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The majority of individuals using item response theory (IRT) for modeling

examinee performance assume that examinee performance is a function of a
single latent trait (0). The comparatively new multidimensional IRT models also

require knowledge of the data's dimensionality in order to correctly specify the

model's structure. Although no one technique has proven to be completely

satisfactory for assessing the dimensionality of a data set, two commonly used

methods are principal axis (FA) and component analysis.

FA and component analysis typically analyze either a phi or tetrachoric

correlation matrix. However, for these correlation coefficients to be appropriate,

the data must meet certain assumptions (e.g., the latent distribution of the
variables is bivariate normal and the variables are measured at the interval
level). The tenability of some of these assumptions with certain types of data has

been questioned. Further, problems with the actual use of these coefficients have

been identified. For instance, the use of phi coefficients has been found to some-

times lead to the identification of spurious "difficulty" factors related to the

characteristic. of the items rather than to true underlying relationships

(Guilford, 1941). In addition, non-Gramian matrices may result when tetrachorics

are factor analyzed. In general, FA has been found to overestimate the number of

underlying dimensions in a data set (Hambleton & Rovinelli, 1986).

An alternative to FA and component analysis is McDonald's (1967) non-linear

factor analysis (NLFA). NLFA is intuitively appealing to researchers in IRT

because its principal assumption specifies a nonlinear relationship between item

performance and ability (as do the IRT models). In a study comparing various

1Paper presented at the Annual Meeting of the National Council on Measurement in

Education, San Francisco, March, 1989.
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methods for assessing dimensionality, Hambleton and Rovinelli (1986) found that
NLFA correctly determined the dimensionality of various data sets. However, they

encountered a problem determining the appropriate number of factors and
polynomial terms to retain in their solution. Hambleton and Rovinelli addressed

this issue by comparing the residual results from a "satisfactory" FA to those of
NLFA.

Given NLFA's nonlinearity assumption and Hambleton and Rovinelli's
results, a technique which simply assumes a monotonic relationship, such as

nonmetric multidimensional scaling (MDS), would appear to be useful for
assessing dimensionality. A more detailed presentation of MDS may be found in

Davison (1983), Schiffman, Reynolds and Young (1981), or Kruskal and Wish
(1978). This study's objective was to compare MDS with FA for the assessment of
dimensionality. Additional factors investigated were the degree of intercor-

relation between the dimensions and the number of items measuring a dimension.

Method

Data

Seven data sets were generated which differed from one another with
respect to dimensionality, intercorrelation among dimensions, and number of
items defining a dimension. The data sets consisted of 28 items and were either
one- or two-dimensional, with the two-dimensional data sets having interdimen-

sional correlation coefficients of 0.01, 0.10, and 0.60. For one set of data, the
number of items used to create dimensions one and two were 14 and 14, and for a
second set of data 18 items were used for defining the first dimension, whereas the

second dimension was composed of 10 items. All data sets were generated

according to Masters' (1982) partial credit (PC) model; fourteen PC item param-

eters were taken from Masters' (1982) article and duplicated to produce the 28 item
pool. For these polychotomous data sets each item consisted .of four alternatives.

A dichotomous form of each of the seven data sets was obtained by using the
fourth alternative as the correct answer and scoring each item as correct and
incorrect. Therefore, each of the seven combinations of dimensionality, inter-

dimensional co: elation, and number of items defining a dimension existed in
both a dichotomous and polychotomous form. Table 1 summarizes the study's



design.

Insert Table 1 about here
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Because MDS assumes that the variables are measured at least at an ordinal

level, data generation according to the PC model resulted in data compatible for

use with MDS. This is analogous to utilizing examinees' raw responses to an

attitude questionnaire or ability or achievement tests it which responses have

been evaluated according to degree of correctness.

