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The Rascn Model and the Marginal Rasch Model

Over the past decades, the Rasch (1960) model has become

increasingly popular and proved to be very useful in the

theory and analysis of mental tests. The main reasons for the

popularity of the Rasch model are the simplicity of the

model, as compared with other item response models, and the

existence of attractive statistical procedures for estimating

its parameters. ThereLore, we shall shortly review the

different estimation procedures that have previously been

used with the Rasch model in the second section. These

procedures include maximum likelihood. Bayesian, minimum chi

square and pairwise comparison estimation. The third section

consists of a comparison of the marginal maximum likelihood

estimation and all other estimation procedures.

Estimation Procedures in the Rasch Model

We start with a test battery consisting of k

dichotomously scored items, for which we assume that they all

measure the same unidimensional (latent) trait or ability.

Under the Rasch model, the probability that examinee v

with ability a answers item i correctly is given by:

(1) P(X=110,ei) = Oei/(1+0ei)

6
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where ei is the item eaainess parameter.

On the usual assumption that the items are local

(conditional) independent, the probability that examinee v

has the response pattern xm(xi....sk) is given by

k xi
(2) P(Z=x19.e) = w Oei /(1+9ei) .

i=1

where xi=1 if item i is answered correctly and xi=0

otherwise. and e=(ei ..... ek).

If independence applies at person level, i.e.. if all

examinees answer the items independently of each other, the

joint probability of the response patterns for all N

examinees can be written down as:

N k xvi(3) Pa1=x1 ..... 410.0 = W W °vet /(1+Ovei) .

v=1 i =1

where Ov is the ability of examinee v. 9 =(91. ON) and

xvi=1 if person v answers item i correctly and 0 otherwise.

At this place it is important to mention that it is Lot

necessary that all examinees are administered the same set of

items. It may happen that examinee one answers item 2 and +1,

whilst examinee two has the items 2. 3 and 5 to solve. If

this is the case, one speaks of an incomplete design. If the

mechanism by which the items are administered is ignorable

with respect to likelihood inference (Rubin. 1976). as is the

case if. for example. items are administered randomly to

7
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persons, all estimation procedures that are treated iu the

following sections will be applicable for this special case

with the necessary adjustments. The main adjustment concerns

the introduction of a random matrix D. with dij=1 if person i

has been administered item j, and dir0 o.:herwise. According

to the value of did. the likelihood function (3) is changed

appropriately. To this point, it is not clear yet if adaptive

and customized testing do influence the likelihood. Although

the estimation procedures are identical for both designs, it

is important to _tress that the error of estimation in the

item parameters can be larger in the incomplete design, since

fewer examinees answer to any particular item. Since

incomplete designs are for the rest very comparable with

complete designs, we will confine ourselves to complete

designs.

Note that the Rasch model is unidentifiable; if the item

parameters are all multiplied with a constant c. and if all

person parameters are divided by that same number, the

probability statement in (3) does not change. For this

reason, a constraint has to be imposed on the set of

parameters. The choice of the appropriate constraint depends

on the particular problem at hand and will therefore be

imposed on the place needed.

In this paper it is assumed that both sets of

parameters. i.e., item and person parameters, are unknown.

and that they all have to be estimated from the data. For

this purpose, the following estimation procedures are

8
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available: maximum likelihood (unconditional or joint.

conditional and marginal). Bayesian (hierarchical and

marginal hierarchical), pairwise comparison and minimum chi-

square estimation

Since maximum likelihood and Bayesian estimation

procedures have a general nature and can be applied in many

different settings. these two estimation procedures will be

discussed for the general case in more detail now.

To this end, assume that the random variables Xi Xn,

are independent and identically distributed with density

f(xia), where a is unknown and possibly vector valued.

Maximum likelihood estimation is based on the principle that

one should pick that value of a that makes the observed data

most probable. To achieve this, the likelihood function is

maximized with respect to the unknown parameter a. If the

likelihood function is sufficiently smooth, as will often be

the case, this can be done by differentiating the likelihood

function, or equivalently, the loglikelihood, with respect to

a, equating the derivative to zero, and finally solving the

equation(s). Under the (mild) assumption that the density

function f(xla) satisfies certain regularity conditions.

maximum likelihood estimates have very nice large sample

features. First, maximum likelihood estimates are consistent,

i.e.. the estimates converge to the true parameter. Secondly.

the maximum likelihood estimator of a is asymptotically

normally distributed with mean a and with a variance-

covariance matrix equal to the reciprocal of the Fischer



Different Estimation Procedures

5

information matrix. Thirdly, the maximum likelihood estimator

is efficient. i.e., the data is used in an optimal way.

