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Abstract

Many researchers have suggested that the cause of differential item

functioning (DIF) can in part be due to the misspecification of the supporting

trait distribution (STD). This paper demonstrates how a unidimensional IRT

calibration of response data, generated from a two-dimensional IRT model,

results in DIF when the multidimensional STDs are not equal. Results indicate

that DIF, created by model misspecification can be accurately predicted if the

multidimensional IRT item parameters and the STD for the groups of intereL-

are known. Implications and direction; for future research are discussed.
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An Explanation of Differential Item Functioning
from a Multidimensional Perspective

Introduction

It is the purpose of most standardized tests to distinguish between

levels of traits for individuals or groups of individuals. However, because

the underlying or supporting trait distribution (STD) of a group of examinees

is not directly observable, researchers have developed models which can be

used to describe the relationship between an observable response and the

latent STD which generated the response. By using such models, researchers

try to determine the differences not only between the observable responses but

more importantly the STDs. A problem arises when there is not a direct or

onetoone relationship between the observable response and the quantified

underlying ability which produced it. Model misspecification is a problem

that researchers have been faced with for years especially when one tries to

model cognitive process (cf. Traub, 1983).

For pragmatic reasons, educators, although aware of these complex

cognitive processes, base decisions concerning individual abilities or group

ability distributions on only the observable responses. Many standardized

achievement tests report a single content score, suggesting that all of the

items that produce such a score are measuring only that content. For example,

when a single math score representing the performance on a given set of math

items is reported, it is assumed that all of the items measure only the

reported math ability. However, should some of the math items require more of

another ability, such as reading, for a correct response then the reported

score cannot fairly be termed a math score. Also, and more importantly, if

the reading component is substantial, then the test will favor the better

readers, regardless of whether or not they have identical math ability!
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Over the past several years there has been a proliferation of research

examining how standardized tests mea'ure individuals to determine if certain

measures of cognition are biased or favor certain individuals or groups of

individuals. A test which is used for determining college placement or making

scholarship decisions could have a profound effect if examinee groups, which

have identical STD on the reported abilities, perform differently because

extraneous, nonreported skills are required for a correct response.

Many researchers (Lord, 1980; Linn & Harnisch, 1981; Traub, 1983, Wang

1986) have suggested that one of the major causes of differential item

functioning (DIF) is that the "biased" items are measuring abilities other

than those of the reported test score. It is the purpose of this paper to

illustrate, within a multidimensional item response theory (HIRT) framework,

how different STD produce DIF, when the complete ability space which is

required for a correct response is misspecified. Examples will be shown that

will demonstrate how unidimensional IRT estimates of items that require two-

dimensional abilities for a correct response, will result in biased estimates

of ability when responses originate from disparate two-dimensional abilities.

Background

The work of Reckase (1986) in for Ily defining HIRT item characteristics

provides an appropriate framework with which hypothetical multidimensional

abilities and items can be easily specified and item response data can be

subsequently generated. Reckase (1986) defined the unidimensional IRT

counterparts of difficnity and discrimination for the multidimensional M2PL

model, given by
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where Xii is the score (0, 1) on item i by person j,

al. is the vector of item discrimination parameters

d.
1

is a scalar parameter related to the difficulty of the item

and 0. is the vector of ability parameters for person j.

(1)

In a two-dimensional latent ability space (e.g., math and verbal ability

dimensions),the.al vector designates the degree to which an item

distinguishes between individuals on both abilities. Thus, if an item had the

parameters al = a2 it would be distinguishing between individuals on both

dimensions equally well. However, if al = 0 and a2 = 1, an item would be

discriminating only along the 02 dimension.

Using the notation of Reckase (1985) an item j, which requires two

abilities for a correct response can be represented in the two-dimensional

ability plane as a vector of length D in the direction a., where

and

-d.
D. .3

.3 (al.i" a2.2)11J

a. = arc cos
(elf + a2 .2)11

J

J

(2)

( 3 )

Because the discrimination parameters can never be negative, the vectors, which

start at 01 = 0, 02 = 0, lie only in the third quadrant when Di is negative,

(representing easy items) or in the first quadrant when D. is positive

(representing difficult items.)
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Figure 1 illustrates an item vector whose M2PL parameters are given as

d = 2.00, al = 1.00, a2 = 1.00. Also illustrated in Figure 1 are the lines of

equiprobability. Notice that for the M2PL model these lines will always be

parallel which is indicative of the compensatory nature of this model. (That

is, high ability on one dimension will compensate to some extent for a low

ability on a second dimension.)

