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Abstract

Gulliksen's matched random subtests method is a graphical method to

split a test into parallel test halves which has practical

relevance because it maximizes coefficient a as a lower bound to

the classical test reliability coefficient. In the paper the same

problem is formulated as a zero-one programming problem, the

advantage being that it can be solved by algorithms already

existing in computer code. It is shown how the procedure can be

generalized to test splits into components of any length. An

empirical illustration of the procedure concludes the papPr.
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A Zero-one Programming Approach to

Gulliksen's Matched Random Subtests Method

In order to estimate the classical coefficient of test reliability,

parallel measurements are needed. Methods proposed to meet this

requirement in practice are retesting the same subjects with the

same test after some time has elapsed or carefully constructing a

parallel test and testing the same subjects with both instruments.

As is known from practical experience, though, these methods do not

work well. The main objection against the test-retest method is

that replicate test administrations aye impossible with living

subjects who may exhibit all kinds of interfering processes as

remembering earlier administration.., learning and forgetting

between administrations, or taking a dislike to another

administration. The parallel-forms method, in fact, constitutes a

dilemma. It assumes that it is possible to construct two different

tests with exactly the same measurement properties. Practical

experience shows that this ideal may be attained to some extent but

is never realized exactly.

As a possible way out of this fundamental problem, Kuder and

Richardson (1937) proposed their formulas 20 and 21 which can be

estimated using (dichotomous) item and test scores from a single

administration. A generalization of these formulas to non-

dichotomous items or test components of any lengtn is known as

Cronbach's (1951) coefficient a :

6
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i a2(Y
)

_ n 9 a2 > 0a = ,,74
x

0, n > 1,

a2
X

where a2(Y9 ) is the variance of the scores Y
9
on test component

g, ax
2

the variance of the score X, and n the number of components.

The usual choices of test components in this internaJ-consistency

method are the individual test items or test halves. Estimates of

the test reliability based on the latter are known as split-halves

estimates. A generalization of (1) to any split was Introduced by

Raju (1977) and is known as coefficient plc.

Analysis of the relationship of (1) to the definition of the

reliability coefficient reveals that they are equal, to each other

only if the test components are essentially T-equivalent ;

otherwise (1) is a lower bound to the test reliability (e.g., Lord

& Novick, 1968, sect. 4.4). Although this requirement is less

restrictive than the one of parallel measurements, it seems to give

rise to the same practical problems as for the test-retest and

parallel-forms methods. However, there is a possibility of

optimization that the latter methods do not possess. Since (1) is a

lower bound to the reliability for Et.split of the test into

components, and these bounds are not necessarily equal, we may look

for the split with the greatest lower bound and base our estimation

of the reliability coefficient on this. It is for tnis reason that

the internal-consistency method has not only a practical but also

some theoretical appeal.

Gulliksen (1950) proposed a method for splitting tests optimally

7
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into halves which is know as the matched random subtests methoi.

The method is the only one available for this important purpose and

is described in most textbooks on test theory (e.g., Allen & Yen,

1979, sect. 4.4). In spite of this, it has not found its

implementation in standard computer packages for test analysis and

is hardly being used on a routine basis the reason being that the

method is graphic and must be performed by hand. It is the purpose

of this paper to present a version of Gulliksen's method that is

derived from zero-one programming. Algorithms for this method exist

and are amply availe.e in computer code. In the remainder of this

paper, first 6ulliksen's method is outlined. Then, a zero-one

programming version of the method is proposed. Next, this version

is illustrated using empirical test data. The paper ends with some

concluding remarks and recommendations.

Gulliksen's Matched Random Subtests Method

Gulliksen's method is usually formulated for dichotomous item

scores but can easily be generalized to other situations. For

dichotomous item scores, the method involves two parameters for

each item, its difficulty and discriminating power.

Let x
i
and p

iX
denote the classical definitions of these

parameters. Then the former is the expected item score and the

latter the point biserial correlation between the item and the test

score. Each item is plotted on a graph with its values for the two

parameters as coordinates. Next, pairs of items are formed, the

O
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criterion being that each pair should have points on the graph as

:lose to each other as possible. Test halves are obtained by

assigning one randomly cirsen item from each pair to one test half

and the remaining items to the other.

Figure 1 shows a typical Gulliksen plot. The points are estimates

Insert Figure 1 about here

for a 20-item version of a mathematics achievement test used in tae

Second Mathematics Study of the International Associatior for the

Evaluation of Education based on a Dutch sample of 5418 subjects.

