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Abstract

The purpose of this paper is to review the Minnesota Adaptive

Instructional System (MAIS). It will first be indicated how

the problem of determining the optimal number of

interrogatory examples in MAIS can be formalized as a problem

of Bayesian decision making. Subsequently, it will be shown

how two features of MAIS can be improved by using other

results from this decisiontheoretic approach. The first

feature deals with the determination of the loss ratio R. A

lottery method for assessing empirically this ratio is

discussed. The second feature concerns the choice of the loss

function involved. It is argued that in many situations the

assumed threshold loss function in MAIS is an unrealistic

representation of the loss actually incurred. In view of

this, a linear utility function is proposed. Finally, some

new lines of research are suggested arising from the

application of decision theory to the MAIS model.
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The Use of Decision Theory in the

Minnesota Adaptive Instructional System

Introduction

The term "adaptive instruction" has been in widespread use

for ever a decade (Fa'-ley, 1983;, Hansen, Ross & Rakow, 1977;

Holland, 1977; Landa, 1976; Park, 1982; Tennyson & Breuer,

1984). Although different authors have defined the term in a

different way, most agree that it denotes the use of

strategies to adapt instructional treatments to the changing

nature of student abilities and characteristics during the

learning process (Tennyson & Park, 1984). In the context of

computerbased instruction (CBI), adaptive instructional

programs are often qualified as individualized study systems

(ISS). Examples are the Pittsburgh Individually Prescribed

Instruction (IPI) project (Glaser,, 1968) and Computer

Assisted Instruction (CAI) (Atkinson, 1968; Suppes, 1966).

In a special JCBI issue on Educational Research and

Computer Based instruction, Tennyson, Christensen and Park

(1984) describe a computerbased adaptive instructional

system, the Minnesota Adaptive Instructional System (MAIS).

The authors call the system an intelligent CBIsystem,

because it exhibits some of machine intelligence, as

demonstrated by its ability to improve decision making over

the history of the system as a function of accumulated

information about previous students. In the literature many

successful research projects have been reported on MATS
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(e.g., Park & Tennyson, 1980; Tennyson, Tennyson & Rothen,

1980).

Initial work on MAIS began as an attempt to design an

adaptive instructional strategy for conceptlearning

(Tennyson, 1975). According to Merrill and Tennyson (1977)

conceptlearning can be conceived as a twostage process of

formation of conceptual knowledge and development of

procedural knowledge (see Tennyson and Cocchiarella, 1986,

for a complete review of the theory of conceptlearning).

In MAIS, eight basic instructional design variables

directly related to specific learning processes are

distinguished. In order to adapt instruction to individual

learn,.1r differences (aptitudes. prior knowledge) and learning

needs (amount and sequence of instruction), these variables

are controlled by an intelligent tutor system (Tennyson and

Christensen. 1986). Three of elese variables are directly

managed by a computerbased decision strategy. The functional

operation of this strategy was related to guidelines

described by Nolrick and Lewis (1974).

The purpose of this paper is to review the application

of the MAIS decision procedure by Tennyson and his

associates. First, it will be indicated how this procedure

can be situated within the general framework of (empirical)

Bayesian decision theory (e.g., DeGroot, 1970;, Ferguson.

1967; Keeney & Raiffa, 1976; Lindgren, 1976), and, what

implicit assumptions have to be made in doing so.

Using a Bayesian approach, the decision component in

MAIS can be inmproved. As an example. it will be shown how
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two features of MAIS can be improved by using other results

from decision theory. The first feature is the determination

of the loss ratio R. The second feature is the use of the

linear utility function instead of the assumed threshold loss

function in MAIS.

The paper concludes with some new lines of research

arising from the application of decision theory to the MAIS

model. We shall confine ourselves in this paper only to one

of the three instructional design variables directly managed

by the decision component in MAIS, namely determining the

optimal number of interrogatory examples (question form).

A Framework of Bayesian Decision Theory

The derivation of an optimal strategy with respect to the

number of interrogatory examples in a conceptlearning lesson

requires an instructional problem be stated in a form

amenable to a decisiontheoretic analysis Analyses baE-,d on

decision theory vary somewhat from field to field, but the

following formal elements can be found in most of them:

1. A nonempty set, 0, of possible states of nature.

2. A nonempty set, 0, of actions available to the decision

maker.

