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Toward A Unified Conception of Thinking:

Prediction Within A Cognitive Science Perspective

A cognitive science perspective on anything is, by definition,

interdisciplinary. Gardner (1985) includes philosophy, psychology,

artificial intelligence, linguistics, anthropology, and neuroscience as the

disciplines included in 'cognitive science. Together, these individual

cognitive sciences contribute to a unified cognitive science. In this

paper I rely mostly on philosophy, psychology, and artificial intelligence

as the basis for my remarks.

Making progress toward a unified conception of thinking has proven

very difficult, perhaps because until recently there have been no

systematic attempts to focus many disciplines on the same goal. Because

cognitive science defines itself as an interdisciplinary effort, I think it

offers more hope that we will make important progress toward a unified

conception of thinking. It is important at the outset to clarify what I

mean by a unified conception of thinking. I use the phrase "unified

conception GI thinking" in the sense that e have a unified conception in

science of mechanics or genetics or kinetic theory, etc.; in cther words

that there is widespread agreement about basic principles among those who

use the knowledge for basic and applied research. I do not mean by

"unified conception of thinking" that we are trying to define thinking or

problem solving in some broad, general, "contentless" way. A recent paper

by Perkins and Saloman (1989) provides a historical sketch of the

long-standing controversy between generalist and specialist camps,

concluding that a synthesis is needed to join subject-matter instruction

with thinking-skills instruction.
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I try in this paper to use contemporary work in philosophy,

psychology, and artificial intelligence in providing a brief overview of

some ideas that, taken together, can provide a reasonable foundation for

making progress toward a unified conception of thinking in science

education.

Philosophy of Science

My pocket Funk and Wagnalls (1980) defines philosophy as "The inquiry

into the most comprehensive principles of reality in general, or of some

sector of it, as human knowledge or human values." In many ways the

beginnings of cognitive science emphasiz'd tne need for philosophy. The

crucial role of "representation" in the mind's new science requires that we

understand relations between a discipline and how the mind structures and

uses that knowledge in problem solving. Gardner (1985) notes that,..."

philosophy participates in the disciplinary matrix by virtue of its

dialectical role: a dialectic within the discipline and a dialectic

between the analysis put forth by philosophers, on the one hand, and the

empirical findings and theories put forth by scientists, on the other" (p.

87).

Rather than selecting one of the better known contemporary cognitive

philosophers such as Dennett (1978) or Fodor(1983) or Putnam (1983) to lay

the philosophical foundation here, I have selected Schlagel (1986), a

somewhat lesser-known philosopher of science. His approach, which he calls

"contextual realism", fully acknowledges the importance of cognitive

science while avoiding the language games approach of Wittgenstein and his

followers. Schlagel relies heavily on concepts such as "limiting

conditions" and "complementarity" in modern physics in sketching out his

view of a meta-physical framework for modern science. He concludes that
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the context of modern philosophy must be tied closely to modern science and

to our growing understanding of our inner world:

These developments indicate, in my opinion, that physical
reality consists of a series of levels, each composed of
distinct layers of entities with vaique properties that
account, to some extent, for the kinds of structures and
interactions one finds on the succeeding higher levels....
While this conception of inexhaustible, irreducible contexts
or levels will probably be replaced in the future by a more
adequate meta-physical model, in the meantime, rather than
attempting to collapse reality into one dimension, which
invariably blinds the investigator to the significance of
other contexts, we should assume that the universe consists of
an endless nexus of domains with innumerable structures and
features. Experimentation and theory construction have been
the most successful means so far in providing partial glimpses
of this reality, as refracted through our cognitive-linguistic
frames, but we should not assume these means are final.
(Schlagel, 1986, pp. 294-5)

From the standpoint of science education Schlagel's contextual realism

offers a framework that I think can be embraced by many workers in the

field, particularly those who embraced much of Piaget's work at an earlier

time. This brief paper does not allow a detailed description of contextual

realism so the reader who wants more details should spend a weekend with

Contextual Realism.

In the next two sections I draw from cognitive psychology and

artificial intelligence to complete my sketch of the foundation needed to

describe contributions toward a unified conception of thinking.

