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ABSTRACT

This paper elaborates the potential and limitations of Intelligent Tutoring Systems

in the teaching of language skols, in particular, of writing. It (1) outlines the goals

and significance of research in Intelligent Tutoring Systems, emphasizing their

value in formulating knowledge about teaching more explicitly; (2) analyzes the

pedagogical assumptions underlying research in intelligent Tutoring Systems,

focusing on theories of discovery learning and learning by doing; (3) describes

the architecture of these systems; and (4) illustrates the instructional design

issues by describing PARNASSUS, a project to construct an Intelligent Tutoring

System for exploring instructional design issues in teaching students to write.
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Introduction

Almost everyone has had the experience of trying to describe how to do

something to someone eise, only to discover that the knowledge is apparently

exceedingly difficult to articulate. Sometimes procedural knowledge can be

articulated, but because the description is so very complex, it seems that an

easier, more efficient way to teach it is first to model the process for the student

and then let the student practice while providing "tips." Much of the knowledge

that writing teachers teach is of this nature. It resides in the heads of teachers,

not necessarily in an articuiable form; often the only, or at ldast the easiest, way

to teach it is implicitly, by modeling the process and providing an environment for

learning accompanied by advice on parts of the task.

Research in Intelligent Tutoring Systems begins with the premise that a detailed

analysis of the processes required in performing a task can assist in the design of

environments to teach it and that such work will take a step, albeit a small one, in

furthering our understanding of the useful features of those environments

(Collins, Brown & Newman, 1987). Developing techniques to formulate such

knowledge explicitly offers a hope of being able to communicate more precisely

ind hence successfully--both among ourselves and with our students.

In this paper, I will elaborate the potential and limitations of Intelligent Tutoring

Systems in the teaching of language skills, in particular, of writing. I will (1)

outline the goals and significance of research in Intelligent Tutoring Systems; (2)

analyze the pedagogical assumptions underlying such research; (3) describe the

architecture of these systems; and (4) illustrate the instructional design issues by
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describing PARNASSUS, a project to construct an Intelligent Tutoring System for

exploring instructional design issues in teaching students to write.

Intelligent Tutoring Systems (ITS)

The term "Intelligent Tutoring System" (ITS) is widely used within cognitive

science to refer to computer programs that can, supposedly, tutor intelligently.

Strictly construed, however, the term ITS has no referent: no existing Intelligent

Tutoring System exhibits the entire range of abilities we usually associate with

the best human tutors. Despite the word "intelligent" in the name; and a goal of

high performance, existing Intelligent Tutoring Systems are more modestly and

commonly viewed as explorations into how computer technology can be used to

specify or, more precisely, to formalize theories of tutoring, and as experimental

vehicles for learning more about the nature of learning and teaching.

Goals of Research In ITS

Polya once observed (1957), "The first rule of teaching is to know what you are

supposed to teach. The second rule of teaching is to know a little more than

what you are supposed to teach." A cursory examination of the knowledge

required by Polya's second rule (besides leading us to suspect Polya of litotes)

can offer a glimpse of the diverse and complex goals of research in Intelligent

Tutoring Systems. In addition to knowing what they are supposed to teach,

tutors must know how to carry out the following activities:
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Construct a model of the student. While observing a student solving a

problem, tutors must be able to abstract general processes from the student's

behavior and infer the student's strengths and weaknesses, perhaps strengths

and weaknesses they have never seen before. To decide which features of a

student's behavior are significant, tutors must be guided by a theory, often

implicit, of the underlying skills and concepts necessary for success. Both to

refine their understanding and to monitor a student's progress, tutors must be

able to test and revise their hypotheses about what a student knows.

Structure an environment for learning. Based on a model of the student, an

understanding of the domain, an agenda for instruction, and tutorial strategies,

tutors must choose or create appropriate problems for the student to work on.

They must decide on problem-types, what sequence to present them in, and how

many of each to present. They must also be able to adjust to different students'

backgrounds, introduce or review material as the need arises, focus the student's

attention, explain the task, give hints to the student about how to solve a problem,

and provide model solutions.

Interact with the student. Tutors are not the only teachers who structure an

environment for learning. Textbook writers and lecturers must, of course, also do

so, though without as much sensitivity to individual students and their immediate

behavior as tutors can achieve. Tutors often interact with a student while the

student is solving a problem. They must decide when to interrupt a student's

problem-solving activity and what to say when they do interrupt. They must be

able to give advice within the student's conceptualization of a problem, perhaps
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prompting the student with the next step to take; they must be able to instruct in

alternative conceptualizations, perhaps pointing out better ones; to interact most

effectively, they must be able to recognize when an able student's

conceptualization is better than their own. Tutors must also be able to participate

in a dialogue with a student, responding to the student's initiative, providing

requested information, perhaps solving new problems that the student creates.

To gain greater expertise, tutors must be able to learn new strategies for tutoring

by reasoning about the.interaction itself.

By attempting to build computer programs that can do the things human tutors

can do, researchers in ITS further our understanding of the knowledge and

processes that make intelligence possible. Although each existing ITS has

concentrated on some aspect of intelligent tutoring and neglected others, all the

systems have advanced our understanding of what it is that tutors know,

including both knowledge of the subject matter and knowledge of how to teach it.

