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ABSTRACT
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theory (IRT) based item banks is discussed. Tests are considered
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the methods for constructing parallel tests are considered, the
computational complexity of 0-1 linear programming and the heuristic
procedure applied are discussed. Two methods for selecting parallel
tests in succession (sequential test construction) are formulated.
The first uses a non-partitioned item bank (Method 1), and the second
uses a partitioned item bank (Method 2). Two methods are also
reviewed for simultaneous test construction, one for non-partitioned
item banks (Method 3) and one for partitioned item banks (Method 4).
A heuristic procedure is used for solving these 0-1 linear
programming problems. A simulation study compared these methods ;ring
two item banks, each consisting of 100 items. Satisfactory results
were obtained, both in terms of the amount of central processing unit
time needed and the differences between the information functions of
the parallel tests selected. It was concluded that when the Rasch
model fits the items, sequential test construction methods are
preferable. For the three-parameter model, the use of Method 1 is
inappropriate. Three tables give the results by different methods.
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Abstract

The construction of parallel tests from IRTbased item banks

is discussed. Tests are considered to be parallel whenever

their information functions are identical. Simultaneous and

sequential parallel test construction methods based on the

use of 0-1 programming are examined. A heuristic procedure is

used for solving the 0-1 programming problems. Satisfactory

results are obtained, both in terms of the CPUtime needed

and differences between the information functions of the

parallel tests selected.

Key words: Item Response Theory. Item Banks, Test

Construction, Parallel Tests, Information

Functions, Linear Programming.
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The Construction of Parallel Tests from IRTbased Item Banks

In classical test theory parallel tests play a prominent

part, because most reliability coefficient estimation methods

assume the existence of parallel tests or forms. Some

examples of such estimation methods are alternateforms

methods and internal consistency methods like the Spearman

Brown formula and coefficient alpha. In the latter, existing

tests are split into parallel parts, for instance, using the

oddeven method or the method of matched random subtests

(Gulliksen, 1950). Despite the central role of parallel

tests, hardly any algorithms for designing such tests have

been developed. One exception is the matched random subtests

method, which recently has been algorithmized by van der

Linden and BoekkooiTimminga (1988).

In item response theory very little attention is paid to

the construction of parallel tests. This can be explained by

the fact that no assumption of parallel measurements has to

be made when item response models are used. In educational

settings there will be a demand for parallel tests too. In

this paper tests are considered to be parallel when their

information functions are identical (Samejima, 1977). An

exact definition of the concept of information is given by

Birnbaum (1968, chapter 17). Here it is assumed that maximum

likelihood estimation is used for the subjects' abilities so

that the test information function is the sum of the item

information fUnctions.
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Furthermore, the test items are assumed to be selected

from item banks using 0-1 linear programming from operations

research (e.g. Rao, 1985; Salkin, 1975; Taha, 1975; Wagner,

1972). Previous research on modeling test construction

problems involving information functions as mathematical

programming problems, was already carried out by Adema

(1988b), BoekkooiTimminga (1986, 1987, 1988), Theunissen

(1985, 1986), Timminga (1985) and van der Linden and

BoekkooiTimminga (in press). All methods for test

construction described in these publications expect the test

constructor to specify target test information function

values for the test(s) to be constructed at some prechosen

ability levels.

It seems an obvious procedure to determine parallel

tests by sequentially selecting tests from an item bank using

the same specifications. However, this approach does not give

satisfactory results in terms of the obtained test

information functions of the tests (BoekkooiTimminga, 1986,

1987; Timminga, 1985). In BoekkooiTimminga (1986, 1987) it

was shown that by simultaneously selecting parallel tests

fairly identical test information functions could be

obtained. However, the major problem of all methods examined

so far was the amount of CPUtime needed, which is a feature

inherent to 0-1 programming. Simultaneous test construction

problems in particular turned out to be very hard, because of

the strong increase of the number of decision variables in

the model.

8
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In this paper simultaneous and sequential parallel test

construction methods are examined. First, the methods for

constructing parallel tests are described. Next, the

computational complexity of 0-1 linear programming and the

heuristic procedure applied in this paper are considered.

