
DOCUMENT RESUME

ED 310 125 TM 013 698

AUTHOR Kelderman, Henk
TITLE Estimating Quasi-Loglinear Models for a Rasch Table

if the Numbers of Items Is Large. Research sport
87-5.

INSTITUTION Twente Univ., Enschede (Netherlands). Dept. of
Education.

PUB DATE 87
NOTE 49p.; Also cited as Project Psychometric Aspects of

Item Banking No. 20.
AVAILABLE FROM Mediatheek, Faculteit Toegepaste Onderwijskunde,

Universiteit Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands.

PUB TYPE Reports - Evaluative/Feasibility (142)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Computer Assisted Testing; Computer Simulation;

*Computer Software; Equations (Mathematics);
*Estimation (Mathematics); *Latent Trait Theory;
*Linear Programing; Mathematical Models; *Sample
Size

IDENTIFIERS *Contingency Tables; Item Parameters; Log Linear
Models; *Rasch Model

ABSTRACT
The Rasch Model and various extensions of this model

can be formulated as a quasi loglinear model for the incomplete
subgroup x score x item response 1 x x item response k
contingency table. By comparing various loglinear models, specific
deviations of the Rasch model can be tested. Parameter estimates can
be computed using programs such as GLIM, ECTA, and MULPIQUAL, but
this becomes impractical if the number of items is large. In that
case, the tables of observed and expected counts become too large for
c-nputer storage. In this paper, a method of parameter estimation is
described that does not require the internal representation of all
observed and expected counts, but rather uses only the observed and
expected sufficient statistics of the parameter estimates, which are
the marginal tables corresponding to the model terms only. The
computational problem boils down to computation of the expected
sufficient statistics which, in ite raw form, amounts to summation of
a very large number of expected counts. However, it is Shown that,
depending on the structure of the.model, the number of computations
can be reduced considerably by making use of the distributive law. As
a result, simpler models may be computed much more efficiently in
terms of both storage and processing times. Three data tables are
provided. (Author/TJH)

************************************************************ ***** ******
Reproductions supplied by EDRS are the best that can be made

from the original document.
******************** ********* ******************************* ***** * ** ***



Estimating Quasi-Loglinear Models
for a Rasch Table if the Numbers
of Items is Large

U ti DEPARTMENT OF EDUCATION
Office of Education., Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

FAus document has been reproduced as
received from the person or organization
originating it
Minor changes have been made to improve
reproduction clualitV

Points of view or opinions stated In thisdocu-
"nt do not nocssarilV represent official
OE RI positron or policy

Henk Kelderman

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Division of Educat i n M m nt
and Data Analysis

2

Research
Report

87-5

University of Twente



Project Psychometric Aspects of Item Banking No.20

Col ophon

Typing : A. Burchartz

Cover design : M. Driessen, AV-section '.irliversity of Twente

Printed by : Central Reproduction Department, University of Twente

3



Estimating Quasi-Loglinear Models

for the Rasch Table if the Number of

Items is Large

Henk Kelderman

running head: Estimating Quasi-Loglinear

4



Estimating Quasi-Loglinear

1

Abstract

The Rasch model and various extentious of this model can be

formulated as a quasi loglinear model for the incomplete subgroup x

score x item response 1 x x item response k Contigency table. By

comparing various loglinear models, specific deviations of the Rasch

model can be tested. Parameter estimates can be computed using pro-

grammes such as GLIM, ECTA and MULTIQUAL, but becomes unpracti-

cal if the number of items is large. In that case the tables of ob-

served and expected counts become too large for computer storage.

In this paper a method of parameter estimation is described that

does not require the internal representation cf all observed and

expected counts but uses only the observed and expected sufficient

statistics of the parameter estimates which are the marginal tables

corresponding to the model terms only. The computational problem

boils down to computation of the expected sufficient statiAics which

in its raw form amounts to summation of a very large number of ex-

pected counts. It is shown, however, that depending on the structure

of the model, the number of computations can be reduced considerably

by making use of the distributive law. So that simpler models may be

computed much more efficiently both in terms of storage and process-

ing time.

Keywords: Rasch model, Quasi-Loglinear Model, Incomplete

Contingency Table, Sufficient Statistics.
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Estimating Quasi-Loglinear Models

yor the Rasch Table if the Number of

Items is Lurge

Contingency table methods (Andersen, 1980; Bishop, Fienberg, &

Holland, 1975; Fienberg, 1980; Gokhale, & Kullback, 1978; Goodman,

1978; Haberman, 1978, 1979) have been used to estimate and test

various psychometric models. Loglinear models -- or their multiplica-

tive equivalent, with or without unobserved variables (Haberman,

1979) -- have been applied to Guttman's (1950) perfect scale model

(Clogg & Sawyer, 1981; Divisor, 1980; Dayton & Macready, 1980;

Goodman, 1959, 1975), to models for mastery tests (Macready & Dayton,

1977; Bergan, Cancelli and Luiten, 1980; van der Linden, 1980), to a

model of item homogeneity (Lienert, & Raatz, 1981) to Coombs' (1964)

unfolding model (Davison, 1979), and to the Bradley-Terry model for

paired comparisons (Fienberg, 1980).

Mellenbergh, and Vijn (1981) noticed the close similarity between

the Rasch (1960, 1966) model and a loglinear model for the score x

item number x item response contingency table. Vijn and Mellenbergh

(1982) showed that the parameter estimates of this model are

identical to Wright and Panchapakesan's (1969) unconditional maximum

likelihood (UML) estimates of the parameters in the Rasch model.

Tjur (1982) showed that the conditional Rasch model can be formu-

lated as a multiplicative Poisson model for an item 1 x...x item k

contingency table, where k is the number of items. For the same

contingency table, Cressie and Holland (1983) formulated a logEnear
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Rasch model without conditioning on the sum score. The model is not a

standard loglinear model since it includes interaction terms at every

possible level. Moreover, because there is no conditioning on the sum

score, the distribution of the latent trait must be taken into

account. To ensure that this distribution exists, complicated

inequality constraints must be imposed on the interaction terms.