FUrthermore, if the density function f belongs to an

exponential family, maximum likelihood estimators are

asymptotically equivalent to uniform minimum variance

unbiased estimators (10M9V).

In Bayesian estimation, it is additionally assumed that

the parameter a itself is random. Note that Bayesian

techniques can also be interpreted from a frequentist point

of view (Box & Tim). 1973). The distribution of the parameter

a, then, expresses the belief of the researcher in the

possible values of a. This distribution of a is choosen prior

to the observation of the data, and is therefore termed 'a

priori' distribution. After having observed the data, one can

compute. with the help of Balms rule, the posterior

distribution. This posterior distribution is proportional to

the product of the prior distribution and the likelihood

function, and incorporates all information that is available

for the unknown parameter a. Assuming that the prior

distribution is characterized by a parameter fl. the objective

is now to estimate this parameter D. In order to estimate

this unknown parameter n, one now could US9 a maximum

likelihood approach, i.e.. use that estimator for () that

maximizes the posterior distribution. or equivalently, the

mode of the posterior distribution. Since the posterior

distribution is a distribution function however. one could

also use the median or the mean of the posterior to estimate

0
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the unknown parameter D. It depends on the nature of the

problem which of these methods should be applied, although it

seems that modal Bayes estimation seems to do the best job.

in most cases (CrBagan. 1976).

It is important to note that maximum likelihood and

Bayes estimation are equivalent if the sample size is large.

since in that case the prior information as used in the

Bayesian estimation plays an insignificant role. These two

procedures are also equivalent if the prior distribution is

noninformative with respect to the unknown parameter, i.e

in the case of a flat prior (Lehmann. 1983).

Joint Maximumum Likelihood (JML)

In this method. also called unconditional maximum likelihood.

both sets of parameters are estimated simultaneously. This is

done by maximizing the joint likelihood function (3) over all

the parameters. An estimate can be found by differentiating

(3) with respect to that parameter, equate this derivative to

zero and solve the resulting equation. For the Rasch model

the resulting set of equations is given by:

k k
E xvi = E Ovei/(1+8vei) for all v=1i1 11

(4)
N N
E xvi = E evei/(1+8.00 for all i=1

v=1 v=1

1
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Note that (4) consists of implicit equations, and hence that

iterative procedures to solve (4) have to be used.

Furthermore, the equations in (4) have the well known form:

"observed" = "expected".

Since the same set of items may be administered to

different populations, the constraint that is most appealing

in this setting is one on the item parameters. Two con
k

straints have been used: w eiml and e1 =1. The latter coni1
straint has the disadvantage that for item parameter

estimates on the samethe standard errors for the estimates

will be larger than in the first constraint (de Gruijter,
k

personal communication). Therefore, the constraint 1r ei=1
i=1will be used.

A serious problem with joint maximum likelihood

estimation is the fact that the item parameters are not

estimated consistently This is due to the fact that we have

a problem with structural and incidental parameters (Neyman

and Scott, 1948). These problems are the result of the fact

that with the introduction of another examinee, we also

introduce a new person parameter. This has the effect that

the number of parameters increases indefinitely. so that

standard maximum likelihood estimation does not apply in this

case. A heuristic interpretation for this phenomenon is the

following: although with each new person we get additional

information about the item parameters, we also introduce bias

since the person parameter is not known. Solutions to the

general problem have been given by iiefer and Wolfowitz

12
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(1956). Lehmann (1959). Rasch (1960) and Andersen (1970.

1973).

Kiefer sad Wolfowitz (1956) showed that one can

consistently estimate the structural perm(' -r. if one

assumes that the incidental parameters are inczyendent and

identically di-tributed. Furthermore, this distribution can

be also estimated consistently. Engelen (1987) used this for

the special case of the Rasch model, and called this

semiparammric estimation. This will be discussed more

extensively in the section marginal maximum likelihood.

