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Estimation of Effect Size

A UNIFIED APPROACH TO THE ESTIMATION
OF EFFECT SIZE IN META-ANALYSIS

Introduction

In research synthesis, statistical methods are used to describe the findings of studies
under review. Typically, the selected studies are considered as independent experiments
concerning the behaviors of some common dependent variables. Each study usually consists
of a control group (Y) and at least one t.eatment condition (X). The results of each study
are summarized by an index of effect size (§). The first estimate of effect size, developed
by Cohen (1966, 1967) and modified by Glass (1976), is of the form g = (X -7)/Sy or
the difference between means of the treatment (X) and control (¥) groups divided by the
standard deviation of the control group (Sy). Important contributions to the estimation
theory of effect size are attributable to Rosenthal (1978), Hedges (1981), Rosenthal &
Rubin (1982), Kraemer (1983) and Hedges & Olkin (1985).

Let X3, .., Xpand 13, ..., Y,n’represent some random samples of the treatment and
control normal populations; px and py, the population means of X and Y, respectively;
and 7, the standard deviation of the response scores of all subjects in the combined treat-
ment and control population. The present investigation addresses parameteric methods to
estimate Cohen’s effect size § = £x=£3) from a single experiment or for a single study in
meta-analysis. The enumeration of all possible estimators of ¢ would result in a countless
number of estimators of §. Table 1 provides a limited list of some popular estimators of

o2, namely §? and §? for i=1,...,5.

Insert Table 1 about here

Generally, an unbiased estimator of o2 is $? whereas its maximum likelihood estimator

is 52. The distributions of 52 and §2 can be summarized respectively as f52 Jo*~x? ;) and
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Estimation of Effect Size

f5‘,2/02~x2m, where x%;) and xz(h denote chi-squares with f and f degrees of freedom,
respectively, and “~” meaning “ is distributed as”. The estimates of ¢ and their associated
degrees of freedom are listed in Table 1 under various conditions of variance homogeneity
and heterogeneity.

Under variance homogeneity (Case 1), as well as under variance heterogeneity with
known variance ratios (Case 2), four estimat:s of o are listed in Table 1. These estimates
are derived aiter the procedures to estimate effect sizes as (i) suggested by Glass (1976)
(S: and S; and their maximum likelihood estimator (MLE) versions, §, and 53), and (ii)
proposed by Hedges (1981) (S, and S, and their MLE counterparts, §; and 5;). Also
listed are the estimates of o under variance L'eterogeneity (Case 3) as introduced by Welch
(1938) and Cohen (1966) (S; and its MLE counterpart, 55). Other estimates of o2 can be
derived by modifying the values of S? and 52 in Table 1. For example, the values below
are mathematically equivalent te 2 =[(n—1)5% + (m - 1)S2)/(n+m—-2):

S2=[X (X - %)+ % -7))/(n+m-2), and

52 =[n8% +mS52}/(n +m —2),
where $% = (X -X)*/(n-1), & = S -7 /(m~1), 5% = T(X: —X)*/n, and §2 =
TE%-Y)/m

In Table 1, the degrees of freedom for the unbiased estimates of o (f,, i = 1, ...,
4) are less than those for the corresponding MLE counterparts (f,). It is important to
note that the estimators of effect size are non-central t statistics whose distributions are
characterized by the specifiation of degrees of freedom, f and f.

The main objective of this investigation is to examine the principal statistical prop-
erties of the estimators of 6 under variance homogeneity (Case 1), variance heterogeneity
with known variance ratios (Case 2) and for the Behrens-Fisher problem (Case 3). The
derived estimators are compared according to the criteria of their magnitudes, unbiased-
ness and mean-square errors (.ISE). The present investigation can be considered as an
extension of the existing studies on the estimation of effect size in meta-analysis from
three perspectives:

(1) Except for the estimators of & listed under Case 1 in Table 1, oiher possibilities
have not yet been examined.

(i1) A generalized approach in effect size estimation is undertaken such that common
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Estimation of Effect Size

properties of estimators of § are derived. These properties can be applied to estimates
that can be considered as mathematically equivalent to those given in Table 1.

(iii) Although the estimation of treatment effects in the presence of variance hetero-
geneity has been discussed (Wiicox, 1985), the estimation of effect sizes for the Behrens-
Fisher problem in research synthesis is addressed here for the first time. In particular, the
bias of the estimators of effect size computed according to the methods of Case 1 (Variance
homogeneity) in the presence of variance heterogeneity is investigated.

(iv) It will be shown that estimators of effect size are unstable, namely, variances of
the estimators increase with effect size (6). In this study, a relatively stabilized estimator
with respect to 6 is identified and its properties, examined.

In the following, the common statistical features of estimates of § are treated first in
general terms. Then, specific characteristics 0" some selected estimetors, which are formed
as functions of S, and §, listed in Table 1, are analyzed. Finally, general properties of the

derived estimators are re-examined by means of Monte-Carlo results.
General Properties of Estimators of Effect Size

Model Specification and Assumptions

The properties of the estimators of effect size are studied on the basis of the following
three assumptions:

(A1) The random samples X and Y are distributed normally with means px, py and
finite variance 0% and 0%, respectively. The population moments in the distibutions of X
and Y are unknown;

(A2) X, Y, 5%, and S are mutually independeny; and

(A3) The standardized difference between the treatment and control effects is repre-
scnted by the effect size § = (ux ~ py)/o where the forms of o are given in Table 1.

It will be shown that, for i = 1, ..., 5, the biased estimators of 6§ are of the forms
¢ = (X -Y)/S, and §, = (X - ¥)/5,, and the corresponding unbiased estimators are h, = ¢;g,
and k, = 7§, Tespectively; where ¢ = W?I‘L[%-x)_/zl’ and ¢; = [\/f—/}]Cf. The distributions of
g, §, h and k are found to be noncentral t with the noncentral parameter defined generally

as A = (s/ox_y)b, where 0® z_g, = [0*5 + 6%F] and 0 = ox = oy under variance homogeneity
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Estimation of Effect Size

or 0% = (6% + 0%)/2 in the presence of the Behrens-Fisher problem. In addition, some linear
transformations of g, §, h and &, such as the variance-stabiliziag and shrunken estimators,
are also considered.

The derivation and properties of estimators of 6§ are influenced by the following two
properties of the functions ¢; and c;: (i) the degrees of freedom f and f should be larger
than 2, (ii) ¢; and ¢, are monotonically increasing functions of the degrees of freedom (0.72 <
(e,¢5) < 1 for 3 < (f,f) < o) (Hedges and Olkin, 1985, Table 2, p.80), or equivalently, the
inverse of these functions are monotonically decreasing (1.38 > (c;*, c!'.l) > 1for 3< (f, f) < co.
For example, if £ > fi then ¢s, > ¢;, and ¢} < ¢}l

The Distributions of the Estimators of §
The distribution of a generalized biased estimator of § is formalized as follows:
Proposition 1. Consider the estimators g = (X -Y)/S and § = (X - ¥)/5; where 5%/~
X?;,/f and §? is a maximum likelihood estimator of o2 such that sy = (f/f)o? for f, f > 3.
The distributicns of g and § are kt(y-15 and Et(,,k-,,), respectively; where k = o%-7)/%
k= (\/?)k, t4,) is @ noncentral t-distribution with degrees of freedom f and noncentral
parameter A.

Proof: The estimator g can be written as,

(X -T)m(u g —uyr) + (sx=uy-)

5. = (X7 T (Z+4) — k(zZ+a
(X-Y)/S = STolele gz, W

(x=y)

where A = (ux - wy)/oz._ -7y k=05 _7)/0, Z~N(0,1) and S/a~\/;f!7,—f.

