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Goodness of Fit in Confirmatory Factor Analysis:

Tha Effects of Sample Size and Model Complexity

ABSTRACT

The purpose of the present investigation is to examine the infliuence of
sample size (N) z2nd model complexity on a set of 23 goodness-of—fit indices
including those typically used in confirmatory factor analysis. For data
sisulated from each of two different population models, values for 17 of the
23 fit indices were at least moderately influenced by N, and many of these
indices failed to control sufficiently for the inclusion of euperfluous
parameter. (i.e., parameters that had zero values in the population model).
Four of the indices were relatively independent of N and were not
significantly affected by the inclusion of superflucus parameters. The 4
recommended indices are two measures of fit based on the noncentrality
parameter proposed by McDonald (in press), the widely known incremental
(relative) index developed by Tucker and Lewis (1973), and a new

incremas.;al index called the McDonald-Marsh Index (MMI) that is based on une
of McConald’s noncentrality indices.
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Goodness of Fit in Confirmatory Factor Analysis:
The Effects of Sample Size and Model Complexity

The purpose of the present investigation is to examine the influence of
sample size (N) and of msodel complexity on different goodness-of-fit indices
used in confirmatory factor analysis (CFA). In CFA responses to p observed
variables by N subjects are summarized by a (p x p) sample covariance matrix
and it is hypothesized that the corresponding population covariance matrix
can be described by K parameters, namely the factor loadings, the factor
variances and covariances, and the residual variances. To the extent that
the fitted population covariance matrix T derived from a set of (in some
sense) best-fitting paraneters is similar to the chserved sample covariance
matrix S, the model is supported. The probiom of goodness of fit is how to
decide whether I is sufficiently similar to S to justify the conclusion that
a specific model adequately fits a particular set of data. The present
focus is how goodness of fit as c3sessed with a variety of indices varies
with il, the number of cases in the data to be fit, and model complexity as
measured by K. the numbar of parameters estimated in a series of nested
sodels.

The classical form of statistical hypothesis testing is generally
inappropriate for evaluation of fit in CFA. Cudeck and Browne (1983) noted
that since hypothesized models are best regarded as approximations to
reality rather/;han exact statements of truth, any model can be rejected if

the sample size is sufficiently large. From this perspective they argued
that it is preferable to abandon the statistical hypothesis testing
approach. Similarly, Joreskog and Sorbom argued that statistical hypothesis
testing is generally inappropriate because "the statistical problem is not
one of testing a given hypothesis (which a priori may be considered false)
but rather one of fitting the model to data and to decide whether the fit is
adequate or not" (p. 1.38-39). McDonald (1985, p. 54) also noted that
hypothesis testing is inappropriate for selecting a restrictive model since
“all common factor hypotheses are false, because all restrictive hypotheses
are faise, and they will be proven false by the use of a sufficiently large
sample size.” In actual application only the "saturated” model can be true.
Accordingiy, a large number of fit indices have been proposed (e.g., Akaike,
19743 Bollen, 19843 Bantler & Bonett, 19803 Bozdogan, 19873 Cudeck & Browne,
19833 Hoelter, 1983; Horn & McArdle, 19803 James, Mulaik & Brett, 1982
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Joreskog & Sorbom, 198f; Marsh, Balla & McDonald, 1988; McArdle, 19863
McDonald, in press; McDonald & Marsh, 1988; Schwartz, 19783 Steiger & Lind,
19603 Tanaka, 19873 Tanaka & Huba, 19843 Tucker : Lewis, 1973) to facilitate
the evaluaticn of fit and the comparison of alternative models.

Pesirable Characteristics of EL; Indices,

The focus of the present investigation is on two potential problems in
assessing goodness of fit. First, some fit indices are substantially
influenced by N so that tests of the same model based on the same variables
for a nev sample from the same population are not directly comparable unless
N is alsn held constant. Such an effect of N also makes problematic any
guidelines of what constitutes an acceptabie fit. Thus, some researchers
have developed fit indices that are claimed to be relatively independent of
N. Second, the inclusion of additional parzmeters. particularly when based
on a posteriori criteria and tested with the same data, may provide an
iilusory improvesent in fit. Thus, some researchers have developed fit
indices that ara claimed to compensate for capitalization on chance. From
these perspectives, an ideal index of fit would be relatively independent of
N, provide an accurats measure of goodness of fit for competing models, vary
along a well-defined continuum that is easily interpreted, and control
appropriately 7or macdel complexity.

Many researchers have examined the effect of N on gocdness of fit
(e.g., Anderson & Gerbing, 1984; Bearden, Sharma & Teel, 1982; Bentler %
Bonett, 1980; Bollen, 1984; Boomsma, 1982; Cudeck & Browne, 1983; Gerbing &
Anderson, 1985; Homlter; 1983; Joreskog & Sorbom, 19813 Marsh, Balla &
McDonald, 1988; Marsh & McDonald, 1988) and some have proposed fit indices
that are claimed to be indspendent of N. Marsh, B;  la, and McDonald used
actual and simulated data to demonstrate that near.y all frequently used
indices are substantially influenced by N. Of the more than 30 indices that
they considered, “he Tucker-Lewis index (TLI) was the only frequently used
index that was relativaly independent of N.1

Researchers have also examined the effect of the number of parameters
included in the hypothesized model on goodness of fit (e.g., Akaike, 1974;
19813 Anderson & Gerbing, 1984; Bentler % Bonett, 19803 Boomsma, 1982;
Bozdogan, 1987; Cudeck & Browne, 19833 Gerbing & Anderson, 1985; James,
Mulaik & Brett, 19€2; Joreskog & Sorbom, 19813 Schwartz, 1978; Tucker %
Lewis, 1973). Many fit indices are monotonically related to model complexity

e
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as measured by the nusber of parameters estimated in a series of nested
sodels s0 that for sample cata goodness of fit will continua to improve with
the addition of more parameters so long as the df is positive. From this
perspective the best fitting model will always be the saturated model with
df=0. Howaver, for sample data this improved fit due to the inclusion of
additional parameters may be due to capitalization on chance. Furthermora
the parameter sstimates for a saturated modal may be uninterpretable and
ressarchers often ssek more parsimonious models that are both theoretically
defansible and able to deucribe their data adequately.

Researchers have approached this problem of evaluating fit in relation
to model complexity from different perspectives. For example, James, et al.,
(1982, p. 13%) ask "how efficient is the increase in fit going from the null
model with many degrees of freedom to ancther model with just a few degrees
of freedom in terms of degress of freedom iost in estimating more
pirameters?” Joreskog and Sorbom (1981, p. I. 40) note that when the change
in X2 is close to the difference in df due to the addition of new
parameters, then the “improvement in fit is obtained by ’captializing on
chance,’ and that the added parameters say not have real significance and
" ®2aning.” Cudeck and Browne (19833 also see Marsh, 1987) proposed the method
of cross-validation to determine the ability of a set of parameter estimates
to adequately describe data based on new cbservations from the same
population and to determine the extent to which capitalization on chance has
occurred. Cudeck and Browne also demonstrated the use of CAK and CSK (see
definition in Appendix 1), indices described by Akaike (1974) and by
8chwartz (1978) respectively that were reccaled in terms of FF (see Appendix
1), for this purpose. Bozdogan (1987) noted that model selection requires
researchers to achieve an appropriate balance between problems associated
with overfitting and underfitting the data, and that different fit indices
vary in the balance of protection that they offer from these conflicting
possibilities. Similarly, McDonald (in press) noted the need to strike a
balance between badness of fit and model complexity or, equivalently,
between goodness of fit and model parsimony. He furtner noted that this
compromise 13 not an issue of sampling in that even if the true population
were known, an appropriate compromise would still be required.