Kelderman (1984) formulated the conditional Rasch model as a standard

quasi-loglinear model for the incomplete score x item 1 x...x item k

contingency table. In the sequel of this paper, this table is called

the "Rasch table". By adding a sum score way to the table, the

interaction terms vanish aid the model becomes a quasi-independence

model with main effects for the item responses only. Using ordinary

incomplete-contingency-table methods the conditional Rasch model can

be estimated and the overall goodness of fit tested. Moreover, the

model can be tested against lees restrictive quasi-loglinear models

to detect specific deviations from Rasch homogeneity.

The general quasi-loglinear model for the Rasch table is as

follows. Let X denote the vector of variables (x1,...,x0.1), where

the first k variables are the responses to dichotomous items, scored

zero for an incorrect response and one fur a correct response, and

the k + lth variable is the sum scor,. Let all the k + 1 possible

indices of the variables be collected in tne set U = 11,...,k+1).

Furthermore, let A1,...,A1,...,As be subsets cf U. Each set AI

corresponds to a model term in the quasi loglinear model described

below. The elements of A
I
are the numbers of the variables on which

these model terms depend. The vector of these variables is denoted

as x i.e. it is the vector of the variables x- where the variable
A
I
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numbers 1 are in the set Al. For example if Al = {1,3,4}

then xa = (xl, x3, x4). Using this notation, a quasi-loglinear model
ml

for the Rasch table can be written as:

(1) in mx uAl(xAl) uAs(XAs).

with constraints

1

X u (xA ) = 0,

xj.=0
'1 -1

for all j E AI with 1 = 1,...,s, where xl = 0,1;...;xk = 0,1; xk+1

xl + + xk and where In is the natural logarithm and mx is the

expected number of individuals in cell x. The u-terms uAl(xA1).

uA(xAI denote grand mean, main effects and interaction effects of

the variables xl,...,x10.1 like in ordinary ANOVA models. The models

must conform to the hierarchy principle, that Is, if a u-term occurs

in the model all lower order relatives must also occur in the model.

In this paper the equivalent multiplicative form of the general

loglinear model (1) is used:

(2) m
x

= ,D
A

(x
A

) . . . 0
A

(x
A

)

I I s s

where

0 A(x A) = explu A(x A)1 .
R l I l
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Kelderman (1984) showed that, if the sumscore variable is consid-

ered a fixed variable, and the item responses as random variables,

the quasi-indepedence model (Goodman, 1968), that is, a model with

main effects only, is equivalent to the conditional Rasch model. The

model has Al = 0, A2 = 111 ..... Ak+2=Ik+lj so that:

(3) In mx1x0.1 = u + u
2
(x

2
) + + u

k
(x

k
) + u

k+1
(x

k+1
)

with the constraints above. The first item parameter is set to zero

to fix the scale (Kelderman, 1984).

The advantage of using loglinear models for Rasch analysis is that

there is a great flexibility in the testing of Rasch models against

various alternative quasi loglinear models, and estimating the

parameters of these models.

To date, the disadvantage of loglinear models is, however, that

only a limited number of items and responses can be analyzed

simultaneously. The models we work with are defined for an incomplete

score x item 1 x x item k contingency table. The number of cells

of this table is the product of the numbers of categories of each of

the ways. If the number of items or subgroups becomes large, the

table becomes very large and, for the usual data sets, many of the

structurally non-zero cells of the observed table will become empty.

Most present-day computer programs for the analysis of contingency

tables by loglinear models (Baker b Nelder, 1978; Goodman & Fay,

1974) require the internal storage of the observed and expected table

of counts, which is virtually impossible for the present problem.

However, the table need only exist in theory. Firstly, the data can

9
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be stored in an ordinary subjects x variables data matrix, which

avoids storage of structural and nonstructural zero's. Secondly, the

parameter estimates may be calculated by solving the likelihood

equations in terms of the set of minimal sufficient statistics. For

the Rasch model, very efficient algorithms to solve the likelihood

equations in terms of minimal sufficient marginals have been

developed by Andersen (1972). Andersen's algorithms can also be

applied to models that can be broken down into a set of separate

Rasch models, e.g., models with different item parameters, within

each subgroup, within each scoregroup, or both see also Andersen,

1980a, p. 251). For other models, e.g., models with parameters

describing interactions between item responses the algorithm is of

limited use.

Goodman (1964, 1968) describes an algorithm for the analysis of

incomplete tables by quasi-loglinear models that calculates the

parameter estimates from sufficient statistics. He uses the

likelihood equations

(4) f
xA.

= m
xA.

for all x
A

, i = 1,...,s, where f
xA,

denotes the observed marginal
i

counts for the value xv of variables Ai and mx the corresponding
i Ai

expected marginal counts.

The parameter 'A (xA ) can be derived from (4) by writing the
i i

expected marginal counts in terms of the parameters
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where Ai is the set of variables not in Ai (i.e. U-Ai). That is, the

expected marginal counts mx are obtained by summing the expected
Ai

marginal cell counts which depend on x = (xA , x/ ) over all values
i

of xA . Since OA (xA ): does not depend on xA it can be brought
i i

before summation sign and solved as

0 A(x A) = f / 0 (x ) . . . 0 (x )

i i
x
A x-

Al Al A. A

i A
1-1 1-1

0A
i+1

(xA
1+1

) OA (xA )

s s

which gives the recursion formula:

(5) 0
(r+1)

(x ) = f / 0(r) (x ) . . . 0
(r)

(x
A.