Using Lehmanns (1959) notion of conditional estimation

Andersen (1970. 1973), proved that a soluti for the problem

of structural and incidental parameters can be given, if

there exists 'sufficient' statistics for the incidental

parameters that do not depend on the structural parameters.

Note that this was Ibut most important assumption that led to

the Rasch model (Rasch. 1960). This solution has been termed

'conditional maximum likelihood estimation' by Andersen and

will be discussed in greater detail below.

The most famous example of structural and incidental

param ters has been given by Neyman and Scott (1948). They

considered a sequence of independent normally distributed

random variables Xii, i=1,...n, j =1. k such that

..... Xik have mean Ni and variance a2. They showed that

the (inconsistent) maximum likelihood estimate of a2, can be

adjusted with a factor (k-1)/k to yield a consistent

estimate. It was long believed that this factor could also



Different Estimation Procedures

9

been used in the Rasch model, i.e.. if the estimates of ei

where multiplied by (k-1)/k that consistent estimate would be

the result (Wright & Douglas, 1977; Andersen, 1980). However,

the pro'.f for this fact has never been given since Andersen's

proof only applies to the special case k=2; a generalization

of this proof for larger k has never been given up to now. In

a simulation study by van den Wollenberg (1986) it was shown

that the factor (k-1)/k does not apply for k>2. Even

stronger. van den Wollenberg showed that there does not exist

a universal factor to adjust the estimate of ei in order to

get a consistent estimate. This factor would have to depend

on the distribution of the item difficulties and on the

ability distribution.

Conditional Maximum Likelihood (CML)

This method is basel en the fact that in the Rasch model

a 'sufficient' statistic for the incidental parameter 8i,

namely the number of correctly answered items by person

exists.

The concept of sufficiency, as introduced by Fisher

(15 1), was based on the fact, that some part of the data

carries no information about the unknown distribution and

that therefore I can be replaced by some statistic T =T(I)

without loss of information. Many nice features of

sufficiency can now be derived; all of these are based on the

4
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fact that for making inference one can confine oneself to a

sufficient statistic.

Sufficiency as defined by Andersen (1970. 1973) however,

does not necessarily have the same features. Basicly,

Andersen's defini. ion of sufficiency is an extension of the

earlier definition of Fisher's concept of sufficiency. Since

these two definitions of sufficiency are not equivalent, all

results that are derived from Andersen's new definition

should be carefully checked. This has been done by Andersen

(1973) in most cases, only in the case of the principle

"information" there are some discrepancies. For instance, in

the Rasch model, if one conditions on the total score of

person v, one can show that no information about that

person's ability is lost, but there seem reasons to believe

that this is not true for the information about the items,

i.e., by proceeding in this way one discards information

(Engelen, forthcoming 1988).

For the special case of the Rasch model, Andersen's

notion of sufficiency means that the total score of person v

is a sufficient statistic for the ability 8 of that person in

the presence of the item parameter e. Note the contrast with

the ordinary principle of :efficiency, where the total score

of person v and the numbed. correct on item i are (jointly)

sufficient statistics for the person parameter 8 and the item

parameter e. Denote the total score statistic for person v as

Tv. The conditional probability for the score pattern xv,

given Tv=tv can now be derived:

5
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(5) P(Xv=xviTv=tv) = P(Xv=xv.Tv=tv)/P(Tv=tv)

Noting that P(Tv=tv) = E P(Iv=xv) and that P(Zv=xv.Tv=tv)
Exv.mtv

- P(Xv=xv), the probabili.y statement in (4) can be rewritten

into

(6) P(XexvITv=tv)

k xvi
ei

1=1

E
k xvi
T Gi

xvi =tvi i=1

In this form, the likeihood function (6) contains no item

parameters anymore, and estimates of item parameters can be

evaluated by ordinary maximum likelihood. Andersen

(1970,1973) showed that these estimates are consistent and

have asymptotically a normal distribution. Starting from (6),

i.e., regarding (6) as a model on itself, no problems would

be encountered with maximum likelihood estimation, for

example, the item parameters would be estimated correctly. A

rationale for (6) as a model can. however, not be given.

An important drawback of the OIL estimation procedure

might be that examinees with all items correct or all items

wrong, have to be eliminated from the sample, since in that

case no conditional item estimates can be obtained. That no

estimates exist for these persons, can be easily seen from

(6), since in that case, both sides are equal to one. The

only information that we can draw now is that for examinees
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with all items correct (wrong), the items were all to easy

(difficult).

