DOCUMENT RESUME

ED 312 998 IR 014 036

AUTHOR de Diana, I. P. F.; Vos, Hans J.

TITLE Abstrar’. Representation of Tutorial CAI and the
Development of an Adjustable Tvtorial System.

INSTITUTION Twente Univ., Enschede (Netherlands). Dept. of
Education.

REPORT NO ISBN-90-365-0087-7

PUB DATE 87

NCOTE 40p.

AVAILABLE FROM The Department of Education of the University of
Twente, P.O. Box 217, 7500 AE Enschede, The

Netherlands.
PUB TYPE Information Analyses (070) -- Reports -
Research/Technical (1.43)
EDRS PRICE MF01/PC02 Plus Postage.
DESCRIPTORS communication (Thought Transf-t); =*Computer Assisted |
Instruction; =*Courseware; Mode S; =*Systems
Approach
IDENTIFIERS xGeneral Systems Theory; =*Software Developrent
ABSTRACT

This paper presents a model of an abstract tutorial
system. The first section discusses some of the problems encountered
in producing courseware and examines the availability of software
tools to support effective communication on three levels: (1)
accuracy of communication; (2) transmission of the desired meaning;
and (3) affecting conduct in a desired way. In the next section, the
use of General Systems Theory (GST) as a framework for modelling is
discussed. The third section introduces some elementary systems, and
the fourth section addresses—=-on an abstract level--the use of
pointers and the subject matter crepresented by a collection of four
elementary frames. In the final section, the model is formalized
using GST. Twenty-five references are listed. A list of the system
variables and equations of the GST model are appended. (MES)

RRXRRRRXRXRRRRRRRRRRARRRARRARRRRARRRRARR AR AR AR R AR RARRR AR R AR R R R RR AR RRRRRRRRRRRYRR

* Reproductions supplied by EDRS are the best that can be made *

* from the original dccument. *
A AR R AR R R R R KRR R R KRR KRR AR A KRR AR KRR KRR KRR KRR R RR KRR R KA RKRRKRRNRRRRRRR KR

ED312998g

BEST COPY AVAILABLE

Abstract representation of tutorial CAl

and the development of
an adjustible tutorial system

U S OEPARTMENT OF EDUCATION
OMice of Educationai Research and 'mprovement

EDUCATIONAL RESQURCES INFORMATION
CENTER(ERIC)

‘Yms document has been reproduced as
received from the person ot organization

onginahng it
O Minotr changes have been made 10 /mprove

reproduction Qualiity

o Points of view of opinions stated in this docu
ment do not necessarnty represent othicial
OE RI postion or pohcy

" de Diana
H Vos

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

— o

TO T+.£ EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC) "

of Education
University

- of
Twente

u -

ABSTRACT REPRESENTATION OF TUTORIAL CAX
AND THE DEVELOPMENT OF AN ADJUSTABLE TUTORIAL SYSTEM

I. e Diana, H. Vos.

University of Twente, Enschede, the Netherlands.

Abstract representation of tutorial CAI and the

development of an adjustable tutor.al system
1.P.F. De Diana, H.J. Vos.

Enschede : University of Twente,

Department of Educatfon, 1987

1SBN 90-365-0087-7

Trefvoorden:

tutorial CAl

general systems theory
instrurtional systems modelling
coursewvare design

CAD/CAI

information technology

Colofon:

Typewerk : E. Wigbold

Vormgeving omslag: AV-sectie TOLAB

Reproduct ie : Centrale Reproductie-afdeling
Universiteit Twente

Oplage : 50 exemplaren

Besteladres ¢ Universiteit Twente

Mediatheek Toepepaste Onderwi jskunde
Postbus 217

7500 AE ENSCHEDE

tel.: 053-893583

TABLE OF CONTENTS

Abstract

Introduction

Why a workenvironment for the production of a

tutorial courseware?

General systems theory as a framework for modelling

Some general systems theory notions

The subject matter represented by a collection of four

elementary frames

Formalization of the block diagram using the general
systeas theory

Conclusions

References

Appendix

15

18

20

22

25

26

28

ABSTRACT

An obvious problem in the construction of courseware for computer
assisted instruction is the lack of analytical tools for testing the
likely effectiveness of the cnurseware under construction.

The CAD-CAX research project of the University of Twente aims at the
development of a set of analytical tools for courseware developers,
integrated in a production environment. A first step in the development
of such tools is perceived to lay in the modelling of the product type.
The general systems theory has been used as a framework for modelling
the tutorial inmstructfonal process. An unaabiguous representation was
developed, which served as the foundation for the realization of an
ad justable tutorial "machine”. This machine can operate as the execution
mechanisa for tutorial courseware that has been developed in the form of
a network of frames (nodes). Thus both a general model has been con-
structed, based upon vwhich specific tutorial courseware can be executed
and a besis has been laid for wmanip:lating various design options in
order to be able to trace the likely effects of design choices. Design
options in respect to decisionrules for steering the inatructional

process in the context of system controlled CAI.

1. INTRODUCTION

The production of courseware for computer assisted instruction (CAI) {is
regarded to be a complex and costly process. Various sources (Moonen and
Gastkemper 1983, Kearsley 1983) report production time/on-line in-
struction time ratfos varying between 80 and 200 (in hours).

The production of courseware is a complex activity because it is a
combined process of developing computer software and an instructional
system. Albeit an abundance of literature has been published both about
softvare engineering and about the development of instructional systems,
not quite much has been published about the engineering of courseware
some of the exceptions being (Bork 1981, 1984).