)

A. A. x
A, xA

Al Al A.
1-1 1-1

,

(

0(r) (x ) . . . 0 A
r)

(x
A

1+1

(xA

s s

0(r)(x )(f /m
(r)

)
Ai Ai x

Ai
x
Ai

where r denotes the iteration number. This can be used until

convergence is reached.

It is easily shown that (5) is equivalent to the iterative

proportional fitting algorithm (Bishop, Fienberg, 8! Holland, 1975, p.

189). Haberman (1974, see Bishop et al, p. 186) gives the conditions

under which the iterative promotional fitting algorithm converges to

the unique maximum-likelihood estimates for the expected counts.

Estimation of the parameters of quasi-ioglinear models for the

Rasch table using (5), does not result in storage problems if the

t1
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number of items is large. The number of operations, necessary to

calculate the expected marginal sums m , however, may still be
A.

large. We will now reduce this number of1operations so that loglinear

models can be more readily applied to Rasch item analysis.

Efficient Computation of Expected Marginal Sums

The marginal table for a set of variables A with values xA is:

(6) m =Z m
x

= 1 OA (x
A

) . . . 0 A (x A )

xA
xA xA 1 1 s s

with the restriction xki.1 = x1 + + xk.

Using (6) to compute the marginal counts requires a large number

of operations if the number of items is not small: for all possible

values of x
A

the product of s model parameters must be calculated and

the results summed. The number of calculations can be reduced, how-

ever by using the distribution law of multiplication over summation

and by avoiding repetition of the same calculations.

Before describing this method to calculate the expected sufficient

statistics for an arbitrary loglinear model, its principles are

illustrated for a small example. It is shown that the expected sum

score marginal table of an item 1 x item 2 x item 3 x sum score table

can be calculated by repeated multiplication and summation of para-

meters depending on one item at a time, instead of summing the expec-

ted counts over all cells. First it is shown that the number of mul-

tiplications can be reduced by multiplying the parameters depending

on one item at a time, instead of summing the expected counts over
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all cells. First it is shown that the nucber of multiplications can

be reduced by multiplying the parameters depending on the second item

with the parameters depending on the first item and using the result

in later calculations. Then it is shown that c .lent summation over

the first two items can be Y:complished by summing only over the re-

sult of the previous multiplications. In addition, the third item can

be processed by multiplying the result of the previous summation with

the model parameters depending on it.41 three, and summing the result

over item three. Finally the expected sufficient marginal sums are

then obtained by multiplying the result with the remaining model

parameters depending on the sumscore. The restriction x4 = xl + x2 +

x3 is respected, by summing over item 1 (1 - 1, 2, 3) only terms that

depend on the same sum score ti = xi + + xi of the first i items.

As an example consider the case of three items and a model with

,11 main effect parameters and one interactiln effect parameter of

the third item with the sumscore, i.e., k = 3 and AI = 111, {2 },

A3 = 131, A4 = {4 }, A5 = {3,4). The multiplicative form of the

loglinecr model then becomes

(7) m (x 0 (x (x ix ) (x x )

x1x2x3x4 1 1 2 2 3 3 4 4 34 3 4

with restriction x4 = x1 + x2 + x3. The grand mean effect is left out

for simplicity. The expected marginal sum for the sumscore variable

x4 is:

a
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m+++x = ///m
4 x

1
x
2

x
3

X1X2X3X4

x
4
=x

1
+x

2
+x

3

=1 i101(xl) 02(x2) 03(x3) 04(x4) 034(x34)
X
1

x2 x3

x
4
=x

1
+x

2
+x

3

for x4 = 0, 1, 2, 3. Writing each of these summations in full:

m+++0 m0000

m+++1 m1001"01014110011

=

=

0
1
(0)

01:1)

0
2
(0)

02(0)

0
3
(0)

03(0)

0
4
(0)

04(1)

0
34

(00)

034(01)

+ 0
1
(0) 0

'2
(1) 0

3
(0) 0

4
(1) 0

34
(01)

+ 0
1
(0) 0'2 (0) 0

3
(1) 0

4
(1) 0

34
(11)

(8)

m+++2 = m1102+m1012"0112
0

1
(1) 0

2
(1) 0

3
(0) 0

4
(2) 0

34
(02)

+ 0
1
(1) 0

2
(0) 0

3
(1) 0

4
(2) 0

34
(12)

+ 000) 02(1) 03(1) 04(2) 034(12)

m+++3 m1113
. 01(1) 02(1) 03(1) 04(3) 034(13) .

Applying (8), 8 x 4 2 32 multiplications and four additions are

required to compute the marginal sums. Considering (8) it is seen

that the four products of parameters 01(x1) and 02(x2) (x1 . 0,1;

x2 = 0,1) are each calculated twice. The number of operations can

therefore be reduced by first calculating the product of the para-

meters depending on variables one or two:

(9) '2(xl.x2) (T'1(x1) 4'2(x2) .

xi = 0,1; x2 = 0,1; where the function V2 is defined as the product

of all model parameters that depend on the first variable (x1), the
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second variable (x2), or both. The function V2 depends on all the

variables on which one or more of these parameters depend. In this

case there are two main effect parameters so that V2 depends only

on xi and x2. If, however, the model also contained an interaction

parameter for the combination of variables x2 and x3, V2 would de-

pend on variables xl, x2 and x3. Later, the Vi will be defined more

generally, but the present definition is consistent with that defi-

nition. Substituting (9) in (8) yields:

m+++0 =
V2(0,0) 03(0) 04(0) 034(00)

m+++1 V2(1,0) 03(0) 04(1) 034(01)

+ V2(0,1) 03(0) 04(1) 034(01)

+ V2(0,0) 03(1) 04(1) 034(11)

(10)

m+++2 V2(1,1) 03(0) 04(2) 034(02)

+ V2(1,0) 03(1) 04(2) 034t02)

V2(0,1) 03(1) 04(2) 034(12)

m+++3 V2(1,1) 03(1) 04(3) 034(13) .