According to Johnson and Welch’s (1939), the distribution of g is of the form as
specified. Moreover, the relationship § = [\/fT/?]g is tenable since § = (X - ¥)/$, and § =
{\/;/—ﬂs. Hence, the distribution of § is obtained 2 given above. ||

Corollary 1. (Biased estimators)

(i) The means and variances of g and §, respectively, are:
(2) (Exact). p; =c;'6 and p; = c;.'lé, o2 = (f/(f - 2))(k* + 6*) — p2, and o2 = (f/(f -
2))(k*+é2)-pZ; where the expressions for ¢; and ¢; have been specified previously.
(b) (Approximate). 4y = [(4f - 1)/4(f - 1)}6, and j; = [(4f — 1)/4(f = 1)}5;
52 = [£/(F - 20)(8 + 8) — 2, and 5 = [F/(f - 2}k + 5%) - .
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Estimation of Effect Size
(c) (Asymptotic). pge =6, and pge0 = poeo} 0200 = (kK72 + (6%/2f)), and 03 =02 .
(ii) The variance-stabilizing and normalizing transformations of g and § are:
9" = b-1sinh~1(ba~1g) = b~lin|bg + 04|, and
§* = b-lsinh=1(Ba-1g) = b=tin|bj + o;l; ,
where a? = [f/(f - W2, & = [f/(f -2, B = [/(f-2) -, B=If/(f-2]-3,
b=1sinh~1(ba~1g) — sinh~1(ba~16)) = N(0,1), b-sinh=1(ba=1§) — sinh=1(ba-16)]~N(0,1), and
“x” denotes “is asymptotically distr.buted as”.
(iii) The bias and mean-square errors of g and § can be derived as:
(a) Bias(g) = [c;* - 1)6, and Bias(g) = [e;~ — 1J6;
(b) MSE(g) = [f/(f-2))(k*+6%)-(1~2¢;*)5?, and MSE(§) = [f/(f-2))(k*+6*)—(1-2c;")6%.
Proof : The proof will be carried out for the results associated with the estimator
g. Similar arguments can be derived for the results related to the maximum likelihood
estimator § by means of the transformation § = [y/f/flg.
(i) .
(2) The well-known result Z = %(T)/b-~N(0 1) implies that -‘——1~x(f)/f Let W =
(X —Y)/Sz_7) be an unbised estimate of A = k~*6. Then W can be rewntten as:

— = E=D-(ex-py) _ (ex-py)
X-Y o x_T 0T _T .
K-¥) . T@n__ TED (74 4)/ /.

W=
S5z-¥

~
b
]
i

Then, from Johnson and Welch (1939), pw = ¢7'A and of, = [f(1 + A%)/(f - 2)] - sy
Since g~kt(s,») implies that p, = kuw and o2 = k%¢%,; hence, the results {ollow.

(b) The values of 4, and &2 are based on the approximation ¢; = 1- [3/(4f - 1)] with
an error < .0003 for f> 10 (Hedges, 1981).

(c) The limiting distribution of W is normal with mean of A and variance of {1 +
(a%/2f)] (Johnson and Welch, 1939, p. 367). Since Z~N(0,1) and by applying the central

limit theorem, it yields:

Z = tiy,0)V/1+ (B2/2f) = k(g - 6)//1 + (E-262/2f = (g — 6)//k~2 + (62/2f).

Hence, the results hold.
(i1) Since the variance and MSE of g are functions of 6, it is desirable to to transform

g into variance-stabilizir.g estimators. The variance of g can be decomposed as 6? = a?+ %62,

5




Estimation of Effect Size

Following Laubscher (1959), the reported variance-stabilizing and normalizing transforma-
tion of g is obtained.

(iii) The results are trivial since, by definition, Bias(g) = p, + 6, and MSE(g) = o2 -
[Bias(g))*. Analogous arguments apply to the derivation of Bias(§) and MSE(g). ||

Novick and Jackson (1974) suggested another approximation for ¢;, namely, & =
V1= (3/2f) with an error about .01 for f > 5. Under this approach, i, = [/2f/(2f - 3)jé
and f; = [\/2f/(2f - 3)}6. The approximation given by Hedges (1981) is preferred since it
is more precise and yields a smaller bias in the estimation of 6. In the Emit, ¢;* reduces
to 1 under both approaches. When f is as small as 3, c;* is equal to 1.38, 1.41 and 1.37
according to the exact formula and those given by Novick and Jackson (1974) and Hedges
(1981), respectively.

Corollary 2 (Unbiased estimators). Consider the estimators h = c;g and & = c;5. Then
h=h and the following results can be applied to both h and &:

(i) The distribution of h is kest(sx-15) With mean p, = & and its variance can be specified

as,

(Exact) on? = [c3(755)(F* + &%) - 62,

a
(Approximate) 52 = [(%—:—?)(k” + &%) - 6%,

(2)
(b)
(c) (Asymptotic) o7 o, = 02 -

(ii) A variance-stabilizing and normalizing transformation of h is:
k" = b;lsinh'l(bha;lh) = b;lln|bhh+ onl,

where ay, = ¢sa, by = ¢;b and, by [sinh=1(byay k) - sinh=1(bra;; 16)] ~ N(0,1).
(iii) The bias of h is 0 and its mean-square error is equal to of

Proof : The unbiased estimators h and & have the sa.ne distributions because it can
be written that,

b= o = 1y Tlesi = (51 Rerly/Fiflo = esg = b

The remaining results can be derived due to the proof of Corrolary 1 as well as the
fact that o} = c30? and c; is increased to 1 as { increases to infinity. Therefore, the limiting
distributions of h and g are the same by Slutsky’s theorem (Serfling, 1980). ||

An unbiased estimate of o? can be expressed in the form of §,* = [sz(}'_j-'z)(kz-"hz)] -h2.

Hedges and Olkin (1985) proposed a variance-stabilizing and normalizing transformation

6
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for the estimator hy = ¢, (X — ¥)/S; as:

hy = V2N sinh~hy/q] = VZN \/lnl(hz/q) +(h3/q%) + 1,

where g = \/4 + 2(n/m) + 2(m/n) and N = n+m. This equation is derived from the asymptotic
distribution of h;. Kraemer (1983) suggested another transformation method from the
relationship between the distributions of h and the product- moment correlation coefficient.
Both the Laubscherian transformation and that of Kraemer (1983) are based on the exact
distributions of &, and thus expected to be more accurate for small sample cases than the
method of Hedges and Olkin (1985). In practice, the Laubscherian equation is easier to
use than Kraemer’s (1983) procedure since the latter may require an additional step of
converting the transformed values in terms of correlation coefficients to the original scale
of measurement.

The efficiency of estimators are often evaluated according to the minimum mean-
square error criterion. In the following, two additional estimators are derived from proce-
dures that serve this purpose.

Proposition 2. (Shrunken estimators)

(i) (Thompson, 1968). Let d be an estimator of §. The minimization of MSE(wrd) =

B opa=s) results in the weight wy of the form:
wr = p3/(vd + pl).

(i) (Hedges and Olkin, 1985). Consider an estimator d of § such that o3 = o} + b%d2.
Then the MSE of any linear transformation of d, say dy = wyd + gy; where wy and
gy are

some constants; is minimized by defining the weight as,
wyy = (6% +1)7

Proof :

(i) Thegiven expression for wy that minimizes the mean-square error (MSE) of dr = wrd,
MSE(wrd) = e(wrd — pr)? = wi(03 + pa) + p3 — 2wrpd,
can be obtained as a solution the partial derivative of
OMSE(wyd)/owr = 2wp(of — p3) - 2p3 =0.

7
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(11) See Hedges and Olkin (1985), pp. 105-106. ||
Some applications of the results in Propositon 2 are now explored. The distribution of
d belongs to the family of non-central t distribution with degree of freedom f. When f is
large, the distribution of d is approximately normal (Johnson and Welch, 1939) with mean
and variance of § and k-2 + (62/2f), respectively (Corollaries 1 gnd 2). Since the theoretical

origin of the normal distribution is zero, following Thompson (1968), a shrunken estimator

of § can be formed as:
62

U= ern s

or, alternatively, dr = [(1/k26?) + (1/2f) + 1J-26.
As another application of Thompson'’s result (1968), let d = L then a minimum MSE

estimator (d;) can be expressed as:

—2¢2
c!6

== v e

dr = wrh = (4} [on + pf )b

An unbiased estimate of wr, denoted as wy, is obtained upon replacing é by h. The
corresponding shrunken estimator in terms of the moments of h under Hedges and Olkin's

(1985) procedure is of the form:

dy = wyh = (= 2—)h.