Even though special instruments have been developed to support the
development of courseware such as authoring languages and authoring
systems, a fuudamental problem is encountered during the development of
courseware. It is more or less consciously realized by every developer
of courseware, that no special instruments or methods exist by means of
vhich the likely performance of courseware is analyzable during design.
As a consequence it is simply not possible for a designer to calculate
the likely effects of wvarious design options in terms of the expected
likely performance of the courseware. Design choices are based on edu-
cated guesses and on trial and error based learning experiences gained
from the development praxis.

Gaining access to a manipulatable model of the courseware system under
design would provide the developer with a basis for the use of special
facilities to experimentally teit the effects of implementing various
design options. Such a model in combinatfon with attached analytical
instruments would offer the developer the possibility to systematically
alter parameters of the system and to calculate the recults in terms of
the expected performance of the courseware.

The CAD-CAI researchproject, described to some extent in this article,

eabodies an attempt to credte a workenvironment for the development of
coursevare (called the EDUC system) in which the effects of various
design options during the design of tutorial CAI can be analyzed. As the

construction of models is based upon the creation of an abstract re-

presentation of the system under study, the researchers started with the
developaent of an abstract tutorial system. This abstract system was
transformed into an ad justable tutorial software machine, forming a part
of the before mentioned experimental workeanvironment.

To this workenvironment software instruments for analyzing the effects
of various design options have been attached.

2. WHY A WORKENVIRONMENT FOR THE PRODUCTION OF TUTORIAL COURSEWARE?

As CAI is based on the executior of computerprogrammes that carry out
the instructional activities, these programmes should of course be free
from syntactic errors. It is a well known fact that the design and
construction of large computerprogrammes is a notorious activity in
terms of costs in time and effort involved.

Producing courseware however means the production of an instructional
system as well., The design and development of an adequate instructional
system requires hardly less effort than the development of a larger
scale computerprogram. It is an activity that needs carefull planning
and & thorough knowledge of the instructional variables involved
(Roniszowski 1982, 1984) Furthermore, during the development of course-
ware e¢xplicit attention needs to be given to the man-machine interface,
being the various ways the human and the computer will interact during
the execution of the instructional computerprogran (Kearsley and
Hillelsohn 1982).

These three areds, computerprogramming, the development of an in-
structional system and the development of & man-machine interface mingle
during the design and development process of courseware. Together they
form s difficult mix from the perspective of an attempt to produce
quality courseware at acceptable cost.

Several indications in the literature point out that the production of
courseware is a highly time consuming actfvity as wel, the ratios of
production time to net connect instruction tiwe vary between 100 and 200
(in hours), depending mostly upon the difficulty of the instructional
problem involved, the expertise of the developers and the adequacy of
cthe hardware and software tools used (Moonen and Gastkemper 1983,
Kearaley 1983).

It has been often noted in the literature that amulti-disciplinary
expertise (e.g. computer specialist, educationalist, graphics designer,
psychologist) is needed for the production of quality coursewvare (for
instance (Kontos, 1984). Forming (and keeping..) viable multidiscipli-
nary work units often appears to be a difficult task (Francis 1979).

Keeping these problems in mind, it is no wonder that the history of the
development of support tools for the production of courseware dates back
as far as 1960 (Kearsley 1982) By means of these tools it was hoped that
the production of courseware would become easier, that productivity
could be increased and that the portability of courseware could be
augmented by using back-end compilers to translate the code produced by

these tools for differect computersystems and to create a workenviron-
ment for multi-~disciplinary specialists. In general, these tools are
divided in two classes, viz. authoring languages, being special purpose
higher order application -languages which facilitate the production of
courseware (for a review see (Barker and Singh, 1982)) and authoring
systems, being more or less integrated sets of software tools intended
to wmake the production of courseware an activity for which ne
programming expertise is needed (Kearsley 1982).

Even though some indications in the literature can be found that
(especially) authoring systems gpeed up the process of producing course-
wvare (Avner 1979, Fairveather and O'Neal 1984) the production time and
effort involved stays rather high. Taking it for granted that designing
and developing quality instructional materials will remain an exacting
activity, we rather pose the question why the effort involved quite
often does not stand up to the resulting product quality.

A point of entry for answering this question can be found in the reali-
zation that computer assisted instruction is a form of communication,
taking place between a source or sender of data (the computer and in
last instance the producer of courseware) and a receiver of data (the
husan learper). Shannon and Weaver (1949) have pointed out, that three
levels are involved in the communication of data, as far as the

effectiveness of the message :.nt is concerned.

Level 1 pertuins to the accuracy with which the symbols of communication
are transmitted and received. Level 2 pertains to the precision with
vhich the symbols of communication convey the meaning intended by the
sender (in our case the gender is the author of the coursevare). Level 3
pertains to the effectiveness with which the received message effects

10

conduct of the receiver in the way desired by the sender. These levels
build upon each other. Accurate reception of the symbols of communi-

cation 18 & pre-condition for the convey of the meaning encoded in the
symbols. Reception of the meaning of the communication in its turn is a
pre-condition for effecting the receiver's behavior in a desired way.

Returning to the question why the effort involved in the production of
coursewvare quite often does not stand up to the resulting product per-
formance, at least two factors seem to be involved. The production
technology for courseware is a not well developed field, to say the
least. The production of courseware is stfll an activity based primarily
upon experiences gained in lne developmental praxis. A typical developer
goes through a period of some kind of apprenticeship, during which he
typically learns to work with some authoring facility and learns a set
of action rules, based upon which the production of courseware is
carried out. Design choices during the production of courseware are
a-stly based upon ed:cated guesses, coabined with knowledge gained from
trial and error based experiences in the development praxis, rather than
on & systematic application of proven design knowledge. A fairly typical
situation for a developing techmology.