Finally, the results of a simulation study comparing these

methods are outlined.

Four Methods for Constructing Parallel Tests

It is argued that in order to make computerized test

construction applicable, at least two conditions must be

fulfilled. First, it should be an easy task for the test

constructor to specify a target test information function. A

procedure that meets this requirement is described by van der

Linden and BoekkooiTimminga (in press). Using this procedure

only the shape of the test information function at some well

chosen points at the ability scale needs to be identified.

This is much easier than specifying the exact test

information function. Van der Linden and BoekkooiTimminga

describe in detail how to elicit these specifications from

the test constructor. An approach for deriving an exact

target information function is given by Kelderman (1987).

Second, the amount of CPUtime needed to select the

tests should be small. The procedure proposed by Adema

(1988a), described in the next section, solves 0-1 linear

programming problems in a reasonable amount of time. In this

paper both the van der Linden and BoekkooiTimminga (in
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press) approach and the Adema procedure are applied in the

four methods examined. The 0-1 programming model formulation

for each method is given below.

N.51t3ILQA

i = 1 ..... I items in the item bank,

t = 1 ..... T tests to be constructed,

k = 1,...,K ability levels to be considered,

xi, xit decision variables indicating whether an item

is (xi or xit = 1) or is not (xi or xit = 0)

selected for the test,

rk relative amount of target test information at

ability level ek,

Ii(9k) item information function value of item i at

ability level ek,

It(ek) test information function value of test t at

ability level ek,

N number of items to be included in each test,

y dummy variable.

Sequential Test Construction

Two methods for selecting parallel tests in succession are

formulated. The first method uses a nonpartitioned item bank

and the second a partitioned bank.

Method 1. Model (1) (5), that is described below, is used

for constructing the first test. By maximizing dummy variable

y in objective function (1) the total amount of test

information obtained is maximized, subject to the constraints

10
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(2) that at least the specified proportions rk are obtained.

The constraint in (3) guarantees that the test consists of N

items. The ranges of the variables xi and y are defined in

(4) and (5).

(1) maximize y,

(2)

(3)

subject to

I

1E
Ii(Ok)xi rky ?. 0

1

I

E xi = N
i=1

k = 1,...K

i=

For the other tests to be determined the same model is

used. However, the items included in previously constructed

tests are excluded from further selection. This can be done

by fixing their decision variables to 0 (and thus including

some extra constraints), or by removing them from the item

bank The latter possibility is preferred especially when

many items have to be excluded, because CPUtime is gained.

The differences between the test information values of

the tests can be controlled. Because this difference can be
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positive as well as negative two sets of constraints (6) and

(7) are added to the model:

(6)

(7)

I

E Ii(Ok)xi (1 p)It(Ok) a 0
i=1

I

E Ii(Ok)xi (1 +p)It(8k) s 0

i=1

k = 1...,K
t =

k = 1,..,K.
t = 1,..,t-,

where t = 1,..,t* indicate the tests already constructed; p

is the percentage by which the obtained test information

values are allowed to differ from the values It(9k) of the

tests already constructed.

Method 2. This method assumes that the item bank is

partitioned into T subsets, comparable in terms of their item

information functions, each of the same size i = 1,..,I/T;

i = ((t- 1)I /T) +1,..,tI /T;

i = ((T-1)I/T)+1,..,I. From each subset a test is selected,

thus, only the indices i in model (1) (5) have to be

adapted. Because each test is selected from a different

subset, there is no need for excluding items because of

previous usage. Also the constraints in (6) and (7) can be

included after a test has been constructed.

It is expected that by partitioning the item bank and

subsequently selecting tests from these subsets the amount of

CPUtime needed will not be too large.

12
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Simultaneous Test Construction

Two simultaneous test construction methods for parallel test

construction are considered. Methods 3 uses a nonpartitioned

item bank and Method 4 a partitioned bank.

