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Abstract

Two bootstrapping or resampling strategies were investigated, as

applicable to estimating standard errors and ensuing confidence

intervals on variance components 3n two-factor random ANOVA

models. In light of prior negative findings regarding the

application of bootstrapping to this particular problem, a

recommendation of an "optimal" approach to resampling was sought.

The study used Monte Carlo simulations to test the variance

component estimation accuracy under simultaneous resampling of

all effect factors in a random model verses resampling a single

factor. The results indicated that single-factor was a

preferrable method of resampling and produced reasonable

estimates of both standard errors and confidence intervals

(parametric and non-parametric). Additional suggestions for

appropriate application of the technique are discussed.
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Introduction

The application of variance component estimates stemming

from analysis of variance (ANOVA) and other quadratic forms of

linear models (Searle, 1971) to educational research settings has

continued to increase in recent years. These variance component

estimators provide important information about measurement

parameters of interest (e.g. generalizability theory, Cronbach,

Gleser, Rajaratnam and Nanda, 1972, Brennan, 1983) as well as

experimental effect sizes and intraclass correlations. However,

in either measurement or experimental applications, researchers

usually require some confidence about the accuracy of the

estimators obtained.

Unfortunately, many of the attempts to define the

distributions of variance components have involved tedious and

complex algorithms and there remains to some extent a lack of

consensus about the most appropriate distributional form to use

(Searle, 1971, Smith, 1982). Nonetheless, the issue of the

accuracy of variance component estimators can be dealt with,

despite any controversy over distributional form, if normality

and orthogonality of the data are assumed. That is,

distributional properties of variance component estimators can be

sought. The most common such property is the sampling variance

of the variance components (Searle, 1971, Smith, 1978 and

Brennan, 1983), which can be directly extended to estimating

confidence intervals. However, as Smith (1982) demonstrated, even

under the assumptions of normality and orthogonality, estimation
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of the sampling variances of variance components and thus any

ensuing confidence intervals may, at best, be marginal.

For this latter reason, more recent attempts to look at the

distributional properties of variance components have considered

the use of empirical confidence intervals (Brennan, Ha:ris and

Hanson, 1987, Smith, Luecht and Anderson, 1988). Under this

approach, multiple samples are drawn and the desired confidence

interval is determined directly from the percentiles (e.g. 0.05

and 0.95) of the distribution of samples. However, in practice,

the acquisition of multiple samples may not be feasible.

Accordingly, researchers have needed to look at alternatives for

establishing empirical confidence intervals on variance

components.

One method of estimating empirical confidence intervals from

single samples of data has been termed "bootstrapping". The

general bootstrap technique described by Efron (1979, 1982) is a

resampling approach to estimating mfidence intervals upon

statistical parameters of interest. The technique involves

rebuilding multiple data sets from a single sample data set.

That is, an initial data set is resampled, with replacement,

until a new data set is constructed, matching in size the

original data set. The statistical parameter estimates of

interest are computed and another data set is then drawn from the

sample, again with replacement, and analyzed. This process of

resampling continues until a large number of data sets have been
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constructed and analyzed. Empirical confidence intervals can

then be directly estimated as percentile point equivalents in the

derived distribution of resamplsd or reconstructed data sets.

The bootstrap technique has been successfully implemented

for many applications (Chatterjee, 1984, Lunneborg and

Tousignant, 1985, Lunneborg, 1985, Iventosch, 1987), however, the

use of bootstrapping for obtaining confidence intervals on

variance components has only met with marginal success. Brennan,

Harris and Hanson (1987), looxed at the bootstrap technique for

developing confidence intervals in measurement situations and

concluded that the method was somewhat ineffectual. It should be

noted, however, that Brennan et al. used a single replication

(data set) which may have limited their findings.