Insert Figure 1 about here

Because the vector is describing the direction and distance to the line of

inflection on the item's response surface, it '-an also be seen in Figure 1

that the p = .5 probability line runs orthogonal to the tip of the item

vector. Thus, if the STD of a group is known then the proportion of correct

responses for a group on an item can be easily estimated.

For example, consider two Groups A and B having the STDs as shown in

Figure 2. Assume both groups have the same mean ability for mathematics

(dimension 2), but because of instructional differences Group B has a higher

mean reading ability (dimension 1). That is, 52 = 1.2 for both groups,

but 51 equals 0.0 and 2.3 for Groups A and B, respectively. Assume further

that each group is given a test, purported to be a mathematics test, which

consists of three items. The item 1 vector, as drawn in Figure 2, measures

only mathematics ability; item 2 measures both math and reading equally, and

item 3, whose vector is orthogonal to item 1 measures solely reading ability.

7



Differential Item Functioning
7

Inserz Figure 2 about here

The success of the two groups on each item can be roughly determined by

examing the p = .5 equiprobability line in relationship to each group's

ability centroid. Both groups will perform equally well on the math item,

(Item 1) but Group B should easily outperform Group A on items 2 and 3. Thus

even though the two groups have identical math ability distributions, this

mathematics test will favor Group B (i.e., Group B would have a higher

expected raw score) because some of the items are measuring an ability

(reading) which is not being considered in the reported mathematics score, but

is essential to produce a correct response for the majority of test items.

Whereas Reckase's work is more from a geometric perspective, other

researchers have approached the relationship between multidimensional and

unidimensional IRT models from a more analytic framework. Wang (1986)

determined explicit algebraic relationships between unidimensional estimates

and the true multidimensional parameters for the case in which the underlying

response process is modeled by the M2PL MIRT response model and the

unidimensional model is the two parameter logistic (2PL) model in which the

probability of a correct response is given as:

P(X = 110) = [1.0 + exp (-1.7a(0 b))]-1 (4)

where a and b are the unidimensional discrimination and difficulty parameters

and 0 is the unidimensional latent ability measure. Using the analytical

results for unidimensional approximation to a multidimensional data matrix,
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Wang concluded that the unidimensional estimates of the item parameters are

obtained with reference to a weighted composite of the underlying latent

traits. The weights are primarily a function of the discrimination vectors

for the items, the correlations among the latent traits and, to a lesser

extent, the difficulty parameters of the items.

Specifically, for a group g whose STD can be described as having a

diagonal variance-covariance structure fl
g and mean ability vector, p, the

unidimensional 2PL IRT item parameters for item j can be approximated by

a. = aNd/2.89 + al. W W'a.
3 -3."

b. = (d. - a!p)/a.W
3 3 3- -3-1

in which a. is the discrimination vector for the M2PL model-J

d. is the difficulty parameter for the M2PL model
3

W
1
and W

2
are the first and second standardized eigenvectors of

(5)

(6)

the matrix L'A'AL, where,

A is the matrix of discrimination parameters for all the items in

the test and L'L = n.

Thus, when the first two moments of a 2-dimensional STD are known, as

well as the 2-dimensional item parameters, the corresponding 2PL IRT

unidimensional item parameter estimates (as computed by a calibration program

such as LOGIST (Wingersky, Barton, & Lord, 1982) can be easily approximated.

It is the purpose of this paper to provide a simple illustration of how

DIF can occur when items measure multiple ability dimensions on which groups

have different STD. Specifically, the paper will demonstrate how DIF can be

9
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predicted using the formulation of Reckase (1985) and Wang (1986) when the

multidimensional item parameters and multidimensional STDs for the groups of

interest are known.

