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Abstract

From all sides are coming calls for changes in the amount and quality of mathematics instruction in

American schools. Mathematics educators and researchers agree that current mathematics instruction in

elementary and secondary schools focuses too much on efficient computation and not enough on

mathematical understanding, problem solving, and reasoning. But beyond this agreement exist diverse

views about what it means to know, understand, and learn mathematics. In this paper, the authors

consider various research perspectives that can inform thinking about what mathematics should be like in

our public elementary schools. To this end, they examine recent recommendations for changes in the

mathematics curriculum and three major research perspectives that may inform thinking about what it

means to know, understand, and learn mathematics. The first of these perspectives is that of researchers,

primarily cognitive psychologists, who focus on the individual knower of mathematics. The second

perspective is that of the discipline of mathematics--what it means to undertand mathematics from within

the discipline. The third perspective is that of classroom practice, in particular the ways in which

researchers studying the teaching and learning of mathematics in classrooms have conceptualized

mathematical knowledge and teaming.

0



ALTERNATIVE PERSPECTIVES ON KNOWING MATHEMATICS
IN ELEMENTARY SCHOOLS

Ralph T. Putnam, Magdalene Lampert, and Penelope L. Petersonl

This is one of a set of seven reports being prepared for Study 1 of Phase I of the research agenda of

the Center for the Learning and Teaching of Elementary Subjects. Phase I of our work calls for surveying

and synthesizing the opinions of various categories of experts concerning the nature of elementary-level

instruction in mathematics, science, social studies, literature, and the arts, with particular attention to how

teaching for understanding and for higher order thinking and problem solving should be handled within

such instruction. Study 1 of Phase I calls for review of the literature in educational psychology, cognitive

science, and related fields on teaching for understanding and for higher order thinking and problem

solving, as well as the literature on these topics as they are discussed by curriculum and instruction

experts withir the context of teaching particular school subjects. The present paper focuses on various

research perspectives that can inform our thinking about what it means to know and understand

mathematics in powerful ways at the elementary - school level.

From all sides are coming calls for changes in the amount and quality of mathematics instruction in

American schools (National Commission on Excellence in Education, 1983; National Council of Teachers

of Mathematics, 1980; National Research Council, 1989). Critics of current practice posit that the

mathematical achievement and understanding of United States students lag behind that of their peers in

other industrialized countries (McKnight et al., 1987; National Commission on Excellence in Education,

1983; National Science Board Commission on Pre-College Education in Mathematics Science and

Technology, 1983). Mathematics educators and researchers argue that current mathematics

1Ralph Putnam, an assistant professor of counseling, educational psychology and special education
at Michigan State University, is a senior researcher with the Center for the Learning and Teaching of
Elementary Subjects. Putnam's efforts were partially supported by funding as a Spencer Fellow of the
National Academy of Education. Magdalene Lampert, an associate professor of teacher education at
MSU, is a senior researcher with the Center. Penelope Peterson, a professor of counseling, educational
psychology and special education at MSU, is a co-director of the Center.
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instruction in elementary and secondary schools focuses too much on efficient computation and not

enough on mathematical understanding, problem solving, and reasoning. Leaders in business and

industry are claiming that public education must change to teach to the new kinds of mathematical skills

and problem solving abilities that will be important for the worker of the future (see, e.g., Bernstein, 1988).

Accompanying these criticisms of current practice are calls for reform--for making lasting and fundamental

changes in mathematics curriculum and instruction in public schools. New guidelines and standards for

mathematics curriculum, instruction, and assessment have been proposed by the National Council of

Teachers of Mathematics (1989). Some states, most notably California (California State Department of

Education, 1987), have developed or are developing new guidelines aimed at the reform of mathematics

curriculum and educational practice.

Two sets of beliefs about why the learning of mathematics is important motivate current reform efforts.

These beliefs parallel traditional but differing goals of schooling. First is the belief that mathematics

provides essential tools and ways of thinking in our society, including those needed for a successful labor

force and for an informed citizenry. Second is the belief that mathematics is important for self-fulfillment

and appreciation of one of humanity's great cultural achievements.

One major argument for the reform of mathematics curriculum and instruction is that with advances in

technology and information systems, the needs of the labor force in our society have changed, but the

learning and teaching of mathematics in our nation's schools have not shifted correspondingly to meet

these needs. To be competitive in the global economy, our country needs a well prepared, productive

work force. And our current instructional system is not providing students with the kind of mathematics

they need to be productive. The ready availability of calculators and computers, along with their increasing

role in the workplace, has raised serious questions about what kinds of mathematical knowledge and skills

should be considered basic. In the past, an important goal of elementary school was to help a large

number of students become proficient in arithmetic calculation; these skills were considered basic for a

skilled labor force whose tasks were largely carrying out repetitive and routine tasks. But with most of the

repetitive production-oriented tasks being taken over by automation and by cheap labor in less developed

countries, the demands on the American work force have shifted dramatically. To be productive in the
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workplace and to be informed citizens in our information-oriented society requires more sophisticated

mathematical skills and knowledge, particularly the ability to communicate with mathematical systems and

to solve a variety of complex problems.

The second argument is essentially that mathematics should be learned and used, not for any direct

utilitarian purpose, but because it is a great achievement of human thinking that should be appreciated

and shared with others. Knowing mathematics is an important part of what it means to be an educated

person. This set of arguments is less visible than the more utilitarian ones in the rhetoric of the current

reform, but it is important for at least two reasons. First, much of what we value in the elementary school

curriculum is justified, at !east in part, by appeal to self-fulfillment and appreciation of cultural achievement.

The obvious examples are history, literature, art, and music, but all subjects are valued, to some extent,

because of their cultural significance. The second reason is that gaining a broad appreciation for

mathematics and learning the more general ways of reasoning within it are essential to the powerful and

flexible mathematical thinking and problem solving demanded by today's information-oriented society.

Resnick and Resnick (1977, see also, Resnick, 1987a) make a similar argument by pointing out the

traditional tension between two traditions of schooling and literacy: A low-literacy tradition for training the

masses to produce a competent work force has existed in parallel with a high-literacy tradition for an

intellectual elite. Resnick and Resnick argue that the powerful and flexible thinking and reasoning that

have always been the goal of education in the elite educational systems have become the basic

educational goals for the masses. The challenge today is to come up with ways to work toward these

difficult goals, traditionally reserved for the elite, with all students in public schools.

In this paper we consider various research perspectives that can help us think about these and other

arguments for what mathematics instruction should be like in our public elementary schools. To this end,

we first examine one important set of recommendations for school mathematics, the Curriculum and

Evaluation Standards for School Mathematics, recently proposed by the National Council of Teachers of

Mathematics [NOTM] (1989). At the heart of this document and most other calls for reform (National

Council of Teachers of Mathematics, 1980; National Research Council, 1989) is the view that current

elementary school mathematics curriculum overemphasizes efficient computational arithmetic skill at the
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expense of understanding and problem solving. Most researchers and mathematics educators agree that

there is more to mathematics than computational proficiency.

But beyond this agreement exist diverse views about what it means to know, understand, and learn

mathematics. These views emerge from various research traditions with differing goals, assumptions, and

questions. After discussing the NCTM curriculum standards, we consider three major perspectives that

may inform our efforts to understand what it means to know, understand, and learn mathematics. First, we

consider the views of researchers and scholars, primarily psychologists, who focus on what it means to

know and understand mathematics from the perspective of the individual knower. Then we consider

perspectives on what it might to understand mathematics from the within the discipline of mathematics.

Finally, we consider views on knowing mathematics from the perspective of classroom practice. How have

researchers studying the teaching and learning of mathematics in classrooms conceptualized

mathematical knowledge and what views have emerged from those engaged in teaching mathematics to

others?

A Statement of Goals: NCTM Curriculum Standards

The Curriculum and Evaluation Standards for School Mathematics (National Council of Teachers of

Mathematics, 1989) represents the latest in a series of statements by the mathematics education

community about what mathematics should be taught in public schools. The document is NCTM's

response to the numerous calls for reform in mathematics education (National Commission on Excellence

in Education, 1983; National Science Board Commission on Pre-College Education in Mathematics

Science and Technology, 1983; Romberg, 1984). The Standards document offers a vision of school

mathematics that is consistent with earlier statements by NCTM and other professional organizations

about ideal curriculum and instruction in mathematics (National Council of Supervisors of Mathematics,

1977; National Council of Teachers of Mathematics, 1980). However, NCTM has gone beyond these

organizations to actually set standards of reform. Unlike countries in which a national curriculum exists in

mathematics (e.g., Japan, United Kingdcm, China), the United States has no such national curriculum or

even national "vision." The NCTM Standards represent an attempt to develop such a vision at the national
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level. The recommendations are also consistent with the current efforts of the National Research

Council's Mathematics Sciences Education Board (National Research Council, 1989) to rethink school

mathematics from the ground up.

The NCTM (1989) Standards call for major changes in (a) the content of school mathematics and (ii)

the nature of mathematics instruction and underlying view of mathematics learning. According to NCTvl,

the elementary mathematics curriculum should be broadened boyond its traditional focus on arithmetic

computation to include more emphasis on conceptual understanding, and on currently underrepresented

mathematical domains such as geometry, measurement, and statistics. The justifications offered for these

changes are largely utilitarian, focucing on the need for transformation in the kinds of mathematics that

students will need in a technological, information-oriented society. The Standards authors argue that

shifting from an industrial-based to an information-based society "has transformed both the aspects of

mathematics that need to be transmitted to students and the concepts and procedures they must master

if they are to be self-fulfilled, productive citizens in the next century" (p. 3).

Technology, in the form of computers and calculators, has fostered important changes in the content

of mathematics and its applications to other disciplines, as well as causing radical changes in the

workplace. Because of the growing use of computers, with their ability to manipulate huge amounts of

information, quantitative approaches and techniques have become increasingly important in many

disciplines. The mathematical concepts and models underlying many of these approaches, however, are

not necessarily those that are emphasized in the traditional school curriculum. In addition, technology has

resulted in important changes within the discipline of mathematics itself, through the facilitation of

calculations and graphing, and by changing the nature of problems that mathematicians address. The

traditional school curriculum has not been modified to reflect these important changes.

The nature of classroom instruction should move away from the traditionally prevalent model of

teaches as teller and students as passive recipients of mathematical knowledge to an emphasis on

learning mathematics through problem solving, discussion, and other practices consistent with the notion

that students need to be actively involved. As justification, the Standards authors offer some changing

features of mathematics and views on mathematical knowledge. They posit a changing view about the
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nature of mathematical knowledge; in particular, the view that "'knowing' mathematics is *doing'

mathematics" (NCTM, 1989, p. 7). Rather than viewing mathematics learning as the mastery of concepts

and procedures, the Standards authors assert that such "informational knowledge" has value only to the

"the extent to which it is useful in the course of some purposeful activity" (p. 7). Thus, instruction should

always emphasize the acquisition of and use of knowledge in the context of purposeful activity, such as

problem solving, in contrast to the traditional view of mathematics teaching in which computational facts

and algorithms are learned first as prerequisite skills to be applied later in the solving of problems.

In this context, NCTM (1989) offers fotr general social goals for education in the area of mathematics:

1. Mathematically ;iterate workers. The technologically demanding workplace of today and the

future will require mathematical understanding and the ability to formulate and solve complex

problems, often with others. "Businesses no longer seek workers with strong backs, clever

hands, and 'shopkeeper arithmetic skills (p. 3).

2. Lifelong learning. Most workers will change jobs frequently, and so need flexibility and problem-

solving ability to enable them to "e:tplore, create, accommodate to changed conditions, and

actively create new knowledge over the course of their lives" (p. 4).

3. Opportunity for all. Because mathematics has become "a critical filter for employment and full

participation in our society" (p. 4), it must be made accessible to all students, not just the white

males, the group that currently studies the most advanced mathematics.

4. An informed electorate. Because of the increasingly technical and complex nature of current

issues, participation by clizens requires technical Knowledge and understanding, especially

skills in reading and interpreting complex information.

These social goals require that students become mathematically literate, a key phrase used by the

Standards authors to describe desired outcomes of schooling. Mathematical literacy "denotes an

individual's abilities to explore, conjecture, and reason logically, as well as the ability to use a variety of

mathematical methods effectively to solve nonroutine problems" (NCTM, 1989, p. 5). The authors of

Eyeagiaeatelsi (National Research Council, 1989) argue that "without the ability to understand basic

mathematical ideas, one cannot fully comprehend modern writing such as that which appears in the daily
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newspapers" (p. 7). They go on to emphasize that mathematical literacy includes much more than

familiarity with numbers and arithmetic: "To cope confidently with the demands of today's society, one

must be able to grasp the implications of many mathematical concepts--for example, chance, logic, and

graphs--that permeate daily news and routine decisions" (pp. 7-8). This view contrasts sharply with the

implicit traditional view of computational skills. in arithmetic as forming the core of the basic skills needed to

function effectively in the workplace and society.

The Standards (NCTM, 1989) authors articulate the notion of mathematical literacy by proposing five

general goals for students:

1. Learning to value mathematics--understanding its evolution and its role in society and the

sciences.

2. Becoming confident of one's own abilitycoming to trust one's own mathematical thinking and

having the ability to make sense of situations and solve problems.

3. aesaminaamathemakatzsitAimulak-which is essential to becoming a productive citizen

and which requires experience in solving a variety of extended and nonroutine problems.

4. Learning to communicate mathematicallylearning the signs, symbols, and terms of

mathematics.

5. LeawkagtgigassaumalLealigallyimathematically -- making--making conjectures, gathering evidence, and building

mathematical arguments.

These goals reflect a shift away from the traditional practice of summarizing desired mathematical

outcomes as knowledge of 51iik, mom and applications (Fey, 1982; Trafton, 1980) to an emphasis

on broader Laggsgigui , atlitudei, and beliefs, about the nature of mathematical knowledge and about

one's own mathematical thinking. The traditional skills, concepts, and applications are subsumed under

the more general goals for problem solving and communication. Throughout the Standards document,

the authors de-emphasize the view that knowledge consists of distinct parts that should be treated

separately. Rather, they emphasize providing students with experiences through which they can build

rich connections among the various kinds of knowledge.
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The curriculum standards themselves are presented as sets of standards for elementary school

(Grades K-4), middle-school (Grades 5-8), and high school (Grades 9-12). Each set begins with an

common set of four standards reflecting the five general goals just described: (a) mathematics as problem

solving, (b) mathematics as communication, (c) mathematics as reasoning, and (d) mathematical

connections. The inclusion of a connections standard focuses attention on the authors' "belief that

although it is often necessary to teach specific concepts and procedures, mathematics must be

approached as a whole. Concepts, procedures and intellectual processes are interrelated" (NCTM, 1989,

p. 11).

The four general standards are followed by more specific content standards for each cluster of grade

levels. For elementary school these content standards address estimation, number sense and

numeration, concepts of whole number operations, whole number computation, geometry and spatial

sense, measurement, statistics and probability, fractions and decimals, and patterns and relationships.

The middle school standards address number and number relationships; number systems and number

theory; computation and estimation; patterns, relations, and functions; algebra; statistics; probability;

geometry; and measurement.

In terms of mathematical content, these star ; reflect major shifts from the content and emphasis

of current mathematics curricula. Most significant is a reduced emphasis on arithmetic computation,

especially mastery of complex paper-and-pencil algorithms, with a shift in focus to meaning and

appropriate use of operations, judging the reasonableness of results, and choice of appropriate

procedures. Along with th,s shift is an emphasis on problem solving, including use of word problems with

a variety of structures, everyday problems, strategies for solving problems, and open ended problems that

take more than a few minutes to solve. Mathematical topics that are considered increasingly important--but

seriously underrepresented in current curricula--include geometry and measurement, probability and

statistics; and patterns, relationships, and functions. For later elementary grades, algebra is included, with

less focus on manipulation of symbols and memorization of rules and more focus on informal investigation

and understanding of variables, expressions, and equations.
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The Standards document presents a vision of what mathematics instruction might be like. Although

many of its recommendations could be supported by existing or future research, the Standards is not a

research document. Many of the recommendations in it express shared assumptions and views of many

members of the mathematics education community that have not been (or in some cases could not be)

addressed by research. In the remainder of this paper, we consider research and scholarship that can

inform our thinking about recommendations like those in the NCTM Standards, organizing our discussion

around groups of scholars focusing or the individual knower, on the discipline of mathematics, and on the

classroom context. In considering these perspectives, it is not our intent to provide clear answers to

questions about what mathematics should be taught in elementary schools and how that learning should

proceed. Rather, we hope to raise questions and issues to inform debate about these issues and to avoid

ignoring important aspects of knowing and learning mathematics that might result from arguing for change

from a single perspective.

Focus on the individual Knower: Cognitive Psychology

In considering the individual learner and knower of mathematics, we focus on cognitive perspectives

that have come to dominate mainstream American psychology. The research and views we consider here

include both those of psychologists using mathematics as a site for inquiry about basic issues in learning

and those of researchers primarily interested in the learning of mathematics who draw on the perspectives

and tools of cognitive psychology.

The dramatic shift in mainstream American psychology from its associationist and behaviorist traditions

to the study of cognition has important implications for thinking about learning and teaching in schools

(Cane, 1981; Resnick, 1985; Shuell, 1986). Whereas behaviorist psychologists insisted that observable

behavior was the only leg'.imatr object of scientific study, cognitive psychologists treat "thinking

processes as concrete phenomena that can be studied scientifically" (Resnick, 1985, p. 128). They

continue to ground their work in observing the behavior of individuals, but use these observations as

evidence for positing various cognitive structures and processes believed to produce the behavior. In

thinking about learning!, cognitive theorists consider learning to be changes in the knowledge or cognitive
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processes that produce behavior, in contrast to the behaviorist position that the learning is a change in the

behavior itself (Shuell, 1986). Associationists (e.g., Thorndike, 1922) were willing to hypothesize

cognitive events but built their theories of learning and knowledge around the notion of stimulus-

response bonds as the building blocks of knowledge. This reductionist approach produced a view of

knowledge as collections of bonds, which were combined to produce more complex forms of knowledge.

Current cognitive theorists, in contrast, place much more emphasis on the structure of and relationships

among various kinds of knowledge--not on knowledge as collections of discrete bits.

One important result of this shift in focus has been increased attention to and tools for studying

difficult issues in learning and knowing, such as the nature of understanding and complex forms of

knowledge. Whereas much psychological research on learning in the past focused on studies of isolated

learning tasks such as nonsense syllables, many cognitive psychologists have turned to school-relevant

domains such as reading and mathematics as the domains of inquiry about learning. Mathematics has

served as an important site for much of this research for a variety of reasons: Mathematics' foundational

role in many other disciplines makes it a prime target for understanding basic processes in thinking and

knowing; much of mathematical knowledge lends itself to specification in the precise forms needed for the

computational models that form the basis of cognitive science; and mathematics (or at least arithmetic) is

considered an important basic skill in the school curriculum.

An important result of this shift in focus toward cognitive processes and complex forms of knowledge

has been the development of methods to examine and describe patterns of thought and knowledge,

often at fine levels of detail. Methods that cognitive psychologists have used to examine what individuals

do and think about as they carry out various tasks include recording reaction times or eye movements or

having individuals "think aloud." Cognitive researchers use these data as a basis for hypothesizing in

detail the knowledge and thought processes believed to underlie individuals' performance.

The computer has served both as metaphor and tool in the building of these theories of the

knowledge and processes hypothesized to underlie performance. A basic assumption for many cognitive

psychologists is that the human mind, like the computer, is essentially a processor of information. The

mind receives information from the environment through the senses and processes and transforms that

10
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information. This function is similar to that performed by computers, which also process information

through complex structures. The power of the computer metaphor for human thought is in its leading to

precise hypotheses about how information is represented and processed in the mind. It is in building

these precise hypotheses that the computer also serves as an important research tool for cognitive

scientists. Some cognitive researchers write computer programs that are fine-grained simulations of

human thinking. The writing of these programs promotes a certain rigor in the descript:on of cognition.

When computer programs behave as humans do--making similar mistakes, pausing at similar
points, expressing confusion over the same issues--it is reasonable to assume that the internal
processes of the human and the computer are similar, and researchers can treat The program's
visible processes as a theory of the invisible processes of humans. (Resnick, 1985, p. 129).

Trying to characterize human thought in the form of computer programs has given rise to a variety of

constructs for representing and describing hypothesized knowledge in people's minds (e.g., production

systems, semantic networks, and schemata).

Even when they do not specify hypothesized knowledge structures in the form of computer

programs, virtually all cognitive theorists share the fundamental assumption that an individual's knowledge

structures and mental representations of the world play a central role in perceiving, comprehending, and

acting (Shuell, 1986). An individual's perception of the environment and his or her actions are mediated

through his or her cognitive structures, which are actively constructed and modified through the

individual's interaction with the environment. This mediation through cognitive structures provides a basic,

though overly simplified, definition of knowledge in cognitive theories: Knowledge is the cognitive

structures of the individual knower. To know and understand mathematics from this perspective means

having acquired or constructed appropriate knowledge structures.

But the story is more complicated than that. From this basic view of knowledge there have emerged a

host of more specific views of what it means to know and understand mathematics. We will structure our

discussion of these views around five themes. Because the themes are so highly interrelated, the order

in which we discuss them is somewhat arbitrary; it will be impossible to discuss any one of the themes

without bringing in aspects of the other three.