Building an Intelligent Tutoring System requires formulating such knowledge

explicitly and comprehensively. Two benefits result from a more explicit

formulation of knowledge. First, other theorists have something specific to

challenge or revise. Even when the initial formulations are based on ad hoc or

unprincipled intuitions to bring about desired behavior, they can serve to reveal

gaps in our understanding and spur the development of more detailed,

psychologically validated theories. Second, because programs can be

systematically modified, work in Intelligent Tutoring Systems can be a testing

ground for experimenting with alternative theories.
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Pedagogical Assumptions Underlying ITS: Why Tutor?

The word "tutor" can be traced to the Latin word tutus, a protector. The

connotations of "keeping safe," "watching over," and "promoting growth" evoked

by "protector" persist in modern usage, especially when contrasted with

"lecturer." Beyond its denotation as "a person charged to instruct another,

especially privately," the word "tutor" can convey a loosely related set of

assumptions concerning the way a teacher ought to instruct. All research in

Intelligent Tutoring Systems shares a definition of the role of a teacher as a tutor

rather than lecturer, but differs in the assumptions made about how one ought to

tutor. These differing assumptions stem from researchers' designs being

primarily motivated by one of two concepts: "discovery learning" or learning by

doing." Both concepts can motivate tutoring, but the two concepts encourage

different methods. Of course, other theories of learning and instruction could

motivate tutoring as well.

Discovery Learning

An assumption shared by many existing Intelligent Tutoring Systems is that it is

best for students to discover for themselves as much of the structure of a subject

as possible. Known as "discovery learning," this assumption can be traced to

Ideas developed in the early 1900s by such educational leaders as J.J.

Rousseau, Maria Mon.essori, and John Dewey (Wittrock, 1966). The assumption

can also be seen in learning theories developed by Gestalt psychologists such as

Wertheimer (1959). In Productive Thinking, Wertheimer challenged methods of

8
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teaching that emphasized rote performance and recall: such teaching methods

often failed to product understanding and insight, resulting instead in "senseless

combinations." Instead, Wertheimer advocated a Gestalt approach to teaching, in

which students would learn from more holistic and meaningful tasks, filiding and

structuring problems and solutions for themselves, and discovering general

principles. Related studies which lend support to Wertheimer's position on rote

learning suggest that material learned with understanding is learned more rapidly,

retained over longer periods of time, and transfers better to new tasks than

material learned by rote (Katona, 1940, chap. 4).

Gestalt ideas have influenced the study of learning and memory in recent

cognitive psychology. For example, the question raised by discovery learning of

how much understanding students should achieve by themselves is now coming

under systematic investigation (Charney & Reder, 1986; Lewis & Anderson,

1985), though many questions remain: Nevertheless, an analysis of what

discovery learning requires from a student can provida the basis for discussing its

prima facie attractions and problems. In discovery learning, a student must work

on a series of meaningful tasks, d6tecting problems, analyzing the task for

features that might be relevant to a solution, and formulating goals and subgoals

that will contribute to solutions. The student must also systematically test a

solution for possible errors. In order for the student to detect and correct a

misconception, the misconception must cause an erroneous or problematic

result, which the student must notice. The student must correctly hypothesize

the cause of the problematic result and be able to correct it. In short, discovery

9
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learning requires a student to exercise the processes involved in original inquiry,

learning not only knowledge, but also the knowledge of how to acquire

knowledge, that is, "learning to learn."

Exercising the processes involved in "learning to learn" makes discovery learning

attractive and, at the same time, is the basis fol its problems, for students vary

substantially in how good they are at discovery. A task which is meaningful may

be too difficult for a student to do without help. A student may form

misconceptions that are never detected. A student may fail to correct a

misconception.

The problems students have with discovery learning, together with the

assumption that they indeed learn best by discovery, encourages a definition of

the role of the teacher as a tutor: a teacher should not lecture, but rather should

monitor a student's discovery learning, providing guidance when appropriate and

adapting that guidance to each individual student's varying ability to learn.

Furthermore, the guidance should be minimal. If students are to exercise

processes of discovery, that is, learn how to learn, then providing too much

guidance may prevent students from developing the skills of examining their own

behavior and looking for thp causes of their own mistakes. Unfortunately, there

are no precise principles for how to guide a student's discovery minimally, though

there are some general guidelines. For example, an ITS built according to

"discovery learning" guidelines might not give a student immediate feedback on

an error; instead, it might pick tasks for the student with salient features which

will increase the likelihood that the student will notice the error (cf. Burton &

0
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Brown, 1979).

Discovery learning is a theory of instruction, and as such, prescribes blurring the

boundaries between learning things already known to others and learning things

that are unknown. In contrast, the related concept of "learning by doing" is a

theory of learning, that is, a descriptive theory of howstudents learn rather than

how they ought to learn. As we shall see, however, it also burs the boundaries

between learning and discovery, at least for knowledge of skills.