So far, five generalized estimators of effect size, namely g, §, h,dr and dy have been
discussed. Note that these estimators have the same signs. They are now compared
according to the foillowing three criteria: the size of their absolute values, biasedness and
MSE magnitudes. The comparisons are performed on the basis that all relevant estimators
are computed with the same sample sizes.

Proposition § (Comparing the estimators). Given that f > 2 and f > f, the relative
rank-ordering magnitudes of g, 3, dy, and dr on the basis of their absolute values, degrees
of bias and MSE magnitudes, respectively, are:

(i) 1312 lol 2 Inl > Idul > lézl,
(i) |Bias(dr)| > |Bias(d)| > |Bias(g)| 2 | Bias(d)|
(iii) MSE(G) > MSE(g) > MSE(h) > MSE(dy) > MSE(dr).
Proof :

10




Estimation of Effect Size

(i) This result is proved by means of pairwise comparisons among the estimators of ¢,
starting with the claimed smallest estimators, ~amely dr and dy. Since dr = [h?/(k? + h?)}dy
and [h?/(k? + ) < 1, we have |dp| < |du|. Now, dy = wyh implies that k] > |dy] if wy <1 or
(f - 2)/f < ¢;% But this condition is tenable since ¢;? > 1 and (f - 2)/f < 1. Next, h=¢sg
indicates that |h| < |g] since ¢; < 1. Finally, || = |(\/fT/_J;)gl > |g] when f> f.

(ii) With Bias(h) = 0 already obtained, the pairwise comparisons is conducted first
with Bias(dy) and Bias(g) where Bias(dy) = (“—/(%’-:—2” ~ 1)§ and Bias(g) = [c;* - 1)6. Since
(m—:%j is much smaller than 1 than ¢;' is larger than 1, |Bias(dy)| < |Bias(g)]. Next,
|Bias(g)| > |Bias(g)| because p; > p, when f > f. Fipally, |Bias(dr)| > |Bias(§)l; where
Bias(dr) =_[p,—(°§::_—z-)](uq~) - 1)6,vp = (6%/(k* + 6) and Bias ) = [cl'.1 ~ 1)é; since |c}1 - 1] is smaller
than I(i'll{ll:"-’ﬁ"’T) ~ 1| due to the fact that both f/(f —2) and vy are less than 1.

(iii) Consider MSE(dr) = e(dr — par ) = c(vrdy — vrpa, )* = vr2 M SE(dy).

Then, MSE(dy) > MSE(dr) because vr < 1. Analogously, MSE(dy) = whe(h - 6)° = who?
is less than MSE(k) = o? because wy < 1. Next, MSE(g) = o2 + (Bias(g))? is larger than
MSE(h) = c30? since ¢ < i and (Bias(g))® > 0. Finally, MSE(§) = €(§ - p5)* = (f/£)elg — ps?) =
(f/f)MSE(qg) is larger than MSE(g) when > f. ||

For a given value of f and f, the biased values for each of the five estimators under
consideration are smaller than its relevant MSE values. As f increases, the biased values
of these estimators would rapidly converge to zero when theix expected values approach é.
In the limit, the corresponding mean-square errors (MSE) would not always converge to
zero and when they do, not as rapidly. In particular, the mean square errors of g, §, h and
dy would be equal to o2, which are expected to be larger than o2, since the latter is of
the form viw}o? , where vr and wy are less than one. Note that the results in _Proposition §
can applied to all cases listed in Table 1 since £, > £, (i = 1, ..., 5), except that f; < fz when
n>m. The exception will be illustrated in 2 Monte-Carlo study.

The findings above can be generalized to other estimators of é. In general, bias and
2 5E values grow with the increase of 6§ and reduce as the associated degrees Jf freedom
increase. Values of Bias(g) and Bias(§) share the same signs with § whereas those of
Bias(dy) and Bias(dr) have the oppisite signs io 6. From the results in _Proposition 3, it
is clear that the popular estimator g, proposed by Glass (1976), tends to overestimate

the effect size (6). According to the criteria of minimum bias and mean square error, the

9
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estimators h, dy and dr should be preferred to g and g. Moreover, dr is more favorable to
dy on the basis of the variance stabilization criterion. In terms of their absolute values, k
is unbiased whereas dr would tend to underestimate § . There.ore, both h and dr should
be computed in a meta-analysis study. Tle former is used in the analysis of effect size

of the experiment under consideration and the latter, as an indication of its lower bound.

Properties of Some Estimators of Effect Size

The distributions of some specific estimators of effect size (§) are now studied with
respect to the general properties presented above. In particular, some specific forms of
the five estimators g,,§,, h,,dy, and dy, are examined (The subscript i represents the case in
which §,, listed in Table 1, is used in the expression of the estimator under consideration).
According to Proposition 3, the biased estimators (g, and 4., = 1, ..., 4) are relatively less
effective than the unbiased and shrunken estimators (h,, dy, and dr,, 1 = 1, ..., 4) in the

estimation of effect sizes.

Estimators under variance homogeneity
The main properties of estimators listed in Table 1 for the case of 0% = o2 can be
summarized as follows:
Corollary § (Variance homogeneity)
(i) (Biased estimators)
(a) 1§21 2 lgal 2 [g2] 2 lg2| if S% > 5% and [§2] 2 lg2l 2 162! 2 loa] if S} > S% when n = m.
(b) |Bias(41)| 2 |Biasg1)| > |Bias(32)| > | Bias(g2)!.
(c) MSE(§:) > MSE(g:) > MSE(§2) > MSE(g>)-
(ii) (Unbiased estimators)
(2) [h2| 2 [Ra] if S2 > 5% when n = m whereas |h1] > |ho| if S% > S%.
(b) MSE(h;) > MEE(h,)
(iii) (Shrunken estimators)
(2) ldral 2 ldrz| if || > [Ro] and vice versa if [kl < |ha].
(b) [Bias(drz)l > |Bias(dzs)

10
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(c) MSE(dr,) > MSE(dr,)

Proof:

(1) (Biased estimators)

(2) The results in _Proposition 3 implies that |§,| > |g.| (for i = 1, 2). From the definition
of §2 and 57 in Tables 1, it only requires to find the condition for 53 > S so that |g1, 2 |32|-
Since 83 - §? = (“—")(%%(:"—zg—lﬁi -8 = %, the resulting coadition is as stated in this
Corollary. Analogously, it is necessary to show that 57 > S% to obtain |gz| > |5:]. Since
{he condition §? > S2 implies that (n+m - 2)(m — 1)S} > m[(n — 1)S% + (m - 1)S}] or, upon
simplification, $% > [m(n — 1)/n(m - 1)}5%, the result is obtained.

(b) and (c) From _Proposition 3, it can be seen that Bias(§,) > Bias(g.) and MSE(3,) 2
MSE(g,), for all i. Moreover, since biased and MSE values are monotonic decreasing
functions of f, and from the fact that f; 2. fi (_Table 1), we have Bias(g;) > Bias{3,) and
MSE(g1) > MSE(g,). Therefore, the results hold.

(i) (Unbiased estimators)

(2) The condition for h, > k1 can be readily specified from the facts that hz — hy =
c1.92 — ¢p 01y €4, 2 g, (because ¢y, is @ monotonic increasing function of f,, 2 2 fi, and
lg2] > lga] for the case in which S} > S% when n = m). On the other hand, to find the
condition for hy > ke, a simple proof can be carried out by using the approximation &
(Novick and Jackson's,1974). The resulting forms of approximate unbiased estimators are
expressed as by = [\/Zm - 5)/2 L.x (X -Y) and hy = [{/(2n = T)/2(Lx + Ly J(X -Y), where ¥
and Ty are defined as Yy = ¥ (X - X)° and T, = 5 (¥ - ¥)?, respectively. Then, from the

difference

— K2 = (-f‘?)z {(9m — -2m -
h% hl 2(2}{"'2}’)2}’ l(2 5)(; 2( I)Z)}!

