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INTRODUCTION

In June of 1984, I was asked by the NSTA editorial staff to examine some of the material
on meta-analysis that would be included in one of the National Science Teachers Asso-
ciation's books in the What Research Says to the Science Teacher series. Because of my
background in physics, for which I had received considerable mathematical training in
statistics and error theory, our editor thought I could help assess the accuracy of the
material that we were to publish.

Although I have admittedly little knowledge or background in educational statistics,
what I read in the galley proofs of the new monograph bothered me. Quantities (in this
case meta-analysis effect sizes) detemiined from independent studies, and therefore,
independent measurements, were being averaged, without taking into account their
relative precisions. In the theory of errors, as used in the sciences, it is well-known that
independent measurements can be averaged properly only if each measurement is
weighted by the inverse of its variance of error. In this way, the most precise measure-
ment contributes the greatest amount to the mean which results.

Because weighting had not been done for the material to be published in NSTA's
monograph, I halted publication, and advised the authors, asking that a reanalysis be
conducted before NSTA would publish the material. I offerzd to help secure NSF funding
to support the effort. I was very much concerned that policy makers not use conclusions
from a faulty meta-analysis to make important decisions in science education, and
certainly not from anything NSTA had published.

In the process of considering reanalysis, James Shymansky, one of the authors of this
handbook, found recent articles on the subject in the literature, several were written by
Larry Hedges, one of the other authors of the handbook. I read several of the articles and
communicated directly with Hedges. It was clear that Hedges had do: e important
theoretical work on proper weighting of effect sizes, and he had done so well before I
observed the problem in the material NSTA was to publish. In fairness to the researchers
involved in the material NSTA rejected, it should be pointed out that their research
design and data collection had been initiated well before most of Hedges' brilliant work
on the topic had been published. The techniques for weighting effect sizes are presented
systematically and clearly in section 3.0 of this handbook. With NSF support, Shyman-
sky, Hedges, and George Woodworth, a statistician at Iowa, carried out a reanalysis of
the data in question, and they have separately published those results. As part of their
NSF project, they produced this excellent handbook for the research practitioner, so that
the power of meta-analysis can be utilized by the educational or social science researcher,
without having to try to understand the complexities of its mathematical foundations.

Having tried to read the various theoretical papers on meta-analysis, I am particularly
impressed with the clarity with which this handbook addresses applications of meta-

Pi
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analysis to the kinds of research questions common to science education. The National
Science Teachers Association is pleased to make this excellent publication available to
the comr, _unity of researchers.

iv

Bill G. Aldridge
Executive Director
National Science Teachers Association



PREFACE

This guide is designed to be a practical introduction to the application of modem method-
ology for meta-analysis. Methods for meta-analysis have evolved dramatically since
Gene Glass first proposed the term in 1976. Since that time statistical and nonstatistical
aspects of methodology for meta-analysis have been developing at a steady pace. One
very important methodological development has been the flowering of workon statistical
methods designed particularly for meta-analysis. There are now six books and well over
100 articles that treat methods for meta-analysis in the social sciences. With all this
literature currently available, the addition of yet another it mograph requires some
justification.

The reason for this guide is that the existing literature on methods for meta-analysis,
although voluminous, is deficient. The journal articles are widely scattered in many
joumals (although the collections by Rosenthal, 1980 and 1984; Light, 1983; and Yeaton
and Wortman, 1984 are highly recommended). The existing books doan admirable job of
bringing together the diverse literature but their treatment of statistical methods is
uneven. The book by Glass, McGaw, and Smith (1981), for example, is a classic work,
but it was written before the development of most of the modern statistical methodology
that has become the state of the art for meta-analysis. The book by Hunter, Schmidt, and
Jackson (1982) provides an excellent introduction to the random effects models devel-
oped for the study of validity generalization and their application to meta-analyses
involving standardized mean differences. It does not, however, provide a treatment of the
very considerable literature on fixed and mixed effects models that have developed since
the book was written. The book by Light and Pillemer (1984) provides an outstanding
introduction to the conceptual aspects of meta-analysis, but it doesnot treat specific
statistical methods in detail. The short book by Cooper (1984) is a lucid introduction to
procedures for rigorous research syntheses, it also provides only a brief introduction
to statistical methodology for meta-analysis. The book by Rosenthal (1984) provides an
extraordina, ily clear description of the statistical methods treated, but it does not treat
many of the most powerful and widely used statistical methods for meta-analysis. Finally,
the book b? Hedges and Olkin (1985) treats statistical methods in exhaustive detail, but
does so at a technical level that is inaccessible to some social scientists.

This guide is an attempt to provide a practical introduction to rigorous procedure in
the meta-analyEiS of social science research. It approaches the use of modem statistical
Methods in meta-analysis from the perspecthe of a potential user. The treatment is
limited to meta-analysis of studies of between-group comparisons using the standardized
mean difference as an index of effect magn4ude. It does not address the meta-analysis of
correlation coefficients.

This guide is organized according to a variant of Cooper's stages of the research
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review process. (1) problem formulation, (2) data collection and data evacuation, data
analysis and interpretation, and (3) presentation of results. Although each stage is
discussed, the greatest emphasis is placed on the stage of data analysis and interpretation.
Examples from a synthesis of research on the effects of science curricula are used
throughout for illustration. Because this is intende.. to be a practical guide, the references
are provided primarily to exemplify issues or techniques rather than to provide theoretical
discussions or derivations. Complete bibliographies of theoretical references on qualita-
tive aspects of methodology are in Cooper (1984), Light and Pillemer (1984), and
Rosenthal (1984). Hedges and Olkin (1985) provide a complete bibliography on statisti-
cal methods for the meta-analysis of standardized mean differences.
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Meta-analysis as a form of research

Original research proceeds through a series of stages which distinguishes it as "disci-
plined inquiry" (Shulman, 1986). The inquiry process begins with a problem formulation,
moves to a stage of data collection and evaluation, is followed by data analysis and
interpretation, and culminates in a final report. So it is with meta-analysis, it too proceeds
through similar stages of inquiry. Discussions and examples in the guide will follow the
steps illustrated in Figure 1.

FIGURE 1: Steps in conducting a meta-analysis

Problem formulation
I

Describe treatments, controls back round, and outcomes I
t

Form a riori

Set exp oration parameters

Data collecti & evaluation
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1.0 Problem formulation

1.1 Coafirmator; versus exploratory reviews
Problem formulation is the first step in any research study or research review. It involves
formulating the precise questions to be answered. One aspect of formulating questions is
deciding whether your review is to be confirmatory (hypothesis testing) or exploratory
(hypothesis generating). Obviously, new hypotheses (even new variables) arist in the
course of meta-analyses, just as in any scientific activity. But you must distinguish thc
clearly a priori hypotheses from those that arc suggested by thc data. This distinction has
implications for the choice of statistical analysis procedures used in the meta-analysis.
Techniques described later in this guide ye designed for reviews whose principal mode
of inquiry is to test hypotheses that are formed priori. Using these procedures when
hypotheses are not formed in advance can be misleading. Similarly, when many statistical
analyses arc conducted on the sa..x data, the usual significance Icy& will nut reflect the
chance of making at least one Type I error in the collection of tests (the simultaneous
significance level). Thus, when conducting many tests in an "exploratory" mode, there is
a tendency to "capitalize on chance."

The problems of exploratory analy:,is can be dealt with in several ways. One way is to
use statistical methods that are specifically designed for exploratory analysis such as
clustering methods (Hedges & Olkin, 1933, 1985). Altemativcly, you may adjust the
significance level when many tests are conducted on the same data. The problem with
this and all other simultaneous procedures is that they re-duce the power of the statistical
tests and the effect is dramatic when many tests are conducted simultaneously.

You may also use procedures that do not involve statistical significance. Descriptive
procedures are the simplest to use. Graphical procedures such as Light and Patentees
(1984) funnel diagrams, Hedges and Olkin's (1985) confidence interval plots, or many of
the graphical ideas presented by Tukey (1977) may also be used. In a later section of this
guide procedures for determining confidence interval plots are presented.

If your data set is large enough, you might also consider dividing your data into two
subsets. You can use one subset tc. generate hypothesis whose statistical s.gnificance can
then be evaluated (cross validated) on the second subset (Light & Pillemer, 1984).

Example 1: Problem Formulation

In the metaanalysis of the effects of new science curricula by Shymansky, Hedges,

and Woodworth (1986), a principal question to be answered was whether the

new process oriented science curricula produced higher achievement and more
positive attitudes than traditional (pre 1960's) science curricula. This question was

formulated a priori and the procedures used in the meta-analysis were directed

toward testing the hypothesis that new science curricula produced greater
achievement and more positive attitudes.

In this same meta-analysis,eFects were Found to be inconsistent across studies. In

2 A Practical Guide to Modem Methods of Meta-analysis
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searching for the factors associated with the variability among effects, a variety of
possible hypotheses were constructed to explain the variability. For example, we
developed the hypothesis that the type of control group used and the degree of

pre-existing difference 6.4ween groups was related to the variability in effect sizes.

1.2 Deciding which studies can be aggregated
A second aspect of problem formulation concern decisions about when studies are
examining "the same problem." That is, you must decide whether treatments, controls,
experimental procedures, and study outcome measures are comparable enough to be
considered the same for the purposes of aggregation. Although different studies examin-
ing the same problem will not be identical, it is often possible to distinguish studies that
conceptualize the treatment, controls, or outcome in the same way. It is helpful to
distinguish the theoretical or conceptual variables about which knowledge is sougnt
(called "constructs") from the actual examples of these variables that appear in the studies
(called "operations").

Example 2: Identifying constructs and operations

Suppose we want to know if a particular method of teaching matkmatics leads to
better problem solving. To find out, a comparative study is conducted in which

students are randomly assigned to teachers, some of whom use the new method.

A problem solving test is then administered to students to determine which group

of students were better at problem solving. The exact conceptualization of

mathematical problem solving is a construct. The particular test used to measure

problem solving is an operation corresponding to that construct.

Similarly, a particular teaching method as defined conceptually is a construct (e.g.,
inquiry teaching), while the behavior of a particular teacher trying to Implement that
teaching method is an operation (e.g., questioning). The point here is that even when
studies share the same constructs, they almost surely differ in the operations that corre-
spond to those constructs.

Defining questions precisely in a research review involves deciding on the constructs
of independent variables, study characteristics, and outcomes that are appropriate for the
questions addressed by the review and deciding on the operations that will be regarded as
the corresponding constructs. 'That is, you must develop both the construct definitions and
a set of rules for deciding which corcrete instances of treatments, controls, or measures
correspond to those constructs.

Althousti the questions of interest might seem completely self evident in a review, a
little reflection may convince you that there are subtleties in formulating precise ques-
tions.

A Practical Guide to Modern Methods of Meta-analysis
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Example 3: Problems in defining the question

Consider the seemingly well-defined question, "Are discovery learning science

curricula superior to conventional science instruction?" What problems does this

question pose? Here are a few:

What exactly is meant by the term "discovery learning"?

Does discovery learning imply activity at the single student or small group level

or should group-based discovery-oriented activities also count?

Should curricula intended as discovery but modified by teachers to be more

"teacher-centered" be considered discovery or conventional?

What exactly is meant by the term "conventional science instruction"?

Before proceeding with your meta-analysis, you should think carefully about the
problem under review. Have you clearly defined the construct definitions and established
a set of rules for deciding which instances of treatments, controls, and outcomes you are
going to include in your review? Time spent specifying these parameters at the outset of
your study will be time saved in the later stages of data collection and analysis.
1.3 Selecting constructs and operations
One of the potential problems of meta-analysis (or any research synthesis) is that they
may combine incommensurable evidence (sometimes referred to as the case of "apples
and oranges"). This is essentially a criticism of the breadth of constructs and operations
chosen. In one sense the breadth of constructs and operations chosen must reflect the
breadth of the question addressed by the review. Constructs and operations used in a
review should usually be distinguished more narrowly by the rev iewer than may be
reflected in the final presentation of results. Thus, the issue is first what constructs and
operations are to be Included in he review, then what constructs and operations are to be
distinguished in the data analysis of the rev iew, and finally which .--onstructs and opera-
tions are to be presented in the results of the review.

Meta-analysts have tended to use rather broad constructs arid operations in their
presentation of results. This may be due to the ease with which quantitative methods can
analyze data from large numbers of studies. It is important to recognize, however, that
while broad questions necessitate the inclusion of studies w ith a broad range of constructs
and operations, they need not inhibit the meta-analy st from distinguishing N ariations of
these constructs in the data analysis and in presentation of results.

Perhaps the most successful applications of broad or multiple constructs in meta-
analysis are those that In Jude broad constructs in the data analysis and presentation. This
approach permits you to examine variations in the pattern of results as a function of
construct definition. It also permits you to analyze separately each narrow construct see
e.g., Cooper, 1979; Linn & Peterson, 1985; Eagly & Carli, 1981; Thomas & French,
1985). You may carry out a combined analysis across constructs where appropriate or
present distinct analyses for the separate constructs.

4 A Practical Guide to Modern Methods of Meta-analysis
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Example 4: Focusing the problem statement

In the study of the effects of new science curricula on student performance
( Shymansky, Hedges, & Woodworth, 1987), the broad constructs of "new science

curricula" and "student performance" were further distinguished. For example,
new science curricula were broken down by subject area, grade level, specific

curriculum project, and student gender and outcome measures were broken into

criterion groups such as achievement, attitudes, and process skills. Analyses were

then performed on the specific subgroups and on crosses between these sub-

groups (e.g., student achievement for boys versus girls by subject area).

1.4 Broad versus narrow operations for constructs
Another issue arises at the level of operationalization of constructs. You will always have
to admit several different operations for a given construct. Treatments will not have been
implemented identically in all studies and different studies will not h.ve measured the
outcome constructs in exactly the same way. Thus, you will have to judge whether each
operation is a legitimate representation of the corresponding construct. This means you
will have to obtain as much information about the treatment actually implemented and
the outcome measure actually used in each study. For this you may have to go to a
secondary source such as technical reports, test reviews, or published tests.

Example 5: Clarifying the constructs and operations

In the Shymansky, et al., study of new science curricula, some studies were en-

countered in which teachers had modified the new curricula to fit personal styles

or school policy. Since this can be expected when teachers adopt a new program
in most school situations, the decision was made to include the study. In another

case, however, some studies were found in which "no science instruction" was

used as the conventional science instruction comparison. This was not considered

a fair comparison and these studies were excluded from the analysis.

In spite of the difficulty multiple operations may cause you in your rev iew, they can
also enhance the confidence in relationships if the analogous relationships between
operations hold under a variety of different operations (Campbell, 1969). However,
increased confidence comes from multiple operation... only when the different operations
are in fact more related to the construct under study than to some other construct (see the
discussion of multiple operationalism in Webb, Campbell, Sechrest, & Grove, 1981).
Thus, although multiple operations can lead to increased confiden,,, through "triangula-
tion" of evidence, the indiscriminate use of broad operations can also contribute to
invalid results by confounding one construct with another (see Cooper, 1984).

A Practical Guide to Modern Methods of Meta-analysis 5



2.0 Data Collection

Data collection in meta-analysis consists of assembling a body of research studies and
extracting quantitative indices of study characteristics and of effect magnitude. The
former is largely a problem of selecting studies that may contain information relevant to
the specific questions you want to address. It is a sampling process. The latter is a
problem of obtaining quantitative representations of the measures of effect magnitude
and the other characteristics of studies that are relevant to the specific questions you want
to address. It is a measurement process. The standard psychological measurement
procedures for ensuring the reliability and validity of such ratings are as appropriate in
meta-analysis as in original research. In this section of the guide we will discuss proce-
dures for collecting and evaluating study data that have proven effective in previous
meta-analyses.