&thod 3. The 0-1 programming model is formulated below 'in

(8) (15). The expressions (8), (9), (10). (14) and (15) are

the simultaneous versions of the objective function and

constraints in model (1) (5). By maximizing y the lower

bounds to the test information function values will be close

to another. The constraints in (11) scipulate that no items

are included in more than one test. The maximum difference

allowed between the obtained test information values of the

tests in percentages of the values of the other tests is

constrained in expressions (12) and (13).

(8) maximize y,

13
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I I

E Ii(Ok)xit. (1p) E Ii(Ok)xit L 0
i =1 1=1

k = 1,..,K
t = 1,..,T-1
t' = t+1,..,T

I I

E Ii(Ok)xit. (l+p) E Ii(Ok)xit 5 0
i=1 i=1

k = 1,..,K
t = 1,..,T 1
t' = t+1,..,T

(14) xit e (0,1} i =
t = 1,..,T

(15) y L O.

An advantage of this model is that when the differences

in test information function values are not of interest

(leaving out the constraints in (12) and (13)), tests will be

selected that have about the same test information values.

When a large number of tests have to be constructed, this

possibility may be of interest.

Method 4. Like Method 2 it is assumed that the item hank is

partitioned into T comparable subsets. From each subset a

test is selected simultaneously. The decision variables xi

for i = 1,..,I/T; , i = ((t-1)I/T)+1,..,tI/T;

i = ((T-1)I/T)+1,..,I denote the items to be

included in test 1, 2, , T, respectively. The model

described for Method 3 can easily be adapted for this case.

14
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(16) maximize y,

subject to

tI/T
(17) E Ii(Ok)xi - rky a 0

i=((t-1)I/T)+1

tI/T
(18) E xi = N

i= ((t- 1)17T) +1

k = 1,..,K
t = 1,..,T

t = 1,..,T

11

t'I/T tI/T
(19) E Ii(Ok)xi - (1-p) E Ii(Ok)xi a 0

i=((t'-.1)I/T)+1 i=((t-1)I/T)+1).
k = 1,..,K
t = 1,..,T-1
t' = t+1,..,T

t'I/T tI/T
(20) E Ii(Ok)xi - (l+p) E Ii(Ok)xi S 0

i=((t. -1)I/T)+1 i=((t-1)I/T)+1
k = 1,..,K
t = 1,..,T-1
t' = t+1,..,T

(21) xi E {0,1} i = 1,..,I

(22) y a O.

Note that the constraints in (11) are left out.

15
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Computational Complexity

The parallel test construction problems above are formulated

as 0-1 linear programming problems. A 0-1 linear programming

problem is a linear programming problem in which the decision

variables are restricted to 0-1 values.

Solving a 0-1 linear programming problem optimally

involves the following two steps (e.g. Taha, 1975; Williams.

1978): (a) Compute the relaxed 0-1 linear programming

problem. The relaxed problem is obtained by dropping the 0-1

constraints on the decision variables; thus, xi E (0,1].

Doing so, a regular continuous linear programming model is

obtained which can be solved quickly, for instance, using the

wellknown simplex algorithm. The number of fractional

decision variable values obtained never exceeds the number of

constraints in the model (Dantzig, 1957). (b) Next, the

optimal 0-1 solution is determined. Here, a )prenchandbound

method is used because these methods have proved to be most

successful for .integer programming problems. Generally,

branctandbound methods perform a tree search starting from

the relaxed solution. During this search several linear

programming problems are solved. These problems are obtained

by fixing (bounding) decision variables with fractional

values (branching variables) to 0 or 1 in the original

relaxed 0-1 linear programming problem. The tree is

backtracked when a 0-1 solution is obtained, or when a

solution is obtained with an objective function value worse

than the best 0-1 solution so far. Then, the last bounded

1 6
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decision variable is constrained in the other direction. This

process of branching, bounding and backtracking is continued

until the best 0-1 solution is found. A clear description of

this procedure is given in Williams (1978, pp. 146-152).

In comparison to (continuous) linear programming 0-1

linear programming is very complex, because of the large

number of linear programming problems that have to be solved.

It is commonly conjectured that for 0-1 programming problems

no fast algorithms exist (Lenstra & Rinnooy Kan, 1979). Much

research has been carried out in this area aiming at

approximations. A comprehensive review of this research is

given in O'hEigeartaigh, Lenstra and Rinnooy Kan (1985).