Y
one can conclude that k2 > kZ if §% > [2(m - 1)/(2m + 5)}S. It is clear that A% - A} > 0 if

(2m-5)(Tx -2(m~1)Ty) 2 0. Since 2(m-1)/(2m+5) is less than one, the condition S} > S}
wouid yield the result k; > h,.

(b) For the unbiased estirmators k; and k;, we have
MSE(hj) - MSE(k;) = o}, - 0,2,1..

Therefore, the result holds since o7 is a monotonic decreasing function of f and the fact

that fi 2 fo.
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(i1i) (Shrunken estimators)

(a) Consider dr, = wyi[h?/(k* + R?)}h; for i = 1, 2; where wa, = ¢;*[(fi - 2)/£). By
applying the approximation ¢}, (Novick and Jackson, 1974), it can be written that wy, =
[(£/(Ff=1.5)][(f.~2)/ f.] = 1 for f, > 3. Hence, the magnitude and direction of dr, are essentially
determined by &;.

(b) Without loss of generality, assume 6 > 0. The bias of dr, can be expressed as
Bias(dr,) = wg {[62/(k* + 6)] — 1}6 = —wg, k?¢/(k* + 6%). Now, Bias(drz) — Bias{dr1) = (w1 —
wpo )k26(k? + 62) > 0 since f, > fi and wy; is 2 monotonic decreasing function of f,.

(c) Since MSE(dr.) is a monotonic decreasing function of f,, the result follows for
22 fi |l

The resuits in Corollary 8 imply that, with the exception of the shrunken estimators,
the pooled variances (used in the computation of gs,§2,k2 anc dr,) are relatively more
efficient than the unpooled variances ... _.elding estimators with smaller biased and MSE
values. The same observation applies to the {ollowing case of heterogeneous variances with

known variance ratios.

Estimators under variance heterogeneity with known ratios
Corollary 4 (0% # 0%, assuming r = 6% /o2)

(1) (Biased estimators)
(2) 133l > lgal > 1a] > lgal if S > [r(n+rN +1)/(n — 1)} and |gs| > lgal > 133l > lgal if

5% > 5%

(b) |Bias(ds)| > |Bias(ga)| > |Bies(ds)| > |Bias(gs)l.
(c) MSE(3s) > MSE(gs) > MSE(gs) > MSE(g4)-

(i1) (Unbiased estimators)
(2) |ha| > |hal if r > 1 or S2 > S% and |h3| > |he| if r < 1.
(b) MSE(h3) > MSE(hs).

(i11) (Shrunken estimators)
(2) ldral > |dz4] if [hs| > |hs| and vice versa if |hs| < |h4|.
(b) IBias(drs)] > |Bias(drs)
(c) MSE(drs) > MSE(drs)

Proof:

12
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~— " (i) (Biased estimators)

(a)Since 52 ~ 82 = {[(N - 2)(r + 1) — 27)/2(N = 2)} Ty ~[(N - 2)~ Y=« the condition for
5% > 52 so that |g4| > 133l is S§ > {2(n - 1)/(m - 1)[(N - 2)(r + 1) — 2r]}S% or S} > S% as stated
above. Similarly, since 53 - S% = [Sx/nr]+ [N~1 = (r+ 1)/(m-1)|Ty, the condition for 5% > S?
so that |gs| > |g4| is S% > [r(Nr+n+1)/(n—1)]SZ.

(b) and (c) The proofs for the order-ranking bias and mean square error values require
the same arguments as present~ ‘or the biased estimators in _Corollary 4.

(i) (Unbiased estimators)

(a) Without loss of generality, the proof can be simplified by means of the approxima-
tion &Y (Novick and Jackson, 1974). The corresponding approximate forms for the unbiased
estimators hs and hy are ks = /(2m - 5)/2(m - 1)(X - ¥)/Ss, and ks = /(2N = 7)/2(N - 2)(X -
Y)/Ss, respectively. Consider the difference k2—F2 = {| (2’"'5)1)]— R(ntm)-T)y(F_F) = Cay/Das;

F+1)(m- 2(n+m-2)
where Ca; = [(1 - r)(2nm + 2m + 9Im)]) + 2n(r — 4) + (13 = 7r) and Das = 2(n+ m - 2)(r + 1)(m - 1).

Since Da4 > 0, the sign of k2 — k2 is the same as that of C3s. The results hold since Cs; < 0
ifr>land Cyuy>0ifr<1.

(b) and (c) The proofs are trivial, following the same arguments used in _Corrolary 3
with respect to the unbiased estimators.

(ii1) (Shrunken estimators)

The proof follows the same arguments as given in _Corouary 4 upon replacing dr,, and
dr2 by drs and drs4, respectively. ||

The results so far imply that estimators h, and dr, must be preferred to k; and dp,.

The choice betwen h; and ks should depend on whether r is larger than one or not.

Estimators under the Behrens-Fisher condition
Corollary 5 (Biased estimators): The distributions of g5 = (X - ¥)/Ss, 45 = (X - ¥)/%s,
and hs = cy,95, respectively, are kt(y, x-15), kt(s, k_,6), and cy,kt(s, x-15 Where:
@) 1= il
(b) k=(fs/fs), and
(c) fs and f5 are specified in Table 1.
Proof: The distributions of gs, §s and hs can be derived from the results of _Proposition 1.

The expressions for k, f; and fs are obtained as follows:

13
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(2) The effect size suggested by Cohen (1977) when o%#0% is of the form 6 = (px -
py)/o where o = \/[0% + 02)/2, a root-mean-square value (Cohen, 1977, p.44). Hence, from
_Proposition 1, the expression for k is obtained.

(b) An unbiased estimate of o2 is 52 = (5% + 53)/2 = —2(}%%‘)‘1 + 2—("‘:’“—;)‘1 Then,

S2~(0?/ fs)X{;,) Where

{0%/2+0%/2} (o% '*‘Ux)
T o4/ - )} +{ob/4Am—1)}  {ok/(r- 1)} +{ot/(m—1)}’

according to Welch's (1938) procedure. Upon simplification, the expression of f; is given

as
(n = 1)(m —1)(c%k +0})*

fs = (m=-1)o% + (n—1)o} °

In Table 1, an unbiased estimates of fs are obtained upon replacing 0% and o} by §% and
5%, respectively.

(c) The MLE of ¢? under the Behrens-Fisher condition can be expressed as 52 =
{53{ + 5?,}/2 = {{n=1)/n)5% +{(m-1)/m)5}.}

2
2 2 2 2
a2 (ox Im)X{, 4y Hod- /mIXE, sy
Then, 55"’ 2

. Hence, from Welch’s (1938) procedure, one gets:

j = M= Lok/nt (m=of/ml’
{(n = Dok /3 + {(m— Do§/m?}

The above expression can be simplified as

[m(n - 1)o% +n(m - 1)0%,]2.
m?(n— 1)o% +n?(m - 1)o}

5=

An unbiased estimate of f; are given in Table 1. ||

By applying the results in _Corollary 1, moments of the exact, approximatc and lim-
iting distributions of g5 and §s can be derived. The expected values and variances of g5
and §s are equal to those computed for g and § (Corollary ) when f is defined as fs or fs,
respectively. Similarly, it is possible to obtain moments for the unbiased estimators (ks)

and the corresponding shrunken estimators (drs) by means of _Corollary 2 and _Proposition 2,

respectively. As will be seen in the following simulation study, fs > f; when m > n. Given
this condition, the relative magnitudes, biased and MSE values of gs, s, hs,dn,. and dr,
follow the same patterns presented in Progposition 8. For the case in which f; < f; (when

m < n), the relationships expressed in Proposition § still hold upon letting g and § switch

14
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Estimation of Effect Size

places. In other words, the rankings among the unbiased and shrunken estimators are not
affected by the relative sizes of n and m since they are computed on the basis of A, (which

is equal to k; for all f; and £).