2.1 Sampling in meta- analysis
The problem of assembling a collection of studies is often vi -wed as a sampling problem.
the problem of obtaining a representative sample of all studies that have actually been
conducted. Because the adequacy of your sample necessarily determines the range of
valid generalizations that are possible, the procedures you use in locating the studies for
your meta-analysis are crucial. Much of the discussion on sampling in meta-analysis
concentrates on the problem of obtaining a representative or exhaustive sample of studies
that have been conducted. But this is not the only or even the most important aspect of
sampling in meta-analysis. The more important sampling question is whether the sample
of subjects and treatments in the individual studies are representative of the subject and
treatment populations of interest.

The importance of representative sampling of subjects is obvious.

Example 6: Problems of nonrepresentative sampling of subjects

Studies of the effects of psychotherapy on college students who do not have psy-
chological problems might be considered nonrepresentative in a meta-analysis to
determine the effects of psychotherapy on patients with real psychological
problems.

But the importance of representative sampling of treatments is perhaps more subtle.
The question is whether the treatments which occur in the study are representative of the
treatments about which you are seeking knowlfdge.

Example 7: Problems of nonrepresentative sampling of treatments

Studies of individualized or self-paced instructional methods might be considered

nonrepresentative in a meta-analysis to determine the effects of new science
curricula on student performance simply because the methods don't necessarily
stress laboratory-based, inquiry activity.

6 A Practical Guide to Modem Methods of Meta-analysis
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The problem of obtaining representative samples of subjects and treatments is con-
strained by the sampling of studies and corsequently is not under your complete control.
You can, however, present descriptions o'. the samples of subjects and treatments and
examine the relationship between the sample descriptions and study outcomes.

2.1.1 Identifying a target population
The first step in developing a data collection (sampng) plan in a meta-analysis is to
define the target population of studies. You might think that the definition should include
all studies of a particular-problem, but it is desirable in practice to limit the target
population. For instance, you might want to limit studies to the use of a particular general
category of study methodology or procedure.

Example 8: Targeting studies by methodologies

laboratory studies (cf sex differences in conformity)
field studies (of nonverbal communication)

randomized experiments (of the effects of desegregation)

quasi-experimental studies (of peer tutoring programs)

Or you might target the population by specifying the time period in which the studies
were conducted.

Example 9: Targeting studies by time period

studies of sex differences in cognitive abilities published between 1960 and
1985

studies of the effects of new science curricula conducted between 1958 and
1972

You might limit the target population by specifying the setting or type of subject.

Example 10: Targeting studies by subject type

studies of the effects of discovery learning in public elementary schools

studies of the effects of direct instruction in urban secondary schools

studies of the effects of visually-based instruction with low SES middle school
children

sti.dies of the effects of peer-tutoring with college students

Or you might limit the targe. population by specifying the particular variations of
treatment, outcome, or controls.

Example 11: Targeting studies by variable

studief of the effectiveness of behavioral therapy for phobias

studies of the effects of contingency contracting on arrest rates in juvenile delin-

A Practical Guide to Modern Methods of Meta-analysis 7
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quency

studies of the effects of intensive practice and coaching on verbal intelligence
test scores

studies of the effectiveness of introspective therapies versus a placebo

Another strategy for limiting study populations involves the use of the medium in
which the study was published, such as specifying all relevant journal articles or all
articles published in a particular journal. But this procedure is not without problems
either because published studies or those published in a particular journal may not be
representative of all studies actually conducted. Published studies may not be representa-
tive because studies yielding statistically insignificant results are less likely to be pub-
lished (see section 2.3 for more discussion on publication bias and methods for dealing
with it). Studies published in particular journals may not be representative of all studies
because journals are often part of citation networks which tend to use similar methodolo-
gies or have similar theoretical predispositions.

2.1.2 Searching for possible relevant studies
Once you have defined the target population a systematic search for possibly relevant
studies can be undertaken. The principal wols for systematic literature searches are the
abstracting and indexing services for the social sciences. The three most prominent
services are the Education Resources Information Center (ERIC) system, Psychological
Abstracts, and Dissertation Abstracts International (DAI). The ERIC system produces
two monthly indexes, Resources in Education, which is a guide to non-published
documents and Current Index to Journals in Education which is a guide to journal
literature in education. Psychological Abstracts publishes a single monthly guide to
journal articles in psychology. DAI focuses exclusively on doctoral dissertations and
publishes a guide to recent dissertations.

A different type of indexing service that is often useful is the Social Science Citation
Index. This index provides a listing of journal articles that cite a given article. It can be
used, for example, to find all related articles that cite a seminal article in the area of
interest.

These four indexing services are not the only ones available. Karl White's Sources of
Information in the Social Sciences (1973) provides a broad overview of hundreds of
abstracting and indexing services.

Computerized searches of abstracting and indexing services are useful for several
reasons. First, a computer search is much quicker and more cost effective than a manual
search. It is not unthinkable to do several searches using a slightly different set of key
words. In fact, you should plan on doing several searches. The best search is usually
produced after several attempts to lead to successive refinements of key words or
descriptors with which you can home-in on the potentially relevant studies.

A second advantage of computerized literature searches is that they often permit
searching of titles and abstracts for key words or phrases. By scanning the abstracts you
are more likely to identify relevant studies than with a scan of the much more limited list

8 A Practical Guide to Modem Methods of Metaanalysis
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of key words provided by the author or the abstractor in cataloging the article.
A third advantage of computerized searches is that you can receive printed copies of

abstracts of the studies identified. Working from a printed abstract, you can screen out
studies that may not be relevant to your review. This will save you time tracking down

the full text of articles which are irrelevant to your review.

2.2 Missing data in meta-analysis
Missing data is a problem that plagues many forms of applied research. Survey research-
ers are well aware that the best sampling design is ineffective if the information sought

cannot be extracted from the units that are sampled. Of course, missing data is not a

problem if it is "missing at random," that is, if the missing information is essentially a
random sample of all the information available. But this is an assumption which, if not

true, may pose a serious threat to the validity of conclusions inmeta-analysis. The

specific cases of missing data on study outcome and study characteristics are considered
separately in the next two sections.

2.2.1 Missing data on study outcome
Studies (such as single case studies) that do not use statistical analyses are one source of
missing data on study outcome. Of the studies that use statistics, some do no provide
enough statistical information to allow the calculation of an estimate of the appropriate
outcome parameter. Sometimes this is a consequence of failure to report relevant statis-

tics. More often it is a consequence of the researcher's use of a complex design that
makes difficult or impossible the construction of a parameter estimate that iscompletely

comparable to those of other studies. Unfortunately, both the sparse reporting of statistics

and the use of complex designs are plausibly related to study outcomes. Both result, at

least in part, from the editorial policies of some journals which permit publication of only

the most essential statistics. Perhaps the most pernicious sources of missing data are

studies that selectively report statistical information. Such studies typically report only

those results which are statistically significant, exhibiting what has been called "reporting

bias."
One strategy for dealing with incomplete effect size data is to ignore the problem. This

is clearly a bad strategy and is not recommended. If nothing else, such a strategy reduces
the credibility of your meta-analysis because the presence of at least some missing data is

obvious to most knowledgeable readers. Another problematic strategy for handling
missing effect size data is to replace all of the missing values by some imputed value
(usually zero). Although this strategy usually leads to a conservative estimate of the

overall effect size, it creates serious problems in any attempt to study the variability of

effect sizes and the relationship of study characteristics to effect size.
A better strategy in dealing with missing data is to extract from the study any available

information about the outcome of the study. For example, -you can often deduce the
direction (sign) of the effect even when an effect size cannot be calculated. A tabulation

of these directions of effects can then be used to supplement the effect size analysis (see

e.g., Giaconia & Hedges, 1982; Crain & Mahard, 1983). You can even use such a
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tabulation to derive a parametric estimate of effect (see Hedges & 01kin, 1980, 1985 for
details on this procedure).

Perhaps the best strategy to deal with missing data on study outcomes is to use one of
the many strategies that have been developed for handling missing data in sample surveys
(see Madow, Nisselson, & Olkin, 1983). Generally, these strategies involve using the
available information (including study characteristics) to estimate the structure of the
study outcome data and the relationships among the study characteristics and study
outcome. They can also be used to study the sensitivity of conclusions to the possible
effects of missing data. Although these strategies have much to recommend them, they
have been used only rarely in meta-analysis because they are difficult to implement. One
example of the use of these methods in the context of validity generalization is given in
Hedges (1987).

Example 12: Accounting for missing data
Giaconia and Hedges (1982) reported the results of studies of the effects of open
education programs (versus traditional education programs) on student self
concept. They summarized the results of these studies by reporting the 84 effect
size estimates that had a mean of 0.071 and a standard deviation of 0.418.
However, they also reported the direction of the effect for a total of 100 independ-
ent comparisons in which 53 favored the open education group, 41 favored the
traditional education group, and 6 comparisons could not be determined to favor
either group.

2.2.2 Missing data on study characteristics
Another less obvious but equally critical form of missing data results from the incomplete
descriptions of treatment, controls, or outcome measures. Missing data about study
characteristics relate to the problem of breadth of study constructs and operations. If you
attempt to code a high degree of detail about study characteristics, you will be faced with
a greater degree of missing data when you code your studies. Yet, the alternative of
coding vague study characteristics to ensure little or no missing data in your coding
scheme is no less problematic. Neither procedure alone will inspire confidence among the
readers of your meta-analysis.

One strategy for dealing with missing information about study characteristics is to
have two levels of specificity: a broad level which can be coded for nearly all studies and
a narrower level which can be coded for only a subset of studies. You will find this
strategy useful if you exercise suitable care in describing the differences between the
entire collection of studies and the smaller number of studies permitting the more specific
analysis.

You can explore other alternatives to deal with missing data about study characteris-
tics as well. One is a collection of relevant information from other sources such as
technical reports, other descriptive reports on the program in the studies being examined,
test reviews, or articles that describe a program, treatment, or measurement method under
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review. The appropriate sources of this additional information are often published in the
research reports being reviewed.

A second and often neglected source of information is the direct collection of new
data. For example, in a meta-analysis of sex differences in helping behaviors, Eagly and
Crowley (1986) surveyed a new sample of subjects to determine the degree of perceived
danger in the helping situations examined in the studies. This rating was a valuable factor
in explaining the variability of results across studies.

2.3 Publication bias
An excellent sampling plan cannot guarantee a representative sample if it is drawn from
an incomplete enumeration of the population. The analogue in meta-analysis is that an
apparently good sampling plan may be thwarted by applying the plan to an incomplete
and unrepresentative subset of the studies that were actually conducted. This section
discusses the problem of publication bias and ways to address that problem.

The published literature is particularly susceptible to the claim that it is unrepresenta-
tive of all studies that may have been conducted (the so-called publication bias problem).
There is considerable empirical evidence that the published literature contains fewer
statistically insignificant results than would be expected from the complete collection of
all studies actually conducted (Bozarth & Roberts, 1972, Hedges, 1984). There is also
direct evidence that journal editors and reviewers intentionally include statistical signifi-
cance among their criteria for selecting manuscripts for publication (Greenwald, 1975,
Balm, 1966; Melton, 1962). The tendency of the published literature to over-represent
statistically significant findings leads to biased overestimates of effect magnitudes from
published literature, a phenomenon that was confirmed empirically by Smith's (1980)
study of ten meta-analyses, each of which presented average effect size estimates for both
published and unpublished sources.

Reporting bias is related to publication bias based on statistical significance. Reporting
bias creates missing data when researchers fail to report the details of results of some
statistical analyses, such as those that do not yield statistically significant results. The
effect of reporting bias is identical to that of publication bias. Some effect magnitude
estimates are simply unavailable.

One method for investigating the impact of publication or reporting bias is to compare
effect size estimates derived from published (e.g., books, journal articles) and unpub-
lished sources (e.g., conference presentations, contract reports, or doctoral dissertations).
Be careful of such comparisons, however. The source of the study is usually confounded
with many other study characteristics. An alternative method is to use statistical correc-
tions for estimation of effect size under publication bias. This corresponds to modeling
the sampling of studies as involving a censoring or truncation mechanism.

2.4 Establishing coding procedures
Once you have retrieved the studies for meta-analysis, you must establish procedures for
translating critical study information into coded form amenable to computer processing.
No comprehensive set of coding procedures could exhaust all of the study characteristics
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that might be useful in any given meta-analysis. However, you might want to consider
some study characteristics and coding procedures that have proven useful in other meta-
analyses. These coding procedures and study characteristics are discussed in the next few
sections.

2.4.1 Identifying contrasts within studies
You will need to devise a system of identification codes for referring to studies and to
treatment-control (or other relevant) comparisons within studies. Computer based
statistical analyses will treat each separate effect that may be analyzed as a "case." In
some situations, there will be only one case (one effect size estimate) per study. But a
single study may yield several cases (multiple effect size estimates) for two reasons:
First, if there are several dependent variables of interest, an effect size estimate can be
calculated for each, yielding one case for each dependent variable. Second, a study may
yield several cases if it uses several independent samples of subjects such as students
from several grade levels, SES categories, or school districts. When the primary study
reports data for each of the independent samples, it is advisable to compute effect size
estimates for each independent sample. If there are both multiple dependent variables and
multiple samples, the total number of cases will be the product of the two. Thus, a study
with two dependent variables and three samples will yield six effect size estimates.
Computer files for data analysis are greatly facilitated by a coding scheme for identifica-
tion numbers that completely distinguish each effect size estimate.

We suggest a coding scheme with identification numbers for each effect size estimate
(case) that has the following components:

2.4.1.1 Study ID
This is a numeric code to identify the study from which the effect size estimate was
obtained. This code should be cross-referenced to a listing of the bibliography of the
meta-analysis.

2.4.1.2 Author reference
This is an alphabetic or character code which is usually the firstfew (8-16) characters of
the primary study author's name and possibly the date of publicationof the research
report. This code serves as an easy way to identify the study in the bibliography.

2.4.1.3 Sample ID
This is a code to distinguish among the possibly many samples within a study. You need
not construct the sample ID code to specify all of the details that may be needed to
distinguish samples within a study (e.g., grade level, sex, SES, etc.). Separate codes
should probably be used for each important characteristics of a sample.

Example 13: Coding subsample data within a study
In a study ;:at provided effect sizes for males and females separately at two grade
levels, the four different samples might be given codes A, B, C, and D, but be
distinguished by the other coded study characteristics of sex of sample and grade
level of subjects.
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2.4.1.4 Dependent variable
This is a code to reflect the dependent variable used to calculate the effect size estimate.
Frequently, dependent variables will fall into related clusters. One broad construct such
as mathematical achievement can be divided into subconstructs, such as mathematical
computation, mathematics concepts, problem solving, etc. Moreover, each construct may
be represented by several operations (specific test scales). Under these circumstances,
you might find it useful to use this code to reflect the broad construct, the narrower
construct, and the specific operation (test).

Example 14: Coding subtest or multiple measure data in a study
In a meta-analysis involving mathematics achievement, the codes 1000 to 1999

might indicate achievement, in general, while the codes 1100 to 1999 might
reflect a particular test (e.g., 1123 might be the math problem solving scale of the

Iowa Test of Basic Skills).

