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Abstract

In analyzing exploratory repeated measures data with more than

two measures, two competing tests must be administered

simultaneously if one is to make an efficient and effective decision

regarding the tenability, of the null hypothesis of no differences

among the measurement means. Obviously, such a procedure is not

without a cost vis-a-vis Type I error control. This study

represents a measure of that cost. The simulation results reported

here suggest that a single rule of thumb designed to control Type I

error (i.e., split the a or, alternatively, don't split the a ) is

not practical under all circumstances. A more dynamic method for

the satisfactory management of Type I error is reported.
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Type I Error for the Simultaneous Application

of Two Tests for Repeated Measures Data

Introduction

Behavioral scientists often use one or another variation of the

repeated measures research design to make decisions concerning

behavioral and psychological data (Edgington, 1974; Jennings and

Wood, 1976; Lana and Lubin, 1963). In an exploratory investigation

Where specific a priori contrasts cannot be reasonably formulated, a

researcher must depend upon an omnibus F statistic for a decision

regarding the presence or absence of a treatment effect. An

analysis alternative in this situation is the mixed model analysis

of variance (Scheffe, 1959). This particular analysis assumes,

lmong other things, a mathematical property known as sphericity

(Huynh and Feldt, 1970).

Huynh and Feldt (1970) and Rouanet and Lepine (1970) showed

that sphericity is necessary and sufficient for the ratio of mixed

model variances to be distributed as F. Huynh and Feldt (1970)

referred to this condition as sphericity while Rouanet and Lepine

(1970) used the term circularity. Departures from sphericity are

indexed by the value of E which is well known (Box, 1954; Geisser

and Greenhouse, 1958; Imhof, 1962).

Unfortunately, the mixed model test is not robust with respect

to even small departures from sphericity (Huynh, 1978). Departures

from sphericity cause the test to be positively biased. Moreover,

behavioral and psychophysiological data almost certainly depart from
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sphericity (Keselman and Rogan, 1980). Several correction factors

have been proposed to remedy this problem. In general, the

correction factors are fractions which when applied to the mixed

model degrees of freedom cause the test to approximate its

theoretical null distribution. The correction factor used in this

paper ( i ) was proposed by Greenhouse and Geisser (1959).

A second analysis alternative for this type of data does not

assume sphericity. This test evaluates the same null hypothesis,

but is conducted as a multivariate analysis of variance (Bock,

1975). The two algorithms, the adjusted mixed model and the

multivariate model, differ sufficiently to cause them not to be

interchangeable. In what follows, these differences are reviewed.

The Statistical Power Differential

The general form of the multivariate null hypothtsis for a

design with g groups, k repeated measures, and one dependent

variable per occasion, is:

H
o
: ABC' = D

where A is a g-1 x g contrast matrix representing the between group

hypothesis, Bisagxkmatrix of cell means, andCisak-lxk

contrast matrix representing the within factor hypothesis (Timm,

1975). In the single group repeated measures design there is no

between group hypothesis, therefore, the matrix A is a scalar set at

unity. The matrix D is typically a null matrix.

The multivariate sums of squares and cross products matrices
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for the hypothesis (H) and error (E, are given by:

H = CBt(X:X)-1BC'

E = C(Y-i)'(Y-i)C'

, and

5

where B is a 1 x k vector of the treatment means over the k

occasions, and X is a design matrix. Here, X is an n x 1 vector of

ones, where n is the number of subjects. The matrix C is the

k-1 x k contrast matrix, and Y is an n x k matrix containing the n

vectors of observations. The matrix Y is defined as Y = XB.

The omnibus multivariate repeated measures hypothesis can be

tested using

A = 1E1 / 1E + HI (3)

where A is Wilks's likelihood ratio '-riterion (Wilks, 1932) with

k1, 1, and n-k+1 degrees of freedom, and 1E! denotes the

determinant of the matrix E. A multivariate-F statistic can be

obtained by

F = [(1- A)/ A] (vi/v2) (4)

where vl are the k-1 hypothesis degrees of freedom, and v2 are the

n-k+1 error degrees of freedom.

The F statistic for the multivariate approach to repeated

measures given in Equation 4 is invariant to the linear contrasts in

the matrix C. That is, any combination cf k-1 linearly independent,

contrasts in the matrix C will yield the same test statistic. If

the contrasts in C are row-wise orthonormal, the omnibus mixed model

test statistic can be obtained from Equations 1 and 2 as well. The
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omnibus mixed model test statistic obtained through the multivariate

model is given by

F = [tr(H) / ql ] / [tr(E) / 92 ] (5)

where tr is the trace of a matrix, ql are the k-1 hypothesis degrees

of freedom, and q2 are the (k-1)(n-1) error degrees of freedom.