Monte-Carlc Results

Comparisons of Estimators of Effect Size Under Balanced Designs
Properties of the five estimators g, 4, h,dy and dr were studied by means of a Monte-
Carlo method under the balanced designs (n = m) as well as under several configurations of

sariple sizes (n and m) and variance ratios (r) for the three cases presented in Table 1. Under

the balanced designs, the same computational expressions for the above five estimators are
found in both Case 1 (Variance Homogeneity) and Case 3 (The Behrens-Fisher problem)
as implied by the following results:
Corollary 6. (Balanced designs). Let # = 5%/S% represent an unbiased estimator of
0% /o%. When n=m, the following properties are observed:
(2) k= /2/n in all three cases presented in _Table 1.
(b) 83 =52, 5 = 82, St = S3/(7 +1)/2 and S} = /(5% /2F) + (5} /2).
(c) i=fa=(m-1), i=fi=n fo=fa=2An-1), o= fa=2n, fs=fs = (n=1)(1 +F?/(1+ 7).
Proof:
(a) In Case 1 (Variance Homogeneity) k = \/(n + m)/nm = /2/n for n = m. In Case 2
(r =0%/0%), k = \/2(mr + n)/nm(r + 1) = y/2n(r + 1)/n?(r + 1) = \/2/n. Similarly, in Case
3 (o3 #03)s b = v/In(og + o) /W(0% 703 = /2T
(b) and (c) By setting n=m in the expressions for §?, 82, f; and f; (i= 1, ...,5),

the results are obtained upon simplifying similar terms. ||

Values of the five estimators of effect size mentioned above were generated with
increasing sample sizes (5(1)105) and increasing effect sizes (0(.2)2). In Case 1 (6% =0%)
and Case 2 (r = 0% /0% ), the degrees of freedom f; and f, were used in the estimation of the
moments for g and g, respectively; whereas the degree of freedom f, was used in association
with the remaining three estimators (h, dy and dr). In Case 3 (6% # 0%), since fs = fs, the
degree of freedom f; were used in computing the moments of all five estimators. Under

Cases 2 and 3, the condition of variance heterogeneity was specified by setting the values

15
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of # as 2(1)10.
For a given value of effect size, the distributions of the means and variances of the five
estimators (g, §, k,dn, and dr) in any configurations of sample sizes under consideration can

be typically represented by the plots in Figure 1. The corresponding biased and MSE values

are generally performed as the distributions plotted in Figure 2. For 6 > 0, the following
relationships are observed across all simulated configurations of sample sizes (n = m),

effect sizes (§) and variance conditions (r):

Insert Figures 1 and 2 about here

(c) The relative magnitudes of biased and MSE values for the five estimators followed

the patterns described in Proposition 3.

The above relationships can also be applied to the case c: negative effect size provided
that values of the means in (a) are expressed in absolute terms. As sample sizes increase,
the main properties of dp a;e: (i) minimum variance, (ii) stability (values of ¢3_ are quite
small even for small degrees of freedom), and (iii) minimum mean square error, despite
the large absolute values of Bias(dr).

The typical behaviors of the five estimators of effect size under consideration with
respect to the constraint of fixed degrees of freedom and varied effect sizes are depicted in

Figure 3 and Figure 4.

Insert Figures 3 and 4 about here

In general, the moments of the estimators are monotonic increasing functions of é.
The notable exceptions are Buas(h), which is always equal to zero, Bias(dr) fur § around zero,
and Bias(dy). As 6 increases, the means of the estimators grow much faster than other
moments. 'n this case, the main properties of dr can be summarized as: (i) minimun.
variance, (ii) minimum mean square error and (iii) largest bias. For 6 > 0, as effect size

becomes larger, the absolute value of Bus(dr) is reduced toward zero. On the contrary,

16
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»

the same absolute values of the other estimators depart further from zero. In short, the
shrunken estimator dr is most efficient, as compared to g, §, h and dy, in the estimation

of effect size when the sample sizes are small and ¢ is large.

General Comparisons of Estimators of Effect Size
The specifications of the simulation parameters (n, m, r, {f and f) used to generate
values of the five estimators in several combinations of sample sizes and variance conditions

are reported in Table 2. In each combination of #, f (or f) and variance conditions (denoted

Insert Table 2 about here

as Case 1, Case 2 and Case 3), six data sets containing values of the five estimators
were generated, corresponding to the six configurations of sam,.e sizes (n and m) (de-
noted as ID in Table 2). Under Case 1 (¢% = 0}) and Case 2 (0%/0? = 1), the de-
grees of freedom f, and f; were used to derive the moments of g and §, respectively;
whereas moments of the estimators h, dy and dr were computed on the basis of f.
Similarly, under Case 3 (0% # o%), properties of §j were derived basing on f; and mo-
ments of the other four estimators were computed by means of f;. To generate data
under Case 3 (0% # o%), it is assumed that # is an unbiased estimate of r where # =

5%/S%. Therefore, the estimates of f; and f; in Table 1 are revised respectively as:

fo = n—1){m—-1)(72+1)?
v m=1)F24(n—-1

§ — [m(n-1)tn(m-1))?
fs= mI(n=-1)724n?(m-1)

As shown in Table 2, f5 > fs when m > n and the reverse is true when m < n. The
resulting expected values of the means, variances, bias and mean-square errors of the five

estimators over all configurations under study are reported in Tables 3 to 8.

Insert Tables 3 to 8 about here
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On the basis of simulated data, principal characteristics of the distributions of the
five estircators under consideration can be summarized as follows:

(2) When 6 = 0, all estimates of effect size are unbiased. Similarly, when 6 = 1, the biased
values are very small.

(b) Expected values of the means, variances, bias and mean square errors of estimators of
effect size are monotonic increasing functions of 6. Except u(dr), the above moments
are monotonic decreasing functions of sample sizes.

(c) Aséincreases, expected values of the means grow faster than expected values of other
parameters, with u(g) and u(§) increase fastest. The values of MSE(g) and MSE(§)
increase more rapidly than mean square errors of the other estimators. While the
biased values of other estimators increase in absolute terms, Bias(dy) and Bias(dr)
reduce to zero.

(d) As sample size increases, the biased values reduce faster than other parameters. The
magnitude of reduction (R) can be arranged in descending order as R(Bias), R(MSE),
R(c?) and R(g).

(e) Within a given configuration of é, sample sizes (n a.n,dxm), and variance condition
(r), values of MSE are substantially larger than those of Bxa.s. Moreover, the rela.-
tive magnitudes of Bias and MSE values for the’ five; estxmators in. ea.ch slmula.ted A
configuration conform to the relationships described in _PLozmn_twn_z.' )

(f) In Case 2 (0% /0% =r), as r increases moments of the estimators of effect size chaﬂge
very little in most configurations (ID). In Case 3, (¢} #0%), with the exception of 2
which tends to stabilize, variances of the other parameters generally increase (reduce)
for small (large) degrees of freedom.
in the presence of the Behrens-Fisher condition, variances of the estimators of effect

size were inflated if the degrees of freedom under the assumption of variance homogeneity
were used. However, this adverse effect is minimal with respect to the shrunken estimator
dr. For example, for the configuration of § = 1 and ID = 1, the values of o2 are .97 in Case
1, .44 (when r = 2) and .65 (when r = 10) in Case 3. The corresponding values of 3 are
.21, .20 and .22. In general, as r increases, moments of the estimators increase for small
degrees of freedom (ID from 1 to 3) and reduce when the degrees of freedom are large (ID

from 4 to 6). In all cases, the values of 2 are small, ranging from zero to .22, and quite

18
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stabilized as r increases.

Conclusions

The Monte-Carlo results tend to support the previous recommendation, based on
theoretical analysis, that the estimators b and dr should be used in conducting a meta-
analytic study. The use of both estimators will ensure the properties of unbiasedness and
minimum MSE in the estimation of effect size (6). Moreover, on the basis of simulated
data, values of both h and dr were not affected as severely as g and § in the presence of
violations to the assumption of variance homogeneity. The moments of dr were quite stable
across the different variance conditions under consideration. Clearly, due to its properties
of minimum MSE and variance stability, dr perform better than Glass-type estimators (g,
§) and Hedges-type estimators (h and dy) when sample sizes are small and effect size is
large In general, balanced designs should be attempted whenever possible, to minimize the
effects of variance inflation caused by violations to the variance homogeneity assumption.
Further research is needed to assess the relative effectiveness of estimators of & in the

context of statistical inferences and data analysis.