2.4.1.5 Time of testing
This is a code to indicate the temporal location of the measurement with the study.

Example 15: Coding temporal measurement characteristics in a study

Some studies have pretests, tests midway through the study, post-tests, and follow-

up tests. Pretest data effect size estimates calculated from pretests scores should be

coded whenever they are available since they are very useful in quantifying pre-

existing differences between the treatment and the control group.

2.4.2 Study context
Study context factors include information describing the study, its setting, and its
subjects. The details of context will vary with different meta-analyses. Following are
some which might be considered in a meta-analysis of school- related research.

Example 16: Coding study context factors

Loceion of the school (e.g., urban, suburban, rural)
Type of school (e.g., parochial, public, private)

Student population (e.g., SES, school size, gender)

Teacher characteristics (e.g., selection, gender, educational background,

experience, age, assignment)

2.4.3 Subject characteristics
The subject characteristics factor may be the most difficult of the study characteristics to
code because most groups on which research is done are heterogeneous. But as in the
case of educational studies, aggregate groups are often broken down into subgroups
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which can easily be coded. Following is a list of subject characteristics which are
common to most studies of students.

Example 17: Common subject characteristics

Age or grade level

Gender or predominant gender of groups
Socioeconomic stains
Ability level

Educational background

Homogeneity of subjects (e.g., so the subjects representany special groups such
as talented and gifted, compensatory program subjects, etc.)

2.4.4 Study design and execution
One of the most important study characteristics is that ofstudy design. Our experience is
that study design features often account for more of the variation between study results
than any other study characteristic. Therefore, you will want to make an extra effort to
ferret out information about study design as you examine and code studies. Study design
characteristics that we have found critical are discussed in the next four sections.

2.4.4.1 Controls for pre-existing difference
The first design characteristic you will want to examine and code is the type of control
used to account for pre-existing differences between the treatment and control groups.
The best design (for controlling pre-existing differences between groups) is to use
random assignment of subjects to either treatment or control groups. However, this type
of design is difficult to impose in educational research and other, less desirable designs
are often used. One such design involves the random assignment of intact classes.
Designs using random assignment of intact classes donot usually control for pre-existing
differences as well as do designs involving random assignment of subjects. They should,
therefore, be coded separately.

Sometimes subjects are randomly sampled from treatment or control classes. This may
enhance representativeness of subjects but does not reduce bias due to pre-existing
differences. Be careful not to confuse this procedure with the random assignment of
subject design.

Explicit matching of subjects on a pretest that is highly correlated with the post-test is
another design strategy that often produces relatively good control for pre-existing
differences. Note however, that matching designs are weaker than random assignment
designs because matching can only control for differences on the specific, variables used
in the matching. For example, matchingon IQ controls for differences in ability but does
not control for differences in motivation which might lead to biases in the results.
Nonetheless, you will want to note studies using matching designs separately in your
coding procedure.

Statistical control via the use of covariates or gain scores can also be used to minimize
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the effects of pre-existing differences. But statistical control strategies suffer from the
same weaknesses as matching designs, they control only for the variables specified.
Finally, studies which use Intact groups with no controls or with matching on only vague
characteristics (such as SES) have the poorest control for pre-existing differences and
should be noted in your coding scheme.

Regarding study design characteristics then, you will probably want to note the
following types in your coding scheme:

Example 18: Design characteristics

Random assignment of subjects

Random assignment of intact classes

Matching of subjects on pretest scores

Matching of classes on mean pretest scores

Cohort control (matching on SES,ability, etc.)

No control
No information

2.4.4.2 Experimental mortality
This is an indicator of how many subjects, classes, or schools dropped out of the study
before post-testing. Even if the control for pre-existing difference between treatment and
control subjects is initially excellent, attrition from either group introduces biases.
Evidence of differential mortality is often hard :u find in research reports, but if it is
available, it can be helpful in explaining variations in the effect size aggregations
performed later.

2.4.4.3 Treatment contamincilion of control groups
A problem arises when the control group actually receives more of the treatment than was
expected at the outset of a study. Contamination arises, for example, when control group
teachers learn of some aspects of the treatment and start using the strategies in their
classes. Again, though this may be difficult to ascertain from a stus!) report, it can prove
very useful in explaining variations in subsequent effect size aggregations and is worth
noting in your coding scheme.

2.4.4.4 Unit of analysis
This study characteristic refers to the source of the study statistics on which effect size
estimates are computed. Most often statistics are based on subject scares. Occasionally
however, study statistics are based on class, school, or some other group scores which
tend to be less variable than the scores of individuals. Consequently, standard deviations
of aggregated units will be systematically smaller than those of individual subjects.
Because the magnitude of the standard deviation depends on the unit of analysis, effect
size estimates (and correlation coefficients) based on different units of analysis are not
comparable. That is, the very same subjects' scores yield different effect sizes depending
on the unit of analysis used. Thus, you will want to note the unit of analysis used in your
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coding procedure and aggregate studies using different units separately.

2.4.5 Treatment
A conceptually important source of variation between studies arises from variations
among treatments. Because types of treatments may be qualitatively different across
research domains, it is particularly difficult to describe how to characterize differences
among treatment implementations. There are, however, some general guidelines thatyou
may find helpful, but they are certainly not exhaustive.

2.4.5.1 length of treatment
This factor simply describes how long the treatment was applied in the research study
under review. It can vary widely between studies. For example, in the review of research
on the effectiveness of new science curricula, treatment lengths from 2 to 36 weeks were
observed.

2.4.5.2 Treatment fidelity
This factor is really many different factors combined under one descriptorfidelity. It is
an indicator of the degree to which the treatment is consistent with the theoretical
descriptions of the treatment. One way to characterize treatment fidelity is to identify
features or dimensions of the treatment that are theoretically important. In some cases,
previous reviews or implementation studies may be helpful in arriving at dimensions
useful in determining fidelity. In some cases, the research studies under review provide
information from observation scales, interview protocols, or questionnaires which give
evidence which is he;pful in establishing level of treatment fidelity. Oryou might devise
some type of checklist to note the critical features of the treatment. Studies can then be
grouped according to whether they have the particular constellation of features that
correspond to the theoretical positions on the treatment.

This process of determining treatment fidelity sounds very abstract to this point.
Perhaps an extended example from a study by (Laconia and Hedges (1982) will help to
explain.

Example 19: Coding treatment fidelity

In this study an attempt to characterize variability in implementations of open edu-
cation was undertaken. The study began with a review of theoretical literature on
open education. This conceptual analysis revealed four major features that were
most central to theoretical conceptions of open education:

1. Role of the child in learningreferring to the extent that the child is active in
guiding his or her own learning.

2. Diagnostic evaluationthe use of evaluation primarily for diagnosticpurposes.
3. Materials to manipulatethe presence of materials to manipulate during the
instruction.

4. Individualized instructionpresence of instruction based on the individual
needs of each student.

Because these features were considered most control to the theoretical conceptions
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of open education, studies having all four characteristics were singled out for

examination. The rationale for examining this group was that the implementations

of open education in these studies had high fidelity to the theoretical conceptions

of open education.

2.4.6 Control groups
Although control groups are often taken as self-explanatory, it is wise to remember that
control groups can exhibit considerable variation. For example, an oft-used procedure in
educational research is the "conventional instruction" control group. Conventional
instruction is not a very specific construct, since most of the variation studied by educa-
tional research falls into this category. Variations within control groups are important
because treatment effects are only defined with reference to their controls. A treatment
that looks efficacious when compared with one type of control group may be far less
efficacious when compared to another type of control group. Such differences in control
groups produce substantial variability in treatment effect size.

Although research reports usually give little information about control groups, some
major distinctions among control groups are useful to bear in mind.

Example 20: Specification of control group
Conventional controlinstruction or treatment which is already in place serves

as the control

No treatmentthe control group receives no instruction or treatment related to
the study (e.g., a study of a new science program where the control group

receives no science instruction)

Placeboan alternative treatment that is not believed to be efficacious but is

used to control for any kHawthome" effects

Waiting listcontrol subjects are put on a waiting list and told that they will
receive the treatment at a later date

2.4.7 Outcome variables
The conceptualization of outcome constructs and operations corresponding to those
constructs is one of the most important activities in research synthesis. In addition to
specifying outcome constructs precisely, there are other aspects of outcome variables that
are usually useful to consider. These are outlined below:

Congruence of outcome with treatmentthe extent to which the outcome measure
examines objectives that are :ikely to be affected by the treatment. For example, a test
that measures a skill emphasized in the treatment but not mentioned in the control will
bias the test scores and exaggerate the effect size. The reverse situation can also exist.

Reactivity of the outcome measurethe extent to which the subjects' scores may
depstnd upon what they believe the experimenter wants to hear. For example, self-reports
of cooperative behavior may be more reactive than outside observations of group
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behavior.
Test and scale namea code indicating the test, questionnaire, or observation scale and

the subscale used in measuring a particular outcome variable.
Format of outcome measurean indication of the type of measurement, for example,

oral, written, multiple-choice, free response, observational, etc.

2.5 Organizing data: Designing a coding sheet
Once you have decided the critical aspects of studies that should be coded, you are rzady
to design a coding sheet to facilitate the extraction and recording of this information from
studies. The physical layout of a coding sheet is very similar to that of a questionnaire or
interview protocol.

The actual coding sheet lists each item of information to be examined. Coding forms
are usually designed to group pieces of information about a study that are logically
related. It is usually convenient to categorize information into the groupings discussed
earlier. Table 1 provides a checklist of coding information you may want to consider in
designing your coding procedures.
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Table 1: Coding Form Information Checklist

REFERENCE INFORMATION
Complete reference (including form of publication)
Study code (cross-listed with the bibliography)
Coder identification number

SAMPLE CHARACTERISTICS
Sample and subsample code

Sample demographics (grade level, SES, ability level)
School characteristics (size, type, location)

TREATMENT CHARACTERISTICS
Type of treatment (as planned; as implemented)

Theoretical dimensions of treatment
Additional context variables (e.g., technology)

CONTROL GROUP CHARACTERISTICS
Type of control group

Theoretical dimensions of control group
TEACHER CHARACTERISTICS

Years of experience, educational background

Involvement with treatment (e.g., inservice training)
DESIGN CHARACTERISTICS

Unit of analysis (individual or class)
Control for pre-existing differences
Experimental mortality

Details of design

OUTCOME CHARACTERISTICS
Type of criterion or outcome construct
Congruence of treatments and outcome measure
Method of measurement

EFFECT SIZE INFORMATION
Source of effect size data for exact calculations
Means

Control group or pooled standard deviations
F- or t-test statistics
Repooled sums of squares within groups

Samples sizes and sums of squares between groups
Source of effect size data for approximate calculations

ANCOVA adjusted means, sums of squares, and covariate post-test correlations
Gainscore analyses and pretest-post-test correlations
Direction of effect (sign of effect size)
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It is usually useful to design the coding sheet so that the meaning of each item is
clearly identified. You should make every effort to reduce ambiguity in specific catego-
ries. It is also advisable to over-specify categories at the coding stage rather than to
under-specify. Categories can always be grouped at the analysis stage; they cannot be
expanded without going back to the original studies. For example, an item on type of
control for pre-existing differences between subjects in treatment versus control groups
should specify the different procedures encountered in studies.

It is also useful to indicate a column number and a record (card) number for each data
element so that the coded data can be entered directly from the coding forms. This avoids
the problems of errors and expense associated with transcription of data to a new set of
forms at data entry.

2.5.1 Sample coding sheet
The items on the coding sheet used in our study of the effects of new science curricula on
student performance (Shymansky, Hedges, and Woodworth, 1987) are shown in Appen-
dix A to illustrate some of the procedures discussed in earlier sections. Some problems
associated with the original coding sheet have been corrected. You will note that this
coding sheet specifies the column number to be used for each item so that it could be
used directly by keypunchers for data entry. On the actual coding sheet these were
written under the answer space. The first group of items (columns 4-27) refers to study
context. Next is a series of study design and execution characteristics (columns 28-31, 38,
39). Then the treatment (curriculum) is coded (columns 43-46). This is followed by
subject characteristics (columns 43-46), outcome variable characteristics (columns 47-48)
and information used to compute the effect size estimate (columns 4-56).

2.5.2 Coding protocols and data screening
The use of coding sheets to extract information from studies should be done with great
ca.- to minimize errors in the coding process. An important and often neglected aspect of
actually coding data is data screening. There are two aspects of data screening. One
involves the search for values likely to be wrong as a result of transcription or data entry
errors. The other involves the search for internal contradictions or unlikely values in the
research reports themselves. Both aspects of data screening are vitally important to the
quality of data produced by a meta-analysis.

When you are actually coding data from studies, it is useful to implement various
checks for the consistency of the data reported in a study. Inconsistencies cast severe
doubt upon the accuracy of data from a study since at least one of the two inconsistent
values must be wrong. Inconsistencies frequently arise when the text of the research
report and a table summarizing the results contradict one another. For example, the text
of a study report might indicate that the treatment group outperformed the control group,
but the corresponding table of means might indicate the opposite is true.

Another sort of internal inconsistency sometimes arises when studies report data in
more than one way or in more than one table. You should check that the data agree across
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tables. For example, the data listed as A, B, and C in Example 21 appeared in three

separate tables of a reported study. Comparing the pretest means, standard deviations,

and sample sizes reported in Part B of the table to those of Part C of the table, it is

apparent that these data are contradictorynone of the post-test scores match.

Example 21: Contradictory data tables

A. Pretest Scores

N Mean SD

Experimental 27 62.63 10.00

Control 24 66.29 9.42

B. Post-test Scores

Experimental 27 60.37 7.80

Control 24 62.75 8.75

C. Pretest and Post-test Comparison

Experimental

Pretest 24 66.29 8.75

Post-test 24 62.75 9.42

Control
Pretest 27 62.62 7.80

Post-test 27 60.37 10.11

Errors in transcription and data entry can also be identified by looking for inconsisten-

cies among items in the coded data. It is also useful to search for unlikely or impossible

values of each data element. For example, ages of subjects who are school age children

usually lie between 5 and 19, grade levels should range between0 and 12, sample sizes

should be positive numbers of reasonable size, etc. A frequency distribution of each

coded variable is often helpful in screening data for unlikely values. Joint distributions

(crosstab tables) may also be useful in the search for particular combinations of variables

that seem unlikely (e.g., a mother under 16 years of age with 8 or some other large

number of children).

2.6 Reliability of coding
Once you have established coding procedures, you will need to demonstrate that your

procedures can be applied reliably, i.e., that the procedures applied to the samestudy at

different times by the same or different persons will produce the same coded values.

"Interceder" reliability estimates are usually determined by selecting a sample of studies

which two or more coders independently code. A sample of about tenstudies is normally

used. The codes assigned by each coder are then compared to see how frequently they

agree. It is advisable to examine the coding on an item-by-item basis. This will help you
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identify items that are particularly difficult to code. Sometimes these items can be
modified to make them easier to code to increase reliability. Sometimes the item has to be
dropped because it cannot be coded reliably.