Cognitive Psychology

The beginnings of modern cognitive psychology including the study of

information processing using the computer as metaphor for mind, is

described in Gardner's (1985) excellent historical account of cognitive

science. The work of a handful of individuals during the 1950's broke the

stranglehold of behaviorism on American psychology. Since that time

cognitive psychology has increasingly dominated nearly all areas, including
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science education. During the 1960's and throughout much of the 1970's

Piaget's work was the dominant force in science education and since the

late 1970's various forms of the information-processing model have become

more common. The current emphasis on misconceptions in science education

combines many of the assumptions and techniques from Piaget's work with

ideas associated with information-processing theory.

From the very large body of literature in cognitive psychology I have

selected two sources that seem to me to have particular relevance to our

goal of moving toward a unified conception of thinking in science

education. A book by Kuhn, Amsel, and O'Loughlin (1988) on the development

of scientific thinking and a book by Holland, Holyoak, Nisbett, and

Thagard (1986) on induction represent an important knowledge base for

science education.

In The Development of Scientific Thinking Skills, Kuhn, et al. (1988)

reduce the process of learning science to relating evidence with theory.

By implication, they argue that this is, or should be, the focus of science

learning for children. In coordinating theory and evidence they note that

a fundamental ability is, "to think about a theory, rather than only think

with it" (p. 219). Without an awareness of the theory, the individual is

unable to assess the bearing of evidence on it. I think this is true

whether the "theory" is consistent with scientifically-accepted knowledge

or if the "theory" is based on misconceptions.

Each of us has theories and models that are used to interpret the

world around us. These theories are based on a combination of knowledge

derived from our sensory interaction with our physical world and from

knowledge mediated by other persons. The misconceptions research clearly

shows that regular science instruction has a modest effect in helping most
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students recognize the limitations in their conceptions of the world.

Prescientific views of the world are indeed resistant to many and repeated

efforts by science teachers, at least for modes of instruction not designed

to specifically target the misconceptions.

Kuhn, et al. (1988) found that the situation is complex when subjects

are asked to coordinate theory and evidence, with the majority of subjects

unable to acknowledge discrepancies between the two. Many strategies were

used by the subjects to maintain theory-evidence consistency, especially

"adjusting" the evidence through selective attention or simply ignoring

discrepant evidence entirely. When the theory was held less strongly,

discrepant evidence was more effective in causing the subjects to alter the

theory. Most interesting was Kuhn et al's. claim that the subjects did not

seem to consciously acknowledge the adjustments in the theory:

Thus, we witnessed the adjustment of theories to fit
evidence, as well as the "adjustment" of evidence to
fit theories, but in neither case is either the
discrepancy itself or the adjustment made in response
to it acknowledged by the subject, and the subject appears
to lack conscious control of the operation of these
adjustment mechanisms in his or her thinking. (Kuhn,
Amsel, and O'Loughlin, 1988, p. 221).

Helping students gain conscious control of the "adjustment mechanisms"

referred to by Kuhn et al. seems to me a critical goal for science

education. Awareness of one's thought mechanisms would very likely

contribute to changes in one's theories or models about how nature

operates. By itself, metacognition is not a sufficient condition for

changing misconceptions and developing more scientifically-accurate

conceptions of nature, but the evidence suggests it is a necessary

condition. Kuhn et al. 0988) note, "Making contact with these inferior

strategies, and getting subjects to see their limitations, must be given as

much, if not more, attention than developing new strategies that will
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replace them" (p. 233). Following this advice would require much greater

emphasis, than is currently given, to teacher diagnosis of students'

current knowledge states aad related activities that help students become

aware of the kinds of problems inherent in their conceptions of nature.

In the second part of this section on psychology the nature of, and

research on, induction are briefly overviewed. Much of the content is

drawn from the important work on induction by Holland, Holyoak, Nisbett,

and Thagard (1986). In their excellent book, Holland et al. (1986) define

the domain of induction as that which includes "all inferential processes

that expand knowledge in the face of uncertainty" (p. 1). In spite of the

obvious importance of inductive processes in scientific discovery,

relatively little modern work in philosophy or psychology has been devoted

to the study of induction. Popper (1961) and others since the 1930's

discouraged its study in philosophy and the behaviorist tradition in

America did the same for psychology during the first half of this century.