Cudeck and Browne (1983) examined the joint influence of sample size
and mode! complexity on goodness of fit. Thay considered the CAK and CSK
indices that are a function of the number of estimated parameters. These
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indices are possibly a useful indication of fit for comparing competing
models that vary in thn number of parameters used to describs the same data
and have recently received much attention (e.g., Bozdogan, 1987). Cudeck and
Browne’s results, as well as results by Marsh, Balla and McDonald (1988),
show empirically that thes« indices are substwntially influenced by N, and
HicDonald (in prass) demonstrated that this relation was inherent in the
math.ematical form of the indices. The Akaike index penalized the inclusion
of additionrl parameters less severely than the Schwartz index so that it
consistently led to the selsction of more complex models (see Bozdogan,
1987). This effect of sample size need not invalidate the use of these
indices for purposes of model sa2lection if the =ffects of N are relatively
constant across the different scdels. That is, the same model may be
selected as "best” for each of the different sample sizes even though the
actual values of the %it indices varied according to sample size. However,
Cudeck and Browne found that the relative fit of competing models did vary
with N. For small sample sizes, simple models positing fewer parameters had
better fit indices whereas for large sample sizes more complicated models
positing more parameters, and, ultimately, for sufficiently large sample
sizes, the saturated model, had better fit indices. As noted by McDonalc
(in press), two studies differing only in sample size would on average lpad
to the support of models differing in complexity and no investigator would
reasonably use such indices if the sample size were large enough to require
the selection of an uninterpretably complex model.

- The Present Investigation

Our objective is to examina the effect of model complexity and of N on
a set of 23 goodness of fit indices. Data were generated from one of two
known population models and a variety of models used to fit the data were
developed in relation to these known population models. Some models posited
parameters to be zero that were known to be non-zero for the population
model, thus providing models that were under-fit. Other models estimated
values for superfluous paranmcters ti.. were known to be zero for the
population model, thus praviding models that were over-fit. Covariance
matrices to be fit by the alternative models were based on one of six
different sample sizes varying from 50 to 1400.

The set of 23 goodness of fit indices considered here are described in
mrore detail in Appendix I. For present purposes the indices are classified
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into three types, namely: (a) stand-alone (absolute) indices, (b) type-1
incremental (relative) indices, and (c) type-2 incremental (relative)
indices. The 13 stand-alone indices are based on the results of just a

target model, the a priori model posited by the researcher to fit the data.

These indices are provided by, or easily computed from results provided by,
LISREL and most other statistical packages used to fit structural equation
sodels.” The incremental indices are based on the difference between the
target sodel and an alternative model such as a "null® model in which ¥ is. a
diagonal matrix (Bentler & Bonett, 1980). Incremental type-2 indices
incorporate an expected value of an index for a true model whereas
incremental type-1 indices do not (see Appendix). Marsh, Balla and McDonald
(1988) examined 19 of the Z3 indices considered here -- all but Dk, Mc, Z,

and the McDonald-Marsh Index (MMI) -~ and found that only the TLI was

relatively independent of N (also cee footnote 1). McDonald (in press)
indicated that his DK and Mc indices were relatively independent of N. 2,
because it is monotonically related to X2, should be affected by sample
size. The MMI was devaloped for purposes of the present investigation. 2

Method
The CFA Model and Analyses

All analyses were conducted with LISREL V (Joreskog & Sorbom, 1981)
using the method of maximum 1ikelihood. In each of the analyses involving 9
cbserved variahles a set of eight substantive models posited betwaen 1B anc
33 paramcto&s %o define 1, 2, or 3 factors. Hence the df (.5 x 9 % 10 - K)
varied from 27 to 12. Thess eight models and their relation to the
population model used to generate the data are susmarized in Table 1. A null
model was also tested for each covariance matrix such that the reproduced
covariance matrix was a diagonal matrix of variances and the nine measured
variables were posited to be uncorrelated. The df for the null model (.5 x 9
x 10 - 9 = 34) was constant for all the analyses. These nine models, the
eight substantive mcdels and the null model, were tested for each of 120
covariance matrices described below.

Ingsert Tables 1 & 2 About Here

The Data.

The Sample Sizes, The six sample sizes to be considered in the present
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investigation, 30, 100, 200, 400, 800 and 1400, were selected to span the
range of sampie sizes typically considered in CFA. For each of the two data
sets to be considerad, ten random samples were generated for each sample
size and the same nine models were fit to these 120 (2 data sets x & sample

sizes x 10 cases) covariance matrices.

Simple structyre sisulated data (SSIM). The nine measured variables
were defined with the random number generator from the commercially
available SPSS package (Hull & Nie, 1981). Each variable was defined to
reflect only one factor (factor loadings were .6, .7 or .B8) and a normsally
distributed random error component, and the three factors were defined to he
correlated (tactor covariances were .08, .12, and .24). A total of 31,%00
cases were generated and divided into 40 sets of data such that esach sample
size was represented by 10 covariance matrices. The eight substantive models
and the null model were fit to each of the 40 covariance matrices.

The population model used to generate this data was one of the
substantive models to be considered (3SF, see Table 1) and thus was the most
parsimonious model (i.e., contained the fewest estimated parameters) able to
tit the data. Models positing only one or two factors (1Uf and 2UF in Table
1) should not be able to fit the data. In each of the remaining five
substantive models, all the parameters in the 3SF model are included along
with a varying number of additional parameters. These additional parameters
are superfluous in that their population values, the values from the
population models used to generate the data, are zero. The fit indices of
these ovor-fit’;odcls are used to evaluate how various indices are affected
by capitalization on chance. To the extent that any of these over—fit models
fit the SSIM data significantly better than the 3SF model according to a
partizular index, tlien the index does not control for the effects of
capitialization on chance. To the extent that any of these models fit the
data significantly poorer than the 3SF model according to any particular
indices, then, perhape, the index over-compensates for capitalizetion on
chance. This relation between the substantive models to be tested and the
SSIM data was the basis of a priori contrasts used to compare various models
(see Table 2).

Compley Structure Simulated Data (CSIM), The nine measured variables
were defined as with the SSIM except that six of the nine measured variables

-~ two for each factor - ware defined such that each should have a small
loading (.2) on one factor in addition to the one it was dessignated to
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reflect. (In Table 1, the 9 factor loadings corresponding to those in the
SSIM data are called major factor loadings whereas the additional & factor
loadings in the model used to generate the CSIM data are called minor
loadings). Again a total of 31,500 cases were generated and divided into &0
sets of data such -that each sample size was represented by 10 covariance
matrices, and the null and hypothesized models were fit to these 40
covariance matrices.