However, many of the heuristic procedures aim at special

typeb of problems and are not applicable to test

construction.

One heuristic approach is to round the fractional

decision variables in the relaxed solution. However, no

satisfactory results may be obtained, because rounding the

fractional decision variable values may result in violating

the constraints.

Recently, a quick heuristic procedure especially

suitable for test construction problems was proposed by Adema

(1988a). A short description of this heuristic, that was used

to solve the models proposed in the previous section, is

given next. Adema adapts the above described branchandbound

procedure in two ways:

(a) After the relaxed solution was obtained the algorithm

fixes a number of decision variables to 0 or 1 using

1 7
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their reduced costs. The reduced cost of a decision

variable with a value equal to zero or one (nonbasic

variable) indicates the amount by which the objective

function value z should decrease per unit increase in

the variable (Murtagh, 1981; Williams. 1978). Decision

variables with values between zero and one (basic

variables) have reduced costs of zero. All items with

large and small reduced costs are set to 0 and 1.

respectively. Two rules are used for fixing the decision

variables:

(23) If zLp - hizu < di then xi = 0.

and

(24) if zu - hizu < -di then xi = 1.

Where, di is the reduced cost for item i and hi. (h1 < 1)

is a help variable whose value is chosen to be close to

1. Fixing these variables reduces the size of the search

tree.

(b) It is well -known that the objective function value Zu

of the relaxed problem solution is an upper bound for

the objective function value of the original 0-1 linear

progremmi:g problem. Adema exploits this fact by

initializing z+ (i.e., the true lower bound of the

optimal 0-1 objective function value) by z+ = h2zu (0

« h2 < 1; hi. > h2.) instead of z+ = Then, the first

18
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0-1 solution having an objective function value z

between h2zLp and zLp is accepted. This algorithm should

not be used when zLp is equal to zero, as no solution

can be obtained. It is possible that no solution is

found if h1 or h2 is too large, then, these values

should be adapted.

Simulations

A simulation study was carried out in order to compare the

four methods for parallel test construction described in the

previous section. The computer program LANDO (Center for

Mathematics and Computer Science) was used to solve the 0-1

programming problems; is based on the branchandbound

algorithm developed by Land and Doig (1960). It was adapted

according to the procedure of Adema (1988a) described

previously, accepting 0-1 solutions that did not deviate more

than 5% (h2 = 0.95) from the relaxed objective function value

(this value can be chosen smaller when the item bank is

larger, and or when the item bank considered consists of

items having small psychometric variations e.g. when the

Rasch model is considered). Furthermore, a value of hi. =

0.999 for the help variable in (23) and (24) was used. The

program was implemented on a DEC-2060 mainframe computer.

Two item banks each consisting of 100 items with the

following properties were considered: 1) Rasch model, item

difficulty parameters b-N(0,1), and 2) 3parameter model,

b-N(0,1), item discrimination parameters a-U(0.5,1.5), item
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guessing parameters c-U(0,0.25). In all simulations two

parallel tests with diagnostic purposes were selected, for

which the relative target information values rk = 1, 1, 1 of

the tests were specified at the ability levels 8 = 1, 0, 1.

Furthermore, the desired test length was N = 10 in all cases.

In this section, first, the influence of varying the

maximum accepted difference p in test information values

between two parallel tests on CPUtime (which includes

reading the input and writing the output file) is examined

for Method 3. Then, a comparison between the results from the

various parallel test construction methods is made.

Both results of solving the rill.axed and 0-1 problems are

discussed below. The best look at the relaxed solutions is to

consider them as upper bounds for the optimal solutions.

The Influence of Varying p for Method 3

The results from simulations varying the maximum accepted

difference in test information values between the tests are

summarized in Table 1. The values p = 0.5, 1.0, 2.0, 5.0 and

co% were considered. Where pc% stands for leaving out (12) and

(13). Parallel tests were determined using Method 3. In the

table the obtained objective function values zu for the

relaxed problem and zo_i for the 0-1 problem,'the actual test

information function values and the CPUtimes needed are

given. Furthermore, the relative differences of Zu and z0_1

from zLp, and the differences in test information between

test 1 and 2 in percentages from the values of test 1 are

summarized.