Application of Equation 9 and utilizing the result in (10) saves

four operations.

Furthermore it is seen that the first and the second term in the

calculation of m
+ + +1

in Equation 10 are the same except for the V

factor. The same is true for the second and the third term in

m + + +2. Therefore, using the distributive law of multiplication over

summation, (10) can be rewritten as

01+++0 = V
2
(0

'

0) 0
3
(0) 1

4
(0)

34
(00)
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[V2(1,0)+V2(0,1)] 03(0) 4;4(1) 034(01)

+ V2(0,0) 03(1) 04(1) 4,34(11)

(11)
m+++2 = V2(1,1) 03(0) 04(2) 034(02)

+ [V2(1,0)+V2(0,1)] 03(1) 04(2) 034(12)

m+++3 = V2(1,1) 0
3
(1) 0

4
(3) 0

34
(13)

This reduces the number of operations required even further.

Using (11) instead of (10) saves 2 x 3 multiplication operations in

the calculation of m+++1 and m+442 It is seen from (11) that the

same sum of V-terms occurs in the calculation of both m+++1 and

m + + +2.
Consequently, the number of summations can be reduced by one

by first calculating all sums of V-terms and then applying the

results in (11).

In the calculation of m+441, the V-terms V2(1,0) and V2(0,1)

which are to be summed have in common that the scores of the items

on which they depend have the same sum score, i.e., 1 + 0 = 1 and 0

+ 1 = 1. This is caused by the fact that x3 = 0 in 03(x3), t = 1 in

m+++t and t = xi + x2 + x3 so that xl + x2 = t-x3 = t2 = 1.

Let S2(t2) be the sum over the first two variables of the V2-

terms for which the partial sumscore over the first two items is

equal to t2. The index of S denotes that the parameters that depend

on the first two variables have been processed. This sum becomes

(t2)

(12) S
2
(t

2
) 2 V

2
(x x

2
)

x x
2

)

for x1 = 0,1; x2 = 0,1; t2 = 0,1,2; t2 = xi + x2, where )(c)
(a,b)

means summation of the argument over the possible values of a and
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b, holding c constant. In (12) this means that for each value of

the sum t2 of the first two items, the V-terms are summed over xi

and x2. Written in full, Equation 12 gives:

(13) S2(0) = V2(0,0)

S2(1) = V2(0,1) + V2(1,0)

S2(2) = V2(1,1)

It is seen that there is only one V-term for which the sum score t2

of the first two items is zero. Therefore for t2 = 0 the sum of V-

terms over the items xl and x2 is only one term: V2(0,0). In the

second equation there are two V-terms for which the sum score t2 of

the first two items is one, V2(0,1) and V2(1,0). therefore for t2

1 the sum of the V-terms over xi and x2 is the sum of V2(0,1) and

V2(1,0). Note that since xl is equal to t2 - x2, summing over only

xl for constant t2 is the same as summing over both xl and x2 for

constant t2. A general definition of the functions Si for i = 1,

k is given later. The present definition of S2 is consistent

with that general definition. Substitution of (13) in (11) gives:

m +++P = S
2
(0) 0

3
(0) 0

4
(0)

34(00)

m+++1 S
2
(1) 0

3
(0)

4
(1)

34
(01)

+ S (0) 0 (1) 0
4
(1)

34
(11)

(14)
2 3

m+++2 = S2(2) 0
3
(0) 0

4
(2)

34(02)

+ S
2
(1) 0

3
(1)

4
(2)

34
(12)

m+++3 = S
2
(2) (1) 0

4
(3)

34
(13)

7
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In Equation 8 through 14 the calculations for the first two

items have been performed and expressed in S2(t2). The calculations

involved a multiplication step (9) and a summation step (12). In

the multiplication step, for each of the possible combinations of

responses on the first two variables, the corresponding parameters

that depend on these two variables are multiplied and assigned to a

V-term. In the summation step these V-terms were summed over the

values of the first and the second variable, where the partial sum

score t2 of the first two items was held constant. By holding the

partial sum score constant, it is assured that the restriction x4 =

xi + x2 + x3 can be respected. Since the first two items are

processed the restriction becomes

(15) x4 t
2

+ x3.

The generic form of Equation 14 becomes

(t3)

(16) m
+++X

X S (t ) 0 ix ) (x ) 0 (x )

'2 2 3' 3 4 4 34 3 4
4 (t

2'
x
3

)

tor t2 = 0, 1, 2; x3 =0,1; x4 = t3 = t2 + x3.

In a similar way, the third item can be processed pe-forming a

multiplication step and a summation step. Finally the sumscore

variable can be processed by performing a multiplication step.

The next multiplication step involves the product of the S-term

and the parameters that depend on item three (see Equation 16). Two

parameters depend on item three, the main effect parameter 03(x3)

and the interaction effect parameter Z34(x3x4) for the combination

of item three and the sum score. The product is then

T$
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(17) V3(t2,X30(4) = S2(t2) 03(x3) 034(X3X4)

for t2 = 0, 1, 2; x3 = 0,1; x4 a t2 + x3.

Where the function V3 is defined as the product of the S2-term

and the model parameters not yet processed that depend the third

variable (x3). The function V3 itself depends on all the variables

(partial sum score, items, or the sum score) on which one or more

of these parameters or the S2-term depend. In the present model the

parameters 03(x3) and 034(x3,x4) depend on variable 3. These para-

meters and the S2(t2) term depend on the variables t2, x3, and x4.

Substituting (17) in (14) yields:

m+++0 = V3(0,0,0) 04(0)

m+++1
=

V3(1,0,1) 04(1)

+ V3(0,1,1) 04(1)

(18)
m++.4.2 V3(2,0,2) 04(2)

+ V3(1,1,2) 04(2)

m
+++3 = V3(2,1,3)

0
4
(3) .