Smith, Luecht ai.J Anderson (1988) extended the work of

Brennan et al. (1987) by investigating bootstrapping under three

orthogonal designs (a two factor crossed design, a three factor

crossed design and a three factor nested design). Using Monte

Carlo simulations involving many -:eplications of data sets across

a variety of design sizes, Smith et al. were able perform a

series of large-scale tests of the bootstrap methodology with

respect to confidence interval estimation and estimation of the

sampling variances of the variance components in their designs.

In general, the results obtained by Smith et al. (1988) were

somewhat less than favorable. The point estimates of the

variance components (mean and median values) tended to

overestimate the theoretical values (used to generate the data

6
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sets) of the variance components for main effects and

underestiLate any residual terms in their linear models. Since

the data used by Smith et al. was controlled to simulate

normality, both the parametric (use of the sampling variance) and

non-parametric (empirical) confidence intervals produced similar

results. However, those estimated results showed under- and

overestimation inconsistency with the expected values of the

theoretical sampling variances.

These marginal findings would ordinarily suggest that the

bootstrap method holds little promise when applied to the problem

of variance component estimation. However, two key points were

alluded to but not specifically investigated in both studies

(Brennan et al. ,1987, Smith et al., 1988). The first point

concerns the size of data set(s) being resampled under

bootstrapping. As Efron (1982) suggests, the variance of a

statistical parameter of interest should take the form

2

'" boot

n - 1 A
a2 (1)

n

Clearly, the size of the design under which the resampling

takes place will impact the underestimation of the total

variance, (a'). The variance components, as independent linear

parameters, for example,

a2y (2)
a -1- e

can be expected to likewise be restricted by any underestimation

7
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on the total variance, ey in Equation (2).

Second, different strategies employed during the

bootstrapping can be envisioned to have differential effects on

the obtained variance components. For example: Smith et al.

(1988) simultaneously resampled all possible independent

parameters (i.e. main effect factors--a strategy similarly used

by Brennan et al.; 1987). That is, Smith et al. did not look at

the potential of alternative bootstrapping strategies (e.g.

resampling only one factor in a design). Although Brennan et al.

did consider the issue alternative bootstrapping strategies,

their use of a single data set may have precluded any positive

findings.

These two points therefore provide the primary objectives of

the present study. Under the assumptions of normality and

orthogonality of linear designs, this study (1) evaluates the

effect of design size on the estimation of variance components

and distributional estimators (parametric sampling variances and

non-parametric confidence intervals) and (2) seeks to provide

some understanding of various resampling strategies, ultimately

arriving at one "recommendable" strategy for resampling to

estimate variance components.

Preliminary to an empirical investigation of these

objectives, an initial attempt is made to describe the potential

or expected impact of bootstrapping strategies and sample sizes

upon variance components estimators. The next section describes

the derivations of the variance components for a two factor
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random analysis of variance model, without replications and

comments upon that expected impact as it relates to the

objectives. Following that section, methods and results are

provided for a two-part Monte Carlo study, meant to formally test

various bootstrapping strategies across a variety of sample

sizes.

Derivation of Variance Components under Bootstrapping

The present study considers a rather basic two factor random

effects analysis of variance (ANOVA) design, without

replications. This particular design was chosen because of its

generality to testing contexts (e.g. generalizability theory,

Cronbach et al, 1972, Brennan, 1983) and many experimental

settings involving repeated measures. Although more complex

crossed and nested designs were considered (see Smith et al.,

1988), there seemed to be no explicit reason to include them

here.

Under this ANOVA design the two random effects factors, A

and B, have respective variance component estimators as follows

(Brennan, 1983):

A

Q=A = (MSA MSAB,e) / b

alB = (MSB MSAB,e) / a

(3)

(4)

Additionally, the residual variance, confounds the interaction of

the A and B factors with the error term (since no cell replicates

are involved) in the form
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a2ABle = MSAB,e

Finally, the sampling variance of the estimators in Equations

(3), (4) and (5) can be expressed as

VAR(a2A) -

VAR(a2B) -

(5)

2 rr 12 1

LC2A + (02ABle/bd + ( 02AB,e/b)2] (6)
a - 1 b - 1

2

r B + (aa22AB,e/ad +
^ 1 2

[

1

(a2AB,e/a)2] (7)
b - 1 a - 1

,^ 2

VAR(a2AB,e)
1)

(a2AB,e)2
(a - (b - 1)

(8)

as suggested by Smith (1978).