The denumerator in (6) is termed elementary symmetric

function. The evaluation of these functions is a tedious

task, and was for a long time possible only for a small

number of items (Rambleton & Swaminathan. 1985). In a paper

by Verhelst et all (1984), it is shown that no serious

problems are encountered anymore, and that one can handle as

many as 1000 items now.

After estimates of the item parameters have been

obtained, one can estimate the person parameters by

considering these estimates as the true values, substituting

these values in the likelihood (3), and obtaining maximum

likelihood estimates of the person parameters in the usual

way. Since the number of persons is usually large, so that

the item parameter estimates have a very small standard

error, the effect of treating estimated values as known,

seems appropriate. The precise effect of this procedure is

however not known, yet. The effects of the replacement of

true item parameter values by estimated values will be

analyzed with the help of A simulation study simulation

(Engelen, forthcoming 1988)

7
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Marginal Maximum Likelihood (MML)

The person parameters are now regarded as independent

and identically distributed random variables. In other words,

it is assumed that there exists a distribution function of

ability F and that persons are exchangable. i.e., the ability

of a randomly drawn parson is an outcome of this

distribution. For the Rasch model, we can evaluate the

probability for a score pattern z. given the population of

interest. by integrating the probability (2) over the

population density dF(0):

ell

(7) P(X=xIF,e) = F(X=xlz,e)dF(z)

0

The integral in (7) is evaluated as a Stieltjesintegral; if

there exist a derivative of F. then dF(z) can be replaced by

f(L)dz and we have an ordinary Riemann integral.

In this marginal likelihood function, no person

parameters are presert anymore, since they have been

integrated out. Hence, (7) is a function of the item

parameters el, ek and the ability distribution function F

only.

Substituting (3) into the marginal probability function

and rearranging leads to:



(8)
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k
P(X=xIF.e) = ei

xvi r
z E

xvi
/( w (1+zei))dF(z)

1=1 J i=1
0

14

k xi Exi k
Substituting bk = r ei . and Ek(z.e) = z (1+zei)).

i=1 1=1
the marginal probability function for the responses of ell N

examinees is given by:

k
(9) P(Xi=x1 I1 =x1IF.e) = r Paexv1F.(')

v=1

= it (bk fDk(z,e)dF(z))14x.

x 0

where Mk is the number of examinees with response pattern x.

From this starting point, a few different routes have been

followed. First, one can assume that F belongs to a special

parametric family, indexed by a parameter t. Then, one can

estimate along with the item parameters El. ek common

choice for F has been a lognormal distribution with mean

exp(p+10) and variance (exp(u2)-1) exp(2p+u2) (so 4=(p.a2)).

Recall that a random variable Y is lognormally distributed

with mean exp( p+lia2) and variance (exp(a2)-1) exp(2p+o2) if

log Y is normally distributed with mean p and variance a2.

Good results with this ability distribution where

obtained by Thissen (1982). Andersen & Madsen (1977), Mislevy

9
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(1984) and Sanathanan & Blumenthal (1978). Most of these

authors assumed that the item parameters where known

beforehand, so that only p and o' had to be estimated.

Note. however, that the form of the ability distribution

need not to be known beforehand. Bence. this method lacks a

basic common sense interpretation.

Therefore, one can try to estimate the ability

distribution jointly with the estimation of the item

parameters. For this purpose, Bock & Aitkin (1981) used a

discrete distribution over a finite number of points and

called this histogram the empirical distribt.:4.on. Although

they claim that they now freed the marginal maximum

likelihood procedure from arbitrary assumptions about the

ability distribution, this is not true. Since they use

preassigned values for the nodes of the ability distribution

function. and since these nodes are not changed during the

iteration process used to estimate the ability distribution

functiou mad the item parameters. Bock and Aitkin are

actually working in the parametric setting again. De Leeuw &

Verhelst (1986) and Engelen (1987) showed that one can in

fact estimate the ability distribution function Jointly with

the item parameters. Furthermore. both authors showed that

this can be done consistently, under certain suitable

regularity conditions. The ability distribution function

turns out to be a step function, where the number of steps is

a function of the number of items only. All this will be

discussed in more detail . the third section.
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Bayesian Estimation

In the Bayesian framework, one starts with imposing

reasonable prior distributions for the parameters of

interest. Reasonable in this context should be understood as

ease of computation for or believe in the pa.ticular prior

chosen. Then using Hayes rule. one can. having observed the

data, compute the a posteriori distribution. This a

posteriori distribution now, will be used as the base of

further inference.

