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Estimation of Effect Size

A UNIFIED APPROACH TO THE ESTIMATION

OF EFFECT SIZE IN META-ANALYSIS

Introduction

In research synthesis, statistical methods are used to describe the findings of studies

under review. Typically, the selected studies are considered as independent experiments

concerning the behaviors of some common dependent variables. Each study usually consists

of a control group (Y) and at least one treatment condition (X). The results of each study

are summarized by an index of effect size (6). The first estimate of effect size, developed

by Cohen (1966, 1967) and modified by Glass (1976), is of the form g = If Y) /Sy or
the difference between means of the treatment (X) and control (Y) groups divided by the

standard deviation of the control group (Sy ). Important contributions to the estimation

theory of effect size are attributable to Rosenthal (1978), Hedges (1981), Rosenthal &

Rubin (1982), Kraemer (1983) and Hedges & Olkin (1985).

Let X1, ..., X. and Y1, ..., Y., represent some random samples of the treatment and

control normal populations; px and µy, the population means of X and Y, respectively;

and 7, the standard deviation of the response scores of all subjects in the combined treat-

ment and control population. The present investigation addresses parameteric methods to

estimate Cohen's effect size f = (11x-ilr) from a single experiment or for a single study in
,,,

meta-analysis. The enumeration of all possible estimators of u would result in a countless

number of estimators of S. Table 1 provides a limited list of some popular estimators of

cr2, namely .5? and SI for i = 1, ..., 5.

Insert Table 1 about here

Generally, an unbiased estimator of cr2 is 52 whereas its maximum likelihood estimator

is S2. The distributions of Si and :5,2 can be summarized respectively as fS,2/a2,x2
CO and
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Estimation of Effect Size

R/0.2_,2
(f), where x2(f) and X2(f) denote chi-squares with f and I degrees of freedom,

respectively, and ".--" meaning " is distributed as". The estimates of a and their associated

degrees of freedom are listed in Table 1 under various conditions of variance homogeneity

and heterogeneity.

Under variance homogeneity (Case 1), as well as under variance heterogeneity with

known variance ratios (Case 2), four estimat:.s of a are listed in Table 1. These estimates

are derived after the procedures to estimate effect sizes as (i) suggested by Glass (1976)

(SI and S3 and their maximum likelihood estimator (MLE) versions, :§1 and S3), and (ii)

proposed by Hedges (1981) (S2 and 54 and their MLE counterparts, S2 and ,§4). Also

listed are the estimates of a under variance heterogeneity (Case 3) as introduced by Welch

(1938) and Cohen (1966) (S5 and its MLE counterpart, ,§5). Other estimates of u2 can be

derived by modifying the values of S? and in Table 1. For example, the values below

are mathematically equivalent to SZ = [(n 1)S1- + (m 1)S]/(n+ m 2):

= [E (Xi TC)2 + E (Yi 17)2j/(n + m 2), and
Engl. + mgn/(n+ m 2),

where Si = E - X)2/(n 1), 4 = E (y, -17)2/(m - 1), SX = E (xi T)2/n, and g?,

E (Yi 3-7)2/771

In Table 1, the degrees of freedom for the unbiased estimates of a (f i = 1, ...,

4) are less than those for the corresponding MLE counterparts (A). It is important to

note that Vie estimators of effect size are non-central t statistics whose distributions are

characterized by the specifiation of degrees of freedom, f and j.

The main objective of this investigation is to examine the principal statistical prop-

erties of the estimators of 6 under variance homogeneity (Case 1), variance heterogeneity

with known variance ratios (Case 2) and for the Behrens-Fisher problem (Case 3). The

derived estimators are compared according to the criteria of their magnitudes, unbiased-

ness and mean-square errors (1.1SE). The present investigation can be considered as an

extension of the existing studies on the estimation of effect size in me+a-analysis from

three perspectives:

(i) Except for the estimators of 6 listed under Case 1 in Table 1, other possibilities

have not yet been examined.

(ii) A generalized approach in effect size estimation is undertaken such that common
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Estimation of Effect Size

properties of estimators of b are derived. These properties can be applied to estimates

that can be considered as mathematically equivalent to those given in Table 1.

(iii) Although the estimation of treatment effects in the presence of variance hetero-

geneity has been discussed (Wilcox, 1985), the estimation of effect sizes for the Behrens-

Fisher problem in research synthesis is addressed here for the first time. In particular, the

bias of the estimators of effect size computed according to the methods of Case 1 (Variance

homogeneity) in the presence of variance heterogeneity is investigated.

(iv) It will be shown that estimators of effect size are unstable, namely, variances of

the estimators increase with effect size (b). In this study, a relatively stabilized estimator

with respect to b is identified and its properties, examined.

In the following, the common statistical features of estimates of b are treated first in

general terms. Then, specific characteristics o" some selected estimators, which are formed

as functions of Ss and St listed in Table 1, are analyzed. Finally, general properties of the

derived estimators are re-examined by means of Monte-Carlo results.

General Properties of Estimators of Effect Size

Model Specification and Assumptions

The properties of the estimators of effect size are studied on the basis of the following

three assumptions:

(Al) The random samples X and Y are distributed normally with means itx, ity and

finite variance 4 and a?,, respectively. The population moments in the distibutions of X

and Y are unknown;

(A2) .7, I', SI, and S are mutually independent; and

(A3) The standardized difference between the treatment and control effects is repre-

sented by the effect size b = (gx Ily)la where the forms of o are given in Table 1.

It will be shown that, for i = 1, ..., 5, the biased estimators of b are of the forms

g, = (X 17)1S, and §, - 17)/§ and the corresponding unbiased estimators are h, =

and it, = cii respectively; where cj = (Iffii cf
21_

to] ' and ci = The distributions of

g, §, h and it are found to be noncentral t with the noncentral parameter defined generally

as A = (a Icry_F)b, where cr2(-i_k-) = [a2.7 + cr21-,-] and o = ax = ay under variance homogeneity
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or cr2 = 4)12 in the presence of the Behrens-Fisher problem. In addition, some linear

transformations of g, a, h and h, such as the variance-stabilizing and shrunken estimators,

are also considered.

The derivation and properties of estimators of 5 are influenced by the following two

properties of the functions Cf and cf: (i) the degrees of freedom f and f should be larger

than 2, (ii) Cf and Cf are monotonically increasing functions of the degrees of freedom (0.72 <

(c f, cj) < 1 for 3 < (f, f) < co) (Hedges and Olkin, 1985, Table 2, p.80), or equivalently, the

inverse of these functions are monotonically decreasing (1.38 > 1, cf 1) > 1 for 3 < (f, < oo.

For example, if f2 > fi then ch > ch and cf-: < cf31,

The Distributions of the Estimators of

The distribution of a generalized biased estimator of 5 is formalized as. follows:

Proposition 1. Consider the estimators g = (72C -17)1S and a = (Tc - -10/.§; where S2/0.2-

X2(f) /f and E2 is a maximum likelihood estimator of Q2 such that /1(S2) = (f/f)cr2 for 1, f > 3.

The distributions of g and a are kt(f,k.1,5) and kt(f,k_6), respectively; where k =

(j)k, t(f,4,) is a noncentral t-distribution with degrees of freedom f and noncentral

parameter A.