Furthermore, the developer of courseware is dependent on the adequacy
and quality of the tools he is using. The availability of tools that
of ‘er some support for the realization of effective communication on
the three levels mentioned therefore seems an important factor.

Looking at available software tools for courgeware-producers from the
perspective of the support they offer for the production of effective
courgseware , we obtain the following picture.

Level 1. The accurscy of commmication

This level pertains to the question of being able to realize a communi-
cation between seuder and receiver that actually reaches the receiver
and is perceptible to him. On the sid. of the sender this presumes a
faultless coding of the message to be sent and « faultless sending of
the message to take place. Faultless coding and sending means errorfree
jastructional software and support software (such as operating systenm
activities involved in the distribution of the courseware). No viable

11

- 10 -

support tools dc as yet exist for the systematic production of error
free instructional prograa code.

Instruct ional prograa generators as they exist today are extremely
liaited in scope and hardly ever lead to adequate courseware. The
compiler or interpreter used for the translation ¢f the commands 1in
machine readable code offers a mechanism however fcr the detection of
(syantactic) errors. So the developer of courseware has to some extent a
tool available for checking whether the program code of the courseware

is accurate.
lavel 2. The transaission of the desired meaning

This level pertains to the decodability of the message for the receiver.
If the receiver is not able to properiy decode the sent message, that is
to attach meaning to it, effective communication can not be realized. On
the side of the sender this presumes that the message 1s coded in such a
way that semantic correctness during decoding can be realized by the
receiver. '

Support for the realization of semantic correct courseware is to be
found in the availability of methods that mark a developmental path or
give a get of working directions by means of which the developer can
systematically work from the specifications of a required product
tovards an actual product, satisfying these specifications. As far as
the development of computer programmes is involved one can in this
respect think c;f software engineering methodologies (e.g. Jackson 1985,
SADT, Ress 1977).

As far as the development of instructional systems is involved, several
instructional design approaches (e.g. Gagne and Briggs 1974, Romiszowski
1982, 1984) are available. If however integrated courseware design is
involved one can think of the use of instructional (software) templates
that in some way or other pre-structure the courseware to he produced.
Using these templates the developer can rely upon preformatted
instructional program structures. Quite often, the use of these

templates leads to rather rigid and restricted courseware.
Checks on semantic correctness are to be based upon the degree of

congruity between the original specifications and the characteristics of
the product.

12

- 11 =

Where clear, unambigue specifications were given at the start of the
development process, these checks should not be too difficult. Quite
often hovever, coursevare specifications are not that unambigue.

Level 3. Bffecting coonduct in a desired vay

This level pertains to the effect the decoded message has upon the
receiver. Effecting coanduct in a desired way pertains to the s0 called
pragmatics problem. Pragastic effectiveness is context dependent, that
is the context in which sender and receiver communicate. In order for
pragmatic effective communication to take place, on the side of the
sender the felicity principle has to prevail. Jackson (1985) speaks
about felicity being concerned with whether or not a particular act is
appropriate in a particular context.

Pelicity in respect to the instructional events (that can be considered
to bes the instructional acts as far as the sender is involved in
computer based learning) is based upon the integrity of the whole of
inatructional events that make up the courseware. Doblin (1980) speaking
about the pre-conditions of the pragmatics of non-textual coamuni-
cations, sees integrity as the right assortment and asseablage of the
parts of which a message is compcsed.

On the side of the receiver, several pre-conditions have to be full-
filled in order for pragmatic effectiveness to be realizable as far as
computer based learning is involved. The receiver has to be sincere in
his/her intention to acquire information, has to accept the sent infor-
mation and to perceive th¢ message as credible.

Yor the developer of courseware, it is quite hard to know in advance

vhether these pre~conditions oun the side of the receiver will be met.
Given this problem, however, the developer could strive after integrity
in his courseware. Integrity in courseware then would pertain to the
right assortment and assemblage of instructional events to be offered by

the coursevare.
No specific software methods are as yet available for the support of

realizing effective coursevare ss considered on this level. In the
educational literature, the term “"formative evaluation” is often en-

13

- 12 -

countered, meaning evaluation of a product that is under development. In
formative evaluation the product that is being developed is tested in a
stepvise fashion. For instanze a prototype of instructional material is
tested on its functionality in a single classroom, revised and tested on
school level afterwvards. Formative evaluation as usually carried out
hovever is not besed on a model of the systea under development. There-
fore, the developer using regular formative evaluation techniques is not
able in a pre-prototype product stage to test the likely effects of
various design options and based upon the obtained results to choose the
best ores for realizing the prototype.

S0 we are left in a situation in which it is possible during the autho-
ring of courseware to check the syntactic correctness of the computer
code involved, to get some support for realizing semantic correct
courseware, but little or no support for the resalization of effective

coursewsre during design.

As the developer of courseware is dependent on the functionality and
quality of the tools he uses and as these tools appear orly to be in-
strumental as far as testing on syntactic correctness of courseware is
involved, the question why the effort involved in the production of
couisevare quite often does not stand up to the resulting precduct quali-
ty, seeas & littlec more answerable now.

Our present research is an attempt to explore what kind of instructional
development methodology and kinds of tools are feasible to support the
design of effective courseware (from a pragmatics point of view), given

that syntactic and semantic correct courseware can be realized.