Bayesian estimation always improves on maximum

likelihood estimation, if it is reasonable to assume that one

or more subsets of parameters can be considered as

exchangeable members of corresponding populations. If no

prior information is available, and one uses a non
informative prior for a parameter, i.e., a flat (uniform)

one, than Bayesian estimation is equivalent to maximum

likelihood estimation.

Historically. Bayesian estimation started with the

specification of a parametric prior distribution. Later on.

this changed into the specification of empirical priors.

I.e., priors that are estimated from the data, and

hierarchical Bayesian estimation, where a prior is vpecified

for the parameters in the prior distribution. The latter has

'1
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one clear advantage: hierarchical Bayes is far more flexible

than ordinary Bayes estimation.

In principle, one can distinguish three different

Bayesian estimation procedures in the Rasch model: (i) both

item and person parameters are subject to prior information;

i.e.. prior distributions for item as well as person

parameters are assumed; (ii) only a prior distribution for

the person parameter is specified; and (iii) only a prior

distribution function for the item paramt....rs is specified.

Procedure (iii) has never been used in the Rasch model

before, since in most applications the item parameters are

known beforehand or are believed to be estimated reasonable

by one of the maximum likelihood procedures. This restricts

the discussion to the first two procedures.

First, we will discuss the first procedure. since the

second one can be seen as a special case. We will do this for

hierarchical Bayes estimation. The startirg point for the

analysis is likelihood function (3). Using Bayes rule, the

posterior distribution f of the observed data and all the

parameters is proportional to the product of this likelihood

and the prior distribution g of the parameters:

(10) f(X.8.e) a L(X18.0g(8.0.

Now one has to chose a prior distribution for the item and

person parameters. Swaminathan and Gifford (1982) show that

the analysis can be effectively reduced if one makes the

22



Different Estimation Procedures

18

reasonable assumption that the item and person parameters are

independently distributed. They also assume that the

distributions for item and person parameters have the same

form (both distributions multivariate lognormal), a standard

approach, but nevertheless not free of criticism. So, we have

(11) log Ov - N(p8. *8) ; log ei N(1404).

To complete the hierarchical Bayes structure, prior

distributions for the so-called hyperparameters peofe.pe.le

have to be specified. For the means pe and pe, a flat uniform

prior is chosen, and since pe and Ss are variances, inverse

Z2 distributions with parameters T and 8 seem appropriate.

Note that these are conjugate priors. Finally. Swaminathan

and Gifford showed that reasonable values for the

hyperparameters are between 5 and 15 for 7 and about 10 for

0. Working all this out, they find the likelihood of the

posterior distribution, which they use as a base for further

inference. For more specific details, see Swaminathan and

Gifford (1982).

Note that the classical objection against Bayesian

procedures applies in this case also: no empirical evidence

for the choice of the priors is given. On the other hand,

considering the flexibility of hierarchical Bayes estimation,

this need not to be a serious problem.

An other approach is given by Mislevy (1986). who uses

the same structure for the item parameters, but changes the
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prior of the person parameters. For the person parameters.

Mislevy offers a choice between a nonparametric prior in the

form of a histogram and a mixture of normal components.

Again. natural conjugate priors are chosen for the

hyperparameters. Note that the term nonparametric is

misplaced: the nodes of the histogram are fixed in advance

and are not estimated from the data. See also Engelen (1987)

for a discussion of this in the marginal model.

The results of Mislevy (1986) and Swaminathan and

Giff*Jrd (1°82. 1986) show that hierarchical Bayesian

estimation yields good results. This is especially true for

the case of the three parameter logistic item response

models. where maximum likelihood estimation performs rather

badly. even for a very large number of examinees.

Minimum ChiSquare Estimation

Another estimation procedure has been proposed by

Fischer and Scheiblechner (1970) and Fischer (1974): the

minimum chisquare estimation. This procedure starts with the

observation that

(12) nii/nii = Ei /Ej.