The number of items selected for the study was based on restrictions imposed

in part by the use of the program M-SPACE (to be discussed below); M-SPACE can

only be used for 12-36 stimuli (Spence & Graef, 1973). Further, in order to mini-

mize the effect on stress of the number of items and the number of dimensions,

the minimum number of items defining a dimension needs to be greater than four

times the number of dimensions (Kruskal & Wish, 1978). Therefore, for a two-

dimensional solution the mimimum number of items is 8, and it was decided to be

slightly more conservative and use a minimum of 10 items to define a dimension.

The one-dimensional data set was generated by sampling 500 examinees from

a normal distribution (0,1); the z-values were considered to be true Os. These true

0 s plus the item difficulty parameters were used to generate the response strings.

Specifically, for each 0 the generation of the polychotomous response string was

accomplished by calculating the probability of responding to each alternative of

an item given the item's difficulty parameters and 0. Based on the probability for

each alternative, cumulative probabilities were obtained for each alternative. To

create the random error component for a response (in order to make the data
more realistic), a random number was selected from a uniform distribution

between 0 and 1 and compared to the cumulative probabilities to obtain the

polychotomous response.

The two-dimensional data were generated according to a method which was

based on a technique used by Hambleton and Rovinelli (1986). For each of the 500

simulees, two random numbers (X and Z) were generated from a normal distribu-

tion (0,1). Using Hoffman's (1959) formula :

Y = X + (cox / n7z)Z (1),



4

a third variable, Y, was generated; where k=(1-r2)112, r is the desired

intercorrelation between Y and X, and ax = az = 1.0. X and served as two Os (01, 02)

used in the data generation. Using the technique outlined above, the poly-

chotomous responses for the first fourteen items were generated using 01
(dimension 1), whereas 02 was used for the remaining items (dimension 2).

The nomenclature for specifying the various data sets was PC + number of

dimensions + dimensional intercorrelation (first significant digit) + number of
items on dimension 1 + number of items on dimension 2. For example, PC10280 was

the one-dimensional data set with the dimension consisting of 28 items, PC211414

was a two-dimensional data set with an interdimensional correlation of 0.10 and 14

items defining each dimension.

Techniques

Whereas FA analyzes correlation matrices, MDS performs an analysis of

proximity measures. Reckase (1982) found that the use of different proximity

measures in the MDS of dichotomous data led to different configurations. There-

fore, different proximity measures (i.e., Euclidean, cosine, squared Euclidean,

block, and Chebychev) were used with MDS. The package ALSCAL (SPSS, 1988) was

used for nomnetric MDS analysis. Further, the program M-SPACE (Spence &

Graef, 1974) was used as an aid in the determination of the dimensionality of the

MDS solutions.

For comparison with standard approaches to assessing dimensionality, FA of

matrices of tetrachoric and phi coefficients were performed; squared multiple

correlations were used as initial h2 estimf 's. Additional proximity measures,

Pearson product-moment and polychoric correlation coefficients, were obtained

on the polychotomous data and factor analyzed. PRELIS (Joreskog & Sorbom, 1986)

was used for estimating the tetrachoric and polychoric correlation coefficients;

the polychoric correlation coefficient is a generalization of the tetrachoric cor-

relation coefficient when both variables are ordered categorical (Olson, 1979).

To summarize, a polychotomous and dichotomous format of each of seven data

sets were generated. Within each format (e.g., for the polychotomous version) six

of the seven were two-dimensional, with the remaining one containing only one
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dimension. Of these six data sets, there were three pairs which differed from one

another in their interdiniensional correlation (i.e., 0.01. 0.10, and 0.60) and each

member of the pair differed from the other member in the number of items
defining a dimension (i.e., 14 items per dimension or 18 items defining dimension
1 with dimension 2 consisting of 10 items). For each of the seven polychotomous

data sets five proximity measures were calculated, each of which was subjected to
MDS analysis. Further, for each data set four types of correlation matrices were

calculated (two for each format) and each of these matrices was subsequently

factor analyzed.