Integrity of courseware, foraing a part of the pragmatice question, is
context dependent. As far as CAI is concerned, broadly two main catego-
ries of instructional context (instructional approaches and connected
types of instructional goals) are involved. The question "Who is
steering the instructional proces.?” is a paramount divisor herein.
Systea controlled CAL presumes that the computer guides the learner
through the instruétional material. Typically, the instructional goals
involved in this category stress the iaportance of systevatic in-

14

- 13 -

structional activities and a atrive towards a measurable increase of
knowledge to be realized by wmeans of the Zinstructional activities.
Furthermore implicit or explicit rules are involved in respect to de-
cision processes for guiding the learner through the instructional
material. Such a rule could be " go to the next unit of instructional

material only if all questions in this unit are correctly answered”.

Represeutatives of this category are the CAI forms drill-and-practice
and tutoricl. Drill-and-practice is a stepwise approach aimed at proce-
dural mastery predominantly of sequences of (cognitive) operations.
Tutorial is primarily used. for the instruction of conceptual or factual
relationships and often drill-and-practice is embedd.d in tutorial CAI.

Learner controlled CAI presumes that the learner s his own guide
through the instructional wmaterial. The instructional goals in this
category often stress the importance of opportunities for the learmer to
explore the coursevare freely. The instructional process involved
typically has a nonsystematic character; the learner decides what and
how to learn and when he/she has learnad enough-

Represent atives of this category are the CAI forms simulation and in-
quiry.

Simulation, based upon a model of a part of the empirical world makes it
possible for a learner to explore what the effects are if th? parameters
of the model arc gi:en other values. Inquiry pertains to some forms of

retrieving froam an electronic "dictionary”.

From our perspective there was a choice to be made between the two
contexts in terms of our exploration. We have chosen for the context
gsystem control, as the degree of control the courseware developer has
over the way the instructional process will take place and the in-
structional events the learner will encounter is much greater here than
in the context of learner control. As a consequence of this the deve-
loper of system controlled courseware is in a better position to analyze
the integrity and therefore the likely effectiveness of his product than
the developer of learner controlled courseware.

15

-16-

Even though the two forms of system controlled CAI we have mentioned
differ to some extent, we have opted for an approach {u which both foras
can be used. Tutorial however ia the main form from our point of view,
under which drill-and-practice can be subsumed.

A wvorkeavironsent for analyzing the likely effectiveness of courseware
under design, should offer possibilities for analyzing the integrity of
the design, for modelling the instructional process and for modelling
the learner. By weans of posing systematic what-if types of questioms,
the designer should be able to explore the effccts of interactions
between design characteristics, the model of the instructional process
and the model of the learner. By using quality indicators and by posing
criteria that should be met for an allowable design golution, adequate
design solutions could be found, given the mentioned facilities of the
workenvironment . Furthermore in such a workenvironment uod'elling of the
instructional process and learner should be conform the instructional
context choosen. Preferably, the model of the imstructional process
should be developed as & connected system of adjustable units and the
vorkenvironment should contain & courseware development system, in order
to be able to trace its functionality.

S0, wmodelling is the first step. Schemes of tutorial (imstruction)
systens are given (among others) by Stolurow (1971), Hartley and Sleeman
(1975) and Wagner (1981).

Even though these schemes differ in degree of elaboration and to some
extent in the functions embodied in them, & common divisor of theae
schemes was clearly extant. Yet none of these schemes could be used for
our exploration as they were not developed for our research objective
and miss the necessary degree of formalization.

16

-ls-

3. GENERAL SYSTEMS THEORY AS A FRAMEWORK FOR MODELLING

To meet this need of testing already in the developing stage the effects
of alternative design choices, the construction of a model is essential.
The instructional variables of this model can then be manipulated to
test their impact on student perforamances.

Conceptually, the most simple model is a qualitative model or block
diagran consisting of blocks and errors. The blocks refer to functional
parts of the CAl-svstem and the arrows connecting the blocks indicate
that there is a relarionship of some kind. 'Tutorial schemes' can be
considered to belong to this type of models. Block diagrams provide a
verbal description of a system by enumerating the important elements and
their relationships relative to a given problem (March and Simon 1961).

The qualitative model used in inis paper has been constructed to repre-
sent an abstract tutorial syste~m as a first step in building a model of
the tutorial CAl process, and will later be transformed into an ad-
justable tutorial software machine.

The teaching material is localized in the subject amatter block. The
cubject matter will be represented by a collection of four so-called
elewentary instructional frames, in a way to be described later.

It is typical for tutorial CAI that a small piece of the subject matter
together with a question is presented to the student represented by the
student block. The actual answer given by the student to this question
is compaied with the right answer stored in the matching block. The
result of the matching procedure is sent to the score block.

The score bluck and the decision block interact with each other by means
of a simpl: feedback mechanism. On the one hand the past history of the
student is collected in the score block, which is used in the decision
block to decide how to proceed with the instruction. The next frame to
present to the stu:lent is based on a detailed specification of decision
rules depending on the student score. These rules reflect part of the
teaching strategy and establish the route the student is going to follow
through the netvork of frames. On the other hand, it is decided in the
decision block whether the counter of the gtudent score has to be ad-
Justed or not.

17

- 16 =

decision block

student counter
score

next
frame

score block

correct

subject matter

block matching block

studeat block
question answer

Figure 1 Block diagram of a systea controlled CAl-system
blocks: functional parts
arrows: relationships

As indicated before, this qualitative model is insdequate for our pur-—
pose, but it can serve as an aid to construct a8 formal model. A formal
model is best suited to describe the dynamic behavior of complex systems
with feedback phenomena and many f{nteractions between components
(Forrester, 1961). Such a formal model can be used to represent a
connected system of adjust-ole units. The units result from & formal
description of the blocks in Figure 1 and they become adjustable by
formalizing the relationships.