20
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Insert Table 1 about here

Looking at the CPU-times for the relaxed problem it can be

seen that there is not much variation. No clear trend towcrds

lower CPU-times can be observed as the allowed differences in

test information increase, only for p = 00% CPU-times turn out

to be significantly lower. CPU-times tend to be higher for

the Rasch model. When the 0-1 solution is computed for the 3-

parameter model, large CPU-times and large variations in CPU-

times are noted. For the Rasch model the CPU-times aad their

variances are much smaller. When p = co% the CPU-times for the

0-1 problems are remarkable lower.

It is noted that mostly the differences in test

information values for the Rasch model are much smaller than

the maximum acceptable difference. In case of the 3-parameter

model the differences are more in accordance with the maximum

allowed percentage. When p = 00% the differences are extremely

small for the Rasch model; in the case of the 3-parameter

model they are larger. This is to be expected because the

shape of the item information function has more possibilities

to vary in the 3-parameter model.

Comparing the Methods

In Tables 2 and 3 the results of simulations comparing the

four methods are summarized for the Rasch and 3-parameter

21
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model, respectively. For Methods 1 and 2 the second test was

determined in two ways: without (t = 2a) and with (t = 2b)

inclusion of constraints (6) and (7). In case of Methods 2

and 4, the item banks were partitioned into two subsets. This

was done by ordering the items in the bank either on item

difficulty (Ob) or on item discrimination (Oa), and

subsequently randomly dividing the items from each next pair

of items over the two different subsets. For all methods,

excluding the construction of tests 2a for Methods 1 and 2,

the maximum allowed difference between the actual test

information values was p = 1%.

Insert Table 2 and 3 about here

Comparing the CPUtimes needed to solve the relaxed

problems (LP) in Tables 2 and 3, it can be seen that

approximately equal times are required for the Rasch and 3

parameter model. However, Method 3 required a greater amount

of time for the Rasch model (see also Table 1). Also, for the

time needed to determine the 0-1 solutions, hardly any

differences in CPUtime between the Rasch and 3parameter

model could be noted when Methods 1 and 2 (tests 2a) were

used. However, for Methods 3 and 4 (see also Table 1) the

Rasch model turned out to be faster. In general it was seen

that Methods 3 and 4 were much slower than 1 and 2.

Furthermore, Methods 2 and 4 (with partitions) turned out to

22
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be quicker than their nonpartitioned counterparts. For the

3parameter model Method 2 had difficulties in determining

tests 2b: When the item bank was ordered on difficulty it

took a long time to determine the test, and in the case the

item bank was ordered on discrimination no 0-1 solution was

found at all.

Looking at the objective function values zu of the

relaxed solutions for the Lasch model, it can be seen that

they were all equal to 1.962 except for Method 1. For Methods

3 and 4, this implies that one of the tests had a lower bound

equal to 1.962, whereas the other lower bound was slightly

greater or equal to 1.962. Method 1 showed a large

discrepancy between the zLp values of both tests.

Next, the zu values for the 3parameter model were

compared. By summing the zu values of test 1 and 2b for

Methods 1 and 2, and by taking twotimes the Zu values for

Methods 3 and 4 these values could be compared. Thus,

obtaining the values 4.588, 4.581, 4.866, 4.572 and 4.650 for

Methods 2(0b), 2(0a), 3, 4(0b) and 4(0a), respectively. The

largest objective function value was found for Method 3. The

results for Methods 2 and 4 were slightly worse.