Analysis

Assessment of dimensionality through MDS was performed by stress by

dimensionality graphs alone and in conjunction with plots of stress by dimen-
sionality containing varying degrees of error (a.k.a., error plots). Stress is a

measure of "badness-of-fit", where larger values indicate poorer fit to the data;

stress formula one was used in the analyses. The error plots were created through
the M-SPACE2 program. In short, the M-SPACE program attempts to find the

dimensionality and error level that best characterize the empirical stress values
(Spence, 1983). A least squares loss function is employed, and the minimum for

each of four generated dimensions is found. The appropriate dimensionality is

assumed to be that which yields the lowest residual sum of squares over the four
dimensions (Spence & Graef, 1974).

For the FA of each correlation matrix, the initial determination of dimen-

sionality was performed through an examination of the matrix's scree plot. After

examination of the initial solution, if a one-factor solution seemed likely, one- and

two-factor solutions were obtained for comparison. However, if a two-factor

solution appeared plausible, then one-, two-, and three-factor solutions were

obtained. The final determination of dimensionality was made after considering :

(a) percent of common variance accounted for by a factor, (b) percent of
variance accounted for by the factor solution, (c) approximation to simple

structure (VARIMAX and OBLIMIN rotations), (d) magnitude of loadings, and (e)

number of residuals greater than 0.05. An additional criterion used for deter-

mining dimensionality was the number of eigenvalues greater than the largest

c
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eigenvalue of a FA of a tetrachoric matrix based on random data; this criterion

will be referred to as Xrandom The random data were generated by randomly

sampling from a normal distribution (0,1) for each examinee and for each item.

Normal deviates greater than or equal to 0 were coded as correct, whereas those
below 0 were considered incorrect.

Results and Conclusions

MDS Results

The use of the Chebychev proximity measure resulted in extremely poor fit to
the data and was eliminated from further analysis. The cosine measure overesti-

mated the number of dimensions for the one-dimensional data set and consis-

tently underestimated the number of dimensions for the two-dimensional data

sets. However, the use of Euclidean and squared Euclidean proximities produced

virtually identical results; the block measure resulted in an underestimation of
the number of dimensions for the data sets with an interdimensional correlation
of 0.60.

Table 2 presents the stress values for the various proximity measures for

one- to five-dimensional solutions for each polychotomous data set. As can be
seen, for all dimensional solutions stress values stayed relatively constant and low

across data sets. Figure 1 presents the stress by number of dimensions plots for

the one dimensional data set as well as two two-dimensional data sets, PC201414 and

PC261810, based on the Euclidean proximity measure. Unlike FA's scree plots

where the elbow (beginning of the scree) is not included in the number of
factors (Cattell, 1979), MDS does include the elbow in determining the number of

dimensions (Davison, 1983). According to Kruskal and Wish (1978), an elbow

should seldom be accepted if the stress at the elbow is above 0.10, however, if the

stress at dimension 1 is less than 0.15, then a one-dimensional solution is

suggested. Given these guidelines, it can be seen that a one-dimensional solution

was suggested for PC10280 (Figure la) and that a clear elbow can be seen at two

dimensions in Figures lb and lc (data sets PC201414 and PC261810, respectively).

mama. M. .....

Insert Table 2 and Figure 1 about here

7
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The identification of an elbow is subjective and may sometimes be proble-

matic. In this regard, the M-SPACE program provides an objective means for

identifying the dimensionality of a data set. Table 3 summarizes some of M-

SPACE's output. As can be seen, for each of the proximities this table presents the

solution's fit to the data, the number of latent dimension(s) identified as the

correct solution, and an approximate error level for the data. For all data sets the

Euclidean and squared Euclidean measures led to a correct determination of the

number of dimensions in the data. The block proximity measure resulted in an

incorrect identification of dimensionality for the two-dimensional data sets with

an interdimensional correlation of 0.60.