The population model used to generate the CSIM data was one of the
substantive -models to be considered (3CF, see Table 1) and so it is the most
parsimonious model able to fit the CSIM data. Model 3UF, positing three
unrestricted fuctors, should also be able to fit the data adequately though
it is less parsimonious. Models positing oniy one or two factors (1Uf and
2UF in Table 1) should not be able to ¢it the data. Furthermore, in each of
the rgnaining four substantive models positing three factors, either 3
(Models 3F1 and 3F2) or all & (Models 3F3 and 3SF) of the minor factor
loadings are constrained to be zero. Of these four sodels, only Model 3F3
contains superfluous parameters, parameters whose population value is zero.
This set of models providng additional tests of how the different indices
vary according to model complexity and models known to over—-fit or under-fit
the data in relation to the known populaticn parameters. Two sets of models
(Models 3UF and 3CF, and Models 3F3 and 3SF) should be equi valent in their
ability to fit the data but differ in the number of parameters that are
estimated. For two additional sets of models (3UF vs. 3SF; 3F1 and 3F2 vs.
3SF) the uodef/that should fit best requires more parameters so that an
index that aover-corrects for capitalization on chance may distort
appropriate differences in fit. This relation between the substantive models
to be tested and the CSIM data was the basis of a priori contrasts used to
compare various models (see Table 2).

Results

The analyses to be described are based on a set of B (substantive
sodels) x 6 (sample sizes) ANOVAs which were followed up by the set of 9 a
priori contrasts described in Table 2. Separate analyses were conducted for
each of the 23 fit indices and separate analyses were conducted for results
of the SSIM and CSIM data.

Simple Simulated (SSIM) Data,

10
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Hodels. In relation to the population model used to generate che SSIM
data, Models 3 - 8 should be able to fit the data (i.e., all nonzero
population parameters are estimated) whereas Models 1 and 2 should not. For
all 23 fit indices there are significant differences in the ability of
competing models to fit the data (see Etas attrioutable to the Model in
Table 3), and most of this difference is due to the poorer fits of Models 1
and 2.

For the SSIM data, models 3 - 8 are all able to fit the data but differ
in the number of paraceters that are posited. Because all these models
should be able to fit the data, it could be argued that the models shculd
not differ in goodness of fit. For analysis conducted on just Models 3 - 8
(Table 4) the effect of the model complexity varies substantially with the
fit indexy 7 indices show significantly better fits when more (superfluous)
parameters are estimated, & indices show significantly poorer fits when more
parameters are estimated, and the remaining 10 indices are not significantly
related to the number of estimated parameters.

Insert Tables 3 & 5 and Figure 1 About Here

For all but 3 indices (DK, MC, and LHRI1) the effect of the models
interacted significantly with sample size (gsee Table 3), though the size of
this interaction was substantial for only 6 indices. Particularly for these
6 indices there is a gimilar pattern of interaction. For Models 1 and 2 that
are unable io.fit the data, fit becomes substantially poorer as sample size
increases (see X2 in figure 1). For Models 3 - 8 that are able to fit the
data, differences between models less related to sample size. Thus, for
analyses of just Models 3 — B8 (Table 4) the size of this interaction is much
smaller. The form of the interaction is illustrated for other selected
indices in Figure 1.

Simple Size (N) Effect. The effect of the six levels of N is
statist cally significant and substantial for 17 of the 23 indices ' ‘as of
.26 to .963 see Table 3). For these 17 indices most of this effect can be
explained by the linear effect of log N (rs of .2% to ~.90). The direction
of the effect of N, however, depends on the particular index (see Table 3
and Figure 1). The relation between goodness of fit and N is not
statistically significant for McDonald’s Dk and Mc stand-alone indices and
the MMI relative index, and is very small for the TLI relative index.

11
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A Priori Contrasts, The purposes of the a priori contrasts are to test
the ability of the 23 indices to differentiate among models known to differ
in their ability to fit the data, and to evaluate the indices in relation to
capitalization on chance. For the SSIM data, the set of 9 a priori contrasts
can be divided into two types. Contrasts 1 and 2 compare models that are
krown to differ substantially in their ability to fit the data, whereas
contrasts 3 -~ 9 compare models that are all able to fit the data.- For
contrasts § and 2, comparisons based on 20 of the 23 indices are
statistically significant and in the right direction. For CN both contrasts
are in the right direction but one is not statistically significant. For the
two parsimony indices one or both of the contrasts are significant but in
the wrong direction. These results based on contrasts 1 and 2 provide
support for 20 of the indices, but call into question the usefulness of CN
and the two parsimony indices.

Contrasts 3 - 9 are all based on comparisons among Models 3 - 8 that do
not differ in their ability to fit the data. Because the SSIM data was
generated by a population model containing only 21 parameters estimated in
Model 3SF (Table 1), additional parameters are superfluous. For just
contrast 5 the models heing compared are equally able to fit the data and
posit the same number of parameters (each contains 3 superfluous
parameters); this contrast fails to reach statistical significance for any
of the 23 indices.

Contrastx-3, 4, 4, 7, 8 and 9 all compare models that are able to fit
the data but differ in the number of (superfluous) parameters. For each of
these contrasts (Table 3), a plus (+) indicates that the model with more
parameters fits the data better whereas a minus (-) indicates the opposite.
The behavior of the different fit indices in relation to these contrasts
vary substantially and fall into three classifications.

%) For 8 indices (FF, LHR, X2, MR, GFI, FFI1, LHRI1, X211) all
statistically significant contrasts favor the models that posit more
parameters. For thase 8 indices, even those contrasts that are not
statistically significant favor models that posit more parameters. For these
indices more complex models positing more parameters fit the data better.
Because the true population values for these additional parameters are known
to be zero for this simulated data, this improved fit is jllusory and due to
capitalization on chance.

12
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2)'For 6 of the fit indices (CSK, CAK, OCSK, OCAK, PIX2, and PIRMR),
all statistically gignificant contrasts favor models that posit fewer
parameters. For these &6 indices, even those contrasts that are not
statistically significant favor models with fewer parameters. That is,
models positing more (superfluous) parameters fit the data more poorly than
msodels positing fewer parameters so that these indices zan be said to
penaiize model complexity. The danger in penalizing mcdel complexity too
severely is observed for the two parsimony indices in relation to contrasts
1 and 2. For both these contrasts, the better model (in relation to the
known population mudel) posited more parameters. T.a two parsimony indices
S0 severely penalize the inclusion of additional parameters that better
fitting models have significantly poorer indices of fit.
contrasts for the remaining four indices in this second group suggests that
the C8K and OCSK penalize modei complexity more severely than CAK and OCAK
(also see Bozdogan, 1987, for a mathematical basis for this observation).