Although some researchers have set specific numbers for the minimum acceptable
intercoder agreement, general guidelines are difficult. It is probably best to rem.....ber that
reliability studies are designed as one (but not the only) test of data quality. Their purpose
is to discover if the coded data are sound. Exactly how much intercoder reliability is
necessary for a particular variable depends on the variable.
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3.0 Data Analysis and Interpretation
Data analysis in quantitative research synthesis consists of defining a numerical index of
study outcome and combining and studying the variation of these numerical estimates
across studies. The usual numerical index of study outcome for studies of between-group
differences is the standardized mean difference or effect size. Data analysis and interpre-
tation begins with the computation of effect size estimates from the statistics reported in
research studies. The variance of each effect size estimate is also computed. Preliminary
analyses of the variation of effect sizes across studies are used to screen the data for
outliers and possible coding errors. When coding errors have been corrected and obvious
outliers have been deleted, the final analytic modeling of the effect size data can begin.
Several different modeling strategies have been proposed for meta-analysis. The model-
ing strategy described herein is probably the most common. It uses so-called "fixed
effects" models where possible and "random effects" models in cases where fixed effects
fail to explain the variation of effect sizes among studies. In this chapter we will use
examples from the meta-analysis of the effects of new science curricula to illustrate data
analysis and interpretation.

3.1 Effect sizes and effect size estimates
How is the effect of treatment such as a new curriculum quantified? Imagine that
traditional and new curricula could be taught to large groups of pupils drawn from the
same population. At the end of instruction, each student would be assessed on one or
more criterion measures. The effect of the new curriculumhow it compares with the old
curriculumwill depend on the criterion measure used to assess it. For example, the new
curriculum might have a substantial positive effect on pupils' attitude toward a science,
but might not be any better than the old curriculum in imparting substantive knowledge
of that science.

The effect size of the new curriculum is defined as the difference between the popula-
tion mean criterion scores for new and traditional curricula expressed in standard
deviation units. When the criterion measure is approximately normally distributed over
the population, effect sizes are quite easy to interpret. For example, an effect size of 1.0
indicates that a pupil who would have been at the mean, or 50th percentile, under the old
curriculum would be one standard deviation above the mean, that is at the 84th percentile,
under the new curriculum. The new curriculum raises "C" students to "A" students. This
example ought to suggest to an experienced teacher that effect sizes greater than 1.0 on
achievement measures are to be viewed with skepticism, and may well reflect defects in
the design and .xecution of a study.

3.1.1 Effect size estimates
In practice, effect sizes are estimated using samples from the relevant populations.The
standard formula for estimating effect size is
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where xT is the mean for the treatment group, xc is the mean for the control group, and
S is either the control group standard deviation or the pooled standard deviation.

It is intuitively reasonable to estimate the effect size using sample means and standard
deviations in place of their population counterparts. However, there are two different
sample standard deviations that could be used. one for the treatment group and one for
the control group. There is also a pooled standard deviation that combines information
from both groups. Which one should be used? The standard deviation of the ccntrol
group has the advantage of being uncontaminated by any effects of the treatment.
Consequently, it is often used to compute effect size estimates. Others prefer to use the
pooled standard deviation which is slightly more stable as an estimate of the common
standard deviation. To illustrate the procedures for calculating an effect size, data from a
study by Aikenhead (1973) are used. The critical study elements and effect size calcula-
tion are shown in Example 22.

Example 22: Estimating effect size

Aikenhead described a study comparing the Harvard Project Physics (HPP)

curriculum against traditional curricula. This study is unusual in that randomized

assignment of teachers to treatment or control groups was employed. Aikenhead
summarized the study this way:

"Fifty -five teachers were randomly selected from a total population of physics

teachers in the United States and Canada. These teachers were then randomly

assigned to teach Harvard Project Physics (after having participated in a summer

institute) cr non-HPP (the physics courses they would have ordinarily taught). An

additional group of nineteen teachers, experienced at teaching HPP volunteered to
participate in the evaluation project. They taught in various regions of the United

States. A random sample of students of all teachers wrote the Test on Understand-

ing Science (TOUS) or the Science Process Inventory (SR) on a pretest and post-

test basis .... There were 921 HPP and 267 non-HPP students."

The results are reported in the table on the next page:
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Means And Standard Deviations

HPP TOUS (N=445) MEAN STANDARD DEVIATION

Pretest 34.43 6.857

Post-test 37.54 7.059

SP1 (N=476)

Pretest 107.52 8.233

Post-test 112.34 8.245

Non-HPP TOUS (N=126) MEAN STANDARD DEVIATION

Pretest 35.25 6.434

Post-test 36.42 6.570

SPI (N=141)

Pretest 107.08 7.789

Post-test 109.30 9.481

Criterion Measure Effect Size Estimate

TOUS (37.54 - 36.42) = 0.170
6.57

SPI f112.34 - 109.30) =0.321
9.48

3.1.2 Correction for bias
The estimation procedure in Example 22 is essentially correct, although the resulting
estimates are somewhat biased when the sample sizes are not large. It is, therefore,
advisable to use the correction factor provided by Hedges and Olkin, Chapter 5, to
produce an unbiased effect size estimator. The correction is a multiplier, J, which
depends on the degrees of freedom for the standard deviation in the denominator of the
effect size. For degrees of freedom above 50, the correction factor, J, is between 0.99 and
1 and can be Ignored. Figure 2 gives formulas for raw (biased) and corrected (unbiased)
effect size estimates.
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FIGURE 2: Effect size computotion

X
T

is the mean and nr the sample size for the control group

x
C is the mean and nc the sample size for the treatment group

S is either the control group standard deviation or, if the meta-analyst prefers,
the pooled standard deviation

m is the degrees of freedom of S, that is,

m = nc- 1 if S is the control group standard deviation or

m = nc+ nr- 2 if S is the pooled standard deviation.

The intuitive (biased) effect size estimate is

X T X C XC

g= ---g---

The correction factor for removing the bias of g is approximately:

J=1 -3/(4m- 1 )

and the unbiased effect size estimate is the product of J and g,

d =J g

In the Aikenhead example the degrees of freedom are 125 for TOUS and 140 for SPI,
since we used control group standard deviations to compute effect sizes. Consequently,
the correction factors are 0.994 for TOUS and 0.995 for SPI yielding unbiased effect size
estimates of 0.169 (0.170.0.994) for TOUS and 0.319 (0.321.0.995) for SPI. In this case
the correction is hardly worth the bother, but it can be important in some cases. For
example, if the control sample was only 20 students (19 degrees of freedom), the correc-
tion factor, J, would be (1 - 31(4.19-1)) or 0.96, so that the unbiased effect size estimate
would be 4% smaller than the uncorrected estimate.

3.2 Estimating effect size when means and standard deviation are not reported
Figures 2 and Example 22 of Section 3.1 show how to calculate effect size estimates
when complete information is available about both means and standard deviations.
Unfortunately, many research reports do not provide complete information and some
ingenuity is usually required to calculate estimates of effect size from the information
that is actually reported. The sections that follow present procedures to estimate effect
size based on incomplete information.
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3.2.1 Cakulating effect size estimates when there are means and ANOVA tab!es,
but no standard deviations

A common research design in education involv-. grouping subjects according to treat-
ment and also by other categorizations such as age, sex, ability level, or grade level. The
statistical analysis usually used for such designs is multifactor analysis of variance
(ANOVA). Research reports frequently provide only the means for each cell and the
ANOVA summary table. In this case it is still possible to calculate an estimate of effect
size, but it is necessary first to compute the overall mean for treatment and control groups
since the cell means will usually be means for subgroups of the treatment and control
groups. It is also necessary to compute an overall standard deviation within the treatment
and control groups.

Example 23: Estimating effect size from ANOVA data
Vanek (1974) described a small but elegant experimental study comparing the
ESS curriculum with a textbook approach (laidlaw Science Series),

"Students from two existing third grades and iwo existing fourth grades were
randomly assigned to the two ... groups (i.e., ESS or traditional), at each grade
level, so that approximately equal numbers of boys and girls were in each group.
The two teachers at each grade level altemated, by units, teaching the ESS and
the Laidlaw curricula ... to eliminate teacher variables."

Vanek administered the Science Attitude Scale (SAS) to the pupils, along with
other criterion measures. Her statistical report consisted of means and an analysis
of covariance table for each criterion measure. Tables A and 13 are typical:

Table A (Adapted from Vanek's Table VII): Mean Scores of Science Attitude Scale, Total

Boy (n) Girl (n)

Grade 3 ESS 246.53 (15) 251.27 (11)
Text 226.44 (16) 240.50 (12)

Grade 4 ESS 217.25 (16) 217.75 (12)

Text 213.19 (16) 216.25 (12)
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Table 13 (Adapted from Vanek's Table VI): Analysis of Variance Table, Science Attitude
Scale, Total

Source of Degrees of Sum of Mean F
Variation Freedom Squares Square

Grade 1 6204.20 6204.20 18.36
Curriculum 1 2486.24 2486.24 7.36
Sex 1 234.71 234.71 0.69
GradeCurriculum I 721.03 721.03 2.13
GradeSex 1 497.99 497.99 1.47
CurriculurnSex I 73.74 73.74 0.22
GradeCutricSex 1 82,78 82.78 0.24

Residual 101 34125.95 337.88

Total 108 44426.65

Suppose that the cell means break the treatment and control group into m subgroups.
The overall mean in the treatment groups is the weighted average of the individual
treatment means,

icT = n
IT

k
IT

+... +n T X T/(nT + ... +n mT)
m I

(2)

where
'

nT n T are the sample sizes in each subgroup (cell) of the treatment group
1 "" m

and x ,T .. x- T are the means of the subgroups of the treatment group. The overall,
mean in the con%ol group is defined similarly,

:4- C = (nCx- C 4.... + lc x- C )AnC + C)(nix mm 1
(3)

where n C ,
m

..., n C are the sample sizes in each subgroup of the control group and
1

XC1, ..., xCm are the means in the subgroups of the control group.

Example 23: Estimating effect size from ANOVA data continued.

in Vanek's study, the treatment and control groups are broken into four subgroups
5ecause the treatment and control group are broken down by sex (male/female)
and by grade (3/4). Thus m = 4 and the overall mean of the treatment group is

-T 15(245.53) + 11(251.27) + 16(217.25) + 12(217.75)
x

15 + 11 + 16 + 12
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- c 16(226.44) + 12(240.50) +16(213.19) + 12(216.25)x - _ 223.48
16 + 12 + 16 + 12

The overall standard deviation is obtained from the sums of squares and degrees of
freedom presented in the ANOVA table. The pooled standard deviation S is

S = [SS balance /(N - 2)]1/2 (4)

where N = nT T C C
+ ... + n + n + ... + n s the total same size andi

I ml m

SSI.I.ce = SSA - SS,,,... Thus, SS64,Thcc is the difference between the total sum of

squares and the sum of squares for the treatment.

Example 23: Estimating effect size from ANOVA dab continued.

In Vanek's data

S . [41940.41/(108 - 2)]1/2= 19.89

The effect size estimate is then computed using XT, x" C and S as if the means and
standard deviation were provided in the research report. That is

(g_ ;cCys,

the correction factor J is calculated as before and

d=J g.

Example 23: Estimating effect size From ANOVA dab continued.

In Vanek's dab

g = (234.42 - 223.48)/19.89 = 0.45

J =1 - 3/(4 106 - 1) = 0.993

d=Jg.0.45

Note that because the degrees of freedom are large the correction factor makes
little difference.
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3.2.2 Caktdating effect size estimates when only t or F statistics are reported
Some studies fail even to report means, yet in many cases it is still possible to estimate
effect sizes from test statistics which are reported. In some Lases the effect site estimate
can be calculated exactly as if means and standard deviations had been provided. In other
situations, the effect size estimate can be only approximated.

Formulas for converting t or single-factor, one degree of freedom F into an effect size
are giv, . in section 3.2.2.1 Following that, we deal with multifactor analyses of variance
or covariance and with adjusted means or t's in section 3.2.2.2.

3.2.2.1 Exact effect sizes from t or single-factor F

An exact effect size estimate can be derived either from a two-sample I statistic or an F
statistic in a single factor analysis of variance in which the only factor is curriculum
and exactly two curricula are compared (new vs. traditional). The unadjusted effect size,
g, is

g = t CF + ..412

with degrees of freedom

m=nT+nC_2

which would determine the bias adjustment J.

If F, rather than t is reported, then t can be recovered by the formula

t = (+/-)(F)
112

(5)

the sign of the square root is positive if pupils averaged higher under the new curriculum,
otherwise it is negative.

3.2.2.2 Approximate effect sizes from multifactorANOVA or ANCOVA
A substantial number of studies report analyses in which the effect of the new curriculum
is adjusted for pre-existing differences between the treatment and control groups. The
most common example is multifactor analysis of variance or covariance sometimes
accompanied by covariate-adjusted means. Our approach in such situations is to approxi-
mate the effect size estimate as the difference between the adjusted means of new and
traditional curricula divided by the pooled, unadjusted standard deviation, when avail-
able, otherwise by the adjusted standard deviation.

Suppose, for example, that Vanek had failed to report the means in Table 2 but had
reported the multifactor ANOVA in Table B of Example 23. The key to unlocking the
effect size in the absence of means is the Sum of Squares for curricula, SS It turns out
that this sum of squares is proportional to the squared difference between the adjusted
means for pupils taught with the new curriculum and those taught with the old. These
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means are, in effect, adjusted for all other factors (and covariates) in the analysis. (In
Vanek's analysis, the means would be adjusted for grade and sex.) In other words, SS.Tic
supplies the numerator of the effect size estimate.

For the denominator of the effect size estimate we need the standard deviation of the
criterion measure. One possibility is the square root of the residual mean square; how-
ever, we prefer to be somewhat conservative and include in the standard deviation all
sources of variation in the criterion measure other than differences between curricula.
Thus, we compute the standard deviation from the "balance" mean square.

Example 24: Estimating effect size from sums of squares data

In Vanek's ANOVA,

nT = 55, nc 56, sscurric = 2486.24, and SSbakince = 41940.41

with 107 degrees of freedom (tht re is some conflict between Vanek's reported n's

and the total degrees of freedom in the ANOVA table). Consequently, the
estimated effect size is

g = (+/-)((2486.24/41940.41).107*(1/55 + 1/56))h/2= 0.48

which is very close to the effect size computed in section 3.2.1

The general procedure for computing effect sizes from studies reporting a multifactor
ANOVA or ANCOVA can be summarized as consisting of several steps. First compute
the difference between adjusted means as

x
T

x .
C

ant ad] ± [SS treatment (I /nT 1/n)]112 (6)

where nT and if are the total number of pupils in the treatment and control group respec-
tively. The appropriate sign (plus or minus) for the square root must be determined by
reading the text of the report. If the author indicated that pupils did better under the new
currinlum, then the sign is positive, if the opposite is true then the sign is negative. If
there is no indication in the report one way or the other, then the effect size cannot be
computed.

Next the pooled standard deviation is computed as

S = (SS baiancim)1/2

where m=nT+nC -2.

(7)
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(

The effect size approximation (not bias-corrected) is

T -C
x . x .

ad! adt , ce (J+ _1._\ 1/2 (8)
g S k+/-)("treatment /SS balance ) m knC nT )

which could be bias-corrected using factor J.

Example 25: Estimating effect size from multi-factor ANOVA or ANCOVA

Hipsher (1961) conducted a study that compared "the traditional high school
physics curriculum and the curriculum developed by the Physical Science Study

Committee (PSSC)."