11
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The first theme is understanding representation, in particular the view that understanding

mathematics means having internalized powerful symbols and systems for representing mathematical

ideas and being able to move fluently within and between them. Because issues of representation are so

fundamental to cognitive psychology and mathematics, we will also discuss representation in more

general terms, foreshadowing several issues addressed later in the paper.

The second theme is understanding as knowledge structures. A large portion of research in cognitive

science has been directed at describing the knowledge, in the form of cognitive structures and

processes, hypothesized to underlie competent perfcrmance on various mathematical tasks. This

approach builds directly on the basic view of understanding as an individual having constructed or

acquired appropriate knowledge structures.

In discussing the knowledge structure of individuals, some researchers have emphasized a third

theme, understanding as connections among types of knowledge. Of particular interest are connections

between conceptual and procedural knowledge and between knowledge of the formal, symbolic

mathematics taught in school and the rich base of informal t'.nowledge children develop in out-of-school

settings.

Researchers emphasizing the fourth theme, )earning as the active construction of knowledge, have

highlighted the nature of the process by which knowledge structures have been constructed or acquired

by individuals. Learning mathematics with understanding from this perspective means actively

reorganizing one's cognitive structures and integrating new information with existing structures.

The fifth theme, understanding as situated cognition, represents a growing movement within

cognitive science to question the fundamental view of thinking and knowing underlying current cognitive

theories. Rather than viewing knowledge and thinking as existing within the mind of the individual,

cognition is considered to be interactively situated in physical and social contexts.

Understanding as Representation

Because the notion of representation is fundamental to both cognitive psychology and mathematics,

various forms of representation are central to cognitive research on mathematics knowing and learning.
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One could say that cognitive psychology is about hypothesizing the sorts of mental representations that

individuals have and use. At the same time, "the idea of representation is continuous withsnaLhematics

itself" (Kaput, 1987a, p. 25). Virtually all of mathematics concerns the representation of ideas, structures,

or information in ways that permit powerful problem solving and manipulation of information. Thus, when

one is considering the nature of knowing and learning mathematics from the perspective of cognitive

psychology, issues of representation are unavoidable. In part because of its pervasiveness in this work

and its role in fundamental assumptions, representation is a slippery term, like the term concept, that is

used in a variety of related ways and defies precise definition (Kapui, 1985).

Kaput (1985, 1987a, 1987b), in considering the various roles of representation in learning, knowing,

and doing mathematics, as well as the role of representation in posing psychological models of these

phenomena, has suggested as important the following broad interacting types of representation:

(a) cognitive representation, the representation of information or knowledge in the mind of the individual;

(b) explanatory representation, the models that psychologists pose to describe hypothesized mental

structures and events; (c) mathematical reoresentation, the representation of one mathematical structure

by another; and (d) external symbolic representation, the material forms used to express abstract

mathematical ideas. As defined by Kaput (1985), following Palmer (1977), each of these forms of

representation involves a represented world (the thing being represeroed), a representing world (the

thing doing the representing), and correspondence; between selected aspects of these two worlds.

Cognitive and explanatory representation are at the heart of cognitive psychology. The goal of

cognitive psychologists is to construct models (explanatory representations) of what they hypothesize to

be the ways information or knowledge is stored and acted upon within the minds of individuals (cognitive

representations). Although psychologists often fall into using language which suggests that their models

of cognition are descriptions of structures that actually exist inside the head of individuals, it is important to

keep in mind that all psychologists' models are theories about cognitive structures and events that are, in

principle, unobservable. In addition, the basic assumption in most cognitive psychology that individuals

build cognitive representations of an external world runs into an epistemological dilemma: Because the

external world can be known only through these same"cognitive representations, there is no way of
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knowing what is "really" out there to be represented. In other words, it is impossible to assess the match

between the representing world and the represented world (see Kaput, 1987b; von Glasersfeld, 1987).

Most researchers taking a cognitive approach in studying the knowing and learning of mathematics,

however, ignore this basic philosophical dilemma by making the working assumption that it is useful to

analyze and build models (representations) of the information structures and processes underlying the

knowing and doing of mathematics. As we argued earlier, the (often implicit) view of what it means for an

individual to know mathematics from this perspective is for that individual to have acquired or constructed

the appropriate cognitive v3presentations. We consider cognitive researchers' attempts to

characterize these knowledge shuctuits in our subsequent discussion of the themes, understandina_as

J(nowledge structures and understanding as connections among types of knowledge.

Regarding mathematical representations, Kaput (1987a) argues that much of mathematics involves

the representation of one mathematical structure by another and determining what is preserved and what

is lost in the mapping between the structures. An example at a level relevant for thinking about

elementary schooling is that much of algebra can be seen as representing in a general way many more

particular arithmetic relationships. Kaput argues that mathematical structures are treated as abstractions or

idealizations that are formally independent of the material symbols used to represent them. For example,

there is a sense in which the number 3 is assumed to exist, independent of whether the number is

represented by the word three, by the numeral a or by three dots, for example,

But because mathematical entities and structures are abstract, they must be expressed in some

material form, and that is the role played by external symbolic representations. We need symbolic

representations both to support our personal thinking about mathematical ideas and to communicate with

others about them (Kaput, 1987b). The representations that can be used to support thinking and

communicating about mathematics include not only the formal symbol systems of mathematics, such as

the base-10 notational system and the Cartesian coordinate system, but more informal systems of

representation as well. For example, Lesh, Post, and Behr (1987) consider the following kinds of

representation systems as being important: (a) experienced-based scripts, (b) manipulable models,

(c) pictures or diagrams, (d) spoken languages, and (e) written symbols. All of these representation
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systems can be thought of as powerful tools that are developed as part of a culture and that become

incorporated into the cognitive systems of individuals (Stigler & Baranes, 1988). Representation systems

thus play roles similar to Those of natural language in supporting personal thought and public

communication. Like natural language, these symbol systems have a dual existence: There is a sense in

which they exist as personal constructions in the mind of the individual and a sense in which they exist

external to the individual as a product of the discourse or cultural community. One way of thinking about

the goals of schooling in mathematics is for the leamer to construct or internalize the shared symbol

systems of mathematics.

Some researchers have emphasized the importance of being able to move flexibly both within

particular representation systems and to make translations across representation systems (Janvier, 1987).

Lesh et al. (1987) argued that

Part of what we mean when we say that a student "understands" an idea like "1/3" is that (1) he
or she can recognize the idea embedded in a variety of qualitatively different representational
systems, (2) he or she can flexibly manipulate the idea within given representational systems,
and (3) he or she can accurately translate the idea from one system to another. (p. 36)

Lesh et al. offered the following example of a student moving fluently back and forth among various

representations while solving a problem:

The Million Dollar Problem: Imagine that you are watching: "The A Team" on television. In the
first scene, you see a crook running out of a bank carrying a bag over his shoulder, and you
are told that he has stolen one million dollars in small bills. Could this really have been the
case?

One student who solved this problem began by using sheets of typewriter paper to
represent several dollar bills. Then, he used a box of typewriter paper to find how many $1
bills such a box would hold--thinking about how large (i.e., volume) a box would be needed to
hold one million $1 bills. Next, however, holding the box of typewriter paper reminded him to
think about weight rather than volume. So, he switched his representation from using a box
of typewriter paper to using a book of about the same weight. By lifting a stack of books, he
soon concluded that, if each bill was worth no more than $10, then such a bag would be far
too large and heavy for a single person to carry. (p. 39)

The basic argument here is that learners acquire as personal cognitive tools the powerful ways of

representing mathematical ideas that are used in our culture. Because of this and because teaching and

learning inherently require communication, the ways in which mathematical ideas are represented

externally in the classroom become crucial. Many researchers use the term instructional representations

for the ways that teachers or curriculum materials represent mathematical knowledge (e.g., Ball, 1988;
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Greeno, 1987a; Wilson, 1988). These and other researchers have begun to consider a host of important

pedagogical issues in the use of instructional representations, including accessibility of particular

instructional representations to individual students, the motivational characteristics of representations,

and correspondences (and mismatches) between instructional representations and the mathematics they

are intended to represent. Because these important issues deal directly with pedagogy, rather than the

nature of mathematical understanding, we do not deal with them directly in this paper.

Understanding as Knowledge Structures

We have argued that a basic view of what it means to know from the perspective of cognitive

psychology is for an individual to have acquired appropriate knowledge structures. From this perspective,

thinking and knowing take place within the mind of the individual; interaction with the environment is

always mediated through the individual's cognitive representations of the outside world. The knowledge

and cognitive processes thought to reside in the mind of the individual cannot be directly observed, but it

is possible to hypothesize what they might be like in terms of tne information they contain and how that

information might be structured. Working from these assumptions, cognitive psychologists have put

considerable effort into describing, sometimes in the form of computer programs, knowledge structures

and processes they hypothesize to underlie competent performance on various mathematical tasks

(Greeno, 1987b; Resnick, 1985).

Greeno (1987b) has referred to this general program of research as the knawlekesinucturejacgram.

The intent is to make explicit knowledge that is often implicit, but that is required for competent

mathematical performance. Knowing mathematics from this perspective means having in place the

knowledge and cognitive processes needed to carry out various mathematical tasks. An important role of

this research is to specify in c;etail what that knowledge is, especially the knowledge that is implicit. This

implicit knowledge made explicit can be viewed as revealing the knowledge underlying understanding in

the domain. The resulting models might even be used to couch objectives of instruction in terms of

desired cognitive structures instead of behavioral outcomes (Greeno, 1980; 1987a).
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In building models of the knowledge underlying mathematical performance, cognitive researchers

have relied on two kinds of analysis: (a) detailed analysis of Liudents performing mathematical tasks, both

correctly and incorrectly and (b) detailed analysis of the mathematical content involved in the task. The

work has revealed important aspects of knowledge that had formerly remained implicit and has revealed

the complex'., of knowledge required to perform seemingly simple tasks. The research has also resulted

in rich descriptions of how children solve problems in various mathematical domains taught in school.

These include descriptions of the kinds of errors or incorrect applications students make, but also include

the various correct or appropriate procedures children use and invent to solve various tasks. Some of the

work specifies typical developmental sequences in which students progress through various strategies or

procedures in a domain (e.g., Carpenter & Moser, 1982; Fuson, 1982).

Domains that have been studied from the perspective of the knowledge structure program include

addition and subtraction (e.g., Carpenter & Moser, 1982; Riley, Greeno, & Heller, 1983; Vergnaud, 1982),

rational numbers and fractions (e.g., Behr, Lesh, Post, & Silver, 1983), and decimal fractions (e.g.,

Resnick et al., 1989). In addition to these topics, many researchers have focused on the knowledge and

skill involved in problem solving, both in general and in specific domains. Rather than attempt a

comprehensive review of research in these domains, we will offer here a few significant examples that

illustrate important implications for thinking about learning and knowing mathematics in elementary

schools. We begin with the knowledge structures hypothesized to underlie competent solving of addition

and subtraction word problems. We then turn to computational skills in arithmetic and, finally, to problem

solving.

Schemata for word problems. A number of cognitive researchers have directed their efforts at

describing the knowledge underlying tasks involving addition and subtraction of whole numbers (see,

e.g., Carpenter, Moser, & Romberg, 1982). In part this emphasiF, ,las been due to the relative simplicity of

the domain; although detailed analyses have shown that addition and subtraction are much more complex

that they seem on first glance, they are not as complex as other domains in school mathematics, such as

rational numbers or multiplication and division. The work has also merged with research examining the

development of children's knowledge and skill in counting and counting-based strategies for adding and
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subtracting (Fuson, 1988; Steffe, von Glasersfeld, Richards, & :.obb, 1983), resulting in a rich body of

research on addition and subtraction. Researchers studying addition and subtraction word problems have

emphasized the structure of such problems and have drawn heavily on schema and related constructs

arising from cognitive research on reading comprehension (Anderson, 1984; Mandler, 1984). Word

problems are viewed from this perspective as a special kind of text to be comprehended.

Reading research has pointed to the powerful influence of prior knowledge on the comprehension of

text (Anderson, 1984; Mandler, 1984). In contrast to earlier views, cognitive scientists generally agree

that comprehension is not a matter of somehow absorbing or recording information inherent in written or

spoken language. Because all written and spoken language is in some sense incomplete, the reader

draws heavily on his or her prior knowledge and expectations in building a representation of the situation

described by the text. Schema theory (Anderson, 1984; Mandler, 1984) holds that schemata are forms of

knowledge that play a critical role in this constructive comprehension process. Schemata are prototypical

versions of situations or events that are stored in long-term memory and built up over many experiences

with those situations. Schemata provide a framework within which to interpret text; comprehension is

impossible without an appropriate schema. An example of how the schemata that a reader brings to text

can affect comprehension is offered in a study (Anderson, Reynolds, Schallert, & Goetz, 1977) in which

music students interpreted the following passage as describing an evening of playing music together

whereas physical education students interpreted it as being about playing cards.

Every Saturday night, four good friends get together. When Jerry, Mike, and Pat arrived, Karen
was sitting in her living room writing some notes. She quickly gathered the cards and stood up
to greet her friends at the door. They followed her into the living-room, but as usual they
couldn't agree on exactly what to play. Jerry eventually took a stand and set things up. Finally,
.they began to play. Karen's recorder filled the room with soft and pleasant music. Early in the
evening, Mike noticed Pars hand and the many diamonds. As the night progressed, the tempo
of play increased. Finally, a lull in the activities occurred. Taking advantage of this, Jerry
pondered the arrangement in front of him. Mike interrupted Jerry's reverie and said, "Let's hear
the score." They listened carefully and commented on their performance. When the comments
were all heard, exhausted but happy, Karen's friends went home. (p. 372)

Some researchers have taken the view that the comprehension of mathematics word problems, as a

special kind of text, similarly requires the reader to bring to bear appropriate knowledge about quantities

and relationships among quantities in the form of schemata (Briars & t arkin, 1984; Kintsch & Greeno,

1985; Mayer, 1982; Riley et al., 1983). For example, being able to solve the following word problem
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requires recognizing the relationships among the known and unknown quantities involved; it is not

enough to have learned associations between particular words and operations (e.g., altogether means to

add):

Jim had 10 marbles. Bob gave him some more marbles. Then Jim had 13 marbles altogether.
How many marbles did Bob give to Jim?

To support this view, cognitive researchers have used the strategy of building computer models that

make explicit the tacit knowledge involved in understanding and solving addition and subtraction word

problems (Briars & Larkin, 1984; Riley et al., 1983). This research is clearly an example of the general

strategy of describing the knowledge structures hypothesized to underlie mathematical performance. As

Greeno (1987a) put it,

A cognitive model of understanding and solving problems simulates the process of
understanding by constructing representations based on the words in problem texts. The
representations contain information that students appear to gather from the texts and use in
their solutions. The process can be characterized as the recognition of patterns of information.
(P. 63)

The models developed by Riley et al. (1983) and by Briars and Larkin (1984) are grounded in

extensive empirical work by various researchers to describe the strategies children use to solve simple

addition and subtraction problems and in careful analysis of the kinds of word problems that require

addition and subtraction (Carpenter & Moser, 1982; Vergnaud, 1982). These analyses have shown that

there are important patterns of relationships among quantities in addition and subtraction word problems

that are not typically addressed in instruction. Most characterizations of these relationships are based on

the three patterns in Table 1. Successful solvers of such problems have Knowledge of these patterns,

but the knowledge is tacit.

Building the computer models requires representing this implicit knowledge explicitly, making it

available for examination. For example, the model developed by Riley et al. (1983) uses the schema

represented in Figure 1 to solve Problem 2 in Table 1. When encountering Problem 2, the computer

model places the information from the problem into the various Slots of the schema. It then uses a series

of rules for operating on these organized quantities to produce the missing element, the answer to the

problem. Riley et al. built a series of such models that, with the increasing structure and amount of
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Table 1

lygasDLAcidilioaasiaulairaclioWarsLErstienli

Type

Change there is an event in which an 1. "Connie had 5 marbles. Jim gave
initial quantity is increased or 8 more marbles. How many marbles
decreased does Connie have altogether?"a

2. "Joe had 8 marbles. Then he gave 5
marbles to Tom. How many marbles
does Joe have now?"b

Combine There are two individual 3. "Connie has 5 red marbles and 8
quantities that are not changed blue marbles. How many marbles
but thought of in combination does she have?"a

4. "Connie has 13 marbles. Five are
red and the rest are blue. How many
blue marbles does Connie have?"a

Comparci there are two individual 5. "Connie has 13 marbles. Jim has
quantities to be compared 5 marbles. How many more marbles

does Connie have than Jim?"a

6. "Jim has 5 marbles. He has 8 fewer
marbles than Cola-lie. How many
marbles does Connie have?"a

a Problems taken from Carpenter and Moser (1983, p. 160).

bProblem taken from Riley, Greeno, and Heller (1983).
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Action

Quantity

Identify Amount
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(Joe...)
--/

(JoeD i---;---)

Figure 1. Schema for change situation (adapted from Riley et al., 1983).
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information that can be represented, parallels the development in children of the ability to solve these

kinds of problems. A model developed by Briars and Larkin (1984) to solve the same kinds of problems

makes less use of the explicit schematic representations, building more of the knowledge of patterns into

rules for operating on the quantities in the problem. The key feature of both models, though, is that a

crucial aspect of solving these word problems is recognizing the patterns of quantities in the problems. In

essence, recognizing these patterns is what it means from this perspective to understand the problem. It

is not enough to have knowledge of simple correspondences between individual words such as

Altogether, gave, or less and mathematical operations such as addition and subtraction. Rather it is having

available schemata for grasping the relationships among the entire set of quantities involved that permits

understanding and solution of the problem. For thinking about mathematics in elementary schools, this

research provides a detailed characterization of knowledge hypothesized to be important for solving

textbook word problems. Also implicit in this work is the assumption that the schemata that provide

frameworks for solving these word problems would also provide the problem solver with frameworks for

thinking about problems not encountered in written form. for example, figuring out how many marbles

have been won or lost in an actual marble game. The instructional implications that follow from these

descriptions of existing school tasks are not automatic. One way of using these descriptions is as a set of

instructional objectives described in cognitive rather than behavioral terms. Thus, given the instructional

goal of being able to solve these sorts of problems, this research can be viewed as describing the

knowledge that students need to acquire. Another possibility is to design instructional representations

that make explicit the implicit knowledge revealed by these analyses (Greeno, 1987a). In research

described later in this paper, Carpenter, Fennama, and Peterson (1987) have considered the knowledge

of problem structures and children's solution strategies resulting from this work to be important knowledge

for teachers to have in helping children learn addition and subtraction.

Computational skill. Another domain that has been the object of cognitive scientists' analyses is

computational skill in arithmetic. Although its central role is being questioned in most current calls for

reform, computation pervades the traditional elementary school mathematics currjculum. In the high

school curriculum there is a parallel focus on symbol manipulation skills in algebra. Cognitive researchers
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have worked to develop models of the knowledge stn .tufes underlying these ubiquitous skills and to

explain the errors students make. One motivation for this research has been to use computation as a site

for exploring more general issues about how people learn and know procedures (e.g., Brown & Burton,

1978). Another motivation has been to understand better the nature of computational skill and its role in

knowing and understanding mathematics.

Researchers in mathematics education have long c cumented the kinds of errors students make in

computational tasks (Ashlock, 1982; Buswell, 1926). Tools from cognitive science for representing

procedural knowledge, such as production systems (Newell & Simon, 1972), have enabled cognitive

researchers to conjecture with greater precision about the knowledge underlying computational skill and

to develop models to explain why students make various kinds of errors. The best known example of this

work deals with students carrying out of the traditional subtraction algorithm involving regrouping, or

borrowing. By analyzing the errors made in the subtraction algorithm as carried out by hundreds of

students, Brown and Burton (1978) developed a computer model of the procedural knowledge

underlying correct and erroneous computational performance. Their model considered the computational

errors made by students to result from faulty rules. Like bugs in computer programs, these buggy

algorithms resulted in incorrect but rule-governed performance. Thus, students' errors were seen to

result, not from an absence of knowledge but from the application of faulty knowledge in the form of

incorrect procedural rules. A similar account of errors in algebra has been offered by Sleeman (1982).

At one level, these analyses of computational errors simply provide highly detailed specification of

student performance in the form of correct and faulty rules. But they also represent a view of procedural

knowledge as consisting of organized sets of rules, both correct and incorrect, that individuals have

learned. To know mathematics from this perspective is to have acquired procedural rules for manipulating

the written symbols of arithmetic. But where do children learn these incorrect procedures that are

obviously not directly taught in school? Brown and VanLehn (1980; see also VanLehn, 1983) argue that

children infer or invent these faulty procedures from the partial procedural knowledge they have when

they reach points at which they do not know what to do next in carrying out a procedure, for example,

when confronted with the need to subtract a larger digit from a smaller one. What is significant about this
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characterization of knowledge is that it deals almost solely with features of the written symbols of

arithmetic, rather than the quantities represented by those symbols or principles governing those

quantities (Resnick, 1982). The fact that these theories do such a good job explaining the computational

errors that students actually make suggests that students' computational knowledge may, indeed, be

organized primarily around visual cues and the physical arrangement of symbols, not around the

underlying quantities to which the symbols refer (Davis, 1984; Resnick, 1982). The view of mathematical

knowledge suggested here is one of structured procedural rules that operate on written symbols.

Problem solving. Problem solving is a part of the mathematics curriculum that has been a long-

standing concern for mathematics educators and has been the focus of research on knowledge

structures. Most calls for reform place the ability to solve problems at the center of desired outcomes of

schooling (National Council of Teachers of Mathematics, 1989; National Research Council, 1989).