Methodology

The generating item parameters used to simulate the multidimensional test

were based on the M2PL estimates of the ACT Mathematics Usage Test which was

administered in February 1983. These item parameter estimates were determined

using the computer program MIRTE (Carlson, 1987). This program estimates the

M2PL parameters using a joint maximum likelihood procedure. The calibration

sample consisted of 2000 randomly selected students. These item parameter

estimates were used as a representative sample of a multidimensional

standardized mathematics test.

Using these item estimates as parameters, response data corresponding to

three different STD conditions were generated. In all, 2000 randomly created

subjects were generated for each group according to the group's specified

STD. The characteristics of each group are described in Table 1.

Insert Table 1 about here

The differences in the STD are purely for illustrative purposes although

such differences could conceivably occur through instructional differences.

Group A, the base or reference group, has a STD distribution represented by a

bivariate normal distribution centered at (50 52) = (0, 0). Groups B and C,

1 0
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the two primary or focal groups of interest have mean abilities centered (1.0,

-0.5) and (-0.5, 1.0). Group B is about 1.7 times more variable along the

first dimension than the second dimension and Group C is about 1.7 times more

variable along the second dimension than the first dimension.

Using the mean and variance of each group in concert with the generating

item parameters, unidimensional item parameters corresponding to the 2PL IRT

model were computed using equations 4 and 5. Using two different methods, the

performance of each focal group was predicted to be better, equal to, or worse

than the performance of the preference group for each of the 40 items. One

set of predictions involved identifying the direction and length of each

item's 2-D vector in relationship to each group's STD. For Group B, items

whose angles were less than 63° were predicted to favor Group B, and items

whose angles were greater than 63° were predicted to favor Group A. An item

whose direction was 63° was predicted to be equally difficult for both

groups. The angle of 63° was chosen because it represents the composite

direction perpendicular to the line connecting the mean ability centroids for

Groups A and B. Because the equiprobability lines of the M2PL model are

parallel and orthogonal to the composite of abilities being measured, shifting

the mean centroid of a group orthogonally to an item vector is equivalent to

moving the centroid along a line of equiprobability. Thus, there should be no

difference in group performance on that item. For Group C the same procedure

was followed but with an angle of 37°.

The second set of predictions were based upon the 2PL model's

logit, a0 - ab where a and b are the analytically computed item parameters

and 0,the ability parameter, was set equal to 0.0. It can be seen from
A IS

Equation 6 that the greater th value of the -a b term, the greater the

probability of correct response. Thus, by comparing the logit

i1
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(where 0 = 0) for Group B and C to the logit of Group A, (i.e., is the logit

of Group B less than, equal to, or greater than the Logit of Group A for item

j) predictions about the focal groups' relative probability of correct

response were made for each item.

After ?redictions were made, the generated response data for Set A were

calibrated using LOGIST (Wingersky, Barton, & Lord, 1982), and 2PL IRT item

and ability parameters were estimated. Sets B and C were also calibrated

using LOGIST. However, in each of these runs the item parameters were fixed

to those values estimated for Set A and only abilities were estimated. This

procedure assured that abilities for each focal group woad be placed on the

same scale as Group A.

As a measure of model fit and DIF, the Linn-Harnisch Z statistic was

computed for each item, for each group. The statistic is computed as

n u. P.
Z = 1-

i
V

ji j
Z1

N
3=1 t/P..(1 - P..)

13 13

(7)

where uij is the 1 (correct) or 0 (incorrect) response of person j to item i

and Pij is the 2PL IRT model given in equation 6 using Set A's item parameter

estimates. If, for example, Group B had a higher probability of correct

response than Group A, Zi for Group B would be greater than Zi for Group A.

If Group B had a lower probability of correct response than Set A, ZiB would

belessthan.ZiA. For each item the observed DIF computed using the Z

statistic was compared to the predicted performance of each focal group. The

proportion of correct predictions was then determined.

12
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Results

The M2PL item paramerJr estimates from the program MIRTZ (Carlson, 1987)

are presented in Table 2. The direction or two-dimensional ability composite

that is being measured ranges from measuring only the first dimension (items

10, 11, and 18) to measuring toter.), the second dimension (item 34). The AAP

Math Usage Test is constructed so that as an examinee proceeds through the

test, the items become increasingly more difficult. Inter Ling, this shift

in difficulty is reflected by a shift from measuring prih ly the of ability

to measuring primarily the 02 ability as the item number increases.