3. A loss function,, 1(a,0), i.e., a realvalued function

defined on Q
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4. A probability function or psychometric model, f(ml8),

relating observed values x of a stochastic variable X to

a given value 0 = 8 for the state of nature.

These basic elements have been related to decision

problems in educational testing by many authors, particularly

in the context of computerbased adaptive instructional

systems (e.g., Atkinson, 1976; Swaminathan, Hambleton &

Algina, 1975; van der Linden, 1981). As the use of the

decision component in MAIS refers to sequential mastery

testing, we shall discuss here only the application of the

basic elements to this problem.

The first element concerns the student's true level of

functioning n E (0,1). In the present problem, there are two

possible states of nature: a student is a true master (81) if

his/her true level of functioning exceeds the criterion level

70 E (0,1), and he/she is a true nonmaster (80) otherwise.

The criterion level n0 the minimum degree of mastery

requiredisset 1:1 advance Unfortunately, due to measurement

and sampling errors, the true level of functioning is

unknown. All that is known is the student's observed test

score X from a small sample of n interrogatory examples (x =

0.1, . . ,n).

The second element pertains to the following two

available actions: advance a student (a1) to the next concept

if his/her test score x exceeds a certain cutoff score c on

the observed test score scale X, and retain (a0) him/her

otherwise. Students with test score x below the cutoff score

1(
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c are provided with additional expository examples (statement

form). A new interrogatory example is then generated. This

procedure is applied sequentially until either mastery is

attained or the pool of test items is exhausted. Now, the

sequential mastery decision problem can be stated as choosing

a value of c that, given the value of no, is optimal in some

sense.

The third element describes the loss 1(ai3Oj) incurred

when action ai (i=0,1) is taken for the student who is in

state ej (j=0,1) . The loss must be measured on at least an

interval scale. In Tennyson's approach the loss function is

supposed to be a threshold function. The implicit choice of

this function implies that the "seriousness" of all possible

consequences of the two available actions can be summarized

by four constants, one for each of the four possible decision

outcomes (see Table 1).

Insert Table 1 about here

In Table 1 it is assumed that no losses occur for

correct decisions and, therefore, the losses associated with

correct advance and retain decisions (111 and loo.

respectively) are set equal to zero.

In the decision component of MAIS, a loss ratio R must

be specified. R refers to the relative losses associated with

advancing a learner whose true level of functioning is below

.I1
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ro and retaining one whose true level exceeds ro. From Table

1 it can be seen that the loss ratio R equals 110/101 for all

values of n.

The last, element relates the observed test score X to

the true level of functioning n. In MAIS this is done by

using the betabinomial model,

f(x17) (311c) TOC(1_10nX.

Within a Bayesian decisiontheoretic framework the

sequential ma4tery decision problem is solved by minimizing

the "Bayes risk", which is minimal if for each value x of X

an action with smallest posterior expected loss is chosen.

The posterior expected loss is the expected loss taken with

respect to the posterior distribution of n.

It can be seen from the loss table that the decision

rule which minimizes posterior expected loss is to advance a

student whose test score x is such that

l01Prob(1 L roix,n) L. lioProb(m < rolx,n),

and to retain him/her otherwise. Since loi > 0, this is

equivalent to advancing a student if

Prob(r L olx,n) L R/(14-12),

and retaining him/her otherwise. Prob(r L nOIx,n) denotes the

probability of the student's true level of functioning

12
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exceeding r0, giveu his/her test score x on a test of length

n. In fact, this probability is one minus the cumulative

posterior distribution of .ff. In MAIS this quantity is called

the "beta value" or "operating level" (Tennyson. Christensen

& Park, 1984).

It should be noted that. as can be seen from the

decision rule, the decisionmaker need not specify 110 and

101 in any absolate value. He need only specify their ratio

110/101.

In order to initiate the decision component in MAIS,

three kinds of parameters must be specified in advance

(Rothen & Tennyson. 1984). Beside the parameters 70 and R. a

probability distribution representing the prior knowledge

about it must be available. In MAIS a beta distribution.

B(a.0). is used as a prior distribution and a pretest score

together with information about other students is used to

specify its parameter values. It follows that the posterirs:

distribution of 7 is easily obtained. From an application of

Bayes's theorem, the posterior distribution will again be a

member of the beta family (the conjugacy property). In fact,

if the prior distribution is B(a,0) and the student's test

score is x from a test of length n, then the posterior

distribution is 5(x+a.nx+B). The beta distribution is

extensively tabulated (e.g., Pearson, 1930). Normal

approximations are also available (Johnson & Kotz. 1970.

sect. 2.4.6).

