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Abstract

The multivariate technique OVERALS is introduced as a

nonlinear generalization of canonical correlation analysis

(CCA). This is done by first introducing two sets CCA, which

is familiar from multivariate analysis text books. Then two

sets CCA is expanded to a k sets technique. Next optimal

scaling with single transformations is introduced. Finally

multiple transformations are added.

Keywords: canonical correlation, optimal scaling, nonlinear

transformation, k sets, homogeneity analysis.
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Introduction

CCA for two sets of variables is a standard technique, first

`described by Hotelling (1936). A nonlinear version was

introduced by Young. De Leeuw & Takane (1976), Gifi (1981,

chap. 6) and Van der Burg and De Leeuw (1983). CCA with k

sets of variables is a generalization of two sets CCA. Many

generalizations are possible. Descriptions can be found in

Steel (1951), Horst (1961). Carroll (1968). Kettenring

(1971), Gifi (1981, chap. 6), De Leeuw (1984), Van de Geer

(1984, 1986, part IV), and Meulman (1986, chap 4 & 6).

Nonlinear CCA with k sets of variables is a generalization of

linear CCA with k sets, but also of nonlinear CCA with two

sets. Which generalizations are used depends on subjective

choices. In this paper the approach of Gifi (1981, chap. 6)

is followed. This is also discussed by Verdegaal (1985,

1986), and Van der Burg, De Leeuw & Verdegaal (1986). Gifi,

as well as Verdegaal. and Van der Burg et al. introduce

OVERALS as homogeneity analysis (multiple correspondence

analysis) with k sets of variables. Conceptually this is a

very reasonable approach. However historically it is not. CCA

is typically represented as a technique with a vector

interpretation of the variables. Homogeneity analysis uses a

completely different interpretation. Therefore OVERALS is

introduced in this paper as a nonlinear generalization of k

sets CCA (cf. Van der Burg et a/., 1984).
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Two sets of variables

Two sets CCA is a technique that computes linear combinations

of sets of variables which correlate in an optimal way.

Generalized (or k sets) CCA does the same for k sets.

Nonlinear CCA relates sets of nonlinearly transformed

variablesin an optimal way.

Let us consider the case in which ther are only two sets

in detail. Suppose that the sets of variables are denoted by

H1 (n x ml) and H2 (n x m2). Between brackets the dimensions

of the matrix are given. Each column h of (H1.H2) corresponds

to a variable. It consists of n scores for objects

(observations). The number of variables in the first and

second set is denoted by ml and m2, respectively. Suppose the

p weights for each variable are collected as row vectors of

the matrices Al (mi x p) and A2 (m2 x p). Assuming that each

vector h is standardized (i.e. mean zero and variance one)

CCA is:

(1) minimize tr(H1A1 H2A2)*(H1A1 H2A2)

over Al and A2 subject to the conditions that

A1'H1'H1A1 = nI and A2'H2'H2A2 = nI

The weighted linear combinations H1A1 and H2A2 are called

canonical variates (in the literature also the term canonical

variables is used). For each set they are uncorrelated and
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have variance one (I refers to the identity matrix). Thus the

canonical variates are orthogonal. Formulation (1) results in

e maximum sum of correlations between the canonical variates

(of the different sets). Usually these correlations are

called the canonical correlations. Note that (1) is

formulated as a least squares minimization problem. This is

not the usual approach, but it does result in a solution

identical to the classical two sets CCA solution.

K sets of variables

If there are k sets of variables instead of two sets, we have

(H1 Ilk) and (A1 Ak), with Ht (n x mt) and At (mt x

p) for t=1 k Again canonical variates are wanted which

are maximally related. In this case many canonical

correlations have to be considered. One way to deal with this

is to require that the canonical variates are as similar as

possible to X, a pdimensional orthogonal representation of

the objects, also called object scores. Then the

orthogonality condition on the canonical variates for each of

the sets is usually dropped (otherwise the problem is more

difficult to solve). This gives:

(2) minimize Et=itr(X HtAt).(X HtAt)

over X and A1, Ak subject to the conditions that

X'X = nI and u'X = 0,
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with u a vector (dimension n) consisting of only ones. Note

that restricting (2) to two sets results in (1). In that case

X can be expressed in terms of HiAl and H2A2, in addition the

condition X'X=nI can be translated into the usual constraints

for canonical variates. Thus expression (2) is a proper

generalization of (1). Also note that we are dealing again

with a least squares problem (both for X and At), which can

be solved alternating.y. Carroll (1968). De Leeuw (1973).