When k = 2 the mixed model and multivariate model tests are

identical. However, when k > 2, the two tests can differ

substantially. When k > 2 and e = 1, the mixed model test is always

more powerful considering its greater number of error degrees of

freedom. When k > 2 and e 1, the power of the two tests is

determined by the pattern of mean differences relative to the

structure of the variance-covariance matrix.

Consider the following explanation. Recall that B is a row

vector of the k means. The elements in the vector given by BC' are

the sum of the differences among the repeated measures found by each

contrast in C. The k71 elements of this vector are the contrast

effects. When they are squared, the contra:,c effects are referred

to with the following notation 11,2i, (i = 1, 2, ... k-1).

Let L be a matrix with component column vectors which are the

eigenvectors of CEC', where E is the k x k variance-covariance

matrix. When the orthonormal contrast matrix C is premultiplied by

by L', CEC' will be a diagonal matrix with the eigenvalues ( X )

along the diagonal. In other words, CEC' is reduced to its

canonical form with uncorrelated contrast variances along the
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diagonal. These variances are referred to with the notation .02,,
wi

where o2, = CZC'(i,i), (i = 1, 2, ... k-1), Note that each
wi

contrast effect, 02
i'

is associated with its contrast variance, o 2
,
i.

Building upon Imhof (1962) and upon Davidson (1972), Barcikowski

and Robey (1984a) explained the statistical power difference between

the mixed model test and the multivariate test by examining their

respective noncentrality parameters. A brief review follows.

With the above restrictions on C, the noncentrality parameter

for the mixed model ( 62 ) is given by the sum of the k-1 mixed

model contrast noncentrality parameters. The noncentrality

parameter for the ith mixed model contrast ( d2: ) is given by:
.

A2
n(k-1)02i

= 1 k-1
0
2

-Z
j=1 r

th

j

(6)

Similarly, the multivariate noncentrality parameter ( 12 ) is given

by the sum of the k-1 multivariate contrast noncentrality

parameters. The noncentrality parameter for the ith multivariate

model contrast ( g2i ) is given by:

2

2 PP i

g i
o
2

8

(7)
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When one (or some) combination(s) of the k means (i.e., 0 2
. )
1

represents most of the treatment effect and when that same

combination accounts for a relatively large portion of the treatment

by subjects interaction effect (i.e., a 2
), the mixed model test

l'i

dominates in terms of power. On the other hand, when that same

contrast accounts for a relatively small portion of the treatment by

subjects interaction effect, the multivariate test dominates in

terms of power. That is, the pooling of errors in the denominator

of 62 will wash out an isolated treatment effect when substantial

experimental error exists that is not associated with that treatment

effect.

Davidson (1972) found that the difference in power between the

two tests was most noticable when small treatment effects were

oupled with small n's (i.e., n exceeds k by no more than a few.)

Barcikowski and Robey (1984a) noted that small n's and small

treatment effects were likely occurrences in exploratory

investigations.

Exploratory investigations are those experiments conducted when

a researcher has little prior information, experience or both with

which to design a study. In a repeated measures research design,

this means that a researcher has no way of identifying a priori

which of the two repeated measures tests will be more powerful when

applied to the observations. That is, in an exploratory situation,

it is impossisble to make valid estimations of the above elements in
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order to complete the necessary calculations for determining the

test of choice. It is this research design dilemma that motivated

the the present study.

ERE22§.

Barcikowski and Robey (1984a, 1984b) and Robey and Barcikowski

(1984, 1987) addressed this dilemma by advocating simultaneous

application of the adjusted mixed model test and the multivariate

model test to evaluate the tenabiliAl, of the omnibus null hypothesis

in exploratory experiments. While this advice is sound with respect

to Type II error control, it is problematic with respect to the

maintenance of Type I error control. As a further step, Barcikowski

and Robey (1984a, 1984b and elsewhere) have suggested splitting the

Type I error tolerance ( a ) equally between the two tests. This is

probably a conservative procedure given that the Type I error rate

for two simultaneously conducted independent tests is 1-(1-a)2, or

approximately 2a. Others have informally suggested that since the

two tests are not independent, one might as well use the same a for

both tests.

The purpose of the present investigation was to estimate the

Type I error properties for the simultaneous application of the

mixed model test and the multivariate test. The mixed model test

was here adjusted for E. The research design selected for

examination was the single group repeated measures design. A Monte

Carlo technique was employed because the mathematical derivation of

the distribution for this procedure is precluded by the complexity

10
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resulting from two separate error teL and two separate error

degrees of freedom.

Methods

The independent variables in this Monte Carlo robustness study

were: the magnitude of the departure from sphericity; the nunber of

measurement occasions (k); and the number of observation units (n).