Learning by Doing

Exploring the concept of "learning by doing" requires a theory of skill acquisition,

where "skill" simply means any activity that a person, either from talent or

training, has learned to do well, for example, playing piano, sweeping a floor,

composing poetry, remembering people's names, and so forth. One of the most

precise and well-developed psychological theories of skill acquisition is that of

ACT* (Anderson, 19f.13), and it will serve as a basis for my discussion,

Central to the ACT* theory is the concept of a production system, an interrelated

set of condition-action pairs, called "productions." The conditional part of a

production specifies a set of data patterns. If data in a structure called "working

memory" matches the conditions specified by the data patterns, then the action

part of the production can be taken. Less technically, a production specifies what

to do in a given, perhaps complex condition. Productions systems are usually

traced to the proposals of Post (1943), with modern production systems diverging

on the one hand into computer science applications, in which the focus is on

II
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creating an architecture for engineering computer programs, and en the other into

psychological appiications, in which the focus is on creating an architecture that

can account for and predict human behavior. Informally, a production might look

like the following:

IF the goal is to fix a topic-shift problem in a sentence

and the problematic sentence shares a referent with the previous

sentence,

THEN set a goal to subordinate the problematic sentence to the previous

sentence.

A production system model of an expert writer would contain hundreds of such

productions, each production working with the others to produce expert writing

processes. For example, the production above might be one production in a

model of expert writers' revision processes. The model mule include other

productions for detecting a topic-shift problem and alternative productions for

correcting it (Hayes, Flower, Schriver, Stratman & Carey, 1985).

The ACT* production system, a psychological application, posits three structural

components to human cognition:

Declarative memory: Knowledge of facts and their relations, often called

declarative knowledge. It represents permanent or long-term memory, and the

units represented can take the form of propositions, temporal strings, or spatial

images. For example, a fact such as "A canary is flying over the tree" could be

represented by a proposition (e.g., [(AGENT canary) (RELATION fly)

2
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(LOCATION [(AGENT canary) (RELATION over) (OBJECT tree)]]), by a temporal

string (e.g., "A canary is flying over the tree"), or by a spatial image (e.g., an

image of a canary flying over a tree). Knowledge in declarative memory is

mediated through processes of storing elements from working memory and

retrieving elements into it.

Working memory: Declarative knowledge that is active, either permanent

knowledge retrieved from aeclarat!ve memory, or temporary knowledge

deposited by processes which encode information from the environment, or by

actions of productions.

Production memory: Knowledge of how to do things, often called procedural

knowledge. The productions operate on the declarative knowledge, mediated

through working memory by matching and execution processes.

In ACT*, the acquisition of skill begins with an interpretive stage in which

domain-independent prothictions, or general problem-solving productions, access

a declarative representation of the skill. The declarative representation could

come from textbooks, lectures, a tutor telling a student how to do a. task, or a

student observing an expert doing the task. This declarative representation,

coupled with general interpretive processes, is sufficient to approximate the skill,

but only crudely and laboriously. To achieve skill, new task-specific productions

must be built. New productions are built automatically, in response to practice,

from a memory trace of production application. These new productions increase

the efficiency of performance by eliminating the stage in which declarative
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knowledge is retrieved from long-term memory and interpreted, and by

composing sequences of productions into new ones with fewer intermediate

steps. At first, these productions diverge substantially from expert productions,

and a student makes many errors. A process of fine tuning, generalizing or

discriminating the conditions of existing productions, must occur.

The above discussion presents only a general framework of the ACT* theory,

which is much richer than sketched here. Although the framework presented is

not very detailed, it is complete enough to make several predictions about how

students learn, predictions which correspond to researchers' observations of the

development of skilled performance (cf., Anderson, 1983): some knowledge,

knowledge of facts, can be learned well through textbooks, lectures, or verbal

instruction, that is, instruction that results in a declarative representation; in

contrast, knowledge of how to do things, procedural knowledge, can only be

learned well through learning by doing" Textbooks, lectures, and verbal

instructions can play a role in the acquisition of skill, but they do not suffice. To

achieve excellence, a learner must create new productions and discover

refinements of old ones, processes which can only occur when productions are

actually applied, that is, by doing a task. Furthermore, since the productions built

by doing a task are task specific, it is important that students practice by actually

doing the task or a closely related one.

Since learning by doing requires students to create new productions and to

discover refinements of old ones, not surprisingly, it shares a basic problem with

discovery learning: students vary substantially in how good they are at discovery.

1 4
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A complex task may be too difficult for a student to do without help. A student

may practice errors and ineffective methods.

Although learning by doing" is a theory of learning and as such, does not

prescribe a particular method of teaching, Anderson, Boyle, Farrell & Reiser

(1984) have outlined a series of principles for instruction which are derived from

the ACT* theory of learning. These include communicating expert goals to the

student, providing instniction during problem-solving, giving immediate feedback

on errors, minimizing the student's working memory load, using production

system models of what the student knows and does not know to gauge

appropriate instruction, adjusting the instruction with estimates of learning,

tutoring in problem contexts that are as similar to the target skill as possible, and

emphasizing a general problem-solving approach. Anderson and his colleagues

have followed these principles in the design of two Intelligent Tutoring Systems,

one for teaching the programming language LISP, and the other for teaching

geometry.