Saporta (1975), and Giti (1981, chap. 6) use a similar

formulation for generalized CCA, consequently they use the

same optimization criterion and the same constraints.

In other approaches different criteria are used. Define

R (kp x kp) as the correlation matrix of (HiAl , HkAk).

Steel (1951), Horst (1961), Kettenring (1971) and Van de Geer

(1984, 1986) optimize properties of R over choice of weights

A. Their optimality criteria vary from the determinant of R

to the largest or smallest eigenvalue of R. and to the sum of

the (squared) elements of R.

In addition to different criteria, we also find that, in

the literature successive and simultaneous solutions are

distinguished (Ten Berge, 1977; Van de Geer, 1984, 1986, part

IV). In the simultanepus case all p solutions (dimensions)

are computed at once. This also holds for formulation (2).

However Van der Burg et a/. (1986) prove that the matrix X

corresponds to an eigenvector solution, so that (2) also

gives successive solutions. The successive approach solves

i
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for each dimension in succession, imposing additional

restrictions with regard to previous solutions. Restrictions

always refer to orthogonality constraints, which can be

either weak or strong (Dauxious & Pousse, 1976). Weak

constraints require orthogonal sums of canonical variates (or

object scores). Strong constraints imply canonical variates

to be orthogonal within sets. For a more detailed discussion

of optimizing criteria, simultaneous or successive solutions,

and orthogonality constraints we refer to Gifi (1981, chap.

6).

A completely different approach to k sets canonical

correlation analysis is found in Meulman (1986, chap. 2 and

4). Starting from (2), k sets CCA is reformulated in distance

terms, so that the relation to multidimensional scaling

becomes clear.

Optimal scaling

In this section k sets CCA with optimal scaling is discussed.

Two different formulations are used.

Several authors apply nonlinear transformations in

multivariate techniques. This can be done in the form of

optimal scaling (Young, 1981). Optimal scaling means that for

each variable a nonlinear transformation is permitted. such

that it maximizes the analysis criterion. Naturally the

transformations are restricted by measurement constraints.

1I
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Thus combining the CCA problem with measurement restictions

gives CCA with optimal scaling.

The optimal scaling is included in k sets CCA in the

following manner (cf. Young et al., 1976; Van der Burg & De

Leeuw, 1983). Instead of using the original variables h

(columns of 01,....11k), transformed variables q (columns of

Q1 Ok) are used, which are optimally scaled (and thus

satisfy the measurement restrictions). The matrices Qt and Ht

have the same size. Geometrically this means that instead of

considering a variable as a vector, a variable is considered

as a cone of vectors of which one is chosen (such that the

analysis criterion is maximized). This cone is completely

defined by measurement restrictions (De Leeuw, 1977).

Satisfying measurement restrictions for numerical variables

means that q is a linear transformation of h. For ordinal

variables it means that q is a monotone transformation of h

(Kruskal & Shephard, 1974, secondary approach) and for

nominal variables it means that q is equivalent with h (i.e.

similar observations or ties of h correspond to ties in q).

Thus k sets CCA with optimal scaling is

(3) minimize Lt=itr(X QtAt)*(X QtAt)

over X and A1, Ak subject to the conditions that

X'x = ni. u'X = 0 and q = f(h) with f e C(h),

where C(h) refers to the set of permissible transformations

of h, and f refers to a transformation. As for each variable

J 2
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only one tral.sformation is employed, (3) defines k sets CCA

with single transformations. Furtheron it will be shown that

multiple transformations are also possible, which leads to k

sets CCA with single and/or multiple transformations. This

technique is called OVERALS, therefore one can refer to k

sets CCA with optimal scaling (3) as OVERALS with single

transformations.

Considering a variable as a collection of category

scores, which means automatically that variables are supposed

to be discrete, makes measurement restrictions perhaps more

clear. When transformations are defined with respect to

categories (obtaining category quantifications), cies are

automatically maintained. Then nominal transformations do not

employ additional restrictions, ordinal transformations

require the category quantifications to be a monotone

transformation of the original category scores, aLld numerical

transformations yield a linear transformation of the original

category scores. In this paper the terms transformations (of

variables) and category quantifications are used both. They

mean exactly the same thing, although the corresponding

interpretations are perhaps different. In fact interpreting a

variable as a collection of observations (instead of category

scores) opens the possibility of continuous transformations.