Examination of the

However, bscause contrasts 1 and 2 are statistically significant and in the
right direction for each of these four indices, there is no basis €or
claiming that model complexity is penalized too severely. Indeed, it may be
reasonable to severely penalize the inzlusion of superfluous parameters so
long as models better able to fit known population parameters have better
indices than models less able to fit known population parameters. Although a
useful guideline for simulated data, this condition cannot be tested for
real data since the population parameters can never be known.

3) For the remaining 9 fit indices (X2/d4f, AGFI, CN, DK, MC, Z,
X2/dfll, TLI, and MMI), none of the contrasts are statistically significant.
That is, for these indices models positing more (superfluous) parameters do
not differ significantly from models positing fewer parameters.

Summary of SSIM apalyses, Analyses of the SSIM data were used to
examine the behavior of 23 indices of fit.
TLI, and MMI) were relatively independert of N and were not significantly

Four of the indices (DK, Mc,

affected by tha inclus:on of superfluous parameters. The remaining 19
indices were at least moderately influenced by N and many were significantly
affected by the inclusion of superfluous parameters. CN, in addition to
being substantially influenced by sample size, did not differentiate between
rnodels known to differ in their ability to fit the data. The two parsimony
indices, in addition to being moderately influenced by N, were shown to

penalize model complexity too severely.
10
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Complex Simulated (CSIM) Data,

Models. For the CSIM data the effect of the different ‘nodels is
statistically significant and substantial for all 23 fit indices (Table 5).
This effect of models interacts significantly with M for 17 of the fit
indices, though the size of the interaction is substantial for only &
indices. The indices most affected by this interaction and the nature of
this interaction are similar to that observed for the SSIM data (also see

Figure 1), and so are not discussed further.

Insert Table §

Sample Size (N) Effect, The effect of N is statistically significant and
substantial for 19 of the 23 indir~~ (etas of .26 to .96; see Table ). For
these 19 indices most of this effect is linearly related to log N {rs of
“.25 to 2.90), but the direction of this effect depends on the index (see
Table 5 & Figure 1). The relation between goodness of fit and N is not
statistically significant for Dk, Mc, TLI and MMI. Again, these results are
similar to those observed for the SSIM data.

A Priori Contrasts. For the £SIM data, the set of 9 a priori contrasts

can be divided into two types. Contrasts 1, 2, 4, 5, &6, 7, and 9 are between
models known to differ in their ability to fit the data, whereas contrasts 3

and 8 compare models that are equally able to fit the data but differ in the

" number of superfluous parameters that are posited.

Contrasts 1 and 2 are gross tests in that they compare the 3
unrestricted models positing 1, 2 and 3 factors. For 20 of the 23 indices,
contrasts 1 and 2 are statistically significant and in the right direction.
For CN both contrasts are in the right direction but one is not
statistically significant. For the two parsimony indices one or both of the
contrasts is significant but in the wrong direction. These results based on
contrasts 1 and 2 are simiiar to findings based on the SSIM data and so are

not discussed further.

Contrasts 4 and 9 are also rather gross tests in that models that are
able to fit the data (3UF and 30F) are compared to model 3SF in which all &
minor factor loadings known to be nonzero in the population model are fixed

to be zero. For 17 of the 23 indices, these contrasts are statistically

11
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gsignificant and in the right direction. For CSK, OCSK, DOCAK and the two
parsimony indices, one or both of these comparisons is statistically
significant and in the wrong direction. This demonstrates that with respect

to these contrasts, these indices penalize model complexity too seserely.

Contrasts & and 7 are less gross in that the models being compared
differ in terms of only 3 of the &6 minor factor loadings. For 16 of the 23
indices, these contrasts are statistically significant and in the right
direction. For the two parsimony indices, both these contrasts are
statistically significant but in the wrong direction. For CSK the contrasts
are in the wrong direction, but not statistically significant. For CAK, CN,
OCSK, and LHRI1, one of these contrasts was not statistically significant
though none were in the wrong direction. This demonstrates that with respect
to these contrasts, the at least the parsimony indices penalize model

complexity too severely.

Contrast 5 compares models 3F1 an& 3F2 in which 3 of the 6 minor factor
loadings are fixed to be zero with model 3F3 in which all & are fixed to be
zero. Thus, Models 3Fi and 3F2 should be able to fit the data better than
model 3F3. In model 3F3, however, 3 additional superfluous parameters are
also estimated so the df is the same for all three models. ¥For only 5 (X2,
X2/df, 0CAK, OCSK, and Z) of the 23 indices is this contrast statistically
significant and in the right direction. For all 23 indices, however, this
contrast was in the right direction and the contrast approached statistical
significance for many of these indices. It is also relevant to note that the
results of thi;’contrast are not related to the number of estimated

parameters in that all the models posited the same number of parameters.

Contrasts 3 and 8 compare models that are equally able to fit the data
but differ in the number of (superfluous) parameters. As cbserved with the
SSIM data in this situation, the behavior of the indices fell into three
general categories. For 10 indices one or both of these contrasts are
statistically significant such that the model positing more parameters fits
the data better. As noted previously, this improved fit is illusory and
represents capitalization on chance. For 4 indices one or both of these
contrasts are statistically significant such that the model positing fewer
parameters fits the data more poorly. For 9 indices, neither of these

contrasts is statistically significant.

Summary of CSIM analyses. Analyses of the CSIM data were used to

12
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examine the behavior of 23 indices of fit. Four of the indices (DK, Mc,
TLI, and MMI) were relatively independent of N and were not significantly
affected by the inclusion of superfluous parameters. The remaining 19
indices were at least moderately intluenced by N and many were shown to
significantly capitalize on chance when superflucus parameters were
estimated. CSK, OCSK, the two parsimony indices, and perhaps CAK in addition
to being moderately influenced by N, were shown to penalize model complexity
too severely in that models less able to fit the data provided better fits
than medels better able to fit the data. These findings are generally

consistent with those based on the SSIM data.

Discussion

Results for both the SSIM and CSIM data lead to clear conclusions about
the behavior of fit indices considered here. For 19 of the indices ~— all
but Dk, Mc, TLI, and MMI -~ there was a moderate or large effect of N.

These results are consistent with conclusions by Marsh, Balla and McDonald
(1988), Marsh and McDonald (1988), and McDonald (in press). These same 4
indices were also shown to be not significantly affected by the inclusion of
superfluous parameters that had population values known to be zera. J:
contrast, the addition of superfluous parameters resulted in significant
improvements in fit that was due to capitalizing on chance for many of the
indices. Other indices were shown to penalize model complexity too severely
in that inclusion of parameters that had nonzero values in the popul ation
led to a sibnificantly poorer fit. In some instances indices penalized model
complexity so severely that models better able to fit tha data in relaticn
to the known population parameters produced poorer $it indices than models
that were less able to fit the data but contained fewer parameters. Whereas
a few other indices were not significantly affected by the introduction of
superfluous parameters, all of these other indices ware at least moderately
affected by sample size. Hence, in relation to the desirable characteristics
of fit irdices considered here, there is clear support for only Dk, Mc, TLI,

and MMI indices.