Problem solving has also been held up as a desirable means of learning mathematics, but our focus here

will be on cognitive research that examines the ways individuals solve problems and that seeks to

characterize the knowledge structures underlying successful problem solving, hence our inclusion of

problem solving as part of the more general theme of the importance of knowledge structures. But

problem solving, like representation, permeates most discussions of mathematics knowing and learning,

and so will reappear throughout the paper. In particular, we later consider problem solving from the

perspective of the discipline of mathematics. Here, however, our focus is on attempts by cognitive

researchers to characterize the knowledge structures and processes underlying successful problem

solving.

Most current theories of problem solving are based on an information-processing model of human

thinking and draw heavily on early work in this tradition (e.g., Newell & Simon, 1972; Simon, 1978).

Because much of this early work was directed at describing general processes of problem solving, it

focused on tasks that minimized the role of an individual's knowledge in the problem-solving process

(Simon, 1978). So researchers used puzzle-like tasks such as the Tower of Hanoi, which involves moving

a set of concentric disks on pegs according to certain rules, or the familiar missionaries and cannibals

problem, which involves moving an equal number of missionaries and cannibals across a river in a boat with
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the constraint that missionaries can never be outnumbered by cannibals. These tasks require mostly

knowledge-that could be-provided_when.presenting.thaproblem. The_problems were also highly

structured in that permissible moves were carefully specified and the goal of the problem was clearly

defined.

Central to Newell and Simon's (1972) theory of problem solving is the mental representation of the

problem that the individual problem solver creates in working memory. This pattern space contains the

individual's mental representation of the information in the problem and permissible moves to be used in

solving it. In constructing this problem space the problem solver draws both upon the problem as

presented and upon knowledge represented in long-term memory that can be,brought to bear in solving

the problem. The notion of problem space brings into sharp focus the assumption in this research that

thinking and knowing take place in the mind: In soi:ing a problem, the problem solver is viewed as

manipulating representations or symbols in the mind. To the extent that objects in the extemal

environment come into play, it is the representations of these objects that the problem solver

manipulates. It is this assumption of knowing and thinking being completely internal to the individual mind

that is being questioned by researchers who are emphasizing the situated nature of cognition.

When focusing on structured, knowledge-lean tasks, Newell and Simon (1972) emphasized a model

of problem solving as a search through the permissible moves represented in the individual's problem

space. This resulted in a focus on the general strategies or heuristics that individuals use for conducting

these searches in the solving of various problems. An example of such a general strategy is means-ends

analysis, in which the problem solver considers the desired goal state (e.g., getting all the missionaries

and cannibals to the other side of the river) and considers possible moves that will bring the

representation of the problem in the problem space closer to that goal (e.g., getting one more cannibal to

the other side). This sort of means-ends analysis is a general strategy that will work in a variety of contexts.

From this perspective the important knowledge to have for good mathematical thinking and problem

solving was a repertoire of general processes or strategies. Clearly a person had also to have

mathematical knowledge for these general strategies to operate on, but the emphasis was on the general

processes. This emphasis on general strategies and processes was consistent with and gave support to
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the many attempts to train students in general strategies for problem solving, critical thinking, and other

forms of "higher-order thinking (for reviews, see Chipman, Segal, & Glaser, 1985; Nickerson, Perkins, &

Smith, 1985; Resnick, 1987a; Segal, Chipman, & Glaser, 1985). In mathematics, most attempts to teach

general problem-solving strategies stem from George POlya's (1957) classic characterization of the

problem-solving process as involving heuristics such as finding simpler problems, using diagrams, and

considering special cases. These sorts of general rules of thumb pervade many programs for teaching

problem solving and the treatment of problem-solving in elementary-school mathematics textbooks.2

But researchers began to question the power of general strategies as central for problem solving and

understanding. As Schoenfeld (1985; 1987) has pointed out, although heuristics like those proposed by

POlya are good descriptions of what successful problem solvers do, they are not specified with enough

detail to be prescriptive--to help others learn to carry them out. Thus attempts to teach these heuristics

have generally not been successful. In addition, as researchers extended the general information-

processing model to study problem solving in information-rich domains such as physics and mathematics,

the importance of specific knowledge available in long-term memory came to the fore (Chi, Glaser, & Rees,

1982; Glaser, 1984; Resnick, 1987a). The use of general strategies like means-ends analysis did not

distinguish the performance of expert problem solvers in these domains from that of novices. Rather it was

the experts' rich store of organized accessible knowledge and ways of representing problems that

characterized their successful performance.

One important role played by this domain-specific knowledge is in how the problem solver represents

a problem to be solved. For example, in one study (Larkin, McDermott, Simon, & Simon, 1980), physics

novices (undergraduates who had completed a single physics courses) tended to solve problems by

selecting as quickly as possible formulas and equations into which values in the problem could be placed

and calculated. In contrast, experts (graduate students in physics) worked to build a representation of the

entire problem, usually structured around general constructs and principles in physics. Only then did the

2We discuss in more detail Polya's views about the role of heuristics when we consider problem
solving from the perspective of mathematics.
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experts move to formulas and equations, often after they had virtually solved the problem by using more

qualitative representations.

Further evidence that experts construct different mental representations of problems than do novices

is offered by studies in which experts and novices classify various sorts of problems. For example, when

Chi, Feltovich, and Glaser (1981) had individuals sort physics textbook problems, novices sorted the

problems on the basis of surface features such as the kinds of objects involved in the problem (e.g.,

levers, pulleys, or balance beams) or similarities in the diagrams presented with the problem. Experts

classified the problems according to the physics principles that were needed to solve the problems, (e.g.,

conservation of energy), suggesting that they had ways of representing the problems that were not

readily available to the novices. Silver (1979) similarly found that unsuccessful solvers of mathematics

word problems were more likely to rely on surface features when categorizing word problems than

successful problem solvers, who relied on similarities in underlying mathematical structure.

Thus, researchers studying problem solving came to focus on the domain-specific knowledge that the

problem solver has available and how that knowledge is organized (Glaser, 1984). In mathematics, this

focus was reflected in the research we discussed earlier on schemata for solving addition and subtraction

word problems and in the argument that successful problem solving involves being fluent with a repertoire

of representation systems that can be used in problem solving (Kaput, 1988; Lesh et al., 1987). Both of

these views of understanding and problem solving emphasize the importance of having the appropriately

structured domain-specific knowledge over knowledge of general processes or strategies. Similarly, as

an alternative to the general heuristics suggested by Polya (1957), Schoenfeld (1985, 1987) focused on

specifying the strategies used by successful problem solvers at a level of detail that included more of the

mathematics knowledge involved. For example, Schoenfeld found that heuristics such as "examine

special cases" actually comprised multiple more specific strategies, such as "If there is an integer

parameter n in a problem statement, consider the values n =1, 2, 3, 4, ... You may see a pattern that

suggests an answer, and the calculations themselves may suggest the mechanism for an inductive proof

that the answer is correct" (Schoenfeld, 1987, p. 19). Schoenfeld (1985) found that instruction in his own

problem-solving course for undergraduate college students based on these detailed strategies was
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successful in helping students solve both problems like those used during instruction and novel

problems. He also emphasized the importance of metacognitive knowledge and beliefs about

mathematics for successful problem soiving.

Debate over the relationship between general problem-solving and thinking skills, on the one hand,

and domain-specific knowledge on the other, continues (e.g., Glaser, 1984; Perkins & Salomon, 1989;

Resnick, 1987a). Any resolution of the debate will likely involve some balance between the two (Perkins

& Salomon, 1989). What is common to all these views of problem solving is that they attribute success in

problem solving essentially to the problem solver having acquired appropriate knowledge in the form of

general stra.dgies or organized domain-specific knowledge.

Summary of knowledge structures. We have offered three examples of domains in which

cognitive researchers have worked to describe in some detail the knowledge hypothesized to underlie

mathematical performance: addition and subtraction word problems, arithmetic computation, and problem

solving. These and other similar analyses have ruited in a rich understanding of some domains in the

existing mathematics curriculum. Inherent in these analyses is the assumption that we can understand

knowledge, thinking, and understanding in mathematics by specifying knowledge structures underlying

competent performance. For solving addition and subtraction word problems, these knowledge

structures included schema-based knowledge of the quantitative structures in the situations described by

the story problems. For computation, the hypothesized knowledge structures consisted of procedural

rules that operate on the written symbols of arithmetic. For problem solving, different kinds of knowledge

have been emphasized as important et various times by researchers, including knowledge of general

strategies and heuristics, organized and rich domain-specific knowledge of mathematics, and

metacognitive knowledge. In all these cases, knowing mathematics means having acquired appropriate

knowledge structures.

The knowledge structure program has focused primarily on describing the what of knowing

mathematics: What is the knowledge that underlies competent mathematical performance? The lens with

which cognitive researchers address this question is a powerful one that can reveal hitherto unexamined

aspects of mathematical knowledge. At the same time this research program is built on a fairly narrow view
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of what it means to know mathematics. Most of the tasks subjected to this cognitive analysis have been

taken from the traditional school mathematics curriculum and thus are descriptions of how individuals

understand and perform mathematics under current instructional practices. The research does not

address the issue of whether these traditional school tasks are worthwhile.

Research in the knowledge structure program has resulted, for the most part, in theories about how

people think and what their knowledge might be like, not about how to best help individuals acquire that

knowledge. As Greeno (1987a) put it,

Cognitive theory provides hypotheses about the knowledge and skill of successful student
problem solvers and the ways in which their knowledge and skill differ from those of less
successful ones.. .. Although cognitive models can describe more or less accurately the
knowledge and skill we want students to acquire, the experiences that will help students
acquire that knowledge and skill constitutes a separate issue. (p. 69-70)

These researchers have examined the performance of both competent and novice individuals, but they

have generally not in this program of research looked at changes in knowledge as students learn or

develop expertise in a domain.

Understanding as Connections Among Types of Knowledge

In describing the kinds of knowledge that constitute or underlie understanding of mathematics, many

researchers emphasize connections among various kinds of knowlee.2e. In part, this emphasis is a

reaction to behaviorist and associationist learning theories and school curricula that present mathematical

knowledge as collections of relatively isolated concepts, rules, and procedures to be learned.

Mathematics educators have long expressed concern over the learning of the symbols and procedures of

mathematics as rote learning, devoid of understanding (Buswell, 1926; Davis, 1986). Most mathematics

educators and research agree that it is possible to learn many of the symbols of mathematics and

procedures for computing and manipulating those symbols without also learning much accompanying

understanding of the quantities or mathematical entities represented by the symbols and without

acquiring the knowledge needed to Imo, the skills when needed. There is less agreement about the kinds

of links or connections that need to be established in the mind of the learner to constitute the desired

understanding. Some researchers have emphasized the distinction between procedural and conceptual
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knowledge of mathematics, and have sought to characterize the relationship between them in various

ways. Others have called for more connections between the formal, symbolic mathematics learned in

school with the rich base of informal knowledge children develop in out-of-school settings.

Conceptual and procedural knowledge. Some cognitive psychologists distinguish between

knowledge and understanding of concepts of mathematics on the one hand, and knowledge of the

procedures of mathematics on the other (Hiebert, 1986; Nesher, 1986). Researchers vary, of course, in

their definitions of these kinds of knowledge. Hiebert and Lefevre (1986) defined conceptual knowledge

as "knowledge that is rich in relationships. It can be thought of as a connected web of knowledge, a

network in which the linking relationships are as prominent as the discrete pieces of information" (pp. 3-4).

From this perspective, terms like understanding or meaningful learning essentially refer to knowledge that

is highly interconnected through relationships at various levels of abstraction.

Procedural knowledge, according to Hiebert and Lefevre (1986), consists of knowledge of (a) the

formal symbol system of mathematics and (b) "rules, algorithms, or procedures used to solve mathematical

tasks" (p. 6). The first part is knowledge of the conventional forms in which mathematical ideas are

expressed, including for example, the abil:ty to recognize that 5 + 6 =11 is an acceptable form, whereas

5 += 6 is not. The second part of procedural knowledge consists of instructions for completing various

tasks. These procedures may operate primarily on standard written symbols, as is the case for the

algorithms for multiplication and division, or they may operate on concrete objects, or other objects that

are not the standard symbols.

Elementary school mathematics instruction typically emphasizes the learning of procedures applied to

standard written symbols in ways that leave them unconnected to conceptual knowledge. Students thus

learn the procedures and symbols as meaningless marks on paper. From Hiebert and Lefevre's

perspective, written mathematical symbols take on their conventional mathematical meanings by being

linked to conceptual knowledge of ideas encountered through experience. For example, if the idea of

change as in Problem 1 in Table 1 is linked to "+," that symbol takes on meaning. Hiebert and Lefevre

(1986) argued that If students connect the symbols with conceptually based referents, the symbols
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acquire meaning and become powerful tools for recording and communicating mathematical

events" (p. 20).

Nesher (1986) argued that conceptual knowledge should be thought of as the control structure for

procedural, or algorithmic, knowledge. A person can carry out procedures without much conscious

thought by relying on physical feedback as long as things are going well. When something goes awry,

however, the learned procedures may not work, and the pc. on must mentally step back and take stock of

the situation. This is where conceptual understanding plays a role. An important consequence of this

view of conceptual knowledge as control structure is that it cannot exist without at least some procedural

knowledge. Since the conceptual knowledge is, in essence, knowledge about the procedures, it can be

developed only by reflecting, in part, on the procedures themselves, which must therefore be learned

before, or at least in tandem with, the conceptual knowledge. Nesher gives the example of trying to help

college students leam the concept of arithmetic mean in an introductory statistics class and needing to

have students compute some means before being able to talk about the concept of mean with any

meaning, Nesher pointed out that there is little solid evidence for the apparent belief held by many

mathematics educators that solid conceptual knowledge of a topic will produce correct procedures as a

natural consequence. Indeed, in at least some cases, procedural knowledge must form the basis for

conceptual understanding.

Another hypothesis about the relationship between conceptual and procedural knowledge in the

domain of young children's counting has been offered by Gelman and her colleagues (Gelman & Meck,

1983; Gelman & Meck, 1986; Greeno, Riley, & Gelman, 1984). They argue that conceptual corn

consists of implicit knowledge of principles that constrain but do not determine procedural performance.

These principles are much like the principles of grammar that constrain the utterances we make; we use

these principles without being aware of them. Conceptual competence for counting includes such

principles as one-to-one correspondence and the cardinality principle (that the last number recited is also

the number of objects in the counted set). Knowledge of these principles provides guidance and

constraints for the procedures to be used in a particular counting situation. Every counting task is a bit

different, and a child that is able to count appropriately in a wide variety of settings evidences an
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understanding of basic principles underlying counting, rather than the learning of a single counting

procedure.

Greeno, Riley, and Gelman (1984) hypothesized that the actual procedure of counting in a particular

situation is generated on the basis of the principles that constitute conceptual competence, with

procedural competence providing a set of tools for transforming the principles of conceptual competence

into procedures, and utilizational competence providing knowledge of the mappings of these procedures

to situations. There are several points from this work that are important for our consideration of the

relationship between conceptual and procedural knowledge. First, knowledge of the principles that form

conceptual competence are implicitly rather than explicitly known. Second, successful performance in a

variety of settings can be taken as evidence for an implicit understanding of the underlying principles.

Third, having knowledge of correct principles does not guarantee being able to carry out procedures

correctly or to generate appropriate procedures in new situations; the procedural or utilizational

competence needed to generate the procedure in a particular situation may not be available. Finally,

conceptual knowledge serves to constrain performance but not to determine it completely, an idea similar

to Neshers (1986) control structure. A similar idea is that conceptual knowledge serves as a set of ctjc2

for procedures generated (Resnick, 1982; VanLehn, 1983).

Formal and Informal knowledge. Some researchers have emphasized the importance of having

connections between knowledge of the formal, symbolic mathematics taught in school and the informal,

intuitive knowledge of mathematics gained from everyday experience. Ginsburg (1977) and Resnick

(1986; 1987b) have argued that a major reason for the difficulty students have in leaming the formal,

symbolic mathematics taught in school is that this formal knowledge does not get !inked to their rich

informal knowledge base derived from working with quantities in everyday situations. Many children

appear to view school mathematics as a collection of arbitrary rules and procedures performed on

meaningless symbols, in spite of the fact that they may have developed rather sophisticated concepts and

strategies for solving quantitative problems encountered out of school. The informal strategies that both

children and adults construct often reveal understanding of the kind of mathematical principles that
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Greeno et al. (1984) referred to as conceptual competence, but students do not seem to draw upon this

competence in the learning and doing of the procedures of school mathematics.

An example of competent informal strategies developed outside of school is offered by a series of

studies of Brazilian children without much formal schooling (Carraher, Carraher, & Schliemann, 1983).

Working as street vendors, these children developed considerable proficiency at mental arithmetic

strategies for figuring prices for customers, as illustrated in the following:

How much is one coconut? Thirty-five. I'd like 10. How much is that? [Pause] Three will be
105; with three more, that will be 210. [Pause] I need four more. . . [Pause] 315. . . 1 think it is
350.

This child solved, by using repeated addition, a problem that most schooled adults would solve by using

multiplication. The child used the memorized price of three coconuts to reduce the number of additions

required, demonstrating implicit understanding of the important principle of additive composition--the idea

that numbers can be additively broken apart and recombined (Resnick, 1986). The children studied by

Carraher et al. (1983) could solve a variety of other problems dealing with figuring prices by using various

invented mental arithmetic strategies. When presented with the same problems in written form, however,

the children tried unsuccessfully to apply the algorithms they had learned in their short stays at school

They seemed unaware that they could apply the informal strategies they used every day to these "school"

tasks.

When school tasks are set in a way to encourage it, children can use their informally invented

strategies to solve problems that they could not solve using the school taught algorithms (Carpenter &

Moser, 1982; Ginsburg, 1977). Many of these informal strategies are built on the extensive use of

counting and the additive relationships, as in the Brazilian example. But traditional school instruction does

not seem to help students connect this informal competence to the formal symbols and symbol rules that

are the focus of instruction.

Researchers calling for the building of better connections between informal mathematical knowledge

and formal school knowledge of mathematics generally base their arguments on two assumptions about

the nature of mathematical understanding. The first is that children's informal knowledge can serve as a

powerful base upon which to build more formal knowledge of mathematics. The informal knowledge that
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seems to be 'voted in basic principles such as additive composition can provide meaningful referents for

the symbols of formal arithmetic. Thus the informal knowledge can bring meaning to the formal

mathematics. Second, by linking students' knowledge of formal school arithmetic to their informal

knowledge based in experience, students will be in a better position to apply theirmore formal knowledge

to the solving of problems encountered in out-of-school settings. Another way to consider these

connections between formal and informal knowledge is as the need for transfer in both of these directions

(Pea, 1988). Both of these arguments are closely related to the constructivist perspective, with its

emphasis on the meaningful leaming of mathematics taking place through modifying and building upon

existing knowledge and ways of thinking.

Learning as Active Construction of Knowledge

Central to virtually all cognitive theories is the assumption that individuals interpret their environments

thrcugh existing cognitive structures built up through adaptation to the environment (Resnick, 1983;

8huell, 1986). This constructivist perspective has had a profound influence on how many mathematics

educators think about understanding and teaming mathematics (Kilpatrick, 1987), especially the idea that

for instruction to foster learning with meaning or understanding, it must somehow attend to and build

upon children's existing knowledge.

The active view of the learner in cognitive psychology contrasts with earlier behaviorist and

associationist perspectives, in which a students' knowledge could be viewed as a sort of cumulative

record of his or her experiences. Although the learner was considered to be active in behaviorist theories,

it was in a different sense of active than in current cognitive perspectives. Behaviorists argued that

learning takes place only when the individual overtly responds to environmental stimuli; an individual

iearns only those behaviors that are actually carried out and reinforced (Skinner, 1986). Indeed, this sort

of active response provides the foundation for theories of operant conditioning. From this behaviorist

perspective, an individual's learning is determined by the responses he or she makes to environmental

stimuli; thus learning can be made more efficient by carefully structuring those environmental stimuli so
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thl the learner makes responses; that are gradually shaped toward the target behavior. The most efficient

learning is errorless leaming, with the learners responses becoming increasingly refined.

When cognitive theorists refer to the learner as being active, they mean something quite different

than overt responding. They mean that the learner plays an active role in interpreting and structuring

environmental stimuli. Rather than passively receiving and recording incoming information, the learner

actively interprets and imposes meaning through the lenses of his or her existing knowledge structures,

working to make sense of the world. At the same time, learning or development takes place, not by the

simple reception of information from the environment, but through the modification and building up of the

individual's knowledge structures.

An important result of this shift in perspective has been a blurring by cognitively oriented researchers

of the distinction between learning and cognitive development. When learning was considered to be

acquisition or absorption of knowledge, development of fundamental cognitive structures, such as those

supporting basic logical and quantitative thinking (Piaget, 1983) could be considered a separate domain

of inquiry. With learning viewed as the active integration by the learner of new information with existing

knowledge, the line between learning and development can no longer be drawn cleanly. Neither can a

clear line be drawn between "natural" mathematical thinking and the use of cognitive tools available in the

environment. It is important to note that analyses of how children develop or acquire mathematical

knowledge and skill in specific domains (for example, the development of children's early conceptions of

number and counting--Carpenter & Moser, 1982; Fuson, 1988; Gelman & Gallistel, 1978; Steffe et al.,

1983), are studies of how children's conceptions and skills develop in current cultural and instructional

environments. Although the various sequences of acquiring mathematical knowledge derived from this

research are sometimes assumed to be "natural," they are actually the result of experience in particular

environments.