Compartng the results for the Rasch and the 3parameter

model, it is observed that the differences between zu and

zo_i were remarkably smaller for the Rasch model (< 1%,

except for one case). The differences between tests were also

much smaller for the Rasch model, even for tests 2a (< 1%,

except for one test). For the 3parameter model these

differences were much larger; for Method 1 percentages of

23
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about 25% were found (tests 2a). In two cases small changes

in help variables h1 and h2 (used in (23) and (24)) were

required for the 3-parameter model, because no solution could

be obtained otherwise (see Table 3;. For the 3-parameter

model no solution was found for Method 1 tests 2b. Summing

the results for the 3-parameter model, Method 1 determined

tests that were far from parallel, Methods 3 and 4 gave very

parallel tests, and Method 2 (tests 2b; item batik ordered on

difficulty) performed slightly worse than 3 and 4. For the

Rasch model approximately the same results in terms of

differences in test information between the tests were

obtained for all methods.

As for the items actually selected, it was seen that

they had difficulty values close to 0 for the Rasch model.

For the 3-parameter model there was a trend towards selecting

items with discrimination values greater than 1, difficulty

parameters varying between -1 and 1, and guessing parameters

smaller than 0.12.

For Methods 1 and 3, the item banks were also ordered on

difficulty and discrimination, respectively. The obtained

results, which are not included in the tables, showed no

improvement when ordered item banks were used.

Generalizability of the Results

In the above examples, only two item banks and one typical

test were considered. However, the main point is that less

CPU-time is required when less items with desired properties

are available. For instance, the CPU-times would have been
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lower if item banks with b U[-3,3] were used, or if target

values rk = 4, 1, 1 for Ok = -2, 0, 2 were specified. Also,

including practical constraints would generally result in a

decrease of CPU-time (Murtagh, 1981, Williams, 1978), since

this reduces the solution space to be examined.

Discussion

In this paper four parallel test construction methods are

discussed. The tests are selected from item banks on basis of

their information functions using 0-1 linear programming.

Methods 1 and 2 and Methods 3 and 4 select the tests

sequentially and simultaneously, respectively. Methods 2 and

4 assume that the item banks are partitioned into subsets

where the individual tests are constructed from.

It is concluded that when the Rasch model fits the

items, sequential test construction methods are to be

preferred. Both simultaneous and sequential methods are of

equal accuracy; however, sequential methods require far less

CPU-time. Care should be taken when Method 1 is used; it may

give good results as long as there are enough items at hand.

When there are no restrictions to the maximum allowed

difference between the test information function values of

the tests, simultaneous construction gives also accurate

results in small amounts of time. For the 3-parameter model

the use of Method 1 is absolutely inappropriate. In this

case, it is recommended to use Method 2 with (6) and (7) or

Method 4.

25
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Only the psychometric aspects of the tests are

considered in this paper. It is, however, possible to add all

kinds of practical constraints, for instance, to control

subject matter aspects. For a report on some of the

possibilities the reader is referred to van der Linden and

BoekkooiTimminga (in press). Although in this reference the

construction of one test at a time is considered, most

constraints can easily be generalized to the simultaneous

test construction problems in this paper.

26
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Table 1

Varying the Maximum Accepted Difference in Percentages

between Test Information Values of the Tests

for Method 3 Model 2

t X mu) z0_l

Test Information CPU-time

I(-1) I(0) I(1) LP 0-1

Pasch model

1 0.5 1.962 1.931 (1.6X) 1.978 2.473 1.939 43.0 82.9

2 1.985 (0.4X) 2.471 (0.1%) 1.931 (0.4X)

1 1.0 1.962 1.947 (0.8X) 1.961 2.480 1.960 42.6 79.9

2 1.947 (0.7X) 2.470 (0.4X) 1.967 (0.4%)

1 2.0 1.962 1.950 (0.6X) 1.950 2.456 1.955 32.8 52.3

2 1.956 (0.3%) 2.488 (1.3X) 1.969 (0.7%)

1 5.0 1.962 1.951 (0.6X) 1.966 2.474 1.951 37.5 94.7

2 1.960 (0.3%) 2.474 (0.0X) 1.958 (0.4X)

1 . 1.962 1.959 (0.2X) 1.959 2.484 1.964 16.8 32.7

2 1.959 (0.0%) 2.485 (0.0%) 1.964 (0.0%)

3-parameter model

1 0.5 2.433 2.333 (4.1%) 2.420 2.996 2.333 22.1 89.3

2 2.418 (0.1X) 3.007 (0.4X) 2.339 (0.3X)