The empirical results presented here suggest little basis for choasing
among the four reccmmended indices. In fact correlations amorg these indices
are .97 or higher for the data considered in this study. Theoretically,
however, the four indices differ in important ways. McDonald’s two indices

are absolute or stand-alone indices that depend only on the modei being

13
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tested. Mc may be preferable to Dk in that it varies on a zero-to-one
continuum that may prove to be more easily interpreted. McDonald noted,
however, that such interpretations must be subjective since only the
saturated model is true in application. TLI and MMI are both incremental or
relative indices that depend on the fit of a null model as well as the fit
of the hypothesized model. The TLI is much better known than the new MMI,
but its estimation is frequently unstable particularly when sample size is
small (see Figure 1j also see Anderson & Gerbing, 19843 Marsh, Balla &
McDonald, 1988). Further research may show, however; that the same prbblem
applies to the MMI although it was not apparent in the present
investigation. The Dk, Mc, and MMI also differ from the TLI in that the
first three are monotonically related to the number of estimated parameters
whereas McDonald and Marsh (1988) show that the TLI can be written as an
index of fit that is weighted by a parsimony index. In this respect, the TLI
can be said to penalize model complexity whereas the other indices do not.
In the present investigation this mathematical distinction between these
indices was not demonstrated empirically. This can apparently be explained
by the observation that when the TLI is sufficiently large, as in most of
the contrasts in the present investigation, the size of this penalty is
negligiole. Hence, it is possible the these four indices will differ mcre
substantially in other situations and this is aé impartant question for

further research.

The present investigation is based on a variety of models fit to
simulated déta/of varying sample sizes derived from only two different
population models. Hence, there is concern about the generality of our
findings, particularly with respect to use of simulated data. We found that
19 of the indices considered here were at least moderately affected by
sample size, and that many of these were significantly influenced by the
addition of superfluous parameters that represented capitalization on
chance. Other indices were shawn to penaliie model complexity too severely
in that models able to fit the data resulted in significantly poorer indices
than models not able to fit the data. These findings call into question the
usefulness of these indices as indicators of fit according to the criteria
proposed here. Even if other research shows any of these indices %o be
useful in some specific situations, our resuits would stand as

counterinstances to the generality of claims to their usefulness.

We found that 4 of the indices considered here were relatively

14
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independent of sample size and were not significantly affected by the
inclusion of additional parameters. The conclusions about the effect of N on
thase indices is consistent with other empirical research and mathematical
derivations of the indices. Further tests of the generality of our findings
based on the data sets considered here, however, will help clarify the
relations between these indices and model complexity. With further research
it may be possible to establish useful guidelines on the values of these
indices that constitute acceptable fit, but such attempts may be unjustified
for any of the other 19 indices considered here. For real data, however,
none of the population parameters will generally have a zero value sg that
there may be no rational basis for concluding that any restricted model fits
the data better than the saturated model. Ultimately model selection must be
based on evaluation of fit, the behavior of competing models, and
substartive issues. From this perspective it would be undesirable to
establish absolute guidelines about what constitutes an adequate fit that

are independent of the research context.
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Footnotes

1 —- Several additional incremental (relative) indices referred to as Typse-2
incremental indices (see Appendix for discussion of fType-1 and Type-2
incremental indices) by Marsh, Balla and McDonald (1988) were found to be
relatively independent of sample size for the four data sets considered in
that study. McDonald and Marsh (1988) subsequently showed, however, that by
their mathematical form soma of these indices should vary with sample size
under certain conditions that did not exist in the data sets considered by
Marsh, Balla and McDonald (1988).

2 -- McDonald first developed his two indices, Mc and Dk, based on the
noncentrality parameter in late 1986, as described by McDonald (in press).
Shortly after their development, in February of 1987, Marsh and McDonald
proposed the incremental type-} and type-2 forms of both these indices for
purposes of the present investigation. Only the results of the DkI2 are
actually presented here. DkI1 and DKI2 are mathematicallv identical (see
Appendix) whereas the pattern of empirical results based on the MCI2 were
nearly identical to those based on DKI2. MCI1, because it was significantly
related to sample size, was not pursured for purposes of the present
investigation. Subsequently, in October 1988, McDonald and Marsh evaluated
the mathematical proparties of DKI2 more fully in research described in
Marsh and McDonald (198B). For purposes of that paper and the present
investigation, the index is referred to as the McDonald and Marsh index
(MMID) .

-
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APPENDIX 1
Descriptions of the 23 Goodness ¢f Fit Indizes Used i

—

This Study

Four types of fit indices are considered here. Stand alone inZices are based
on results cf just the hyputhesized model. Two forms of incremental indices,
called type-1 and type-2 for preseat purposes, are based on differences in
fit between a hypothesized mode! and a null model. Parsimony indices are an
alternative form of the type-) incremental indices th: impose a penalty

function for the inclusion of additional parameters.

I. Absolute, Stand-alone Indices.

—— ——— —— S i, e e W&

(LHR), Although not typically presented as fit indices (but see Cudeck &
Browne, 1983), the FF and LHR are the basis for the X2 test statistic and

most other fit indices. Tae FF has a minimum value of O when E = S, but does
not have an upper bound. The scaled LHR has a maximum value of 1.0 when E = §

and a minimum value of zero. The FF and LHR are defined as:
(1) FF = X2 /(N),
(2) LHR = Exp(X2/(=2 x (N))) = @ ~1/2 FF,

X2 and xzigi Ratio. These two indices continue to be the most frequently used
indices. The X2 for a false model varies directly with sample size, but the
X2 for a true model does not. In CFA the df does not vary with the sample
size, so that the effect of sample size on the X2/df must necessarily be the
same as for tﬁ; X2. For alternative models of the same data; increasing the
number of parameters necessarily results in a better (i.e., lower) X2,
Because the X2/df ratio incorporates a penalty function for using more
parameters, it may be poorer if additional parameters result in littie

improvement in X2. They are defined as:
N X2=¢tr ! s-1D-10gtE “15: = G FF,

(8)  X2/df =((N)/d$) FF.

LISREL’S root mean square recidual (RMR). Joreskog and Sorbom (1981, p. 1.41)
define the RMR as the square root of the mean of squared residuals in S and
E. When S and E are based on correlation matrices RMR is strictly bounded by
0 and 1. For covariance matrices RMR still has a lower-bound of zerc but does
not' have an upper bound. Thus RMR must be interpreted in relation to the size
of the variances and covariances of the measured variables, and cannot be

compared across applications based on different variables. RMR is defined as:

19
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(5) RMR =L 2E E (si; -e;;)2 /(px {pr1n] 1/2
where ¢; ; and ej; are elements in § and E

LISREL’S goudness—of-fit (GFI) and adjusted GFI (AGFI). Joreskog and Sorbom
(19813 also see Tanaka & Huba, 1936) describe the GFI and AGFI as computed by
LISREL. They state that GFI is "a measure of the relative amount of variances
and covariances jointly accounted faor by the madel® and assert that "unlike
X2, GFI is independent of the sample size” while AGFI "caorresponds ta using
mean squares instead of total sums of squares" (Joreskog & Sorbom, 1981, p.
I. 40-41). Thus AGFI incorparates a penalty function for additicnal
parameters. Joreskog and Sorbom suggest that GFI and AGFI will generally fall
between 0 and 1, but that it is possible for them to be nepative. They are

defined as:
(6) GFI =1 -C (tr (E1 x5 - DZ/(tr e -1 52 3,
(7) AGFI = 1 — [p x (p+1)/2df1 x (1 - GFD).