Thus, learning by doing also encourages a redefinition of the role of a teacher as

a tutor: rather than just telling a student how to do a task, a teacher should

monitor the student's practice, providing guidance when appropriate. The

methods, however, differ from those encouraged by discovery learning. For

example, in learning by doing a tutor can tell a student how to structure a problem

or can give the student immediate feedback on error.
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In sum, all previous work in Intelligent Tutoring Systems has focused on tutoring

in procedural skills, either in subjects which -1,7'e inherently procedural or in

subjects which deal with facts, but where the instructional objective is for students

to learn how to acquire ,acts or use them as a basis for reasoning. Unfortunately,

there are no precise rules for how a teacher ought to structure an environment in

which to guide student's discovery, though certain teachers have, through

experience, developed a knack, and attempts have been made (Collins, 1975) to

define their methods more precisely. The architecture of Intelligent Tutoring

Systems, ciowever, demand a very precise formulation of method. The particular

methods which have been developed for ITS differ depending on whether the

researcher subscribes to the monitoring suggested in the concept of learning by

doing, or that suggested by the concept of discovery learning. Which approach,

or combination of approaches, would lead to the best long-term gains is an open

research question, a question that has taken on renewed interest and greater

precision as researchers build Intelligent Tutoring Systems.

ITS Architecture

Intelligence in computer pr%.grams, as in people, is a matter of degree. The

following section surveys past work in computer-assisted instruction (CAI),

focusing on the advances in the underlying architecture that can be viewed as

steps toward more intelligence. As O'Shea and Self (1983) observe, these

advances can all be seen as advances in representations of what is being taught

(the expert model), who is being taught (the student model), and how to teach it

(tutorial strateoies).

16
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The Expert Model

Early drill and practice programs contained only an implicit representation of the

subject matter to be taught. For example, a CAI grammar drill and practice

program may represent grammatical knowledge in program statements that print

information to the computer screen. (e.g., PRINT "If you are trying to fix a

sentence with a topic-shift error, try subordinating it.") When the representation

is implicit, however, other parts of a computer system cannot access or interpret

the information. With an explicit representation of knowledge (e.g., IF the goal

is to fix a topic-shift problem in a sentance and the problematic sentence shares

a referent with the previous sentence, THEN set a goal to subordinate the

problematic sentence to th,.., previmr,.1..entence) a computer program can be

written so that different components can use the knowledge for multiple purposes

(e.g., to generate solutions to topic-shift problems, to generate advice for

students about how to solve such problems). Explicit representation of

knowledge was the first step in developing more intelligent programs and was

first used for "generative CAI" programs which, by examining a representation of

knowledge, can generate new problems and questions (Laubsch, 1975).

Explicit representation of knowledge has taken two forms, declarative and

procedural. The first use of an explicit declarative representation for representing

subject-matter expertise in tutoring was by Carbonell (1970) in the SCHOLAR

program, which used the representatiol as the basis for its ability to generate and

answer questions in geography. Explicit representation of declarative knowledge

has been argued to be essential in language understanding and generation

1 7
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(Schank, 1975; Schank & Abelson, 1977; Schank & Riesbeck, 1981).

Procedural knowledge of the subject matter is required if the program is going to

be able to show the student how to do things. Numerous Intelligent Tutoring

Systems have represented procedural knowledge as a production system (e.g.,

Clancey, 1979; Brown & Van Lehn, 1980).

Much recent research in writing has been concerned with observing expert

writers at work and building models of expert processes (e.g., Hayes & Flower,

1980). Although these models are rather specific about the nature of expert

writing processes and their organization, considerable work remains before the

models are specific enough to be used to build an ITS.

The Student Model

A student model is a repreientation of a student that attempts to account for what

the student knows and needs to know. For example, to represent that a student

is weak in detecting topic-ihifts, weak in fixing tcpic-shifts, and strong in

punctuating correctly, a student model might, informally, look like the following:

(STUDENT <name of student> ((DETECT TOPIC-SHIFT) WEAK) ((FIX

TOPIC SHIFT') WEAK) ((GENERATE PUNCTUATION) STRONG))

Student models are typically used to adapt instruction to the student.

When early CAI programs modeled the student at all, they used mathematical

models. Mathematical models often represent learning probabilistically. For

example, a mathematical model of vocabulary learning might hypothesize that
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each vocabulary word is in one of three states (learned and will not be forgotten

between sessions, learned but might be forgotten between sessions with

probability p, or unlearned). The model might further specify the probabilities of a

word being in any state immediately after a vocabulary learning session, based

on other probabilities, such as the probability of the student attending to the word

during the session. Mathematical models, like all representational systems, have

both strengths and weaknesses. Mathematics is a good vehicle for precise

statement and economical abstraction. In its most successful instances, it can be

used to predict a complex network of relationships in data from a very simple

conception of laws governing behavior. However, abstract mathematical models

can describe and predict data without having either a psychological rationale or a

clear identification of the predicted data with processes. Therefore, the trend in

modeling has been away from art emphasis on mathematical models that simply

describe data toward a description of the processes which suffice to produce the

described behavior (O'Shea & Self, 1983, pp. 83-86).

Two such approaches to modeling a student have been developed. The first, the

expert-subset approach, models the student as knowing or not knowing what the

expert knows, usually with some estimate of probability (e.g., Carbonell, 1970;

Clancey, 1979). Since the student's understanding is represented completely in

terms of the expert component of the system, the model assumes that the

student reasons in the same way as the expert, but simply knows less. Another

approach is to model the student's processes themselves, usually organized as

deviations from expert rules (Brown & Van Lehn, 1980), or as evolutions in the

1 9
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acquisition of skill (Goldstein, 1982). This allows a representation of the student

that can differ more substantially from the expert, but how to represent deviations

or evolutions--and diagnose and generate them--is a major research problem.