The MAIS decision procedure for adapting the number of

interrogatory examples can now be summarized as follows: If a

1 ou
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student's beta value exceeds the quantity R/(1+R). (s)he is

passed to the next instructional unit (i.e., next concept) or

final (summative) posttest. However, if his/her beta value is

below this quantity. his/her posterior distribution is used

as a prior distribution in a next cycle. A new interrogatory

example is then generated. The procedure is applied

iteratively until either the beta value exceeds the quantity

R/(1+R) or all interrogatory examples in the pool for that

particular concept have been presented.

In the next two sections two features of the MAIS

decision procedure will be critically reviewed. Subsequently,

it will be shown how they can be improved by using other

results from decision theory.

Determination of the Loss Ratio

We start witn a point already raised by Tennyson and Park

(1979) themselves. It concerns the manner in which the loss

ratio is determined. In fact. MAIS does not include any

techniques to determine the loss ratio. It only assumes that.

prior to administering the pretest, the loss ratio is

adjusted on the basis of a taskrelated aptitude score. A

high score on the aptitude score is used to adjust the ratio

so that the losses associated with the error of a false

retain are decreased relative to the error of a false

advancement (Rothen & Tennyson, 1978). However, as Tennyson

and Park (1979) have pointed out, this procedure seems to be

14
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without any theoretical base. In particular, a loss function

should be independent upon the test data,

As mentioned before, a loss function specifies the total

costs of all possible decision outcomes. These costs may

concern all relevant psychological, social, and economic

consequences which the decision brings along. An example of

economic consequences is extra computer time associated with

presenting additional instructional materials.

For assessing loss functions, or the more generally

applicable utility functions, most texts on decision theory

propose lottery methods (see, for example. Luce & Raiffa,

1957, Chap. 2; for a recent modification, see Novick &

Lindley, 1979). But in principle any psychological scaling

method can be used. Although helpful techniques are

available, this does not mean that, for example, in programs

of individualized instruction, assessment of utilities is

always a simple matter. In this paper, we shall consider one

method that works in decision problems with a finite number

of outcomes such as in the sequential mastery decision

problem.

Generally speaking, utility theory uses the notions of

desirability of outcomes to scale the consequences of each

pair of action and state of nature. Surely, the Most

desirable outcomes in MAIS are the true positives and true

negatives. In either case, we correctly classify the student.

For this reason, it is assumed that both outcomes are equally

preferred. Furthermore, if a true nonmaster is advanced,

(s)he will not only lose the time required to complete the

1J
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next concept, but may also become frustraced and discouraged.

Therefore, let us assume that misclassifying a true master is

much more desirable than misclassifyinc, a true nonmaster.

The set of the possible outcomes associated with making

decision ai when Oj is the true state of nature, will be

represented by O. Let Omax be the most preferred outcome

and Omin be the least preferred outcome in this set. So, in

our notation, we have 000 = 011 = Omax and Olu - = Omin. Let

uij describe the utility of Oil. These utilities are measured

numerically on an interval scale by the following device.

Let umax and umin, the utilities of the most preferred

and least preferred outcome of the possible outcomes, be

assigned values 1 and 0. respectively. Further, suppose the

decision-maker is indifferent between 001 for certain and a

conceptual lottery which has probability p of realizing Omax

and (1-p) of realizing Omin It is assumed (Luce & Raiffa,

1957, Chap. 2) that this indifference will occur if and only

if the person has the same utility for 001 for sure and for

the specified lottery. The expected utility of the lottery is

then pumax + (1-p)umin which equals p, since umax = 1,

umin = 0. Hence the utility of 001 is operationally defined

as p, that is u01 = p. This procedure can then be followed

for each Oil in turn until utilities have been assigned to

each of the possible outcomes.

As an aside, we note that for each possible outcome Oil

one can always define a suitable loss by taking the

difference between the utility of the most preferred outcome

and Oil (Lindley, 1972).