Research on children's mathematical knowledge and skill provides ample evidence that they do,

indeed, construct or invent new knowledge on the basis of what they already know (Resnick, 1985). Our

first example comes from research on children's use of various counting strategies to solve simple addition

and subtraction problems. Researchers have found that children use a variety of counting strategies to
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solve problems of the form a + b = ?, where a and b are whole numbers between 1 and 10 (Carpenter &

Moser, 1982; Fuson, 1988). Of particular interest here are the ALL strategy and the MIN strategy. In

using the ALL (or countina_all) strategy, the child first counts to a, then counts b more units to arrive at the

sum. For example, to add 3 + 6 = ?, the child would count, "1, 2, 3," and then, "4, 5, 6, 7, 8, 9." The

counting could be done with objects, with fingers, or mentally. The more efficient MIN (or counting on

from larger) strategy involves beginning with the larger of the two addends and counting on for the smaller

addend. To add 3 + 6 = ?, the child would count, "6," then "7, 8, 9." Many children come to use the

MIN strategy even though it is not generally taught directly (Carpenter & Moser, 1982; Fuson, 1982). In a

carefully controlled study, Groen and Resnick (1977) found that a number of kindergarten children whose

instruction focused exclusively on the ALL strategy invented and used the MIN strategy to solve addition

problems.

Use of the MIN strategy is an example of an appropriate, or correct, invention based on existing

knowledge and instruction. The buggy algorithms for subtraction we described earlier provide examples

of the invention of incorrect procedures. Brown and VanLehn (1980; see also VanLehn, 1983) posit in

their repair theory that the errors students make in carrying out the computational procedures are the

result of inappropriately invented or repaired procedures. When a student reaches a point in carrying out

the procedure at which he or she does not know what to do next, a repair or patch is made, often resulting

in a computational error. These repairs can be thought of as on-the-spot inventea procedures based on

the student's existing knowledge. As we pointed out earlier, Resnick (1982) has argued that the repairs

children make are quite reasonable inventions if only knowledge of the syntax, or surface features of the

symbols is taken into account. For example, children usually end up putting digits in each column of the

answer and "borrow" marks at the top of the problem. The repairs are not reasonable, however, if one

takes the meaning, or semantics of the symbols into account. Children making these errors violate such

principles as the maintaining of the quantities represented by each number in the problem. So it seems

that children are making reasonable inventions; they are just failing to base these inventions on the

appropriate knowledge.
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Thus, it is clear that children do not simply absorb mathematical Knowledge as it is presented, but

impose their existing frameworl .3 of knowledge to incorporate and invent new knowledge. Virtually all

cognitive researchers and mathematics educators ascribe to this constructive view of learning and

knowledge. Some theorists and researchers take a stronger position on the constructed nature of

knowledge and learning (e.g., Steffe & Cobb, 1988; von Glasersfeld, 1987). Because these radical

constructivists form an important voice in the mathematics education community, we consider their views

here in some detail.

Radical constructivism. Radical constructivists emphasize the epistemological assumption that

the world external to the individual cannot be known in any ultimate sense, but that all knowledge is a

cognitive construction of the individual. Von Glasersfeld (1989) has identified two principles of

constructivism as a theory of knowledge: "(a) knowledge is not passively received but actively built up by

the cognizing subject; and (b) the function of cognition is adaptive and serves the organization of the

experiential world, not the discovery of ontological reality" (p. 162). It is the first principle that is embraced

by most cognitively oriented psychologists and mathematics educators when they argue that knowledge

is actively constructed (Kilpatrick, 1987). It is adherence to the second principle that sets apart the radical

constructivists. This second principle rejects the realist or empiricist assumption that the world can be

known in any objective or ultimate way. Rather, physical reality can only constrain the cognitive

constructions that individuals make. As von Glasersfeld (1988) put it, "...knowledge cannot aim at 'truth' in

the traditional sense but concerns the construction of paths of action and thinking that an unfathomable

'reality' leaves open for us to tread" (p. 2). Sinclair (1988), writing from a Piagetian perspective, similarly

argued that, "at all levels the subject constructs Theories' (in action or thought) to make sense of his

experience; as long as these theories work the subject will abide by them" (p. 29). But these personal

theories will always be only approximations to reality; external reality will always possess properties

unknown to the individual (Piaget, 1980; von Glasersfeld, 1988). Thus, knowledge and meaning are

ultimately personal and, to some extent, idiosyncratic.

For radical constructivists, then, mathematical knowledge is exclusively a cognitive construction of the

individual; there is no mathematical reality "out there" to be learned or discovered. Rather, mathematical
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knowledge consists of "coordinated schemes of action and operation" (Steffe, 1988), ways of

understanding and acting that have been built up by the individual. We experience a sense of "out

thereness" of mathematical knowledge only because we impose our own conceptual organization on the

world (Cobb, 1986). Note that this view of meaning differs from Hiebert's view, discussed earlier, that

understanding of symbols resulted from the learning simply connecting or linking the symbol to external

referents, implying that the meaning resided essentially in the physical objects.

Because mathematical knowledge exists only as constructed by the individual, it cannot be

transmitted or instilled through communication (Cobb, 1988b; von Glasersfeld, 1988). In fact,

communication itself is not a process of transmitting meaning, but of sending a set of instructions from

which the recipient constructs a meaning. There is no meaning inherent in words, actions, or objects

independent of an interpreter (Cobb, 1988b). Thus, a view of instruction as the transmission of

knowledge is not acceptable to the radical constructivists: "the seemingly obvious assumption that the

goal of instruction is to transmit knowledge to students stands in flat contradiction to the contention that

students construct knowledge for themselves by restructuring their internal cognitive structures" (Cobb,

1988b, p. 87). Teachers cannot use language to "tell" or transmit knowledge to students, but "here and

there to constrain and thus to guide the cognitive construction of the student" (von Glasersfeld, 1988).

As a result of this basic perspective, radical constructivist researchers in mathematics education have

focused on describing and analyzing the "mathematics of children" (Steffe, 1988)--the meanings children

place on their mathematical actions and the strategies that they have constructed through interaction with

their home and school environments (see, e.g., Steffe, 1983). As we pointed out earlier, it is important to

note that these environments are not inherently more "natural" than others. By focusing on knowledge as

individual construction, constructivists create for themselves the difficult problem of explaining how people

come to know and agree upon the same skills and understandings that constitute mathematics. How is it

that "children come to know in a short time basic principles (in mathematics, but also in other scientific

disciplines) which it took humanity thousands of years to construct?" (Sinclair, 1983, p. 1).

Increasingly, constructivists have dealt with this issue by focusing on the social nature of human

interaction and its role in the individual construction of knowledge. Sinclair (1988), for example, pointed
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out that Piaget, especially in his later writings (e.g., Piaget & Garcia, 1983), emphasized the role of society,

with its accumulation of knowledge, on the individual's construction of knowledge. The objects with which

children interact are defined largely by society. Adults in general, and teachers in particular, present

children with real objects or with objects of thought in a certain way that makes it possible for them to re-

discover or re-invent what it took their society a long time to elaborate.

When Piaget, in his writings on education, asserted that lo understand is to invent or to
discover," the inventions or discoveries are new to the child, but seen from the adult's point of
view, they are re-creations. Our children do not have to invent the wheel: they can begin to
conceptualize the intricate properties of wheels as they exist in our society. (Sinclair, 1988,
P. 7)

Thus, teachers play an important role in presenting objects of thought to children. This presentation,

along with the endogenous process of abstraction accounts for the learning of society's accumulated

knowledge, but the presentation is often not optimal for the child's active construction of meaning

(Sinclair, 1988).

Cobb (1988a) similarly argued that constructivists need to draw on an anthropological perspective to

avoid the "lonely voyage" metaphor of cognitive construction. From this perspective, ",,:ultural knowledge

(including mathematics) is continually recreated through the coordinated actions of the members of a

community" (Cobb, 1988a, p. 13). This emergent meaning becomes part of the shared world view of the

participants. "It is beyond justificrition and has emerged as a mathematical truth for the classroom

community" (p. 13). This taken-for-grantedness explains, Cobb argued, the tendency to think of

mathematics as having an existence external to the knower. Mathematical concepts seem so "true" and

"solid" because they have become so taken-for-granted and agreed-upon by a wide community. These

meanings are so shared that they are taken for mathematical truth. They are like part of the bedrock or

ultimate schemas by which we think.

Implications of learning as active construction. Whether one accepts the fundamental

epistemological assumptions of the radical constructivists or simply holds the more widely accepted view

of learning as a constructive process, the basic tenet that learners are active in structuring and inventing

their knowledge has important implications in thinking about what it means to know and learn mathematics.

The learner's existing knowledge shapes in fundamental ways what will be learned. Understanding
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mathematics means having altered one's own cognitive structures or ways of thinking in powerful ways,

not simply having acquired mathematical knowledge presented by others. If learning cannot be assumed

to be a process of absorption or direct transfer of knowledge into the mind of the learner, then one cannot

assume that what is presented through curriculum or instruction is what students will learn (Norman,

1980). Instruction can no longer be viewed as a matter of simply laying out, however carefully, the

knowledge and skill to be acquired. As Resnick (1983) argued, we need to broaden our definition of

instruction beyond the direct presentation of information or modeling of procedures for students to

include "anything that is done in order to help someone else acquire a new capability" (p. 5), or, as Sinclair

(1988) put it, to make more optimal children's efforts to "re-discoveror re-invent" (p. 7) mathematical

objects of thought.

But while the constructivist research agenda has highlighted the importance of attending to how

children know and think about various mathematical ideas and procedures, it does not offer direct

pedagogical prescriptions. In general, constructivist researchers have sought to understand the

development or construction of mathematical knowledge that takes place through an individual': more or

less natural interactions with the environment. It is not readily apparent, however, how this perspective

should be applied to teaching and instruction. As Sinclair (1988) pointed out,

Piagetian [i.e., constructivist] studies were not designed to discover in what kind of situations
(either in or out of school) certain structures and procedures of action and thought are built up.
Tne subtle, but powerful interaction between the societal presentation of objects which allows a
great number of children nowadays to master scientific concepts only geniuses could construct
in the past cries out for detailed study. (p. 9)

Just as the cognitive scientists' models of knowledge hypothesized to underliecompetent mathematical

performance do not tell us much about the acquisition of that knowledge, constructivist models of

children's developing competence do not tell us much about how this development might be constrained

or guided through powerful instructional experiences.

Understanding as Situated Cognition

Underlying the perspectives from cognitive psychology we have considered thus far is the

fundamental assumption that knowledge and thinking take place within the mind of the individual.
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Describing what it means to know and understand mathematics then becomes the task of describing the

structures of knowledge hypothesized to exist in the individual's mind. The radical constructivists have

emphasized the personal nature of the meanings that individuals construct through interaction with others

and the environment, but the locus of those meanings clearly lies within the mind of the individual. A

number of cognitive researchers are questioning this fundamental assumption of thinking and knowing ds

a process occurring within the individual's mind (Brown, Collins, & Duguid, 1989; Greeno, 1989; Resnick,

1987b), arguing instead that these events should be considered more as an interaction or relation

between an individual and physical and social situations.

The move to this new perspective has been fueled, in large part, by the integration of anthropological

and cultural perspectives into cognitive science. In particular, a number of studies of people dealing with

quantitative problems in various out-of-school settings have revealed how solutions are constructed

through interaction with the situation, rather than by applying more abstract knowledge and skills to the

situation (Carraher et al., 1983; Lave, 1988; Lave, Murtaugh, & de La Ro-ha, 1984; Scribner, 1984). For

example, Scribner (1984) found that dairy workers filling orders for cases of milk used their experience

with various configurations of partially filled cases, rather than relying on school-like arithmetic procedures.

As Greeno (1989) observed about their performance, "rather than assuming that there are cognitive

structures and procedures that the workers applied, it seems more appropriate to say that they had

acquired a capability for interacting effectively with objects in the situation" (p. 135). Rather than thinking

being viewed exclusively as the manipulation of symbols and cognitive representations, it might better be

considered an interaction with objects and structures of situations.

According to the situated cognition perspective, knowledge and thinking are inextricably intertwined

with the physical and social situations in which they occur. Brown et al. (1989) argued that, like language,

all knowledge indexes., or refers to, the world and thus derives it meaning from the situations and activity in

which it is produced. Just as the meaning of a word is fundamentally dependent on the context in which it

used and can never be explicated completely in a dictionary definition, all knowledge depends on the

contexts in which it is used.

41

---

4



A concept, for example, will continually evolve with each new occasion of use, because new
situations, negotiations, and activities inevitably recast it in a new, more densely textured form.
So a concept, like the meaning of a word, is always under construction. This would also appear
to be true of apparently well-defined, abstract technical concepts. Even these are not wholly
definable and defy categorical description; part of their meaning is always inherited from the
context of use. (Brown et al., 1989, p. 33)

Emerging from this perspective as a way of thinking about conceptual knowledge is the notion that

understanding could mean having a usable set of tools (Brown et al., 1989; Perkins, 1986; Stigler &

Baranes, 1988). Both toots and knowledge "can only be fully understood through use, and using them

entails both changing the user's view of the world and adopting the belief system of the culture in which

they are used" (Brown et al., 1989, p. 33). People can acquire relatively inert knowledge of tools without

actually using th 'm, but to be able to um tools effectively requires experience using them in the ways

they are ultimately to be used. For example, a person could acquire the division algorithm in the sense of

being able to compute 1128 + 36 but not be able to Lae that tool appropriately when confronted with

the problem of figuring out how many buses, each holding 36 people, would be needed to transport

1128 people. Indeed, only 23% of the 13-year-old sample taking the 1982 National Assessment of

Educational Progress correctly solved such a problem, with 29% of students incorrectly choosing "31

remainder 12" as the answer (Carpenter, Lindquist, Matthews, & Silver, 1983). From this perspective,

knowledge for how to use tools like division appropriately is acquired through actual use of those tools in a

variety of situations. For some (Brown et al., 1989; Collins, Brown, & Newman, in press), this need to

acquire cognitive tools through richly embedded practice suggests that apprenticeship is an appropriate

metaphor for instruction, because of its emphasis on learning in the context of authentic activity (Brown et

al., 1989).

In terms of what it means to know and understand mathematics, this perspective suggests that the

nature of a person's knowledge of mathematics is inextricably tied to the situations in which that

knowledge was acquired. This contrasts with a long-standing tradition in education of trying to separate

the desired goals or outcomes of education with its means or methods (Porter, Schmidt, Floden, &

Freeman, 1986; Tyler, 1949). It also suggests that meaningful knowledge of mathematics cannot be

"crystallized" and made entirely explicit. Important aspects of knowing mathematics will inherently remain
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implicit and intertwined with situations in which it is used. This suggests fundamental limits to efforts to

specify knowledge and understanding by explicating in as much detail as possible its components and

subskills (e.g., Gagne, Briggs, & Wagner, 1988).

Thus, to learn mathematics in meaningful and useful ways, it becomes important to participate in

mathematical activity--not simply to to acquire explicitly described skills and procedures of mathematics.

This idea is consonant with the emphasis in the reform documents on doing mathematics rather than

simply acquiring the skills and concepts that constitute the "written record" of mathematics (NCTM, 1989;

National Research Council, 1989; Romberg, 1983). But what is doing mathematics? What is authentic

mathematical activity? How can understanding the nature of authentic mathematical activity inform our

efforts to think about what mathematical activity should be like in elementary schools? To address these

questions, we turn to the discipline of mathematics.

Mathematical Perspectives on Knowing Mathematics

Defining what it means to understand a school subject has conventionally been the province of

learning psycholog;sts. As we have outlined in the first section of this paper, much of the work in this

domain has focused on mathematical understanding. But we hope to go beyond psychology somewhat,

and look at other ways of thinking about what it means to know mathematics. Scholars within the

discipline, and those engaged in philosophical and historical analyses of what mathematics is about, have

attempted both to characterize mathematical knowledge and to describe the processes whereby new

mathematics comes to be accepted as true. In this section, we will look at mathematical understanding

from the perspective of mathematics. Our looking to the discipline for definitions of understanding arises

partly from the observation that psychology has chosen to focus on a limited set of mathematical content

and partly from the inclusion in major reform documents of the assumption that students should be doing

mathematics in school in order to learn mathematics (NCTM, 1989; National Research Council, 1989).

This reform is seen to be necessary because school children are now learning only a very limited piece of

mathematics, if they are learning any at all. Much of the mathematical activity of students in elementary

school classrooms consists of practicing familiar teacher-prescribed procedures for adding, subtracting,
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multiplying, and dividing numbers until they can get the right answer most of the time--both the activity and

the answers being dissociated from any sense of what either the numbers or the operations mean (NCTM,

1989; Romberg-& Carpenter, 1986). In contrast, reformers believe that "doing math" in the classroom

ought to consist of activities like the following:

abstracting3 inventing proving
applying generalizing conjecturing
convincing specializing analyzing
classifying comparing counting
inferring explaining measuring
organizing patterning synthesizing
representing validating ordering

These are the sorts of activities that are thought to characterize the wort( of mathematicians.

But what do these activities have to do with coming to know mathematics? What does one need to

know in order to engage in such activities? How does the experience of these processes relate to

understanding the body of knowledge that has accrued in our culture about mathematics? By including a

section on mathematical understanding from the perspective of the discipline in this paper, we do not

mean to endorse the assumption that students will learn what they need to know about mathematics by

doing activities in school that are like what mathematicians do. Rather we seek to better understand the

connection between mathematical practice and school learning by looking more carefully at what might be

entailed in mathematical practice. Mathematical activity cannot simply be imported to the elementary

school classroom without taking some care about how it is related to learning, both in terms of what a

student needs to know in order to do it and in terms of what a student learns from doing it.

The reform documents have not been very clear about the distinction between what students should

do in school and what they should be able to do as a result of what they learn in school. Neither have they

considered the possibility that some segments of the population might come to school more disposed to

learn from doing than others. It seems crucial to address these issues if we are going to be able to provide

an equitable education in mathematics across the population and evaluate the effects of educational

3This list is derived from such documents as the Standards (NCTM, 1989), EverybodvCounts
(National Research Council, 1989), California's Mathematics Model Qurriculum Guide (California State
Department of Education, 1987), national curriculum reform documents produced in Australia, and the
British Cockcroft Report (Cockcroft, 1986).
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reforms on outcomes. Do we want students to learn how to do mathematics with understanding so that

we will have more mathematicians and intelligent creators of mathematical applications? Or is it that we

want all students to get an appreciation of what kind of knowledge mathematics is and how truth in the

discipline is warranted? Or do we want students to become intelligent users of mathematical tools in the

workplace and society? These goals are not unrelated, or mutually exclusive, but distinguishing between

them might help us to be better judges of what constitutes good educational practice. These issues will

not be resolved in this paper, but the analysis of mathematical practice that follows may shed some light on

good next questions.

What kinds of activities could be called mathematics? We would like to propose three

different sorts of categories within which to think about what it means to do mathematics, ai consider

both theoretical and applied activity in each of these areas. We do not wish to imply that a particular bit of

mathematical work or a particular mathematician falls into one category or another, however. The three

activities we have chosen to analyze are interwoven in the fabric of mathematical practice.

One of the most common associations with doing mathematics is the activity of problem solving.

Mathematicians use relationships among quantities and shapes to solve all kinds of problems, and

problem solving is certainly something that many people would agree should be learned by students in

school. We will look at the various kinds of problems that might be solved using mathematics, and what

one might need to know to solve them. Another, less obvious mathematical activity is mathematizing, or

building quantitative "models" of nonquantitative relationships. This activity assur-- a certain view of the

social and physical world, which asserts that the important elements of situations can be represented by

numbers and relationships among numbers. In Western society, this view is somewhat of a given,

certainly among particular segments of the population who use mathematics to formulate and solve

problems and others who are consumers of their work. We don't often think of this way of thinking as

something that needs to be deliberately taught. Problem solving and mathematizing are related within

mathematics by the activity of problem formulating, which will be treated in both sections. The third

mathematical activity we will examine is mathematical argument: How are new propositions invented in the

discipline? And how is their truth established? Mathematicians make conjectures and prove or disprove
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them. What kind of work goes into producing a conjecture? And what are the standards of discourse by

which mathematicians decide to accept a conjecture as part of the discipline's store of knowledge?

The nature of activity in each of these domains has been regularly debated in the discipline

throughout its history and continues to be a matter of considerable controversy. Understanding these

debates is a monumental task for someone who is on their periphery, at the intersection between

elementary education and mathematics writ large. But they cannot be ignored if we are to look to

mathematical practice for guidance on curriculum and instruction. We consider three bodies of literature in

the analysis of mathematical knowledge that follows: historical descriptions of the develop nent of the

discipline, examinations of contemporary mathematical practice, and philosophical treatises on the nature

of mathematical knowledge.