The same data will be used in the empirical example below. Note

that some pairs in Figure 1 are obvious. Others, however, are not.

Item 16, for instance, could be ,.aired with 19 but this choice has

consequences for the pessibiliies of 8, whereas the choice for

this item, in turn, restricts the possibilities for 2, and so on.

In fact, it is the absence of a clear-cut criterion for coping with

such dependencies that may make the method hard to be used for

larger sets of items.

Let Y
9

in (1) represent the observed score on test half g which

consists of ng items ;.; . 1, 2). A well-known result from the

classical test theory is that, for dichotomous items, the expected

values and variances of Yg can be written as functions

of n
i

and
PiY

only. Assuming
Y

= p. for g 1, 2, as is

g g
IX

9
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implicitly done in the Gulliksen method, the expressions are

(2)

(3)

9

4Y II
g 1=1

ng

02y [ uol_ypixj2
g i=1

Gulliksen's method is motivated by the fact chat pairwise matching

of the items on ni ensures that py and py are approximately
1 2

equal. Hence, a necessary condition for the two halves to have the

same true scores is met. As matching on pix also ensure:

approximately equal values of (3) for g = 1, 2, the two halves may

have equal error variances and meet the requirements of parallel

measurements.

As already mentioned, Gulliksen's method is graphic. It supposes

the presence of a judge inspecting the graph and pairing the items.

It is not a algorithm in the sense that all its rules can be

written in computer code. As illustrated earlier, its criterion for

pairing the items is not unequivocal. Therefore, situations may

arise where the judge does not know with certainty which of the

possible pairs to choose. Also, the random assignment of items from

pairs to test halves may be suboptimal. In particular, when the

items within pairs are not close to each other there is a non-

negligible probability for random assignment to result in test

halves being less parallel than necessary. Another desirable

improvement on the method would be an algorithm equally well

applicable to splits into other components than test halves. Splits

10
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of tests into thirds or quarters, for instance, require the

division of ;.he plots into triples or quadruples of items. It is

unlikely that this can be done satisfactorily for larger tests just

by inspecting plots. On the other hand, since such splits also

yield values for (1) that are lo.er bounds to the reliability

coefficient, and it caams unwise to confine the search of the

greatest lower bound only to the subset of splits into test halves.

As a final comment on the Gulliksen method, it is noted that, like

any other method of item selection, the danger of chance

capitalization may arise if it is used with sample statistics

instead of parameters. For this reason, it can only be recommended

as a large-sample solution to the problem of splitting a test into

parallel halves. The same holds if the zero-one programming

formulation of Gu'lliksen's method given below is used with

statistics instead of parameters.

A Zero-one Programming Version of Gulliksen's Method

Gulliksen's method consists of two steps--pairing the items and

assigning items from pairs to test halves. Both tasks can be

performed using techniques from zero-one programming. Interest in

the application of zero-one programming techniques originated

recently from a paper by Theunissen (1985) who applied them to

solve the problem of automated test design in item response theory.

This problem is pursud further in Theunissen and Verstralen (1986)

and van der Linden and Boekkooi-Timminga (1986), whereas Boekkooi-

11
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Timminga (1986a, 1986b) provide extensions to the problems of

simultaneous test design and the design of parallel tests in item

response theory. The techniques used below have a close

relationship to the ones in the last two references but are applied

in the context of classical test theory here while also use is made

of the minimax approach in van der Linden and Boekkooi-Timminga.

Pairs of items

In Gulliksen's method the items are paired on inspection. It is

suggested to replace this situation by the following unequivocal

criterion. In the graph the Euclidean distance

(4)
a , ,211/2

6ij = [(fli-flji 1PiX-PjX1

between the points i and j (i*j) is considered. It is proposed to

pair the items such that the sum of the within-pair distances is

minimal. In the following, as is necessary in the Gulliksen method,

it is supposed that n is an even number. (If n is odd, one item

must be deleted and a Spearman-Brown correction with factor n/(n-1)

should be applied to the eventual reliability estimate). Let xij be

a binary decision variable denoting whether i and j are a pair or

not. That is,

x.. =
ij 1.1

i and j are a pair,

0 otherwise, i < j.