These are discussed by Kruskal & Shephard (1974) in the

context of multidimensional scaling (type I transformations),

by De Leeuw, Young & Thkane (1976) with regard to additive

structure analysis,, by Young, Takane & De Leeuw, (1978), De

3



K sets canonical correlation

9

Leeuw & Van Rijckevorsel (1980) and Kuhfeld, Young & Kent

(1987) in the framework of nonlinear principal component

analsis. In this paper continuous transformations are not

considered, therefore both interpretations are similar and it

does not matter which terminology is used.

If variables are considered to be discrete they can be

characterized completely in terms of their category scores.

Let us consider variable yi, the j'th column of matrix

(Y1,,Yk), and let Gj (n x kj) be an indicator matrix for

the kj categories of variable yj (i.e. element (i,r) of Gj is

one if object i belongs to category r, and zero otherwise),

in addition let cj be the corresponding kjvector of category

scores. (Note that k (number of sets) and kj (number of

categories for variable hi) have a different meaning). Then

variable hj can be written as

(4) hj = Gici.

An example may clarify the notation. Suppose a data matrix of

8 objects and 3 variables is given with numbers of categories

2,4,3 respectively (Fig.1). Then the corresponding indicator

matrices are G1, G2, G3, and the vectors of category scores

are ci, c2 and c3 (Fig. 1). Multiplication of G1 with ci

gives hi, of G2 with c2 gives h2, etc..
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Insert Table 1 about here

A transformation qj of hj can be expressed analogously

in terms of the category quantifications zj and the indicator

matrix Gj. Then

(5) qj = Gjzj.

Now suppose matrix Qt corresponds to (qr, qs), with

..7(t)=(r, , s) the indices corresponding to set t. Then

matrix QtAt can be rewritten as

(6) QtAt = EjEJ(t)Gjzjaj..

with aj' rows of At. In this expression zj and aj are vectors

of parameters and Gj is fixed. The matrix Yj=zjaj. defines a

line in the pdimensional space with the category

quantifications zj on this line, and with direction cosines

proportional to the weights aj. With the help of (6) OVERALS

with single transformations (3) can be rewritten as

(7) minimize Et=itr(x Ejej(t)GjYj)'(X EjEj(t)GjYj)

over x and Yj subject to the conditions that

u'x = 0, X'X = nI and

Yj = zjaj. with zj E Cj and aj unrestricted.
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The notation Cj is used for the set of permissible

quantifications of the category scores cj (similar, of

course, to the set of permissible transformations of variable

h3). Note that (7) does not yield results different from (3).

Only the formulations differ.

Multiple transformations

What happens if the condition that Yj takes the form ziaj" is

dropped for some variables? Then the transition from single

transformations to multiple transformations is made.

Geometrically it means that category quantifications are no

longer required to be on a line. Thus the vector

interpretation (or vectorincone interpretation) is

abandoned. This results in OVERALS, which is k sets CCA with

single and/or multiple transformations (Gifi. 1981, chap. 6).

Thus OVERALS is

(8) minimize Et=itr(x Ejej(t)GjYj) (X Ejej(t)GjY1)

over X and Yj subject to the conditions that

u'X = 0 and X'X = nI, and for some variables

Yj = zjaj' with zj E Cj.

Expression (8) is the definition of OVERALS, also given by

Van der Burg et al. (1986). They introduce OVERALS from a

diffe....nt point of view. They start with homogeneity analysis
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or multiple correspondence analysis (Guttman. 1941: Benzecri

et al.. 1973; De Leeuw, 1973; Nishisato, 1980; Gifi. 1981:

Greenacre, 1984) and then introduce sets of variables by

additive restrictions on interactive codings (per set of

variables). Next they combine this additive homogeneity

analysis with optimal scaling. In this paper another route is

followed. Starting from classical CCA, the additivity of

variables within sets comes in naturally. Linear combinations

of variables are generalized to linear combinations of

optimally scaled variables. Then this optimal scaling is

further generalized to multiple transformations. From a

geometrical point of view the latter step does not seem

natural, as the vector interpretation of a variable is

dropped. However it is necessary to link. OVERALS with single

transformations to homogeneity analysis so that the

interrelations between the various techniques become more

clear. Because of this link of OVERALS with homogeneity

analysis OVERALS can also be viewed as multidimensional

scaling with sets of variables, and also as k sets principle

component analysis. If the data contain no set structure

additivity restrictions on interactive variables per set are

automatically satisfied. Therefore OVERALS with one variable

per set is the same as nonlinear principal component analysis

(De Leeuw & Van P.ijckevorsel, 1980: Gifi. 1984). If, in

addition, only multiple transformations are used we are back

to homogeneity analysis.