Insert Table 3 about here

Additional output produced by M-SPACE is a graphical presentation of the

relatio

dimensio

nship between the empirically obtained stress values from one- to five-

nal solutions and five recovered dimensions based on monte carlo

simulation

four-dimen

which most

data; this relationship is depicted for generated solutions in one- to

ions (Spence & Graef, 1974; Spence, 1983). The generated solution

closely matches the empirical stress values is identified as the correct

dimensionality

data and for
. Figures 2 and 3 present these graphs for the one-dimensional

the two-dimensional data with an interdimensional correlation of

0.60 and 18 items defining the first dimension. Clearly, although not perfect fits,

the recovered dimensions fit the empirical stress values more closely in the
appropriate dimen

FA Results

ional solution.

FA of the tetracho

Insert Figures 2 and 3 about here

ric matrix for the random data produced a Xrandom = 1.109.

For the data sets of inte

in non-Gramian matrices.

rest, FA of the polychoric and tetrachoric matrices resulted

In addition, the analysis of the tetrachmic matrix
produced h2 > 1.0. However, SPSS-X (SPSS Inc., 1988) performed the requested FAs

(presumably after setting the matrices' determinants to some, albeit small, value)

04,



and issued a warning that the results may not be valid; the technique used

produced negative Xs. Although in this study the validity of the results could be

assessed given the data's known dimensionality, in an actual application this

knowledge would not be available and the interpretation of the FA would be

problematic.

Results of the FA of product-moment correlation matrices are presented in
Table 4. The use of the random criterion led to the incorrect retention of two
factors for the one-dimensional data set, but the correct determination of factors
for the two-dimensional data sets. Scree plots for PC10280, PC201414, and PC261810

are presented in Figure 4. As can be seen from Figure 4a as well as from Table 4,

the FA of the phi correlation matrix for PC10280 suggested a one-factor solution.

To support the scree plot interpretation further analyses, involving the criteria

mentioned above, were undertaken. These analyses provided evidence for a two-

factor solution (e.g., the two-factor had better fit to the matrix than did the one-

factor solution); the additional factor appeared to be a difficulty factor.

For the uncorrelated two dimensional data it can be seen from Table 4 and

Figures 4b and 4c that a two factor solution is clearly suggested for both the

dichotomous and polychotomous data. The follow-up analyses supported this

conclusion. A comparison of Figures 4b-4c and 4d-4e as well as an inspection of

Table 4 showed that with greater interdimensional correlation, the scree plots
appeared to indicate a one-factor solution, particularly for the polychotomous
data. However, an analysis of the loadings with respect to simple structure,

number of residuals with values greater than 0.05, and percentage of variance

accounted for by the solution showed that a two-factor solution was clearly better
than a one-factor solution. In all cases, items which defined the first dimension

loaded on one factor, whereas items related to the second dimension loaded on the
other factor. None of the three-factor solutions were preferable to the two-factor
solutions.

Insert Table 4 and Figure 4 about here
..... m ..... ...=yeN ...... w...a.w.
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Discussion

For the FA no one method of factor number determination led to the correct
solution for all data sets. For instance, fOr the highly correlated interdimensional

data sets (PC261414 and PC261810), the scree plot presented evidence that a single
factor existed, whereas follow-up analyses showed that the two-factor solution
provided better fit than the one-factor solution. However, for the one-dimen-

sional data, the scree plot for PC10280 correctly identified a one-factor solution,

whereas Xrandom and the follow-up analyses suggested a two-factor solution. It is

interesting to note that for corresponding data sets, the eigenvalues for the pri-
mary factor(s) were larger for the Pearson product-moment correlation calcu-

lated on polychotomous data than on dichotomous data. In addition, the percent-

age of variance accounted for by the solution was higher for the Pearson pro-

duct-moment correlation than for phi coefficient for all data sets. Although, it

appears that the use of Pearson correlations with polychotomous data may have
desirable properties, previous research (Muthen, 1989) has shown that these

coefficients calculated on polychotomous data tend to underestimate true factor
loadings and in some cases may result in an overestimation of the number of
factors; this latter situation did not occur in this study.