Holland et al's approach is decidedly computational, although their

inquiry reflects the authors' fields of study (computer science, cognitive

and social psychology, and philosophy of science) in a way that results in

a broad-based, integrated theory of induction. Following the lead of

Peirce and Dewey, they assume, "the central problem of induction is to

specify processing constraints that will ensure that the inferences drawn

by a cognitive system will tend to be plausible and relevant to the

system's goals" (p. 5). Their emphasis on goals and context rather than

the simple syntax of induction place their theory within the pragmatism

concerned with problem solving and associated with Dewey and Peirce. One

can see that their emphasis on goals and context is important in trying to

make progress toward a unified theory or conception of thinking in science
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education. The goals of science and science education as well as the

context in which science education occurs must be carefully considered.

Holland et al. (1986) tie induction very closely to problem solving,

noting that their position is largely consistent with Newell and Simon's

(1972) theory. However, they emphasize that, "It is now clear that general

methods such as means-ends analysis are insufficient to account for expert

problem-solving skill" (p. 10). They go on to say, "Human expertise is

critically dependent on specialized methods and representations of

knowledge about the relevant domain" (p. 10). This has been supported by

many expert-novice studies, including the domains of physics (Larkin,

McDermott, Simon, and Simon, 1980), chemistry (Camacho and Good, 1989), and

biology (Smith and Good, 1984).

Holland et al. take the notion of mental model as the focus of their

analysis of induction and problem solving. They prefer mental model over

schema (or script, frame, and concept) because of its greater flexibility.

Within the mental model notion are the necessary mechanisms for

coordinating and integrating schemes, (or scripts, etc.) namely,

condition-action (i.e., if-then) mles. Holland et al. stress the role of

rules in what they call the most important learning mechanism, prediction:

Rules are a natural vehicle for what we take to be the
most fundamental learning mechanism: prediction-based
evaluation of the knowledge store.... A rule that
leads to a successful prediction should be strengthened
some way, increasing the likelihood of its use in the
future; one that leads to error should be modified or
discarded. Predictions about the attainment of goals will
normally be the most powerful source of feedback. (p. 16)

The central role of prediction in Holland et al's. theory of induction

is analogous to the role of prediction in the science learning cycle

described by Good (1987). Prediction-based evaluation of the knowledge

store described by Holland et al. is precisely the mechanism inserted into
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the well-known science learning cycle, recently described in detail by

Lawson, Abraham, and Renner (1989), by this author in order to encourage

students in science classes to become more aware of their own conceptions

and to put their conceptions (predictions) to the test in the science lab

and with fellow students. It was hypothesized (Good and Lavoie, 1986) that

a prediction-based learning cycle in science classes would cffer the

following advantages:

1) Students will be encouraged to organize their existing
knowledge.

2) Students will become more aware of the diversity of
opinions held by their peers.

3) There will be greater commitment by students to follow
up on their efforts.

4) Teachers can use students' predictions to aid in
assessment of their understandings.

5) Predictions can be used as a type of pretest by which
to judge initial understanding and later progress.
(pp. 24-35)

More will be said later in the paper about efforts to test these

conjectures.

The final chapters of Induction: Processes of Inference, Learning,

and Discovery by Holland et al. (1986) focus on analogy and scientific

discovery, topics of great importance to science educators. The authors

note that analogy is a top-down mechanism for constructing mental models

and that, "Analogy differs from other generative mechanisms in that it is

less directly focused on the current problem situation" (p. 288). Although

the potential of analogical reasoning and problem solving has long been

recognized it is only recently that considerable attention has been focused

in this direction. Gick and Holyoak (1980) called attention to the

difficulty problem solvers have in retrieving or noticing the relevance of

source analogs unless someone (i.e., a teacher) calls attention to the

analogy. This suggests that science curricu'um materials and teacher
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education materials will have to assist students in their efforts to find

and use analogies that might be useful in learning new science principles

and concepts. More will be said of learning ty analogy in the next

section on machine learning.

In their chapter on scientific discovery, Holland et al. argue that

scientific theories can be viewed as systems of rules in mental models and

that analogy is the primary means of theory construction. They also note

that central problems in the philosophy of science are, "continuous with

key issues in cognitive psychology and artificial intelligence" (p. 335).