Proof: The estimator g can be written as,

.E:157,._,
(.1 17) / S = 2:17-17) r '(7-V) (Z+a) k 2+A

°C3I-7)
(Slcr)IcrIcr y2 If

where A = (Ax 1y)/(7(2.-__F), k = a(X_17)/cr, ZN(0,1) and SI cr--1.14)/f)/f.
According to Johnson and Welch's (1939), the distribution of g is of the form as

specified. Moreover, the relationship a = LiiIng is tenable since a = (.3C - F)/.§, and S.' =

[ViThS. Hence, the distribution of a is obtained a given above.

Corollary 1. (Biased estimators)

(i) The means and variances of g and a, respectively, are:

(a) (Exact). µ9 = Clio and = cf 15, o = (f/(f - 2))(k2 + 52) - 4, and = (f /(f
2))(k2+e2) -if;; where the expressions for Cf and c1 have been specified previously.

(b) (Approximate). µ9 = [(4f 1)14(f 1))S, and µ9 = [(4/ 1)14(i 1))15;

= [f l(f 2)}(k2 + 52) 19, and Fl = [f/(f 2))(k2 + 52) -
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(c) (Asymptotic). its, = 5, and ip§,, = = (k-2 + (52/21)), and = .

(ii) The variance-stabilizing and normalizing transformations of g and a are:

= b-isinh-1(ba-ig) = + I, and

a' = b-isinh-1(ba-lg) = + cr§ I;

where a2 = [11(1 - 2)]k2, a2 = [j1(f. - 2)]k2, b2 = [11(1 - 2)] - c f b2 = [1/(f - 2)] - 63,

b-1[sinh-1(ba-lg)- sinh-1(ba-15)] %%4 N(0,1), b-i[sinh-i(ba - sinh-1(ba-15)]::-N (0,1), and

":,-," denotes "is asymptotically distributed as".

(iii) The bias and mean-square errors of g and a can be derived as:

(a) Bias(g) = 1]5, and Bias(y) = [c 1=1 - 1]5;

(b) M SE(g) = Ef I( f-2)](k2+52)(1-2c-i1)52, and MSE(a) = f.1(f-2)1(k2+52)-(1-2c71)52.

Proof : The proof will be carried out for the results associated with the estimator

g. Similar arguments can be derived for the results related to the maximum likelihood

estimator a by means of the transformation a =

s2_
(a) The well-known result Z = (3 c -1) (0, 1) implies that -,xti)//. Let W =

psi-v)/Vi x-7)
(3C--7)/S(-X-17) be an unbised estimate of A = k-15. Then W can be rewritten as:

(7-17)-(ox -or) (Ax -pr)
(7 - Y) cra-7)W =

. 5 '7'
Cr

(

i '7) = (Z + AV V X2 If.
),..1_,..,0(7-y)

Then, from Johnson and Welch (1939), Aw = eTIA and 4,, = [f(1 + A2)/(f - 2)]

Since g--kt(1,A) implies that itg = kilw and a = k2.7k; hence, the results follow.

(b) The values of rig and En are based on the approximation ei = 1- [3/(4f - 1)] with

an error < .0003 for 1 > 10 (Hedges, 1981).

(c) The limiting distribution of W is normal with mean of A and variance of [1 +

(A2/2f)] (Johnson and Welch, 1939, p. 367). Since Z- N(0,1) and by applying the central

limit theorem, it yields:

Z = 2(14)0. + (02/2f)= k(g - 5)1 + (k-252 /2f = (g 5) / k-2 (52 / 21).

Hence, the results hold.

(ii) Since the variance and MSE of g are functions of 5, it is desirable to to transform

g into variance - stabilizing estimators. The variance of g can be decomposed as cr2 a2+ b262.

5
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Following Laubscher (1959), the reported variance-stabilizing and normalizing transforma-

tion of g is obtained.

(iii) The results are trivial since, by definition, Bias(g) = b, and M SE(g) = v9 -

[Bias(g)]Z . Analogous arguments apply to the derivation of Bias(a) and M SE(a).

Novick and Jackson (1974) suggested another approximation for cf, namely, ay

(3/21) with an error about .01 for f > 5. Under this approach, jig = [V2f/(2f - 5)]

and /la = [V2i/(2) 3)]5. The approximation given by Hedges (1981) is preferred since it

is more precise and yields a smaller bias in the estimation of b. In the limit, cf-1 reduces

to i under both approaches. When f is as small as 3, c7' is equal to 1.38, 1.41 and 1.37

according to the exact formula and those given by Novick and Jackson (1974) and Hedges

(1981), respectively.

Corollary 2 (Unbiased estimators). Consider the estimators h = cfg and it = cig. Then

h = h and the following results can be applied to both h and it:

(i) The distribution of h is kaftu,h-.6) with mean ph = b and its variance can be specified

as,

(a) (Exact) o-h2 = [c3(-f4--2)(k2 52)] 52,

(b) (Approximate) 51, = )(k2+52)] 52,

(c) (Asymptotic) o ot..
(ii) A variance-stabilizing and normalizing transformation of h is:

h. = bh-1 sinh-1(bhaVh) = bh-llnlbhh

where ah = cf a, bh = cfb and, bh-l[sinh-1(bhah-lh) - sinh-1(bhah15)) N(0,1).

(iii) The bias of h is 0 and its mean-square error is equal to ol

Proof : The unbiased estimators h and it have the same distributions because it can

be written that,

h = =k1,f1,71c.0 = (\ac = c jg = h.

The remaining results can be derived due to the proof of Corrolaru / as well as the

fact that vh = aN and cf is increased to 1 as f increases to infinity. Therefore, the limiting

distributions of h and g are the same by Slutsky's theorem (Serfling, 1980). 11

An unbiased estimate of o i can be expressed in the form of She = [ci 2 ( )(k2 h2)] h2.

Hedges and Olkin (1985) proposed a. valiance-stabilizing and normalizing transformation

6



Forthe estimator h2 = ch(X 7)/S2 as:

114 = sinh-1[h21q] = V-270n1(h2/q) + (hi /q2) + 11,

Estimation of Effect Size

where q = + 2(n/m) + 2(m/n) and N = m. This equation is derived from the asymptotic

distribution of h2. Kraemer (1983) suggested another transformation method from the

relationship between the distributions of h and the product- moment correlation coefficient.

Both the Laubscherian transformation and that of Kraemer (1983) are based on the exact

distributions of h, and thus expected to be more accurate for small sample cases than the

method of Hedges and Olkin (1985). In practice, the Laubscherian equation is easier to

use than Kraemer's (1983) procedure since the latter may require an additional step of

converting the transformed values in terms of correlation coefficients to the original scale

of measurement.

The efficiency of estimators are often evaluated according to the minimum mean-

square error criterion. In the following, two additional estimators are derived from proce-

dures that serve this purpose.

Proposition 2. (Shrunken estimators)

(1) (Thompson, 1968). Let d be an estimator of b. The minimization of MSE(wTd)

Atw,a_6) results in the weight WT of the form:

wT = ii/(trci + tAi)

(ii) (Hedges and Olkin, 1985). Consider an estimator d of b such that cr3 =

Then the MSE of any linear transformation of d, say dH wHd + qH; where wH and

qx are

some constants; is minimized by defining the weight as,

wjf = (b2H + 1)-1.