Problem Solving as Mathematical Knowledge

Looking at mathematical understanding from the perspective of problem solving seems at first glance

to be quite simple: Understanding would be knowing how to solve a mathematical problem. Assuming

that the kind of solution called for is a mathematical solution (as compared with an ethical or a legal one, for

example), what one would need to know to solve a problem would include heuristics or p-oblem solving

strategies, mathematical tools or conventions, and rules for justifying the appropriateness of the solution

strategy. But the work of defining what kind of problem could be called a mathematical problem and what

kind of solution is a mathematical solution is not quite so simple; indeed, in a recent survey of what kinds of

problems contemporary mathematicians were working on, Ian Stewart (1987) called this issue an

"ideological minefield." The distinction between pure and applied mathematics divides the kinds of

mathematics problems considered to be worth solving as well as the practitioners who solve them.

Justifications for methods are a matter of considerable controversy, particularly as a result of the current

capabilities of computational technology (P. Davis, 1988; Tymoczko, 1985). When it corms to defining

what is "good" mathematics, some value most those problems whose outcome matters in some iliatcrial

way, like the problem of figuring out how to predict the weather or the problem of determining the most

efficient scheduling algorithm for airline travel, claiming that these are the kinds of problems that lead to
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the creation of important new knowledge of mathematics. Others value problems whose solution adds to

our accruing body of abstract knowledge about numerical and spatial relationships (Hardy, 1967; Erdos,

1988; Guillen, 1983; Gleick, 1987). An example of this latter kind of problem is determining a formula that

will describe how far apart prime numbers (numbers whose only divisors are one and the number itself) are

from one another. Work on prime numbers does not proceed in a way that is driven by any problem

external to the development of mathematics itself. It is a matter of figuring out what the properties of

abstract entities called numbers imply for pattems and relationships in the world of numbers itself.

We will look at the knowledge that one might use to solve a mathematical problem in light of both the

common themes and the divergent thinking in the field about what kind of a problem is a mathematics

problem, and what constitutes a mathematical solution to a problem.

Consider the following list of numbers:

1

4
9

16
25
36
49

which are the squares of the counting numbers: 1 x 1, 2 x 2, 3 x 3, and so on. Now consider the

difference between each number and the one that follows it. The difference between 1 and 4 is 3, the

difference between 4 and 9 is 5, the difference between 9 and 16 is 7, and so on. The differences

between the squares turns out to be a list of numbers with another property: it is the list of successive odd

numbers: 3, 5, 7, 9, ... Why?

If we think of a problem in general terms as something that disturbs one's state of equilibrium because

it does not fit an expected pattern (Polanyi cited in Bell, 1979), then the recognition of this unexpected

regularity in the differences between successive square numbers presents us with a problem. Once the

pattern is observed, there arises a curiosity about whether it will continue, and if so why. What does one

need to know to solve such a problem? If the differences between the squares are represented as

follows,
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1 + 3 = 4
1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25

it is easy to see that the number of terms in each successive addition is the square root of the sum. What

does one need to know in order to notice this pattern? And what does one need to know in order to

appreciate that such a pattern is worthy of attention? One piece of useful knowledge to have here is that

mathematics problems can often be tackled by representing them in alternative ways. This is a

mathematical "heuristic" about which we will have more to say later (cf. Po lya, 1957).

The list of sums raises the question: What will the sum be in the next instance? This question was not

so obvious in the earlier statement of the problem. But one must also know categories of numbers that

might produce interesting results: prime, odd, and so on. What are the characteristics of prime numbers?

Odd numbers? Knowing those characteristics provides some guidance in seeking to explain the pattern,

but knowing that these categories exist causes us to notice the pattern in the first place. At the most basic

level, one needs to know how to add a string of numbers and how to multiply one number by another to

produce the pattern. These kinds of knowledge could be called mathematical tools or conventions, or

more generally resources (Pea, 1987; Schoenfeld, 1985).

In the next line of the problem, there will be six terms and the sum will be 36. We can go on testing

cases, obtaining more evidence that the sum of the tli , n odd numbers will be n2. Mathematical argument

can take us beyond such observations, however, to prove that this must be the case in every instance.

Simply talking in terms of n and n2 instead of restricting our argument to particular observations

contributes something to the solution. So another kind of knowledge that is useful here is knowledge

about generalization and symbolization, also referred to as abstraction (Bell, 1979; Kaput, 1987a, 1987b;

Romberg, 1983). By taking a general perspective on the particular sums, looking at the elements in which

an odd number of addends sums up to the square, one can see that the middle addand is also the square

root of the sum. What of the elements in the list that have an even number of addends? Here, the even

number that would be between the middle two terms (as 4 is between 3 and 5 in 1 + 3 + 5 + 7) is the

square root of the sum. We are well on our way now to the solution of the problem of determining why tha
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pattern arises and whether it will continue. The introduction of a mathematical concept at this point

furthers the solution: The average of the addends in each case is the square root of the sum. This

auxiliar; element ...en not part of the initial statement of the problern,but it enables us tn:onner aeneralize

the argument. Hek*e 've are using a knowledge of resources together with a knowledge of heuristics. In

the odd cases, the average is the middle number; in the even cases it is the number between the two

middle numbers. In all cases, the average of the addends multiplied by the number of addends yields the

sum, and the average and the number of addends will always be the same, so the sum is a perfect square.

In the sections that follow, we will treat each of these kinds of knowledge and consider how they

contribute to solving various kinds of mathematics problems.

Heuristics and mathematical Induction. In the work described on the above theoretical

mathematics problem, we have been carrying out a process which P6Iya (1954) called matherralica

inductics We discovered a pattern by observation and then proved that the pattern would continue

using a mathematical argument. Mathematical induction is different from the sort of induction that leads to

scientific assertions because it is supplemented by logical proof. In contrast to a simple proof, however, it

reveals not only the deductions which make the conclusion inevitable, but also the experiments that led to

thinking that the conclusion was plausible in the first place. P6Iya calls this kind of reasoning heuristics

and considers it to be the key to knowing how to solve a mathematical problem. He traces the study of

heuristics back to Pappus, a Greek commentator on Euclid, and he credits Descartes, Leibnitz, and

Baizano with building up a system that attempted to codify the sort of thinking underlying mathematical

discovery. P6Iya took up the task of describing the process of discovering solutions to mathematics

problems in contemporary mathematics, partly in reaction to a trend in the discipline toward seeing the

subject only in terms of its formal structure, without regard for the structure's emergence from human

processes for coming to know it. He wanted to examine the elements of plausible reason.ng or

mathematical insigFi that lead to the discovery of mathematical assertkins--in P6Iya's terms, "heuristics

endeavors to understand the process of solving problems, especially the mental operations typically

useful in this process" (1957, p. 130).
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Knowledge of heuristics is elusive, however. POlya observed that it is hopeless to imagine that we will

ever be able to ascertain a set of universal rules, that will yield the solution to any problem. But he does

describe procedures such as "identify the unknown," "identify the conditions on the unknown," "consider

a problem with a similar unknown," "introduce suitable notation," and "identify all of the data that can be

used in solving the problem." And he suggests that the best way to acquire a knowledge of heuristics is

to work on solving problems with someone who knows how to use them. Recent experiments with

teaching problem solving to college students attest to the importance of guided practice on problems as a

key to learning to use the strategies (Schoenfeld, 1985). Although it has not been a site for research on

effectiveness, there is a Iona tradition in mathematics of national and international problem solving

contests, and preparation for these contests is most often in the form of working on problem after problem

with a "coach" (e.g., Loyd, 1959).

Following his own advice for teaching about heuristics, Polya illustrates problem solving strategies by

taking his readers through solutions to the sort of elementary problems with numbers as the one given

above, but he asserts that these strategies are useful for solving "practical" problems as well, such as

constructing r Jam across a river. Recent research on teaching problem solving borrows heavily from

Polya's work, as do curriculum materials designed to help students acquire the knowledge they would

need to solve mathematical problems.

To contrast with the "pure mathematics" problem considered above, we will look at an example of the

sort of "practical" problem students might be given on which to practice POlya's strategies:

Jennifer had been begging her mother all week for some v:ays to earn money. First, Jennifer
cleaned the garage. Then she weeded the garden. Finally, her mother agreed to pay Jennifer
$3 to wash all the inside windows in the house. Jennifer worked for over two hours, completing
30 windows before her friend, Susan, came over and offered to help her. Each of them washed
ten more windows and the job was done. In order to be fair, how much money should Jennifer
give Susan for the windows Susan washed? (Meyer & Sallee, 1983, p. 213)4

The "unknown" in this problem is how much money Jennifer should give Susan. The data tell us how

many windows there are, how many each girl washed, and how much money there is to be distributed.

4This problem comes from a book designed to help teachers at the upper elementary level teach
problem solving. It is used here as an example of a "rear problem that someone might try to solve using
mathematics, not as an example of a "school" problem. The difference between school problems and real
problems is a complicated one to address. See, for example, Lave & Butler, 1987; Resnick, 1987b.
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"Identifying the unknown" is the first on Po lye's list of heuristics. Second is the strategy of analyzing what

is known and how it might be related to the unknown but desired information. Identifying the unknown

and the knowns that are related to it may seem like a fairly simple activity, but it often requires untangling

relevant from irrelevant information and operating on what is given. From the knowledge structures

perspective we considered earlier, this untangling depends on the problem solver having in place

appropriate schemata for recognizing the relationships among quantities in the situation. The whole

amount of money is stated straightforwardly in the problem, but we must do some calculations to find the

total number of windows. In order to relate the known to the unknown, we must consider that the

conditions on the solution are that the money should be distributed "in order to be fair." Using a

mathematical concept (or what Po lya refers to as an auxiliary element and Schoenfeld calls a resource) to

figure out the unknown, we could see it as a fraction of the total amount of money: Jennifer gets a fraction

of the money, and she gives a fraction of the money to her friend, and the two fractions add up to the

whole amount of money. How would one know to do this? By recognizing this problem as one of a type

with similar unknowns, called perhaps proportistn or equal ratio problems.

Here we have another kind of mathematical knowledge, which might be called knowledge of

mathematical structures (Vergnaud, 1983). In these kinds of problems, what is unknown is a fraction of

some quantity, and what is known is the equivalence of two fractions. The words "in order to be fair" in the

context of a mathematics problem suggest that the fraction of the money each girl receives ought to be

the same as the fraction of windows washed. Equivalent fractions (or a proportion) here are a tool, a

resource, for shaping the problem in a way that makes it mathematically solvable. Susan washed 10 out of

50 windows, or one-fifth, so she should get one fifth of the money, or 60 cents. We can cril on certain

tools more readily if we know that this problem is a problem that has a multiplicative structure. (Vergnaud,

1983)

Another kind of knowledge that might go into a solution of this problem is knowing how to represent a

situation using mathematical symbols. There is more to this process than simply mapping an element of

the situation onto a symbol; it also requires the capacity to abstract the relevant qualities of elements and

their relationships out of the situation. The equivalence between the fraction of windows washed by
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Susan and the fraction of the money she should receive can be expressed in terms of a symbolic

relationship:

10 x
50 $3.00

where x represents what Susan should be paid for washing half of the remaining (20) windows.

Although we do not yet know what x represents, the problem is in some sense solved by establishing

this relationship. Now we can find the value of x in two mechanical steps; first, cross-multiply to obtain:

50x = $30

and then divide both sides of the equation by 50 to obtain:

x = $.60

We might also simply "figure out" that replacing x with $.60 would make the ratios equal, but we would still

need to prove that this hisight was logically related to the conditions established in the problem.

Legitimate transformations in mathematical relationships. Behind these transformations,

there is another kind of mathematical knowledge, as important in solving problems as heuristics. In order

to justify the equivalence between the three equations, it is necessary to prove that it is possible to

logically deduce ad = be from the given

a c
b d

for any numbers a, b, c, and d except b = 0 and d = 0. This logical argument makes the truth of the

equation x = $.60 an inevitable conclusion from the equivalence between the two fractions:

10 x
50 $3.00

The problem of proving that this transformation in the relationship among the quantities in the

problem (commonly called cross multiplication) is legitimate is an abstract problem whose results can be

applied to any situation in which such a transformation would help to identify the unknown. It is not

legitimate because of anything having to do with windows and money, but because we have precisely

followed a set of mathematical laws to transform the relationships among known and unknown quantities.
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There are two kinds of knowledge embedded in the use of such transformations to solve problems.

One is knowing what actions are legitimate and the other is knowing why they are legitimate. Among the

equations that might require such justification are

10 1

50 5

10 3000
x 300

50 50

$3.00 = 300 cents

We call on knowledge of mathematical conventions, symbols, and tools as well as knowledge about

how to deduce one equation from another in order to be able to use these in solving the problem. We

never have to refer to the situation of windows and money and girls to justify that these equations are true.

They are true by virtue of their relationship in a mathematical structure. The operations that make them

true (e.g., multiply the numerator and denominator by the same number is allowed because that is

multiplying by one) have no referent operations in the problem situation.

A contrasting approach: Instrumental problem solving. One way to describe the

knowledge needed in the solution of the window washing problem is to say that to understand

mathematics is to be able to recognize those situations to which a mathematical concept (like proportion)

can be used to produce unknown information. Or, from another perspective on the above problem, we

might say that understanding mathematics means being able to explain why cross-multiplication is

legitimate, that is, to be able to produce a deductive argument about why the operations are legitimate

given the domain of application. These ways of thinking about understanding certainly have received

much attention in thinking about what mathematics students should be learning in school. But there is a

third way of thinking about mathematical understanding that could be illustrated by a solution to this

problem, less attended to by educators, but also derivable from considerations of how mathematics is

practiced in the discipline. What one would need to know to solve the problem instrumentally is different

from the knowledge outlined above, particularly in that the solution strategy is much more closely tied to

the situation of the problem.
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The window washing problem couid be solved by estimating that the girls ought to receive something

like five cents per window, passing out the money, finding out how much is left, passing out a little more,

and so on, until you have passed out the whole amount. Or you might start by giving each girl ten cents

per window and find out you do not have enough, and then adjust downward. The solution is justified in

this approach by the actuality of arriving at a state where each girl is fairly paid for the windows she has

washed. Doing this in several different kinds of problems could produce the argument that the cross

multiplication technique "works" because it always produ, .ne same result as the trial and error method.

Now to one who has been trained to consider deductive proof as the only legitimate foundation for

mathematical conclusions, this kind of justification may seem circuitous and circumstantial, and more

importantly, solving the problem this way could be taken as an indication that mathematical knowledge is

lacking rather than as an indication of a different kind of equally legitimate knowledge.

Historical perspectives on problem-solving knowledge. As the story is told by Morris Kline

(1980), this instrumental approach to developing new mathematics was characteristic of Hindu

mathematics in the period when algebra was being invented, and their approach to the subject was

radically different from the deductive approach taken by the Greeks to the same material. Kline says of the

Hindus:

[They] were interested in and contributed to the arithmetical and computational activities of
mathematics rather than to deductive pattern.... There is much good procedure and
technical facility but no evidence that they considered proof at all. They had rules, but
apparently no logical scruples. (p. 111)

The author of the first treatise on algebra, Al-Kwarizmi (c. 830 AD), emphasized that he wished people

to know mathematics that would serve their practical ends and needs "in their affairs of inheritance and

legacies, in their lawsuits, in trade and commerce, in the surveying of lands and in the digging of canals"

(Solomon Gandz, cited in van der Waerden, 1985, p. 15). For the Greeks, these were not mathematical

pursuits; they were thought cf as problems for mechanical engineers to address by practical means, and

their work did not intersect that of mathematicians. This difference between the two visions of the subject

led to controversies in the discipline during the Renaissance, when both Greek and Hindu mathematics

were brought into play by mathematical scholars. One issue in the debate was whether negative numbers
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should be allowed into mathematical analysis.5 Pascal, a great champion of the logic of the Greeks,

considered them "pure nonsense" (Kline, 1980). Argnaud, a close friend of Pascal and a renowned

theologian and mathematician disallowed negative numbers from mathematics because the idea that

1/-1 = -1/1 contains a logical paradox: "How could a greater be to a smaller as a smaller is to a greater?"

(Kline, 1980, p. 115.) Yet the Hindus, and the merchants who eagerly took up their efficient use of

mathematics for bookkeeping, found the negative number to be a useful concept because negative

numbers "worked" for balancing their accounts.

What is the difference between how "understanding mathematics" is conceived from the perspective

of applying strategies derived from abstract propositions and how it is conceived if the process is seen as

one of inventing a strategy that works according to the context in which it is applied? The former is

certa:nly the more conventional view of how mathematical knowledge is used in practice to solve

problems. But as the influence of Hindu algebra indicates, and a study of the development of the calculus

would confirm, the latter view also has roots in mathematical disciplinary traditions and is present in

current mathematical practice. The potential of mechanical computing power, which has enabled

mathematicians to create tools that work to solve problems without knowing why they work, has brought

about the replaying of old arguments about whether functional mathematics without a logical foundation is

"rear mathematics (P. Davis, 1972; Grabiner, 1986; van der Waerden, 1985). The approach that

mathematicians use for a class of problems called combinatorial optimization problems is similar to the Rasa

out a little and reassess strategy outlined above for the window washing problem. Combinatorial

optimization problems are so complex that no algorithm exists to produce a logically correct solution, even

5"Without a logical way of thinking about negative numbers, without some conceptual model,
[European] algebraists were unable to comprehend what it meant to add, subtract, multiply, and divide
negative numbers. For that reason, negative numbers were not perceived as legitimate objects of
algebraic study; their presence in certain algebraic equations was taken to have no greater significance
than the existence of nonsense words in a language.

"Not until the eighteenth century did algebraists learn how standard arithmetical operations applied
to negative numbers" (Guillen, 1983, p. 63).
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with the most powerful computers (cf. Stewart, 1987). Devlin (1988) considers these kinds of problems to

be "an exemplary blend of the pure and the abstract" and an indication that mathematics is entering a new

Golden Age in which the distinctions between materially useful solutions and theoretical developments in

the discipline will be less well defined.

Solving problems like these ties mathematics to the physical and social world in ways that make more

theoretical members of the discipline uncomfortable. However, like Devlin, Kline (1980) believes that

these ties are what drives mathematical development:

How did mathematicians know where to head, and in view of their tradition of logical proof,
how could they have dared merely to apply rules and assert the reliability of their conclusions?
There is no question that solving physical problems supplied the goal.... The physical
meaning of the mathematics also guided the mathematical steps and often supplied partial
arguments to fill in non-mathematical steps. (p. 168)

Kline's argument does not explain, however, how it is that the development of mathematics simply out

of an interest in generating new abstract knowledge later comes to be useful. This is the case with many

inventions in the field of analysis, where new kinds of numbers have been invented purely to extend the

range of a theoretical notion, for example, complex numbers which take the form of multiples of 41-71

(Guillen, 1983). At the same time, Stewart (1987) reminds us that if cryptographers did not have certain

theorems of prime numbers, like Fermat's, available for use, "They would have played around on a

computer, found it as an empirical rule, and no doubt used it without worrying too hard about a proof. If a

proof had seemed necessary, it would have been sought and found" (p. 231).

Here we return to Pdlya's notions about mathematical induction as the essence of mathematical

problem solving, and also to one of the deepest controversies in current mathematical practice; that is,

whether a mathematical assertion that rests on computational power, without concurrently being

supported by a deductive argument, can be considered a mathematical truth (Davis, 1972; Devlin, 1988;

Tymoscko, 1985). And in terms of the sort of mathematical knowledge or understanding that schools

6An example of this sort of problem is the traveling salesperson problem in which the challenge is to
find the shortest route among a given list of cities where each city is to be visited exactly once. For more
than a few cities, the number of combinations is so large that each cannot be evaluated to find the best.
Instead, mathematicians work on assessing how much better or worse one alternative is than another,
which they can do by using computers to simulate different routes. Their results are of considerable
interest to urban planners concerned to design efficient public transportation and to those whose work it
is to decide what would be the most efficient location for commercial airline hubs.
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should produce, we must now ask, "Is it enough to know that it works, without knowingwhy it works?" And

what sort of argument is acceptable in order to assert about a piece of mathematics "that it works"? These

questions take us right to the edge of thinking in the discipline about what mathematics needs to be

known in order to solve mathematical problems, but these questions are not very far from the sorts of

questions a teacher might wonder about when charged with producing mathematical understanding in her

students. These issues will be taken up from another perspective later in this section as we consider what

it means to understand mathematics as mathematical argument.

Mathematizing, or Reducing a Situation to Its Quantitative Relationships

Mathematizing, or mathematical modeling, is the activity of representing relationships within a complex

situation in such a way as to make it possible to put them into quantitative relationships with one another,

and thereby find out new information about the situation by solving numerical equations. For example,

faced with the problem of deciding which 200 out of 1000 highly qualified applicants should be accepted

into a college's freshman class, most admissions offices make the decision by assigning numbers to the

candidates qualifications, adding up the numbers, and taking those with the highest composite scores.

Or in the realm of weather predicting, faced with the ominous consequences of a global warming trend,

scientists quantify those activities which seems to be causing the trend, and use relationships among

these quantities to recommend emissions controls and resource development policies. Mathematical

modeling requires having the knowledge to be able to decide what does nsa matter in making the model,

and the disposition to accept the answers that the numerical procedure provides as a valid solution to the

problem. It is this way of approaching problems that has enabled us to make such wide use of computers

as problem solving tools (Dreyfus & Dreyfus, 1986; Wiezenbaum, 1976). The computer does not

mathematize, but once a mathematical model is constructed for a situation, it can quickly "crunch" all of the

numbers that are fed into it and produce a solution to a complex problem.

Mathematical understanding, from the perspective of mathematical modeling, is knowing how to find

patterns and relationships in, or impose them on, nonmathematical phenomena. It is knowing how to distill

the mathematical essence out of a messy situation, and once the model is established, knowing how to
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define the conditions under which it is useful and appropriate. It is knowing how to identify those

situations in which it is productive and appropriate to apply mathematics.

