 19

Table 2

Classical Test Theory Reliabilities

Internal consistency reliabilities:

Form A, Occasion 1 0.48
Form B, Occasion 1 0.73
Form A, Occasion 2 0.91
Form B, Occasion 2 0.74

Stability reliability:

Form A, Occasions 1 & 2 0.93
Form B, Occasions 1 & 2 0.88

Equivalence reliability:

Forms A & B, Occasion 1 0.88
Forms A & B, Occasion 2 0.72

25



Table 3
Random Effects ANOVA from GENOVA

DEGREES
OF

SUMS OF
SQUARES FOR

SUMS OF
SQUARES FOR MEAN

EFFECT FREEDOM MEAN SCORES SCORE EFFECTS SQUARES

Persons 5 1234.20000 68.56667 13.71333
Occasions 1 1165.66667 0.03333 0.03333
Tests 1 1177.66667 12.03333 12.03333
Items:T 8 1190.66667 13.00000 1.62500

PO 5 1237.40000 3.16667 0.63333
PT 5 1252.40000 6.16667 1.23333
P1 :T 40 1330.00000 64.60000 1.61500
OT 1 1177.73333 0.03333 0.03333
OI:T 8 1193.3333) 2.60000 0.32500

POT 5 1258.8000(1 3.16667 0.63333
POI:T 40 1352.0000 13.00000 0.32500

MEAN 1165.63333

TOTAL 119 186.36667

NOTE: FOR GENERALIZABILITY ANALYSES, F-STATISTICS SHOULD BE
IGNORED

Table 4
Variance Components Estimated from Random Effects ANOVA

MODEL VARIANCE COMPONENTS
DEGREES

OF USING USING EMS STANDARD
EFFECT FREEDOM ALGORITHM EQUATIONS ERROR

Persons 5 0.6240000 0.589500(1
Occasions 1 0.0000000 -0.0100000
Tests 1 0.1898333 0.1683333
Items:T 8 .0008333 0.0008333

0.3687613
0.0080050
0.1647915
0.0686416

PO 5 0.0000000 0.0000000
PT 5 -0.0690000 -0.0690000
P1:T 40 0.6450000 0.6450000
OT 1 -0.0200000 -0.0200000
01:T 8 0.0000000 0.0000000

0.0478755
0.0823673
0.1797435
0.0125388
0.0269541

POT 5 0.0616667 0.0616667
P01 :T 40 (1.3250000 0.3250000

0.0691760
0.0709208

NOTE: THE "ALGORITHM" AND "EMS" ESTIMATED VARIANCE COMPONENTS WILL BE
IDENTICAL IF THERE ARE NO NEGATIVE ESTIMATES



Table 5
Generalizability Calculations from GENOVA

VARIANCE COMPONENTS IN TERMS OF
D STUDY UNIVERSE (OF GENERALIZATION) SIZES

VARIANCE COMPONENTS
VARIANCE FINITE D STUDY FOR MEAN SCORES

COMPONENTS UNIVERSE SAMPLING
FOR SINGLE COR- FRE- STANDARD

EFFECT OBSERVATIONS RECTIONS QUENCIES ESTIMATES ERRORS

Persons 0.58950 1.0000 1 0.58950 0.36876
Occasions 0.00000 1.0000 2 0.00000 0.00400
Tests 0.16833 1.0000 2 0.08417 0.08240
Items:T 0.00083 1.0000 10 0.00008 0.00686
PO 0.00000 1.0000 2 0.00000 0.02394
PT 0.00000 1.0000 2 0.00000 0.04118
PI:T 0.64500 1.0000 10 0.06450 0.01797
OT 0.00000 1.0000 4 0.00000 0.00313
OI:T 0.00000 1.0000 20 0.00008 0.00135
POT 0.06167 1.0000 4 0.01542 0.01729
POI:T 0.32500 1.0000 20 0.01625 0.00355

STANDARD
STANDARD ERROR OF

VARIANCE DEVIATION VARIANCE
UNIVERSE SCORE 0.58950 0.76779 0.36876

EXPECTED OBSERVED SCORE 0.68567 0.82805 0.36650
LOWER CASE DELTA 0.09617 0.31011 0.04074
UPPER CASE DELTA 0.18042 0.42475 0.08864

MEAN 0.19853 0.44556

GENERALIZABILITY COEFFICIENT = 0.85975 ( 6.12998)
PHI = 0.76567 ( 3.26744)