Proof :

(i) The given expression for WT that minimizes the mean-square error (MSE) of d/T = wTd,

MSE(wTd) = e(wTd ipT)2 = w4(cr3 + Act) +

can be obtained as a solution the partial derivative of

aMSE(w2.d)1awr = 2wT(o-3 21h2d= 0.

7
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(ii) See Hedges and 011dn (1985), pp. 105-106. II

Some applications of the results in Proposition 2 are now explored. The distribution of

d belongs to the family of non-central t distribution with degree of freedom f. When f is

large, the distribution of d is approximately normal (Johnson and Welch, 1939) with mean

and variance of b and k-2 + (52/21), respectively (corollaries .1 and 2). Since the theoretical

origin of the normal distribution is zero, following Thompson (1968), a shrunken estimator

of b can be formed as:
52

dT = k-2 (52 /2f) + 52 )d

or, alternatively, dr = [(1/k252)+ (1/21) + 11-15.

As another application of Thompson's result (1968), let d = h then a minimum MSE

estimator (di) can be expressed as:

252

= torh = (ARP h (VI&
2)lik2 + 59)h.

An unbiased estimate of wr, denoted as 14, is obtained upon replacing b by h. The

corresponding shrunken estimator in terms of the moments of h under Hedges and Olkin's

(1985) procedure is of the form:

Cf 2

dH = WHh
2))h.

So far, five generalized estimators of effect size, namely g, g, h, di. and dH have been

discussed. Note that these estimators have the same signs. They are now compared

according to the following three criteria: the size of their absolute values, biasedness and

MSE magnitudes. The comparisons are performed on the basis that all relevant estimators

are computed with the same sample sizes.

Proposition 3 (Comparing the estimators). Given that f > 2 and I > f, the relative

rank-ordering magnitudes of g, a, dH, and dT on the basis of their absolute values, degrees

of bias and MSE magnitudes, respectively, are:

(i) IgI ?. IgI ?_ Ihi ?_ IdHI ?. IdTI

(ii) IBias(dr)I ? IBicts(g)I ?.. IBias(g)I ?.. IBias(dH)1.

msEco> msgo> msE(h)> msE(dH)> MSE(dT).

&of :

8

10



Estimation of Effect Size

(i) This result is proved by means of pairwise comparisons among the estimators of 6,

starting with the claimed smallest estimators, 7-Irraely dr and dH. Since dr = hi 2i(k2 t h2))c/H

and [h2/(k2 + he)) < we have IdTl< IdHl. Now, dH = WHh implies that ihl > IdHI if wH < 1 or

(f 2) /f < c72. But this condition is tenable since C72 > 1 and (f 2) /f < 1. Next, h = cjg

indicates that Ihl < IgI since ci < 1. Finally, 191 = l(NriTf)gl ?igi when I > f.

(ii) With Etas(h) = 0 already obtained, the pairwise comparisons is conducted first
c-2with Bias(dH) and Bias(g) where Bias(dH) = (ral,7q 1)o and Bias(g) = [c71 1)5. Since

1.7p is much smaller than 1 than c71 is larger than 1, 1Bias(dH)1 < iBias(g)1. Next,

1Bias(a)1 > IBias(g)I because Aa > its, when f > f. Finr3.1y, IBias(4)1 > IBias(9)1; where

Bias(dT) = r C 2
(vT) yr = (521(k2 + 52) and = [c7.1 - 1]5; since 1c71 - 11 is smaller

than 1(cfrol--.-fm_ -11 due to the fact that both f/(/ - 2) and VT are less than 1.

(iii) Consider MSE(dT) = C(dT tidr )2 = C(VTdH tqlicht)2 = VT2MSE(dH).

Then, MSE(dH) > MSE(dT) because VT < 1. Analogously, MSE(dH) = - 5)2 =

is less than MSE(h) = al, because wH < 1. Next, MSE(g) = a9 (Bias(g))2 is larger than

MSE(h) = c.lol since c, < 1 and (Bias(g))2 > 0. Finally, MSE(a) c(a /402 = (f/ f)c(g 1192) =

(f/f)MSE(g) is larger than MSE(g) when j? f. II

For a given value of f and I, the biased values for each of the five estimators under

consideration are smaller than its relevant MSE values. As f increases, the biased values

of these estimators would rapidly converge to zero when their expected values approach b.

In the limit, the corresponding mean-square errors (MSE) would not always converge to

zero and when they do, not as rapidly. In particular, the mean square errors of g, a, h and

dH would be equal to CIL, which are expected to be larger than o since the latter is of

the form 4.440.10, where VT and wH are less than one. Note that the results in Proposthon 3

can applied to all cases listed in Table 1 since I, > f, (i = 1, ..., 5), except that < ft, when

n > in. The exception will be illustrated in a Monte-Carlo study.

The findings above can be generalized to other estimators of b. In general, bias and

SE values grow with the increase of b and reduce as the associated degrees 1 freedom

increase. Values of Bias(g) and Bias(a) share the same signs with 6 whereas those of

Bias(dH) and Bias(dT) have the oppisite signs to b. From the results in Proposition 3, it

is clear that the popular estimator g, proposed by Glass (1976), tends to overestimate

the effect size (6). According to the criteria of minimum bias and mean square error, the

9
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estimators h, dH and dT should be preferred to g and g. Moreover, dT is more favorable to

dH on the basis of the variance stabilization criterion. In terms of their absolute values, h

is unbiased whereas dT would tend to underestimate b . There_Jre, both h and dT should

be computed in a meta-analysis study. TI° former is used in the analysis of effect size

of the experiment under consideration and the latter, as an indication of its lower bound.

Properties of Some Estimators of Effect Size

The distributions of some specific estimators of effect size (b) are now studied with

respect to the general properties presented above. In particular, some Specific forms of

the five estimators g ghdH, and dT, are examined (The subscr;pt i represents the case in

which S listed in all_Atl, is used in the expression of the estimator under consideration).

According to Proposition 3, the biased estimators (g, and §i = 1, ..., 4) are relatively less

effective than the unbiased and shrunken estimators (h dH, and di,, i = 1, ..., 4) in the

estimation of effect sizes.

Estimators under variance homogeneity

The main properties of estimators listed in Table 1 for the case of 0,2, = 4 can be

summarized as follows:

Corollaru $ (Variance homogeneity)

(i) (Biased estimators)

(a) 19i1 ?... 1911 > 1§21> 1921 if Si. > Sr. and I§2I > 1921 > Iii! > 1911 if .5?, > 53c when n = m.

(b) IBias(9i)1 .>. Pias(gi)1 ?... IBias(g2)1 ?_. IBias(92)1

(c) MSE(§1) > MSE(gi)> AI 5E(g2) > MSE(g2).

(ii) (Unbiased estimators)

(a) 1h21 > Ihil if 4 > SI when n = m whereas Ihil > Ih21 if SI > S.

(b) MSE(hi) > MSE(h2)

(iii) (Shrunken estimators)

(a) *II?. 14'21 if 'hi' ?_ 1h21 and vice versa if 1W < 1124

(b) IBias(d2,2)1? IBias(dn)

10
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(c) MSE(dT,) > MSE(dT2)

Proof

(i) (Biased estimators)

(a) The results in Proposition 3 implies that rod > 1gs1 (for i = 1, 2). From the definition

of .9? and ;9? in Tables 1, it only requires to find the condition for E.? > Si so that >

Since Si = - 1 l+m (m2-) 1) S.?. 4 the resulting condition is as stated in this

upon

Corollary. Analogously, it is necessary to show that EI > Si to obtain

1g21 1-°11

S

the condition > .9? implies that (n + m 2)(m 1)4 > m[(n 1)S3c (m 1)4]oror,

simplification, S?, > [m(n 1)/n(m 1)].93c, the result is obtained.