"Four variables were statistically controlled. scholastic aptitude, prior achievement

in natural science, physical science aptitude, and socio-economic status." The

author reported that the adjusted mean for the PSSC group exceeded that of the

control group by 9.5356, or "one-half the standard deviation of either group"

(i.e., the effect size, g, is 0.50). The analysis of covariance summary table is
shown below:

Analysis of Covariance Summary Table (adapted from Hipsher)

Source of Degrees of Adjusted Sum
Variation Freedom of Squares

Curricula

Residual

Total

1

202
4,269.4933

15,336.3417

203 19,605.8350

Note that these sums of squares are all adjusted for the four covariates. The true

total sum of squares, with 207 degrees of freedom (99+109-1), is not reported.

Consequently, SSbakinc computed from this table will generally yield an underesti-

mate of the standard deviation and, therefore, an overestimate of the magnitude

of the treatment effect. Keeping this in mind, the effect size estimate is

g = ((4269.49/15336.34) 202 (1/99 + 1/109))1/2 = 1.04,

twice as big as the "one-half standard deviation" effect size reported by Hipsher.

This example makes it cleat that the meta analyst needs to use some caution in deriv ing
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effect size estimates from covariate adjusted analyses. The largest bias resulting from the
use of covariate adjusted sums of squares is in the underestimation of the standard
deviation of the criterion measure. The appropriate correction factor for this bias turns out
to be (1 - R)'', where R is the multiple correlation between the criterion measure and the
covariates. The correctectraw effect size is

g = g (1-R2)"2. (9)

In Hipsher's case the correction factor appears to be about 0.5 corresponding tc an R2
of 0.75, since he reported an effect size of 0.5 and we computed an effect size of 1.04.
We were able to deduce the conection factor in this study because Hipsher reported the
effect size. This is quite unusual, in general the effect size is not reported and the meta-
analyst must use collateral information to estimate the multiple correlation between the
criterion measure and the covariates.

Our practice in the meta-analysis of the effects of new science curricula, which is
certainly open to debate, has been to assume an 12.' of 0.5, i.e., to multiply g by 0.7 when
it is derived from covariate adjusted sums of squares. Of course, when the unadjusted
total sum of squares is reported, there is no need to correct the effect size estimate since
the pooled standard deviation can be estimated from the "balance sum of squares.

If adjusted means are reported as well as an ANCOVA table, the procedure illustrated
in Example 25 should be used, followed by a (1 - R2)'2correction.

The formulas and examples we have presented so far are incorporated in the SAS
program in Appendix III. Although they do cover the majority of useful cases, the meta-
analyst will find many unique combinations of statistical information not covered here.
Our best advice in those cases is to consult a statistician.

3.2.3 Sometimes effect sizes cannot be estimated
Finally, here are some examples in which effect sizes cannot be estimated from reported
data.

3.2.3.1 Paired designs
Some studies match pupils in the control and treatment groups. This is appropriate for
reducing bias in statistical inference, however, if separate standard deviations are not
reported, the effect size cannot be computed. One study, for example, presented the
matched pairs t-test shown in Example 26.
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Example 26 A 'paired' design in which effect size cannot be calculated

Group
Sum of Sum of Squared

N Mean Differences Differences

Control 63 1427

-87 1099 -3.90

Experimental 63 12.32

Unfortunately, the author didn't report individual standard deviations, so the method
of Figure 2 can't be used. The method shown in Example 25 is not valid here since it
requires an "unpaired," independent samples t-test. In short, the effect size cannot be
estimated without additional information (see McGaw and Glass, 1980).

3.2.3.2 insignificant differences
Studies which report their findings in the form of analysis of variance tables but fail to
report means and standard deviations frequently also fail to state whether insignificant
differences are positive or negative. While it could be argued that this is standard practice
not to interpret individual insignificant results, it should be kept in mind that a series of
individually insignificmi differences can add up across studies to a significant difference
if they are all in the same direction. To makean analogy, heads on a single coin toss
wouldn't make an impression, but twenty heads in a row would.

3.3 Standard error of effect size estimates
The sampling standard error of an effect size estimate is the standard deviation of the
estimated effect size around the true effect size in the population ofstudents from which
the study population was selected. Sampling standard error measures the sampling
variation of the estimated effect size but does not reflect non-sampling variations which
would occur if the study had used a different population of students or different teachers.

A very accurate approximation to the sampling variance (the square of the sampling
standard error) of the effect size estimate d is

2 n T + nC d2S (10)d nTnC tin

The exact formula for sampling variance of d is

S2,
(11)d (m-2) nTnC m-2 -

But this exact formula is seldom needed. The approximate formula is accurate enough
for all meta-analyses except those in which the degrees of freedon are small
(i.e., m <10).
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Example Z : Estimating sampling standard error

In ae thenhead study on the TOUS scale the sample sizes were n' = 445 and
nc =126; degrees of freedom, m, were 125; the bias correction, J, was 0.994;
and the corrected effect size, d, was 0.169 (see Figure 2 and the paragraph

following it). Consequently, the sampling variance ofd given by the appropriate
formula is

s2 445 + 126
d 445.126 +

(0.169)2
2(445 + 126)

.0102.

Computation of the samplingvariance using the exact formula gives

2 (125 \ (445 + 126Sd = 0.9942
k In) k 445 126

) + 0.169 2 . 0.994 2
(125

-1
123

Thus, in this case the two formulas agree to four decimal places.

) = 0.0102.

Why are we interested in the sampling standard error of the effect size? The full
answer will become clear later, but perhaps a hypothetical example will shed some light.

Suppose that there are two independent studies comparing ESS with a textbook
oriented curriculum for third grade boys. Say that one study produced an effect size of
0.37 with a standard error of 0.50 while the other, larger study yielded an effect size of
0.31 with a standard error of 0.16. Although neither effect size by itself is statistically
significant (each is less than two standard errors from zero), when they are properly
combined the effect is statistically significant.

It turns out that the statistically optimal wa:, in which to combine two effect size
estimates is to compute their weighted average, weighted in proportion to the reciprocals
of the squares of their variances, that is,

0.37(1/0.502) + 0.31(1/0.15 2)
0.32.dcombined

(1/0.502) + (1/0.16 2)

In this case, the combined effect size is more than two standard errors away from zero,
since the standard error of this combined effect size estimate is the square root of the
reciprocal of the sum of reciprocals of the individual variances

1

Sd(combined)= = 0.152
((11.50)2 + (1/.16) 2)'

In general, if most studies yield effect size estimates favoring the new curriculum,
their combined effect size will be more statistically significant than any individual study.

In short, the sampling standard errors of individual effect size estimates provide
weights for optimally combining effect sizes across studies and in addition provide
information for computing standard errors of combined effect sizes.

Another issue which can be addressed by using sampling standard errors is the
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question of effect heterogeneity, which we will discuss in detail later. In our hypothetical
example the heterogeneity issue boils down to the question of whether two different
studies of the same curriculum produced significantly different effect sizes. In this
example, the answer is no, since the effect sizes of 0.37 and 0.31 are within one standard
error of each other. When there are significant differences in the effect sizes found in
different studies, the meta-analyst would search for study characteristics to explain the
difference using an ANOVA analog called Analysis of Heterogeneity.

3.4 Combining effect size estimates
One goal of meta-analysis is to combine estimates of effect size to produce an overall
average. There are, ho...,ever, two somewhat different situations in which effect size
estimates are combined. One situation is that of combining independent effect site
estimates across studies. The 'her situation arises when correlated effect sizes are
combined within studies. Each situation is discussed separately below.

3.4.1 Combining independent effect size estimates by weighted averaging
Several effect site estimates, obtained from studies of a particular curriculum, conducted
under similar conditions with similar pupil populations and similar cnterion measures,
can be combined to give an overall effect site estimate. As we said earlier, the power and
sensitivity of meta-analysis comes from the fact that this combined estimate will have
smaller standard error than any of its parts. The statistically optimal way to average a
group of independent estimates is to form a weighted average, weighing each estimate by
the reciprocal of its sampling variance, i.e., the reciprocal of its squared standard error.
Figure 3 exhibits the formula for this calculation.

FIGURE 3

Suppose that

di, d2, . . . , dk

are k independent effect size estimates and that their stcndard erwrs are,

SI, S2, . . . , Sk.

Then the weighted average effect size is
2 2

di/Si + d 2/S2 + ... + 44S12c

d 1/5 12 + 1/S 22 + ... + 1/Sk2

The standard error of the weighted average is

Sd+ = 1/(1/S 12 + vs 22 + + us k2)I/2
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Example 28: Combining weighted effect size estimates

If three studies yield effect sizes of 0.10, 0.35, and 0.60 with standard errors of
0.2, 0.1 and 0.3, respectively, then the weighted average effect size is

(0.10/0.04) 4. (0.35/0.01) + (0.60/0.09)4 (1/0.04) + (1/0.01) + (1/0.09)
0.324,

and its standard error is

Sd+= 1/[(1/0.04) + (1/0.01) + (1/0.09)]
1/2

= 0.086.

The most precise estimate (0.35) receives the greatest weight. The standard error

of the weighted average Is smaller than that of any of its components.

3.4.2 Combining correlated effect size estimates
The goal of meta-analysis is to combine information from several studies. One difficulty,
however, is the great variety of criterion measures used by different investigators. for
example, one investigator might measure science achievement by a standardized test (e.g,
Sequential Test of Educational Progress (STEP)), another might write his/her on test, a
third might use yet another test (e.g., Test on Understanding Science (TOUS)). In order to
have adequate numbers of studies for meta-analysis it is necessary to combine and
compare effect sizes for different criterion measures. Of course, it would not be appropri-
ate to compare or combine criteria measuring different l,oncepts like attitude changes and
achievement. It would not be meaningful, for example, to ask if a new curriculum
changed male attitudes toward science more than it l,hanged female understanding of
science. On the other hand, it is reasonable to combine or compare effect sizes for similar
criterion measures such as two different achievement tests. For these reasons, we grouped
criterion measures into five critenon clusters (Achievement, Perceptions, Process Skills,
Analytic Skills and Other Performance Areas) in our study of new science curricula.
This, however, introduces a technical statistical problem. In many cases, two or more
different criterion measures within one study fall into the same criterion cluster. For
example, Wideen (1971) reported means and standard deviations for six critenon
measures (Example 29). The first three (II, RAI and TLE) measure perceptions, the ncxt
two (PPMA and PPMB) measure process skills, and the last (STEP-SLience) measures
achievement. Since these measures were all made on the same groups of pupils, they are
statistically correlated. It would be wrong to regard them as three independent estimates
of the effect of the new curriculum.

How then do we deal with correlated effect sizes vv ithin the same study (e.g., the three
perceptions effects, or the two process skills effects in Example 29)? (Hedges and Olkin
1985,[Chapter 10, Section G]) recommend selecting one representative effect size from
each cluster, perhaps at random. Another alternative is to average the correlated effect
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size estimates where they occur and make a conservative estimate of the standard error of
their average as shown in Table B of Example 29. For example, the average effect size
for the "perceptions" cluster is (-0.174+0.348+0.016)/3 or 0.063 and a "conservative"
standard error of this average is the average of the individual standard errors:
(0.085+0.086+0.085)/3 or 0.085. "Conservative" in this context means that the true
standard error (which we lack information to estimate) is somewhat smaller than 0.085.
(See Appendix 2 for an explanation.)

Example 29: Combining correlated effect size estimates

Table A: Means and Standard Deviations for Experimental and Control Student Groups for
Criterion Measures (adapted from Wideen, 1971, Table VII)

Experimental Control Effect Size
(n=263) (n=292) Esti. Std.

Criterion Measure Mean SD Mean SD mate Err.

Perceptions

Interest Inventory (II) 26.97 9.91 28.52 8.90 -0.174 0.085

Revised Attitude Inventory (RAI) 67.24 7.86 64.39 8.18 0.348 0.086

Student Survey of the Teaching- 66.15 14.84 65.93 13.33 0.016 0.085
Learning Environment (TLE)

Process Skills

SAPA Pupil Process Measure A 25.05 7.84 17.46 7.90 0.951 0.094
(PPMA)

SAPA Pupil Process Measure B 12.80 3.74 10.69 4.31 0.490 0.087
(PPMB)

Achievement

Sequential Test of Educational 67.56 25.43 60.43 25.53 0.279 0.086
Progress: Science (STEP-Science)

After correlated effect size estimates are averaged together to form Table B, the data
contain at most one effect size estimate for each cnterion cluster for each independent

38 A Practical Guide to Modem Methods of Meta-analysis



subgroup of subjects. Of course, there will still be studies with two or more correlated
effect sizes but these will be in different criterion clusterswill measure different
cor .tracts. Since we analyze each criterion clusters separately and never make com-

parisons between criterion clusters, the comparisons we do make (for example, boys'
achievement vs. girls' achievement) are between independent groups of subjects.

Table B: Aggregate Effect Sizes for Criterion Clusters within Wideen's (1971) Study

Average Conservative
Criterion Cluster Effect Size Standard Error

Perceptions (II, RAM, TLE) 0.063 0.085

Process Skills (PPMA, PPMB) 0.723 0.091

It is still possible for one study to produce two or more independent effect size
estimates in the same criterion cluster. This occurs when the investigator reports statistics
for independent subgroups of subjects. For examplt., Vanek (1974), reported statistics for
third and fourth grade girls and boys, which yielded four independent effect size esti-
mates. (See Example 23.)

To summarize, the data for each individual study are reduced as follows. for each
independent subgroup of pupils, effect sizes within the same criterion clusterare aver-
aged together. Appendix 3 contains SAS programs for carrying out these calculations.
Effect sizes computed by these programs for achievement criterion measures are listed in
Appendix 4.

3.5 When is it appropriate to combine estimates: Measuring heterogeneity
Independent studies may produce effect size estimates which differ by many times their
sampling standard errors. Appendix 4, for example, displays effect size estimates based
on achievement tests for various experimental science curricula. The range of effect sizes
even within the same curriculum is striking. For example, effect sizes for BSCS Yellow
vary from about -0.8 to +0.8, as shown in Example 30.
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Example 30: Examining heterogeneity

BSCS YellowEffect Size Estimates and Standard Errors

Study Effect Standard Notes on the

ID Size Error Study

(d) (S)

9A 0.67660 0.069420 Israel-city

9B 0.93613 0.92565 Israel-kibbutz

9C 0.03495 0.090629 Israel-ag school

29 0.44184 0.96960 boys

37A 0.28069 0.140289 zoology classes

37B 0.52985 0.142355 botany classes

37C 0.38884 0.141362 biology classes

43 0.5643 0.165552

51 0.21218 0.061099

63 0.71001 0.149950

65 0.63274 0.186029 passive control

82A 0.79051 .475224 BSCS inquiry, boys

82B 0.44143 0.340299 BSCS inquiry, girls

82C 0.02289 0.392769 BSCS traditional, boys

82D -0.81212 0.353206 BSCS traditional, girls

The variation among studies is, of course, due in part to random sampling fluctuations
as reflected in the sampling standard en ors. However, in some cases differences between
individual studies exceed several standard errors, presumably reflecting differences in the
charactenstics of those studies. In Example 30, the highest and lowest effect sizes came
from studies 9 and 82, both of which have unusual characteristics. Study 9 was conducted
in a non-English-speaking culture and the deviant effects in study 82 occurred when
traditional teaching methods were used with the experimental curriculum. However, even
with these unusual studies set aside there remain substantial differences among the
remaining studies. Therefore, it appears that effect sizes are influenced by study charac-
tenstics not captured by the variables recorded by the meta-analyst. To study this 'non-
sampling' variation we use heterogeneity analysis.