The magnitude of the departure from sphericity was varied at the

following levels: no departure (e.i., c = 1), slight departure

(i.e., c = .9), moderate departure (i.e., c = .75), severe departure

(i.e., c = .5), and a maximal departure (i.e., c = 1/(k-1)). The

number of occasions in a single group repeated measures design was

varied at 3, 5, 7 and 10. The number of observations in the design

was varied at (k-1) + 3, (k-1) + 10, (k-1) + 20, and (k-1) + 30.

Thus, the research design under investigation was represented by

reasonable ranges of departures from each of sphericity, of design

size and of sample size.

The dependent variable in this experiment was the proportion

( v ) of incorrect rejections of the null hypothesis as indicated by

at least one of the two algorithms.

A FORTRAN subroutine, DRNMVN, from the International

Mathematical and Statistical Libraries, Inc. (IMSL, 1987) 4as used

to generate multivariate normal data for each variance-covariance

matrix. The analysis program was a double precision G level

VS FORTRAN program.
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Statistical Hypotheses

The general form of the null and alternate hypotheses were

Ho: n = a and Ho: n a. Here, n represents the population

proportion of tests which exceed a critical value, and a represents

nominal Type I error. Nominal Type I error was examined at .01 and

.05. Bradley's (1978) robustness criterion of ai-a(0.5) was adopted

as a definition for adequate Type I error performances. Thus,

departures of .005 from a = .01, and departures of .025 from

a = .05 were defined as meaningful. A two-tailed test for

proportions described by Cohen (1977, p. 213) was used to analyze

the obtained results. The a priori m for all applications of the

proportions test was set at .01. The desired minimal statistical

power for all applications of the proportions test was set at .80.

Following the method for establishing sample size described by Cohen

(1977), it was determined that 5711 observations were needed to

evaluate Ho: n = .01, and that 1085 observations were needed to

evaluate Ho: n = .05.

Results

The results of this experiment can be found in Tables 1

through 5. In Table 1 it can be seen that when the sphericity

assumption is met, the simultaneous test procedure yields

acceptable. albeit slightly elevated, Type I error rates. In

general, the same pattern can be seen in Table 2 which contains the

observed Type I error rates for the slight departure from sphericity
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(i.e., E = .9) condition.

Table 3 contains the 11 values observed under the moderate

departure from sphericity (i.e., e = .75) condition. This table

contains seven unacceptably high values at the a = .01 level and one

t :nacceptably high value at the a = .05 level. While these eight

values exceed their respective a values, none of them represents a

drastic departure. The situation is more serious under a severe

departure from sphericity (i.e., E = .5). More than half of the

observed Type I error rates in Table 4 exceed a. The mean of the

unacceptable ii's is approximately 1.6a at both levels.

Table 5 contains the results for the condition of a.aximal

departure from sphericity (i.e., e = 1/(k-1)). Every observed

Type I error rate reported in Table 5 excceds a. In fact, as k

increases, it approaches 2a. Note that the values reported in Table 5

for the k=3 condition are the same values reported in Table 4. That

is, E = .5 in both cases.

Discussion

The pattern characterizing these results across the various

departures from sphericity is clear. As the value of e decreases

the values of ii increase. This pattern is probably best explained

by the correlation between the two tests. When the sphericity

assumption is met or nearly met the two tests are maximally

correlated. It can be seen that when e = 1, the two noncentrality

parameters are equal. As the magnitude of the departure from

sphericity increases, the two tests become less well correlated. As

13
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can he seen in Table 5, Tr approaches 1-(1-a) 2 when e = 1/(k-1),

particularly for the greater levels of k.

The question to be clarified by these results is, "What

magnitude of Type I error tolerance should be split equally between

the two repeated measures tests?" To date, answers to this question

have ranged from a (i.e., give each test one half of a ) to 2a

(i.e., give each test the full measure of a ).

The results repoL,ed here suggest that the former tack is

reasonable when the sphericity assumption is, or is nearly, met.

However, when the data are characterized by a very severe departure

from the sphericity assumption, the latter approach is indicated.

Neither tack is particularly appropriate under a moderate departure

from sphericity. If one assumes on the basis of Huynh and Feldt

(1976) that behavioral data usually do not fall below e = .75, then

the liberal decision appears the more attractive in terms of general

merit.

The dilemma, however, remains. The fact that the magnitude of

the departure from sphericity cannot be estimated a priori in an

exploratory study precludes prudent application of either tack. For

this reason we recommend the following.

1. Treat the value of i as a descriptive statistic.

2. Set a for the simultaneous test procedure somewhere
between la and 2a on the basis of the magnitude of the
departure from sphericity.

3. That error tolerance should then be divided equally
between the two tests.

14
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Accordingly, the Type I error tolerance for the simultaneous test

procedure would approach 2a as the value of i increases. Under the

worst of all circumstances vis-a-vis sphericity, the Type I error

tolerance for the simultaneous test procedure would be set at, or

near, la.