For all data sets, the MDS of the Euclidean or squared Euclidean proximity

matrix resulted in the correct identification of the data's underlying dimen-
sionality. Further, in regard to the determination of the number of underlying
dimensions (through stress by dimensionality plots or M-SPACE analysis), MDS

did not appear to be as affected by large interdimensional association and uneven

number of items defining each factor as was the FA; this is not necessarily true
with respect to "interpretability" of solution.

Although an additional consideration in the determination of dimensionality
is the interpretability of the solution, given that simulation data were used inter-
pretability of the stimulus configuration may not be all that meaningful. How-

ever, the stimulus configuration plots were examined. An interpretation of the

one-dimensional solution for the one-dimensional data shovied that the items

from the first 14 items had scale values which were comparable to their corre-

sponding item's scale value in the second 14 items (i.e., items 1 and 15, 2 and 16, 3
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and 17, etc. were all corresponding items). This pattern of scaled values was, most

likely, an artifact of the data genetaion methodology. However, it was found that

the items' scale values were highly related to the average step difficulties for the

items (r = 0.913 for all 28 items, r =0.917 for first 14 items). This latter relationship

has also been observed with the simple Rasch model (Fitzpatrick, 1989). A two-

dimensional solution for the one-dimensional data did not result in a clear,
interpretable pattern of stimuli (Figure 5).

Insert Figure 5 about here

Examination of the two-dimensiona, configuration for PC201414 (Figure 6)

showed two clear clusters of items. The two clusters differed from one another

along dimension 2 with the first 14 items scaled with positive dimension 2 coordi-

nates and the second set of 14 items given negative dimension 2 values. Items

which were, in general, more difficult (based on their average step difficulties)
were scaled with negative dimension 1 values, and items which were, in general,

comparatively easier were given positive dimension 1 coordinates. As was the

case for the one-dimensional data, corresponding items from each set of 14 items

were given approximately equal stimulus coordinates along dimension 1, In

short, MDS had correctly identified, on the basis of examinee responses, that the

first fourteen items were more related or similar to one another than they were to
the second set of fourteen items.

Insert Figure 6 about here

The two-dimensional stimuli configuration for PC261414 and PC261810 are

presented in Figures 7 and 8. As can be seen from Figure 7, the same pattern

found with Figure 6 was evident for in this case. The higher 'nterdimensional

association in PC261414 was reflected in dimension 2 scale values which were not

as extreme as those for PC201414.

Insert Figure 7 about here

Examination of the two-dimensional configuration for the data with an

1
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uneven representation of each dimension and an interdimensional correlation of

0.60 (Figure 8) showed that the interaction of the uneven distribution of items and
the hie, interdimensional correlation obscured an interpretable pattern of items
It should be noted that for PC201810 and PC211810 the cluster pattern exemplified

in Figures 6 and 7 was observed; one cluster consisted of .18 stimuli, whereas the

other cluster was composed of 10 item. Although no (apparent) interpetable

pattern was found with PC261810, it should be recalled that on the basis of stress

by dimensions plot and M-SPACE analysis (Euclidean and squared Euclidean

metric), it was possible to correctly identify the number of latent dimensions in
the data.

Insert Figure 8 about here

Given that the benefits of IRT (e.g., sample-free person and item parameters,

construction of tests with known properties, etc.) may only be realized when the

assumptions of the IRT model used (e.g., unidimensionality) are met by the data,

the identification of whether we data contain more than one dimension is

necessary before the fitting of a unidimensional IRT model may be done. For

multidimensional IRT models (e.g., McKinley & Reckase, 1983) the identification of

the correct number of dimensions is also necessary. From this study it appears

that MDS may be a viable methodology for IRT researchers to use in the assess-

ment of the dimensionality of ordered test or attitude data (i.e., data for which

Samejima's (1969) graded response model, Andrich's (1978) rating scale model, or

the PC model are appropriate). Future research will evaluate whether a rank

ordering method may be applied to nominal level response data which can then

be analyzed for dimensionality through MDS.

