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Abstract

The purpose of this study is to find out an efficient way

to reduce the bias in estimates of the Rascb model

parameters due to aberrant response patterns. First, the

benefits of using one or twosided goodnessoffit test

of patterns to the model are discussed. Then, the

consequences of removing nonfitting patterns from Rasch

model data are considered. Finally, an iterative procedure

to reduce the bias is presented. This procedure replaces

nonfitting patterns by certain patterns sampled according

to the motel. The effectiveness of this procedure is

investigated in a simulation study using Rasch model data

mined with aberrant response data.

6
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Introduction

It is known that IRT models often have to be applied

to data containing aberrant response patterns; that is,

patterns of persons whose response behavior deviates from

the model. Such patterns have to lac) detected, because

otherwise predictions from the model may no longer be

valid. For this purpose, many person fit indices have been

proposed, and still new indices are being developed (e.g.

Drasgow, Tavine & McLaughlin, 1987; Molenaar & Hoijtink,

1987). Even a small number of aberrant patterns in the

data may affect inferences about the model. In particular.

the model might be rejected, whereas it is appropriate for

the majority of persons, or biased estimates of the model

parameters may be obtained. For these reasons, a method to

handle aberrant patterns is needed.

A common strategy to deal with aberrant, or more

precise. nonfitting patterw: is simply to remove them from

the data. Recently, several studies of this strategy in

the Rasch model (RM) were reported. In an attempt to

construct a RM scale, Hoijtink (1986) removed nonfitting

patterns from the data iteratively. Nonfitting patterns

were excluded in the first run and nonfitting items in the

second run. Roger and Hattie (1987) investigated the

usefulness of the removal strategy for several popular

person and item fit statistics to obtain an overall fit to

the RM. These authors showed, by means of simulated data,

that the removal strategy did not guarantee fit of the

7
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remaining data to the model. Kogut (1987) applied the

strategy of iterative removal of nonfitting patterns to

obtain a better detection of aberrant patterns. However,

he showed that this strategy in general reduces the bias

in the estimates of the RM parameters due to aberrant

patterns, but at the same time introduces a new bias due

to the exclusion of RM patterns misclassificd as aberrant.

In this paper, an attempt is made to avoid the

introduction of a new bias when reducing the bias on

account of aberrant patterns for the RM. In the following

section. it is argued that a better detection of aberrant

patterns can be obtained if, depending on the expected

type of aberrance in the data, a one or twosided test of

the fit of patterns to the model is used. Next, the

presence of bias in the estimates introduced by removal of

nonfitting patterns from truly Rkdata, as well as methods

to prevent such a kind of bias are discussed. Finally, a

modified procedure to reduce the bias for data including

aberrant patterns is presented and verified in a simula

tion study.

The author uses the same data sets and the same

method of approximation of the null distribution of the

person fit index as in his previous study ( Kogut, 1987).

So, in the following sections, these data and the method

of approximation are used without any further comments.

8

4



Reduction of Bias

Aberrance Resulting in Too Many Ideal Patterns

In this paper. the modified version of the Molenaar

index, M(X) (Molenaar & Hoijtink. 1987). and the above

mentioned approximation of its exact null distribution are

applied conditionally on the total test score. The

definition of the index is as follow :

k
M(X) = E - b X

1=1

where X = (X1, X2, ..., Xk) is an individual zeroone

response pattern, bi is the difficulty of item i, and k is

the number of items.

From the definition of M(X), some useful conclusions

can be drawn. For each total test score, the associated

Guttman pattern (in which only the easiest items are

answered correctly and the rest incorrectly) has the larg

est M(X) value, whereas the reversed Guttman pattern has

the smallest value. In addition, ideal patterns (those for

which the easiest and the majority of the relatively easy

items are answered correctly) are identified by high M(X)

values. Likewise, rare patterns are identified by low M(X)

values. As is well known, the conditional probability of
k

response pattern X given the total test score r = E X.

i=1 1

is,

9
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k

P(X=X1r) = 1/T (k) n exp(-1..) .

r i=1

where b = (b1. b2, bk). and Tr(k) is the elementary

symmetric function of order r (Fischer, 1974). It is

easily seen that Ma) is a strictly increasing function of

the likelihood P(air), namely.

M(X) = In P(air) + In Tr(b) .

Thus, also for the M(X) index, rare patterns have low

probabilities and ideal patterns have high probabilities.