18

Once this adjustable tutorial software machine has been created, it can
be used for bringing together the right assortment and assemblage of
instructional events. In this way the developer ccn analyze the inte-

grity of the coursevare under design with higher chances on developing
effective courseware.

To formalize the block diagram the General Systems Theory is used as a
framevork. Its concepts offer the tools to give a mathematical de-
scription of a complex whole of {nteracting parts (Bertalanffy 1968). In
this paper only those concepts will be considered, which are needed to
foraaslize the block diagram. It will be fndicated how the General
Systems Th=ory can be used to describe the blocks und arrows in an
unasbigiors way.

19

- 18 -

4. SOME GENERAL SYSTEMS THEORY NCTIONS

To be able to classify the blocks of Figure 1, some elementary systems
will be introduced.

The first elementary system to be considered is the well-known black box
(see SC in Figure 2). From this elementary system only the relationships
between the independent input variables and the dependent output
variables are known. The next elementary system to be considered is the
black box with memory. In addition to the input and output variables
they possess state variables. Those dependent variables neccessary and
sufficient to determine the output ‘variables together with the input
variables are called the state variables. They contain the relevant past
history and serve as the memory of the system. The last elementary
systen to be considered is the declsion system (see DC in Figure 2).
Decisions are taken by means of decision rules being of an ‘*if then'
character, which means that certain prescribed actions are taken if
certain conditions are fullfilled.

DC
de
8
decision information
input SC output
—_) sc —P+
s

Figure 2 The defined elementary systems and the
corresponding system variables
DC: decision system
$C: black box
88,49, gtate variables of the black box

and decision system

20

o

- 19 -

The following symbols will be used to indicate the system variables at

time t:

x(t) = input variable;

y(t) = output variable;

s(t) = gtate variable;

u(t) = decision variable;
z(t) = information variable;

By means of these variables the arrows of Figure 1 can be classified.

To describe the relationships between the arrows, it ia neccessary to

formulate the general form of the two fundamental system equations:

y(t) = f[x(t),s(t),u(t)]: output equation
s(t+l) = g[x(t),s(t),u(t)): state equation
The information and decision equations are
equations and have the same general form.

21

special cases of the output

- 20 -

5. THE SUBJECT MATTER REPRESENTED BY A COLLECYION OF FOUR ELEMENTARY
FRAMES .

An essential role in all four elementary frames is played by the
pointers, of which the types I until III and IV possess regspectively 2
and 4. A pointer refars to the next frame to be presented to the student
after his/her response. The types I until III build up a hierarchy, by
vhich is meant that the higher ones incorporate minimally all the pro-
perties of the lower ones.

It is further assumed that the subject matter is composed of frames,
and, in turn every frame of levels. The frames are used to partition the
instructional wmaterial, for instance, on the basis of task analysis.
Every frame belongs to one of the four elementary types. Frames at the
saoe level contain teaching wmaterials of the same difficult, while
frames at a higher level con- tain more difficult material. In this way
every frame can be indicated unambigiously by a frame and a level-
number.

The first elementary frame to be discussed is of type I. It consists of
several questions and is specially suited for drill-and-practice pur-
poses. In this type pointers are distinguished. An up-pointer refers to
a frame at a higher level, while a down-pointer refers to a frame at the
same or & lower level. Not every student-response activates a pointer
and in such case the next question in the frame is presented to the
student. Whether a pointer is activated or not is decided on the basis
of the student-score in the decision block.

In addition to all the properties of type I the second type has the
possibility of presenting a preceding text at the start of the first
question. Type III is, like type II, a mixture of a pure drill-and-
practice and a tutorial frame. Along with all the properties of type 1I,
this frame has the possibility of giving additional information about
the chosen alternative. Whether this will be given or uot is decided in
the decision block again.

The last elementary frame to be discussed is of type IV whict is gome-
vhat difficent from the first 3 types. It is specially suited for pure
tutorial purposes. The essential difference with the other 3 types lies
in the fact that now a poirter is used to relate every alternative to

22

- 21 -

the next frame to be presented. In the case of a aultiple-choice
question with four alternatives this means that the '1','2','3', aad *4'
responses are related respectively to the 'A‘','B','C', and 'D'-pointer.
Which frame actually is presented to the student depends for all four
types on the past history of the student and is controlled by the rules
in the decision block. This means that the designer hast to prepare all
the frames containing the instructional material as well as all possible
routes which link these frames together. Also, the designer has to glve
a detailed specification of the decision rules. These decision rules can
easily be changed Ly the designer without changing the instructional
material. This property aakes the CAI-system into a ccanected system of
adjustable units. The machine, in turn, collects the student data and
takes the routing decisions on the basis of these data.

\

v

]

s
3
L

- 22 -

6. FORMALIZATION OF THE BLOCK DIAGRAM USING THE GENERAL SYSTEMS THEORY

Having introduced the elementary frames as the tools to conatruct the
instructional material, the block diagram of Figure 1 can now be for-

malized by means of the mentioned concepts of General Systeas Theory
(G.S.T.).

All the blocks and arrows will be interpreted in terms of both the
elementary systems and system variables. As an example, the arrows
leaving the matching block, the score block, and the decision block will
be described by their system equations. This inplies that, in order to
illugstrate how the decision block works, some decisior rules have to be
specified.

The G.S.T.-model can be represented as shown in figure 3.