The fundamental measure of heterogeneity, Q, is based on the idea that the expected
squared deviation of an effect site estimate from its true value equals the square of its
standard error (Hedges and Olkin 1985,[Chapter 6, Section D]). The formula for the Q
statistics is given below.
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Suppose that

d1,d2,...,dk

are k independent effect size estimates with standard enors,

SI, S2, . , Sk,

and weighted average effect size

The heterogeneity statistic is

Q = ((d1-4)/s1)2
+ ((d2-d+)/s2)

2
+ + ((dk-dl-) /sk)

2

Q Q2 4. + Qk

Example 31: Calculating the heterogeneity (Q) statistic

Using the data in Example 30, the weighted average effect size is 0.4415, and
the heterogeneity statistic is

Q = ((0.6766 - 0.4415)/0.0694)2+ + ((-0.8121-0.4415)/0.3532)2

Q= 11.47 + 28.56 + 20.12 + 0.00 + 1.31 +0.39 +0.14 +0.57
+ 14.09 + 3.21 + 1.06 + 0.54 + 00 +1.14 + 12.60

Q = 95.18

A test for heterogeneity (i.e., variation in excess of sampling fluctuations) is carried
out by comparing Q to a percentile of the chi-squared distribution with k - 1

degrees of freedom. For the data in this example, the Q statistic (95.18) exceeds
the 99th percentile of the chi-squared distribution with 14 degrees of freedom
(29.14); consequently, the effect sizes for BSCS Yellow shown in Example 30 are
significantly heterogeneous.

(14)

The individual squared deviations (11.47, 28.56, ... , 12.60) are denoted Q1, Q2, .

Qk. These Q, values are useful for identifying studies which deviated significantly from
the weighted average. As a rule of thumb, only one study in 19 should have a Q1 value
exceeding 4 and only one in one hundred should exceed 5.3. Thus, effect sizes 9A, 9B,
9C, 51, and 82D, with Q1 values greatly exceeding 5.3, are strikingly deviant from the
other ten, and the meta-analyst would be well advised to examine the relevant studies to
determine, if possible, why they are deviant.
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3.5.1 Heterogeneity plots
A convenient way to screen a group of studies for heterogeneity is to plot their effect
sizes with error bars of plus or minus two or three standard errors as shown in Figure 4
for studies of the BSCS Yellow curriculum in Example 30. Notice that the error bars of
deviant effects fail to cover the weighted average (0.441). This figure was produced by
SAS program III listed in Appendix 3. Heterogeneity plots and Q, statistics for the other
new science curricula are presented in Appendix 4.

FIGURE 4: Heterogeneity plot for BSCS Yellow achievement effects

ID

2 D
82 C

Qt

12.60
1.14

MIN
-1.87

L
L

AVG
0.441

U I
* I U

MAX
2.22

9 C 20.12 L---- ----UI
51 A 14.09 L--- --UI
37 A 1.31 L ----- *-- I--U
37 C 0.14 L I U
82 B 0.00 L I U
29 A 0.00 L--- I---U
37 B 0.39 L - - -- I U
43 A 0.57 L - - -- I U
65 B 1.06 L - - -- 1- U
9 A 11.47 I-- --U

63 A 3.21 L- I U
82 A 0.54 L I U
9 B 28.56 L-- ---U

Key: U (Effect size + 3 sampling standard errors)
(Effect size)

L - (Effect size - 3 sampling standard errors)
1 (Weighted average effect size for studies of this

curriculum)

ID Study Identification code.

Qt ((di - c14.)/s1)2 (Squared deviation of ith effect
size from the weighted average)
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3.6 Formal analysis of heterogeneity: An analysis of variance for effect sizes
Given that a group of effect sizes is significantly heterogeneous (has a significant Q
statistic), it may be possible to explain the excess variability in terms of observed
characteristics of the studies which yielded the effect size estimates. The question is
investigated using weighted analysis of variance with effect size as the dependent
variable. The reciprocal, squared sampling standard errors are used as weights, and the
factors in the analysis of variance are those study characteristics which the meta-analyst
suspects may account for variation among studies.

The table given in Example 32 is illustrative of this type of weighted ANOVA. This
particular example analyzed all achievement effect sizes using Curriculum, IQ and sex as
factors. The analysis included only main effects and the IQ x Sex interaction, although
other interactions cculd have been included. The ANOVA table shows that even though
much of the total heterogeneity can be explained by Curriculum, IQ and Sex, there still
remains significant unexplained heterogeneity.

The choice of IQ and sex as explanatory factors is somewhat arbitrary, since these

variables are highly collinear with other potential explanatory variables. Indeed, it is
rarely possible to include more than one or two factors in a formal analysis of heteroge-
neity due to widespread confounding (collinearity) of potential explanatory variables
meta-analyses arc not experiments and are not 'balanced' with respect to factors of
interest. Formulas for weighed ANOVA are to be found in (Hedges and Olkin
1985,(Chapter 7). SAS program III in Appendix 3 produced the table in Example 32, and
it can be adapted to carry out most weighted ANOVAS of interest.

Example 32: Analysis of heterogeneity table for achievement effect size

Source of Q Degrees of Significance
Heterogeneity Freedom

Curricula 324.6 17 .01

IQ 16.9 2 .01

Sex 0.3 1 ns
IQ x Sex 36.3 1 .01

Unexplained e--6.8 55 .01

Total 821.0 80 .01

3.7 Combining effect size estimates with unexplained heterogeneity: Random
effects models in meta-analysis
Random effects procedures for combining estimates in meta-analysis differ from the
fixed effects procedures described in sections 3.4, 3.5, and 3.6 in that they treat between-
study variations in effect sizes as random. In the random effects model, the studies that
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are actually performed are viewed as a sample from a universe of possible studies that
might have been performed. The population effects sizes (the effect size parameters) for
the studies are treated as a sample from a universe (or hyper-population) of possible
effect sizes. Thus, there are two sources of between-study variation in the observed
sample effect size estimates. One source of variation is the between - study variation in the
underlying effect size parameters. The second source of variation is the sampling error of
the observed effect size estimate about its underlying effect size parameter. Random
effects analyses take into account the between-study variation in effect size parameters by
formally estimating the magnitude of this variation via a swriance component. (A
complete discussion of the rationale and methods for random effects analyses is given in
Chapter 9 of Hedges and Olin (1985).)

3.7.1 Estimating the variance component
The between-study variance component is essentially the amount by which the observed
variance among effect size estimates exceeds the within-study sampling variance.
Consequently. the variance component a is usually estimated as the difference
between the observed variance among edict size estimates and the average of the
sampling error variances. If S2(d) is the usual sample variance of di,...,dk and
are the sampling variances of di,...,dk given in section 3.3, the variance component
estimate a6 is

A2 2 2
as = S (d) - (Si + ... + Sk)/k.

1

Example 33: Estimating sampling variance
If three studies yield effects of 0.10, 0.35, and 0.60 with standard errors of 0.2,
0.1, and 0.3, respectively, then the unweighted average of the effects in d . 0.35

usual sample variance of the effects is

S
2(d) (0.10-0.35)2 + (0.35-0.35)2 + (0.60-0.35)2

2 0.0625,

and the variance component estimate is

A2
as = 0.0625 - (0.04 + 0.01 + 0.09)/3 = 0.0158.

This suggests that the distribution of the random effects has a variance of 0.0158

or a standard deviation of about 0.13.

Note that a test of the hypothesis that (32 =0 is equivalent to the heterogeneity test for
fixed effects models given in section 3.5. This is because as =0 if and only if all of the
studies have the same population effect size. Consequently, a test that all of the popula-
tion effect sizes are the same is also a test that as =0. It is important to recognize that the
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estimate 08 of ok2 can differ substantially from zero even if it not lare enough to be
A2

statistically significant. Moreover, a statistically significant value of 68 need not be
large in an absolute sense. Consequently careful judgment is required in the interpretation
of the variance component.

3.7.2 Combining effect size estimaes in random effects models
Effect size estimates are combined in random effects models by computing a weighted
average in a manner similar to that in fixed effects models. The only difference is in the
definition of the weights. In random effects models both within-study sampling error
variance (the standard error) and the variance component contnbute to the weights.

Suppose that d...,dt are k independent effect size estimates with standard errors

SI,...,Sk,

A2
and that the variance component estimate is 38 . Then the random effects weighted
average is

d
2 ^2 2 ^2

1/(S
1
+ cr 8) + + 1/(S

k
+ 68)

^2 ^2di/(Si
2 + a8) + + d k/(Sk

2 + a8)
(15)

The standard error of the random effects weighted average is

^2 ^2
Sd = 1/[1/(S

1

2 + a 8) + + 1/(S
k
2

+ a8)]
-1/2 (16)

Example 34: Combining effect size estimates in a random effects model

If three studies yield effect sizes of 0.10, 0.35, and 0.60 with standard errors of
0.2, 0.1, and 0.3, respectively, the variance component estimate is 6 =
0.0158. The weighted average effect size is 6

50,10/0.0558) + (0.35/0.0258j + (0.60/0.1058)
d

(1/0.0558) + (1/0.0258) + (1/0.1058)

and the standard error is

0.318

1/2
Sd = 1/[(1/0.0558) + (1/0.0258) + (1/0.1058)] = 0.123 .

Note that the weighted mean effect under the random effects model d = 0.318 is
slightly smaller than the weighted mean effect under the fixed effects model d+ = 0.324.
Note also that the standard error Sd+ = 0.086 under the fixed effects model th smaller than
the standard error Sd = 0.123 under the random effects model.

Note that the weights used the random effects model are not the same as those of

A Practical Guide to Modern Methods of Metaanalysis 45



the fixed effects model discussed in section 3.4 unless the variance component
estimate 08

A2
i

A2
isexactly zero. Because as is usually larger than zero, the weights are gen-

erally smaller in the random effects case and d usually differs from (14.. Moreover, the
standard error in the random effects case is usually larger (often much larger) than in L.e
fixed effects case. As a result, overall average effect sizes that are significantly different
from zero (i.e., more than two standard errors away from zero) in a fixed effects analysis
may not be significant in a random effects analysis. The difference, of course, results
from differences in the conceptualization of the model, and in what counts as random.
The SAS program in Appendix III computes both fixed and random effects estimates of
effect sizes and their standard errors.
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4.0 Reporting Results

Effective reporting of the results of a meta-analysis requires considerable care and good
judgment. The report must be complete enough to describe clearly what was done but
concise enough to be readable. It must provide a context in which to interpret results and
link them to other theory and empirical results. One useful overall guideline is that the
report of a meta-analysis should be organized like that of any empirical research report. It
should begin with a clear statement of the problem, describing the constructs and their
operations. If the meta-analysis is oriented toward hypothesis testing, the hypothesis
should be explicitly stated. In meta-analyses devoted to hypothesis generation, the range
of hypotheses to be explored should be specified as clearly as possible. Procedures for
data collection such as the procedures for identifying and sampling of studies should be
described in detail. Similarly, the procedures used for extracting information from studies
(coding of study characteristics) and procedures used to insure the quality of these data
(such as reliability checks) should be described. In particular, missing data and the
reasons that they are missing should be identified. Procedures for data evaluation, such as
ratings of study quality should be described in detail. It is probably a good idea to
describe the criteria used in ratings of study quality and to provide justification for them.

It is also helpful to describe a few key studies in detail to help readers develop a
clearer intuitive understanding of the research. The clinical discussionof particularly
important studies or of studies that yield discrepant findings is also useful. For example,
if only one or two studies examined the interaction of treatment with a potentially
important variable such as ability level, it might be wise to discussthose studies and the
implications of their findings for general conclusions about treatment effects.
Finally, a long table providing a summary of the critical aspects of each study is also
useful to present a broad picture of the data available. Such a table might present, for
each study, a brief description of the independent variable (e.g., treatment and control),
the dependent variable, crucial features of the study design (such as sample size, type of
assignment of subjects to treatments, etc.), the result as reported by the original investiga-
tor, and the estimate of effect size. When the number of studies is large such a table may
tz: many pages long and some journals may be reluctant to publish it. However, it will
greatly increase the credibility and usefulness of your analysis and make it available to
individuals who request it even if it cannot be published in its entirety. An example of
such a summary table is shown in Example 35 (page 49). The table is an excerpt from a
long table summarizing study characteristics and outcomes. It is adapted from Table 3 of
Eagly and Crowley (1986) which provided data on 99 studies.

The presentation of the data analysis should include enough information to make
analyses interpretable. The type of analysis (fixed or random effects) should be described
and the relevant summary statistics should be provided. When a mean effect size is
presented, its standard error should always be given. It is often useful to provide both
fixed effects standard errors (that is, Sd) and random effects standard errors (that is, Sd)
for means. In addition, the homogeneity statistic, a variance component estimate, or both
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should be given as an index of variability of effects across studi-!s. When either the
homogeneity statistic or the variance component suggest heterogeneity among study
results, heterogeneity plots like those in Figure 4 can be useful in interpreting results.
Finally, when categorical models are used to explain variability among effect sizes via
study characteristics, an overall summary table should be presented along with a table of
cell means with standard errors and some indication of variability of effects within cells
(like a homogeneity statistic or variance component estimate).

The final indispensable element of a good report of a meta-analysis is a the ghtful
reflective discussion of the findings. The discussion should link the results to the broader
context of other findings, intuitions, and common sense. It should show how the findings
of this meta-analysis make sense and should shov, implications for future research and
for practice.
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Example 35: A MetaAnalysis Summary Table

Sesofsubject Effect Sizes and Study Variables. Ordered by magnitude of Effect Sizes

Study

1. Pomaxal L Clore

(1973), Study 3

2. I.m. Piliavin,

J.A. Piliavin,

Rodin (1975)

3. Pomaxal L Clore

(1073), Study 1

4. Pomaxal L Clore

(1973), Study 2

5. Borofsky, Stollak

Nesse (1971)

6. J.A. Piliavin L

1.M. Piliavin

(1972)

7. Kleinke, Mac.

lntire L Riddle

(1978), Study 1

8. Solomon L Merman

(1977)

9. Smith, uhreler

Diener (1975)

10. Austin (1979),

Study 3

Behavior.

Helping a person with

a flat tire or picking

up a hitchiker

Helping a man who fell

in the subway

Effect site

1.48

(0.34/0.03)

Sea differences in judgments of helpino behaviors

95% Cl ford Categorical

over variablesc ComMetenced Comfort Oa f Own Behavior Stereot

1.44

(0.10/0.00)

Helping a person with a 1.44

flat tire (0.21/0.01)

Giving a ride to a 1.42

hitcnhiker (0.20/0.01)

Stopping a brutal fight 1.23

between 2 subjects (0.48/0.10)

Helping a can who fell 1.03

in the subway (0.08/0.00)

Mailing a letter for a 0.86

woman in a shopping (0.85/0.57)

call.