Finally, M(X) and P(Xir) give the same order of all

possible patterns associated with a fixed total score.

Hence, they are equally good in detecting aberrant

patterns when using the same percentile of their own null

distributions.

In the literature on person fit, only patterns

unlikely under the model are defined as aberrant.

Therefore, for indices which order patterns in the same

way as the M(X) index, only the lefttail (1% or 5%th)

percentile of the index null distribution is used (e.g.

Drasgow, Levine & Williams, 1985; Molenaar & Hoijtink,

1987). This approach is justified, if rare patterns are

occurred in the data more often than predicted by the RM,

for instance, in the case of guessing. Typical

distributions of M(X) for RMbehaving persons and guessers

are given in Figure 1(a) by means of a continuous
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Insert Figure 1 about here

approximation. So,

an index value

percentile, then

aberrant patterns

100*a% of the RM

if patterns are defined as aberrant by

lower than the lefttail 100*a%th

a higher than 100*a percentage of

will be classified correctly and about

patterns will be misclassified. On the

other hand, in the case of aberrant persons who respond

with a lower ability on the more difficult items than on

the rest of the items, or in the case of aberrants who

answer more difficult items according to the twoparameter

logistic model with discrimination parameters larger than

the ones of the rest of items_ this approach is not

appropriate. In both cases, as can be concluded from the

item characteristic curves (ICC's), rare patterns are

produced less often and ideal patterns more often than

predicted by the RM. Therefore, in such cases, the

percentage of correctly classified aberrants will, as

Table 1 indicates, generally be lower than 100*a.

Insert Table 1 about here
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Nevertheless. if patterns are defined as aberv.ant by an

index value higher than the righttail percentile

associated with 100(1a)%. then many more aberrant

patterns will be classified correctly (see Table 1). The

approximate distributions of M(X) for RMbehaving person,

and persons displaying the aberrance in question are

illustrated in Figure 1(b). Note that the probability of

misclassifying a RM pattern as aberrant, the Type I error.

is a again. This is why, in order to effectively detect

the aberrance of this kind, a righttail rather than a

lefttail test has to be used.

A definition of ideal patterns as aberrant may sound

very strange because these patterns are just the most

probable ones under the model. Yet, for the purpose of an

effective detection of deviations from the model this

possibility should be taken into account.

To conclude, an efficient detection of aberrant

patterns, can be only achieved if the direction of the

person fit test is in agreement with the expected type of

aberrance in the data. If there is no information at all

about the type of aberrance, then the use of a twosided

test is the most appropriate strategy (e.g., using the

100*(a/2)% and 100*(1a/2)%th percentiles).

2
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Removal and Replacement of Nonfitting Patterns

from RM Data

The removal of aberrant patterns from the data will

reduce the bias in the estima__ of the RM parameters.

Unfortunately. we can only remove patterns which are

classified as aberrant, and we are forced to produce

classification errors. If this strategy is carried out

iteratively, then generally the number of misclassified RM

patterns removed will increase with the number of

iterations. From a previous study (Kogut, 1987), it may be

concluded that this approac. will introduce a new bias in

the parameter estimates in the opposite direction.

To investigate the seriousness of such a bias, let us

consider the consequences of the removal strategy if it is

applied to truly RM data. The bias in the estimator Pi

for the difficulty or ability parameter pi, can be defined

as follow :

bias = pi E(Pi)

wherc E(Pi) denotes the expected value of Pi. The relevant

quantity to measure bits over parameters is. the root mean

square error (RMSE):

RMSE = (1/m
(pi pi

)2)M
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where m is the number of the parameters.

Let us now remove from the RM data all patterns for

which the value of the Molenaar index is lower than the

left-tail 100*a% : 1%, 5%, 10%. 25% and 50% -th percentile

of the index distribution. The results of these five

analyses are presented in Table 2 a 1 Firp,re 2. Table 2

Insert Table 2 about here

shows that RMSE for the difficulty estimates increases

significantly with a. For the ability estimates, the same

phenomenon is also observed, yet, not in the significant

degree. The estimated bias in the difficulty estimates is

shown in Figure 2. Figure 2 shows-that the difficulties of

Insert Figure 2 about here

easy stems ara underestimated (a positive bias), but these

of hard items are overestimated (a nejative bias). In

other words, the estimates are sniffed to the ends of the

difficulty scale. Even at as low as the 5%-th percentile,

the estimated bias for a few items on both extremes of the

difficulty scale is larger than the standard error of

estimate. Furthermore, it can be seen that the estimated

; 4
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bias increases systematically with the percentile u%ed,

and that it is more pronounced for the difficulties at the

extreme parts of scale. These results could be expected,

as the use of the Molenaar index in the removal strategy

leads to rejection of rare patterns. Hence, it must lead

to an increase of the proportions of correct answers on

the easiest items and a decrease of these ones on the most

difficult items. Therefore, the estimates of the

difficulties will show a tendency towards dispersion.