Distilling the mathematical essence. One of the earliest examp!as of formal mathematization

in Western history is Eratosthenes' attempt to determine the size of the earth7 in about the third century

B.C. (Palya, 1963/1977). By taking as a given that the earth was a sphere, he reduced the problem of

finding size to the problem of finding circumference; his calculations assumed that the longest straight

path around the earth would be a circle, and thus its length could be related to the mathematical idea that a

circle contains 360°. His method was to establish certain quantitative relationships (between the angle of

the sun's rays at given points and the distance between those points) and to reason logically from those

relationships to cthers. He needed to adjust many realities to his formulas (like assuming that the rays of

the sun at one point were sensibly parallel to those striking a nearby point because the sun is so far away),

reasoning about what would affect the results of the calculation and how. His methods are very similar to

those used today in creating maps, and there is evidence to suggest that such methods were also used

by the Chinese circa 720 A.D. and by the Muslims circa 820 A.D. (Morrison & Morrison, 1987). By viewing

reality through the lens of a theoretical mathematical structure, Eratosthenes could figure out the radius of

the earth without measuring. In Polya's words, "A mere shadow and an idea is the substance that made

the pigmy a giant who spanned the earth" (1963/1977, p. 14). It was Eratosthenes' mathematical

modeling of the problem that enabled him to find a solution.

As can be seen from this example, mathematization has two parts. First, it requires extracting from

their context those elements of a situation deemed to be relevant and placing them into a quantitative

relationship to one another using some mathematical construct. Mathematical transformations of this

relationship are then used to establish other quantitative relationships, and the results are applied back to

the situation. Eratosthenes began with the sun's inclination to the vertical at Alexandria (7°12') compared

7Counting, or establishing number, is itself an act of mathematization in that it involves a disposition to
attend to an abstract property of objects rather than to their particular differences. Eratosthenes' work was
continuous with this way of thinking about the world, but constituted a more conscious attempt to use
mathematical structures.
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with its angle at Syrene, measured the distance between Syrene and Alexandria, and used the

mathematical relationship

7°12'
360.

,1
,.,

OV
of a complete revolution of the earth

to relate the Syrene-Alexander distance to the distance around the earth. Because it is mathematically

true that there are 360° in a circle, and because the ratio of degrees in one segment of the sphere to the

whole is equal to the ratio between distance in the same segment on the surface of the sphere,

Eratosthenes could conclude with certainty about a phenomenon he could not observe. Dividing a circle

into degrees and relating numbers in proportions are mathematical constructs he used to do this work.

The process does not exactly predict the circumference of the earth, rather it gives you a pretty good

sense of what you would find if you ever decided to measure it.

Being disposed to see mathematics as powerful. Descartes made his place in philosophy

by expressing the hope that all physical and human relationships could be represented in the sort of clear

and direct mathematical terms that Eratosthenes applied to understanding the size of the earth. He

assumed that if this could be done, all matters from morals to mechanics could be decided with certainty.

His program was played out during the Age of Reason, in which great strides were made in the physical

sciences by quantifying the relationships between physical properties of matter. Beginning with the

establishment of the heliocentric theory of planetary motion, mathematics became the basis for

challenging traditional knowledge and proving that things are not always what they appear to be. With its

strong ties to logic, mathematics was considered to be an unquestionably true basis on which to found

knowledge in other domains. The incredible, predictive power of mathematics--for example, to establish,

the certain existence of the planet Jupiter before it was ever viewed by a telescope, or to point to the

existence of as yet undistilled chemical substances because of their position on a numerical scale of

atomic weights--gave both scientists and the public the belief that mathematics must be all powerful (cf.

Judson, 1987).

Mathematics was thought by Descartes to be a general science "beyond subject matter," and

therefore to be the foundation of all knowledge:
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The long chains of simple and easy reasonings by means of which geometers are accustomed
to reach the conclusions of their most difficult demonstrations had led me to imagine that all
things to the knowledge of which man is competent are mutually connected in the same way.
(cited in Kline, 1985, p. 90)

Descartes argued that since man can comprehend mathematics, the world must be organized along

mathematical lines, and even God's existence could be proven by mathematical methods. Mathematics

appealed to Descartes because it was less mystical, less metaphysical, and less theological than the

routes to knowledge followed by his medieval and Renaissance predecessors. Mathematics was a way of

knowing that did not depend on acquiescence to authority: Man could look inside himself and decide, by

logical reasoning, what was true.

In nineteenth-century France, what Davis and Hersh (1987) call "Descartes Dream" led to the creation

of the social sciences. Auguste Comte studied Lagrange's attempt to reduce all of mechanics to

mathematics, and reasoned that "if physics was built on mathematics, so was chemistry built on physics,

biology on chemistry, psychology on biology, and finally his own new creation, sociology (the term is his)

would be built on psychology" (Grabiner, 1988, p. 225). This notion that mathematics could be the

foundation on which to build certainty about social phenomena is echoed in contemporary attempts to

use social science for social problem solving;8 theoreticians of social policy aim for what they call

marammaticiatignality--"to achieve substantive goals through instrumental action programs that can

proven logically or empirically, to achieve those goals" (Gans cited in Lindblom & Cohen, 1979, p. 31,

emphasis added). The belief underlying this quest is that the relationship between mathematics and truth

in the solution of scientific and social problems will free us from tradition, prejudice, and the

preponderance of power (Kaplan cited in Lindblom & Cohen, 1979). The assumption that expressing

problems in terms of mathematical relations between quantities will remove their solution from the reaim of

human judgment and folly pervades every aspect of our lives. We hope to use mathematics to remove

gender biases from college admissions exams (Berger, 1989), for example, and to rectify the inequities in

charges that physicians make for different kinds of services (Andrews, 1989).

8Ses, for example, Tufte (1970). For a critique of the quantitative approach to human problem
solving, see Braybrooke and Lindblom (1963) and Wiezenbaum (1976).
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Teaching students to make mathematical models obviously has enormous potential for improving

both their ability to conceptualize problems and their ability to appreciate the attempts that are made to

solve physical and social problems using mathematics. But we might also want to consider whether there

might also be pitfalls in engaging students in mathematizinq because of the controversy that arises within

the discipline about this way of doing mathematics. Davis and Hersh (1987) observe that there are

common intellectual dispositions among those who are "doing mathematics" for a living, and that these

dispositions are both powerful and problematic. "Confronted with a fuzzy universe [the mathematical

mind] tries to find precise statements about that which is chaotic or random" (p. 124). It is this disposition

that enabled eighteenth-century mathematicians to find the order in the solar system that supports today's

explorations of the planets, but this is also the sort of disposition that "dehumanizes" human

phenomenon to produce statistics:

Statistics (as opposed to mere data collection) begins when one agrees to form averages. Bill
weighs 168 pounds, John weighs 190 pounds, and Bobby weighs 161 pounds. Their average
weight is 173 pounds. This last statement is a composition of the first three. There is a loss of
mean:dig in passing from the first three numbers to the fourth. There is, of course, a gain in the
recognition of the empirical fact of the stability of averages. It may be that one of the reasons
why probability and statistics did not take off until the 17th century was precisely the refusal of
people to suffer the loss of the sense of the individual... .

Whenever anyone writes down an equation that explicitly or implicitly alludes to an individual
or a group of individuals, whether this be in economics, sociology, psychology, medicine,
politics, demography, or military affairs, the possibility of dehumanization exists. Whenever we
use computerization to proceed from formulas and algorithms to policy and to actions affecting
humans, we stand open to good and to evil on a massive scale What is not often pointed out is
that this dehumanization is intrinsic to the fundamental intellectual Processes that are inherent
jn mathematics. (Davis and Hersh, 1987, p. 282-283)

Davis (1988) has advocated the idea that mathematics education might take up the task of teaching

students to think more critically about the application of mathematical methods to the solution of problems.

He points out that the application of mathematics to the way we understand and organize the world is a

social contract rather than the discovery of innate characteristics of situations. The idea of averages, for

example, that underlies so much work in the social sciences, is an agreement to disregard certain

elements of individual identity, which are not always appropriate to disregard.

Deciding when mathematical modeling is appropriate. The allocation of donated organs to

patients in need of a transplant is an example of the sort of problem that might be solved differently using

mathematization than it would be solved from a nonmathematical perspective. The quantification of life
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expectancy, probability of recovery, family situation, and so on, does not quite capture all that needs to be

considered in who gets the next available heart transplant. On the basis of S6 3ral such examples of

"mathematical modeling," the mathematician Douglas Hofstadter (1986) concurs with Davis and Hersh's

worry about the capacity of numbers to dehumanize the way we think about situations in which the

problems arise, creating a kind of "number numbness" to mask the complexity of problem solutions.

For a consideration of what learning to do this kind of thinking might mean at the elementary school

level, we will look again at the problem of trying to figure out how much each girl should be paid for

washing windows posed above on page 50. To "mathematize" this problem situation, one does things

like count the total number of windows and figure out how to connect the money that each girl is paid with

the number of windows she has washed. The "context," that is, that Janet had been "begging" her

mother for money, that she had already done several other jobs, and so on is to be disregarded as

mathematically irrelevant. In mathematical terms, a fair distribution of the money should be proportionally

related to the number of windows washed. We can apply the operations of addition and multiplication to

the relationship between the windows and the money in this problem because we assume that for the

purposes of our solution, every window is equivalent to every other window; their relative size or dirtiness,

and when during the 1313 they were washed do not matter. In order to be able to use mathematical tools to

arrive at a solution to the problem, we must attend only to how many windows there are and how many

each girl washed. We know that the last 20 windows to be washed were washed by 2 people, each

washing 10 windows. Again, using the operation of division assumes that what is divided gets divided into

equal groups. So since the friend washed 10 windows, she gets 600. The daughter washed 30 and then

10 more, 40 altogether, so she gets $2.40. And that totals up neatly to the $3.00, which the mother

offered, confirming the appropriateness of our calculations.

But there are other resolutions to the problem which would not be obtained by the process of

mathematization, and might be equally likely to be proposed by someone who did not immediately see
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this as a mathematical problem.9 Maybe the friend should not get any of the money because it was

promised in a contract between the mother and daughter, in which she had no part. Maybe the mother

should not give the daughter any money after all because she and her friend were having so much fun

that the window washing could hardly be considered work. Maybe the friend should pay the daughter for

the privilege of participating in the window washing activity (a la Tom Sawyer whitewashing the fence).

Maybe they should split the money evenly to be fair, since the friend was not really given a chance to wash

half the windows from the beginning (A la the parable in the Bible about the fieldworkers who arrived at

different times of the day). Maybe the mother should pay the friend something over and above the $3.00

she was planning to pay her daughter because maybe the daughter made the agreement because she

needed three dollars for something particular that she wanted to buy. Maybe you can't even figure out

what is fair, because you don't have any information about how long the job took all together and you don't

know whether some windows were bigger than others, or harder to reach, or dirtier. These considerations

serve to emphasize the character of the kind of thinking that is involved in "doing mathematics" on a

problem situation like this. Mathematics focuses on quantitative relationships, and by so focusing is able

to generate new and useful information, but only by leaving aside all of these other considerations.

Teaching students to mathematize could be done in a way that treats all of these alternatives as a

distraction from "really solving" the problem, or it could consider the strengths and weaknesses of various

approaches.

The problem in taking the mathematical activity of modeling or mathematizing as a route to thinking

about what should occur in elementary curriculum and instruction is getting some distance on the

assumptions that are made in our culture about the objectivity of mathematical models and the moral

dispassion that is associated with the solutions produced by them. Mathematics is a powerful tool for

constructing and extending relationships among quantities, bur its power is not always a positive force. In

9The following alternatives were indeed proposed when Lampert set a group of elementary school
teachers thinking about the window washing problem during her Teacher Study Group on Mathematics
(Lampert, 1988b).
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the endeavor to get learners to do the mathematics of abstracting, modeling, ordering, and classifying, we

should not lose sight of the perspective on the world that these activities entail.

Mathematical Argument, or What 's True in Mathematics and Why?

In addition to solving problems and creating mathematical models, mathematicians "prove things."

The distinctive content of mathematics is relationships among quantities and among shapes, and the

association of quantity with qualities of shape. In mathematical argument or discourse, assertions are

made about these relationships, and those assertions are proven to be true or false using logical

deduction from agreed-upon assumptions. This is a simple description of a highly contested terrain, but it

allows us to get into the issue of what mathematicians do when they are working to generate new

mathematical knowledge.

Conventionally, the Elements of Euclid have been considered to represent the ideal of mathematical

argument. In Euclid's geometry, numerous theorems which relate characteristics of geometrical forms are

generated by logical deduction from a few axioms and definitions. The theoremsare assertions about

relationships among shapes which can be "proven" to be true using the rules of logic and axioms and

definitions and other previously proven theorems. The geometrical forms about which theorems are

asserted are abstractions; that is, they are not actual triangles or squares or circles drawn on paper or

otherwise present to tho senses, but they are ideas. Working on such ideas gives mathematicians the

capacity to make statements about what is true of "all triangles"; these statements are shown to be true

based on chains or logical reasoning from what we know about all triangles already. By definition, a triangle

is any closed figure in a plane with three straight sides; everything elsewe "know" about triangles

proceeds from accepting that definition and a few "self-evident" assumptions (axioms) about figures in the

plane. We can know for certain within this system, for example, that the triangle that is formed by joining

the midpoints of the sides of any triangle will have three angles that are the same size as the angles in the

original triangle, and that its sides will be exactly half as long as the sides of the original triangle. This is true

whether the triangles look like this:
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or like this:

or like any similar pair of triangles you can imagine. Proving that this assertion is true does not involve

drawing and measuring lots of triangles, however. It involves making deductions from what we already

know is true about angles, lines, and triangles, in ths abstract. For example, we know that the line joining

the midpoints of two sides is always parallel to the third side, that certain angles that are formed when a line

intersects two parallel lines are equal, and so on. One way of thinking about the `goodness" of a

mathematical system is to look at whether it can produce many theorems out of only a few axioms and

definitions. And Euclidean geometry is often used as an example of the power of mathematical deduction

because it does just that.1° Using Euclidean geometry as the ideal of mathematical argument, we could

conclude that mathematic& understanding means being able to produce a deductive proof for any

assertion.

What kind of knowledge is entailed in proving? There is a problem with thinking about

Euclidean geometry as the prototype for mathematical thinking because it emphasizes the process of

proving conjectures without saying much about where the conjectures come from in the first place or what

conjectures might have to do with understanding before they are proven. Once a conjecture in geometry

or any other branch of mathematics is stated, its truth often seems obvious, especially to the person who

luThe status of Euclidean geometry as a body of mathematical truth has changed since the invention
of several non-Euclidean geometries in the nineteenth century. Before that development, the axioms
and definitions were considered to be true abstractions from real world figures. In current thinking, they
are considered as a set of agreed upon assumptions that provide a starting point for deducing other
theorems. This does not change the status of this body of knowledge as an example of an axiomatic
system, however.
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stated it. It is not clear, from this perspective, what the proof of the conjecture would add in the way of

understanding. This is true at the highest levels of mathematical creation, as well as at more elementary

levels of mathematical argument. In mathematical practice, the quality of a conjecture has a great deal to

do with whether it is formulated in such a way as to make the forthcoming proof seem uneventful:

When a mathematician asks himself why some result should hold, the answer he seeks is some
intuitive understanding. In fact, a rigorous proof means nothing to him if the result doesn't make
sense intuitively. If it doesn't, he will examine the proof very critically. If the proof seems right,
he will then try hard to see what is wrong with his intuition.... Poincare said, 'When a somewhat
long argument leads us to a simple and striking result, we are not satisfied until we have shown
that we could have foreseen, if not the entire result, at least its principle features!" (Kline, 1980,
p. 312)

A conjecture is more than a guess, and must be judged according to the quality of the evidence that

supports it, even when strict logical evidence that it is true has not yet been produced. In Poincare's

reflections on his own work as a mathematician, insight or intuition seems at least as important to securing

mathematical understanding as logical proof (Hadamard, 1945). This phenomenon in mathematical

practice is a serious challenge to the primacy of the deductive process for supporting an argument

represented by the Euclidean ideal.

Knowing how to make conjectures. Can we say that a le: rner understands a bit of

mathematics about which he or she has made a conjecture, even if no logical proof of the conjecture can

be produced? Both conjectures and theorems require what is commonly called mathematical reasoning

hut the reasoning that leads to a theorem is much more her-lb-parent than that which leads to a conjecture,

and thus much easier for the listener to evaluate. Polya (1957) makes the distinction as follows:

We secure our mathematical knowledge by demonstrative reasoning, but we support our
conjectures by plausible reasoning.... The difference between the two kinds of reasoning is
great and manifold. Demonstrative reasoning is safe, beyond controversy, and final. Plausible
reasoning is hazardous, controversial, and provisional.... Demonstrative reasoning has rigid
standards, codified and clarified by logic (formal cr demonstrative logic), which is the theory of
demonstrative reasoning. The standards of plausible reasoning are fluid. and there is no theory
of such reasoning t . I. 0'111 ' OS ...1111.1
comparable consensus. (p. v, emphasis added)

Here Polya is saying that deductive arguments follow agreed-upon rules, and so their validity can be

evaluated by others who are familiar with these classical standards. No such consensus operates, he

c.aims, about what constitutes a legitimate argument in support of the plausibility of a conjecture.
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The simplest way to make the distinction between justifying conjectures and justifying theorems is to

assert that conjectures are the result of induction; that is, they are the result of observing patterns in a

phenomenon, and with good reason, asserting that the pattern will continue in a way that leads to some

general truth. Of course the truth of the conclusions, even those based on demonstrative reasoning,

depends on the assumptions that are made, and many mathematical "truths" have required revision when

the assumptions on which they were based were challenged. Assumptions can be challenged with one

counterexample; it is not the universally accepted logical process that is called into question (Lakatos,

1976). And there are no hard and fast rules for how to find the counterexample that will do the trick. So in

actual mathematical practice, there is less of a distinction between induction and deduction, or between

intuition and logic, than scholastic definitions would lead us to believe. Plausible reasoning produces

counterexamples, counterexamples require the revision of assumptions, and the process results in the

refinement of the demonstrative argument. This raises important questions for those who would have

students making conjectures and producing counterexamples to challenge the assertions of other

students at the level of elementary mathematics. How are we to assess what the student understands if

there are no standards in the discipline with which to judge the adequacy of "plausible reasoning"? How

does one learn to have the mathematical insight that leads to good conjectures or powerful

counterexamples? Is it simply el matter of being socialized to pay attention to one's own sense-making

capacities? Or is mathematical insight a "talent" with which only a few are endowed?

Freudenthal (1978) writes at length about the student who answers "I see it so" (or in Dutch, "Ik zie het

zo") when asked how they have solved a mathematical problem. He, as well as Wheeler (cited in Bell,

1979) and Bell (1979), have considered versions of the problems stated above and the implications of

their possible answers for mathematics education. Each of these writers wishes to acknowledge

conjecture as a legitimate form of mathematical thinking because it is considered with respect in the work

of the discipline. They all attend to the capacity that we have to imagine a mathematical generalization from

gm significant example. Freudenthal (1978) calls sucit examples paradigms, using this term in a

somewhat different way than it is commonly used. In his studies of students' attempts to convince their

peers of a mathematical assertion, Balacheff (1987) considers the various ways students use examples to
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make an argument. He distinguishes the crucial experiment from the naive experiment: The former relies

on choosing an example that does not facilitate the truth of the statement. Even more powerful is the

students' use of the aeneric example, which relies on knowing enough to choose an example that cannot

in any way be construed as a special case, a "good representative" of the class of objects to which the

assertion is to apply. Balacheff considers these forms of argument to be developments toward a

mathematical way of thinking about what constitutes appropriate evidence. There are two related

phenomena here which raise questions about how mathematical understanding can be acquired and

evaluated: One is the idiosyncratic nature of insight, and the other is the attempt to test the validity of

one's insights by trying to argue their plausibility in a community of peers. These issues in mathematics

education are intricately related to issues of how new mathematical knowledge is generated in the

discipline, not because education is about preparing mathematicians, but because these issues go

directly to the heart of what it means to know mathematics and how that knowledge is arsquired.

The relationship between conjecture and proof. In Proofs and Refutations, lmre Lakatos

(1976) portrays historical debates within mathematics about what the "proof" of a theorem represents by

constructing a conversation among a group of students: fictional characters who voice the disagreements

among mathematicians through the last several centuries, often using the mathematicians' own words.

Lakatos's argument, which comes through in the person of the teacher, is that mathematics develops as a

process of "conscious guessing" about relationships among quantities and shapes, with proof following a

zig-zag path starting from conjectures and moving to the examination of premises through the use of

counterexamples, or refutations. This activity of doing mathematics is different from what is recorded once

it is done: "Naive conjecture and counterexamples do not appear in the fully fledged deductive structure:

the zig-zag of discovery cannot be discerned in the end product" (Lakatos, 1976, p. 42). The product of

mathematical activity might be justified with a deductive proof, but the product does not represent the

process of coming to know. Nor is knowing final or certain, even with a proof, for the assumptions on

which the proof is based-- the axioms accepted as self-evidently true by the people who work in that

branch of the discipline--continue to be open to reexamination in the mathematical community of

discourse.
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Mathematics has grown and changed over time, in Lakatos's view, not because the conclusions that

are derived from axioms are the result of faulty logic, but because the axioms and definitions from which

the logical argument begins are themselves open to revision as they are examined in the community of

discourse. The need for revisions does not become obvious, however, until one engages in the process

of proof, and discovers the shortcomings of one's assumptions. The insufficiency of the original

assumptions comes to be recognized as one tries to pursue their logical consequences rather than

before the fact: Refutations of the conclusions, often in the form of counterexamples, suggest revisions

to the assumptions. Lakatos demonstrated that this zig-zag between revising conclusions and revising

assumptions in the process of coming to know occurred both in the work of individual mathematicians as

they exposed their work to their colleagues, and over time as conclusions that had been unquestioned in

the past were reconsidered.