-
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Table 1

. ome population variances (6?), noncentrality parameters (A) and estimators of o.

(d)

Case 1: Variance homogeneity
Population variznces: o = ox = coy.
Noncentral parameter: A = k-1§ = sgrinm/(n + m)§ = A~1/25.
Estimators of o:
51 = Sy,
5=/ AT,
5 = 5‘1’ = W)
& = \/In8% +m&3)/(n+m) where $% = [(n— 1)/nlS% and 3 = [(m — 1)/m)S}.

Degrees of freedom of the chi-square distributions for §?/¢? and §2¢2, i = 1, 2; re-

spectively:
fi=(m-1),
fa=(n+m-2),
fi=m
fa=(n+m).

(2)
(b)

(d)

Case 2: Variance heterogeneity
(with 0% /o = r, where r is a known constant)

Population variances: o2 = 6%(1 + r)/2

Noncentral parameter: A = k=16 = {y/nm(r + 1}/2(mr + n)}6
Estimators of o:

S5 = Sy /r+ 1)/2

\/[(n—l)s 2. [r}+{m— 1)5’
n+m=2)

53 =53\/( - 1)/m,
81 = /l(n/r) 5% +mS3)/(n + m).
Degrees of freedom in the chi-square distributions for f,5?/¢% and f£8%¢2, 1 = 3, 4;

respectively: f3 = fi, fa= foy fs=fi and fy = fo.

20

T




Estimation of Effect Size

Case 3: The Behrens-Fisher problem (0% #0%)

(2) Population variances: v = \/(c% + 0)/2
(b) Noncentral parameter: A = k=16 = d%{%ﬁ%&
(c) Estimators of o:
S5 = V(5% + 5202
S = /1% + 212,
(d) Estimates cf degrees of freedom of the chi-square distributions for 53/0* and 52 /0%

respectively:

fo= (n=1)(m-1)(53+5})7
5= Tmo)si+(n-1)S%

; ym(n=1)5% 4n(rm-1)S%)°
5% m¥(n=1)5%nI(m-1)5;

L
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Figure 1
Typical values of means and variances for five
0.8 estimators of effect size (g, g, h, dors dT) under
balanced design with d = .6 & n=m =5, ..., 105.
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Figure 2

Typical biased and mean square error values of
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8 N five estimators of effect size (g, g, h, dirs dT)
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Figure 3

Typical values of means and variances for £ive
estimators of effect size (g, &, h, dys dT) under
balanced design with n=m - 30 and §d = 0, ..., 2-
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Figure 4
Typical biased and mean square error values of five
estimators of effect size (g, g, h, dys dT) under
.26 1 balanced design withn =m =30 and = 0, ..., 2. 1
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Table 2

Variance ratios (r =6,2‘ /5y2), sample sizes (n and m) and deqrees of freedom
(§) used to generate the six contigurations (ID) in the Monte-Carlo study.

? Cases 1 and 2 Case 3
l r=1,2,10 r=2 r = 10
w |n|a t £ t £ T ¢ £
! 1| b % 5 5 5 5
1| e 6 5 6 | 10 9,00 9.00 5.99 5.99
2 | s 1 20 | 21 | 25 10.59 | 11.42 6.03 6.19
3 16 | si 50 [ s1 | ss 10.98 | 12,19 6.04 6.24
e bsi| s 5 6 | ss 32,14 | 36.18 55.00 54.90
s 1os1| 2 20 [ 21 | 70 69.23 | 69.42 59.02 58.80
6 51| s1 so | s1 {100 .| 90.00 | 90.00 59.90 59.90
Notes:

(a) r = An unbiased estimate of the variance ratio (r = 6;3 / 62y).

»
(b) 1n Case ! (variance Homogeneity, r = 1), the degrees of freedom tl and El
. . -~ .
were used in the computation of the parameters for g anf g, respectively.
The degree of freedom fzvue ved to derive values of the parameters for
h, 41 and dr. The same procedure was applied {in Cae 2 (Variance
P o ~
Heterogeneity with known r)) since £3 x El, £3 = tland = 62. In Case 3
(The Behrens-Fisher condition, 6% = 6)%), the degree of freedom Es vas used
in association with 3 vhereas the parameters of the other four estimators

»

vere obtained on the basis of fs.
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Table 3

Means of some generalized estimators of effect size (d) for six configurations of sample sizes (ID)

Case | Case 2 Case 3

______________________________________________________________________________________________ e mmm e mmme— e
& 1D r = 1 r = 2 r = 10 r = 2 r =10

———————————————— - - o o __----1——--—-1_--—------_— - . - - Yy s oy @e @ - -y - o ——————-_-——q——————_----—————————————--————_-—-

b pal wd ¥ il pel P 3] ] p i B 1) Ba ] Iy M N M P

. 5 H| Pdp| e g| Pdyl Pdil Fg gl #a, di Mal e | Pag) fal Ye| M3 dyj fdp
0 (1 10.0010.00}0.00}0.00/ 0.000.00f0.00|0.00}0,00f0.00}0.00]{0.00}0.00]0.00/0.00/|0.00{0.00]0.00}06.00]0.00
02 10.00 0.00)0.000.00{0.00)0.00} 0.00}0.00|0.00]0.00)]0.00}0.00)0.00{0.00]0.00|0.00/0.00l0.00]0.00 0.00
0 (3 |0.00;0.00}0.00)0.00}0.00}0.00]0.00}0.00|0.,00|0.00}0.00)0.00[0.00{0.00|0.00]0.00[0.00]0.000. 00 0.00
014 {0.0010.00)0.0010.00)0.000.00]0.,00f0.,00}0.00}0.00 0.00|0.00]0.00|0.000.00]0.00]0.00/0.00]0.00]0.00
0[5 10.0010.000.0010.00|0.,000.00f0.,00f0.00]0.,00]|0.00f0.00}0.00]0.00]0.00{0.00[0.00}0.00/0.00/0.00]0.00
0 {6 10.00 0.00}0.000.00}0.00}0.00]0.00]|0.00|0.00{0.00]0.00]0.00]0.00]0.00]0.00}0.00]0.00 0.00/{0.00{0.00
-—r———- ——————————————————————— - iy ST O S S eyt S S i b b a, TS G O iy O St hadades anle L2 e i C e ) S Ll (W, SOOI SpE ,
-6 1 10.7110.78 [ 0,56 10.29 1 0.71 [ 0.79{0.56 | 0.29]0.71 | 0.78 | 0.56 | 0.29 | 9.66 | 0.66 [ 0.56 | 0.31| 0.69 {0.69[0.530.28
.612 10.62]0.640.,5910.37}0.62|0.64]|0.59{0.34}0.62]|0.64]0.59]/0.31 0.65}0.67 |0.57[0.34]0.69/0.7010.53]0.29
-6]3 |0.6110.61|0.59(0.39)0.61}0.61[0.59{0.36|0.610.61|0.59([0.32}0.600.68|0.57)0.35]0.69/0.70}0.53]0.29
-6(4 10.7110.78 | 0.59 [ 0.39( 0.71|0.78 { 0.59{0.43|0.71}0.780.59|0.50]0.61}0.65|0.59]0.48|0.61)0.61]0.59]0.52
-6/5 10.62] 0.6410.60}0.50|0.62)0.640.60]0.51]|0.62)G.64]0.60]0.53|0.60]0.61[0.60/0.53{0.610.610.59]{0.52
-616 10.61}0.61]0.60)|0.54]0.610.61]0.60]0.,54)0.61}0.61){0.60]0.54|0.60}0.60|0.60]0.55]|0.610.61]0.60]0.54
141 1.1941.3010.94 10,70} 1,49 1.3010.94/0.70{1.19] 1.30 | 0.94 | 0.70 | 1.09 | 1.09 {0.93|0.73| 1.15{1.15]0.88 | 0.67
112 [1.04f 1.06|0.98)0.81]1.04}1.,06[0.,98)0.78{1.04]1.06]0.98)0.75|1.08{1.12])0.94)0.76]1.151.16/0.88]0.68
113 {1.01|1.02/0.99|0.83) 1,01 1.02{0.99}0.80 1.01|1.02|0.99({0.726]1.08( 1.13[0.95}0.77] 1.15|1.17(0.88] 0.58
T {4 [1.19] 1.30710.99|0.83) 1,19} 1.30(0.99| 0.87 | 1.19]1.30)0.99]0.93)1.02] 1.09]0.98 0.911 1,01 ]1.01:0.99}0.94
1 ¢35 [1.04) 1,061 0.99{0.93| 1.05) 1.06{ 0.99( 0.94 1.04( 1.06} 9.99) 0.95| 1.01] 1.01] 0.99 0.95] 1.01 [ 1.01]0.99]0.95
116 |1.01] 1.0210.99}0.96{ 1.01] 1.02|0.99]0.96) 1,01} 1.02)0.99{0.96{ 1.01} $.01[0.99)0.96| 1.01(1.01]0.99{0.95
- 27