Information Critericn. Akaike (1974, 1981) and Schwartz (1978) each proposed
fit indices that incorporate penalty functions based on the number of
parameters that are estimated. Cudeck and Brawne (1983, p. 154) proposed
rescaled vercions of these indices expressed in terms of FF. For purposes of
the present investigation, Cudeck and Brown#’s rescaling of the CAK (based on
Akaike, 1974) and CSK (based on Schwartz, 1978) ore defined as:

) CAK = FF + 2K / N,

(M CSK = FF + (K x 1n(N)) / N

where K = the number of parameters to be estimated.

The corresponding indices originally proposed by Akaike and by Schwartz are
defined as:
(10) OCAK

X2 + 2K,

X2 + K In(M).

(112 0CsK

Critical N (CN). Hoelter (1983, p. 528) argued that "rather than ignoring or

completely neutralizing sample size we can estimate the size that a sample
must reach in order to accept the fit of a given model on a statistical
basig. This estimate, referred to here as ’critical N° (CN), allows one to
assess the fit of a model relative to identical hypothetical models estiimated
with different sample sizes." Hoelter cautioned that no firm basis could be
offered as to what constituted an adequate fit, but he suggested that a value

of 200 was a reasonable starting point for suggesting that differences

20
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between the model and data may be unimportant. In practice the usefulness of
CN would rest on the assumption that its value is independent of sample size.

It is defines as:
(12) EN = [lzpjt + (2 x df = 1D1/232/02 x x2/(N)21 + 1.,

where z¢prj¢ = the critical value from a normal curve table for a given

probability level -- 1.96 in the present investigation.

McDonald’s Fit Indices. MrDonald (in press) notes that a problem with the
CAK, as with many other fit indices, is that the value of the index and model
selectino based on it are dependent on sample size. His DK index is based on
similar formulations as the CAK but with a slightly different derivation.
McDonald proposed Wald’s {1943) noncentrality parameter (also see related
suggestions by Steiger, 1980), rescaled to be independent of sample size, as
an index of fit, estimated by:

(13) DK = FF - df/N = CAK - (2K/N) - df/N.

McDonald further proposed that DK could be transformed to yield Mc, a measure
of centrality that is a consistent estimator of the asymptotic likelihood
ratio scaled to be independent of sample size. Mc is scaled to lie on the
interval zero to unity with unity representing a perfect fit, though sampling
error may produce values greater than $.0. It is defined as:

(14) Mc = exp (-.5 DK)

Normal Deviate Z-score. Horn and McArdle (1980) proposed the Wilson-Hilferty

—_— e =

normal deviéte/Z-score (also see Bishop, Fienberg & Holland, 1975, p. 527) as

a useful indicator of fit. It is defined as:
(15) Z =€ (X2/df) 1/3 - [ 1 - (2/9 df)11 /7 £(2/9 df) 1723

Because this quantity is a monotonic function of X2 it apparently will be
influenced by N so long as the hypothesized model is false.

II1. Relative, Type-i Incremental Fit Indices.

Bentler and Bonett (1980) proposed that valuable information could be
obtained by comparing the ability of nested models to fit the same data. In
the case of CFA it may be useful to compare the fit of the proposed target
model with the Fit of a null model in which all the p variables are assumed
to be uncorrelated. (It should be noted that in general models for the
analysis of covariance structures the null model is not the only more
restrictive model that could be considered as a baseline model.) If the fit
of a null model is reasonable, because the sample size is small or because

the measured variables are relatively uncorrelated, then the difference in
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fit between the null and target models will be small. However, if the fit of
the null model is reasonable then there is little covariance to explain and
no basis of support for the target model even if it also fits the data.
Bentier and Bonett specifically stated that these indices are useful for
comparing the fit of a particular model across samples that have unequal
sizes. They cautioned that the absolute value of these indices may be
difficult to interpret, but that values of less than Z.% usually mean that
the model can be improved substantially. Much of the value of these indices
is based on the assumption that their behavior is independent of sample size.

One form of the incremental index, called type-i incremental indices for
present purposes, can be used to derive incremental fit indices from each of
the stand alone indices described earlier: Absolute Value (t - n) /7 Maximum
of (t or n), where t is the value of a stand-alone index for the target
model, and n is the value for the null model. For presert purposes,
incremental type-i1 indices were defined in relation to the FF, LHR, X2, and
X2/df, and are denoted by appending an It to each stand-alone index. The X212
is more commonly known as the Bentler-Bonett Index (BBI) and Bollen (19864)
described an index related to the FFIt (see Marsh, Balla & McDonald, 1988).
These are defined as:

(16) FFI1 = (FF, - FFy)/ (FFy.

(7 LHRI1 = (LHRy - LHRL)/ (LHRy).

(18) x211/= BBI = (X2 = X¢2)/ (X,2).

(19 X2/dF 11 = (Xn2/df, - X¢2/d64)/ (Xp2/dF,) .

I11. Parsimony Indices.

James et al. (1982) also described an alternative form of the incremental
type-1 jindices called the parsimony index (PI). The Pl invokes a penalty
function for using additional parameters by multiplying an incremental type-1i
index by the ratio of the dfs for the null and target models: PI = (dfy/dfy)
X Incremental Type-1 Index. Using this general formulation, James et al.

reconmended a PI based on the X> defined as:

(20) PIXZ = (dfy/dfn) x (X2 = X217 (X\D).

Similarly, McArdle (1986) described a parsimony index based on the RMR.
(?1) PIRMR = (df1/dfp) x (1 - [RMRy / RMRyD).

Additional parsimony indices could be derived for other stand-alone indices,
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though this might not make sense for indices that already impose a penalty
function (e.g., the AGFI and the X2/df).

1V. Relative, Incremental Type-2 Indices.

A second general form of the incremental fit indices described by Marsh,
Balla, and McDonald (1988) is: Absolute Value (t - n) / Absolute Value of (e
- n), where t is the value of a stand-alone index for the target model, n is
the value for the null model, and e is the expected value of the stand-alone
index if the target model is true. This second form of incremental index
requires the expectad value for a true model in addition to empirical values
for the target and null models. In general, expected values for the stand-
alone indices are not known for finite samples but can be estimated based on
the asymg:ctic behaviar of the indices. For example, many of the stand alone
indices can be specified in terms of X2 and the asymptotic expected value for
the x2 equals the df for the mcdel. For purposes of the present
investigation, incremental type-2 indices were derived from only the X2/df
and Dk stand-alone indices. These are denoted by appenving an I2 to each of
the stand-alone indices though the X2/dfI2 is better known as the Tucker
Lewis Index (Tucker & Lewis, 1973: znd McDonald and Marsh (1988) refer to the
DKI2 as the McBonald-Marsh Index {MMI). These are defined as:

(22)  X2/dfI2 = TLI = (X32/df, - X¢2/dfe) 7 (X20/d%, - [1.00).