Smith (1978) came to the conclusion that fairly large

numbers of levels of the involved factors were needed to

establish stable confidence intervals, based upon the sampling

variances (i.e. to reduce the standard errors of the variance

component estimators), even under normality assumptions.

Generally, for designs of this type, Smith recommended that nAnB

equal 800.

If that consideration of sample size is extended to

bootstrapping, then the reduction of the total variance under

bootstrapping (see Equation (1)) can be expected to further

confound the variance component estimators and their sampling

variances at different sample sizes. In short, the total

variance should be reduced for smaller sample sizes.

10
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For example, if normality cf the data in this A x B design

is assumed, then Equation (1) can be adapted to demonstrate the

impact of both sample size and bootstrapping strategy upon the

total variance, using degrees of freedom appropriate to this

ANOVA model (ab -1), such that

^ ab 1 ^
a y(boot)

2

ab
a . (9)

In other words, as a --> co and b --> co, the bootstrapped

estimate of the total variance will approach the unbiased

estimator of the theoretical total variance, which itself will

approach the population value as the levels of a and b approach

infinity. Correspondingly, for fairly small levels of a and/or

b, there will be a reduced total variance estimate. For example,

if the model of this ANOVA design

°217 = cr2A + °213. + etis,e
(10)

is considered, the impact of the underestimation of a2y should

clearly extend to all variance components, as well.

It is at this point where the issue of bootstrapping

strategies needs to be dealt with. If we assume a strategy of

simultaneous bootstrapping of both the A and B factors in (10)

then, as Brennen, Harris and Hanson (1987) demonstrate, the

estimator of atA as a funcLion of the average unbiased

covariances among the levels of factor B, becomes

11
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- Y.i)(Yjit
(11)

1
[EiEil LEj

a - 1
cr2 A(boot)

b (b-1)

(for i not equal to i') and the estimator of a2B, as a function

of the covariances in factor A, likewise yields

a2B(boot) 3

(Yji Yi.)(Yjli Yji.)]]
[E.E. IE. (12)

3' L 1a(a-1) b - 1

(for j not equal to j'). As Brennan et al. further suggest,

these estimators imply an overestimation of the variance

components for factors A and B, especially where a and b are

small. If the residual is then obtained as a subtractive

function of the bootstrapped total variance in (-9), a-2y(boot),
A

less the overestimated asliqa
k oot) and aB (boot) components, by

adaptively solving Equation (10) for a 2AB,e (boot), we therefore

see that any overestimation of the main effect variance

components will result in a proportional underestimation of the

residual term as a function of both the restriction on the total

variance and overestimation of the A and B factor components.

In fact, using this form of simultaneous bootstrapping,

Smith, Luecht and Anderson (1988) actually performed a large-

scale validation this precise effect, with some restriction on

the limits of their, design sizes (a 50 x 20 matrix was the

largest design considered). The expectation might be that the
A A

overestimation in a 2A(boot) and a 2B(boit) (and corresponding

underestimation in the residual term) would be further confounded

12
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if the levels in factors A and B were highly disproportionate.

The present study seeks to recapitulate that disproportionate

effect over a more varied range of sample sizes.

In contrast, consideration must also be given to a

bootstrapping strategy which only resamples along a single

factor. Under this strategy, levels of a single factor are

resampled with the levels of the crossed factor automatically

chosen for each selected level in the bootstrapped factor. For

example, if only factor A is resampled, then for each level of A

selected, all levels of factor B crossed at that level are

automatically chosen. An approximation of the variance component

estimators as a function of the cross factor covariances could,

of course, be modeled as exemplified by Equations (11) and (12);

however, a more straight-forward explanation appears warranted.