Applying the distributive law, once more we can rewrite (18) as:

m+.440
=

V3(0,0,0) 04(0)

m+++1 = [V3(1,0,1) + V3(0,1,1)1 04(1)

(19)

m+++2 = 1V3(2,0,2) + V3(1,1,2)] 04(2)

m+++3
=

V3(2,1,3) 04(3) .

The V3 -terms depend on the scores of the first three items. They

depend directly on x3 and indirectly on xi and x2 via the partial

ri 9
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sum score t2. Note that, due to the interaction parameter 034(x3x4).

the V-terms in (19) also depend on sum score x4. Obviously the

values that this total sum score can assume are restricted by the

value of the partial sum score on which the V-term depends, in this

case x4 m t3. If there were more than three items, say k, the sum-

score could assume values larger or equal to t3, i.e. t3 ! xk 1 K.

As before the summed V3-terms in (19) have the same partial sum

score for the first three items, because t2 + x3 t3 is the same

in each term. The sums in (19) can be replaced by:

(t 3)
(20) S3(t3,x4) V

3
(t
2'

x
3'

x
4

)
'

t
2'

x
3

)

for t2 = 0,1,2; x3 = 0,1; x4 = t3 a t2 + x3. The index of S3 de-

notes that the parameters that depend on the first three variables

have been processed. For each t3 this sum becomes

S3(0,0)

S3(1,1)

=

=

V3(0,0,0)

V3(1,0,1) + V3(0,1,1)
(21)

S3(2,2) = V3(2,0,2) + V3(1,1,2)

S3(3,3) = V3(2,1,3)

so that

m +++0 ' S
3
(0

'
0) 0

4
(0)

m+++1 S3(1,1) 04(1)
(22)

m+++2 = S-'2,2) 04(2)

m+++3 s3,3,3) 04(3)

")0
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The expected marginal sums can now be obtained by performing one

more multiplication step for the sumscore variable,

(23) V4(t3,x4) = 53(t3,x4) O(x4) .

t3 = 0, 1, 2, 3; x4 = t3, where the function V4 is defined as the

product of the S3-term and the model parameters not yet processed.

The function V4 itselt depends on all the variables (partial sum

score, items, or the sum score) on which one or more of these

parameters or the 53 term depend. Substituting (23) in (22)

m++.1.0 = V4(0,0)

m+++I V4(1,1)
(24)

m4442 = V4(2,2)

m4443 V4(3,3)

the expected marginal sums are obtained.

In this example, a small number of items and a simple model was

chosen for the example. In practice there will usually be many more

items and the model may contain interactions of all orders. In what

follows, this marginalization by variable algorithm is described

for arbitrary number of items and an arbitrary quasi-loglinear

model.
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The Maryinalization-By-Variable Algorithm

In this section, the Marginalization-By-Variable (MBV) algorithm

is described for an arbitrary model (2), where the model terms

0, (1A ), 0A (xA ), oA (xA ) are main and interaction

al 1 i i s s

effects of the variables whose indices are in the sets Al,...,Ai,

...,AvInthemodeltermthevectorx.mfers to a
J

xA,

generic value of the vector of variables whose indices are in Ai.

Thus each model term corresponds to a set of parameters with

specific values of xA . For convenience, we will refer to a model

term OA (xA ) by the index j of the set Ai that characterizes that

model term.

To estimate the model parameters using the iterative proportio-

nal fitting algorithm (5), expected sufficient marginal counts IN. ,

AI

m
xA

, m. must be calculated. The calculation of one
AA

s

expected
1
marginal table mx

Al

is described. To obtain this table,

summations must be performed over all possible values of the

remaining variable indices not in Al.

Although A/ may be every subset of variable indices, for

simplicity of exposition, it is assumed that Al contains the indi-

ces of the first v (4) variables, i.e. Al = 10-1,...,0-11. This

presents no loss of generality since the original set of items can

be renumbered arbitrarily to fit this representation. Moreover, all

tables that do not depend on the sum-score variable can be obtained

by summing m over the sum-score variable.
xA

Just as in the example above, the expected marginal table m
xAl

is obtained by repeated multiplications (c.f. (9) and (17)) and
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summation (c.f. (12) and (20)) of the parameters that depend on one

the variable at a time. The result is multiplied by the remaining

parameter (cf. (23)).

To obtain m
x

, 2v + 1 steps are needed in the Algorithm below:
A,

2v steps for multiplication and summation of the parameters

corresponding to the first v items and one more step to nultipy the

result with the remaining parameters to obtain the marginal table.

An optional summation has to be added if the marginal table may not

depend on the sum score.

Six steps are described: step 1, 2, 3, 4, 2i-1, (2i), and

(2v+1). The odd numbered steps involve multiplication operations

while the even numbered steps involve summation operations. Step 1

and 3 correspond to multiplication of the model terms depending on

variables 1 and 2 respectively. The summation in step 2 does not

have any effect but is added for later reference. Therefore, the

result of step 1, 2, and 3 correspond to nultipliation of the model

terms depending on variable 1 and 2. In the example above, these

first three steps are summarized in Formula (9).

Step 1

Multiply the parameters depending on variable xi. Let LI be the

set of model terms j (E11,...,s1) depending on variable 1 and let

B1 be the set of indices of the variables on which these model

terms depend. Then, the product is obtained:

(25) ) = n (DA (xA ),
"1 jrL

1
nj "j
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for all possible values that the vector xBI can assume. If

xb (b e B1) is an item (b 5 k) it can assume values x = 0, 1. All

combinations of item responses can occur. If xb is the sum-score

variable fb = k + 1) then the values it can assume depend on the

values of the item responses:

xk+1 = t(x8) , k - (#(B) - t(xi))

where t(%81) is the sum score of the items in the vector xB
1

and

the function #(X) yields the number of elements of a set X. The

formula shows that the sum score variable cannot be smaller than

the sum scores of the items of vector x6. Also, it cannot be larger

than the total number of items minus the number of wrong responses

(CB) - t(xiy) of the items in the vector xB.