ERIC

Aruitoxt provided by Eic:




Table 4

variances of some generalized estimators of effect size (&) for six configurations
of sample sizes (1D)

. Case | Case 2

d]ip ro=1 r =2 r = 10
e e - - - e Sutiad s Sade LY T - - D et 2 e s S - - - -1—-—— -y - -y g - ———-v’-—
AR IR I &1 el ] ] 6d
I A T T N1 M o IO N I {0 O I R b W T
0.0 1 {0.56{0.67]{0.35|0.31|{0.00]0.56[0.67{0.35}0.31|0.00|0.56]0.67/0.35|0.3110.00
0.0f2 [0.24 | 0.25{0.22]|0.21]|0.00|0.24]|0.25|0.26]0.25}0.00{0.24}0.25{0.32|0.30]|0.00
0.0|3 [0.19{0.20|0.19]0.18|0.00|0.19]|0.20|0.24}0.23}0.00}0.19]0.20{0.3110.30]|0.00
0.0/4 {0.31)0.37}0.19|0.18}0.00}0.31|0.37|0.1a|0.1a|0,00]0.31]0.37]0.07]0.061]0.00
0.0]5 [9.070.08}0.07[0.07(0.00}0.070.08|0.06]0.06|0.00{0.070.08]0.04]{0.04]0.00
0.0 |6 10.040.04|0.040.04|0.00]0.04|0.04|0.04]0.04{0.000.04]0.04|0.04{0.040.00
0.6]1 {0.65|0.780.38|0.33][0.09]|0.65[0.78|0.38|0.3310.09|0.65]0.78]0.38]0.33]0.09
0.6 2 {0.25]0.26]0.23|0.22]0.08]0.25|0.260.27|0.26{0.09{0.25]0.26]0.33]0.31]0.09
0.6(3 ]0.20{0.20]0.19/9.19|0.08|0.20 |0.20}0.24 |0.24]0.09]0.20{0.20]0.3110.31]0.09
0.6/4 [0.40|0.480.19{0.19|0.08] 0.40)0.48|0.14|{0.14)]0.07]0.40]0.48(0.070.07]0.05
0.6|5 [0.09]0.09]/0.07]0.07[0.05|0.09]|0.09{0.06|0.06}0.04a/0.09]0.09|0.05/0.05|0. 04
0.6)6 |0.04|0.05)0.04|0.04}0.03]|0.00}0.05]0.04]0.00]/0.03{0.02]{0.05]0.04]0.08]|0.03
1.0(1 |o.81]0.97|0.42]0.37{0.21]|0.81[0.970.42]0.37]|0.21]0.86]0.97]0.42]0.370.21
1.0}2 [0.27]0.28]0.24|0.23}0.16}0.27[0.28]0.28{¢c.27]|0.17|0.27]0.28]0.324/0.330.19
1.0]3 10.200.21]0.20}0.19{0.12]0.20|0.21]0.25]0.24|0.16[0.20]0.21)0.32]0.31]0.18
1.0{4 |0.56]0.67}0.20|/0.19}0.14]{0.56}0.67]0.15]|0.1a}{0%11]0.56{0.67|0.08]0.07]0.06
1.0{5 [0.10]0.11)0.07)0.07]|0.06}0.10[0.11]0.07]0.06|0.06[0.10{0.11]0.05]0.05]!0.05
1.0{6 |0.05)]0.05|0.04{0.04]{0.04]0.05}0.05{0.04}0.04{0.00[0.05/0.05|0.04{0.04]0.04
31
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Table 5

variances of some generalized estimators of effect size (d) for six
configurations of sample sizes (ID) under Case 3 (The Behrens-Fisher
problem)

$ | r =10
N P AP
S I G K
g| 8 4y q &| 8 H T
0.0 |1 0.36 10.36.]0.30(0.26]0.0010.48|0.48 [0.36{0.28}0.00
0.0 0.2910.3240.25}0.22]0.00{0C.46]|0.47 [0.35|0.27}0.00
0.0(3 0.28 10.31]0.240.22|0.00|0.46}0.47 }0.3410.270.00
0.014 0.0910.1010.08(0.08|0.00}0.05]|0.05{0.05}0.05/0.00
0.0]5 0.0410.04(0.04;0.04|0.00}0.04}0.,04]0.04]0.04/0.00
0.0]6 0.0310,03(0.03}0.03]|0.00{0.04)0.04(0.04]0.04]0.00
0.6 1 0.3910.3910.32|0.28|0.09}0.54)0.54]0.41]0.32|0.09
0.612 0.3210.3410.27{0.24|0.09)0.52|0.53]0.39]0.31]0.09
0.6 3 0.30|0.34|0.2610.23]0.090.52]0.5310.39)0.31}0.09
0.614 0.09(0.1010.09|0,09|0.06]0.,06[0.06|0.05/}0.05]0.04
0.6 15 0.05|0.05]0.04}0.04(/0.04{0.04|0.04/0.05{0.05/0.03
0.6 |6 0.04 10.04 {0.03|0.03|/0.03{0.04]0.04]0.04}0.04]0.03
e R e L L Er (e APIGpES PPET SO SEpIPEPS L R L e LR T CEE TR
[ 0.4410.4410.3710.32|10.20 |0.65]0.65[0.49(0.38]0.22
1.0]2 0.36 10.39{0.31|0.28]10.18 10.63}10.65]0.48]0.37]0.22
1.0 |3 0.3510.38|10.30}0.27|0.18 }0.63]|0.65]0.47}0.3710.22
1.0 {4 0.1010.1210.10}10.10}0.08 }{0.06|0.06}0.06|0.06]0.05
1.0 |5 0.050.05)0.05]0.05)0.04 }0.05|0.05|n.05]0.05|0.04
1.0 16 0.04 | 0.04 1 0.04 19.05}0.04 }0,05 0,05 |0.u5)0.05]0.04
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Table &

Biased values of some generalized estimators of effect size (&) for six confiqurations of sample sizes (ID)