1 1.0 2.433 2.332 (4.2%) 2.408 2.999 2.332 17.9 146.4

2 2.430 (0.9%) 3.004 (0.2%) 2.340 (0.3%)

1 2.0 2.433 2.340 (3.8X) 2.340 3.123 2.493 21.3 372.6

2 2.376 (1.5X) 3.103 (0.6X) 2.491 (0.1X)

1 5.0 2.433 2.359 (3.0%) 2.403 2.920 2.359 18.6 59.1

2 2.411 (0.3X) 3.032 (3.5X) 2.366 (0.3%)

1 2.433 2.328 (4.3X) 2.453 2.959 2.349 14.1 29.9

2 2.328 (5.1X) 3.048 (3.0X) 2.420 (3.0%)
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Table 2

Results for the Methods when the Reich Motel fits

Method Test Information CPU-time

t Z zo_i I( -1) I(0) I(1) LP 0-1

1 1 1.964 1.960 (0.2%) 1.960 2.490 1.967 2.5 3.4

2a 1.961 1.958 (0.2%) 1.958 (0.1%) 2.479 (0.4%) 1.963 (0.2%) 2.4 3.4

lb' 1.961 1.951 (0.5%) 1.951 (0.5%) 2.476 (0.6%) 1.967 (0.0%) 2.5 4.0

2 Ob 1 1.962 1.954 (0.4%) 1.964 2.477 1.954 1.6 2.1

2a 1.962 1.925 (1.9%) 1.996 (1.6%) 7.479 (0.1%) 1.925 (1.5%) 1.6 2.2

2b 1.962 1.960 (0.1%) 1.960 (0.2%) 2.4i: (0.2%) 1.961 (0.4%) 1.4 2.3

3 1 1.962 1.947 (0.8%) 1.961 2.480 1.960 42.6 79.9

2 1.947 (0.7%) 2.470 (0.4%) 1.967 (0.4%)

4 Ob 1 1.962 1.942 (i.0%) 1.942 2.473 1.975 10.4 18.4

2 1.958 (0.8%) 2.468 (0.2%) 1.956 (1.0%)

Ob: its bank ordered on item difficulty

31
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1.7

Method

t Mix

Results

Z0.4

Table 3

for the Methods when the 3-Parameter

Test Information

Model fits

'\

CPU-time

I(-1) I(0) I(1) LP 0-1

1 1 2.681 2.615 (2.5%) 2.746 3.458 2.615 2.2 2.4

7a0 2.230 2.092 (6.2%) 2.092 (23.8%) 2.631 (23.9%) 2.211 (15.5%) 2.4 3.9

2b not feasible

2 Ob 1 2.286 2.279 (0.3%) 2.279 3.085 2.294 1.2 1.6

2a 2.530 2.520 (0.4%) 2.520 (10.6%) 3.194 (3.5%) 2.546 (8.6%) 1.3 1.4

2b 2.302 2.275 (1.2%) 2.275 (0.2%) 3.089 (0.1%) 2.305 (0.5%) 1.3 11.6

Oa 1 2.325 2.234 (3.9%).2.234 3.279 2.428 1.4 1.6

2a 2.493 2.456 (1.5%) 2.527 (13.1%) 3.093 (5.7%) 2.456 (1.2%) 1.3 1.4

2b 2.256 no 0-1 solution 1.3 1.8

3 1 2.433 2.332 (4.2%) 2.408 2.999 2.332 17.9 146.4

2 2.430 (0.9%) 3.004 (0.2%) 2.340 (0.3%)

4 Ob 1 2.286 2.279 (0.3%) 2.279 3.085 2.294 8.8 30.8

2 2.2 °8 (0.8%) 3.070 (0.5%) 2.279 (0.7%)

Oa 10 2.325 2.208 (5.0%) 2.208 3.019 2.442 8.1 106.4

20 2.228 (0.9%) 3.023 (0.1%) 2.457 (0.6%)

0: hi 0.99: h2 = 0.93

Ca: its bank ordered on item discrimination values

Ob: item bank ordered on item difficulty values

:32
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