Nt,te that since the sets Ai g LI) are subsets of B1, the

values of xA (j c LI) are known if the value xB1 is known.

Step 2

Sum the result of step 1 over variable xl holding the sum score

t1 constant, where ti was defined as xl + + xi (the sum of the

first i item responses). Since in this step t1
and xl are still

equal, in fact no summations are performed. However for later

reference the following sum is defined

(26) Si(txp ) F

(t1

I) VI(CR )

61 "l' "1

for all possible values of t1 and xcl, where t1 = xl and

24
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CI = B1 - {1} is the set of subscripts of the variables on which S

depends.

The sum score t1 can assume values 0 and 1 since it is equal to

x1. The items in Aci can each assume the values 0 and 1. If xci

also contains the sum-score variable x0.1, the latter assumes the

values

xk+1
(tl+t(xc )), (ti+t(x, ) + (k - 1 - it(C )))

1

that is, the total sum score x0.1 cannot be smaller than the sum

score t1 of the first item plus the sum score of the items in

vector xc
1

. Also it cannot be larger than this value plus the

maximum score that the remaining items, not in CI nor used in t1,

can assume.

Step 3

Multiply the result of step 2 with the model terms that depend

on variable x2 but are not used in step one, i.e. that are not in

LI. Let L2 be the set of these model terms (J c (1 s }) and let

B2 be the set of indices on which these parameters or the result SI

of etep 2 depend. Then this product is defined as

(27) V2(ti,x8 ) Si(ti,xc ) a (I)A.(xv)

2 1 jeL2 j j

for all possible values of t1 and x82. Note that since the sets Ai

E L2) and CI are subsets of B2, the values of xiki E L2) and

Mc, are known if the value xBI is known. The values that t1 and x8

L5
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can assume are defined analogously to those in step 2 with CI

replaced by B2.

Step 4

Sum the result of step 3 over t1 and x2 holding the sum score

t2 XI + X2 = t1 x2 constant. This sum is

(28)

(t2)

A

S2(t,,sic

2 61

) E

2'
,

1 V,(tx6 )

for all possible values of t2 and and where C2 E B2 - {2 }. The

values that t2 and xc
2
can take are defined analogously to those of

ti and xci in step 2i (see below).

Steps similar to step 3 and 4 are performed for the remaining

va.iables x3, ..., xi, ..., xv over which one has to sum. In

general these steps are as follows.

Step (21-1)

Multiply the result of the previous step with the model terms

depending on variable i that are not used in the one of the

previous steps, i.e., the model terms j (r (1, ..., s }) that are

not in LI, ..., Li_1. Let Li be the set of these parameters and let

Eli be the set of indices on which these parameters or the result of

the previous step depend. This step yields the product.

(29) Vi(t4.,16.) E ) n
A

(x
A.

)
, ul

1-1 jcli j j

for all possible values of ti_l and xBi, where

02, 6
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Ci.1 E Bi_i - li-1). The values that ti_i and )(Eli can assume are

dssined analogously to the values of t1 and xci in step 21.

Sftri 2i

Sum the result of the previous step over ti_l and xi holding

constant the sumscore t1 8 x1 xi = ti
-1 + xi. This step

yields the sum

(Li)

(30) Si(ti,xc ) = 118 )

(t
I-11

X
i

)

yti.1,

for all possibly values of t1 and xci, where C1 E B1 -

The sum score t1 = xi + + xi can assume values 0 through i

since each of the items xi, , x1 can take the values 0 or 1.

Mso,eachoftheitemsinxc.can assume the values 0 and 1. Nate

that none of the items in xc
i

is used to calculate t1 since
xCi

is

the vector of item responses on which Si depends after summation

over the first i variables. If xc
i

also contains the sum score

variable x0.1, it assumes the values

(31) xic+, = (t1 + t(xc )),...,
1

(ti + t(xc,) + (k - i -

that is, the total sum score X10.1 in Xci, cannot be smaller than

the sum score t1 of the first i items plus the sum score t(xci) of

the items in the vector gr Also, it cannot oecome larger than

this value plus the maximum sum score that the remaining items,

27
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i.e. the items not in xci nor used to calculate ti, can attain.

Step 2v+1

Tr calculate the expected marginal sums m in (6) that depend
xellv

on the variables AI 1(v+1) ..... (k+1)I, the S;-term resulting from

the previous step is multiplied by the model terms that have not

been used in the previous steps, i.e. the model terms that are not

in 11,...,Lv. Let Lv +1 be the set of these model terms (j), then

the expected marginal sums are

(32) m
x

= S
v
(t

v L.

) n (x )

jA v cL
v+1

Aj Aj

fwallpossiblevaluesof36.Note that the sets
mi

Aj 0 4 Loll correspond to mooel terms that have not been used

earlier. Consequently, they cannot contain any of the variables

1, ..., v. Therefore, Ai (j 6 L04) are subsets of AI =

Similarly since Sv is obtained by summation over the variables

1, ..., v the result cannot depend on xi,...,xv. Therefore Cv is

also a subset of A . Iv+1,...,k+11.

Furthermore, since the model contains a main effect for each

variable, each variable index (v+1),...,(k+1) occurs at.least in

one of the sets Aj 0 c L
v+1

). Because of this and the observation

above we have

Az U A = 1v+1,...,k+11

jct.
v+1

The variables in (32) are related in the following way. since the

28
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sets Cv and A3 (j e L01) are subsets of AI the values of

x. (j c Led and xcv are contained in xA . Furthermore, the sum
A3

1

score variable x10.1 in the vector
xAj

is related to tv and the

values xA for each of the model terms j c Loi by the relation.

tk+1 = tv + xv+, + + xk,

where xv+1,...,xk can each take the values 0 or 1.