-

Case | - Case 2 Ca;; 3

d lip t = 1 t =2 r =10 t =2 t = 10
___________________________ LTt LT UPRIREOR U iU S SRR U S
BIAS|BAS BIAS-1 BIAS|BIAS IBIAS | BIAS| BIAS piASlBLﬁS BIAS ngAs BIAS BIAS] BIAS| BIAS | BIAS BIAS} BIAS| BIAS
ggderggq{.dng gl €T} 9 19 | 9u| 974 ¢ dyt 9p
______________________ ettt S B B e L r Ty TUCUTupi FPPUPUYN SURSOUPEIY SPIPSIY PRDIpRY NENEPUSN NPTURITN EUNVIVITIS IV SRR N
0.6 110.1110.18/-0.04 |-0.310.1110.18}-0.04{-0.31}0.11]0.18]-0.04}-0.31]0.06]0.06!-0.04 -0.28]0.09(0.09|-~0.07{-0.32
0.6210.02/0.04{-0.01{-0.23[0.02[0.64}-0.01}-0.26]0.02}0.04]-0.01}-0.28}0.05{0.07{-0.03 -0.2610.09/0.10}-0.07[~0.31
0.6}3/0.01/0.01(-0.0t}-0.2170.0110.01]-0.01|-0.24)0.01{0.01]-0.01{-0.28]0.04]/0.08{~0.03 -0.25}0.09]0.10}-0.07]-0.31
0.6{410.1110.18[-0.01|-0.21{0.1110.18|-0,01|~0.17}f0.11]0.18]-0.01]|-0.10]/0.01l0.05|-0.01{-0.12) 0.01 0.01]-0.00}-0.08
0.615]0.02|0.04/-0.00}-0.09|0.020.04|-0.00{~0.09]0.02/0.04]-0.00|-0.07]0.01([0.01]-0.001}-0.07 0.0110.01|~0.00{-0.06
0.6|610.01]0.01|-0.00|-0.06]|0.01/0.01{-0.00{~0.06}0.01[0.01]-0.00[-0.06{0.00[0.00!-0.00 -0.05] 0.01}0.011-0.00({-0.06
t,01110.19/0.30{-0.06[-0.29]0.190.30{-0.06,}-0.29]0.4910.30}~0.06{~0.29{0.09{0.09}-0.07|-0.27 0.15]0.15{~-0.12]-0.33
1.01210.04]0.06[-0.02|-0.19)0.04 {0.06,{~0.02]-0.22{0.04[0.06]-0.02]|-0.25/0.0810.12/-0.06]-0.24 0.15{0.16|-0.11]-0.32
1.003}10.01/0.02/-0.01 [-0.16|0.01 0,02 {-0.01{~0.20}0.01}0.02|-0.01]-0.24{0.08[0.13}-0.05{-0.23 0.15(0.17|-0.11{-0.32
1.014]0.19}0.30]-0.01(~0.16(0.19]0.30|-0.01}-0.13}0.19]0.30(-0.01]-0.07]/0.02]0.09{-0.021-0.09 0.01(0.01|-0.01]-0.06
1,01 510.,04/{0,06({-0.01{-0.07]0.04]0.06|-0.01{-0.06}0,04{0.06])-0.01}-0.05}0.01[0.01]/-2.01/-0.05 0.0110.01]-0.01]|-0.05
.01 6,0,01}0,02)-0.00|-0.04(0.01)0.0?|~0.00|~0.04]0.01{0.02)-0,00{-0.04]0.01/0.01{-D.01{-0.041] 0.01 0.01|-0.01]~0.04
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Table 7

Mean square errors (MSE) of some generalized estimators of effect size (d) tor
six configurations of sample sizes (1D)

i Case | Case 2

& in r = | r =2 T r = 10

—————————————————————————————————————————— -1——-----——-————--{———————d-----—----_—-—- P . ] - - [ —— - v -

MSE | MSE | MSE MSE MSE MSE MSE MSE MSE MSE MSE W MSE ust | mse 1 MSE

5 h d d h 3 3 h 3 d

g § " t g H T 9 3 " A
..... B LT U urspRys MPQUSESIpRY EyNpRppapapys NNy SR P, SIS Ups EETUPUIyEIyE NySPIGUNUPUyEen NSEPHPRTEUEPS NSRS ISP IR SPUPIPIPUI SRR
0.6 |1 Jo.66| 0.81]/0.38 | 0.33 | o.18 | o.66 [ 0.80 | 0.38 | 0.33 | 0.18 | 0.65 | 0.80 | 0.38 | 0.33 | o.18
0.6 |2 lo.25| 0.260.23 | 0.22 | 0.14 | 0.25 | 0.26 | 0.27 | 0.26 | 0.15 | .25 | 0.26 | 0.33 | 0.31 | 0.17
0.6 |3 |0.20] 0.20{0.19 | 0.19 | 0.13 | 0.20 | 0.20 | 0.2¢4 | 0.24 | o0.1a | 0.20 | 0.20 | 0.31 | 0.31 | 0.7
0.6 |4 0.a0| o0.51 0.19 | 0.19 | 0.13 | o0.41 | 0.51 | 0.1¢ | 0.1 | o0.10 | o0.41 | 0.51 | 0.07 | 0.07 | 0.06
0.6 |5 [0.u9| 0.09|0.07 [ 0.07 | 0.06 | 0.09 | 0.09 | 0.06 | 0.06 | 0.05 | 0.09 | 0.09 | o0.05 | o0.05 | o0.04
0.6|6 [0.04] 0.05[0.0¢4 | 0.04 | 0.04 | 0.08 | 0.05 | 0.04 | 0.04 [ 0.08 | 0.08 | 0.05 | 0.04 | 0.04 | 0.04
1.0|1 Jo.84| 1.06]0.42 | 0.37 | 0.29 | 0.84 | 1.06 | 0.42 | 0.37 | o0.23 | o0.84 | 1.06 | 0.42 | 0.37 | 0.29
1.0 |2 |0.27| 0.29]|0.24 | 0.23 | 0.19 | 0.27 | 0.29 | 0.28 | 0.27 | 0.22 | 0.27 | 0.29 | 0.3¢4 | 0.33 | o.25
1.0 {3 {0.20| 0.21]0.20 | 0.19 | o0.16 | 0.20 | 0.21 | 0.25 | 0.24 | 0.20 | 0.20 { 0.21 | 0.32 | 0.31 | 0.24
1.0]4 lo.60| 0.77]0.20 | 0.19 | 0.16 | o0.60 | 0.77 | o0.15 | 0.14 | 0.13 | o0.60 | 0.77 | 0.08 | 0.07 | o0.07
1.0 |5 lo.11| 0.11|0.07 | 0.07 | 0.07 | o.11 | o.11 | 0.07 | o0.06 | 0.06 ! o0.11 | o.11 | o.05 | 0.05 | 0.05
1.0 |6 |0.05| 0.05|0.04 | 0.04 [ 0.0 | 0.05 | 0.05 | 0.04 | 0.04 | 0.54 | v.05 | o0.05 | o0.08 | 0.04 | o0.04
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Table 8

Mean square errors (MSE) of some generalized estimators of effect size (8) for
six configurations of sample sizes (ID) under Case 3 (The Behrens-Fisher problem)

A eex=2 e
5 o 1D MSE Mia MSE MSE r MSE MSE MSE MSE MSE MSE
h ~
8 g dH dT g g h dy dI
0.0 1 0.36 0.36 0.30 0.26 0.00 0.48 0.48 0.36 0.28 0.00
0.0 2 0.29 0.32 0.25 0.22 0.00 0.46 0.47 0.35 0.27 0.00
0.0 3 0.28 0.31 0.24 0.22 0.00 0.46 0.47 0.34 0.27 0.00
0.0 4 0.09 0.09 0.08 0.08 0.00 0.05 0.05 0.05 0.05 0.00
0.0 5 0.04 0.04 0.04 0.05 0.00 0.04 0.04 0.04 .04 0.00
0.0 6 0.03 0.03 0.03 0.03 0.00 0.04 0.04 0.04 0.04 0.00
0.6 1 0.39 0.39 0.32 0.28 0.17 0.55 0.55 0.41 0.32 0.19
0.6 2 0.32 0.35 0.27 0.24 0.16 0.53 0.54 0.39 0.31 0.19
0.6 3 0.31 0.34 0.26 0.24 0.15 0.53 0.54 0.39 0.31 0.19
0.6 4 0.09 0.11 0.09 0.09 0.07 0.06 0.06 0.05 0.05 0.05
0.6 5 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.6 6 0.04 i 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
---------------------------------------------------------------------------------- [ IR
1.0 1 0.45 0.45 0.37 0.33 0.27 0.68 0.68 0.49 0.49 0.33
1.0 2 0.37 0.41 0.31 0.28 0.24 0.65 0.68 0.48 0.39 0.32
1.0 3 0.35 0.40 0.30 0.27 0.23 0.65 0.68 0.47 0.38 0.32
1.0 4 0.10 0.12 0.10 0.10 0.09 0.06 0.06 0.06 0.06 0.06
1.0 5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.0 6 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.04
’ 32
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