I7
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Copies of variables

One way of avoiding the complex step from single to multiple

transformations is by introducing copies (De Leeuw, 1984).

This means that the same variable may occur more than once in

a set. For each copy a single transformation is formed so

that a variable is represented by several vectors instead of

one. Thus a vector interpretation of the variables can be

maintained, although it is more easy to imagine one vector

than two or more. An example may help. Suppose the variable

age correlates with health in a linear way but correlates

with smoking behaviour nonlinearly (e.g. young and old do not

smoke, and people between thirty and sixty smoke relativily

much). Then, if age must be correlated with health and

smoking behaviour at the same time (in one set), it may be

usefull if age is represented by two copies. For a formal

proof that a multiple transformation corresponds to p

transformed copies, we refer to Van der Burg et al. (1986).

If we compare an OVERALS algorithm with copies to an

algorithm with multiple transformations there are several

advantages. In the first place there is the possibility of

determining how many copies are wanted. In the case of

multiple transformations always p quantifications are used. A

second advantage is, that the measurement level of each copy

can be fixed separately. If each dimension of a multiple

transformation is considered as a separate solution, it

appears from the definition of OVERALS (8), that only nominal
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transformations are possible. The tie restrictions are

automatically satisfied, when variables are considered as a

collection of categories. For multiple transformations,

however, no further restrictions were formulated in (8). For

that reason multiple transformations are often referred to as

multiple nominal quantifications.

A disadvantage may be that the link to homogeneity

analysis becomes rather confusing. Fundamental in homogeneity

analysis is the p- dimensiou.J representation of objects and

categories. If the number of copies is smaller than p and

larger than one, we are dealing with a constrained

representation, which is unusual in homogeneity analysis.

A seccnd disadvantage, and maybe a more serious one, is

the fact that a user must determine beforehand how many

copies and which measurement levels must be used in an

OVERALS analysis. This may be very difficult.

For OVERALS with single and multiple transformations an

algorithm is implemented in a computer program (also called

OVERALS) (Verdegaal, 1986:, Van der Burg et al., 1986). For

OVERALS with copies no special computer program exists. Of

course the OVERALS computer program can be used for it. Then

only single measurement levels must be employed,, in addition

copies of the variables must be added to the input data

matrix.

Jor
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Missing data

The OVERALS algorithm does not contain any provisions for

dealing with missing values. Gifi (1981, chap. 6) and

Verdegaal (1985) treat the case of incomplete data. This is

also discussed here to make the paper more complete.

Suppose a variable hp belonging to set Et, misses one

or more observations. Define matrix Mt (n x n), a diagonal

matrix showing which observations are missing for the

variables of set t. Mt is defined as follows: element (i,i)

is 1 if no variable of set t misses observation i and zero if

one of the variables of set t misses observation i. Thus it

does not matter which of the variables hj, jeJ(t), misses an

observation. Let M* denote the average over the missing

matrices, i.e. M*=EtMt/k. OVERALS for incomplete data is

defined as follows

(9) minimize 4=it:(X EjeJ(t)GjYj)'Mt(X EjeJ(t)GjYj)

over X and Yj subject to the conditions that

WM*x = 0 and x'm*x = nI, and for some variables

Yj = zjaj with zj e Cj.