A few more arrows have been included in the G.S.T.-model to make a
complete description possible. It can be noticed from the model that the
blocks of Figure 1 are represented by the following elementary systems.
The subject matter and the student block respectively by the black boxes
SC. sub and SC. stu. The score block by black box SC. sco, whiclh has a
mesory s*S. The matching block by decision system DC.mtc. And finally,
the decision block by decision system DC. dec, which has a memory ‘dec.
Before startiug one cycle through the G.S.T.-model gome notations will
be introduced. Above the system variable the block of descent will be
marked and beneath the block of destination. A system varisble can be
composed of -!Everal components, each indicated by a nuaber. For
instance, u (2,t) stands for the sgecond component of the decision
varisble at t‘f& t descent from the matching block and with the score
block as a destination.

The cycle through the G.S.T.-model starts at the subject matter block
SC.sub. On the basis of the decision variable u ooy the right block,
level, and question nuamber is selected by means of a retrieval
sschanism. If it is decided in DC. dec to give additional information
this is also picked up in SC. gub and presented to the student. The
listing of the systea variables and equations is attacked as an Appendix
with a2 brief explanation.

24

- 23 -

dec
u
stu
u dec mtc
sub dec
DC. dec
dec #
8
sub ‘ sco
u
dec dec
SC. sco
sco
8
mtc
u
SC. sub e DC. mte
sub
z
mtc
sub 'atu
y z
stu mtc
SC. stu . stu
dec

Figure 3 A G.S.T.-model of a system controlled CAI-system

Once the system equations have been written down, the G.S.T.-model can
easily be converted into a computer program. The main program can be

vritten by developing procedures in a wmodular way for each elementary

25

- 24 -

systen. The input varisbles appear as value-parameters and the output,
decision, and information varfables as var-parameters in the procedure
body. The described gystem equations are used in the procedure body.
Before being able to run the main program it is necessary to inftialize
the components of some system variables.

The msin program is running now in the following way:
BEGIN
initialize (student-decision, student-history);
WHILE NOT student-decision.terminate DO
BEGIN
subject-matter (student-decision, block);
readln (input, answer);
matching (frame, answer, matching-result);
score (matching-result, student-decision, student-history);
decision (student-history, frame, student-decision);
END
END.

This computer program, developed by transforming the G.S.T.-model into a
set of cooperating procedures, can be conceived as the adjustable ru-
torial software machine introduced in section 1.

26

- 25 -

7. CONCLUSIONS

The development of analytical tools for the developer of courseware is
without any doubt a very promising perspective. Yet the rvad to go is
not sn obvious one nor an easy one to walk on.

The presented research work has demonstrated that it is possible to
define unambigiously a tutorial process &ad to develop an execution
mechanisa for courseware that is both manipulable and based upon a
sodular and explicite mathematicel model.

This model if integrated in & workenviroumeat for coursevare, can be
usc ' in connection with analytical tools to trace the likely effects of
varioue design options. As far as the presented research is concurned,
only the choices and effects of dicusionrules in the context of gystem
controlled CAIl are manipulsble an traceable. The presented model is a
rather simple one though it may seea complicated. Rather, to cover
tutorial processes in full plurifold, it would take 2 fair extension of
the presented model and & wmore general approach gtill to the
construction of system cells. Research in this directions is carried out
by De Diana end Vos. Furthermore, in the presented research no specific
analytical tools have bzen cescribed. Such tools are under development
in the CAD-CAI project, foraming part of an experimental vor.. eavironment
for the development of coursweware (called EDUC). Further extensions of
the presented rescarch can be expected from studying the contect of
learner contralled CAI and the addition of a “memory cel” for the re-
presentation of the ghown behaviour of the learner during the
iastructional process.

R7

- 26 =

REFERENCES

AVNER, R. (1979), Production of coamputer-based instructional materials.
In: O' Neill (Ed.): 1Issues in instructionsl Systems Development.
Acadenic Press, New York.

BARKER, P., SINGH, R. (1982), Authoring languages for Computer-Based
'Learning. Brit. Journal of Bduc. Technology, no. 3, vol. 13, 167-196.

BERTALANFFY, L. von. General Systems Theory. New York, 1968.

BORK, A. (1981), Learning with computers. Digital Press, Bedford, Mass.

BORK, A. (1984), Producing Computer Based Learning materials at the
Educatfonal Technology Center. Journal of Computer Based-Instruction,

vol. 11, no.3, 78-81.

TOBLIN, J. (1980), A structure for nontextual communications. In :
Kolers, P., Wrolstad, M., Bouma, H. (eds.) The processing of visible
language 2. Plenum Press, New York.

PAIRVEATHER, P., O'NEAL, A. (1984), The impact of advanced authoring
systems on CAI productivity. Journal of Computer Bssed-Instruction,

vol. 11, no.3, 90-94.
FORRESTER, J.W. (1961) Industrial Dynamics. Cambridge (Mass.).

FRANCIS, L. (1979), PFive phases in the life of CBT sites: II. Staf
selection and retention. ADCIS Proceedings, San Diego, Calif.

GAGNE, R., BRIGGS, L. (1974), Principles of Instructional Design. Holt,
Rinehart and Winston, New York.

HARTLEY, J., SLEEL..N, D. (1975), Towards More Intelligent Teaching
Systems. Int. J. Man-Machine Studies, 5, 215-236.

JACKSON, M.A. (1975), Principles of prograr: design. Academic Press.

JACKSON, P. (1985), Ressoning and advice-giving systems, 73-83 in:
Bramer, M. (ed.) Research and development in expert systeas. Cambridge

University Press, Cambridge.

KEARSLEY, G. (1982), Authoring systems in Computer Based Education.
Communications of the ACM, 429-43].

KEARSLEY, G., HILLELSOHN, M. (1982), Human factors considerations for CT
systeas. Journal of Computer Based Instruction.