C)
A 4
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where nij stands for the number of examinees that respond

correctly to item i but incorrectly to item j. With the

easier notation

(13 et Wei,

Fischer uses

(nij6inij602
(14)

icj 6i6j(nijoaji)

as a chisquare criterion. Now, (15) is minimized with

respect to the item parameters 6i, which yields estimates of

these parameters. Subsequently, the person parameters can now

be estimated, in the same way as with conditional maximum

likelihood, by using the estimated values of the item

parameters as the true- ones. and maximizing the resulting

likelihood expression.

An advantage of this method is its fastness.

Furthermore, although the nij are dependent. Fischer and

Scheiblechner (1970) claim, as a result of their simulation

studies. that the distribution of (15) is approximately

distributed as chi square. That this is true in the general

case, has however never be shown, neither has the contrary.

25
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Paired Comparison Estimation

In this method, the Rasch model is rewritten as a model

for paired comparison with ties (Bradley,1976). In the latter

method one compares the responses of a subject responding to

a pair of items. Therefore, the Rasch model is rewritten in

the following way:

(15) Pavimxvilev60 m ev(ev+60-1.

This is done by substituting i=si
4
and a simple rewriting of

(1). For a pair of items (i.j). one can now consider the four

possible patterns of an examinee v. These patterns then, give

informa.'on about the relative difficulties of the two items

for that examinee. In other words, one considers these

patterns as the outcomes of a paired comparison experiment.

In that case, three basic different outcomes can be

distinguished:

(Xvi > Xvi) item i correct and J not

(Xvi < Xvj) item j correct and i not

(Xvi = Xvi) both items correct or both items

incorrect.

The first outcome can now be interpreted as a comparison

showing that, for examinee v. item i is likely to be more

n6
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easy than item J. The other outcomes are interpreted

analogously.

The probabilities for the possible outcomes can now be

evaluated for the Basch model:

P(Zvi > Zvi) n ev6j1(8v+6i)(81,4j))-4

(16) P(Zvi < Xvj) = 9v6ii(Ov+60(0v43)]-1

Pavi = Xvp = (81,24.6i6j)((ev+6i)(8e6j))-4.

If one now conditions on the event on a non-tie, or

equivalently on the event that the total test score for the

two items is one. the result is the Bradley-Terry model from

the paired comparison literature:

(17) p(Zvi > X. Zvi = xv3) = 63(6063)-1 == Tii.

Note that in equation (12) the person parameter Ov has

disappeared; for any examinees the probability described in

(12) is independent of that examinees ability. This means

that the likelihood for a comparison of two items takes the

form

N
(18) L(61.053lai3.) = x 6J(6i+6j)-aihi(64+6j)-401

v=1

where aij is the number of times (Zvi > Xvj) is observed. For

n items however, the outcomes of the comparisons {Zvi > Xvj)

and avk > Zvi) are not independent. It is shown by van der
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Linden and Eggen (forthcoming. september 1987). that the

number of independent comparisons for an examinee with total

test score t on n items. is given by min(t.n-t). Denoting the

set of independent comparisons for a set of n items by J. the

likelihood r this set is given by

(19) L(61.....6n(aii.) = n 6Josi+6J)-4i3isi(si+6J)-4Ji

An iterative algorithm for obtaining maximum likelihood

estimates has already been given in the general paired

comparisons setting independently by Zermelo (1929) and Ford

(1957). Ftrthermore, they showed that these maximum

likelihood estimates exist and are unique if the following

necessary and sufficient condition is satisfied: For every

partition of the set in two non-empty subsets, for some item

in the first set and some item in the second one, the outcome

(XviOrvj) has occurred at least for one value of v. That this

is a weak. almost always satisfied condition has been showed

by Fischer (1981), who found the same condition for the

existence and uniqueness of conditional maximum likelihood

estimates. In contrast with conditional maximum likelihood

estimation, this method is not limited to a small number of

items, since elementary symmetric functions of order greater

than two do not have to be calculated in this approach. Note

that since the item parameters are estimated by maximum

likelihood. Vuey are estimated consistently.

P8
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After item parameters have been obtained. the person

parameters can be obtained by maximum likelihood estimation

where the real values of the item parameters are replaced by

their estimates.