Numbers of Calculations in the MU-algorithm

The MBV- algorithm was developed to reduce he number of opera-

tions necessary to calculate the expected sufficient marginal

tables that must be used in the iterative proportiooal fitting

algorithm (5). We will compare the number of calculations using the

MBV-algorithm with the number of calculations that would have been

necessary if all the expected cell frequencies had been summed to

obtain the expected sufficient marginals. The comparison is done

only for the quasi-independence model, i.e., the model containing

main effect parameters onl .:-thermore it is assumed that all

input variables are dichotomously scored items.

Summing over all cells requires calculation of each expected

cell frequency. One expected cell frequency involves the

multiplication of the general mean parameter with k item parameters

and one sum score parameter, i.e. k+1 multiplications. There are a

total of 2k cells in the table, hence



Estimating Quasi-Loglinear

26

(33) (k + 1)2k

multiplications have to be performed.

The expected marginal table for the responses on one item has

two possible cells, so

(34) 2k - 2

summations are necessary to obtain this table from the 2k cell

counts. Likewise, for the sum score marginal table, this number is

(35) 2
k

- (k + 1)

since the sumscore has k + 1 possible values. In Table 1 the

numbers of multiplications and summations are given for tests of

different lengths. Obviously, if the number of items is large, this

method is not feasible.

In the MBV algorithm the number of calculations to obtain tr,e

sumscore marginal is as follows. In the multiplication step (29)

each of the specific values of elements of the codomain of Vi is

obtained by multiplying an element of the S-term with each of the

parameters whose index is in Li. If there are only main effects in

the model, Li has only one element: The number of the main effect

term for variable i. So only one multiplication is needed for each

element of Vi. The number of elements in Vi is equal to the product

of the number of values that the partial sumscore ti_l can assume

and the number of values that the item responses xBi can assume.

30
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Because we consider a coati affects model B1 = 111, and hence xBi is

equal to (xi). The number of possible values of ti -1 is 1 and the

number of values of xi ;s 2. Consequently one multiplication step

involves 2i multiplications.

In the summation step, the S-term is obtained by summing certain

elements of Vi over xi and ti.1. In this case Si depends on ti

which can assume i + 1 values. Therefore to obtain S from V, (21) -

(i + 1) = 1 - 1 summations are necessary.

To obtain the marginal table for the sumscore variable a

multiplication and a summation step must be performed for each of

the k items. Note that in the first step there is no S-term and

only one (main effect) parameter. Hence this step does not involve

multiplication. Therefore, multiplication starts at the third step.

In addition, each of the (k + 1) values of the last S term has to

be multiplied with the sumscore parameter and the grand mean

parameter. The number of the multiplications is therefore

k k

(36) X 21 + 2(k + 1) =2X1 + 2k
i=2 1=1

= k(k + 1) + 2k

a k(k + 3)

There are summation steps for each of the k items, therefore the

number of summations is
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,t 1)k G
(37) (i - L, =

(k+2 a
i=1

k(k - 1)

It can be seen from Table 1 that the number of multiplications

and summations in the MBV algorithm remains within reasonable

limits and is less than in the case of summing over all cells.

For an arbitrary model Al,...,As for k dichotomous items, the

number of multiplications and summations are more difficult to

calculate. Suppose =gain that marginalization has to be performed

over the all observed variables. One multiplication step involves

(38) ai #(1,

i = 2 ..... k, multiplications where

(39) ai = #({Vi(ti_idip)))

isthenumberofelements0Viand#ft] lis the number of para-

meters to be multiplied with the preceding sum for each element of

The first step does not involve an S term so that it involves

a
i
(#L

1
-1) multiplications. After k steps the S term depends only on

x4 and the marginal table can be obtained by multiplying each of

its k + 1 elements with the sum score parameter and the grand mean,

which gives 2(k + 1) multiplications. The total number of

multiplications then becomes
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k

(40) #(Li)ai - a
1
+ 2(k + 1)

1=1

The number of summations in each step is

(41) ai - bi

where

(42) bi = #({Si(ti,xc)1)

i.e. the number of specific values of Si. The total number of

summations becomes

k

(43) Z (a, - bi)

i =1

The numbers ai and bi depend on the specification of the model.

The number ai of elements of Vi(ti_rxis ) is the product of the

number of partial sumscores ti_l and the number of values of

The number of partial sumscores ti_i is equal to i. The number of

values of xBi is the product of the number of values that the items

whose numbers are in Bi can :ointly assume and the number of values

that the sumscore can assume, if its number is in Bi.

can jointly assumeThe items whose numbers are in Bi

(44) 2

#(Bi-{k+1})
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values. If the number of the sum score variable is present in Bi,

i.e. #(110.11 n
i

) 1, the number of values that the sumscore

variable can asssume is equal to

(45) 1 + k - f(Bi).

Thus, the number elements of Vi becomes

f(Bi- {k + 1 }) 0(1k + 11 n
(46) a

i
n 2 (1 + k - f(B )

The S-term is obtained from the V-term by summing the elements

with the same partial sumscore ti over the two values of item i.

Consequently the number of values that the partial sumscore can

assume becomes i + 1 rather than i and the number of values that

xci can assume is half the number of values of kBi, hence

b = (1 + It a
i 2i i

The number of summations using the MBV algorithm thus becomes

(47) a.(1
(i + 1)

ai 2" (1 - 1-)
121 1=1

In contrast, if the marginal table for the sumscore variabele is

calculated by summing all cell frequencies, the number of summa-

tions is equal to the number of cells of the full table minus the

number of cells of the marginal table.

3 4
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(48) 2k - (k 1).

and the number of multiplications is equal to

(49) 2
k (s - 1),

which is the product of the number of cells of the full table and

the number of parameters minus one.