The solutions for x and Yj are given without a proof. The way

they are obtained is very similar to the way for 'nonmissing'

OVERALS. Van der Burg et a1.(1986) discuss these solutions

extensively. Gifi (1981, chap. 6) treats solutions for

'missing' OVERALS briefly, and Verdegaal (1985) is rather
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detailed. Using a hat (^) for a new update the solution for

object scores is

(10) = ( lik)m* 1J(Eitc=imtEjEj(t)ciyi) 1.

with

(11) J = I (Msuu')/(u14,0u)

the centering operator, and a symmetric matrix of Lagrange

multipliers. The solution for multiple category

quantifications is

(12) ij = (GjMcG.1)+Gj'Mc(X Erej(t)GrYr + GiYi).

where ( )+ refers to the Moore Penrose inverse. If the

matrices Dj are defined as

(13) Dj = G3MtG3,

the single category quantifications and weights are obtained

from the multiple quantifications in the same way as for

'nonmissing' OVERALS. Note that substitution of I for Mt in

(9) gives (8). which is the definition of OVERALS for

complete data. The definition of OVERALS for incomplete data

corresponds to the definitions of nonlinear principal

component analysis (PRINCALS) and homogeneity analysis

0 4,

0
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(HOMALS) fcr incomplete data (Gifi, 1981, chap. 3 & 5;

Meulman, 1982). It means that in case of no set structure

(i.e. J(t) =t) those techniques are exactly the same as

OVERALS for incomplete data.

Applicatioa

An example is taken from Van Rijckevorsel (1987). It concerns

the car data originating from the American consumers report,

April 1980 (Table 2), Winsberg & Ramsey (1983) also used this

file. The data contain some basic characteristics of 33

popular cars available in the U.S. like price, engine size,

weight, and fuel consumption. Discretizations are used

according to the knots given by Van Rijckevorsel (1987, page

37).

Insert Table 2 about here

As the variables of the car data represent three kinds

of characteristics, the data were considered as consisting of

three sets of variables. The first set contains price (P),

the second one consists of the 'psysical' characteristics

weight (W) and size (S), and the third set of the performance

characteristics, miles/gallon in the city (MGC or C) and on

the highway (MGH or H)).
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Insert Table 3 about here

Several analyses were done. Firstly all the variables

were taken as ordinal. Although the variables seem to be

measured on interval level, we are not sure about the

linearity of the relations between the variables, therefore

we used an ordinal measurement level. A two dimensional

solution was considered. The generalized canonical

correlations are shcwn in Table 3. The transformations of the

variables are given in Fig. 1 (first row); horizontally the

original category scores of each variable are plotted and

vertically the category quantifications. The component

loadings are given in Fig. 2 and object scores in Fig. 3.

Cars are labeled by 1 to 9. and A to X (cf. Table 2) . For an

interpretation of OVERALS results we refer to Van der Burg at

al. (1986). Component loadings and object scores belong to

the same space, however they are plotted next to each other

because of a difference in scale.

Figures 2 and 3 show that the first dimension

(horizontally) is dominated by price, weight and "GC. The

second dimension gives differences in MGH and size. As the

transformation of size is rather flat for the higher values

(see Fig. 1), no difference is expected between the smaller

and the larger cars except for the very small ones. Small
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cars lie in the direction opposite of the Svector in Fig. 3.

There we find 1,2.3.5.8.9,F.G. They all have a size under 100

and a fuel consumption on the highway which is rather low. At

the right of Fig. 3, we find LK,L.M.O.P.Q.S.T.U.V.W.X, which

are the more expensive cars (above 6700 dollars), the havier

ones (above 3000 kilos). and the less economically driving

cars (MGC less than 14). High in the plot we find the

'medium' cars 6.B.C,D.E,H,J,N. Somewhat lower cars 4,7,A are

found, which have a rather small size, and use comparativily

little fuel. The latter characteristic also holds for car R.

A second analysis was performed with copies of weight

and size (taken as nominal). We wondered if higher prices

always correspond with bigger, heavier, and less economically

driving cars. The generalized canonical correlations were

.892 and .603, which is a little better than in analysis I

(see Table 3). The transformations of the variables are shown

in Fig. 1 (second row). Weight and size contain an ordinal

and a nominal transformation, corresponding to W1 /S1, and

W2/S2 respectivily. The component loadings can be found in

Fig. 4, and the object scores in Fig. 5. The S2vector is

very short, therefore the nominal version of size (S2) is of

no importance. Thus the higher canonical correlations are

mainly caused by the nominal weight variable (W2). The first

dimension is still dominated by price and MGC, now combined

with size (SI), and weight (WI). The second dimension shows

MGH (H), together with the nominal weight (W2).