If the resampling occurs only in the levels of one factor,

for example, factor A for the model in (10), then the

expectations of the variance components (per Equation (1), Efron,

1982) should take the following form

and

a - 1 AA
,

° A(boot)
a

2

'''

A (a - 1) A

°2AB,e(boot) °2AB,e
a

(13)

(14)

A
where the estimator, a2B(boot) in Equation (12), as a function of

the average unbiased covariances across factor A remains

1 3
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unchanged. In other words, underestimation is constrained to a

single factor in the design, which ideally can be controlled by

increasing the number of levels, since for this example, as a.
A

approaches co, aA(boot) likewise approaches the unbiased estimator

of a2A. Since the covariances in factor A additionally determine

oe2
B(boot), that same increase in the levels of factor A can be

expected to reduce the overestimation problem implicit in factor

B. Finally, the residual variance component estimator under this

approach to bootstrapping should be slightly underestimated, but

only to a degree proportional to the levels in factor A (i.e. for

fairly small resampling levels in A).

The remainder of this paper deals with an empirical test of

the recommendations offered in this section and seeks to

demonstrate single factor or "one-way" bootstrapping as a

recommended strategy for estimating variance components and

sampling variances, under the constraint of sample sizes

appropriate for the resampling application.

Methods

Monte Carlo data sets were used to simulate the effects of

bootstrapping strategies and sample sizes, under the rationale

suggested in the prior section of this paper. A two-phase study

was implemented.

Phases of the Investigation

In the first phase of this study, the issues of sample size

effects and adequacy of bootstrapping strategies were

14
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simultaneously addressed. For this phase, multiple data sets

were generated under the A x B paradigm and each data set was

resampled (bootstrapped) 200 times. Data sets comprised of four

different sample sizes were used: (1) a = 20 x b = 20; (2) a =

150 x b = 20; (3) a = 20 x b = 150; and (4) a = 150 x b = 150

For each data set and its resampling cycle (bootstrapping

sequence), two strategies were implemented. First, each data set

was bootstrapped with respect to both the A and B factors,

effectively drawing a sample of each parameter matching the

original levels in the design. This method of resampling both

parameters (factors) of interest was suggested by Brennan et al.

(1987) and the method of choice for Smith et al. (1988). At the

same time, the resampled A-levels only were used under the second

strategy. That is, all crossed levels of the B factor were

automatically chosen whenever a particular level of the A factor

was selected for the bootstrap sample. Since the sampling rates

varied rotationally across factors (by 20 and 150 levels), this

latter approach of holding resampling constant in the A factor

seemed sufficient to address the issue of resampling a single

parameter in contrast to resampling all parameters in a linear

model.

For each data set and its resampling sequence of 200

bootstraps, the point estimates of the average of the variance

components were saved and the sampling variance of those average

estimators were computed..

15
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In the second phase of this study, the direct estimation of

confidence intervals was addressed. Here, the intent was to

demonstrate the adequacy of bootstrapping only one parameter in

the design (factor A), as suggested by the r-Itionale and

approximations in the prior section. As previously noted, the

study by Smith et al. (1988) never tested this particular

bootstrapping strategy.

476 data sets having 100 levels of the A factor and 50

levels of the B factor were generated. Using 200 bootstraps for

each data set, the empirical confidence intervals (as well as the

average point estimates and sampling variances) were saved for

each replication.

Data Generation and Analysis Algorithms

The Monte Carlo data sets in both phases of this study were

constructed to conform to a precise theoretical distribution. In

each case, random normal deviates were scaled to "known" values

et the variance components underlying the data. That is, each

data set had an a priori, theoretical set of constants set at a2A

= 0.25, a2B = 0.25 and a2AB,e = 0.50, such that Qty equaled 1,

with known contributions of the component variances, as stated.