Now, let us examine the results of the removal

strategy if it is carried out iteratively. The results for

four subsequent iterations, using the 5%th percentile are

presented in Table 3 and Figure 3. They show that RMSE and

Insert Table 3 about here

the estimated bias increase significantly over iterations,

Insert Figure 3 about here

until a certain limit is reached.

It is remarkable that the bias due to the removal of

misclassified rare patterns from truly RM date, in

comparison with the one due to truly rare aberrant

5
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patterns in mixed data has an opposite direction (Kogut,

1987). Thus, in the first few iterations in the removal

strategy, these two types of bias can be expected to

cancel each other out.

As was already noted, some types of aberrance may

lead to a lot more ideal patterns than predicted by the

RM. Therefore it may be useful to verify what the

consequences of removing ideal patterns from RM data will

be. Patterns removed are the ones for which values of the

index are higher than the righttail 100(1a)% : 99%,

95%, 90%, 75% and 50% th percentile of the index

distribution. The results from these investigations are

reported in Table 2 (RMSE) and Figure 4 (estimated bias).

Table 2 shows that the bias for Vie difficulty estimates

is introduced and increases with a again. In addition,

Figure 4 shows that the estimated bias has an opposite

Insert Figure 4 about here

direction and a smaller size in comparison with the one

arising when removing rare patterns. The reversed

direction of the bias ir, question indicates that the

difficulties of easy items are overestimated, and the

difficulties of hard items underestimated. From the

definition of ideal patterns it is obvious that the

removal of these patterns must result in decreased
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proportions of correct answers on easy items and increased

proportions on difficult items. Hence, the estimates of

the difficulties will shift to the middle of the scale. A

smaller size of the bias implies an apparently less

sensitivity of the difficulty estimates to the lack of

ideal patterns than to the lack of rare ones. Obviously,

if rare and ideal patterns are removed simultaneously

(e.g.. using the 100(a/2)% and 100(1a/2)%th

percentiles), the resulting bias will be the sum of these

two effects.

To conclude, if one removes patterns from the data

that are classified as aberrant, one should take into

account that, even with a small Type I error and few

iterations used, a significant bias may be introduced in

estimates of the difficulties due to the removal of RM

patterns misclassified as aberrant.

For the RM data, the introduction of bias related to

the removal of misclassified RM patterns may be simply

omitted if these patterns are substituted by similar

patterns sampled according to the RM with parameters equal

to their estimates. More precizily, when using the 100sa%

th percentile, patterns serving as a substitute are the

first sampled ones for which the person fit index value is

lower than this percentile. When using another of the

proposed one or twosided tests of person fit, the

appropriate substitution may be equally easy to realize.

Because in such modified data, rare and ideal patterns are

present in about the same proportions as i- the RM data,
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..he estimates of the difficulty parameters can be expected

to be unbiased.

Note that the replacement of misclassified RM

patterns by simply at random sampled RM patterns recovers

an insufficient number of rare and aberrant patterns to

prevent the introduction of new bias, as can be seen in

Figure 5 for the lefttail percentiles. In particular,

Insert Figure 5 about here

when a small percentile is used, the estimates obtained in

the removal strategy and in the simple replacing procedure

remain almost equally biased.

So. it is clear that if proportion!, of rare and ideal

patterns in the sample do not conform to the RM, then

estimates of the RM difficulty parameters will be

systematically biased. A relatively lack of rare or ideal

patterns will systematically increase or decrease the

dispersion of the difficulty estimates (the estimates tend

to shift to the ends or to the middle of the scale).