Their observation supports my approach in this paper and, I think, should

guide any attempt to formulate a unified conception of thinking for science

education.

Holland et al. mention that the best known computational work on

scientific discovery, i.e., the discovery of natural laws, is the BACON

series of programs by Langley et al. (1987). In an earlier paper (Good,

1984), I reviewed that series of programs and noted that such computational

analysis of the nature of scientific discovery had potential for aiding

science educators in their work. What was apparent from the work reported

by Langley et al. (1987) was that scientific discovery could be explained

as a form of problem solving, reducing much of the mystery long associated

with well-known discoveries of laws in science.

Artificial Intelligence

The third area that serves as a foundation for developing a unified

conception of thinking in science education is artificial intelligence

(AI). In an earlier paper (Good, 1987) I sketched an overview of AI and

11
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ICAI (intelligent computer-assisted instruction) and identified machine

learning as, "Probably the most difficult long-range problem facing the

field of AI in general and ICAI in particular" (p. 337). The specific

problem referred to here has been called "brittleness", or the rapid

deterioratior in the performance of expert systems when they face problems

slightly outside their knowledge base. This section of the paper relies

heavily on the two main texts on machine learning, both by the same

authors, Michalski, Carbonel, and Mitchell (1983, 1986). The 40 or so

authors who contributed to these two works include such well-known experts

as John Anderson, Frederick Hayes-Roth, Dedre Gentner, John Holland,

Douglas Lenat, Donald Michie, Allen Newell, Herbert Simon, and Patrick

Winston.

An inspection of the contents of each of the texts on machine learning

shows a concern with issues similar to those of concern to science

education researchers interested in how people learn science. Learning by

observation, analogy, and discovery are prominent among the various

issues.

In the 1986 text the authors note that, "current AI systems have very

limited learning abilities or none at all" (p. 4). The nearly total

reliance on deductive rules prohibit the current systems to draw inductive

inferences from the information provided. Errors are repeated endlessly.

Since one of the most striking abilities of human intelligence is to

improve with time, learning from errors along the way, it is fair to say

that machines cannot be considered intelligent until they learn how to

improve over time, adapting effectively to changing information

environments.
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Michalski, Carbonell, and Mitchell (1986) chose to define learning as,

..."constructing or modifying representations of what is being experienced"

(p. 10). They clarify "experienced" by noting that internal thought

processes can be the subject of learning, not just the sensory stimuli from

the environment.. Notice that from this definition of learning,

constructing a representation of some "reality", rather than improving

performance, becomes the focal .iJint of the process.

Michalski et al. (1986) define the quality of learning in terms of

three dimensions for evaluating the constructed representations: validity,

effectiveness, and abstraction level. Validity is the degree of accuracy

bemeen representation and reality, effectiveness is a measure of how well

the representation achieves a goal, and abstraction level defines the

explanatory power of the representation. Recall in ..he section on

philosophy of science that Schlagel (1986) referred to levels of reality

(context) such as Newton's system for representing reality and Einstein's

system for representing reality. Einstein's system achieved a higher level

of abstraction and explanatory power.

The many different aspects of machine learning make it impossible to

adequately summarize them in this brief paper but one set of programs is

particularly relevant to science education. The four systems - BACON,

GLAUBER, STAHL, and DALTON are described by Langley et al. (1986) in the

1986 text on machine learning. BACON focuses on the discovery of empirical

laws by analyzing observational data GLAUBER formulates qualitative laws,

STAHL infers the components of substances (in the chemical sense), and

DALTON formulates structural models. Each of these components of

scientific discovery is known to be an important part of the overall

process and Langley et al. (1986) are interested in exploring the

13
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relations among the systems as well as refining each system.

The extent to which knowledge gained from machine learning systems

such as these, relates to what we can do to help students learn science,

remains to be seen. One thing that it E SIM to do is help to clarify the

complex processes involved in something like scientific discovery. There

are many other types of learning, but data-driven pattern sea..6; is clearly

an important part of what most science educators say they vali!. An

interesting theory by Margolis (1987) reduces cognition to pattern

recognition and search, not a particularly new idea, but his development of

the theory is interesting and consistent with the emphasis on data-driven

machine learning systems researched by Langley et al. (1986).