(b) and (c) From Proposition 3, it can be seen that Bias(as) > Bias(gs) and MSE(gs) >

MSE(gs), for all i. Moreover, since biased and MSE values are monotonic decreasing

functions of L and from the fact that 12 > fi ( Table i), we have 3ias(gi) > Bias(g2) and

MSE(gi) > MSE(g2). Therefore, the results hold.

(ii) (Unbiased estimators)

(a) The condition for h2 > hi can be readily specified from the facts that hz hi =

c12g2 cligi, c12 > cf, (because ci, is a monotonic increasing function of f f2 > fi, and

1g21 > Igil for the case in which 4, > Si when n = m). On the other hand, to find the

condition for h1 > h2, a simple proof can be carried out by using the approximation Ey

(Novick and Jackson's,1974). The resulting forms of approximate unbiased estimators are

expressed as hi = k/(2m 5)/2 Exi(X Y) and h2 = [02n 7)/2(Ex + Ey)}(X 7), where Ex

and Ey are defined as Ex = E (X TC)2 and Ey = E (Y 17)2 , respectively. Then, from the

difference
- 17)2 {(2772 5)(E 2(m 1) E)},

h2 hi 2(Ex + EY) EY x

one can conclude that h2 > hi if .93c > [2(m 1)/(2m 5)]4. It is clear that hi hi > 0 if

(2m 5)(Ex 2(m 1) E) > 0. Since 2(m-1)/(2m+5) is less than one, the condition .93c > SY

would yield the result h1 > hz.

(b) For the unbiased estimators hi and h. we have

MSE(h1) MSE(Iti)= at.

Therefore, the result holds since 01 is a monotonic decreasing function of f and the fact

that fi > f2.

11
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(iii) (Shrunken estimators)

(a) Consider dT, = wHi[h?/(k2 h; )]hi for i = 1, 2; where wH, = c7,2[(afi 2)/f,] By
applying the approximation c (Novick and Jackson, 1974), it can be written that wH,

-2)/f,] 1 for L > 3. Hence, the magnitude and direction of dT, are essentially

determined by hi.

(b) Without loss of generality, assume b > 0. The bias of dT, can be expressed as

Bias(dT,) wH,{[,52/(k2 + 52)] 1 }5 = _wihk25/(k2 52). Now, Bias(dT2) Bias(dTi) = (win

wH2)k2b(k2 + 52) > 0 since f2 > h and wH, is a monotonic decreasing function of L.

(c) Since MSE(d/ri) is a monotonic decreasing function of f the result follows for

f2

The results in Corollary 3 imply that, with the exception of the shrunken estimators,

the pooled variances (used in the computation of 9242, h2 and 42) are relatively more

efficient than the unpooled variances ,.,elding estimators with smaller biased and MSE

values. The same observation applies to the following case of heterogeneous variances with

known variance ratios.

Estimators under variance heterogeneity with known ratios

Corollary 4 (4 0 4, assuming r = 4/4)

(i) (Biased estimators)

(a) I931 ?. 1931 .? 1041 ? 1941 if 51 > [r(n+ rN + 1)/(n 1)151, and rad 1941 1931 ? 1931 if

52 >

(b) IBias(a3)1 > Pias(93)1 > IBias(§4)1 > IBias(94)1.

(c) MSE(93) > MSE(g3)> MSE(94)> MSE(94).

(ii) (Unbiased estimators)

(a) Ih41 > 1h31 if r > 1 or 51, > SI and Ih31 > 1h41 if r < 1.

(b) MSE(h3) > MSE(h4).

(iii) (Shrunken estimators)

(a) 14'31? IdT4I if Ih31 ? Ih41 and vice versa if IIlh < lh, 3 4
(b) IBias(dT4)I IBia3(dT3)

(C) MSE(dT3) > MSE(dT4)

Prize

12
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(Biased estimators)

(a)Since S3 - S4 = {[(N - 2)(r + 1) - 271/2(N - 2)1E, -[(N - 2)-9Ex the condition for

> g so that 1941 > I031 is 4 > {2(n. - 1)/(m - 1)[(N - 2)(r + 1) - 27.11..S.i or 4 > SX as stated

above. Similarly, since S4 - .53 = [Ex /nr] + [N-1 - (r+ 1)/(m- 1)]Ey, the condition for S4 > .53

so that 1931 > 1§41 is S _> [r(Nr n+ 1)/(n -

(b) and (c) The proofs for the order-ranking bias and mean square error values require

the same arguments as present-r3 or the biased estimators in Corollary 4.

(ii) (Unbiased estimators)

(a) Without loss of generality, the proof can be simplified by means of the approxima-

tion e7 (Novick and Jackson, 1974). The corresponding approximate forms for the unbiased

estimators h3 and h4 are h3 = N/(2m - 5)/2(m - 1)(X - F)/S3, and h4 = J(2N - 7)/2(N - 2)(X -

17)/S4, respectively. Consider the difference 14 -14 = {[(421);)1)] 12(n +:)2511(3E-F") = C34/D34;

where C34 = [(1 r)(2nrn + 2m + 9m)] + 2n(r - 4) + (13 - 7r) and D34 = 2(n. + m - 2)(r + 1)(m - 1).

Since D34 > 0, the sign of 723 - hi is the same as that of C34. The results hold since C34 < 0

r > 1 and G4 > 0 if r < 1.

(b) and (c) The proofs are trivial, following the same arguments used in Corrolary 3

with respect to the unbiased estimators.

(iii) (Shrunken estimators)

The proof follows the same arguments as given in Corollary 4 upon replacing ch,i, and

*2 by dT3 and ds,4, respectively. II

The results so far imply that estimators h2 and chi,: must be preferred to h1 and chri.

The choice betwen h3 and h4 should depend on whether r is larger than one or not.

Estimators under the Behrens-Fisher condition

Corollary 5 (Biased estimators): The distributions of g5 = (7x - F")/S5, g5 = (.77 - 17)/§5,

and h5 = chg5, respectively, are kt(f,,k-15), kt(f5,k-it5),

(a) k =
(cd.-Eq.)12'

(b) ic = (fah), and

(c) f5 and fs are specified in Table 1.

and c15kt(15,k-i6) where:

Proof : The distributions of g5, gs and h5 can be derived from the results of Propositton 1.

The expressions for k, 15 and A are obtained as follows:

13
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(a) The effect size suggested by Cohen (1977) when 01$01, is of the form & = (pX

/IT) /°. where a = V(a3c + oi,)/2, a root-mean-square value (Cohen, 1977, p.44). Hence, from

Proposition 1, the expression for k is obtained.

(b) An unbiased estimate of a2 is si = (.93, + 4)/2 = + Then,2(,n_1)

SE '''.(0"2/f5).%) where

{al /2+ aP2}2 (4 + )2
f5 folc/4(n-1)}+{c4/4(m-1)} {4/(n 1)} + {crl,/(m 1)}'

according to Welch's (1938) procedure. Upon simplification, the expression of A is given

as
(n 1)(m 1)(a3c c4)2

.fs = (m + (n 1)a l,

In Table 1, an unbiased estimates of A are obtained upon replacing 4 and o by s3, and

4, respectively.