respectively. Likewise, if rare or ideal patterns occur

relatively too often in the data, then the dispersion in

question will decrease or increase, respectively

(Kogut,1987).
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A Procedure to Reduce Bias

in the RM Parameters Estimates

Let us return to the main subject of this paper,

i.e.. to the efficient reduction of bias inherent in

estimates of the RM parameters if response data contains

aberrant response patterns. Suppose that for some mixed

data, the RM difficulties and the number of aberrant

patterns are known. If the detection of aberrant patterns

is carried out using a fixed percentile of the person fit

index, then the number of misclassified RM patterns, say

x, is approximately known. Now, let us replace x patterns

classified as aberrant by patterns sampled from the RM in

accordance with the percentile used (see the previous

section), and the rest of patterns found to be aberrant by

RM patterns sampled at random. Thanks to such an

operation, the modified data will be purified from the

Aberrant patterns, but will still contain the proper

proportions of rare and ideal patterns. Hence,

reduction of the original bias can be realized without

introduction of new

percentile used, the

detected and replaced;

bias. Further,

more aberrant

the higher

patterns can

and finally a better reduction

bias in the estimates can be achieved. In particular,

the

any

the

be

of

if

the data contains only aberrant patterns with index values

within the range of percentile used, then utilizing a

higher percentile will enable us to detect all aberrant

patterns, and to eliminate all bias.

9
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Of course, in practice the item difficulties and the

number of aberrant patterns are unknown, but they can be

estimated from the data. So, an iterative procedure

including the estimation of the RM parameters and the

number of aberrant patterns can be expected to converge,

and the final difficulty estimates can be expected to be

less biased. This idea is realized in the following

procedure.

An algorithm for the procedure is sketched below. The

user of the procedure can supplement the algorithm with

specific subprograms (according to software available, the

type of aberrance expected in the data, the person fit

index used, and the degree of reduction of bias needed).

The algorithm is as follows :

(1) estimate the item and person parameters from the data

set in question;

(2) calculate the 100*a%, 100*(1a)Y., or botli, e.g.

100*(a/2),/,. and 100*(1a/2)% th percentile(s) for the

person fit index, per test score, using the estimates

from step (1);

(3) estimate the number of aberrant patterns in the data,

nJA, as follow,

nJA.--n:: (nni-1A)*a}

(where 0-1A is the observed number of aberrant

pat* ns from the previous iteration, and n is the

20

16
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number of nonzero or non-perfect patterns from the

original data);

(4) calculate the values of the person fit index for the

patterns in the original data set and determine which

patterns are aberrant for each test score, using the

percentiles from (2);

replace the patterns classified as aberrant in (4) by

RM patterns sampled from the RM with parameter values

equal to their estimates from (1). More in

particular:

(a) replace int{(n-niA)*a} aberrant patterns by the

first sampled RM patterns for which the index

value is lower than 100*W4-, higher than 100*(1-

a)7-, or one of both lower than 100*(a/2)%- or

higher than 00*(1-a/2)%-th percentile(s),

respectively to the chosen percentile in (2);

(b) replace the rest of aberrant patterns by the

first randomly sampled RM patterns;

(6) return to step (1) and repeat the procedure on the

data set created in step (5), until convergence of

some reasonable criterion, say CRIT, is obtained,

e.g..

(5)

bii-bi-li 1 < CRITi , i = 1, 2, ..., k:

where CRITi=estimated SEi (standard error) of i-th

difficulty parameter in j-th iteration, bii, from (1).

01
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In step (1), the CHI estimation procedure (Fischer,

1974) should be used, as only such a procedure assures

unbiased estimates of the difficulties. If a test consists

of a small number of items, say some 15. the exact

percentiles of the person fit index should be calculated

through complete enumeration of all index values and their

probabilities, This method is recommended because any

approximation might fail due to the high sensitivity of

the index distribution to the difficulty parameters

(Molenaar & Hoijtink. 1987; Snijders, 1987). Nevertheless.

if a test consists of more than 15 items. then the

computations get involved and an approximation has to be

used. Two approximations can be recommended : a chisquare

approximation (Molenaar and Hoijtink, 1987). and an

approximation through sampling RM patterns (Kogut. 1987).

The benefits of using higher percentiles have already been

discussed, however, then more iterations will be needed to

satisfy the criterion of convergence. In order to achieve

the convergence criterion quicker, in step (3) n1A in the

first iteration can be initialized roughly as the expected

number of aberrant patterns in the original data set.

Finally, in step (6) another convergence criterion than

SEi may be used, as well. Yet, it should not be too hard

to be fulfilled, because then the procedure might not

converge.