Transformation of W2 is rather capricious. Cars of middle
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weight (2500-3000) get a negative category quantification,

while the others get a positive quantification. This means

that middle weight cars can be found in the direction

opposite to the W2vector, and that the other cars lie in the

direction of W2. Indeed cars 6,B,C,E,H.J.N.R (Fig. 5) have a

medium weight. Again R is placed relativily low as it uses

comparatively little fuel on the highway. The first dimension

is very similar in both analyses. It discriminates cheap cars

from medium priced and expensive cars. This correlates with

size and MGC. Thus the little, cheap and economically driving

cars are found under left in Fig. 5, similar to Fig.3. Only

cars 4,7,A have grown very close in Fig. 5 to the cheap cars

as they are rather light. In analysis I tie engine size

dominated the second dimension. In analysis 2 it is the

weight.

Insert Figures 4 and 5 about here

A third analysis was performed. but now MGC and MGH were

copied and considered to be nominal. Results are shown in

Fig. 3 (third row), Fig. 6 (component loadings) and Fig. 7

(object scores). The canonical correlations do not differ

much different from those of analysis II. The first dimension

does a little better (Table 3). In Fig. 7 the first dimension

is dominated by price, weight and MGH. The second dimension
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is determined by MGC and size. This solution is in lam more

similar to analysis I than to analysis II. The same clusters

are found. Fig. 7 shows that the group 4,7,A has moved away

from the cheap cars as in Fig. 3, because these cars use more

fuel in the city than the small cars do (but still a moderate

amount). Although some small cars are also expensive in use,

e.g. cars 1,2,G (with MGC=18.3, 18,6, 19.7) these cars show

more resemblance (in size and weight) to the small ones than

4,7,A do. Therefore the nominal transformation of MGC jumps a

lot (Fig. 1). Categories 4 and 6 are quantified lowest,

categories 1 and 5 in the middle, and categories 2 and 3

highest. Cars K and T still lie in the position between big

cars and medium cars. The upper cluster is now determined by

MGC, especially objects with a score between 9 and 15 can be

found in the upper part. These objects are:

6,B,C,D,E,H,J,K,N,R and T.

Insert Figures 6 and 7 about here

All analyses discriminate between small, medium,and big

cars. Differences between the solutions are found mainly in

the second dimension. The accent of the second dimension

depends on which variables are copied. However all solutions

show the medium cars at the top. Analysis I highlights size

and MGH. analysis II weight and MGH and analysis III MGC and
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size. All solutions show that car 1 (audi 4000) is expensive

for a small car. Cars 4,7,A (Datsun 510, Honda Accord,

Plymouth Horizon) have characteristics of small and medium

cars. Cars K,T (Chev Malibu. Chev Impala) use comparativily

little fuel in the city, but for the rest they are like big

cars. Cars M,I (Dodge Diplomat, AMC Eagle) are good

representatives for big cars. Typical small cars are 2.3.5

(Chev Chevette, Datsun 210, Dodge Colt), and _cal medium

cars are 6,B,H (Ford Mustang, Plymouth Sapparo, Toyota

Corona).

As the relations between the variables in this data set

are strongly ordinal, the solutions with nominal copies dr,

not reveal completely new aspects. Only a difference in

accentuation is obtained, showing unexpected irregularities

in car charisteristics.

Discussion

The OVERALS technique described in this article fits very

well in the tradition of k sets CCA. as far as such a

tradition exists. The earliest predecessor is Carroll (1968),

who compares his work with that of Horst (1961). Some years

later Kettenring (1971 also discussed several k sets

methods. Of those early articles on k sets CCA only Carroll's

method is based on minimization of a loss between object

scores and canonical variates of all sets together. In this

2 7
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article we used a similar formulation for OVERALS, and we

extended it.

Earlier the OVERALS te.aniki'e has been treated as a type

of homogeneity analysis (Gifi, 1981, chap. 6; De Leeuw, 1984;

Verdegaal, 1985, 1986: Van der Burg et al.. 1986). Treated in

this way it fits perfectly in the Gifisystem of nonlinear

multivariate analysis (Gifi, 1981; De Leeuw, 1984). This

system combines the ideas of correspondence analysis and

homogeneity analysis with the priciples of optimal scaling.

Optimal scaling, however, can also easily be built into

linear multivariate analysis, offering a system tLaL. is not

as general as the Gifisystem. However, the extension using

copies fills the gap between the two systems. It also offers

new possibilities with regard to data analysis.

Multivariate analysis with optimal scaling and copies

has the advantage that the old idea of a variable

representing a vector is maintained. Traditionally CCA is

based on the ve c.or interpretation. Therefore this article

fits better in the CCAtradition than the interpretation of

Van der Burg et al. (1986) does.