(c) The MLE of a2 under the Behrens-Fisher condition can be expressed as ,§E =
4}/2= {((n - 1)/n)S.K. 44(m- 1)/mI4

2

Then, .§.25 n^'
(al /n)n, +(cd fin)X, Hence, from Welch's (1938) procedure, one gets:2

[(n 1)(73c/n+ (m 1)4/4
5 {(n 1)4 /n2} + {(m 1)4/m2}

The above expression cat. be simplified as

f ms- (n 1)4 + n(m 1)412
rri2(n 1)o1 +n2(m 1)c4

An unbiased estimate of A are given in Table 1. II

By applying the results in Corollary 1, moments of the exact, approximate and lim-

iting distributions of 05 and .05 can be derived. The expected values and variances of g5

and g5 are equal to those computed for g and '0 (Corollary 1) when f is defined as A or A,

respectively. Similarly, it is possible to obtain moments for the unbiased estimators (h5)

and the corresponding shrunken estimators (4.5) by means of Corollary 2 and Proposition 2,

respectively. As will be seen in the following simulation study, A > A when m > n. Given

this condition, the relative magnitudes, biased and MSE values of g5:05, h5, 4/5 and clq,

follow the same patterns presented in Proposition 3. For the case in which A < A (when

m < n), the relationships expressed in Proposition 3 still hold upon letting g and '0 switch

14
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places. In other words, the rankings among the unbiased and shrunken estimators are not

affected by the relative sizes of n and m since they are computed on the basis of h, (which

is equal to & for all A and

Monte-Carlo Results

Comparisons of Estimators of Effect Size Under Balanced Designs

Properties of the five estimators g, g, h, dH and dT were studied by means of a Monte-

Carlo method under the balanced designs (n = m) as well as under several configurations of

sample sizes (n and m) and variance ratios (r) for the three cases presented in Table 1. Under

the balanced designs, the same computational expressions for the above five estimators are

found in both Case 1 (Variance Homogeneity) and Case 3 (The Behrens-Fisher problem)

as implied by the following results:

Corollary 6. (Balanced designs). Let = .91.14 represent an unbiased estimator of

414. When n= m, the following properties are observed:

(a) k = 12F in all three cases presented in Table 1.

(b) 51 = S5, .§? = S5 S3 = Sl V(f +1)/2 and Si = 0.51/2f) + (4/2).

(e) f, = f3 = (n-1), ji= /3= n, f2 = f4 = 2(n 1), /2 = f4 = 2n, f5 = f5 = (n 1)(1 + 02/(1 + 1.2).

Proof:

(a) In Case 1 (Variance Homogeneity) k = \An+ m)/nm = /2F for n = m. In Case 2

(r = 4 /4), k = /2(mr n)/nm.(r + 1) = V2n(r + 1)/n2(r + 1) = 12Th. Similarly, in Case

3 (404), k = V2n(4 + anIn2(al- + an =

(b) and (c) By setting Ti = m in the expressions for R, L and f, (i= 1, ...,5),

the results are obtained upon simplifying similar terms. II

Values of the five estimators of effect size mentioned above were generated with

increasing sample sizes (5(1)105) and increasing effect sizes (0(.2)2). In Case 1 (01 =

and Case 2 (r =4/4), the degrees of freedom h and fi were used in the estimation of the

moments for g and g, respectively; whereas the degree of freedom f2 was used in association

with the remaining three estimators (h, dH and dT). In Case 3 (01 # 4), since k = A, the

degree of freedom f5 were used in computing the moments of all five estimators. Under

Cases 2 and 3, the condition of variance heterogeneity was specified by setting the values

15
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of as 2(1)10.

For a given value of effect size, the distributions of the means and variances of the five

estimators (g, g, h, dm and dT) in any configurations of sample sizes under consideration can

be typically represented by the plots in F:oure 1. The corresponding biased and MSE values

are generally performed as the distributions plotted in Figure 2. For 6 > 0, the following

relationships are observed across all simulated configurations of sample sizes (n = m),

effect sizes (6) and variance conditions (r):

Insert Figures 1 and 2 about here

(a) p(a) p(g) p(h) p(dT), and

(b) ag > ag > > OdH > at.
(c) The relative magnitudes of biased and MSE values for the five estimators followed

the patterns described in Proposition 3.

The above relationships C ar, also be applied to the case of negative effect size provided

that values of the means in (a) are expressed in absolute terms. As sample sizes increase,

the main properties of dT are: (i) minimum variance, (ii) stability (values of aci are quite

small even for small degrees of freedom), and (iii) minimum mean square error, despite

the large absolute values of Bias(dT).

The typical behaviors of the five estimators of effect size under consideration with

respect to the constraint of fixed degrees of freedom and varied effect sizes are depicted in

Figure 3 and Figure

Insert Figures 3 and 4 about here

In general, the moments of the estimators are monotonic increasing junctions of 6.

The notable exceptions are Thas(h), which is always equal to zero, Bias(dT) for 6 around zero,

and Buzs(41). As 6 increases, the means of the estimators grow much faster than other

moments. :In this case, the main properties of dT can be summarized as: (i) minimum,

variance, (ii) minimum mean square error and (iii) largest bias. For 6 > 0, as effect size

becomes larger, the absolute value of Btas(4) is reduced toward zero. On the contrary,

16
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,

the same absolute values of the other estimators depart further from zero. In short, the

shrunken estimator d2, is most efficient, as compared to g, '0, h and dH, in the estimation

of effect size when the sample sizes are small and 6 is large.

General Comparisons of Estimators of Effect Size

The specifications of the simulation parameters (n, m, r, f and /) used to generate

values of the five estimators in several combinations of sample sizes and variance conditions

are reported in Table 2. In each combination of 1', f (or j) and variance conditions (denoted

Insert Table 2 about here

as Case 1, Case 2 and Case 3), six data sets containing values of the five estimators

were generated, corresponding to the six configurations of samrle sizes (n and m) (de-

noted as ID in Table 2). Under Case 1 (c = 4) and Case 2 (01/4 = r), the de-

grees of freedom A and /2 were used to derive the moments of g and 0, respectively;

whereas moments of the estimators h, dH and dr were computed on the basis of A.

Similarly, under Case 3 (cri 0 4), properties of '0 were derived basing on i5 and mo-

ments of the other four estimators were computed by means of A. To generate data

under Case 3 (al 0 4), it is assumed that f is an unbiased estimate of r where f =

SI/4. Therefore, the estimates of A and i5 in Table 1 are revised respectively as:

fr
= (n- 1)(m- 1)(f2 +1)2

J 0 (m-1)R-1-(n-1)

ren(nly-En(m_ir
J5 m2(n. 1)f2+n2 On I)

As shown in Table 2, i5 > 15 when m > n and the reverse is true when m < n. The

resulting expected values of the means, variances, bias and mean-square errors of the five

estimators over all configurations under study are reported in Tables 3 to 8.

Insert Tables 3 to 8 about here

17
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On the basis of simulated data, principal characteristics of the distributions of the

five estimators under consideration can be summarized as follows:

(a) When 6 = 0, all estimates of effect size are unbiased. Similarly, when 6 = 1, the biased

values are very small.