KEARSLEY, G. (1983), Computer Based Training. Addison & Wesley, Reading.

28

- 27 =

KONTOS, G. (1984-1985), Instructional computing: in search of better
methods for the production of CAI lessons. J. Educ. Technology
Systems, vol 13, 1.

MARCH, J.G., SIMON, H.A. (1961) Organizations. New York.

MOONEN, J., GASTKEMPER, F. (1983), Computer gestuurd onderwijs. Het
Spectrum, Utrecht.

ROMISZOWSKI, A. (1982), Designing Instructional Systems. Kogan Page,
London.

ROMISZOWSKI, A. (1984), Producing instructional Systems. Kogan Page,
London.

ROSS, D.T. (1977), Structured Analysis: a Language for communicating
Ideas. IEEE trans. on software engineering, vol. 3, no.l, 16-34.

SHANNON, C., WEAVER, W. (1949), The mathematical theory of communi-
cation. University of Illinois Press, Urbana.

STOLUROW, L. (1971), Models for instructional design: a systeas approach
to inmstruction. In : Merrill, M.D. (Ed.): Instructional Design:
Readings. Prentice Hall, Englewood Cliffs.

WAGNER, W. (1981-1982), Design considerations for 1instructional
computing programs. J. Educ. Technology Systems, vol. 10, 3.

29

-~ 28 -

APPENDIX

The listing of the system variables and equations of the G.S.T.-model.

We start with a description of the output and informatfon variables
leaving the subject matter block.

sudb
y (1,t) = presented question and its accompanying alternatives,
stu possibly preceding by a text in case of type II until IV;
sud
y (2,t) = presented additional information if decided in case of
stu type III and IV;
sud
z (1,t) = number of correct alternative (1,2,3 or 4);
atc
sud

2 (14i,t) = alternative information belongs to the ith alternative

ate (boolean var.); 1< 1 < 4
sudb
z (1,t) = gelected block belongs to type IV (boolean var.);
dec

For types I umtil III:

sudb
z (2,t) = number of questions in selected frame:
dec

sudb
z (3,t) = frame nusber assigned to the up-pointer;
dec

sudb
z (4,t) = level number assigned to the up-pointer;
dec

30

-29-

sub
z (5,t) »
dec

sub
z (6,t) =
dec

For type IV:

sub sub
z (7,t) until z (10,t) =
dec dec
OAO'
sub sub
z (11,t) until 2 (l4,t) = level
dec dec

IAO'

Information variables leaving the

stu atu

frame number assigned to the

level number assigned to the

frame numbers

down-pointer;

down-pointer;

assigned to respectively the

'B', 'C' and 'D'-pointers;

nunbers assigned to respectively the

'B', 'C' and 'D'-pointers;

student block:

z (1,t) =z (1,t) = gtudent answer (1,2,3 or 4);

mte dec

Decision and information variables leaving the matching block:

ate
u(l,t)
sco

mte
z (1,t) =

dec (boolean var.);

the student answer i8 correct (boolean var.);

additional information belongs to the student answer

31

- 30 -

sco
Components of the information variable z (t) leaving the score block
dec

coincide with components of the state variable s®¢9:

sco sco
z (1,t) =38 (1,t) = number of correct answers in actusl frame;

dec

sco sco
2 (2,t) =8 (2,t) » total number of questions which have been asked

dec

until time t;
sco sco

z (3,t) [1,]) = 3 (3,t) {1,]] = number of times the frame with frame
dec aumber i and level number j has been
visited.

The last block to be discussed is the decision block, uherﬁhﬂg start
with a description of the components of the gtate variable s (t) :

dec dec
s (1,t) until s (3,t) = respectively frame, level and question pumber

-

of the actual frame.

dec
The first component of the decision variable u (t) {3 declared
sub
as a defined type in PASCAL:
|
| dec «
‘ u (1,t) = guitch = (down, (decrease level or stay .t the same
sub *
level)
up, (*increasa level*)
next, (*prelent next question in the frane*)
not-used, (* frame belongs to type IV *));

Q :322

- 131 -

dec dec dec
u (2,t), u (3,t) and u (4,t) = respectively frame, level and
sub sub sub question number of the possible
nevw frame to present;
dec
u (5,t) = terainate the instruction because of suffi:ient
sub

mastery (boolean var.);

dec

u(7,t) = terainate the instruction because of exceeding the
sub time (boolesn var.);
dec

u (8,t) = terminate the instruction because of sufficient
sub mastery, insufficient mastery or exceeding the

time (boolean var.);

dec

u (9,t) = additional information ig presented (boolean var.);
sud
dec dec

u (10,t) until u (13,t) = respectively the frame, level, question and
sub sub

alternative nuamber of the additional
information in case of presenting.
The components of the decision variable with destination the gcoreblock

dec dec dec dec

u (1,t), u (2,t), u (3,t) and u (4,t), coincide with
sco sco sco 8co
dec dec dec dec

u (l,t), u (2,t), u (3,t) and u (9,t), respectively.
sub sud sudb sud

Component of the decision variable with destination the gtudent block:

dec

u (1,t) = presented text in csse of stopping;
stu

33

- 32 -

Finally, the subject matter block is reached again and one complete
cycle through the G.S.T.-model has been completed. If the decision rules
have not decided to stop, i.e.

dec

u (8,t) = false, this is the stsrting point for a new cycle.
sub

To fllustrate the use of the system eqations some of them will be
discussed now, starting with the matching block:

mtc stu sub
u (1,t) = true,if z(1,t) = z (1,t) ;
sco ate ate
ate sub stu
z (1,t) = true, {f z (14i,t) = true and 1+i = z (1,t); (1 < 1 < 4)
dec otc atc