Student models of writers can take either an expert-subset or a model of a

student's own processes. Within the expert-subset approach, it is easy to model

a student who fails to use some of the expert processes, for example, to model a

student who fails to organize an essay. Student writers' evolutions in the

acquisition of skill is also coming under systematic investigation (Bereiter &

Scardamalia, 1987).

Tutorial Strategies

Early computer-assisted instruction programs did not have explicit

representations of tutorial strategies. Instead, the author pre-specified the

material to be presented and what should be presented next. Usually, the only

information about the student taken into account by the author-specified strategy

was the last response and a percentage of questions answered correctly.

Recent work in Intelligent Tutoring Systems can be characterized as an attempt

to make tutorial strategies explicit and precise enough to be programmed. The

most well - articulated theory of tutoring is embodied in Collins (1975) and

Stevens, Collins & Goldin (1982). It represents an attempt, based on a study of

human tutorial interactions, to formalize the Socratic method. Other theories,

much more experimental and less well generalized, have developed out of the

"discovery learning" paradigm, with its emphasis on minimal intervention. (Burton

20
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& Brown, 1979; Norman, Gentner, & Stevens, 1976). This is a relatively new

direction and not as well developed as the work by Collins. However, the

resulting dialogues do give insight into strategies a language tutor might employ.

Ohlsson presents a cogent argument for the centrality of research on teaching

methods to the construction of ITS (Ohlsson, 1987).

Tutorial strategies concern decisions of what to say and when to say it. Actually

saying things involves strategies for discourse production. Work on integrating

Modal strategies with principles of discourse production began with Clancey

(1979). Clancey developed a set of production rules to ensure smooth transitions

between discourse topics and to adapt dialogues to a student's knowledge.

Woolf & McDonald (1984) have also designed ways to represent discourse

strategies for tutorial dialogues.

PARNASSUS: An ITS for Writing

The purpose of the PARNASSUS project is to construct an Intelligent Tutoring

System to explore issues of learning and teaching in writing. The design of the

system raised many of the issues outlined above, and its discussion will serve as

an illustration of the instructional design issues facing anyone seeking to

construct Intelligent Tutoring Systems for language instruction.

ITS and the Teaching of Writing

Research in Intelligent Tutoring Systems draws heavily on its parent discipline,

Artificial Intelligence. Techniques in Artificial Intelligence have not yet progressed

21
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to the point where a computer can be programmed to write, much less

intelligently teach someone how to write. The best efforts at programming

computers to generate discourse (Mann & Moore, 1981; McKeown, 1985) are

restricted to limited topics, and although they are extremely impressive from the

standpoint of research in computer science, writing teachers would hardly want

their students to imitate the prose they can produce. Similarly, 3fforts at

programming a computer to understand discourse suffer the same limitations

(Schank & Riesbeck, 1981): understanding is limited to small, well-defined

topics, ar,d the prose that can be comprehended is best characts.zed as "primer

prose."

Given the current "state of the art" in Ai, it is not surprising that research in

intelligent language systems does not set out to program computers to teach

writing. Researchers must focus attention on some subset of the process of

writing. Finding such a focus requires searching for a significant writing task that

is programmable on the computer, yet pedagogically successful, and adapting

that task, if necessary, to the limitations of state-of- the-art technology. The

particular focus of the PARNASSUS project is teaching students to write effective

sentences, defined as sentences that are appropriate to the context in which they

are written.

A Revision Paradigm

Before discussing each element of the tutorial interaction in detail and the design

issues it raises, I will outline a tutorial interaction with a prototype version of the

22
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PARNASSUS system.1 Figure 1 depicts a typical exercise. The exercise is based

on a revision paradigm. The paragraph in Figure 1 illustrates one type of

ineffectiveness, that is, inappropriateness to context: a violation of the norm of

paragraph unity, often called "global coherence." Note that all the sentences in

the paragraph cohere locally or are cohesive (Halliday & Hasan, 1976) but that

the last sentence in the innermost box introduces a new idea ("the many ways

that hurianity has advanced") and is not related to the topic of the paragraph as

a whole ("humanity's fortitude"). Thus, the paragraphlacks global coherence.

The program asks the student to read a paragraph, then asks the student to

revise the boxed sentences so that they are more effective. Using a word

processor, the student produces a revision. The program compares the student's

revision to a set of possible revisions. If there is a better revision and an

inspection of the student model indicates that the student needs instruction in the

rhetorical goals illustrated by the better revision, the program informs the student

that it has a revision that it has rated better and asks the student whether he or

she wants to try to produce it.

The Task

Because constructing an Intelligent Tutoring System requires substantial

resources, it is important that the task be chosen carefully if the system is to have

practicp,I as well as theoretical and research value. That lack of coherence is a

major problem in student's writing is well-documented (cf., Bamberg, 1984).

Moreover, work by Freedman (1979) suggests that organizational coherence
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contributes significantly to judgments of writing quality.

It is the goal of the PARNASSUS project to create tasks that require students to

"learn by doing." For example, the revision task just outlined requires students

actually to produce effective sentences. Because of the difficulties involved in

processing natural language text, traditional CAI programs often require students

to do activities that do not require them to produce language (e.g., to choose the

most effective sentence from a list of sentences, to learn about syntactic

structures such as appositives or relative clauses that comprise effective

sentences, etc.).