The generation of the data sets, bootstrapping, analysis of

variance and estimation of variance components and sampling

variances were programmed and run on an IBM-AT compatible

microcomputer with math co-processing capabilities accurate to 17

or 18 decimal places. The computational algorithms were further

validated against results obtained via the Systat 4.0 MGLH module

16
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(Systat, 1988), using smaller data sets.

Results and Conclusions

The first phase of this investigation was meant to model the

expectations of a2a estimators under bootstrapping by contrasting

two resampling strategies across a variety of design sizes: (1)

two-way resampling of both the A and B factors and (2) resampling

of only the levels of factor A. In the second phase of analysis,

the latter method of bootstrapping (resampling a single factor- -

here factor A) was re-investigated in terms of adequacy in

establishing empirical (non-parametric) confidence intervals for

fairly large data sets (100 x 50). A comparison of

distributional parameters and confidence intervals estimated via

those parameters was also incorporated into this phase of the

study.

Phase I: Comparison of Bootstrap Strategies

Tables 1, 2, 3 and 4 present the results from this

bootstrapping comparison phase, representing data sets of 20 x

20, 150 x 20, 20 x 150 and 150 x 150, respectively. Descriptive

statistics for each variance component under single-factor

bootstrapping are shown in the leftmost three columns of values

for each table. The rightmost three columns of values in each

table display the results from simultaneous or two-way

bootstrapping.

Simultaneous (Two-Way) Bootstrapping

Tables 1-4 demonstrate a consistent overestimation of the

17
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factor A and B variance component point estimators (mean and

median values across data rats), as described by Equations (11)

and (12). Likewise, the anticipated underestimation of the

residual terms in those tables is clearly evident. However, one

anomaly surfaces which was alluded to earlier. Most noticeable

in Tables 2 and 3, when there is d.lioroportionality between the

numbers of levels of the A and B factors, the overestimation

problem favors the factor having more levels, and may even

underestimate the smaller crossed factor.

Under that same condition of disproportionality, the

estimators of the sampling variances, parametric confidence

intervals and non-parametric confidence intervals also appear to

fluctuate dramatically from expectation. It therefore seems

apparent that simultaneous bootstrapping (two-way resampling for

A x B designs) can be applied, but only under two highly

restrictive constraints. First, the levels of the resampled

factors must be approximately equivalent. Second, fairly large

data matrices (e.g. 50 x 50 or greater) would be required to (a)

reduce the overestimation of the main effects variance components

and (b) bring the residual estimators up to a reasonable level.

For more complex designs (see Smith, Luecht and Anderson,

1988), the overestimation and underestimation problems would

appear to create even more restrictions of mentionable concern to

researchers (e.g. a 50 x 50 x 50 data matrix for a three-way

crossed design is hardly practical to obtain in most experimental

18
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or even testing contexts).

For these reasons and staying with the recommendations made

by Brennan et al. (1967) and Smith et al. (1988), it seems

reasonable to discount simultaneous bootstrapping as a viable

approach to obtaining usable confidence intervals or

distributional estimators as a general application.

Single-Factor Bootstrapping

The point estimators (means and medians) in Tables 1 to 4,

under single factor bootstrapping appear consistent with the

expectations derived in Equations (12), (13) and (14). That is,

there is a tendency to underestimate the bootstrapped factor

(factor A) and overestimate the non-bootstrapped factor (factor

B). Also, esp.ecially for designs having sample numbers of levels

on the bootstrapped factor (see Table 1 and Table 3), the
A

residual term, a AB,e(boot), tends toward very slight

underestimation. It should be noted that this mild apparent

overestimation of the residuals in Tables 2 and 4 is, technically

speaking, not overestimation at all. Rather, consistent with the

theory of bootstrapping (Efron, 1982), the residual estimators

will approach the sample estimator as a --> co and b --> co. Of
A

course, the sample estimator, a 2AB,e, will itself approach the

theoretical population residual, as the levels of factors in the

design approach infinity (Searle, 1971).

The sampling variances (theoretical, expected and estimated)

also demonstrate a close correspondence. Likewise, under single-

factor bootstrapping, both the non-parametric (empirical) and

19
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parametric provide similar information.