1
I A;
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Table 1 : Summary of study's design.
Number of r Number of items per dimension
dimensions dimension 1 dimension 2

1 - 28 0

Data Set Name'

PC10280
2 0.01 14 14 PC201414
2 0.10 14 14 PC211414
2 0.60 14 14 PC261414
2 0.01 18 10 PC201810
2 0.10 18 10 PC211810
2 0.60 18 10 PC261810

r : intercorrelation between dimensions.
'Each data set existed in a dichotomous and polychotomous format.



Table 2 : Stress Formula 1 Values' for Five Dimensions
Data Set I I I III IV V
PC10280

Euclid 0.142 0.079 0.065 0.055 0.045
Seuclid 0.142 0.080 0.066 0.054 0.042
Block 0.133 0.074 0.060 0.050 0.041
Cosine 0.251 0.092 0.066 0.052 0.042

PC201414
Euclid 0.299 0.060 0.045 0.038 0.031
Seuclid 0.299 0.060 0.046 0.036 0.030
Block 0.274 0.078 0.047 0.038 0.030
Cosine 0.123 0.054 0.045 0.039 0.031

PC201810
Euclid 0.289 0.066 0.051 0.041 0.036
Seuclid 0.290 0.066 0.050 0.041 0.034
Block 0.267 0.078 0.052 0.041 0.036
Cosine 0.126 0.059 0.046 0.039 0.034

PC211414
Euclid 0.287 0.064 0.049. 0.041 0.033
Seuclid 0.287 0.064 0.050 0.040 0.033
Block 0.263 0.080 0.047 0.041 0.030
Cosine 0.124 0.056 0.047 0.038 0.029

PC211810
Euclid 0.279 0.066 0.050 0.042 0.035
Seuclid 0.279 0.067 0.054 0.042 0.035
Block 0.256 0.080 0.051 0.043 0.036
Cosine 0.128 0.060 0.048 0.039 0.032

PC261414
Euclid 0.217 0.077 0.052 0.043 0.034
Seuclid 0.217 0.078 0.052 0.042 0.035
Block 0.195 0.099 0.046 0.034 0.030
Cosine 0.168 0.107 0.062 0.045 0.038

PC261810
Euclid 0.208 0.079 0.055 0.045 0.040
Seuclid 0.209 0.080 0.056 0.047 0.038
Block 0.189 0.094 0.053 0.042 0.036
Cosine 0.159 0.101 0.060 0.045 0.039

Note :1Chebychev stress values not presented
Seuclid - Squared Euclidean metric

1 6



Table 3 : M-SPACE remits'
Assessed

Data Set Minimum Fit
PC10280

Dimensionality Error Level2

Euclid 21.3 1 17
Scuclid 21.7 1 17
Block 21.0 1 15
Cosine 27.6 2 14

PC201414
Euclid 9.6 2 12
Scuclid 10.0 2 11
Block 19.9 2 14
Cosine

pc201810
24.5 1 12

Euclid 11.6 2 13
Scuclid 11.7 2 13
Block 20.5 2 14
Cosine 24.6 1 12

PC211414
Euclid 13.0 2 13
Scuclid 13.0 2 13
Block 23.6 2 14
Cosine 24.9 1 12

PC211810
Euclid 15.6 2 13
Scuclid 15.3 2 14
Block 25.0 2 14
Cosine 25.3 1 12

PC261414
Euclid 41.5 2 14
Seuclid 41.5 2 14
Block 46.5 1 20
Cosine 31.7 1 19

PC261810
Euclid 45.0 2 14
Seuclid 44.6 2 14
Block 41.0 1 20
Cosine 29.2 118

'Analysis of Chebychev stress not performed; Seuclid - Squared Euclidean
2Error level - Level where stress values most closely fit the monte carlo data
with known error. Provides a basis for evaluating the worth of the solution.