The next block to be discussed is the score block, starting with the
state ~nuations:

sco 8co dec ate
s (1,t41) = s (1,t) + 1, 4f u (1,t) = next aud u (1,t) = true;
sco sco sco
sco dec mte
=g (1,t) » 1f u (1,t) = next and u (1,t) = false;
sco sco
dec
=1 » 1f u (1,t) = (up or down or not-used)
sco
mte
and u (1,t) = true;
sco
dec
=0 s 1f u (1,t) = (up or down or not-used)
sco

34

- 33 -

mte
and u (1,t) = falge; *
8co
sco sco
s (2,t41) = g(2,t) +1 ;
sco sco dec dec
s (3,t+1) [1,3] = 8 (3,¢t) [{,3] + 1, 1f u (2,t) »{ and u (3,t) = § and
8co sco
dec
(u (1,t) = up or down c~ not-used)
8co
dec
and u (4,t) = false;
sco
8co dec dec
= s (3,t) {1,), 1f u (z,t) =1 and u (3,t) = § and
8co 8co
dec dec
u (1,t) = next and u (4,t) = false;
sco 8co
dec dec
=] » 1f u (2,t) = { and u (3,t) = J and
8c0 8co
dec
(u (1,t) = up or down or not-used) and
sco
dec
u (4,t) = true;
sco

- 34 -

dec dec
=0 » 1f u (2,t) = £ and u (3,t) = j and
. 8co sco
dec dec
u (1,t) = next and u (4,t) = true;
sco sco
sco 8co sco
The three information equations for z (1,t), z (2,t) and z (3,t) [1,])
dec dec dec

coincide with the state equatioas for

sco sco sco
s (1,t), s (2,t) and s (3,t) {i,)], respectively.

The last block to be discussed is the decision block, starting with the
decision equations with respect to the subject matter block:

dec sco sub sub
u (1,t) = up, if ¢ (1,t) > round (0,6 x z (2,t) and z (1,t) = false;
sub dec dec dec
dec sub
= down, if 8(3,t) > round (0,8 x z (2,t) and
dec
sco sub sub
z (1,t) < round (0,4 x z (2,t)) and z (l,t) = false;
dec dec dec
sub
= not-used, 1f z (1,t) = true ;
dec

= next, elae;

In words, the specified decision rules for th: types T until III run as
follows:
The up-pointer is activated if more than 60% of questions in the frame

ERIC 36

- 35 -

have been answerel correctly. The down-pointer is activated either if

more than 80X of the oumber of questions in the frame have been answered

and less than 40X of them have been answered correctly or if all the

questions in the frame have been answered. In all other cases the next

question in the frame is presented.

dec dec dec dec dec
u (2,t) =8 (1,t) and u (3,t) = 3 (2,t), if u (1,t) = pnext;
sub sub sub
dec sub dec sub v dee
u (2,t) = z (3,t) and u (3,t) = z (4,t), £f u (1,t) = up;
sub dec sub dec sub
dec sub dec sub dec
u (2,t) =z (5,t) and u (3,t) = z (6,t), {f u (1,t) = down;
sub dec sub dec sub
dec sub dec sub dec
u (2,t) =z (7 +41,t) and u (3,t) = = (11 + {,t), 1f u (1,t) = not used
sub dec sub dec sub
stu
and z (1,t) = 1; (1 < L < 4).
dec
dec dec dec
u (4,t) =8 (3,t) +1, 1f u (1,t) = next;
sub sub
dec
-] » 1f u (1,t) = up, down or not-used;
sub
dec dec
u (5,t) = true, 1f u (3,t) = maximum level + 1;
sub sub
dec dec

u (6,t) = true, if u (3,t) = minimun level -1;

sub

sub

37

- 36 -

dec sco
u (7,t) = true, if z (2,t) » gaximum number of permitted questions;
sub dec

The maximun level, minimum level ard maximum number permitted questions
in our example are put respectively on 3,1 and 50.

dec dec dec dec
u (8,t) = true, if u (5,t), u (6,t) or u (7,t) = true;
sub sub sub sub
dec sco dec
u (9,t) = true, 1f z (3,t) [1,§) = 2 and u (2,t) » 1 and
sub dec sub
dec atc
u (3,t) = j and £ (1,t) = true;
sub dec

In words, this last decision rule runs as follows: Additional
information 1s presented only each second time a student arrives at F
frame which actuslly contains additionsl information.

dec dec dec dec dec
u (10,t) = 3 (1,t) and u (11,t) and u (12,t) = g (3,t)
sub sub sub
dec stu dec
and u (13,t) = £ (1,t), if u (9,t) = true;
sub dec sub

The decision equations with respect to the score block for

dec dec
u (1,t) until u (4,t) coincide with the decision equations for
sco sco
dec dec dec dec
u (1,t), u (2,t), u (3,t) and u (9,t), respectively.
sub sub sub sub

- 37 -

Decision equations with respect to the student block:

dec dec
u (1,t) = print (*sufficient mastery'), 1f u (5,t) = true;
stu sub

dec
= print (‘'insufficient mastery'), 1if u (6,t) = true;
sub

dec
= print (' you are too long busy'), if u (7,t) = true;
sub

The three state equations of the decision block for

dec dec dec
s (1,t), 8 (z,t) and 8 (3,t) coincide with the decision equations for

dec dec dec
u (2,t), u (3,t) and u (4,t), rezpectively.
sub sub sub

A publication by
=xthe Department of Education
the Unwversity of Twente,

.0. Box 217,
7500 AE Enschede,