Now the efficiency of the proposed procedure will be

considered for the case of RM data mixed with aberrant

response patterns. In our simulation study, the used

22



Reduction of Bias

19

aberrant patterns are subject to guessing to complete on

the five most difficult items, and possess M(X) values

lower than the 5%th percentile. The results from this

study, by the use of the OM estimation procedure

(Fischer. 1974). an approximation of the 10th percentile

of the Molenaar index through sampling RN patterns, and an

initialization of nlA equal to 0. are presented in Table 4

and Figure 6. The procedure was run on an Olivetti M-24

microcomputer. In Table 4 can be seen that RMSE. for the

Insert Table 4 about here

difficulty estimates decreases with the number of

iterations, until RMSE for the RM data is approached. The

difficulty estimates from the eight and seventh iterations

differed from each other no more than the specified

criterion. CRIT. and therefore the procedure was stopped.

The estimated bias over subsequent iterations is shown in

Figure 6. The figure shows that generally each next

Insert Figure 6 about here

iteration results in a monotonical reduction of bias. So,

the results are superior to those for the removal strategy

F.

r) 0
J
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in Kogut (1987), in which bias is reduced only in the

first iterations, but increases in next ones. Note that

bias in the ability estimates is slightly increased (see

Table 4), however, it can be ignored as compared with RMSE

for the RM data used.

Discussion

As is known, estimates of the RM parameters may be

biased due to aberrant patterns in the data. This paper

shows that the removal strategy fails to reduce the bias

satisfactorily because of the fact of removing RM patterns

misclassified as aberrant that introduces a new bias. The

new bias may be significant even if the percentile(s) of

the person fit index related to a small Type I error, and

few iterations of the removal strategy are used.

To obtain estimates of the RM parameters with as

little bias as possible, a modified procedure was

proposed. In the procedure, nonfitting patterns are

replaced by patterns sampled from the RM. Some number of

the replaced patterns have to satisfy an additional

criterion. A sufficient level of bias reduction can be

achieved safely by the use of the percentile(s) related to

a larger Type I error. In particular, if the data contains

only aberrant patterns with index values within the range

of percentile(s) used, then all the bias can be

eliminated. With the help of the removal strategy such a

reduction of bias is generally impossible.

roA
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In addition, it was shown that for aberrant response

behavior that too often results in ideal patterns, another

strategy for detecting aberrant patterns is needed. Such a

strategy would provide us with the possibility to detect

more types of aberrant behavior, and to better reduce bias

in the estimates of the model parameters.
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Table 1

percentages of correctly classified aberrants responding

with two different abilities- using 5%- and 95%

percentiles of M(X)

Difference Percentage

in Abilities

5% 95%

Percentile

1.0

2.0

1.8 9.3

1.0 16.4

}Tote. Ability on the five most difficult items is

lower than ability on the rest of items;

ability of aber.ents is N(0.0, 1.53).

F0
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Table 2

RMSE of the RM parameter estimates after removal of

=fitting patterns from RM data using left and righttail

percentiles of M(X)

Percentile RMSE

Difficulty Ability

LeftTail Test

1% 0.052 0.624

5% 0.106 0.640

10% 0.206 0.666

25% 0.423 0.736

50% 0.977 0.979

RightTail Test

99% 0.061 0.610

95% 0.100 0.605

90% 0.150 0.595

75% 0.299 0.578

50% 0.513 0.560

long. For the RM data used, RMSE is 0.055 for the

difficulty and 0.616 for the ability estimates.
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Table 3

RMSE of the RM parameter estimates after iterative

removal of nonfitting patterns from RM data using

5%th percentile of Ma)

Iteration RMSE

Difficulty AL.dity

1 0.106 0.640

2 0.146 0.652

3 0.165 0.657

4 0.166 0.657

Vote. For the RM data used, RMSE is 0.055 for the

difficulty and 0.616 for the ability estimates.
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Table 4

RMSE of the RM Parameter estimates after iterative

replacement of nonfitting patterns from mixed data

using 10%th percentile of M( %)

Iteration RMSE

Difficulty Ability

1 0.499 0.723

2 0.300 0.732

3 0.188 0.741

4 0.126 0.746

5 0.081 0.751

6 0.069 0.755

7 0.063 0.756

8 0.070 0.757

Note. For the RM data used, RMSE is 0.055 for the

difficulty and 0.616 for the ability estimates.
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Figure 1. Apprc-imate distributions of M(X) for RM behavior

(solid line) and two types of aberrant response

behavior (dashed line).

Note. P1 and Pr indicate the left and righttail

percentiles, respectively.
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