Error Level Guidelines : Error Percentage Interpretation
0-10 Extremely low error
10-30 Low' Error
30-70 Moderate Error
70-90 High Error
90-100 Possibly Excessive Error



Table 4 : FA of phi and Pearson product-moment correlation coefficients
arandom = 1.109).

Phi
Data Set I
PC10280

Coefficients
II HI

Pearson Coefficients
I I I III

X 6.486 1.501 1.025 2.893 1.736
% of a2 61.1 14.2 9.7 88.1 11.9

PC201414
X 3.903 3.503 1.050 7.240 6.390 0.891
% of a2 37.1 33.3 9.9 47.4 41.8 1.6

PC201810
X 4.723 2.824 1.012 8.694 4.820 0.911
% of a2 45.8 27.4 9.8 57.5 31.8 1.7

PC211414
X 4.113 3.337 1.020 7.78 5.840 0.900
% of a2 38.5 31.1 9.4 50.9 38.3 1.7

PC211810
X 4.764 2.797 1.019 8.854 4.669 0.905
% of a2 46.3 27.3 9.8 58.3 30.8 1.7

PC261414
X 5.724 1.707 0.942 10.800 2.759 1.045
% of a2 55.7 16.7 9.3 71.0 18.2 6.8

PC261810
X 5.810 1.765 1.013 10.965 2.454 1.032
% of a2 55.5 16.9 9.7 73.0 16.4 6.9

Note : a2 represents common variance



Figure 1a

Stress by dimensionality
Data : One dimensional (PC10280)

Figure lb

Stress by dimensionality
Data : Two dimensional, 14 & 14 Items, r=0.01 (PC201414)
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Stress by dimensionality
Data : Two dimensional, 18 & 10 items, r=0.60 (PC261810)
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Figure 2a

Data : One dimensional (PCI0280)
Solution : Ildimension

0 10 20 30 40 SO 60 70 $0 90 100

Snot 'Percentage

Figure 2c

Data : One dimensional (PCI0280)
Solution : 3 dimensions
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Figure 2b

Data : One dimensional (PCI0280)
Solution : 2 dimensions
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Figure 2d

Data : One dimensional (PCI0280)
Solution : 4 dimensions
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Figure 3a
Data t Two dimensional, 18 & 10 items, r=0.60 (PC261810)

Solution : 1 dimension
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Data : Two dimensional, 18 & 10 items, r=13.60 (PC261810)
Solution : 3 dimensions
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Figure 3b

Data : Two dimensional, 18 & 10 items, r=0.60 (PC261810)
Solution : 2 dimensions
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Data : Two dimensional, 18 & 10 itemsb r=0.60 (PC261810)
Solution : 4 dimensions
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`Figure 4a

-Scree-Plot for: One Dimensional Data
Dichototnous data (PC102801

Figure 4b

Scree Plot for Two Dimensional Data. 14 & 14 items. r=0.01
Dichotomous data (PC201414)
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Figure 4c

Scree Plot for Two Dimensional Data. 14 & 14 items. r=0.01
Polychotomous 4313 (PC201414)
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Figure 4d Firm 4e

Scree Plot for Two Dimensional Data, 18 & 10 items. r=0.60 Scree Plot for Two Dimensional Data. 18 & 10 items. r=0.60
Dichotomous data (PC261810) Polychotomous data (PC261810)

12 12

11

10

9

T12 7

6

5

4

3

2

1

0
0 3 4 5 6

Factor Number

11

10

9

5

3

2

0

24

1 2 3 4 5 6
Factor Number

7



13

Figure 5

Two Dimensional Configuration for
One Dimensional data (PC10280)
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Figure 6

Two Dimensional Configuration for Two Dimensional data,
14 & 14 items, r = 0.01 (PC201414)
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Figure 7

Two Dimensional Configuration for Two Dimensional data,
14 & 14 items, r = 0.60 (PC261414)
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Figure 8

Two Dimensional Configuration for Two Dimensional data,
18 & 10 items, r = 0.60 (PC261810)
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