Assuming, as we have done from the onset, that the purpose

behind bootstrapping is to estimate empirical confidence

intervals, it therefore seems appropriate to conclude that

single-factor bootstrapping appears to succeed where simultaneous

bootstrapping could not. That is, bootstrapping only one factor

in a design should provide reasonable estimation of the variance

component parameters and confidence intervals around those

parameters, under the constraint of having sufficient levels of

the bootstrapped factor. For example, the greater overestimation

of variance component for factor B in the 20 x 150 design (Table

3) is not seen in the 150 x 20 design (Table 2). That is, by

increasing the number of levels on [single] bootstrapped factor,

estimation bias for all factors appears to be reasonably

controlled. Second, the underestimation effect on the residual

term seems minimized under single-factor resampling. In contrast

to the even more dramatic underestimation of residuals discovered

by Smith et al. (1988) for more complex designs, it appears that

single-factor bootstrapping will provide consistent and

reasonable estimators, provided the resampled factor has

sufficient numbers of levels.

tease IT: Analysis of the Single-Factor Bootstrap Strategy

Table 5 presents the results from the Phase II analysis of

476 data sets (using the A x B random model), with a equaling 100

levels and b equaling 50. Beyond point estimators and expected

2©
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sampling variances of the estimators, an additional feature was

added during this analysis phase. That feature was the

calculation of the lower and upper bound percentile estimates and

variance estimates for the components for each bootstrapping

sequence of 200 iterations, across all data sets.

Accordingly, it becomes possible to compare four different

sets of confidence intervals on the estimators: (1) the

parametric 95% confidence intervals, using the actual sampling

variance estimate of the components, (2) the non-parametric

confidence intervals (percentile points set at 2.5% and 97.5%)

for the data set point estimators, (3) the mean value of the

lower and upper percentile points from each bootstrapped data set

and (4) the median value of the lower and upper percentile points

from each bootstrapped data set.

It is quite clear that, in general, the lower and upper

bound estimators provide similar information, forming fairly

symmetrical intervals around the theoretical values of the

components. However, one interesting condition arises when

considering the mean and median lower and upper estimators of

,t
B(boot), across data sets. The sampling variances (see mean

and median estimated sample variances in Table 5) derived for

each bootstrapped sample are noticeably smaller than expectation;

also evidenced by the restricted limits on the interval. While

none of the other sampling variance estimators for a2B(boot)

suggest such lesser variation: the reduction is nonetheless quite

21
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distinct, and seems to occur only at the level of each

bootstrapped data set. By way of explanation, it should be

realized that the sampling variance VAR(o 2B(b)ot)) is actually a

variance of a covariance function (see Equation [12]). Since the

sampling variance form of that covariance is unknown, but can be

expected to be a restricted form (i.e. subject to the levels

actually resampled in factor A) a smaller amount of variation

seems logical. Although the interval on the a213 (boot) estimators

is "tighter", is still reasonably symmetrical and captures all

pertinent point estimators, this anomaly nonetheless suggests a

biased estimation problem. That is, the statistic may be useful

for estimating the covariance due to bootstrapping, but should be

treated cautiously as a valid estimator of the actual sampling

variance of a2 Er Furthermore, any confidence intervals derived

for factor B, may be misleading. It may be possible to overcome

this sampling variance problem by independently bootstrapping

only factor B in a secondary analysis; however, further research

may be warranted on that count.

As a final note on the results, it should be be noticed that

the point estimators (means and medians), while consistent with

the earlier theoretical derivations in Equations (12), (13) and

(14), in terms of over- and underestimation the Phase I results,

strongly suggest the effect of estimation control which can be

accomplished by increasing the numbers of levels in the resampled

factor.