6
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Admittedly, specifying utility functions is not an easy

task, but practical experience with the above method shows it

can be done (e.g., Vrijhof, Mellenbergh & van den Brink,

1983). If, for example, correctly classifying a student gives

our decisionmaker 10 "utiles" more than misclassifying a

true nonmaster and only 5 "utiles" more than misclassifying a

true master, then u01 would be 0.5. This means that

misclassifying a true master is halfway between

misclassifying a true nonmaster and correctly classifying a

student on an interval utility scale. It follows that

R = lin/101 = (umax u10)/(umax u01) = 2.

In the MAIS decision procedure, it is assumed that the

form of the utility structure involved is a threshold

function. Therefore, only u01 has to be assessed empirically.

Using the described techniques, however, a decisionmaker's

utility structure can be completely assessed without making

any assumptions about the form of the utility function. Only

minimal axioms from utility theory have to be assumed.

However, as van der Linden (1981) has pointed out, these

techniques do not automatically lead to elegant utility

functions and optimal cutting scores. It may be w :se,

therefore, to use these techniques only for a prior chosen

mathematical form of the utility function. In addition to

threshold loss function, however, other more useful functions

have been adopted in decision theory. One such function will

be considered below.

7
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A Linear Utility Function

An obvious disadvantage of the threshold utility function is

that it assumes constant utility for students to the left or

to the right of 70, no matter how large their distance from

70 is. For instance, a misclassified true master with a true

level of functioning just above 70 gives the same utility as

a misclassified true master with a true level far above 70.

It seems more realistic to suppose that for misclassified

true masters the utility is a monotonically decreasing

function of the variable 7.

Moreover, as can be seen in Table 1, the threshold

utility function shows a "threshold" at the point 7 = 70, and

this also seems unrealistic in many cases. In the

neighbourhood of this point, the utilities for correct and

incorrect decisions frequently change smoothly rather than

abruptly.

In view of this, van der Linden and Mellenbergh (1977)

propose a linear utility function:

bo(70-104.d0 for retain (a0)

u(ai,7) r... b0, bi > 0

bi(7 70)4-di for advance (al)

The above defined function consists of a constant term

and a term proportional to the difference between the true
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level of functioning r and the specified criterion level ro.

The constant amounts of utility, dj (j=0,1), can, for

example, represent the utility of testing, which will be

mostly negative because costs of testing are involved. The

condition bo, bl > 0 is equivalent to the statement that for

actions a0 and al, utility is a strictly decreasing and

increasing function of the variable r, respectively. The

parameters b0, bl, d0, and d1 have to be assessed

empirically. Figure 1 displays an example of this function.

Insert Figure 1 about here

As the general linear utility function now stands, we

need to determine the four constants bo. bl. do. and d1

before it can be applied. However, if we use the fact that a

utility function needs to I.-. determined only up to a positive

multiplicative constant and an additive constant (e.g., Luce

& Raiffa, 1957), we can reduce the number of unknown

constants to two. Thus, since bl > 0, we may redefine u(ai.r)

by making the positive linear transformation u*(ai.r) =

[u(ai,r)-011] /bi. And so

b*(ror)+d*

u*(ai,r) .

Tr Yr°
.

1 9

, i =0

i = 1
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where b* = boil)1 and d* = (dodi)/bi

We turn now to an illustration of one of the most direct

methods available for determining the constants b* and d*. In

order to make the method work, the decisionmaker must be

able to specify two ordered pairs (nisi) and (ri,r3) such

that

u*(ao.ri) = u*(al,ri)

and

u*(ao,ri) = u*(al,r3).

Solving this system of equations, we find that

b* = (rir3)/(riri) and d* = rjn0 b*(rori).

Analogous to the minimization of posterior expected

loss, decision theory with a utility function requires us to

select that action which will maximize the posterior expected

utility So, the decision rule that maximizes posterior

expected utility in the case of a linear utility function is

to advance a student with test score x for which

E((rro)lx.n) E((b*(Tro r)+d*Ix.n),

and to retain him/her otherwise. Since (1+b*) > 0, this is

equivalent to advancing a student if

20
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E[wix,n) r0 +d*/(1+b*),

and retaining him/her otherwise. In other words, with linear

utility, the action taken depends only upon the expectation

of the posterior distribution of r, other attributes of the

distribution are irrelevant for decision purposes.

Using the fact that the expectation of a beta

distribution B(a,P) is equal to aga+P), and, thus, the

posterior expectation equals (a+x)/(a+x+P+nx), it follows

that a student is advanced if his/her test score x is such

that

x > [a+13+nifr0 +d*/(1+b*)]0.

and retained otherwise.