From the standpoint of the person doing mathematics, making a conjecture (or what Lakatos calls a

conscious guess) is taking a risk because the process of mathematical argument is social; conjecturing

requires the admission that one's assumptions are open to revision, that one's insights may have been

limited, that one's conclusions may have been inappropriate. While possibly garnering recognition for

inventiveness, letting other interested persons in on one's conjectures increases personal vulnerability.

Lakatos asserted that in order to do mathematics, a scholar needed to have the courage to make guesses

about what might be true in a system of mathematical relationships; and then have the modesty to

examine--and let others examine--the assumptions behind those assertions. Courage and modesty are

appropriate to participation in mathematical activity because truth remains tentative, even as the proof of a

conjecture evolves. It is often the case that a conjecture is asserted by one individual and proven by

another. In the reseerch literature, mathematicians' names are associated both with conjectures and with

proofs.

136 lya (1954) also thought courage and modesty to be essential to the activity of acquiring new

mathematical knowledge. He asserted that the doer of mathematics must assume "the inductive attitude,"

and be willing to question both observations and generalizations, playing them off of one another in a form

similar to what Lakatos called the zig-zag path from conjecture to proof and back to axioms. 136 lye's
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emphasis on the role of induction in mathematics is intended to complement the more formalized view that

mathematics is about proving th.Jorems. Like Lakatos, he is concerned with helping students and other

nonmathematicians to understand where the theorems come from in the first place, and whatwe really

know when we have proved one.

What mathematicians do when they are creating mathematics is a relatively new focus for philc Jophers

of mathematics. Until recently, studies of mathematical argument focused on the nature of the connection

between the truth of mathematical assertions and their logical foundations, with scant attention to how the

assertions came into being. What has brought the question of mathematical practice to the forefront in

contemporary work are some rather profound failures on the part of the logicists and the formalists to

secure the foundations of mathematical certainty by attaching it to a deductive structure (Tymoczko,

1985). The more philosophers pressed for consistency and logic in the foundations of mathematics, the

more inconsistency and paradox they discovered (Kramer, 1970). And so, in the late twentieth century,

the fallibilist view of Lakatos and PO lya, with their attention to the process of generating and revising

mathematical conjectures in social discourse, has gained attention.

Lakatos (1976) calls mathematics quasiempirical because of the way it depends on counterexamples

to refine assertions, and POlya (1954) asserts that doing mathematics requires "an inductive attitude" to

discern patterns in numerical and spatial relationships. But the discourse of mathematics is distinguished

from scientific discourse because mathematics does not depend for its verity on physical evidence.

Whether one is considering a conjecture or a theorem, knowing it mathematically depends on whether the

assertion "makes sense" in an informal, intuitive way (for conjectures) or in a formal, logical way (for

theorems). Mathematicians can do their work- -the work of inventing and justifying mathematical

assertions, without reference to empirical data, although they do use "images" drawn from experience in

the world to reason about ideas (Gleick, 1987; Noddings, 1985). A common observation in several

recently published popular descriptions of mathematicians at work also found in some classical historical

accounts, is that mathematicians do not need a laboratory; they have ideas while they sit or stand at their

desks or at the kitchen table, or they figure things out while getting on the street car or sitting around

waiting for a meal in a restaurant. In those settings, they can test the validity of their ideas as well
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(e.g., Cole, 1987; Gleick, 1987; Hadamard, 1945; Hoffman, 1987). This habit of working is worth noting

because it is directly related to the issue of verification of beliefs. The re .tion between justification and

certainty in mathematics is mysteriously ironic, and has puzzled thinkers continuously over the centuries:

How can we be especially certain that assertions of a mathematical sort are true when there is no physical

evidence? In common sense terms, if a scientist claims that iron rusts in the presence of oxides, anyone

can apply oxides to a piece of iron to observe whether the scientist is telling the truth. But what of

conjectures that are put forth with considerable certainty and even used in the solution of problems when

no proof has yet been produced? These questions are of interest as we think about students

"conjecturing" at the elementary level. What does being able to conjecture suggest they understand?

What do they need to understand to be able to do it?

Consider the following conjecture: The number of even numbers is equal to the number of numbers.

Why is it true? Whenever you double a number, you get an even number because an even number is

defined to be a number that has 2 as one of its factors, and you always get such a number when you

double a given numoer. So every number has a partner that is an even number. It is impossible to find a

case that contradicts the idea that there are as many even numbers as there are numbers. While the

scientist follows canons of experimentation that set standards for relating sample size to conclusions, the

mathematician does not even need to test ong case. It might be said, from this comparison, that the

scientists' process of verification, or even the similar, more commonsense process by which we can check

out whether the person who says it is raining outside is telling the truth--is a public process, while the

mathematician's justification is private. In ordinary terms, it occurs inside the knower's head. But the

mathematician's justification to him or her self is not enough to establish an insight as part of the

discipline's body of knowledge. An argument must be constructed that convinces other interested

parties of the truth of the insight, and at this point, private knowledge becomes public in mathematics

(Tymoscko, 1985).

Mathematical argument as a social phenomenon. Davis and Hersh (1987) point out that the

mathematician's public arguments do not match the ideal of a deductive logical argument, however. They

assume that the interested others who are reading or hearing the argument share the concerns and
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values that guided its development, allowing work to proceed within a community of scholars without step-

by-step deductive proofs.

In the real world of mathematics, a mathematical paper does two things. It testifies that the
author has convinced himself and his friends that certain "results" are true, and it presents a part
of the evidence on which this conviction is based.

it presents part, not all, because certain routine calculations are deemed unworthy of print.
The reader is expected to produce them for himself. More important, certain "heuristic"
reasonings, including perhaps the motivailo7. which led in the first place to undertaking the
investigation, are deemed "inessential" or Irrelevant" for purposes of publication. Knowing this
unstated background motivation is what it takes to be a qualified reader of the article.

How does one acquire this tJackground? Almost always, it is by word of mouth from some
other member of the intended audience, some other person already initiated in the particular
area of research in question.... Mathematical argument is addressed to a human audience,
which possesses the background knowledge enabling it to understand the intentions of the
speaker or the author. (Davis & Hersh, 1987, p. 66)

Considering the social character of mathematical knowledge--in light of the question of what

constitutes "proof" in mathematical practice--raises some important questions to attend to as we think

about what it might mean for students to "do" mathematical argument at the elementary level. If we give up

the idea that mathematics is about ultimate truths and see it instead as a human construction, it becomes

much harder to separate disciplinary conventions from logical necessities. If we put emphasis on

students' doing mathematics, and interpret that to mean constructing mathematical arguments in the

classroom community of discourse, we need also to ask how this discourse ought to be related to more

advanced work in the field and to the th2 heritage of mathematical concepts that have been constructed

and used over time.

But there is an even deeper issue here, and a fundamental irony. If, as Davis and Hersh (1987) point

out, there are agreed-upon and unexamined assumptions within mathematical practice, not only about

terms and symbols, but about legitimate heuristics and appropriate motivations for undertaking a problem

in the first place, then what are we to make of the idea that mathematics is powerful precisely because it

enables us to know things without reference to authority? If learning mathematics means becoming

indoctrinated to the rules of discourse, how can learning mathematics also mean being educated to pay

attention to one's own capacity for sense making? Within communities of working mathematicians, as

within all such working communities, there are a host of agreed-upon assumptions: assumptions whose

legitimacy is taken for granted so that they can get on with the conversation. Working mathematicians may
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not stop to convince themselves or anyone else that these assumptions are legitimate: Being a member

of the discourse simply implies being willing to play by the same rules that everyone else is playing by.

This is an important issue for educators to consider because elementary schooling is not about initiating

students into the society of working mathematicians, although it might serve the purpose of giving them

some basis for choosing whether this is the society they want to join. Mathematical arguments can not be

imported whole into settings where the audience does not already understand something of what they

are about. And yet we know that it is possible for elementary school children to make mathematical

assertions and to produce mathematically legitimate arguments for their validity. What we need to work out

is how one learns to do that, how such learning might be documented and evaluated, and whether this is

what ought to constitute education in doing mathematics.

Focus on Classroom Practice

Thus far we have considered views of what it might mean to know and understand mathematics from

the perspectives of cognitive psychology and mathematics. At this point we turn to perspectives

emerging from a focus on the elementary school classroom. We begin by considering the assumptions,

often implicit, of researchers studying classroom teaching of mathematics in the Ribctive teachina, or

orocess-product, approach. This research program is important in part because it builds on assumptions

about the the nature of mathematical knowledge and goals for schooling that are implicit in existing

practice, and in part because it has had such a powerful influence on educational policy in recent years.

As a contrast to process-product research, we then consider three recent cases of researchers studying

mathematics teaching and learning in classrooms by attempting to change some of the fundamental

assumptions about knowing and learning mathematics.

Research on Effective Teaching

Research on teaching blossomed in the early 1970s with the adoption of the process-product

approach, whose proponents sought to discover stable relationships between teacher behaviors--
A

process variables--and student achievement and attitude outcomes--product variables (Brophy & Good,

1986; Gage, 1978). Process-product researchers were motivated by dissatisfaction with laboratory-based

73



theories of learning for informing teaching practice (Gage, 1972), and with research that "avoided looking

at the actual processes of teaching in the classroom" (Dunkin & Biddle, 1974, p. 13). By focusing on what

teachers do in the classroom, these researchers hoped to find behaviors and strategies for teaching that

worked--that could be deployed by teachers to become more effective, with effectiveness for the most

part defined as student achievement measured by standardized tests. Their quest was for a scientific

basis for teaching, with science defined as the search for relationships between variables (Gage, 1978),

and the variables being those derived from classroom teaching, not laboratory studies of learning.

The process-product research strategy was successful in producing a consistent picture of teaching

that was effective in producing achievement gains: teaching that was highly structured and directed,

involved explicit explanation and modeling by the teacher, and kept students highly engaged with

academic content (Brophy & Good, 1986; Rosenshine & Stevens, 1986; Shulman, 1986). But process-

product research has been criticized on a number of counts, including its lack of attention to the subject-

matter content being taught (Romberg & Carpenter, 1986; Shulman, 1986), its focus on observable

behavior and resulting disregard for the cognitive activities of teachers and students (Shulman, 1986),

and its inherent conservatism arising from the study of existing practice (Romberg & Carpenter, 1986).

Our goal here is not to provide another critique of process-product research, but to examine its

assumptions about the nature of knowledge and learning. Because this research program has had such a

significant impact on educational policy, it is important to examine these assumptions, both to understand

their relationships to the various perspectives we have already discussed and to inform our emerging

conceptions of what knowing mathematics might mean in classrooms.

Separation of teaching and content. Because process- product researchers were seeking

generalizable findings about teaching, they generally made the assumption that teaching could be

usefully separated from the content being taught. This assumption was consistent with the search for

general laws of learning in process-product research's parent discipline of psychology. Deciding upon the

content of instruction was considered to be heavily values-based and to be the proper focus of curriculum

experts and public debate, not of research on teaching. The goal of research on effective teaching was to

answer the question, Given particular goals of instruction, what are the teacher behaviors or strategies that
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will foster that goal? Researchers of teaching thus were not greatly concerned with defining desirable

outcomes of schooling or considering fundamental questions about what students should be learning. In

searching for measures of student outcomes, they worked from existing assumptions prevalent in the

research and schooling communities--about the nature of knowledge, relying for the most part on

standardized tests of student achievement.

Teaching was viewed from this perspective as a delivery system for knowledge that was specified by

others. Process-product researchers carried this implicit assumption with them even when they focuses

on the teaching of particular subject matters. Thus, when Good and Grouws (1979; and Good, Grouws, &

Ebmeier, 1983) studied elementary school mathematics teaching, they continued in the process-product

tradition by assuming that the best indicator of effective teaching is students' achievement test scores and

by focusing on instructional behaviors that were virtually free of mathematics content. The resulting

recommendations, such as locus on meaning and promoting student understanding" or "assess student

comprehension" might apply as well to the teaching of history or reading as to the teaching of

mathematics. These rather generic recemmendations suggest the assumption that teaching Jo a delivery

system for content that is determined by others and specified in the curriculum.

Mathematics educators have criticized process-product researchers for their failure to consider what

mathematics is worth knowing and fog their ready acceptance of achievement tests as the primary measure

of instructional effectiveness (Romberg & Carpenter, 1986). "Residualized mean gain scores have

become methodological proxies for 'what we want,' and the standardized test has become the operational

definition of what is worth knowing" (Romberg and Carpenter, 1986, p. 865). But what kind of operational

definition of knowing mathematics do these tests provide and why were they so readily accepted by

researchers on teaching?

Mathematics knowledge defined as achievement on standardized tests. In searching

for objective measures of student learning, process-product researchers heartily embraced standardized

achievement tests. These tests were designed to be relatively impervious to minor variations in curriculum

and to measure learning outcomes valued by school systems and the public. Standardized tests provided

measures of learning expressed as single numbers or small sets of numbers with relatively high reliability



that could be used as the outcome variables of process-product research. Having such a "clean" set of

outcome measures was important for being able to describe the relationships among variables that were

the focus of scientific research from this perspective. Researchers in the processproduct tradition often

expressed the caution that achievement tests measure only some of the important outcomes of schooling

in limited ways, but that these tests were the best we have for providing relatively unbiased indicators of

the effectiveness of instruction (e.g., Brophy & Good, 1986).

But many scholars have argued that standardized achievement tests represent a severely limited view

of what mathematics is worth knowing (Romberg & Carpenter, 1986). There is too much emphasis on

isolated computational skill. There is not enough problem solving, and what problem solving there is

tends to consist of word problems that can be solved by simply applying leamed algorithms. The tests do

little or nothing to assess students' ability to compret..end mathematical reasoning in written

communications, their ability to engage in mathematical argument, or their willingness to approach

problems they encounter by drawing on quantitative tools--all outcomes that are emphasized in recent

reform rhetoric (National Council of 'Teachers of Mathematics, 1989; National Research Council, 1989).

At the same time, standardized tests are not always so readily dismissed. Much of the heat generated

over the sorry state of current mathematics education in the United States is fueled by pointing to

students' dismal performance on standardized tests. Clearly, policy makers and the public are willing to

accept test scores as an important indicator of what students are leaming. But how do the assumptions

about what it means to know mathematics and what mathematics is worth knowing that underlie these

tests compare with those of the perspectives from psychology and mathematics that we have considered?

One point of mismatch is the tasks included in most tests. For the most part, tasks on standardized

achievement tests involve isolated computation and the solving of routine word problems, resulting in a

picture of knowing mathematics as knowing computational procedures and the skills needed to apply

those procedures to a constrained set of problems. Our analysis of perspectives from the discipline of

mathematics suggests a much broader range of tasks--tasks involving various kinds of nonroutine problem

solving, the mathematization of situations and judgments about the appropriateness of mathematical

models for various purposes, and the use of mathematical a.yumentlnd justification.
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Another point of mismatch is that the theories of testing upon which standardized achievermInt tests

are constructed assume that knowledge can be regarded as a relatively stable trait or continuum along

which individuals can be ordered (Anastasi, 1976; Cronbach, 1970). Test items are considered samples

from relatively homogeneous pools of potential items representing what is to be known. These

simplifying assumptions are important in providing the basis for powerful mathematical models underlying

test construction, but they are not necessarily consistent with other views of knowledge. The

assumptions are relatively compatible with traditional views of learning as the transmission of knowledge.

From that perspective it makes sense to think of measuring how much knowledge a person has acquired.

But the assumptions are not so readi, r.,.onsistent with cognitive views of learning and knowing that

emphasize the role of knowledge structures actively constructed by the individual learner. What becomes

important from this perspective is not bow much knowledge a person has, but how that knowledge is

organized and how accessible it is in various situations. This is not to say that testing is totally incompatible

with cognitive views of learning, but that most existing tests were built on assumptions of knowledge as a

more static entity.

A final assumption reflected in testing that may present a more fundamental dilemma is the

assumption that knowledge can be decontextualized. To believe that a written test can provide a valid

picture of an individual's knowledge, one must assume that the individual "carries" that knowledge within

him or herself to the testing situation. The recent emphasis i)y some cognitive researchers on the

situated nature of cognition raises the important question of whether it is, in principle, possible to assess a

person's competence through tests that are, by their very nature, meant to measure decontextualized

knowledge.

Knowledge as separable Into discrete parts. Another assumption that is reflected not only in

process-product research but in much of current practice in curriculum development and instruction is that

knowledge can be decomposed into discrete entities. In curriculum, this assumption is reflected by the

breaking up of content to be learned into sets of discrete objectives that are to be separately taught and

tested. Some mathematics educators categorize knowledge into skills, concepts, and applications (Fey,

1982; Trafton, 1980). Many elementary mathematics textbooks treat two-digit subtraction with regrouping
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as a skill distinct from two-digit subtraction without regrouping, and contain separate lessons on skills for

estimating and problem solving. This splintering of the curriculum has been fueled by a variety of sources,

including the general reductionistic assumptions of psychology, associationist, and behavioristic theories

that consider knowledge to be collections of behaviors or bonds acquired essentially by accretion

(Thorndike, 1922); instructional theories that emphasize the direct teaching ofcomponent skills that are

then combined into more complex performances (Gagne et al., 1988); and the push to be as specific as

possible in setting objectives for instruction (Bloom, Englehzrt, Furst, Hill, & Krathwohl, 1956; Tyler,

1949). This emphasis on separation of knowledge runs counter to the emphasis in cognitive views of

learning and knowledge as structured and connected.

Researchers studying teaching h_ve inherited assumptions about mathematics knowledge being

decomposable and have built upon them in a number of ways. For example, researchersstudying

mathematics teaching have viewed problem solving as a matter of learning mathematical procedures and

concepts, limn learning the ski.is or strategies that are needed to apply the procedures and concepts to

problems. Goo l et al. (1983) measured student learning with an achievement test that separated

mathematics knowledge into three subtests: knowledge, skill, and problem solving. Good et al.

expressed concern over the lack of difference between their treatment and control groups on the

problem-solving subtest "because we felt that if mathematics knowledge is to be applied to "everyday"

matters, students need skills in this area (e.g., to compare whether the 12oz. or 16 oz. package is the

better buy)" (p. 93, emphasis added). Similarly, Brophy (1988), in arguing that most of what is taught in

school is amenable to the principles of active teaching, suggested that

Students learning mathematics problem-solving skills need not only practice in applying
procedural algorithms to well-structured problems but also modeling and explicit instruction in
strategies for identifying relevant information and formulating poorly structured problems
accurately, as well as strategies for analyzing, simplifying, and developing methods for solving
unfamiliar problems. (p. 8)

These statements suggest the assumption that mathematical knowledge consists of fairly separable

skills, concepts, and strategies that can be explicitly modeled and directly taught.

Students' engagement as a measure of learning. A final assumption of some researchers in

ii nrocess-product tradition is that the time a student spends actively engaged in appropriate academic
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tasks can serve as a proxy for the students' learning. This assumption has resulted in process-product

researchers' focusing on a variety of time-related variables such as opportunity to learn, time-on-task, and

academiclearnin time (Berliner, 1979; Rosenshine, 1979). Much of this emphasis on time spent in

learning can be traced to Carroll's (1963) model of school learning, which included three variables fcr

predicting sc:'ool achievement that could be expressed in terms of time: aptitude (defined as the amount

of time a student needs to leam a given task), opoitunity to learn (time allowed for learning the task),

Perseverance (time student is willing to spend learning the task). As operationalized by classroom

researchers, these time-related variables reflect the behaviorist sense of the word active in learning: A

student is learning if he or she is overtly responding. Thus, if a student is visibly engaged in a task, he or

she can be assumed to be leaming that task.

Although measures of the time students spend engaged in academic tasks have proved successful

as rough predictors of student achievement, many researchers from both inside and outside the process-

product tradition have criticized this emphasis on time and observable engagement (e.g., Peterson,

1988; Romberg & Carpenter, 1986) with a number of arguments:

1. A focus on time spent and opportunity to learn emphasizes efficiency, quantity, and presence or

absence when both what is learned (the mathematics) and the quality (of students' thinking) may be most

important

2. Measures of time spent and opportunity to learn are behavioral measures that do not tap the

cognitive processes and strategies in which the learner engages in the act of leaming and which may

define the essence of knowing, understanding, and problem solving in mathematics

3. Although empirical data exist to show a significant positive linear relationship between observed

"engaged time" of tho leamer in low-level mathematics activities and tasks (knowledge, facts, and skill) and

students' subsequent low-level mathematics achievement, empirical data do not show ...1inear positive

relationship for "higher-level" mathematics activities, including mattumatical applications and problem

solving (see, for example, Swing, Stoiber, & Peterson, 1988)

4. Analyses based on "time spent" or on "content coverage" have led to a fragmented view of what is

learned in mathematics--both the mathematic"il content and the aspects of mathematical knowledge, skill,
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and problem solving (e.g., conceptual vs. procedural knowledge)--ratherthan leading to an integrated

view that assumes connectedness among all these aspects of knowing mathematics.