It is seen from Formula (46) and (47) that the number of

summations depends exponentially on the number of variables in Bi,

This number, in turn, depends on the number of variables that

variable i interacts with. The number of summations (48) in the

summing over all cells algorithm, however, will always depend

exponentially on the number of items k.

Comparing the number of summations (47) in the MBV algorithm

with the number of summations (48) needed when summing over all

cells, it can be shown that the former is smaller or equal to the

latter. Equality occurs if the model is the saturated model (see

Appendix I).

Application of the MBV Algorithm

To estimate quasi-loglinear models for the Rasch model when the

number -; items is large, the computer program GELORA (Generalized

Loglinear Rasch Modelling) was written. GELORA is a Pascal program

that calculates the parameter estimates using the methods described

above.
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To evaluate the applicability of the algorithms, test data

conforming to the Rasch model where generated for 20 items. The

item difficulties where randomly chosen from the uniform distribu.

tion over the interval (-2,2). Latent trait values fur 10,000 cases

were drawn from a uniform distribution over the (-3,3] interval.

Loglinear Rasch models were then fitted to these data. Seventeen

computer runs were made for different subsets of items, where the

first subset contained the first four items, the second subset con-

tained the first six items etcetera.

In Table 2 the numbers of iterations, the mean CPU time per

iteration, the CPU time needed for input amd initialization, and

the total CPU time of the problem run are shown. Iterations were

performed until none of the parameter estimates could be improved

by more than .005. A VAX 8750 computer was teed. From Table 2 it is

seen that the number of iterations and the mean CPU times per

iteration do not increase dramatically compared to the number of

items in the test.

In Table 3 the real item difficulties and the estimated item

difficulties values of all 20 items are given. The item parameter

estimates were obtained by the GELORA program and by the PML

(Gustaffson, 1977) program. PML calculates the CML estimates of the

item parameters with Andersen's (1972) method. In both cases the

first item difficulty parameter was set equal to its real value.

Furthermore, the iterations were stopped until none of the

parameter estimates could be improved by more than .0001. It can be

seen from Table 3 that both solutions are identical up to the

second decimal place.
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The algorithm was also used with simulated Rasch data for 40

items. With 40 items the solution was reached after 29 iterations.

Each iteration took approximately 155 CPU seconds. This shows that

maximum likelihood estimates in quasi -loglinear Rasch models can be

obtained for practical numbers of items.

Conclusion

In this paper an algorithm is presented that ca'culates the

parameter of quasi-loglinear models for the Rasch tabel from the

expected sufficient statistics by an efficient method. The method

is implemented in the program GELORA. The progam facilitates the

application of Rasch item analysis by quasi-loglinear models.
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Appendix I

In the case of the saturated model D
1

= fi ..... k+11 so that

Formula 46:

, i2(k - 1 + 1)

The number of summations, Formula (47), is:

k - 1 1
i2 (1 - 7)

1=1

THEOREM

For all integers k ! 1 ,

k - 1 lk
1 i2 (I - /1 = 2k - (k + 1).
i1

Proof (by induction): For k = 1, the theorem is true because both

sides reduce to zero.

The induction hypothesis is that for r > 1

Hence

r r-i 1 r
1 i2 (1 - 11 - 2 - (r + li
1=1

r+1

1 i2
(r + 1) - i 1

(1 - 1)

1.1
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r+1 4

2 1 i2' (1 a)T

r
-2 i [121 i(1 (1 - 4)] + 2(r + 1) 2-1 (1 - -01

igl
r.4.1

2(2r- (r 1)) r 2r 1 - (Cr 1) + 1)

which proves the theorem for k r 1.

39
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Table 1

Numbers of Multiplications and Summations Required by Summing over

all cells and the MBV Method to Calculate the Sumscore Marginal

Number of Summing all cells MBV Method

Items

5 192 26 40 10

6 448 57 54 15

7 1024 120 70 21

8 2304 247 88 28

9 5120 502 108 36

10 11264 1013 130 45

11 24576 2036 154 55

12 53248 4083 180 66

13 114688 8178 208 78

14 245760 16369 238 91

15 524288 32752 17O 105

16 1114112 65519 304 120

17 2359296 131054 340 136

18 4980736 262125 378 153

19 10485760 524268 418 171

20 22020096 1048555 460 190

40
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Table 2

Numbers of Iterations and Mean CPU Times for in Estimating

Rasch models with GELORA.

Number of Number of CPU Time

Items Iterations

Per Input Total

Iteration and
Initialisation

4 7 0.3 10.0 12

6 8 0.7 14.3 20

8 8 1.5 18.5 31

10 9 2.6 24.7 46

12 10 4.3 32.4 71

14 11 6.6 39.0 105

16 11 9.5 48.2 153

18 12 14.2 58.0 228

20 13 18.8 68.7 304

41
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Table 3

Real and Estimated item Difficulties for Simulated Data

Item

1 3 4 5

Real .858 -1.512 -0.173 -1.040 1.137

GELORA .858* -1.517 -0.214 -1.069 1.161

PML .858* -1.517 -0.215 -1.069 1.161

6 7 8 9 10

Real 1.354 1.690 0.577 -1.270 -0.155

GELC1A 1.318 1.636 0.618 -1.350 -0.154

PML 1.318 1.636 0.618 -1.349 -0.153

11 12 13 14 15

Real 1.302 1.352 -0.823 -0.883 -1.754

GELORA 1.243 1.282 -0.858 0.871 -1.801

PML 1.244 1.284 -0.857 0.871 -1.801

16 17 18 19 20

Real -0.026 0.221 0.517 -0.460 1.658
GELORA -0.02 0.183 0.502 -0.506 1.654

PML -0.03d 0.183 0.502 -0.507 1.653

*) The estimated parameter of the first item was set equal to the

real parameter to fix the scale

42
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