Insert Table 2 about here

Substantively these items were reviewed to determine if the two

dimensions could be identified. Those items which primarily measured the

first dimension were classified as Arithmetic and Algebraic Reasoning or AAR

items. These items were basically .story problems in which the examinee had to

read through a two to three sentence passage before responding to the item.

Thus it was felt that this passage measured the verbal loading of an item.

The second dimension was classified as a computation dimension, since the

items which discriminated best along this dimension were found to be

Intermediate Algebra (IA) and Advanced Topic (AT) items. These items had very

short item stems and required the examinee to perform more computational type

operations steps to solve the problem.

13
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The fit of the Math Usage data to the M2PL model was checked by examining

the distribution of residual covariances as output by the program MIRTE. This

distribution was highly skewed with most residuals in the range from 0.0 to

.011. A two-dimensional adaptation of Yen's (1983) (See McKinley and Mills,

1985) chi square goodness-of-fit statistic also showed that none of the items

had a significant chi-square value indicating no lack of model fit.

The mean ability vector and covariance structures of the three generated

ability distributions are listed in the middle of Table 1. The IMSL

subroutine GGNSM was used to generate each distribution and appeared to

produce the hypothetical distributions quite well. The first three

eigenvalues of a principal component analysis of the tetrachoric correlation

matrix for each resp set are shown at the bottom of Table 1. These values

helped verify that the data were multidimensional (see Reckase, 1979).

The raw score means were 17.55, 21.54 and 18.61 for Groups A, B, and C,

respectively. The standard deviations of the raw score distributions were all

about equal to 1.2. These results are interesting because they indicate that

Urcr.4 B performed better than Groups A and C even though A and C have a higher

mean computational ability. Because more of the items have a verbal loading

than a computational loading (i.e., measure better along the 01 dimension) the

group which has the greatest "reading ability" will obtain the highest mean

raw score.

One way to confirm the mean raw scores for each group is to sketch the

three STD's upon a contour plot of the expected raw score for all individuals

in the two-dimensional ability plane. This plot is displayed in Figure 3.

Each line can be considered an "equi-true score". For example,

each (00 02) which lies on the line denoted 36, has an expected true score of

36 on the 40-item test. It can be seen in Figure 3, that the ability

14



Differential Item Functioning

14

centroids for each group lie very closely to the "equi-true score" line that

matches their computed raw score mean based upon the generated data. Thus

Group A centroid lies between the equi-true score lines representing expected

values of 17 and 18. Similar results can be seen for Groups B and C.

Insert Figure 3 about here

Another way to illustrate the difference in item performance of Groups B

and C relative to Group A is a plot of the p-value difference for each focal

group for each item. This plot, shown in Figure 4, illustrates how, cn the

majority of items, Group B outperformed Group A. Only on the later items (29-

40, except #32) did Group C have a larger percentage of correct responses than

either Groups A or B.

Insert Figure 4 about here

The analytical 2PL item parameter estimates based upon the work of Wang
,. ,..

(1986) are shown in Table 3. Both the a and b for Sets B and C were rescaled

and placed on the same scale as the Set A estimates. If there was no DIF,

these parameter estimates would be identical for each group.

15
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Insert Table 3 about here

Depending on the multidimensional composite an item is measuring, the

item parameter estimates vary considerably from each other. Items which

primarily load on the verbal dimension (01) such as 10 and 18 discriminate

better for Group B than either Set B or especially Set C. The reverse is true

for items which measure primarily the computation dimension (02). Items such

as 34 and 35 discriminate much better for Group C than either Groups A or B.

Large differences also appear between the analytical difficulty parameter

estimates for each of the three groups. Items 10 and 11 would be considered

to be quite easy for Group B (b = 1.24 and 1.08, respectively), and about

average for Group A (b = .23 and .04, respectively.) Some items which are

moderate in difficulty for Set C (such as item 34 (b = .01) were difficult
^

for Set A (b = 1.79) and extremely difficult for Set B (b = 5.00).