The problem is to decide on the n(n-1)/2 values of xij such that

i2
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the criterion of a minimal sum of distances is met. Now the

product difij is equal to the distance between i and j if they

are a pair, and to zero otnerwise. The problem is thus to minimize

the sum of these products subject to the constraints th, ach item

has to be a member of exactly one pa'r. In the usual zero-one

programming format the problem is as follows

n-1 n

(5) minimize 1 1 6i4x4i

1=1 j=i+1 "

subject to

j-1

(6) x. + ix= 1
i=1 1J i=j+1 ji

(7) xij < {o, 11

.1 1, n

i 1, ..., n-1

j = 1+1, n

where for notational convenience the sums in (6) are equal to zeru

if the upper bound to the index is smaller than the lower bound, or

conversely. The objective function in (5) is defined as the

-inimization of the sum of all within-pair distances

constraints in (6) guarantee that for each item the decision

variables xij (i < j) take the value 1 exactly once, which means

that each item arrives in exactly one pair. In (7) the decision

variables are constrained to be binary.

The problem in (5) - (7) is a standard zero-one programming

problem that is found in textbooks on linear programming (e.g.,

i3
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Wagner, 1975, chap.13). Algorithms to solve the problem can be

found in the same references and have been implemented in various

Computer programs. In the empirical example below, the program

LANDO is used which is based on the branch-and-bound method by Land

and Doig (1960). The output of the program is the n(n-1)/2 va'qes

of the decision variables xij with n/2 values equal to 1 and the

remaining ones to O.

Assigning Items to Components

The optimization procedure could stop here to randomly assign items

from pairs to test halves, as is done in the Gulliksen method.

However, it is also possible to match the test halves further, for

instance, on their average scores or variances. In both cases the

problem is a zero-one programming problem again. If the latter

option is chosen, the problem is to match the test halves on their

sums of the terms is.(1-x )p iX in (3). Since, by definition, there

are only two test halves, matching the two sums is equivalent to

minimizing the sum with the larger value. Formulating the problem

using this minimax criterion has the advantage that it can easily

be generalized to other splits than test halves. This

generalization will be shown below.

The output of the previous problem is a set of n/2 pairs. let

(p,q) denote the
pth item (p

i 2) in the qth pair ((I = I, ...,

n/2) and define a binary decision variable xpqr (r = 1, 2) as

(8)

1 item (p,q) is assigned to test half r,

x
pqr

=

0 otherwise.
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The assignment problem can be formulated as

(9) minimize z

subject to

(10)

2 n/2

w (1-n

psi gall. "I Pcl

)

Plpqxpqr
z < 0

2

(11) 1 x = 1

p=1 Pqr

(12)

2

r1 1

x
lqr

= 1

=

(13) x
pqr

E f0, 11

11

r= 1, 2

r = 1, 2

q = 1, ..., n/2

q = 1, ..., n/2

p= 1, 2

q = 1, ..., n/2

where s
Pcl

and p
Pcl

are the item difficulty and discrimination

indices for item (p,q). The constraints in (10) ensure that the

standard deviations of the two test halves are not larger than the

upper bound z minimized in (9). The constraint in (11) requires

that the items in a pair are assigned to different test halves each

consisting of n/2 items, whereas (12) requires that each item is

assigned exactly once. The constraints in (11) - (12) could be

simplified by replacing (8) by a variable x
Pcl

equal to 1 if (p,q)
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has to be assigned to the first test half and equal to 0 otherwise,

but then the generalization to other splits than tests halves to be

presented below is not so obvious.

The same analysis could be done with xpq as coefficients in (10)

matching the test halves on their average scores, with weighted

combinations cxpq + (1-c)xpq(1-xpq)ppq, 0 < c < 1, as coefficients,

or with inequality constraints on the averages (variances) added to

the model matching the test halves on their variances (averages).

All these options are due to the fact that the underlying problem

of matching test halves on parallelness is one of multiple-

objective decision making. The wealth of choices does not need to

bother us muc", because the previous pairing of the items already

ensures us a igh match of the test halves on both their averages

and variances before they enter this stage of optimization. In the

emnirical example below weighted coefficients with c = .5 are used.

This choice is in the same spirit as the first stage in Gulliksen's

methodwhereih(4).
RI

pand .

x
are also weighted equally.

l

Generalization to Other Splits

The above can easily be generalized to other splits than test

halves. The case of a split into thirds, for instance, is modeled

as follows.