I close this section by returning to the brittleness problem

identified earlier. Holland (1986) analyzes the problem and concludes

that, for machine learning, induction is the only way of making important

advances. He specifies rule-based classifier systems as the inductiv'

approach needed, noting a number of important differences with the normal

rule-based expert systems. The details of his machine learning approach

are not what I want to focus 3n here. What is important to recognize is

that the brittleness problem is what is often called "lack of transfer" in

human learning studies. Holland (1986) notes that, "when a system uses a

model to generate expectations or predictions, it can use subsequent

verification or falsification of the predictions to guide revisi9r, of the

model (toward :atter prediction)...." (p. 599). Holland recognizes that

the key to escaping brittleness in a machine learning system is to focus on

predictions using a model in order to verify or falsify. In the final

section in this paper I use this focus on prediction to d velop a model of

science learning that reflects many of the ideas set forth earlier in this

paper.
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Putting It Together

My original thesis in this paper was that making progress toward a

unified conception of thinking would require the kind of interdisciplinary

approach represented by cognitive science. The disciplines I selected for

this process, philosophy of science, cognitive psycho'ogy, and artificial

intelligence, do not include all possible knowledge bases, but they include

much of what I think is necessary to consider. Examples of work from

social psychology and linguistics would undoubtedly make my plea for an

interdisciplinary approach more appealing to a wider audience, but only so

much can be attempted in a paper like this.

The thinking in science that I want to stress here is consistent with

the positions in philosophy of science (Schlagel, 1986), cognitive

psychology (Kuhn, Amsel, and O'Loughlin, 1988; Holland, Holyoak, Nisbett,

and Thagard, 1986), and machine learning (Michalski, Carbonell, and

Mitchell, 1983, 1986) that have been identified earlier in the paper. Each

of these important works provides guidance for constructing a foundation

designed to support a unified conception of thinking in science education.

It is not an accident that I ended the previous sentence with science

education. The local or domain-specific knowledge of interest, such as

physics, chemistry, biology, etc., will determine what kind of thinking is

most appropriate for the learning task at hand. A unified conception of

thinking in science education will be different than a unified conception

of thinking in literature, history, economics, etc. because the knowledge

base, heuristics for problem solving, etc. are different. Accepting this

at the outset will make our task of achieving a unified conception of

thinking in science education, a reasonable one. I acknowledge the work

15
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done by Sternberg (1986) and many others before him on identifying the

common characteristics of human reasoning , but to proceed in a pragmatic

way it is necessary to be specific in response to the question, "thinking

about what"?

Of the many important ideas found in the five texts that I have

focused on in this paper, there is one that is of particular interest to

me. Holland et al. (1986), in their description of a framework for

induction, identify the central characteristic of the dynamics of an

effective inductive system. Part of the following quote was used in an

earlier section of this paper.

Rules are a natural vehicle for what we take to be the
most fundamental learning mechanism-. prediction-based
evaluation of the knowledge store. A realistic inductive
system cannot be expected to leap to optimal inductive
inferences. There must be mechanisms that evaluate
candidate structures, discarding some, storing others,
and modifying those that already ,xist. The evaluation
mechanism compares the predicted consequences of
applying a knowledge structure with the actual
outcome of that application. Condition- action rules
are obviously well-suited for making predictions. A
rule that leads to a successful prediction should be
strengthened in some way, increasing the likelihood
cf its P.;3c in the future; one that leads to error
sh,Ild be modified or discarded. Predictions about the
rIt-,!rment of goals will normally be the most powerful
,outc,.. of feedback. (p. 16)

The r'p,:!.:411-1 of prediction is what I want to concentrate on in the

remainder of this paper. An emphasis on this mechanism, prediction, should

be incorporated into current learning and instructional theories in science

education.

An overview of a learning theory that many science educators feel has

promise for science education, was presented by Osborne and Wittmck

(1983). Their Generative Learning Model has considerable appeal because it

incorporates many of the important features of Piaget's constructionist
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approach, with some of the general ideas of information-processing theory,

into a framework that is compatible with long-held ideas about the nature

of science and science education. Their learning theory is generally

compatible with an instructional theory that originated with Robert Karplus

and his colleagues in their work with Science Curriculum Improvement Study

in the early 1960's (see Lawson, Abraham, and Renner, 1989 for an

excellent, in-depth overview of the learning cycle). The learning cycle

has its roots mainly in the developmental work (genetic epistemology) of

Jean Piaget, although the monograph by Lawson et al. (1989) provides an

update and considers future directions.