It therefore seems reasonable to suggest that single-factor

22
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bootstrapping presents a reasonable alternative to estimating

variance components, under the constraint of adequate sampling

(at least for the bootstrapped factor and residual). Of course,

discovery of an "optimal" number of levels to resample remains a

question for additional study. Also, the applicability of this

technique to more complex designs or nonorthogonal designs, or

merely non-normal data, requires further work.
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Table 1
A Comparison of Bootstrapping Strategies for

a 20 and b 20

(No. of Data Sets - 481)

Value of Theoretical

Single Factor
Bootstrapping

A B AB,e

Bootstrapping
All Factors

A B AB,e

Variance Component 0.2500 0.2500 0.5000 0.2500 0.2500 0.5000

Variance of
Theoretical Component 0.0080 0.0080 0.0014 0.0080 0.0080 0.0014

Mean Estimator
of Component 0.2361 0.2865 0.4795 0.2708 0.2877 0.4543

Median Estimator
of Component 0.2307 0.2752 0.4972 0.2607 0.2756 0,4527

Actual Variance of
Component Estimators 0.0070 0.0091 0.0014 0.0082 0.0090 0.0013

Mean of Expected
Sampling Variances 0.0079 0.0111 0.0013 0.0093 0.0111 0.0012

Median of Expected
Sampling Variances 0.0068 0.0094 0.0013 0.0085 0.0094 0.0013

Parametric Lower Bound
Estimator (95%) 0.0721 0.0995 0.4062 0.0933 0.1018 0.3836

Parametric Upper Bound
Estimator (95%) 0.4001 0.4735 0.5528 0.4483 0.4736 0.5250

Non-parametric Lower
Bound Estimator (2.5%) 0.0952 0.1341 0.4024 0.1217 0.1363 0.3819

Non-parametric Upper
Bound Estimator (97.5%) 0.4192 0.4925 0.5513 0.4577 0.4925 0.5294
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Table 2
A Comparison of Bootstrapping Strategies for

a 150 and b 20

(No. of Data Sets - 416)

Value of Theoretical

Single Factor
Bootstrapping

A B AB,e

Bootstrapping
All Factors

B AB,e

Variance Components 0.2500 0.2500 0.5000 0.2500 0.2500 0.5000

Variance of
Theoretical Component 0.0005 0.0068 0.0002 0.0005 0.0068 0,0002

Mean Estimator
of Component 0.2514 0.2455 0.5029 0.3526 0.2429 0.4777

Median Estimator
of Component 0.2487 0.2410 0.5042 0.2760 0.2279 0.4791

Actual Variance of
Component Estimators 0.0012 0.0084 0.0007 0.1402 0.0078 0.0006

Mean of Expected
Sampling Variances 0.001C 0.0079 0.0002 0.00.38 0.0072 0.0002

Median of Expected
Sampling Variances 0.0010 0.0063 0.0002 0.0012 0.0005 0.0001

Parametric Lower Bound
Estimator (95%) 0.1835 0.0658 0.4510 -0.3810 0.0698 0.4297

Parametric Upper Bound
Estimator (95%) 0.3192 0.4251 0.5547 1.0865 0.4160 0.5257

Non-parametric Lower
Bound Estimator (2.5%) 0.1930 0.1205 0.4771 0.2195 0.1140 0.4523

Non-parametric Upper
Bound Estimator (97.5%) 0.3164 0.4461 0.5329 1.7959 0.4530 0.5064
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Table 3
A Comparison of Bootstrapping Strategies for

a= 20 and b .= 150

(No. of Data Sets - 553)

Value of Theoretical

Single Factor
Bootstrapping

A B AB,e

Bootstrapping
All Factors

A B AB,e

Variance Component 0.2500 0.2500 0.5000 0.2500 0.2500 0.5000

Variance of
Theoretical Component 0.0068 0.0005 0.0002 0.0068 0.0005 0.0002

Mean Estimator
of Component 0.2491 0.2807 0.4807 0.2452 0.2788 0.4775

Median Estimator
of Component 0.2343 0.2806 0.4813 0.2375 0.2783 0.4776

Actual Variance of
Component Estimators 0.0068 0.0011 0.0001 0.0068 0.0011 0.0001