NOTE: SIGNAL/NOISE RATIOS ARE IN PARENTHESES



Occasion

Table 6
Data for Example

Form Items Total

PERSON 1 1 A 2 1 2 1 1 7

B 2 1 2 1 1 7

2 A 1 2 3 3 3 12

B 1 2 3 3 3 12

PERSON 2 1 A 2 1 2 5 5 15

B 2 1 2 5 5 15
2 A 2 1 2 3 3 11

B 2 1 2 3 3 11
PERSON 3 1 A 3 3 4 2 3 15

B 3 3 4 2 3 15

2 A 3 2 4 1 2 12

B 3 2 4 1 2 12

PERSON 4 1 A 4 4 5 4 5 22

B 4 4 5 4 5 22

2 A 4 3 4 5 5 21

B 4 3 4 5 5 21

PERSON 5 1 A 3 4 4 3 4 18
B 3 4 4 3 4 18

2 A 4 4 3 4 4 19
B 4 4 3 4 4 19

PERSON 6 1 A 3 2 1 4 2 12

B 3 2 1 4 2 12

2 A 2 2 2 3 5 14

B 2 2 2 3 5 14
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Appendix A
GENOVA Program Code

GSTUDY 0.@@@@@@@ - GENERALIZABILITY THEORY
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT A 0 2 0
EFFECT + T 2 0
EFFECT + I:T 5 0
NAME P "Person"
NAME 0 "Occasion"
NAME T "Test Form"
NAME I "Items within Test"
FORMAT (29X,5F5.0)
REWIND 9

PROCESS 9 DEFAULT
DSTUDY #1 P x 0 x T x I:T MODELS use ems --GENEP9
DEFFECT $ P 6 6 6 6 6 6 6 6
DEFFECT 0 2 1 1 2 1 1 1 1
DEFFECT T 2 1 2 1 1 1 1 1
DEFFECT I:T 5 5 5 5 10 15 20 25
ENDDSTUDY
DSTUDY #2 P x 0 x T x I:T MODELS use algorithm --GENEP9

OPTIONS ALGORITHM
DEFFECT $ P 6 6 6 6 6 6 6 6
DEFFECT 0 2 1 1 2 1 1 1 1
DEFFECT T 2 1 2 1 1 1 1 1
DEFFECT I:T 5 5 5 5 10 15 20 25
ENDDSTUDY
GSTUDY ###1 Form A Occasion #1 internal consistency
reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + I 5 0
NAME P "Person"
NAME I "Items within Test"
FORMAT (29X,5F5.0///)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###2 Form B Occasion #1 internal consistency
reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + I 5 0
NAME P "Person"
NAME I "Items within Test"
FORMAT (/29X,5F5.0//)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###3 Form A Occasion #2 internal consistencyreliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
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EFFECT + I 5 0
NAME P "Person"
NAME I "Items within Test"
FORMAT (//29X,5F5.0/)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###4 Form B Occasion 02 internal consistencyreliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + I 5 0
NAME P "Person"
NAME I "Items within Test"
FORMAT (///29X,5F5.0)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY $$$5 Form A test-retest stability reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + 0 2 0
EFFECT + I 5 0
NAME P "Person"
NAME 0 "Occasion"
NAME I "Items within Test"
FORMAT (29X,5F5.0//29X,5F5.0/)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###6 Form B test-retest stability reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + 0 2 9
EFFECT + I 5 0
NAME P "Person"
NAME 0 "Occasion"
NAME I "Items within Test"
FORMAT (/29X,5F5.0//29X,5F5.0)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###7 Occasion #1 equivalence reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + T 2 0
EFFECT + I:T 5 0
NAME P "Person"
NAME T "Test"
NAME I "Items within Test"
FORMAT (29X,5F5.0/29X,5F5.0//)
REWIND 9
PROCESS 9 DEFAULT
GSTUDY ###8 Occasion #2 equivalence reliability
OPTIONS RECORDS ALL CORRELATION NEGATIVE
EFFECT * P 6 0
EFFECT + T 2 0
EFFECT + I:T 5 0
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NAME F -Person"
NAME T "Test"
NAME I "Items within Test"
FORMAT (//29X,5F5.0/29X,5F5.0)
REWIND 9
PROCESS 9 DEFAULT
FINISH