(b) Expected values of the means, variances, bias and mean square errors of estimators of

effect size are monotonic increasing functions of b. Except A(4), the above moments

are monotonic decreasing functions of sample sizes.

(c) As 6 increases, expected values of the means grow faster than expected values of other

parameters, with A(g) and A(§) increase fastest. The values of MSE(g) and MSE(y)

increase more rapidly than mean square errors of the other estimators. While the

biased values of other estimators increase in absolute terms, Bias(dH) and Bias(dT)

reduce to zero.

(d) As sample size increases, the biased values reduce faster than other parameters. The

magnitude of reduction (R) can be arranged in descending order as R(Bias), R(MSE),

R(.72) and R(A).

(e) Within a given configuration of 6, sample sizes (n and m), and variance condition

(r), values of MSE are substantially larger than those cif Bias. Moreover, the rela-

tive magnitudes of Bias and MSE values for the-five;ekimatcrs

configuration conform to the relationships described in Proposition S.

(f) In Case 2 (01/4 = r), as r increases moments of the estimators of effect size change

very little in most configurations (ID). In Case 3, (404), with the exception of ot,

which tends to stabilize, variances of the other parameters generally increase (reduce)

for small (large) degrees of freedom.

In the presence of the Behrens-Fisher condition, variances of the estimators of effect

size were inflated if the degrees of freedom under the assumption of variance homogeneity

were used. However, this adverse effect is minimal with respect to the shrunken estimator

dr. For example, for the configuration of b = 1 and ID = 1, the values of 01 are .97 in Case

1, .44 (when r = 2) and .65 (when r = 10) in Case 3. The corresponding values of oiz. are

.21, .20 and .22. In general, as r increases, moments of the estimators increase for small

degrees of freedom (ID from 1 to 3) and reduce when the degrees of freedom are large (ID

from 4 to 6). In all cases, the values of c are small, ranging from zero to .22, and quite

18
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stabilized as r increases.

Conclusions

Estimation of Effect Size

The Monte-Carlo results tend to support the previous recommendation, based on

theoretical analysis, that the estimators h and ch. should be used in conducting a meta-
analytic study. The use of both estimators will ensure the properties of unbiasedness and

minimum MSE in the estimation of effect size (b). Moreover, on the basis of simulated
data, values of both h and dT were not affected as severely as g and g in the presence of

violations to the assumption of variance homogeneity. The moments of dT were quite stable

across the different variance conditions under consideration. Clearly, due to its properties

of minimum MSE and variance stability, ch. perform better than Glass-type estimators (g,
§) and Hedges-type estimators (h and di!) when sample sizes are small and effect size is
large In general, balanced designs should be attempted whenever possible, to minimize the

effects of variance inflation caused by violations to the variance homogeneity assumption.
Further research is needed to assess the relative effectiveness of estimators of b in the
context of statistical inferences and data analysis.
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Table 1

.7 ame population variances (a2), noncentrality parameters (A) and estimators of a.

Case 1: Variance homogeneity

(a) Population variances: a = ax = ay.

(b) Noncentral parameter: A = 10-'15 = sortnm/(n+ m)5 = n-1/2b.

(c) Estimators of a:

Si = Sy ,

V
1(n-1)4+(n-3)4

52 = (n+m-2) ,

§, = Ey = Om 1)4/m,

.§2 = N/F-4 +m:SV/(n+m) where §3c. = [(n 1)/451 and §12, = [(m 1)/mjS?,.

(d) Degrees of freedom of the chi-square distributions for S,2/a2 and S; a2, i = 1, 2; re-

spectively:

1, = (m 1),
12 = (n +m 2),

ii = m:

f2 = (n +m).

Case 2: Variance heterogeneity

(with 4/4 = r, where r is a known constant)

(a) Population variances: a2 = 4(1 + r) /2

(b) Noncentral parameter: A = k-'S = Wnm(r + 1)/2(mr + n)}5

(c) Estimators of a:

S3 = Sy Or + 1)/2
en-1)S 3./rj+(m-im

54 = 01+m-2) ,

E3 = S3 NAM WM,

§4 = RO.* + m.§n/(n+ m).
(d) Degrees of freedom in the chi-square distributions for f1.5?/a2 and jMa2, i = 3, 4;

respectively: 13 =11, 14 =12: f3 = J, and h = /2.
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Case 3: The Behrens-Fisher problem (0,104)

(a) Population variances: a = s,/(o + 4)/2
(b) Noncentral parameter: A = k-15 = nm(a2x+(i) 62(mal+nor)

(c) Estimators of a:

55 = (S3c + Si )/2

.§5 = + 40)
(d) Estimates cf degrees of freedom of the chi-square distributions for .51/a2 and .§?/c72;

respectively:
ot-i)(F-1)(s1+492

(nt-1)51+(n-1).51.

Im(n-1).91-En(rn-i)sn2
m2(n-1)51-En2(in-1).n.
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Table 2

F,tia;

Variance ratios (t. =634 /6y 2 ), sample sizes (n and mYand degrees of freedom(f) used to generate the six configurations (ID) in the Monte-Carlo study.

r

ir=

ID I n
1

--- 1 --
I 116
2 i 6
3 1 6

4 ! 51
5 ; 51
6 . 51

m

6
21

51

6
21

51

Cases

f

1

5
20
50

5
20
50

1 and
1, 2,

-
fl

6

21

51

6

21

51

2

10

f

2

10
25
55

55
70
100

r=2

5

9.00
10.59
10.98

32.14
69.23
90.00

Case

f

5

9.00
11.42
12.19

36.18
69.42
90.00

3

r=

f5

5.99
6.03
6.04

55.00
59.02
59.90

10

15

5.99
6.19
6.24

54.90
58.80
59.90

Notes:

(a) r = An unbiased estimate of the variance ratio (r 62 / 62).
X.

(h) In Case 1 (Variance Homogeneity, r = 1), the degrees of freedom El and k
were used in the computation of

the parameters for g anf .4% respectively.
The degree of freedom E2 were ued to derive values of the parameters for
h, da and dr. The same procedure was applied in Cae 2 (Variance

Heterogeneity with known r)) since E
3

fl, f
3

?
1
and f2 s E. In Case 3

A

2'(The Behrens-Fisher condition, 63 = 4), the degree of freedom f5 was used
in association with g whereas the parameters of the other four estimators

were obtained on the basis of f5,
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Table 3

Means of some generalized estimators of effect size 61) for six configurations of sample sizes (10

i l ID

Case

r=

I

1 r= 2

Case 2

r= 1 0 r = 2

Case
1

3

r = 10

Pg P "
g

P du
n

Pd
T

Pg Pg P dH Pdi, Pg g Pd
H

;"' d 4 g Pt Pdii lud
T

ij g " g Pd:i
Pdt

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.6 1 0.71 0.78 0.56 0.29 0.71 0.79 0.56 0.29 0.71 0.78 0.56 0.29 0.66 0.66 0.56 0.31 0.69 0.69 0.53 0.28

.6 2 0.62 0.64 0.59 0.37 0.62 0.64 0.59 0.34 0.62 0.64 0.59 0.31 0.65 0.67 0.57 0.34 0.69 0.70 0.53 0.29

.6 3 0.61 0.61 0.59 0.39 0.61 0.61 0.59 0.36 0.61 0.61 0.59 0.32 0.64 0.68 0.57 0.35 0.69 0.70 0.53 0.29