Picking up fallen groceries 0.79

for a woman at her car. (0.53/0.24)

volunteering to spend time -0.70

with retarded children (0.07/0.22)

Stopping someone from -0.71

stealing a student's (0.47/0.74)

belongings in a classroom

building

1.29/1.66

1.32/1.56

1.22/1.66

1.20/1.64

0.57(1.89

0.88/1.18

3/3/2/2 0.96 0.59 0.69

3/3/2/2 0.52 -0.03 0.34

3/3/2/2 1.11 0.26 0.72

3/3/2/2 0.73 0.01 0.66 0.90 1.39

113/2/2 0.85 0.49 0.52 0.76

3/3/2/2 0.52 -0.03 0.34 0.23 0.00

0.72 1.37

0.23 0.00

0.56 1.35

0.98

0.41/1.31 3/2/2/1 -0.09 -0.28 -0.03 -0.13 -0.13

0.26/1.31 3/2/1/2 0.03 -0.11 0.13 -0.07 0.26

-0.91/-0.50 2/1/2/1 -0.29 -0.63 -0.28 -0.55 -1.29

-0.92/-0.49 2/2/1/1 0.46 0.09 -0.12 0.04 0.64

mote. Studies can be located in this table by referring to the Appendix, where the studies' sequence numbers appear. Studies with similar or

identical behavior descriptions may differ on study variables because they differ on features that ere not conveyed in the summary descriptions.
Cl confidence interval.

Summary of description given to subjects who rated behaviors. bEffect sixes are positive for differences in the male direction and negative for

differences in the female direction; values in parentheses are the proportion of men who helped divided by the proportion of warren who helped.
eihe first variable setting (1 laboratory, 2 campus, and 3 off-camp, ); the second variable is surveillance (1 no surveillance, 2 unc'ear,
and 3 a surveillance); the third variable is the availability of other helpers (1 not available or unclear, 2 available); and the fourth
variable is type of appeal (1 direct request, 2 presentation of need). dValues are positive for differences expected tc be associated with

greater helping by men (greater role estimates of competence, of comfort, and of own likelihood of helping; greater female estimate of danger to
self). eVslues are positive when questionnaire respondents believed that men were more helpful than women.
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APPENDIX I

META-ANALYSIS CODE BOOK

Each unit of observation (one effect size in one study) comprises two lines of data in
the raw data file, each study generally yields several lines of data. The data items on
each of the lines are as follows:

Data Item Description

1. Study ID Identification number for the study.
2. Subgroup Code letter identifying a subgroup of pupils.
3. Scale Code number identifying the criterion measure.

4. Pupil Method of assignment of pupils to treatments.
Assignment (I) Random (2) Matched (3) Intact Classes

(4) Self-selection

5. Teacher Method of assignment of teachers to treatments.
Assignment (1) Random (2) Non-random (3) Self-selected

(4) Crossed (5) Matched

6. Criterion Type of criterion measure
Measure (I) Cognitive - low ( 2) Cognitive - high

( 3) Cognitive - mixed ( 4) Problem solving
( 5) Affective - subject ( 6) Affective - science
( 7) Affective - procedure/methodology
( 8) Values
( 9) Process skills, techniques
(10) Methods of science (11) Psychomotor
(12) Critical thinking (13) Creativity
(14) Decision making
(IS) Logical thinking, Piagetian
(16) Spatial relations, Piagetian
(17) Self-Concept (18) Classroom behaviors
(19) Reading (20) Mathematics
(21) Social studies (22) Communication skills

7. Criterion Broader classification of criterion measure.
Cluster (I) Achievement (2) Perceptions

(3) Process Skills (4) Analytic Skills (5) Other

8. Curriculum New science curricula
Elementary

( 1) ESS
( 3) S-APA
( 5) ESLI
( 7) COPES
( 9) USMES
(11) IS
(15) ESTPSI

( 2) SCIS, SCIIS, SCIS II
( 4) OBIS
( 6) ESSENCE
( 8) MAPS
(10) MINNEMAST
(12) SCIL
(16) FHESP
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Junior High
(28) HSP
(30) ISIS
(33) IPS.
(35) IME
(37) MSP

Secondary
(50) BSCS SPECIAL
(52) BSCS BLUE
(54) BSCS ADVANCED
(56) CBA
(58) HPP
(60) PSNS

(29) TSM
(31) ISCS
(34) ESCP
(36) CE/EE

(51) BSCS YELLOW
(53) BSCS GREEN
(55) CHEM STUDY

(57) PSSC
(59) CE/EE
(61) IAC

9.

10.

Grade Level

Inservice

(I) K-3 (2) 4-6 (3) 7-9
(4) 10-12 (5) Post Secondary

Was inservice training in new curriculum provided?
(1) Yes (2) No

11. IQ Avcragc IQ of students
(1) below 95 IQ (2) 95-105 (3) above 105

12. Length Length of study
(1) under 14 weeks (2) 14 to 28 weeks
(3) over 28 wecks

13. Preservice Was prescrvice training provided?
(1) Yes (2) No

14. School Size Number of pupils in school.
(I) < 50 (2) 50-199 (3) 200-499 (4) 500-999
(5) 1000-1999 (6) > 2000

15. School Type (1) Rural (2) Suburban (3) Urban

16. SES Avcragc sociocconomic status of pupils in treatment
and control groups. (1) Low (2) Medium (3) High

17. SEX Sex ratio of treatment and control groups.
(1) over 75% male (2) over 75% female
(3) at least 25% of either sex

18. Test type (1) Standardized (2) Ad hoc written test
(3) Classroom test (4) Observation
(5) Structured interview

19. Tcst Contcnt (1) Life scicncc (2) Physical science
(3) General science (4) Earth science (5) Biology
(6) Chemistry (7) Physics
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(codebook, continued)

20. Teacher Educational background of treatment group teacher.
Background (1) < Bachelors (2) Bachelors (3) Bachelors +35

(4) Masters (5) Masters +15 (6) Masters +30
(7) Doctorate

21. Teacher Years of science teaching experience.
Experience

22. CFLAG Was the analysis covariate adjusted?
(1) Yes, impossible to deduce unadjusted Std Dev

( The following items are on the second line of data for each observation. )

23. Treatment Mean
24. Standard Deviation
25. Sample Size

26. Control Mean
27. Standard Deviation
28. Sample Size

29. AN(C)OVA Sum of Squares for Curricula
30. Degrees of Freedom for Curricula (should be 1)
31 Total Sum of Squares
32. Total Degrees of Freedom
33. F statistic for Curricula

34. Sign Sign of the effect.
( 1) Treatment better than control
(-1) Control better than treatment
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APPENDIX II

POOLING CORRELATED EFFECT SIZES

Notation:

Say that in a particular -study subscales A, B and C are to be pooled into

one effect size. The individual effect size estimates and their standard errors

are dA sA, dB sB and dc sc. The pooled effect size estimate is the average,

cippoled ... (dA + dB + dc)/3.

It can be proved that regardless of the correlations among the subscales, the

standard error of this pooled estimate is less than or equal to the average of

their three standard errors,

sd S (sA + sB + sc)/3,

consequently, the average standard error is a conservative estimate of the

standard error of the pooled effect size.
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APPENDIX III

COMPUTER SAS PROGRAMS

This appendix contains computer programs for carrying out the statistical

analyses described in this handbook via the SAS (Statistical Analysis System)

package of programs. SAS is among the most widely available statistical

computer packages for mainframe computations. Microcomputer versions of SAS

are also available. In this appendix, we present complete programs to carry out

an entire analysis. We identify the functions of segments of code that

accomplish particular purposes. These segments are designed to illustrate how to

use SAS to carry out particularly tricky or unfamiliar operations. They must be

combined and modified to carry out the particular analysis desired in an meta-

analysis.
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PLIMIRIILLIkalgittansLEfftcaiztConnsliglign.
//EXEC SAS, OPTIONS- 'NOCENTER NODATE'
/ /METADISK DD DSN- META.SAS,UNIT- DISK,DISP- (NEW,CATLG),// SPACEm(TRK, (50,10))
/ /SYSIN DD°

DATA METADISK.META ; See CODEBOOK for data description;
INPUT (ID SUBGRP SCALE ASSIGNSS ASSIGNTE CRITERIA CLUST CURRIC

GRADE INSERY IQ LENGTH PRESREY SCHSIZE SCHTYPE SES SEX
TESTIYPE

TESTCONT TEABCKGD EXPERT CFLAG TMEAN TSTD TN CMEAN CSTD CN
SSTREAT

DFTREAT SSTOT DFTOT FTREAT SGN)
(+5 3.0 +1 SI. 32.0 3.0 2.0 3.0 102.0/

+7 7.0 6.0 4.0 7.0 6.0 4.0 10.0 2.0 12.0 5.0 7.0 2.0) ;

IF TN-. OR CNN. THEN DO ;
TN(DFTOT+1)/2 ;
CN -TN ;

END ;

°Assume equal samples if not stated ;

IF DFTOTa, THEN DFTOTTN+CN-1 ; Compute total degrees of freedom ;

IF SSTREAT NE . AND SSTOT NE . THEN
FTREAT.OSTREAT/SSTOT-SSTREAT))(DFTOT-1) ; Compute F ;

W TMEAN NE . AND CMEAN NE . AND CSTD NE .
THEN G .1 ( TMEAN - CMEAN)/CSTD ; Hedges & ilkin 5.A.2(3) ;ELSE G NI SGNSQRT(TN+CN)FTREATATNCN)) ;See footnote 1 ;

IF CSTD i., . OR CSTD .0 TSTD
THEN DF I. DFTOT - 1 ; Compute degrees of freedom for effect size ;
ELSE DF - CN - 1 ; df N., m in Hedges & Olkin 5.A.2(7).

J - 1-3/(4DF - 1) ; D is the uOiased estimate of the effectD - GJ ; size using Hedges & Olkin 5.A.2(9,10).

YARD - J J DF (1,4+CN)/((DF-2)TNCN)+DD(.1JDFADF-2)-1) ;
STD 0 SQRT(YARD) ; Standard Deviation of D from H & 0 5.E(36).

CARDS ; Beginning of data (see CODEBOOK for variable description)

DATA GOES HERE

IlIt
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Program H. Store Value Labels in SAS

// EXEC SASS, OPTIONS.'NOCENTER NODATE'
//SASLIB DD DSN*SFOFMT.SAS,UNIT.DISK,DISP=(NEW,CATLG)
// SPACE(TRK,(4,2,2))
//SYSIN DD
PROC FORMAT LIBRARYrSASLIB ;

VALUE TTYFMT 1='STANDARDIZED TEST
2..9AD HOC WRITTEN TEST'
3.9CLASSROOM TEST
4- 'OBSERVATION'
5.9INTERVIEW9;

VALUE CNTFMT 1.9LIFE SCIENCE'
2- 'PHYSICAL SCIENCE'
39GENERAL SCIENCE'
4.9 EARTH SCIENCE'
5.'BIOLOGY'
6.9CHEMISTRY'
7.9PHYSICS';

VALUE CRCFMT 01.9ESS'

03- 'S -APA'
04..90BIS'
05='ESLI'
06- 'ESSENCE'
07.39COPES'
08- 'MAPS'
09..9USMES'
lOseMINNEMEAST
11=91S'
12=9SCIL9
15..'ESTPS19
16.9FHESP9
28..9HSP9
29 -'TSM'
30.91SIS'
3 1..91SCS'
33.1'1PS'
34m'ESCIP
35 -'IME'
36- 'CE /EE'
372.9MSP9
50- 'BSCS -S'
5 1 n'BSCS-Y9
52.9BSCS-1:19
53 ='BSCS -G'
54- 'BSCS -A'
55,..9CHEM STUDY'
56.9CBA'
57229PSSC'
58 -'HPP'
59.9CE/EE'
60- 'PSNS'
6 1=91AC'
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(value labels)

VALUE GRDFMT

VALUE IQ_FMT

VALUE SESFMT

VALUE CRTFMT

VALUE CC_FMT

VALUE SE XFMT

VALUE LNGFMT

I.'K-3'
2.'4-6'
3.'7-9'
4.'10-12'
5 -'POST SECONDARY';
I.'LOW (BELOW 95)'
2 ='AVERAGE (95-105)'
3 ='HIGH (ABOVE 105)';
1.'LOW'
2.*MIDDLE'
3..'HIGH%
I.'COGNITIVE - LOW'
2.'COGNMVE - HIGH'
3.'COGNMVE - MIXED'
4.'PROBLEM SOLVING'
5.'AFFECTIVE - SUBJECT
6.1AFFECTIVE - SCIENCE'
7 ='AFFECTIVE PROCEDURE/METHODOLOGY'
8 ='VALUES'
9.'PROCESS SKILLS, TECHNIQUES'
IVMETHODS OF SCIENCE'
1 I .'PSYCHOMOTOR'
12.'CRITICAL THINKING'
I 3.'CREATIVITY1
14.'DECISION MAKING'
15.'LOGICAL THINKING PIAGETIAN'
16='SPATIAL RELATIONS PIAGETIAN'
17='SELF-CONCEPT
18.'CLASSROOM BEHAVIORS'
19.'READING'
20.'MATHEMATICS'
21,s'SOCIAL STUDIES'
22='COMMUNICATION SKILLS';
(.'ACHIEVEMENT CLUSTER'
2.'PERCEPTIONS CLUSTER'
3- 'PROCESS SKILLS'
4- 'ANALYTIC SKILLS'
5.'OTHER PERFORMANCE AREAS'
6 ='RELATED SKILLS';
1.'0VER 75% MALE'
2 ='OVER 75% FEMALE'
3.'AT LEAST 25% MALES AND FEMALES';
I al' UNDER 14 WEEKS'
2 ='14 TO 28 WEEKS'
3 ='OVER 28 WEEKS';
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Prognm EL Meta Analysis and Diagnostic Plots

/- EXEC SAS,OPTIONS=PAGESIZE=330 NOCENTER NODATE'
//METADISK DD DSN=USER.C5001420.META.SAS,UNIT-DISK,DISP=SHR
//SASLIB DD DSN=USER.C5001420.METAFMT.SAS,UNIT=DISK,DISF=SHR
//SYSIN DD *

* G.METANL 2/10/87 GENERIC META ANALYSIS PROGRAM;

MACRO FACTORS
CURRIC SEX IQ

DATA METAFMTD ;
SET METADISK.META ;

IF CFLAG THEN DO; D=D'.7; STD=STD*.7; END;
GRAND=I;

FORMAT TESTTYPE TTYFMT.
TESTCONT CNTFMT.
CURRIC CRCFMT.
GRADE GRDFMT.
SEX SEXFMT.
IQ IQ_FMT.
SES SESFMT.
CRITERIA CRTFMT.
CLUST CC_FMT.
LENGTH LNGFMT.;

PROC SORT DATA=METAFMTDD ;
BY CLUST ID SUBGRP ;

PROC MEANS NOPRINT DATA=METAFMTD ; * AGGREGATE CORRELATED ;
BY CLUST ID SUBGRP ; * EFFECT SIZES.
ID FACTORS ;

VAR D STD ;
OUTPUT OUT=AGGREGAT

MEAN= D STD ;

DATA AGGREGAT ;

SET AGGREGAT ;

STDSQR=STD*STD ;
WT= I /STDSQR ;

PROC SORT DATA=AGGREGAT ;

BY CLUST FACTORS D ;

CREATE WEIGHTS
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(program III, continued)

PROC MEANS NOPRINT DATA=AGGREGAT
BY CLUST FACTORS ;
VAR D WT ;
WEIGHT WT ;
OUTPUT OUT=SUMMARY

MEAN=DBAR WTBAR
CSS.Q
SUMWGT.SUMWGT
N =N ;

PROC MEANS NOPRINT DATA.AGGREGAT
BY CLUST FACTORS ;
VAR D STDSQR ;

* UNWEIGHTED ;

OUTPUT OUT = USUMMARY
VAR = UNWVAR
MEAN . JUNK SDSQBR ;