An aspect of this strategy which deserves comment is the fact

that a sample estimate becomes the linchpin for a decision regarding

an inferential test. While this practice is often cause or

concern, here we note the results of several simulation studies that

have compared the i adjusted mixed model test to the E adjusted

mixed model test in terms of Type I and Type II error performance

(Collier, Baker, Mandeville and Hayes, 1967; Mendoza, Toothaker, and

Nicewander, 1974; Stollof, 1970; and Wilson, 1975). In each of

these studies, the estimate perfomed very much like the parameter.

As a result, practitioners now routinely adjust the mixed model

degrees of freedom with i rather than E. It would seem then that i

represents relatively stable and unbiased estimate.

Subsequent simulations have indicated that setting the value in

step #2 at 1.7 has the desired effect in terms of Type I error

control when E = .75. Moreover, values of 1.25 and 1 have worked

well for E = .5 and E = 1/(k-1), respectively. Researchers who

prefer a more stringent definition of Type I error tolerance than

that used here may want to set the value in step #2 at 1.8 or so,

even when the sphericity assumption is nearly met.
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Conclusion

Barcikowski and Robey (1984a, 1984b) and Robey and

Barcikowski (1984, 1987) have related a strategy for analyzing

exploratory repeated measures data which effectively manages Type II

error. Their strategy affords the application scientist confidence

with respect to the detection of false omnibus null hypotheses. The

results reported here provide the application scientist with similar

confidence vis-a-vis the management of Type I error when analyzing

repeated measures data.
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Observed Type I Error Rates for the Simultaneous Application
of Both Tests When Sphericity Exists

k = 3 k = 5 k = 7 k = 10

k-1+3 .013 .010 .011 .010

.073 .064 .068 .065

k-1+10 .013 .010 .015 .014

.064 .063 .067 .071

k-1+20 .013 .014 .012 .016*
.062 .063 .064 .070

k-1+30 .010 .016* .012 .014
.060 .066 .064 .064

Note. The double entries for each Monte Carlo problem
represent a at .01 (top), and at .05 (bottom). An asterisk
indicates a significant (p < .01) and a meaningful departure
from a.
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TABLE 2

Observed Type I Error Rates for the Simultaneous Appication
of Both Tests When s = .9

n k = 3 k = 5 k = 7 k = 10

k-1+3 .014 .014 .012 .012

.073 .070 .068 .064

k-1+10 .015 .014 .013 .015

.068 .073 .071 .072

k-1+20 .016* .015 .016* .015

.062 .069 .070 .064

k-1+30 .017* .014 .013 .012

.067 .067 .063 .065

Note. The double entries for each Monte Carlo problem
represent a at .01 (top), and at .05 (bottom). An asterisk
indicates a significant (R < .01) and a meaningful departure
from a.
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TABLE 3

Observed Type I Error Rates for the Simultaneous Appication
of Both Tests When c = .75

n k = 3 k = k = 7 k = 10

k-1+3 .016k .015 .012 .011

.071 .077* .064 .068

k-1+10 .016* .016* .016* .014

.068 .075 .067 .072

k-1+20 .018* .018* .013 .015

.072 .072 .072 .071

k-1+30 .015 .017* .015 .014
.071 .070 .069 .068

Note. The double entries for each Monte Carlo problem
represent a at .01 (top), and at .05 (bottom). An asterisk
indicates a ,significant (2 < .01) and a meaningful departure
from a.
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TABLE 4

Observed Type I Error Rates for the Simultaneous Appication
of Both Tests When c = .5

n k = 3 k = 5 k = 7 k = 10

k-1+3 .017* .013 .015 .013
.079* .071 .080* .077*

k-1+10 .016* .014 .012 .015
.086* .074 .074 .079*

k-1+20 .017* .017* .016* .016*
.075 .077* .074 .079*

k-1+30 .018* .016* .016* .014
.081* .074 .080* .075

Note. The double entries for each Monte Carlo problem
represent a at .01 (top), and at .05 (bottom). An asterisk
indicates a significant (2 < .01) and a meaningful departure
from a.
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TABLE 5

Observed Type I Error Rates for the Simultaneous Appication
of Both Tests Under a Maximal Departure from Sphericity

n k = 3 k = 5 k = 7 k = 10

k-1+3 .017* .018* .00k .020*
.079* .088* .090* .098*

k-1+10 .016* .017* .019* .019*

.086* .095* .088* .094*

k-1+20 .017* .019* .020* .020*

.075* .086* .087* .089*

k-1+30 .018* .018* .019* .020*
.081* .085* .091* .090*

Note. The double entries for each Monte Carlo problem
represent a at .01 (top), and at .05 (bottom). An asterisk
indicates a significant (R < .01) and a meaningful departure
from a.