.6 4 0.71 0.78 0.59 0.39 0.71 0.78 0.59 0.43 0.71 0.78 0.59 0.50 0.61 0.65 0.59 0.48 0.61 0.61 0.59 0.52

.6 5 0.62 0.64 0.60 0.50 0.62 0.64 0.60 0.51 0.62 0.64 0.60 0.53 0.60 0.61 0.60 0.53 0.61 0.61 0.59 0.52

.6 6 0.61 0.61 0.60 0.54 0.61 0.61 0.60 0.54 0.61 0.61 0.60 0.54 0.60
_,

0.60 0.60 0.55 0.61 0.61 0.60 0.54

1 1 1.19 1.30 0.94 0.70 1.19 1.30 0.94 0.70 1.19 1.30 0.94 0.70 1.09 1.09 0.93 0.73 1.15 1.15 0.88 0.67
1 2 1.04 1.06 0.98 0.81 1.04 1.06 0.98 0.78 1.04 1.06 0.98 0.75 1.08 1.12 0.94 0.76 1.15 1.16 0.88 0.68
1 3 1.01 1.02 0.99 0.83 1.01 1.02 0.99 0.80 1.01 1.02 0.99 0.16 1.08 1.13 0.95 0.77 1.15 1.17 0.88 0.68

1 4 1.19 1.30 0.99 0.83 1.19 1.30 0.99 0.87 1.19 1.30 0.99 0.93 1.02 1.09 0.98 0.91 1.01 1.01 0.99 0.94
1 5 1.04 1.06 0.99 0.93 1.05 1.06 0.99 0.94 1.04 1.06 J.99 0.95 1.01 1.01 0.99 0.95 1.01 1.01 0.99 0.95
1 6 1.01 1.02 0.99 0.96 1.01 1.02 0.99 0.96 1.01 1.02 0.99 0.96 1.01 1.01 0.99 0.96 1.01 1.01 0.99 0.96

I
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Table 4

Variances of some generalized estimators of effect size (6) for six configurations
of sample sizes (ID)

ID

'-i2

0.0 1 0.56
0.0 2 0.24
0.0 3 0.19

0.0 4 0.31
0.0 5 0.07
0.0 6 0.04

0.6 1 0.65
0.6 2 0.25
0.6 3 0.20

0.6 4 0.40
0.6 5 0.09
0.6 6 0.04

1.0 1 0.81
1.0 2 0.27
1.0 3 0.20

1.0 4 0.56
1.0 5 0.10
1.0 6 0.05

8

-2-

Case I

r = 1

d
H

62

r

6:4Z
g

= 2

6-21
h

62

dH

Case

62
d
T

2 .

6-z erg

r = 10

h
6T

6 d
H

dT

0.67 0.35 0.31 0.00 0.56 0.67 0.35 0.31 0.00 0.56 0.67 0.35 0.31 0.00
0.25 0.22 0.21 0.00 0.24 0.25 0.26 0.25 0.00 0.24 0.25 0.32 0.30 0.00
0.20 0.19 0.18 0.00 0.19 0.20 0.24 0.23 0.00 0.19 0.20 0.31 0.30 0.00

0.37 0.19 0.18 0.00 0.31 0.37 0.14 0.14 0,00 0.31 0.37 0.07 0.06 0.00
0.08 0.07 0.07 0.00 0.07 0.08 0.06 0.06. 0.00 0.07 0.08 0.04 0.04 0.00
0.04 0.04 0.04 0.00 0.04 0.04 0.04 0.04 0.00 0.04 0.04 0.04 0.04 0.00

0.78 0.38 0.33 0.09 0.65 0.78 0.38 0.33 0.09 0.65 0.78 0.38 0.33 0.09
0.26 0.23 0.22 0.08 0.25 0.26 0.27 0.26 0.09 0.25 0.26 0.33 0.31 0.09
0.20 0.19 0.19 0.08 0.20 0.20 0.24 0.24 0.09 0.20 0.20 0.31 0.31 0.09

0.48 0.19 0.19 0.08 0.40 0.48 0.14 0.14 0.07 0.40 0.48 0.07 0.07 0.05
0.09 0.07 0.07 0.05 0.09 0.09 0.06 0.06 0.04 0.09 0.09 0.05 0.05 0.04
0.05 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.03

0.97 0.42 0.37 0.21 0.81 0.97 0.42 0.37 0.21 0.86 0.97 0.42 0.37 0.21
0.28 0.24 0.23 0.16 0.27 0.28 0.28 C.27 0.17 0.27 0.28 0.34 0.33 0.19
0.21 0.20 0.19 0.14 0.20 0.21 0.25 0.24 0.16 0.20 0.21 0.32 0.31 0.18

0.67 0.20 0.19 0.14 0.56 0.67 0.15 0.14 0.11 0.56 0.67 0.08 0.07 0.06
0.11 0.07 0.07 0.06 0.10 0.11 0.07 0.06 0.06 0.10 0.11 0.05 0.05 0.05
0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04
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Table 5

Variances of some generalized estimators of effect size (4) for six
configurations of sample sizes (ID) under Case 3 (The Dehrens-Fisher
oroblem)

4 ID

d:"
g

6.,?

g
(1,2 .5:7

dii d g

r
- - -

g

= 10

d
H

d
'is

0.0 1 0.36 0.36. 0.30 0.26 0.00 0.48 0.48 0.36 0.28 0.00
0.0 2 0.29 0.32 0.25 0.22 0.00 0.46 0.47 0.35 0.27 0.00
0.0 3 0.28 0.31 0.24 0.22 0.00 0.46 0.47 0.34 0.27 0.00

0.0 4 0.09 0.10 0.08 0.08 0.00 0.05 0.05 0.05 0.05 0.00
0.0 5 0.04 0.04 0.04 0.04 0.00 0.04 0.04 0.04 0.04 0.00
0.0 6 0.03 0.03 0.03 0.03 0.00 0.04 0.04 0.04 0.04 0.00

0.6 1 0.39 0.39 0.32 0.28 0.09 0.54 0.54 0.41 0.32 0.09
0.6 2 0.32 0.34 0.27 0.24 0.09 0.52 0.53 0.39 0.31 0.09
0.6 3 0.30 0.34 0.26 0.23 0.09 0.52 0.53 0.39 0.31 0.09

0.6 4 0.09 0.10 0.09 0.09 0.06 0.06 0.06 0.05 0.05 0.04
0.6 5 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.03
0.6 6 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03

_J

1.0 1 0.44 0.44 0.37 0.32 0.20 0.65 0.65 0.49 0.38 0.22
1.0 2 0.36 0.39 0.31 0.28 0.18 0.63 0.65 0.48 0.37 0.22
1.0 3 0.35 0.38 0.30 0.27 0.18 0.63 0.65 0.47 0.37 0.22

1.0 4 0.10 0.12 0.10 0.10 0.08 0.06 0.06 0.06 0.06 0.05
1.0 5 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04
1.0 6 0.04 0.04 0.04

_ .
a.05 0.04 0.05 0.05 0.05 0.05 0.04
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Table 6

Biased values of some generalized estimators of effect size (A) for six configurations of sample sizes (ID)