The LOGIST item parameter estimates are also displayed in Table 3 in

columns 5 and 9. These tend to be quite similar to the Set A analytical

estimates even though the analytical estimates were not rescaled to the LOGIST

item parameters to account for differences due to sampling error. The LOGIST

calibration run converged on the 2PL solution in 15 stages.

One set of DIF predictions was based upon the analytical item
^ ^^

estimates. The logit was (a0 ab, where 0 = 0) computed for each item for

each group. These are shown in columns 2, 3 and 4 of Table 4. The larger the

logit, the greater the group's probability of correct response. Again,

noticeable differences appear for each group.

16
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Insert Table 4 about here

Using the Set A item parameters, the abilities for Set B and Set C were

computed, also using LOGIST. The ability estimates were then used to compute

the Linn-Harnisch Z statistic for each of the three groups. These results are

reported in the second half of Table 4.

If the 2PL model fit the data well, an item's Z statistic which is summed

over all people in the respective group, should be zero. It appears, upon

examining the Z statistics for Set A, that LOGIST fit the generated response

data extremely well. However, the Z statistics for Groups B and C are quite

different, :.sually having opposite signs.

The "hit" rates (percent of correct predictions) were determined for each

group. These results a-e displayed in Table 5. The predictions for Set B

were not as good as those made for Set C. Using the "logit method," the

percent of item performance predicted correctly was 70% and 100% for Set B and

C, respectively. The "item vector method" provided a 73% and 95% hit rate for

Set B and C, respectively.

Insert Table 5 about here

Discussion

This study illustrates how DIF can occur when there is a misspecification

of the latent ability space. Based upon the examples provided in this study,

17
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a word of caution should be extended to standardized test authors that the

relationship between reported scores and underlying STDs of various examinee

groups might need to be studied. To make a standardized test not only fair

for all examinees, but also informative, scores and the abilities they

measure, need to be clearly and accurately stated. Hopefully, multidimensional

IRT will provide new methodology that not only can detect DIF, but can provide

some substantive support about why groups perform the way they do. The test

creation process could be improved if the relationship between item type and

the STD of different examinee groups were more clearly understood and shared.

It needs to be reiterated that the example presented here was designed

for illustrations purposes and may not be totally realistic. Before

generalizing to other situations several questions pertaining to this study

need to be further explored. First of all, how realistic were the three

generating STDs? It may be argued that all cognitive abilities are correlated

to some degree, and that this factor should be taken into account. How

discrepant, for whatever reasons, are STD between groups of interest? How

realistic is the compensatory M2PL model? These questions need to be further

explored in future studies.

18
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Table 1

Descriptive statistics of the generating and obtained STDs for the three
hypothetical groups

Group

A

(reference) (focal)

C

(focal)

Mean

Ability

Covariance

Structure

.6.1 =0

52=0

1 0

0 1

Hypothetical Distribution

81 = 1.0

82 = -.5

1.5 0

0 .5

Generated Distribution

Mean 91 = .014 61 = 1.017

Ability 52 = -.020 52 = .974

Covariance

Structure

1.02 .02

.02 1.08

1.54 .02

.02 .54

Eigenvalues

Principal

Component

1 8.999 9.399

2 2.732 2.092

3 1.040 1.060

el = -.5

e2 = 1.0

.5 0

0 1.5

= -.489

e2 = .974

.51 .02

.02 1.61

8.162

2.637

1.040

21



Table 2

Multidimensional Parameter Estimates, Directions and Distances for the Items

in the ACT Assessment Mathematics Usage Test

Item .11
"
1

a.
i2

a
1

a. Di

Differential Item Functioning
21

1 1.81 .86 1.46 25 -.73
2 1.22 .02 .17 1 -.14
3 1.57 .36 .67 13 -.42
4 .71 .53 .44 37 -.50
5 .86 .19 .10 12 -.11
6 1.72 .18 .44 6 -.25
7 1.86 .29 .38 9 -.20
8 1.33 .34 .69 14 -.50
9 1.19 1.57 .17 53 -.09