In addition, the method of copies gives the possibility

of handling nonlinearities more carefully than k -ots

homogeneity analysis does. From the homogeneity point of

veiw, one can only decide that a variable is represented

either by a vector, or by unrestricted (in the sense of a

measurement level) categories. With the help of copies one

can be more subtle and use as many copies as are needed from

23
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the data analysis standpoint, imposing measurement

restrictions on each copy separately. Especially if one

prefers to keep the vector interpretation, and if

interrelations are expected to vary from variable to

,variable, the method of copies provides a nice tool for data

analysis.

0/-1
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Table 1

Data matrix H. corresponding indicator matrices Gi, G2. G3,
and vectors of category scores cl, c2, and c3.

1 2 3
1 a p v
2 a r U
3 bsw
4 bqu
5 a p w
6 bru
7 bqv
8 b r W

1

H

1

2

3

4
5

6

7

8

ab
1 0
1 0
0 1
0 1
1 0
0 1
0 1
0 1

1

pqr s
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0

T

uwv
0 0 1
1 0 0
0 1 0
1 0 0
0 1 0
1 0 0
0 0 1
0 1 0

1

P
q
r
s

u
v
w

<Ci

< C2

< c3

G1 G2 G3
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Table 2

The car data from the American consumers report, April
pith knot squence used for discretization.

1980,

CAR TYPE CODE PRICE SIZE MGC MGH WEIGHT

Audi 4000 1 7700 98 18.3 35.8 2190
Chev Chevette 2 5100 98 18.6 35.9 2120
Datsun 210 3 4750 86 25.2 40.7 2020
Datsun 510 4 5950 119 21.9 42.7 2430
Dodge Colt 5 4900 98 24.2 41.2 1880
Ford Mustang 6 5800 141 15.6 29.8 2610
Honda Accord 7 6500 110 19.9 5.7 2290
Honda Civic CVCC 8 4100 91 22.7 39.7 1760
Mazda GLC 9 4150 85 26.9 47.2 1980
Plymouth horizon A 5400 105 21.6 38.3 2150
Plymouth Sapparo B 6500 159 13.8 26.6 2790
Pontiac Sunbird C 4950 151 14.6 28.8 2700
Toyota Cellica D 6650 134 14.5 26.6 2410
Toyota Corona E 5700 134 16.6 34.9 2570
Toyota Tercel F 4350 92 23.3 39.5 1970
VW Rabbit G 6100 97 19.7 45.7 1870
AMC Concord H 6850 152 15.6 29.2 2910
AMC Eagle I 8200 258 10.2 22.8 3360
Chev Citation J 7200 173 14.4 31.6 2660
Chev Malibu K 7200 232 13.9 22.8 3180
Dodge Aspen L 6700 225 10.4 23.8 3330
Dodge Diplomat M 7550 318 10.4 22.2 3540
Ford Fairmont N 6350 140 13.1 29.6 2800
Mercury Monarch 0 7150 302 11.5 20.9 3510
Olds Cutlass P 7550 231 11.9 25.5 3240
Pontiac LeMans Q 7400 i31 11.9 25.5 3220
Pontiac Phoenix R 7350 151 17.8 37.9 2550
Buick Regal S 7400 231 9.8 22.4 3280
Chev Impala T 8150 231 12.1 26.1 3590
Chev Monte Carlo U 7500 305 10.3 22.2 3380
Dodge St. Regis V 8100 318 11.2 21.5 3730
Mercury Marquis W 8550 302 11.2 20.6 3720
Pontiac Catalina X 8100 231 10.8 22.8 3610

knots 4000 50 9 20 1500
5000 100 12 25 2000
6000 150 15 30 2500
7000 200 18 35 3000
8000 250 21 40 3500
9000 300 24 45 4000

350 27 50



Table 3

generalized canonical
correlations

I 0.884 0.553
II 0.892 0.603
III 0.901 0.599
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Figure Captions

Figure 1. Transformations of the variables from three

analyses. Horizontally the original scores. Vertically the

category quantifications

Figure 2. Component loadings, Figure 3. Object scores.

Analysis I Analysis I.

Figure 4. Component loadings, Figure 5. Object scores,

Analysis II
Analysis II.

Figure 6. Component loadings, Figure 7. Object scores,

Analysis III
Analysis III.
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