DATA SUMMARY ;
MERGE SUMMARY USUMMARY ;
PCHI . . ;
IF N GT 1 THEN DO ;

PCHI.1-PROBCHI(Q,N-1) ;
END ;

SIG_DELT = SQRT (MAX((UNWVAR-SDSQBR) ,0)) ;
TOT SE .. SQR.TRIVTBAR*(SIG_DELT**2) + 1)/SUMWGT) ;
SAMP SE .. 1/SQRT(SUMWGT) ;

PROC PRINT ;
BY CLUST ;
VAR FACTORS DBAR TOT SE SAMP_SE N Q PCHI ;

DATA PLOTDATA ;
MERGE AGGREGAT SUMMARY(KEEP=CLUST FACTORS DB/ R),
BY CLUST FACTORS ;
N._N_
EFFECT =D;
UPPER=D+3*STD;
LOWER=D-3*STD;
RESID . WT*(D-DBAR)**2 ;

PROC TIMEPLOT ;
BY CLUST ;
PLOT LOWER-'12 EFFECT ='*' UPPER.'U' DBAR ='I' / HILOC OVERLAY;
ID SUBGRP FACTORS RESID ;

PROC GLM DATA=AGGREGAT ;
TITLE 'ANALYSIS OF HETEROGENEITY BY WEIGHTED ANOVA' ;
BY CLUST ;
CLASS FACTORS ;
WEIGHT WT ;
MODEL D = FACTORS SEX*IQ ;
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APPENDIX IV

ACHIEVEMENT-EFFECT-SIZES D INEEc2aN==iTR E E PLOTS`

FROM SHYMANSKY. HEDGES. AND WOODWORTH
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Achievement Effect Size Estimates

Study ID
Subgroup
: Pupil Assignment : See Appendix 1 for :

: Teacher Assignment : coding of variables :
: Grade

Inservice
IQ

Study Length
Preservice

School Size
School Type

Socioeconomic Status
Sex

Test Type
Test Content

Covariate
Effect Standard
Size Deviation

ESS
42 A 3 5 2 1 2 2 2 3 1 3 0.41072 0.161134
42 B 3 5 2 1 2 2 2 3 1 3 0.13609 0.148538
42 C 3 5 2 1 2 2 2 3 1 3 -0.45124 0.163649

102 A 1 2 1 2 1 4 1 2 1 I 3 0.04093 0.191164
SCIS

2 A 3 1 1 2 2 . 2 2 3 5 2 1.12835 0.148074
78 A 3 3 2 1 2 3 1 3 2 3 0.78155 0.420886

SAPA
5 F 3 2 2 2 3 . 2 2 3 1 3 0 -0.70392 0.176314

1 5 A 3 2 2 1 2 3 . . 2 2 1 1 3 . 0.18290 0.130201
15 B 3 2 3 1 2 3 2 2 1 1 3 -0.01988 0.127055
84 A . . 2 1 2 1 2. 2 2 3 I 3 -0.01738 0.260621
85 B 3 2 2 1 2 3 2 . 2 3 1 3 0.00640 0.204681
96 A 3 3 2 2 2 3 2 . 2 1 1 3 2 -0.12007 0.088654

103 A 3 2 2 1 3 3 . 2 2 1 1 3 0.35791 0.380184
103 B 3 2 2 1 1 3 . 2 2 1 1 3 0.05436 0.373062
103 C 3 2 2 1 3 3 . 2 2 2 1 3 -0.49585 0.386766
103 D 3 2 2 1 1 3 . 2 2 2 1 3 1.56206 0.493599
106 A 3 3 2 3 2 . 2 2 3 1 2 0.27856 0.085871

MINNEMAST
12 A 3 2 1 2 1 2 2 3 3 3 0 1.72503 0.165242

ESTPSI
93 A 3 2 2 2 2 . 2 3 2 3 0.28837 0.157448
93 B 3 2 2 2 2 . 2 3 2 3 . 0.35702 0.163749
93 C 3 2 3 2 2 . 2 3 2 3 . 0.31961 0.200051
93 D 3 2 3 2 2 . 2 3 2 3 . 0.02743 0.194970

FHESP
55 A 3 2 2 1 2 3 1 1 2 3 1 3 0.07195 0.121300
55 B 3 2 3 1 2 3 1 1 2 3 1 3 0.13537 0.151229
55 C 3 2 3 1 2 3 1 1 2 3 1 3 1.00996 0.216737

64 A Practical Guide to Modem Methods of Meta-analysis

74

notes

grade 4
grade 5
grade 6

SCIS test

hi-IQ boys
lo-IQ boys
hi-IQ girls
,o-IQ girls

K, passive ctrl

grade 5
grade 6
grade 7
grade 8

grade 6?
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(achievement effects, continued)

Study ID
: Subgroup
: : Pupil Assignment
: : : Teacher Assignment
: : : Grade

Inservice
IQ

Study Length
Preservice

School Size
School Type

Socioeconomic Status
Sex

IPS

Test Type
Test Content

Covariate
Effect
Size

Standard
Deviation

59 B 3 2 3 1 2 3 1 2 2 3 1 2 0.06793 0.144511
90 A 2 2 3 . 2 3 3 2 1 1 2 0.55793 0.163561

ESCP
53 A 3 2 3 2 2 2 2 2 3 1 2 0.74036 0.119597
92 A 3 5 4 2 3 1 2 2 3 2 4 -0.04322 0.073760

IME
59 A 3 2 3 1 2 3 1 2 2 3 1 2 0.19937 0.128919

MSP
89 A 3 2 3 2 3 2 2 3 1 2 0.49103 0.059489

BSCS SPECIAL
105 A 3 3 4 1 2 2 3 1 5 0.68906 0.163130
105 B 3 3 4 2 2 2 3 1 5 0.14534 0.179609

BSCS YELLOW
9 A 3 2 4 I 2 3 3 2 1 2 5 1 0.67660 0.069420
9 B 3 2 4 1 2 3 2 2 I 2 5 1 0.93613 0.092565
9 C 3 2 4 1 2 3 1 2 1 2 5 1 0.03495 0.090629

29 A 3 2 4 . 3 2 . 2 I 1 5 0.44184 0.096960
37 A 3 2 4 . 3 2 . 2 2 3 3 5 0.28069 0.140289
37 B 3 2 4 . 3 2 . 3 2 3 3 5 0.52985 0.142355
37 C 3 2 4 . 3 2 . 2 2 3 3 5 0.38884 0.141362
43 A 1 2 4 . 3 3 . 1 2 3 1 5 0.56643 0.165552
51 A 3 2 4 . 2 3 . 2 3 1 5 0.21218 0.061099
63 A 3 2 4 . 2 1 . 2 2 3 2 5 0.71001 0.149950
65 B 3 2 4 . 2 3 6 2 3 3 1 5 63274 0.186029
82 A 3 2 4 1 2 3 1 4 1 2 1 1 5 0.79051 0.475224
82 B 3 2 4 1 2 3 1 4 1 2 2 1 5 0.44143 0.340299
82 C 3 2 4 2 2 3 1 4 1 2 1 1 5 0.02289 0.392769
82 D 3 2 4 2 2 3 1 4 1 2 2 1 5 -0.81212 0.353206

BSCS BLUE
65 A 3 2 4 3 3 6 2 3 3 1 5 1.01498 0.268030

notes

bscs test
bscs test

israel-city
israel-kibbutz
israel-ag schl

zoology classes
botany classes
biology classes

passive control
bscs inquiry
bscs inquiry
bscs traditional
bscs traditional

passive control

A Practical Guide to Modem Methods of Meta - analysis 65 .

75



(achievement effects, continued)

Study ID
: Subgroup
: : Pupil Assignment

: : Teacher Assignment
: : : : Grade

Inservice
IQ

Study Length
Preservi

School Size
School Type

Socioeconomic Status
Sex

BSCS GREEN

Test Type
Test Content

Covariate
Eifel
Size

Standard
Deviation notes

76 A 3 3 4 . 2 2 2 2 3 1 5 . 0.01219 0.086954
BSCS ADVANCED

77 A 3 3 4 1 3 2 2 2 1 1 5 . 0.12980 0.146706
77 B 3 3 4 1 1 2 2 2 1 1 5 . 0.04786 0.266529

CHEM STUDY
14 A 4 2 4 3 2 . 2 1 2 6 -0.40871 0.121585
39 A 2 2 4 3 2 2 2 1 1 6 0.09753 0.168244
40 A 3 2 4 1 3 2 . 2 1 1 6 1 -0.24486 0.105943
40 B 3 2 4 1 2 2 . 2 1 2 6 1 -0.24595 0.151661
40 C 3 2 4 1 1 2 . 2 1 2 6 1 -0.19057 0.329524
58 A 3 2 4 3 3 62 3 3 1 6 -0.29619 0.077485
66 A 3 2 4 2 3 1 2 2 2 1 1 6 0.30718 0.136083 short stud
70 A 3" 3 4 3 2 2 3 1 2 6 0.14979 0.156307
70 B 3 3 4 2 2 2 3 1 2 6 -0.10863 0.170477
70 C 3 3 4 1 2 2 3 1 2 6 -0.02463 0.151612

101 A 3 2 4 3 2 . 2 3 2 6 0.31476 0.059489
CBA

17 A 3 2 4 3 3 2 3 2 6 . 0.89192 0.107136
32 A 3 1 4 3 2 2 1 1 6 . 0.48603 0.294465
81 A 3 2 4 1 3 3 1 . 2 2 3 1 6 . 0.49025 0.291222

101 B 3 2 4 3 2 2 3 1 6 . 0.28714 0.091950
PSSC

8 A 3 2 4 3 3 . . 2 2 1 1 7 -0.72608 0.103870
22 A 3 2 4 3 2 . . 2 1 1 7 0.26598 0.074976
36 A 3 2 4 1 3 2 . . 2 1 2 7 0.54055 0.079886
45 A 3 2 4 1 3 2 . . 2 2 1 1 7 0.80276 0.180314
57 A 4 2 4 3 3 . . 3 2 1 2 7 1.09673 0.105650
69 A 3 2 5 3 2 . . . 2 1 1 7 0.15886 0.452745
71 A 3 2 5 2 3 3 2 6 2 2 1 3 7 1 0.19737 0.138334
87 A 3 2 4 1 3 3 1 . 2 2 1 2 7 0.25700 0.105525
91 A 3 3 4 3 2 . . 2 3 2 7 -0.25541 0.223548
94 A 3 2 4 3 1 . . 22 1 1 7 1.19626 0.205658
94 B 3 2 4 2 1 . . 2 2 1 1 7 0.51193 0.121484
94 C 3 2 4 1 1 . . 2 2 1 1 7 0.36114 0.168377
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HeteroReneitv Plots: Achievement Effect Sin Estimates with Three Standard Error
Bars. all Curricula

Curriculum: ESS

MIN AVG MAX
ID GRP Q(I) -0.94219

42 C 9.09 IL
102 A 0.00 I

42 B 0.40 I

42 A 5.23 I

*

Curriculum: SCIS

MIN

*

L
L

0.042

I

I

I
.

L- I

AVG

*

0.894123
*

I

U I

U I

U I
*

MAX
ID GRP Q(I) -0.48110 1.090 2.044207

*
78 A 0.54 IL * I U I
2 A n.07 I

s
L I* U

I

*

Curriculum: S-APA

MIN AVG MAX
ID GRP Q(I) -1.65615 0.032 3.042852

5 F 17.41 UI
03 C 1.86
96 A 2.94 L--*- IU
15 B 0.17 I---U
84 A 0.04 L I U
85 A 0.02
03 B 0.00

I U
U

15 A 1.35 L--
06 A 8.25 I--*--U
03 A 0.74 U
03 D 9.61 IL U

Key: Us di + 3*si
= di

L. di - 3611
I =d

(Effect size + 3 sampling standard errors)
(Effect size)

(Effect size - 3 sampling standard errors)
(Weighted average effect size
for studies of this curriculum)

ID ,s Study IDentification code.
GRP *. Identification code for independent subGRouPs of subjects.

within studies
Q(i) (di - d)/s1)2 (Squared deviation of ith effect

size from the weighted average)
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(heterogeneity plots, continued)

Curriculum: ESTPSI

MIN AVG MAX
ID GRP Q(I) -0.55747 0.261 0.919764

93 D 1.44 IL
93 A 0.03
93 C 0.09
93 B 0.34

Curriculum: FHESP

L
L

L

I*

U
U I

U1
U

MIN AVG MAX
ID GRP Q(I) -0.31831 0.243 1.660168

55 A 1.99 I L I U
1

55 B 0.51 IL I U I

55 C 12.52 I I L 4,
UI
* 1

1

Curriculum: IPS

MIN AVG MAX
ID GRP Q(I) -0.36560 0.289 1.04861

59 B 2.21 IL 4,
I U I

90 A 2.83 I L I U1

Curriculum: ESCP

MIN AVG MAX
ID GRP Q(I) -0.26450 0.173 1.099154

92 A 8.57 IL 4,
I I

53 A 22.53 I I L 4,

* U*/

Curriculum: BSCS-S

MIN AVG MAX
ID GRP Q(I) -0.39348 0.443 1.178453

105 B 2.75 IL 4,
I U I

105 A 2.27 I L I U1
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(heterogeneity plots, continued)

iturriculum: BSCS-Y

MIN
ID GRP Q(I) -1.87174

AVG
0.441

MAX
2.216182

82 D 12.60 L U I

82 C 1.14 L * I

9 C 20.12 L------U I
51 A 14.09 L--s-Ul
37 A 1.31 L----°-- I--U
37 C 0.14 L---
82 B 0.00 L I U
29 A 0.00 L--- I---U
37 B 0.39 L Is U
43 A 0.57 L
65 B 1.06 L 1-

9 A 11.47 I----U
63 A 3.21 L-- I-- U
82 A 0.54 L

I

9 B 28.56 I L--°---U

Curriculum: BSCS-A

MIN AVG MAX
ID GRP Q(I) -0.75173 0.111 0.847443

77 B 0.06 IL I U I

77 A 0.02 I L I* U I

Curriculum: CHEM STUDY

MIN AVG MAX
ID

14
58
40
40

GRP

A
A
B
A

Q(I)

12.13
16.10
3.10
6.30

-0.82539

L
L

L
L

0.015

U I
U I

' I - - -U
IU

1.063837

40 C 0.41 L I U
70 B 0.52 L I U
70 C 0.07 L I u
39 A 0.24 L 1- U

70 A 0.75 L I
*

66 A 4.62 L- - I U

101 A 25.44 I L----°----U
86 A 4.06 L I * U

54 A 11.19 I L U
*
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(heterogeneity plots, continued)

Curriculum: CBA

MIN AVG MAX
ID GRP Q(I) -0.39736 0.538 1.369427

101 B 7.44 I

32 A 0.03 IL I

81 A 0.03 IL I

17 A 10.91 I IL

Curriculum: FSSC

1-
U 1
U1

U I

MIN AVG MAX
ID GRP RESI -1.19937 0.348 1.813237

8 A 106.8 L----- *----U
91 A 7.2 IU
69 A 0.1 L
71 A 1.1 L I- -U
87 A 0.7 L I - - -U
22 A 1.1 L I--U
94 C 0.0 L I U
94 B 1.8 L- I

36 A 5.8 L I--- ---U
45 A 6.3 L I U
57 A 50.2 I L U
94 A 17.0 I L U
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