10 2.00 .00 .38 0 -.19
11 .87 .00 .03 0 -.03
12 2.00 .98 .91 26 -.41
13 1.00 .89 -.49 42 .37
14 1.22 .14 .54 7 -.44
15 1.27 .47 .29 20 -.21
16 1.35 1.15 -.21 40 .12
17 1.06 .45 .08 23 -.07
18 1.92 .00 .12 0 -.06
19 .96 .22 -.30 13 .30
20 1.20 .12 -.28 6 .23
21 1.41 .04 -.21 2 .15
22 1.54 1.79 .02 49 -.01
23 .54 .23 -.69 23 1.18
24 1.53 .48 -.83 17 .52
25 .72 .55 -.56 37 .62
26 .51 .65 -.49 52 .59
27 1.66 1.72 -.38 46 .16
28 .69 .19 -.68 15 .95
29 .88 1.12 -.91 52 .64
30 .68 1.21 -1.08 61 .78
31 .24 1.14 -.95 78 .82
32 .51 1.21 -1.00 67 .76
33 .76 .59 -.96 38 1.00
34 .01 1.94 -1.92 90 .99
35 .39 1.77 -1.57 78 .E7
36 .76 .99 -1.36 52 1.09
37 .49 1.10 -.81 66 .67
38 .29 1.10 -.99 75 .87
39 .48 1.00 -1.56 64 1.41
40 .42 .75 -1.61 61 1.87
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Table 3

Analytical and LOGIST Calibrated Parameter Estimates for Each Item By Group

...

Item

a

Group

LOGIST

b

Group

LOGISTA B C A B C

1 1.15 1.15 .60 1.33 -.74 -1.43 -1.05 -.72
2 .57 .68 .18 .56 -.17 -1.18 1.12 -.16
3 .84 .94 .37 .87 -.44 -1.28 -.31 -.42
4 .52 .48 .40 .50 -.50 -1.06 -.86 -.51
5 .48 .52 .23 .53 -.12 -.99 .32 -.18
6 .82 .98 .29 .87 -.29 -1.22 .36 -.23
7 .92 1.08 .34 1.07 -.22 -1.12 .32 -.18
8 .74 .81 .35 .80 -.53 -1.35 -.51 -.55
9 1.02 .78 1.01 1.08 -.09 -.36 -.62 -.07
10 .83 1.06 .23 .93 -.23 -1.24 1.06 -.22
11 .41 .48 .13 .46 -.04 -1.08 1.60 -.11
12 1.28 1.27 .65 1.52 -.41 -1.10 -.59 -.36
13 .77 .68 .62 .84 .37 -0.05 .09 .36
14 .61 .70 .24 .74 -.49 -1.40 -.14 -.42
15 .76 .79 .41 .77 -.22 -.98 -.15 -.22
16 1.03 .88 .77 1.21 .12 -.35 -.18 .10
17 .66 .67 .39 .64 -.07 -.80 0.00 -.02
18 .80 1.03 .22 .84 -.08 -1.11 1.50 -.11
19 .53 .58 .26 .58 .33 -.56 1.14 .31
20 .60 .69 .23 .66 .26 -.73 1.63 .22
21 .65 .78 .21 .68 .18 -.87 1.94 .08
22 1.25 .94 1.11 1.40 -.01 -.33 -.48 .03
23 .34 .34 .22 .37 1.19 .45 1.93 1.01
24 .88 .94 .42 .94 .54 -.29 1.23 .52
25 .53 .49 .41 .59 .62 .14 .50 .63
26 .46 .38 .45 .47 .63 .45 .12 .63
27 1.31 1.02 1.06 1.55 .16 -.20 -.24 .14
28 .40 .42 .21 .40 1.00 .12 2.18 .89
29 .77 .62 .75 .83 .67 .51 .17 .64
30 .68 .51 .79 .74 .88 1.00 .16 .84
31 .44 .28 .68 .47 1.15 2.28 -.06 1.12
32 .59 .43 .77 .63 .92 1.30 .03 .91
33 .56 .52 .44 .53 1.00 .55 .95 1.11
34 .46 .23 1.04 .50 1.79 5.00 -.01 1.64
35 .61 .38 1.06 .59 1.21 2.32 -.00 1.28
36 .67 .55 .67 .77 1.15 1.08 .64 1.03
37 .56 .41 .70 .56 .80 1.10 -.04 .81
38 .45 .31 .67 .44 1.17 2.09 .03 1.27
39 .53 .40 .64 .56 1.64 2.10 .73 1.65
40 .44 .35 .49 .48 2.11 2.52 1.27 2.00
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Table 4