(23) DkI2 = MMI = (Dkn - Dk¢) / (Dkp - 0)
~
INote that because the expected value of Dk for a true model is 0, the

incremental type-1 and type~2 forms of this index are the sare.l

23 26




Goodness of Fit 24

FIGURE CAPTIONS

FIGURE 1. Values for selected goodness-of-fit indices basea on two
population models (simple and complex), B models, and 6 sample sizes (50,
100, 200, 400, 800, and 1600 corresponding to the & column bars above each

model respectively).
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Table 1
Description gf Models To Be Tested,

Abbrev~ Number of
iation Parameters Description

0 9 Null

1UFa 18 1 Unrestricted Factor

?.UFa 26 2 Unrestricted Factors

3UF: 33 3 Unrestricted Factors

3Flb 24 3 Factorsy 9 major, 3 minor factor loadings

3F2 24 3 Factors; 9 major, 3 minor factor loadings

3F3; 24 3 Factors; 9 major, 3 minor factor loadings

3CF 27 3 Complex Factors; 9 major, 6 minor factor loadings
3Sf=e 21 3 Simple Factors; 9 major factor loadings

Note. The nine models were designed to fit ? x 9 covariance matrices
generated from one of two population models. The simple simulated (SSIM)
data was generated by the 35F model in which 3 correlated factors were each
defined by a unique set of three variables. Thus the most parsimoniocus

model able to fit this data contained only 9 major factor loadings. The
complex simulated (CSIM) data was generated from the 3ICF maodel that
contained three complex factors. In the 3CF model each factor was defined

by three major factor loadings, the same as those in the 35F model, and two
additional minor loadings. Thus, the most parsimonious model able to fit
this data contained 9 major factor loadings and 6 minor factor loadings.

a - Unrestricted factor models for 1, 2, and 3 factors. b — For the SSIH
data these models contained 3 superfluous parameters, factor loadings that
had population values of zero. For the CSIM data 3 of the 6 minor factor
loadings were constrained to be zero. ¢ -~ For both the SSIM and CSIM data
this nodel contained 3 superfluous parameters. For the CSIM data all & minor
factor loadings were constrained to be zero. d -- This model was used to
generate the CSIM data. For the SSIM data it contained 6 superfluous
parameters. e -~ This model was used to generate the SSIM data. For the CSIM

data all 6 minor (non-zero) loadings were constrained to be zero.
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Table 2
Pescription of A Priori Coatrasts To B Tested,

Fl b
Hodels Predictions Fors
1UF 2UF 3UF 3F1 3F2 3F3 3CF 35F CSIH Data SSIN Data

Contrast 1 -1 ¢ 0 0 0 0 0 0 2UF ) IUF 2F ) {UF
Contrast 2 0-1 # 0 0 0 0 O 3UF)F JUF > 2UF
Contrast 3 0 0#4 0 0 0 -1 0 3UF=3CF JUF = 3CF
Contrast 4 0 0#4 0 0 0 0 -1 3uF>3SF 34F = 36F
Contrast 5 0 0 0 # # -2 5 0 IF,IF2)IFS IF,3IF2= I3
Contrast & 0 0 0 -1 -1 0 +#2 0 3IC)HIF,IF2 ¥C=IF,3IF2
Contrast 7 0 0 0 # # 0 0 -2 3IF,3IF2)3IF IFL,IF2= 36F
Contrast 8 0 0 0 0 0+# 0 -1 3IFI=3F 3F3 = ISF
Contrast 9 6 0 0 0 0 0 #1 -1 3EF)ISF 3EF = 35F

Note, SSIN = sisple sieulated data that was generated by the 3SF sodel. CSIN

= coaplex sisulated data that was generated by the 3CF sodel.

a -~ See Table 2 for a description of the sodels. b -- For predictions g
represented by ) signs, sodels on the left side of tha ) signs should be

better able to fit the data. For all but one prediction represented by

z signs,- sodels on the left side of tha = signs have sore paraseters and

thus provide a test of penalty functions isposed by sose indices. For just
contrast 5 for the SSIM dat2, sodels on both sides of the = sign have the
sane nusher of paraseters,

rd
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Table 3
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le Size gg Fit Indices for SSIN Data: Effect Sizes

NS )

Fl b
Index Model Size

Inter-

4
action A Priori Cont:ests

d d d d 4 d d

Eta Eta rl r2 Ea 1 2 3 4 5 &6 7 B 9
Stand-alone indices
2 LR SIS L5088 45 L33 L1488 83 eB8 288 88 4 4% 48 ¢+ 408
3 LA588 L3588 .36 LT L3338 Mg+ M3+ o+ ¢+ ¢ ¢
4 Y2/d¢ 0488 3888 .38 34 LAA88 MBI+ ¢ ¢+ ¢+ - 4
] L488 JA188 .31 -39 L2188 488 #8848 433 ¢+ 433 48 48 8
& BF1 L1t 5088 45 L33 L1888 33 Bl At 438 4% 42 ¢+ 88
7 ABFT 7288 5988 .54 40 L1588 33 433+ ¢+ ¢ é L B
3 C“ 040" 090" -081 '-60 006' +" +" " "' L4 - - -
9 €sK L2388 L9588 -.90 -.568 L0988 483 483 -83 83 ¢ —ll -lt -ll -ll
10 0CAK 4488 3888 .36 L33 LAT88 488 488 - 23 ¢
11 60K 5888 .5088 .48 .49 LAASE 488 432 38 -83 ¢ -:z -ll -3: -38
12 ON 588 LA738 67 60 L3988 0+ 88+ ¢+ o+ ¢ 0+ b %
13 K 388 .02 L1 .01 .10 LTI 1 1K T T S TR S S
1 388 .02 L1 <01 .10 M + 0+ o+ o+ 4
151 L8888 2938 .28 .28 .S28% 82+ 0+ ¢+ 2 0+ 0+ ¢
Type=1 incresental indices
15 FFIL 9188 2688 .25 .20 1888 +#88 #3343 #80+ ¢+ ¢+ &+ 1}
17 LHRI1 7138 4888 .40 .28 .10 M8+ 4+ ¢+ o+ 1 ¢
18 X211 G133 L2633 .25 .19 L1883 b 4sb 4% M3+ ¢+ 0+ o+ 438
19 X2/d¢11 .B788 .3438 .32 .26 .2188 #8483 - + ¢+ ¢+ ¢+ - ¢
Parsiseny Indices
0PII2 L9188 2588 .25 .19 L1988 83 8% -8 -8 ¢+ -8% -88 -88 -U8
21 PIRMR 9283 .288%8 .26 .20 1488 8% -3 -8 -3% ¢+ 88 -88 -88 -88
Type-2 incresental indices
22 1L L8 0738 -.00 -.08 L1488 433 #8384 + 0+ ot 4

4
23 Ml 9588 05 -03-,02 1238 #8343+ ¢+ ¢+ 0+ & 0+ ¢

P

Hote.. Results are dased on a series of 8 (Models) by & (Sample Sizes) ANOVAs
conducted on the sisple sisulated data set. The TLI and ¥¥! indices are based
on the 12/df and the Dk indices respectively.