According to "learning by doing" theories, it is important that students practice by

actually doing the task or a closely related one. The task that we want students

to learn is how to produce effective sentences, i.e., sentences that are

appropriate to the context in which they are written. In order to arrive at an

exercise format that was achievable by the "state of the art" in Al, we made two

design choices that potentially compromise the "learning by doing" goal. First,

rather than a free-form sentence production task, we chose a revision task so

that students' responses would be constrained somewhat. Second, the

exercises are designed so that syntactic strategies suffice to fix the problems.
046141110

Both design choices simplify the program's processing of students' responses.

Note that although syntactic strategies suffict to fix the problems, the program

does not focus on syntactic strategies for their own sake. Instead, the focus is on

the underlying rhetorical goals which might prompt a writer to make syntactic

changes, that is, on the function of syntax (e.g., maintaining global coherence,
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emphasis, etc.). Based on an analysis of the skills involved, we predict that there

will be transfer to the production of effective sentences and improvement in

writing quality (Neuwirth & Ogura, 1987). Of course, whether such transfer

actually occurs is an empirical question.

The task is a simplification of the task that we would ultimately like to program: in

our simple prototype program, the student is told that the boxed sentences are

not maximally effective; we would like to expand the task so that the student must

also detect the problem (Flower, Hayes, Carey, Schriver & Stratman, 1986). In

such an expanded version of the task, the program would ask the student to read

a paragraph, then ask the student whether there were any ineffective sentences

in the paragraph. Thu ,, students would be able to exercise detection as well as

correction skills.

The Expert Model

As an example of what the expert component must do, consider the sentences

"Humanity has hardly advanced in fortitude since that time" and "It has, however,

advanced in many other ways." These sentences are part of the larger

paragraph presented as a sample exercise. Using heuristics formalized as a set

of productions, the expert component must generate a large number of possible

revisions including, but not limited to, the following sentences:

(1) Although humanity has hardly advanced in fortitude since that time, it

has advanced in many other ways.
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(2) Although humanity has advanced in many other ways since that time,

it has hardly advanced in fortitude.

(3) Humanity has hardly advanced in fortitude since that time; however, it

has advanced in many other ways.

(4) Humanity has hardly advanced in fortitude since that time, but it has

advanced in many other ways.

Informally, a partial, example set of productions for generating revisions is given

by the following:

IF the goal is to fix a topic-shift problem in a sentence

and the problematic sentence shares a referent with the previous

sentence,

THEN set a goal to subordinate the problematic sentence to the previous

sentence.

IF the goal is to subordinate sentence B to sentence A

and sentence A and sentence B share a referent

THEN set a goal to create a relative clause.

IF the goal is to subordinate sentence B to sentence A

and sentence and sentence B are related by the relation 'contrast'

THEN set a goal to use a contrastive conjunction.
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These productions, which provide an explicit representation of the knowledge

needed to carry out the revision task, produce a set of sentences. Some of the

sentences produced are good, some not. A rating routine must determine which

of the sentences produced by the productions is the best, next best, and so forth.

This rating is implemented by comparing a representation of the sentence in

terms of the goals that it fulfills (e.g., global coherence, emphasis,

grammaticality) to a model of the goals required in a current discourse context

(McKeown, 1985). The .comparison involves an ordering of goals according to

their importance, and assigning a higher ranking for matching a more important

goal. This ranking is also adjusted to favor sentences which satisfy more goals.

In the current system, sentence 12) is rated highest; sentences (1), (3), and (4)

are rated the same as the original.

Most of the work in PARNASSUS has gone to creating a production system for

generating revised sentences, given a description of the context and and an

identification of a problem. A great deal more work must be done. Because the

production system in the prototype PARNASSUS is it.complete, a set of possible

revisions, both good and bad, is fed into the program.

Interestingly, a set of productions for producing revisions is only a subset of those

necessary for carrying out the revision task. A more complete set would include

productions that assess the contribution of each sentence to the topic of the

paragraph and productions that could detect ineffective sentences. It would be

useful to have a more complete set, since it would help to form a better model of

the student.
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Understanding and Judging students' responses

Rather than generating both good and bad sentences and rating them, the expert

component could have been built so that it only generated the most appropriate

sentences, but that approach would complicate the problem of processing the

students' responses.

Students' responses can vary widely. For example, students responses to the

exercise in Figure 1 could include "Although humanity has.advanced in many

other ways since that time, it has not advanced in fortitude," "Humanity has not

advanced in fortitude, but it has advanced in many other ways," "Humanity has

made many advances since that time, but it has not advanced in fortitude," and

so forth. The tutoring component must be able to judge a wide range of student

responses. A student's revision may contain grammatical errors. For example,

the punctuation error "Humanity has hardly advanced in fortitude since that time,

however, it has advanced in many other ways."

As these examples indicate, the crux of the tutoring problem in writing is to be

able to handle the students' responses: students often produce ungrammatical

responses which the system must be able not only to detect, diagnose, and

perhaps remediate, but also to ignore, at least temporarily, should another

feature have higher priority for tutoring. Of course, the system could be built so

that grammatical errors were not temporarily ignored, but it would not be flexible

enough to explore the effects of different feedback agendas. For example, it

might be interesting to explore whether students should be given feedback on
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grammatical errors before discussing how well a sentence meets rhetorical goals,

or vice versa.