The Logit and Linn-Harnisch Z Values for Each Item By Group

Item

LOGIT
GROUP

LINN-HARNISCH Z
GROUP

A B C ZA Z
B ZC

1 .85 1.65 .63 -.00 .04 -.06
2 .09 .80 -.20 -.00 .23 -.32
3 .37 1.21 .11 .00 .16 -.23
4 .26 .51 .35 .00 .03 .06
5 .0b .51 -.08 -.01 .12 -.17
6 .24 1.20 -.10 -.00 .21 -.37
7 .20 1.22 -.11 -.00 .24 -.34
8 .39 1.09 .18 -.00 .12 -.22
9 .09 .28 .63 .00 -.15 .21
10 .19 1.32 -.24 -.00 .24 -.47
11 .02 .52 -.21 -.00 .18 -.25
12 .53 1.39 .38 .00 .06 -.07
13 -.29 .04 -.05 .00 -.06 .10
14 .30 .99 .03 .00 .16 -.26
15 .17 .78 .06 -.00 .14 -.13
16 -.12 .31 .14 .01 -.06 .09
17 .05 .54 .00 -.00 .13 -.09
18 .06 1.14 -.34 -.00 .25 -.49
19 -.17 .32 -.29 .00 .17 -.16
20 -.16 .50 -.37 -.00 .18 -.28
21 -.11 .68 -.41 .00 .25 -.39
22 .01 .31 .53 .02 -.11 .28
23 -.41 -.16 -.42 .00 .07 -.04
24 -.47 .27 -.52 .00 .19 -.20
25 -.33 -.07 -.21 .00 .00 .04
26 -.29 -.17 -.06 .00 -.07 .13
27 -.21 .20 .25 -.00 -.11 .23
28 -.40 -.05 -,46 -.00 .10 -.10
29 -.52 -.31 -.13 -.00 -.17 .21
30 -.60 -.52 -.12 .01 -.21 .28
31 -.50 -.65 .04 .00 -.31 .40
32 -.54 -.55 -.03 .00 -.26 .37
33 -.56 -.29 -.42 -.00 .05 .05
34 -.82 -1.15 .01 .00 -.44 .62
35 -.74 -.89 .00 .00 -.37 .53
36 -.78 -.59 -.43 .01 -.13 .21
37 -.45 -.45 .03 .00 -.23 .32
38 -.53 -.65 -.02 -.00 -.25 .37
39 -.87 -.84 -.47 -.00 -.18 .28
40 -.92 -.87 -.63 .00 -.12 .22
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Table 5

Tables Illustrating the Predictions of Each Focal Group Compared to Group A for

Each Method of Prediction

Prediction Type

LOGIT ITEM VECTOR

Observed

>A

0

Observed

< A

<A 5

=A

0

<A

< A 7

=A

0

>A

0

S

E

T Predicted = A 1 0 0 Predicted = A 0 0 0

B

>A 10 1 23 >A 10 1 22

Hit rate: 70% Hit rate: 73%

Prediction Type

LOGIT ITEM VECTOR

Observed

>A

0 <A

Observed

<A

<A 20

=A

0

<A

21

=A

0

>A

0

S

E

T Predicted = A 0 0 0 Predicted = A 0 1 1

C

> A 0 0 20 > A 0 0 17

Hit rate: 100% Hit rate: 95%
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Figure Captions

Figure 1. The item vector and equiprobability lines of an M2". item with Al =

1.00, A2 = 1.00 and d = 2.00.

Figure 2. The STD for hypothetical Groups A and B and the p = .5 probability

lines for the three item math test.

E./pre 3. The STD for the generated groups A, B and C and the expect i true

score lines for the 40 item multidimensional math test.

Figure 4. A plot of the p-value differences between the focal arouus and the

reference group for each of the 40 math items.

26
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