$p < .05 #8p ¢ .06

a = see Table 1 for a description of the indices. b -- Eta is the linear and
nonlinear effects of sample size (N} , rl is the linear effect of the log
sasple size (sasple sizes are log spaced in this study), and r2 is the linear
effect of sasple size. c — For each of the a priori contrasts a + sign
indicates that the best fit was obtained for the sodel posited to fit the

best, or for the sodel with the greatest nusber of parameters when the
tontrasted sodels were posited to fit equally well (see Table 3 for a
description of the a priori contrasts). d — These contrasts are between sodels
that are equally able to fit the data.
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Table 4
Effect of Sample Size and Model on Fit Indices for SSIH Data For Models 3-8

e et tEo 2, Nl e trmeleiin s pm——n ———n, b

a b (4 Inter-
Index Model Size action

Eta Complexity Eta ri r2 Eta

Stand-alone indices

1 FF .18%x + .B9%x -.79 -.53 .20%%
2 LHR .185%  + . 70%X .81 .60 .19%%
3 X2 .028% + .07 -.02 -.01 .07
5 RMR . 29%% + B98¢ - 86 -.70 .16%%
6 GFI 215k + .B91X .81 .60 .21x%
7 AGFI .09 + 9335 .B4 .43 .06
9 CSK . 11“ - 099“ “» 92 “e 70 .08“
10 UCAK n49t‘ - 007 e 02 -.01 008
11 0CSK 4953 - .B4%x .84 .77 .13%%
12 CN .06 + .B82x% .74 .82 .07
13 DK 007 + 012 -007 -004 014
14 MC .07 + .10 05 .03 .14
15 Z .03 + .09 -.03 -.02 .09

Type-1 incremental indices

16 FFI1 218+ .B42% .80 .63 .19%%
17 LHRIT .09 + b .09
18 X211 J21X% + .843%%x .BO .63 .19%x
19 X2/dfI1 .03 + .86%x .B3 .65 .05

Parsimony Indices

20 PIX2 . 871X .38%% .37 .29 .14x

21 PIRMR .95%%x - .29%¢ .28 .21 .10%%
Type-2 incremental indices

22 TLI .06 + .06 .03 .01 .03
23 MMI .06 + .02 .01 .00 .06

Note.. Results are_based on a series of & (Models) by 6 (Sample Sizes)

ANOVAs conducted on the simple simulated data set. For purposes of these
analyses only the three-factor models, all of which are able to fit the
data, were included.

xp< .05 %%k p < .01,

a — see Table 1 for a description of the indices. b -- Because all models
ar? equally able to fit the data, differences between models are a test of
the relations between each model and model complexity. Under the Complexity
column a + indicates that fit improved with the addition of superfluous
parameters and a - indicates that fit was poorer with the addition of
superfluous parameters. c -- Eta is the linear and nonlinear effects of
sample size (N) , r1 is the linear effict of the log sample size (sample
sizes are log spaced in this study), and r2 is the linear effect of sample

size.
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Table §

{lzli U‘_ﬁg&ﬂ% !Egi on Eit Indices for CSIM Data: Effect Sizes
Fl b Inter-

Index Kodel Size action A Priori Contrasts

d d
Eta Eta rt r2 Eta ! 2 3 4 5 6 7 8 9
Stand-alone indices

{ fF J388 5788 -.51 - 36 L1638 438 483 48 488 ¢+ 483 488 488 488
2 LR JARS L5888 .52 .38 LIASS 488 488 488 483 ¢+ 488 488 438 18
I 088 L4988 A4 A9 L6288 83 #88 ¢ @88 188 483 488 83 418
4 X2/d¢ 5788 5388 A7 .53 LAIES  48B 488 % 480 488 483 a8 ¢ 488
5 RR L5038 .ABSS - 43 - 32 L1983 488 438 483 483 ¢ 488 438 488 488
4 6F1 JASE 5788 .50 .36 L1638 138 488 +8% +8% 4+ 138 433 488 488
7 AGFT 3188 L0888 A1 A4 L1588 488 438+ 88+ 433 48 ¢+ 4R
8 CAK 083 L9488 -.B4 -.62 .03 ML - 8 ¢ MEr ¢+ 8
9 CS5K 888 L9888 -.91 -89 L0983 sp 488 -8 28 ¢ - - -§ %

10 OCAK 5788 5088 .45 .50 .6388 #88 #83% - 3% +45 438 488 ¢+ 48
11 35K L4988 JAASS (A0 A3 .5BES 4B 48 -8 - S 443+ - -8

122 388 L4888 L4b 4B LAI3E ¢+ 38+ b+ #E ¢ ¢+ 488
13 DK 8888 08 =02 =01 i} M85+ st 4 At 488
14 #C 8888 . .02 .00 .12 My AL+ MLt 488
15 1 H788 S .55 588 #8883 4 488 488 438 438 458 488

Type-! incresental indices

16 FFI1 L8788 3788 .35 .27 .I58% 483 +83 483 488 ¢+ 433 453 448 448
17 LHRIT  .4088 .5I188 .35 .22 .09 M 488+ 8+ 43 ¢+ it
18 X211 L8788 3788 .35 .27 .I588 488 8% 433 488 + 488 448 433 488
19 X2/dF11 7988 .A788 .45 .35 L1888 438 48i ¢ 4B+ 38 ¢ 418
Parsisony indices

20 P12 L8788 3488 .33 .25 1638 - 88 88 -8+ 88 8% -8 -8
21 PIRNR 9188 3288 .28 .20 1488 8% -3 <83 -8 - 8% -38 83 -8

Type-2 incresental indices

22 1L1 8588 .07 -.04 -.03 .12 M35+ ML+ a3 4t & 88
23 MMl 908 .04 -.03 -.02 .10 ML+ L+ 4 ¢ 48

Note.. Results are based on a series of B (Hodels) by & (Sasple Sizes) AHDVAs
conducted on the cosplicated sisulated d;ta set,

a — se2 Table 1 for a description of the indices. b -~ Eta is the linear and
nonlinear effects of sasple size (N) , rl is the linear effect of the log
sasple size {sasple sizes are log spaced in this study), and r2 is the linear
effect of saaple size. ¢ -- For each of the a priori contrasts a + sign
indicates that the best fit was cbtained for the sodel posited to fit the
best, or fﬁr the sodel with the greatest nusher of paraseters when the
contrasted eodels were posited to it equally well {se2 Table 3 for a
description of the a priori contrasts). d -- These contrasts are betwzen sodels
that are equally able to fit the data.

$p<.05; 88 p (.01,
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