Definition of mathematical knowledge in existing classroom practice. We have

presented several assumptions underlying research on effective teac- that stand in contrast to

assumptions about knowing and learning mathematics emerging fromcynitive psychology and the

discipline of mathematics. The assumptions of classroom researchers have been inextricably linked to

existing classroom practice. This is due both to the influence of teaching effectiveness research on

educational policy and practice, and to the derivation of effective teaching practices from existing

classroom practice. The tight linkage of process-product research to existing classroom practice is both a

strength and a weakness. As a strength, this grounding in classroom practice helps ensure that

recommendations from the research will be practical: Because the recommended teaching behaviors

were derived by observing teachers, it is reasonable to assume that other teachers can carry out the

behaviors as well. In addition, these studies of teaching and learning are situated, not in laboratory

changes. Thus, Romberg and Carpenter (1986) contended that the variables of process-product

settings, but in the classroom contexts researchers hope to apply them to.

But in terms of weaknesses, process-product researchers have been criticized for being inherently

conservative in seeking to improve existing instructional practices, rather than to seek more fundamental

changes. Thus, Romberg and Carpenter (1986) contended that the variables of process-product

research "can only make current teaching more efficient or effective, but they cannot make it radically

different" (p. 865). Researchers on teaching counterwith one of their original motivating concerns:

concern about attempts to make mathematics teaching radically different without empirical data based on

observations of classroom practice (Good,1988). They point out the importance of seeing whether major

changes "will work" in the classroom before calling for massive changes in practice.

As researchers have responded to the criticisms of process-product research by building new

research programs to study teaching (Shulman, 1986), they have, for the most part, maintained their

commitment to studying existing classroom practice. This commitment is motivated in part by the

recognition that there are considerable improvements that can be made within the pervasive frameworks
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of teaching in existing practice, in part by understanding that more radical changes in teaching must start

with a rich understanding of existing practice if they are to be successfully realized. For example,

Leinhardt (1988) has used constructs and methods from cognitive science to study the teaching and

learning of mathematics by expert teachers, selecting the teachers primarily on the basis of consistent

gains in student achievement. Leinhardt's analyses have revealed important teacher Knowledge of

mathematics subject matter and of the structures and routines for conducting good lessons, helping us to

better understand expert "traditional" teaching. Although Leinhardt '1988) argued for the need to study

"dramatically different teaching styles and lesson patterns," she reaffirmed the traditional criterion and kind

of student learning used by researchers on teaching effectiveness as teachers who "enrich the students'

concepts, concrete experiences, and extended problem-solving capabilities while not abandoning ',he

computational aspects of arithmetic education that society seems to value" (p. 65).

Broadening Conceptions of Mathematical Knowing in Classrooms

The views of teaching and learning that seem to underlie much of current mathematics instruction in

elementary school classrooms entail "teaching as telling," and learning as received knowing (Belenky,

Clinchy, Goldberger, & Tarule, 1986), "where teachers supply information and show how tc perform

procedures, and students accept this knowledge, rather than arriving at it through their own constructive

intellectual and social activity' (Greeno, 1989. p. 137). Currently, a number of researchers are working in

elementary school classrooms to explore instruction based on alternatives to these fundamental

assumptions about teaching and learning (Carpenter et al., 1987; Cobb, Wood, & Yackel, in press;

Lampert, 1988a). They are trying a. various ways to bring alternative assumptions about knowing and

learning mathematics from psychology and the discipline of mathematics into the classroom, while

respecting the many constraints of classroom teaching.

Cognitively guided Instruction. Carpenter, et al. (1987; see also Carpenter, Fennema,

Peterson, Chiang, & Loef, 198F: have sought to help first-grade teachers change their underlying views

1 of learning in light of cognitile research on individual children's solving of addition and subtraction word



problems. Their instructional framework, which they call cognitively guided instruction (CGI) is based on

two major assumptions derived from cognitive studies of learning:

One is that instruction should develop understanding by stressing relationships between skills
and problem solving with problem solving serving as the orcanizing focus of instruction. The
second assumption is that instruction should build on students' existing knowledge. (Carpenter
et al., 1988, p. 11)

CO

These assumptions parallel two of the themes from cognitive psychology that we considered above:

nnectione among types of knowledge and learning as active construction of knowledge. Thus, the CGI

researchers' assumptions about learning and knowing mathematics are cleariy grounded in psychological

research on individual learners. In helping teachers apply these perspectives about individual learning to

their teaching, the CGI researchers draw on research on teacher thinking (Clark & Peterson, 1986), which

assumes that

Classroom instruction is mediated by teachers' thinking and decisions. Thus, researchers and
educators can bring about the most significant changes in classroom practice by helping
teachers to make informed decisions rather than by attempting to train them to perform in a
specified way. (Carpenter et al., 1988, p. 10)

Thus the route to changing instructional practice is to change teachers' knowledge, beliefs, and

attitudes. In particular, Carpenter et al. (1988) sought to provide teachers with knowledge about types of

addition and subtrac ion problems (see Table 1) and the strategies that students typically use to solve

these problems as they pass through general levels of exportise. They also urged teachers to incorporate

broad instructional principles that emphasized making instruction appropriate for each student by basing

instructional decisions on frequent assessment of the student's solution strategies.

Carpenter et al. (1988) f and that teachers were able to learn about the research-based addition and

subtraction problem types and solutions, and to use this knowledge in their instruction. CGI teachers

were more likely to attend to theit students' solution strategies than were control-group teachers.

Students in CGI classrooms spent more time solving problems and were more successful in solving the

sorts of complex addition and subtra

research in this domain.

Constructivist teaching of seco

ction problems that have been the focus of the psychological

nd-grade mathematics. In another attempt to alter

teachers' beliefs and instructional practice to reflect a particular perspective on learning, Cobb and his
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colleagues (Cobb et al., in press; Cobb, Yackel, & Wood, 1988) have worked with second-grade teachers

to alter their teaching to be consistent with a constructivist view of learning. Cobb and his colleagues

began with The fundamental assumption that mathematics learning occurs as "individuals each construct

their, individual mathematical worlds by reorganizing their experiences in an attempt to resolve flak

problems" (Cobb et al., 1988, p. 93). The dilemma faced in applying this constructivist view of learning tc

teaching is resolving the tension between this position and the need to meet "institutionally sanctioned

goals of instruction" (p. 94)--for students to learn particular, accepted mathematics. To temper without

entirely resolving this dilemma, Cobb and his colleagues took a second, complementary, perspective ;rpm

anthropology: i!lat mathematical knowledge is cultural knowledge, which is best fostered by "nurturing a

classroom atmosphere that encourages the negotiation of meaning" (p. 102).

Cobb and his colleagues entered the classroom by way of instructional activities and materials that

would facilitate teaching that was compatible with a constructivist perspective by providing rich

opportunities for students to construct their own mathematical knowledge. The instructional materials

were based on constructivist researchers' models of the construction of arithmetical knowledge by

individual children (Steffe & Cobb, 1988; Steffe et al., 1983) and were designed to (a) make sense

simultaneously to children at a variety of levels, (b) avoid an arbitrary separation of conceptual and

procedural knowledge, (c) address traditional second-grade learning objectives (i.e., those measured on

standardized achievement tests), and (d) facilitate sustained whole-class discussions about mathematics

(Cobb et al., 1988). The materials were accompanied by a strong commitment to treat teachers, as well as

students, as constructivist learners and, thus, an avoidance of instructional prescriptions. Cobb and his

colleagues worked closely with a second-grade teacher using the materials to develop classroom

managermnt and 11..eraction routines that would facilitate meaningful interaction structured around the

instruction al materials. Thus, like Carpenter et al. (1987), Cobb et al. began with a particular view of what it

means to know and learn mathematics from the psychological perspective of the individual learner and are

working with teachers to develop forms of instruction that are compatible with that view.

Bringing mathematical discourse and argument to a fifth-grade classroom. In the

classroom Lampert (1988a) is also exploring alternatives to pervasive views of knowing and learning
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mathematics, "in which doing mathematics means remembering and applying the correct rule when the

teacher asks a question, and mathematical truth is determined when the answer is ratifiee by the teacher

(p. 135). But rather than taking as her primary starting point a particular view of learning from psychological

research on the individual learner, Lampert begins with assumptions about the nature of knowledge and

knowledge growth within the discipline of mathematics. She argues, following Kramer (1970), that, "in

mathematics, authority comes from agreeing on shared assumptions and -easoning about their

consequences" (Lampert, 1988a, p. 135). Thus, according to this view, Tie discourse in classrooms

should be more like the discourse of argument and conjecturing that ta1zes place within the discipline of

mathematics, with a shift in authority for what constitutes valid mathematical knowledge from teacher

decree to the sense-making and reasoning of the individual. "Lessons will be in the form of a

mathematical argument, which students accept or reject on the basis of their own reasoning" (p. 136).

As a teacher-scholar studying her own teaching of fifth-grade mathematics, Lampert (1988a) is

developing a classroom pedagogy in which an important goal is for teachers and students to engage in

mathematical argument and discourse. Her research in this setting focuses on what is involved from the

teacher's perspective in teaching mathematics with this goal and what "students' understanding look[s]

like in the social context of the public school" (p. 132). Thus, although informed by psyche logical

research, Lampert does not begin with psychological assumptions about the learning of individuals and

attempt to apply them to the classroom context; rather, she uses perspectives from psychologyas one

lens to consider the nature of students' understanding and knowing of mathematics in classroom

contexts.

Carpenter et al. (1988), Cobb et al. (1988), and Lampert (1988a) are all attempting to change rather

fundamental assumptions about teaching and learning that are evidenced in most classrooms. Carpenter

et al. (1938) and Cobb et al. (1988) approach this challenge by working with teachers to develop

instructional strategies that are compatible with particular views of learning emerging from psychological

studies of individuals learning mathematics. Carpenter et al.'s perspective draws heavily on a specific

body of researchthat of children's solving of addition and subtraction word problems--and emphasizes

the prii.Jiples from cognitive psychology of learning as an active process that builds on existing
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knowledge and of the importance of emphasizing connections and relationships among ideas. For Cobb

et al., the key is developing instruction that is compatible with the constructivist assumption that children

construct their own mathematical knowledge through interaction in social contexts. Lampert (1988a), in

contrast begins with perspectives from mathematics and classroom teaching to develop a pedagogy in

which teachers and students engage in mathematical argument rather than establishing mathematical

truth by decree.

Summary and Conclusions:
Goals for Mathematics Learning in Elementary Schools

We began this paper with two beliefs about why it is important to leam mathematics: the role of

mathematical tools and ways of thinking in todays society and workplace and appreciation of mathematics

as a great cultural achievement. How can the diverse perspectives we have considered inform our

thinking about what mathematics is worth knowing and how it might be leamed in elementary schools?

Summarizing or even synthesizing the diverse perspectives we have considered--from the psychology of

the individual learner, from the discipline of mathematics, and from classroom practicewill not provide

ready answers to these questions. This is due, in part, to these different perspectives representing some

fundamental issues about the nature of mathematical knowledge and learning, such as the tension

between mathematical knowledge as a veridical description of an extemal reality versus mathematical

knowledge as a human cultural construction, and the tension between socially accepted definitions of

mathematical knowledge and the need for individual learners to -.onstaict their own mathematical

meanings. So, rather than providing answers, our hope is that our consideration of these multiple

perspectives may clarify our questions and turn our attention to issues that might otherwise be

overlooked.

In thinking about what students should be learning about mathematics in elementary schools and how

that learning might take place, one could begin with the notion of mathematics as powerful set of tools

evolved over time in the culture. This notion is supported by our discussion of representation systems

that can be said to exist in the public arena and serve as tools for communicating with others and that are

also acquired by individuals where representations serve as tools for thinking. If we ignore perspectives
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from psychology, we might suggest that decisions about what to teach in elementary school become

decisions about what mathematical tools are important for students to learn. These tools can then be

presented by teachers to be acquirid by students. But there are least two difficulties with this approach.

First, important aspects of what is important to learn about tools are lost when they are presented; that is,

the largely implicit knowledge about when and how these tools are used for various purposes. Cognitive

psychology has demonstrated that learners will filter the knowledge trey "receive" through their existing,

possibly idiosyncratic, knowledge structures--that they will impose their own meaning on what they are

learning based on their existing conceptions and misconceptions. Thus one cannot assume that what a

teacher presents is what a student will learn (Norman, 1980).

This view of the learner as actively imposing meaning and constructing his or her own knowledge can

easily lead to the position that constructing mathematical knowledge is a highly personal affair and that the

criteria for what constitutes legitimate or useful mathematical knowledge is that whichhas been

constructed from existing knowledge of the individual. But what is to prevent every individual from

constructing his or her own idiosyncratic mathematics that does not iacititate communication with others?

How are individuals going to construct the shared mathematical tools that It took humanity thousands of

years to construct?" (Sinclair, 1988, p. 1). This is a fundamental tension that must be addressed in any

successful approach to schooling in mathematics. Concentrating solely on the personal meanings of

mathematics that learners construct and building on the knowledge they bring to the learning setting

creates the risk of ignoring the importance of mathematical conventions, conventions that must be

learned as they are used in our society if they are to serve as powerful tools for mathematical thinking and

communication. Concentrating too heavily on tt)e mathematics to be learned--on presenting conventional

tools--while ignoring the role played by the individual's existing conceptions and efforts at sensemaking of

what is learned, creates the risk that the tools will not be learned at all or that they will not be !earned in

ways that make them accessible to the learner when needed in various situations.

How car 3chcol practice be shaped to deal with this tension and others that are created in attending to

the diverse perspectives that arise from attending to psychology, mathematics, and the classroom

context? We propose that there are three aspects of knowing mathematics that must be attended to in
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forging a school practice successful in fostering powerful mathematical understanding. At one level these

aspects can be thought of as the desired outcomes of a successful educational program--as the goals of

instruction. But characterizing these aspects of knowing mathematics as outcomes suggests an artificial

separation of outcomes from the educational process. Rather than separate process from outcomes, we

present these themes as desired characteristics of the practices of teaching and learning in school. Since

such practices have rarely been tried, and even more rarely studied by researchers, we have much to learn

about how they might affect the outcomes of schooling.

if teaching and !earning in school are to lead to genuine academic accomplishments in mathematics, it

is reasonable to assert that they must be built around the corpus of "big ideas" that are fundamental to

mathematics and mathematical thinking--ideas like place-value, part-whole relationships, the notion that

numbers related as a function will make a line on a graph. These represent knowledge that is difficult to

specify explicitly and precisely and that must be constructed by the individual. These ideas and the

relationships among them constitute what Vergnaud has referred to as conceptual fields. Although

teachers can present various descriptions ot these ideas to students, they cannot "tell" these ideas in all

their complexity to students; rather they can create classroom activities which provide students with

opportunities to construct them. The construction or development of these ideas is an ongoing process

over the course of elementary schooling; the ideas are revisited and continually refined in a variety of

settings. At the same time that we recognize these ideas are made meaningful through individual

construction, however, we also take note of the fact that the ideas are available to us because they have

been invented and recognized as important over the long history ot mathematics as a discipline.

In addition to these conceptual big ideas there are conventions of mathematics that must essentially

be presented to students, including many of the symbols, representations, and other tools of

mathematics, for example the labels "one", "two", "three"... for digits, knowing that the symbol "%"

means percent, or knowing that the x and y axes are typically used in a graph. It does not make sense to

think of students "constructing" knowledge of such conventions--they have to be learned and

remembered as they are conventionally used or they do not play their important role in facilitating

mathematical communication. Research in cognitive psychology suggests that such things will ue
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remembered better if they are made meaningful to the learner in the sense of relating to the learners

existing knowledge structures, but they need to be learned pretty much as is. The line between these

conventions of mathematics that must be acquired and the big ideas that must be constructed is by no

means a distinct one. Such pervasive concepts as place-value are intricately connected to the

conventions of the representation systinns we use. The convention is a tool which can be used to learn

and think about the concept. If the conventional representation systems with which we deal with quantity

did not involve place value, place value would not constitute a fundamental mathematical concept for

students to build during their elementary school years.

Besides big ideas and conventions, a third important aspect of mathematical practice in schools needs

to be personal sensemaking. it is important for students to have the disposition of continually trying to

figure things out and make sense of them. It is important for elementary classrooms to be places where

thinking about ideas and making personal sense of them is valued. The importance of sensemakingis

supported by both psychology and mathematics. From the perspective of cognitive psychology,

students will not construct important mathematical understandings or acquire important conventions

unless they actively work to integrate new information and experiences with their existing knowledge. In

the discipline of mathematics, the fundamental warrant for determining what is valid mathematical

knowledge is not empirical evidence or decree by authority, but whether that knowledge can be shown to

derive logically from agreed-upon assumptions. It is important for classrooms to provide settings in which

;It giants' attempts to make sense of new ideas are valued and explored and their current ways of thinking

aril valued and examined, not ignored, and wilrire mathematical conclusions are supported by reasoned

argument rather than teachers or answer bot,;:s.

In shaping classroom practice to attend to these three aspects of knowing mathematics, there are

some features of instruction that are strongly supported by all three of the general perspectives we have

discussed--psychology, mathematics, and classroom practice. First is the importance of Talking about

mathematics. In contrast to current classroom practice in which much of the activity involves students

practicing procedures that have been explained or modeled by the teaching, classrooms should provide

ample opportunities to verbalize their thinking and to have conversations about mathematical ideas and
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procedures. If we view understanding of mathematics from the peFspective of cognitive psychology as

the knowledge structures of the individual, but we view school as the place where individuals acquire

publicly valued knowledge, then individual knowledge must be refined and revised !n the social setting of

the classroom. Students must leam to communicate their ideas to one another and their teachers must

learn to communicate with students in terms of mathematical arguments. Verbal discourse, as our primary

mode of communication, constitutes an important means of revealing individual knowledge. If we view

knowledge and thinking as inherently situated in social and physical contexts, much of what is learned

about mathematics is implicit; we therefore need to make communication about and around mathematical

activity as rich as possible to serve as the site for learning through participation in that activity. From the

discipline of mathematics, we have seen the importance of conjecturing and defending ideas in

mathematics--activities which require extended public discourse. If the teacher adopts mathematical

conventions about how to lustily and refine assertions, he or she will need to engage in discussions with

students, challenging 3 with counterexamples rather than with judgments about the wrongness of

their answers.

A second aspect of practice that follows from our analysis is the importance of considering the kinds

of mathematical activity occurring in classrooms. From psychology comes the notion that the kinds of

activity in which leamers engage is critically important in the howledge structures they construct or

acquire. Our discussion of the discipline of mathematics revealed that the traditional curriculum and much

of the research in psychology has focused on rather limited aspects of mathematical activity. But what hind

of mathematical activity is appropriate for elementary-school classrooms? The goal of elementary school

mathematics education is not for all students to become professional mathematicians, just as we do not

teaching reading and writing in hopes that all students will become novelists or editors, or social studies so

that all students will become historians. But there is a sense in which we want all children to come to

appreciate what it means to think like a mathematician. Mathematics offers powerful ways of thinking about

the world and these ways of thinking increasingly pervade our culture. It is essential that all people be able

to communicate and reason about quantitative relationships as part of being a aterate, participating

member of our information-oriented society.
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As put forth in Everybody Counts, "elementa, school is where children learn the mathematical skills

needed for daily life" (National Research Council, 1989, p. 45). But the mathematical skills needed for

daily life have changed dramatically in recent years. It is no longer enough to be proficient at the isolated

arithmetic calculation that pervades current curriculum and instructional practice. Full participation in

today's information-oriented society requires much more than the computational skill that has been the

soul and substance of traditional elementary school mathematics. In addition to having all students

appreciate what kind of knowledge they have when they know mathematics, we want to give students

enough of a feeling for what the discipline is like to enable them to make informed choices about whether

to pursue it in a more concentrated way. Since our education system is structured so that students may

choose to virtually "opt out" of mathematics at the secondary level, these issues must be addressed in

elementary curriculum and instruction.

Finally, thinking about elementary classrooms as places where rich discourse about mathematics take-

place, and where students can participate in the kind of mathematical activity similar to that engaged in by

mathematically literate citizens, raises the crucial issue of what teachers in such classrooms need to know.

First, it becomes apparent that making the classroom a place where students can work with and acquire

the powerful cognitive tools of mathematics requires that the teacher must be one who uses these tools

him or herself. As our analysis of knowing in the discipline has shown, mathematics in use and the canons

of mathematical argument could never be completely specified in the form of a pre-packaged curriculum

that would permit conveying them in their entirety to students.

Teachers themselves need experience in doing mathematics--in exploring, guessing, testing,
estimating arguing, and proving--in order to develop confidence that they can respond
constructively to unexpected conjectures that emerge as students follow their own paths in
approaching mathematical problems. Too often, mathematics teachers are afraid that someone
will ask a question that they cannot answer. Insecurity breeds rigidity, the antithesis of
mathematical power. (National Research Council, 1989, p. 65)

Teachers' need not only rich knowledge of mathematics conventions and "big ideas," but also the

personal disposition of sense-making. But the teachers own knowledge and beliefs about mathematics

cannot simply be "told"--the teacher also needs to be attentive to students' ways of knowing and

understanding mathematics so that their understandings can be shaped and guided.
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