There are two approaches to the problem of handling students' responses:

surface pattern matching and parsing. The first approach, surface pattern

matching, involves matching patterns or descriptions to a set of elements in

computer memory. It was employed by Clancey (1979) in GUIDON, a system to

tutor students in medical diagnosis. In JUIDON, a student may be asked, for

example, to list the organisms causing an infection. The student may mistakenly

omit organisms that the expert concluded were present, or add organisms the

expert concluded were not present. The program treats the student's list as a

pattern that must be matched to the organisms that the productions in the expert

program would list; then hypothesizes which of the expert productions best

account for the student's list. The tutor then uses the derived differential model as

a basis for instruction.

Clancey's pattern matching approach can be made to work for sentences with a

slight modification. Clancey indexes productions that list organisms directly from

the organism names. However, with ordered elements such as words in a

sentence, it is necessary to index with a type/token distinction. For example, the

word 'fortitude' must be represented by as many tokens as there are alternative

"expert" sentences in which the word 'fortitude' appears. To facilitate the

matching process, the type/token links are bi-directional. In addition, any token

must have links to the token immediately before it and immediately after it, as

well as links to the productions which produced the "word" in that position.
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Suppose the tutor is trying to match a student's response, "Humanity has hardly

advanced in fortitude since that time, however, it has advanced in many other

ways," to the list of possible sentence revisions itemized above. It will begin by

trying to match the student's response to a list of tokens linked via the type/token

link to the word 'Humanity.' By following the 'next' links, the match will continue

without a problem until the word 'however,' is reached. When a mismatch is

detected, the process attempts to account for the difference, much as a spelling

checker does, as a deletion, addition or modification (such as progressive of

"have"), subtracting points from the match according to a weighted distance

measure. In addition, the mismatch can cause the process to pick up other

possibilities.

The pattern matching approach is currently used in the PARNASSUS prototype. In

this way, it is possible to arrive at the matches: (1) 'Humanity has hardy

advanced in fortitude since that time, but it has advanced in many other ways,'

and (2) 'Humanity has hardly advanced in fortitude since that time; however, it

has advanced in many other ways: Picking up both possibilities provides the

tutor with potential for eventually working within the student's approach. The

prototype has a spell checker and morphological component, so it is able to

detect and take into account spelling errors and small grammatical mistakes. In

the example above, the second sentence is currently rated the best match,

reflecting a preference for a match to words over punctuation differences.

In order to achieve good performance, the features in the match eventually might

have to be weighted according to the the tutor's assessment of what rules a
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student knows. For example, when students first begin revision exercises, many

have not mastered punctuation rules, so omission or insertion of punctuation

should not count as heavily against a match as omission or insertion of words.

Similarly, words involved in delsetions, additions, or transformations in the expert

rules (e.g., although, but) should not count as heavily as words that are not so

involved (e.g., humanity, advanced).

Pattern matching exploits strong expectations about a student's response and the

capabilities of the student, but it treats the role of syntax in guiding the

comprehension process superficially; that is, syntax plays a role in the expert

module's condition/action rules for producing sentences, but there is no sharing

of that knowledge with rules for comprehending sentences. The question

naturally arises, shouldn't the system's understanding of the student's response

be based on parsing techniques?

Parsing constitutes the second approach to handling students' responses.

Parsing involves building a representation of a sentence. Parsers have been

constructed that build syntactic representations, semantic representations, or

both (Winograd, 1983). if parsing were used in PARNASSUS, the parsing process

itself could detect problems with a student's response by registering mismatches

between parsing expectations (e.g., an expectation that each sentence in a

paragraph can be matched to a discourse schema) and a stuc.f9nt's sentence.

Parsing, however, would require (1) more attention to understanding the

discourse expectations that are raised by different syntactic constructions than

has been the case in semantic, expectation-driven parsers to date, and (2)
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extending the techniques of robust parsing, that is, parsing ungrammatical input

without break-downs in the process of building the representation. This would be

an interesting research direction, but constitutes a research project in its own

right. It is a direction taken by a considerable number of intelligent systems for

language learning (Imlah & du Boulay, 1986).

As the scope of the PARNASSUS system increases, it remains to be seen whether

the approach taken in the current system--matching to a set of alternatives- -

remains viable. Actual parsing of the students' responses may be necessary.

The Student Model

Decisions about the student's progress must be based on a "student model" that

the program creates and maintains. When a student responds to a revision task,

the response constitutes evidence for whether the student understands the

principles required in order.to perform the task successfully. If there were little

evidence that the student understands the principles, the program ought to ask

questions or pose exercises that examine the student's understanding. If there

were evidence that the student did understand the principle, the program ought to

shift the task to solving other problems. The PARNASSUS prototype currently

does not create a model of the student, but it can use a model that is fed to it to

direct the interaction. Informally, the model resembles the student model

provided earlier in this paper as an example. The program must be expanded so

that it creates and maintains the model.
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Diagnosis. Consider again the example student response, "Humanity has hardly

advanced in fortitude since that time, however, it has advanced in many other

ways." Note that the response does not fix the coherence problem. Although it is

clear that the student has only a partial solution, the program must be developed

so that it can diagnose the cause of the student's failure to apply the relevant

rhetorical principles. The failure could have several causes: the student may not

have read the paragraph carefully, the student may be misled by the local

coherence of the sentences, or the student may not know about the principle of

emphasis. Deciding among multiple causes, known as the "apportionment of

credit/blame" problem, concerns the tutor's ability to build and maintain an

accurate student model. The tutorial interaction must be driven, in part, by the

program's building such a model (Self, 1987).

