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The flagpole factory: Providing a referent for linear equations.

Michael L. Connell
University of Illinois at Urbana-Champaign

Susan B. Ravlin
University of Illinois at Urbana-Champaign

During the past decade society has come to place ever increasing

demands upon its members to utilize information in problem solving. As costs

of information technologies have decreased, increasingly sophisticated tools

have come within the reach of larger and larger sections of the population.

These new tools are capable of data storage, recall, and manipulation far

beyond orginary human capabilities. Such toolsare not, however, capable of

independently solving problems base:4 upon this tremendous mass of data.

They are data-laden, but unable to make the linkages between this data and the

real world. Their information must be interpreted, filtered, and applied to be of

use in solving problems posed in the world. These tasks currently must be

performed by human intervention. To function in this setting people must be

adaptable and capable problem solvers. Yet, we find many people in the same

position as the machines which provide them with data.

The view is becoming accepted that consequential knowledge does not

include rote memorization. As Sternberg (1984a, 1984b) puts it, consequential

knowledge involves deciding what information is important to learn and

incorporating that information into the already existing knowledge base. Yet, in

looking at the elementary educational experiences of students in mathematics

Davis (1974), Erlwanger (1973), and more recently Peck, Jencks, and Connell

(in press) have found that the focus has been upon memorizing facts and rules,

not on making sense of the subject. Instead of developing skill in making use of

information in a meaningful way, students spend large amounts of time merely
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processing and sorting collections of data, the very tasks which computer

technology does so well. Quite often, what little problem soh ing is offered

consists of problem specific rules, with little instruction in generalizable

strategies for manipulating information in goal-oriented situations. Students so

trained come to view mathematics as a system of rules to be memorized and

retrieved. In their minds successful mathematical thinking in the classroom

becomes either rote recitation of tables or case specific utilization of rules,

memorized facts, or miscellaneous data on command. Lacking the ability to

make decisions based on their own judgment, verifying the correctness of an

answer or a process is left to a source outside of themselves.

Peck, Jencks and Connell (1985) have argued that a primary cause for

these difficulties in elementary mathematics lies in the application of a rote

memorization teaching methodology in which students routinely are required to

memorize procedures in isolation, sidestepping the development of a referent

base. Keil (1984) points out that humans are capable of engaging in complex

chains of problem solving when it is embedded within and done in reference to

a specific knowledge structure or referent base. However, when conceptual

referents are not present for the mathematical symbols being manipulated,

Schoenfeld (1983) and others suggest that people construct undesirable

models concerning knowledge and their role in acquiring it, models which block

the development of unifying structures for V.e information they possess. For

example, problems are viewed as always having unique, specific answers,

which are wholly determined not by the logic of the problem but by the answer

book, a neighbor, or the teacher. As a result, problems in mathematicsare

approached from unproductive viewpoints, with greater emphasis placed upon

recalling memorized rules than in analyzing the situation to be evaluated.

/.1
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What is needed then is a change of emphasis in mathematics education.

Taking a clue from Keil (1984), structuring knowledge with respect to real world

referents should play a substantially more important role than the rote mastery

of arbitrary rules governing process. When students possess such a reality

base they are able to recombine features into new, successful relations in the

course of problem solving. Without such a mapping from the abstract symbols

to the real world, it is difficult to apply oven elementary mathematical meta-

cognitive techniques (Campione, Brown, and Connell, in press). Lacking

concrete referents, students are unable to identify when the problem situation

causes misapplication of their developed rules.

In spite of the mechanical, computational focus of traditional mathematics

curricula, there emerge groups of children who seem to naturally organize their

thinking in ways that are conducive to problem solving. Kachuk (April, 1987),

Connell (April, 1988), and others report that the thought processes and

structuring strategies these students utilize are markedly different from other

students in the same classroom settings, even though their peers may be

considered equally capable in other respects. Students who are good problem

solvers possess many linkages relating the subject matter to elements of their

real world experiences. These linkages provide a referent base, allowing them

to assume ownership over their work and to readily address questions such as

"How can you tell?" or "What would happen if ...?" in regard to their final

answer, the process by which the answer was obtained, or the underlying

premises upon which the process was based.