J I D

BIAS
9

BIAS
g

Case 1

r = 1

BIAS

4H

BIAS

4r
BIAS

g

r

BIAS

g

= 2

BIASit

Case

BIAS
di,

2

BiAS
g

r =

BjAS
g

1 0

BIAS

4H
BIAS

uT
BIAS

g

r

BIAS

g

= 2

BIAS
d H

BIAS
dT

Case

BIAS1BIAS
g

3

r =

g

10

BIAS
dH

BIAS
dT

0.6 1 0.11 0.18 -0.04 -0.31 0.11 0.18 -0.04 -0.31 0.11 0.18 -0.04 -0.31 0.06 0.06 -0.04 -0.28 0.09 0.09 -0.07 -0.32
0.6 2 0.02 0.04 -0.01 -0.23 0.02 0.04 -0.01 -0.26 0.02 0.04 -0.01 -0.28 0.05 0.07 -0.03 -0.26 0.09 0.10 -0.07 -0.31
0.6 3 0.01 0.01 -0.01 -0.21 0.01 0.01 -0.01 -0.24 0.01 0.01 -0.01 -0.28 0.04 0.08 -0.03 -0.25 0.09 0.10 -0.07 -0.31

0.6 4 0.11 0.18 -0.01 -0.21 0.11 0.18 -0.01 -0.17 0.11 0.18 -0.01 -0.10 0.01 0.05 -0.01 -0.12 0.01 0.01 -0.00 -0.08
0.6 5 0.02 0.04 -0.00 -0.09 0.02 0.04 -0.00 -0.09 0.02 0.04 -0.00 -0.07 0.01 0.01 -0.00 -0.07 0.01 0.01 -0.00 -0.06
0.6 6 0.01 0.01 -0.00 -0.06 0.01 0.01 -0.00 -0.06 0.01 0.01 -0.00 -0.06 0.00 0.00 -0.00 -0.05 0.01 0.01 -0.00 -0.06

1.0 1 0.19 0.30 -0.06 -0.29 0.19 0.30 -0.06, -0.29 0.19 0.30 -0.06 -0.29 0.09 0.09 -0.07 -0.27 0.15 0.15 -0.12 -0.33
1.0 2 0.04 0.06 -0.02 -0.19 0.04 0.06. -0.02 -0.22 0.04 0.06 -0.02 -0.25 0.08 0.12 -0.06 -0.24 0.15 0.16 -0.11 -0.32
1.0 3 0.01 0.02 -0.01 -0.16 0.01 0.02 -0.01 -0.20 0.01 0.02 -0.01 -0.24 0.08 0.13 -0.05 -0.23 0.15 0.17 -0.11 -0.32

1.0 4 0.19 0.30 -0.01 -0.16 0.19 0.30 -0.01 -0.13 0.19 0.30 -0.01 -0.07 0.02 0.09 -0.02 -0.09 0.01 0.01 -0.01 -0.06
1.0 5 0.04 0.06 -0.01 -0.07 0.04 0.06 -0.01 -0.06 0.04 0.06 -0.01 -0.05 0.01 0.01 -3.01 -0.05 0.01 0.01 -0.01 -0.05
1.0 6 0.01 0.02 -0.00 -0.04 0.01 0.07 -0.00 -0.04 0.01 0.02 -0.00 -0.04 0.01 0.01 -0.01

...1

-0.04 0.01 0.01 -0.01 -0.04
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Table 7

.
Mean square errors (MSC) of some generalized estimators of effect size ici) for
six configurations of sample sizes (ID)

6 ID
---

Case 1

r = I

.-,

r = 2

Case 2

r = 10

MSE MSC MSC MSE MSE MSE MSE MSE 1 MSE MSE MSE MSC MSC MSC MSC
9 'i h d

H
d
i

9 1 h d
H

d
T

9 ..5'
h d

Fi

d
I'

0.6 1 0.66 0.81 0.38 0.33 0.18 0.66 0.80 0.38 0.33 0.18 0.66 0.80 0.38 0.33 0.10
0.6 2 0.25 0.26 0.23 0.22 0.14 0.25 0.26 0.27 0.26 0.15 0.25 0.26 0.33 0.31 0.17
0.6 3 0.20 0.20 0.19 0.19 0.13 0.20 0.20 0.24 0.24 0.14 0.20 0.20 0.31 0.31 0.17

0.6 4 0.4' 0.51 0.19 0.19 0.13 0.41 0.51 0.14 0.14 0.10 0.41 0.51 0.07 0.07 0.06
0.6 5 OM 0.09 0.07 0.07 0.06 0.09 0.09 0.06 0.06 0.05 0.09 0.09 0.05 0.05 0.04
0.6 6 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04

1.0 1 0.84 1.06 0.42 0.37 0.29 0.84 1.06 0.42 0.37 0.29 0.84 1.06 0.42 0.37 0.29
1.0 2 0.27 0.29 0.24 0.23 0.19 0.2i 0.29 0.28 0.27 0.22 0.27 0.29 0.34 0.33 0.25
1.0 3 0.20 0.21 0.20 0.19 0.16 0.20 0.21 0.25 0.24 0.20 0.20 0.21 0.32 0.31 0.24

1.0 4 0.60 0.77 0.20 0.19 0.16 0.60 0.77 0.15 0.14 0.13 0.60 0.77 0.08 0.07 0.07
1.0 5 0.11 0.11 0.07 0.07 0.07 0.11 0.11 0.07 0.06 0.06 0.11 0.11 0.05 0.05 0.05
1.0 6 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04

. 3 5
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Table 8

Mean square errors (MSC) of some generalized estimators of effect size (A) for
six configurations of sample sizes (ID) under Case 3 (The Dehrens-Fisher problem)

ID MSE

g

MSE

8

r ..3 2

MSE

h
MSE

dH

MSE

dT
MSE

8

MSE

8

r = 10
MSE

h

MSE

d
H

MSE

d,
A

0.0 1 0.36 0.36 0.30 0.26 0.00 0.48 0.48 0.36 0.28 0.00
0.0 2 0.29 0.32 0.25 0.22 0.00 0.46 0.47 0.35 0.27 0.00
0.0 3 0.28 0.31 0.24 0.22 0.00 0.46 0.47 0.34 0.27 0.00

0.0 4 0.09 0.09 0.08 0.08 0.00 0.05 0.05 0.05 0.05 0.00
0.0 5 0.04 0.04 0.04 0.05 0.00 0.04 0.04 0.04 0.04 0.00
0.0 6 0.03 0.03 0.03 0.03 0.00 0.04 0.04 0.04 0.04 0.00

0.6 1 0.39 0.39 0.32 0.28 0.17 0.55 0.55 0.41 0.32 0.19
0.6 2 0.32 0.35 0.27 0.24 0.16 0.53 0.54 0.39 0.31 0.19
0.6 3 0.31 0.34 0.26 0.24 0.15 0.53 0.54 0.39 0.31 0.19

0.6 4 0.09 0.11 0.09 0.09 0.07 0.06 0.06 0.05 0.05 0.05
0.6 5 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.6 6 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04

-L..

1.0 1 0.45 0.45 0.37 0.33 0.27 0.68 0.68 0.49 0.40 0.33
1.0 2 0.37 0.41 0.31 0.28 0.24 0.65 0.68 0.48 0.39 0.32
1.0 3 0.35 0.40 0.30 0.27 0.23 0.65 0.68 0.47 0.38 0.32

1.0 4 0.10 0.12 0.10 0.10 0.09 0.06 0.06 0.06 0.06 0.06
1.0 5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.0 6 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.04
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