The mechanism of prediction is not emphasized either in the generative

learning theory or in the learning cycle approach to instruction. In

addition to the evidence already presented in support of the central role

of the mechanism of prediction in a science learning theory, I would like

to describe an ongoing project designed to explore the role of prediction

in science classrooms. Based on earlier ideas and research on the nature

and use of prediction skills of high school biology students (Lavoie and

Good, 1988), a group of university faculty and graduate students at

Louisiana State University and secondary science teachers, began in 1987 to

explore the role of prediction as part of an instructional strategy in

middle grades physical sciences classes. As described in Good et al.

(1988), the project was designed to explore the following questions:

1. Will students' prescientific concepts (misconceptions)
be revealed in a modified learning cycle that uses
prediction as the beginning phase?

2. Will students' predictions about common "science
systems" (e.g., pendulum, electric circuit) encourage
debate and argumentation prior to experimentation?

3. Does a prediction phase in a science learning cycle increase
student involvement in exploration and later phases?

4. Can prediction sheets be used by science teachers as an
effective tool to asses misconceptions held by students?

5. What factors seem to contribute to effective learning in
science learning cycles with and without a prediction phase?

17
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Question one has been answered affirmatively. By using prediction

sheets based on the misconceptions research literature, teachers and

students can become aware of specific conceptions helu by students in the

class. This is considered to be an important first step in helping

students construct more scientifically-accurate concepts about nature.

Work during the 1988-89 school year has expanded to other classrooms,

including high school physics, to further test the feasibility of

systematic use of prediction sheets with students. The results so far

indicate an acceptance by teachers of regular use of prediction sheets by

all students as a first step in identifying misconceptions. So questions

one and four have been answered in the affirmative.

Question two is not as easy to answer with a clear-cut yes. Most of

the results to this point indicate that it depends heavily on how the

teacher chooses to use the prediction sheets. There seems to be much more

success when teachers ask students to form groups of four or five students

and discuss their predictions (after each student has completed a

prediction sheet) than when whole-class discussions are attempted. It is

clear that many students will defend their position vigorously. In one

physics class during the small-group discussion phase, one student became

so involved in argumentation about various predictions that she got up and

left the group over a disagreement. I don't recall the last time I heard

about a student in a science class (physics) getting so personally involved

in a similar discussion that she or he took such a social risk. Although

more data from different types of classrooms will be needed to test

replicability of results, at this point I am confident that students'

predictions about science systems in content areas like force, electricity,

and heat, can be used by teachers to encourage discussion and debate among

the students.
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For question three, a qualified yes is the appropriate answer at this

point. A formal prediction phase preceding lab work does seem to focus

students' attention on investigations designed to test their predictions.

Although this procedure emphasizes verification over pure discovery, it is

important to recognize that students are testing or attempting to verify

their predictions rather than an outside expert's assertions. This focuses

on what Kuhn et al. (1988) stressed was the most important characteristic

of science, theory-experiment coordination. The physical science teachers

in eighth- and ninth-grade classes said their use of a prediction phase

prior to lab work seemed to have a motivating and a focusing effect on

their students, compared to classes that did not use a prediction phase.

Question five is a broad question that asks about factors, in addition

to a prediction phase, that contribute to effective science learning. The

many suggestions described in Lawson et al. (1989), Osborne & Wittrock

(1983), and other documents on effective science strategies can be used to

help answer this question. It is important to realize that any one

technique or factor of interest, by itself, will not be enough to make

overall, lasting differences in students' conceptions about and attitudes

toward science. Treatment must be interpreted broadly, as in the science

learning cycle (Lawson et al., 1989) and the generative learning theory

(Osborne & Wittrock, 1983), if we are to achieve important, lasting

improvements in science education.

I am convinced, for theoretical as well as empirical reasons, that a

formal prediction phase is necessary in any science learning theory that

focuser on students' prior conceptions. The multi-disciplinary approach

that I have argued for in this paper is needed to establish a solid,

consistent base for a unified theory of thinking in science education.
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