Tutorial Strategies

The PARNASSUS prototype employs a tutorial strategy based on discovery

learning. In the prototype, the tutors response is based on the minimal tutorial

intervention model developed in the WEST system (Burton & Brown, 1979): if

there is a better revision, the program informs the student that it has a revision

that it has rated better and.asks the student whether he or she wants to try to

produce it.

There are alternative, interesting tutorial strategies. First, the tutor could switch

tasks, presenting the student with opportunities to discover principles (e.g., the

principle of emphasis), perhaps through contrasting examples. Collins & Stevens
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(1982) provide an excellent example of such a tutorial strategy. Second, the tutor

could tell the student directly that a principle is violated (e.g., "Your sentence

emphasizes 'the many ways humanity has advanced' and leads your readers to

expect that the paragraph will continue to talk about it."). The tutor could model

a careful reading of the paragraph or ask the student to do so (e.g., The tutor

could model a "thinking-aloud" reading of the paragraph, telling the student the

expectations that an expert reader might have after each sentence). A tutor

which is based on learning by doing might, at this point, simply give the student

its best revision. How successful each of these alternatives would be for teaching

different students is an open research question. This is the sense in which a

computer program can help us to find answers.

Tutorial agendas. The program must be able to accept partially correct

responses, detect multiple problems, and order those problems for tutoring.

Taking the example student response as a case in point ("Humanity has hardly

advanced in fortitude since that time, however, it has advanced in many other

ways."), the program must be able to accept this as a partially correct revision,

detect its multiple problems (emphasis, grammar) and order those problems for

tutoring. To achieve tutorial flexibility, the program must be able to set a tutorial

agenda and deal with problems in the order in which they appear on the agenda.

Again, altering such an agenda would alter the interaction, so the program could

be used as a research tool. The prototype PARNASSUS program keeps a tutorial

agenda that deals with emphasis problems first, provided that the student model

indicates that the student has a problem with emphasis.
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Problem-Solving Assistance in Context. The program must be able to provide

problem-solving assistance in context. The program currently has no capability

to heir) the student while the student is making a revision. Again, it is an open

r' search question whether.the best strategy is to intervene while the student is

actually doing the revision or to wait until the student has completed a revision.

Estimates of Task Difficulty. Our work in designing heuristics to generate

alternative sentences has given us more insight into task difficulty. For example,

case studies of novices and experts indicate that some coherence problems are

more difficult to detect and correct than others.2 Work must be done to

incorporate these insights into the design of the program's curriculum.

Why Build ITS?

In the introductory section, we saw the wide range of things that human tutors

can do. The PARNASSUS project, like other work in ITS, addresses a small subset

of the knowledge and processes that constitute intelligent tutoring. For example,

the program cannot generate new problems for a student to work on, nor does it

in any sense "comprehend" a paragraph or reason about the interaction or learn

from the student.

Moreover, the program will not provide a complete curriculum for helping

students learn to write effective sentences. Students' sentences can be

inappropriate to their context for a wide range of reasons: problems with

transition, coherence, conciseness, emphasis, oldinew information, maintenance

and signalling of focus, tone, and so forth. The program is currently limited to two
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example tasks, each dealing with problems in coherence or emphasis.

Furthermore, the project makes no claims that the examples will represent the

most important skills students need to know, av`lough care was exercised in

picking an example for which there is evidence that the skills needed to do the

task are skills that many students have not mastered.

As Yazdani (1987) observes, unlike CAI, ITS does not reflect a mature

technology. Anderson et al. (1984) expect to spend ten person-years before

having a complete curriculum for LISP and longer still before it will be reliable

enough to be offered as a commercial products Work in ITS is not a panacea,

nor will most of it be immediately practical. If does, however, offer not only the

potential for advancing existing techniques for computer-assisted instruction in

writing, but also for deepening our understanding of issues in its learning and

teaching.
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Notes

1 The prototype is implemented in Franz Lisp, a dialect of LISP, on a VAX/11-

780.

2 Ayami Ogura, Topic-shift error detection and correction in written discourse.

Unpublished manuscript, 1987.

3 A version of the LISP tutor is now beginning to be marketed as a product. See

Anderson, J.R., Corbett, A.T. & Reiser, B. Essential LISP. Addison-Wesley

Publishing, 1987, p. x.
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PARNASSUS Exercise 1.3

Humanity has many miraculous qualities, but the most miraculous
is its fortitude, its capacity to endure and to survive incredible
hardships. In neolithic times, for instance, humanity endured
adverse winters, ferocious animals, and grueling migrations.

Humanity has hardly advanced in fortitude since that time
It has, however, advanced in many other ways.

Indeed, some have arguad.that.hufrianifY 's fortitude, et least
in Western civilization, has declined; however, it is not
humanity's capacity to endure that has declined, but rather the
severity of the hardships Western humanity usually feces.

Figure 1. PARNASSUS Revision Exercise