More on the Marginal Rasch Model

In this section we will compare the different estimation

procedures in greater detail and mention some other features

of the marginal Rasch model that have not been discussed

before.

First, we have to explain why one wants to use the marginal

Rasch model instead of the Rasch model itself. As explained

befoze, one can not use the Reach model in combination with

joint maximum likelihood estimation. since the resulting item

parameter estimates are not consistent. Remains the

possibility of the conditional model. The main reason not to

use the conditional model is the loss of information

(mentioned earlier).

Secondly. the marginal Rasch mk 11 uan be seen as a model on

itself. just like the unconditional Rasch model, and was

introduced as such by Cressie and Holland (1985). In doing

so. Cressie and Holland used the notion of manifest

probabilities (Lazersfeld & Henry. 1968). i.e., the

proportion of examinees in a certain given population who

obtain a particular pattern of right and wrong responses.
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These manifest probabilities can be explained by an -

unobservable- latent trait model if that model correctly

predicts the data. Then they show that the Rasch model is a

model that can predict these manifest probabilities

correctly. given that the data satisfies certain conditions.

Those conditions will be discussed later. Note that there is

no rational explanation for the conditional Reach model.

Furthermore, it is not clear at all which of the

properties derived for the conditional maximum likelihood

estimation by Andersen (1970. 1973). are really true. How

well do the two different conceptions of sufficiency as given

by Fisher and Andersen match ? Another reason is that the

conditional model is only applicable to the one-parameter

logistic model and not with the two- or three- parameter

logistic models. The reason for the latter is that in the
more parameter logistic models, no simple 'sufficient'

statistics for ability exist.

Next, we shall discuss some advantages and disadvantages

of marginal maximum likelihood estimation in the Rasch model

in comparison with the other maximum likelihood and the

minimum chi-square and pairwise comparison approaches. First.

no persons have to be eliminated from the data to be able to

obtain estimates for the item parameters. In the other

maximum likelihood approaches. persons with all items correct

or wrong as well as items that have been answered correctly

by all examinees have to be eliminated from the initial data-

set. Also. in the minimum chi-square und in the pairwise

30
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comparison approach. one can r use the complete dataset for

estimation. This has the effect that not all the available

information in the data -set is used. Secondly. marginal

maximum likelihood estimation is also applicable in the two-

and three- parameter logistic models, while the others are

not. Unconditional maximum likelihood estimation does not

work in more parameter logistic models. since the estimates

of the guessing parameter drift out of their bands (Mislevy.

1986). The unconditional maximum likelihood, the minimum chi

square and the pairwise comparison approaches do not apply in

more parameter logistic item response models. since the

notion of sufficiency, which is the uniform base for all

these estimation procedures. is violated in these models

(Fischer. 1974). The main disadvantage of the marginal

approach is that no estimates of the person parameters are

obtained, only information about the distribution of ability

is achieved. Nc4e that the main purpose of a test is often to

get information about the ability of the examinees taking the

test. With marginal maximum likelihood estimation. this

information is not available; only the ability distribution

function can be estimated. However. this ability distribution

estimate could be used. for example. as an instrument to

measure the differences between different schools or

different curricula.

Important to note is further that marginal maximum

likelihood estimation yields consistent item parameter

estimates and that together with the estimated distribution

31
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inaction of ability, one achieves a reasonable fit in most

cases.

Compared with modal Bayes estimation, the marginal

maximum likelihood approach yields the same results and is

hence equivalent. This subject to the constraint that no

prior distribution is put on the item parameters.

The conditions on the manifest probabilities as given by

Cressie and Holland (1983). are exactly the same as the

conditions that de Leeuw and Verhelst needed to be able to

estimate the (empirical) ability distribution function. The

conditions of Engelen (1987) only show that is possible to

estimate the ability distribution consistently: it is not

proven that these estimates exist. To be able to do this, one

needs additional constraints like the ones given in de Leeuw

and Verhelst.

It is important to stress the fact that one should use

empirical marginal maximum likelihood, or equivalently.

empirical Bayes estimation, instead of the parametric

approach. This is necessary since one never has an exact

indication of the true form of the ability distribution

function; therefore this function should be estimated

empirically.

Although marginal maximum likelihood estimation seems

the most appropriate one, serious numerical problems exist,

especially for distribution free marginal maximum likelihood

estimation.
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