6
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Triples of Items

It is assumed that n is a multiple of three. Then the within-triple

"distance" is defined as 6ijk = 61j+ 61k+ 6jk for all triples

i * j, j * k and i * k, and the decision variable xiik is

equal to one only if i, j and k are in the same triple and equal to

zero otherwise (1 < j < k).

The problem is now

n-2 n-1 n

(14) minimize i 1 1 644,ijk
1=1 j=i+1 k=j+1 .J"

subject to

k-1 j-1 k-1

(15) //x.. +lix
j=2 1=1 1J"

,

1=1 j=k+1 iki

n j -1

+ i 1 xki4 = 1

j=k+2 1=k+1 4

k = 1, n

(16) xijk a 1(), 11 i = 1, ..., n-2

j= 1+1, ..., n-1

k = j+1, n

where for notational convenience undefined sums in (15) arc put

equal to zero again. The values in the upper and lower bounds in

(5) follow from the requirement that xljk be defined for i < j < k

only.

1 7
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Assigning Items to Components

If in (9) - (13) the indices run as follows

(17) p = I, 2, 3

q = I, ..., n/3

r = 1, 2, 3

the model assigns items from triples to test Components of size

n/3.

Conclusion

The above immediately suggests how the model can be generalized to

splits into test components of any length.

An Empirical Example

In order to illustrate the procedures, the algorithm by Land and

Doig (1960) as implemented in the program LANDO was used together

with the item data in Figure I. The item difficulties and item-test

correlations were estimated from a sample of 5418 subjects which is

large enough to prevent from capitalizing on chance in the

Gulliksen method. The estimates are presented in Table 1.

Insert Table 1 about here

8
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As was clear from the bivariate distribution of the estimates in

Figure 1, it is not immediate obvious how all these items should be

paired by hand. Table 2 gives the optimal item pairs following (5)

- (7). The results of the assignment of the items to test halves

according to the

Insert Table 2 about here

optimization model in (9) - (13), with as coefficients in (10) the

equally weighted sum of (2) and (3), are indicated in Table 2 by

underscoring the items in the same test half. The results

convincingly demonstrate the advantage of optimal assignment over

the random assignment that takes place in the original version o'

the Gulliksen method. For some pairs (e.g., 2-6, 5-15 and 16-17)

the within-pair distance is still large in spite of the fact that

the pairing was optimal. This implies that there is much space for

further optimization. Random assignment makes no systematic use of

this but the optimization model in (9) - (13) automatically selects

from all possible assignments the one that matches the test halves

closest.

Discussion

The idea to estimate lower bounds to the reliability coefficient

from a single test administration is not uniquely associated to
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Cronbach's coefficient a. It is reminded that other lower bounds

to the reliability coefficient exist. One example is Raju's

coefficient plc already referred to earlier. Raju (1982) offers some

theory on the theoretical maximum of coefficient a under fixed

variance of the test scores. Older exampies can be found in Guttman

(1945), whereas Bentler and Woodward (1980) (see also ten Berge,

Snijders, and Zegers, 1981) derive a whole chain of lower bounds.

The idea of maximizing a lower bound is also present in Krammer and

van der Linden (1986) who maximize the squared validity coefficient

as a lower bound to the reliability coefficient across a set of

linear combinations of external variables. All these approaches

have different strong and weak points and require more or less

intensive computations. It is not the purpose of this paper to

replace them by Gulliksen's method. Its main intention is to give

this method, which has already gained its place in test theory and

practice, a sound corrutational basis. Besides, the same zero-one

programming method can be used in any other situation where

classically parallel tests are needed, e.g., for use in pretest-

posttest designs in educational research or in testing situations

where a secrecy problem exists.

20
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Table 1

Difficulty and Discrimination Values for the Twenty-item Test

Item lit p1
Item xi PiX

1 .85 .39 11 .83 .52

2 .50 .41 12 .68 .54

3 .60 .40 13 .80 .43

4 .66 .60 14 .84 .45

5 .87 .25 15 .86 .34

6 .28 .37 16 .52 .47

7 .87 .40 17 .62 .58

8 .48 .48 18 .61 .40

9 .74 .47 19 .51 .48

10 .65 .60 20 .66 .58
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Table 2

Opt,mel Item Pairs and Test Halves

1 - 7

2 - 6

3 - 18

4 - 10

5 - 15

8 - 19

9 - 13

11 - 14

12 - 20

16 - 17

Note Underscored item numbers in same test half

2_4
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Figure 1. The Gulliksen plot for a twenty-item test.
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