Mean of Expected
Sampling Variances 0.0070 0.0013 0.0002 0.0072 0.0012 0.0002

Median of Expected
Sampling Variances 0.0059 0.0012 0.0002 0.0061 0.0012 0.0002

Parametric Lower Bound
Estimator (95%) 0.0874 0.2157 0.4530 0.0836 0.2138 0.4579

Parametric Upper Bound
Estimator (95%) 0.4107 0.3457 0.5084 0.4068 0.3481 0.4971

Non-parametric Lower
Bound Estimator (2.5%) 0.1102 0.2160 0.4575 0.1129 0.2144 0.4550

Non-parametric Upper
Bound Estimator (97.5%) 0.4091 0.3461 0.5040 0.4143 0.3461 0.5002
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Table 4
A Comparison of Bootstrapping Strategies for

a = 150 and b = 150

(No. of Data Sets - 117)

Value of Theoretical

Single Factor
Bootstrapping

A B AB,e

Bootstrapping
All Factors

A B AB,e

Variance Component 0.2500 0.2500 0.5000 0.2500 0.2500 0.5000

Variance of
Theoretical Component 0.0009 0.0009 0.0000* 0.0009 0.0009 0.0000*

Mean Estimator
of Component 0.2481 0.2568 0.5030 0.2524 0.2545 0.4987

Median Estimator
of Component 0.2467 0.2560 0.5041 0.2504 0.2548 0.4995

Actual Variance of
Component Estimators 0.0012 0.0010 0.0001 0.0012 0.0010 0.0001

Mean of Expected
Sampling Variances 0.0009 0.0009 0.0000* 0.0009 0.0009 0.0000*

Median of Expected
Sampling Variances 0.0008 0.0009 0.0000* 0.0009 0.0009 0.0000*

Parametric Lower Bound
Estimator (95%) 0.1893 0.1980 0.4932 0.1936 0.1957 0.4889

Parametric Upper Bound
Estimator (95%) 0.3069 0.3156 0.5128 0.3112 0.3133 0.5085

Non-parametric Lower
Bound Estimator (2.5%) 0.1882 0.2087 0..4922 0.1923 0.2055 0.4888

Non-parametric Upper
Bound Estimator (97.5%) 0.3060 0.3250 0.5116 0.3080 0.3184 0.5074

* <0.00005
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Table 5

A Comparison of Confidence Interval Estimators
under Single-Factor Bootstrapping for

a= 100 and b 50

(No. of Data Sets - 476)

A B AB,e

Theoretical Components 0.25000 0.25000 0.50000

Theoretical Sampling Variances 0.00137 0.00265 0.00010

Mean Estimators 0.25267 0.26257 0.50043

Median Estimators 0.24870 0.25560 0.50100

Variance of Estimators 0.00200 0.00376 0.00027

Skewness of Estimators 0.46947 0.54686 -0.49107

Kurtosis of Estimators 0.15032 0.07724 3.03976

Mean of Exp. Sampling Variances 0.00143 0.00348 0.00010

Median of Exp. Sampling Variances 0.00135 0.00278 0.00010

Mean of Est. Sample Variances 0.00187 0.00015 0.00016

Median of Est. Sample Variances 0.00157 0.00013 0.00014

Parametric Lower Bound (95%) 0.16502 0.14239 0.46822

Parametric Upper Bound (95%) 0.34032 0.38275 0.53264

Lower Bound of Estimators (2.5%) 0.17510 0.16440 0.46250

Upper Bound of Estimators (97.5%) 0.35550 0.40150 0.53150

Mean Boot Lower Bound (2.5%) 0.17645 0.24006 0.47576

Mean Boot Upper Bound (97.5%) 0.33687 0.28577 0.52370

Median Boot Lower Bound (97.5%) 0.17150 0.23370 0.47740

Median Boot Upper Bound (97.5%) 0.33300 0.27820 0.52300
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