Putting u*(ao,r) and u
*
(al,r) equal to each other, it

appears that the rcoordinate of the intersection of both

utility lines is equal to r0 +d*/(1+b*). Therefore, the

decision rule can be viewed as advancing a student if his/her

expectation of the posterior distribution of it is to the

right of the intersection point, and retaining him/her

otherwise.

When d* = 0, that is d0 = (11, both utility lines

intersect at it = ro and an interesting case arises. Then, all

utility function parameters vanish from the decision rule,

and thus, takes the form of advancing a student if

Eirlx,n) > TO,

21
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and retaining him/her otherwise. In other words. if the

amounts of constant utility, dj, for both decisions are equal

or if there are no constant utilities at all, there is no

need to assess the parameters d* and b* in adapting the

number of interrogatory examples. In that case, the decision

rule can even be simplified to advance a student if his/her

expectation of the posterior distribution of 7 is greater

than or equal to the specified criterion level 70, and to

retain him/her otherwise.

New Lines of Research

There are a few new lines of research arising from the

application of decision theory to the decision component in

MAIS. The first is the extension of the work of Tennyson and

his associates to situations where guessing and carelessness

are incorporated. Morgan (1979) has developed a model with

corrections for guessing earl carelessness within a Bayesian

decisiontheoretic framework. The results of a computer

simulation of the model indicate that guessing and

carelessness may markedly affect tie determination of cutting

scores, and hence the accuracy of decisions about mastery.

The second line is research into other prior

distributions about it (for example, the standard normal

distribution) than the beta prior assumed in MAIS. It might

also be assumed that no prior distribution about 7 is

22
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available, because specifying such a distribution is too

difficult a job to accomplish. In these circumstances, the

minimax procedure may be an appropriate framework (e.g..

Huynh. 1980; van der Linden. 1981) which requires no prior

distribution regarding the true level of functioning. In this

case, the optimum cutting score is obtained by minimizing the

maximum risk which would incurred by misclassifications.

Finally, an interesting new line of research seems to be

an extension of the action space 0. In MAIS, two actions were

available to the decisionmaker, namely advancing (al: or

retaining (a0) a student. However, it might also be

hypothesized that there are three (or any finite number) of

actions open to the decisionmaker.

For example, in the threeaction problem the student may

provided with additional instructional materials both of the

present and the previous concept (a2); (s)he may provided

only with additional instructional materials of the present

concept (a0); oi, (s)he may advance to the next concept (al).

We might think of this problem in terms of specifying

two cutting test scores c0 and cl on the observed test score

scale X, where c0 < cl. Then for observed test score x < co,

action a2 will be taken; for c0 < x < cl, action a0 will be

taken; and, for

x > cl, action al will be taken.

Davis, Hickman and Novick (1973) have given a solution

to the threeaction problem by using natural extensions of

the threshold loss function. Although the notation becomes

more complex and the computation a bit more tedious, there

23
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are no fundamentally new ideas in the multiple action

problem.

Some Concluding Remarks

In this paper it was indicated how the MAIS decision

procedure can be formalized within a Bayesian decision

theoretic framework by 2pplying the basic elements of the

theory to the instructional decision of determining the

optimal number of interrogatory examples in MAIS. In fact, it

turned out that this decision can be considered as a

sequential mastery decision.

Moreover, it was the purpose of this paper to show how

two features of MAIS can be improved as a consequence of this

formalizatioi, by using other results from decision theory.

The first feature is the dete:mination of the loss ratio R. A

lottery method has been discussed for assessing this ratio

empirically. The second feature is the threshold loss

function. It was argued that in many situations this is an

unrealistic representation of the loss actually incurred.

Instead, a linear utility function was proposed to meet the

objections to threshold loss.

Whether or not the determination of the loss ratio by

the described lottery method and the proposed linear utility

function instead of the assumed threshold loss function,

however, are really improvements of the present decision

component in MAIS (in terms of student performance on

24
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posttests, learning time, and amount of instruction) must be

decided on the basis of experiments. Research projects in

these areas have already been planned.

75
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Table 1

Twofold Table for Threshold Loss Function

Decision

Advance

Retain

True level

Tr?..Tr0 11.<70

(true master) (true nonmaster)

0 110

101 0

:42
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