Unfortunately, the ability to attack and solve problems often appears to

have developed independently of school experiences. Evidence suggests that

many educational experiences in traditional settings contribute to the formation

of barriers which inhibit further conceptual growth. As Spiro, Vispoel, Schmitz,
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Samarapungavan, and Boerger (in press) discuss, problems develop as

students routinely memorize facts without opportunity to relate these facts 4 the

real world and its intricacies. As discussed earlier, this is particularly

problematic in elementary mathematics. Klahr (1984) points out that children

often have the ability to produce and manipulate symbols well before they

understand what the symbols represent. To the child, such symbols bear no

relationship to recognizable facets of the world; hence, the child fails to perceive

the underlying ideas and concepts. Nonetheless, a demonstrated ability in the

production and manipulation of symbols, however arbitrary or nonsensical

these symbols may appear to the student, may lead to instruction proceeding

before the student has grasped the concepts that the symbols represent. Given

these perceptions and strategies, it is little surprise that students do not value

problem solving skills and do not learn them well. They never acquire the

conceptual building blocks with which to link their memorized data into

meaningful structures.

In order for this situation to be corrected a substantially different

curriculum base, presentation schemata, system of psychological rewards, and

setting of instruction must be provided. A first step in facilitating this goal is to

place children in situations emphasizing problem solving skills, requiring them .

to develop and apply their own logic structures. A legitimate problem in this

setting would involve working on concepts that are within reach given currently

possessed knowledge structures. The problem must be new, but within

conceptual grasp and existing analytic powers. Problem solving strategies

involving posing questions, analyzing situations, translating results, illustrating

results, drawing diagrams, and using trial and error should be developed and

utilized to develop a referential base for later application. These problem

6
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solving activi!les should take place at a concrete level, with problems designed

to achieve curriculum goals using elements familiar to the child.

The instructional model utilized in this paper was adapted by one of us,

Connell (1986), from Robert Wirtz's (1979) model of mathematical problem

solving. It proceeds from the initial use of manipulatives through abstraction via

four transitional problem types. For the purposes of discussion we shall refer to

these problem types as:

1) Manipulatives

2) Sketches

3) Mental Pictures

4) Abstraction

An example of physical manipulatives in this model might be a pile of

pebbles used to illustrate elementary addition. A sketch would then be drawn

recording the actual pile of pebbles. A mental picture isan internal

representation of the external sketch. Abstraction occurs when addition is no

longer described in terms of countable piles of pebbles, but in terms of pure

number.

1) Manipulatives. The power of a physical manipulative lies in the

structures which can be built upon it, the linkages it enables in the mind of the

student, and its power in explaining concepts. The merit of a manipulative is

that it can be used to simplify information, generate new propositions, and

increase the manipulability of a body of knowledge.

In thinking of manipulatives it is important to remember that all problems

have their origins in the real world about us. The symbolism adopted derives as

a result of formal attempts to solve those problems. Although there is certainly

a single correct answer for the majority of problems, Hogben (1983) points out

that much of what we accept as the correct method for solving a specific

7
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problem has resulted from accidents of notation which have little to do with the

underlying logic or mathematics of the situation. By focusing upon the logic that

lies beneath the rules, however, we can expand the role of conscious control

significantly.

2) Sketches. The sketches follow the form of the original manipulatives

as closely as possible. Ideally, the mapping from manipulative to sketch, sketch

to mental picture, and finally mental picture to abstraction should be as smooth

as possible. If we select an appropriate manipulative, the subsequent sketch

draws much of its descriptive power from it.

3) Mental Pictures. In developing a mental picture the student must

internalize the informational structure encoded in the sketch. At this time there

are many conflicting theories concerning the mechanisms behind the creation

and utilization of mental imagery as reflected in the work of Cooper & Shephard

(1984), Sawyer (1964), Jencks & Peck (1972) Tweney (1987) and others. They

agree, however, that whatever is going on in the brain when we have an image

produces a representation that has certain useful functional properties in

structuring and organizing information. In applying this model, one must

exercise care lest familiarity with a sketch be confused with possession of the

underlying mental representation. A sketch is based upon one instantiation of a

specific problem type; a mental representation corresponds to a more

generalized and broadly applicable knowledge structure.

4) Abstraction. The final step lies in the mental structuring into a more

abstract and formal setting. The student has completed the sequence of

internalizing the real world problem into justifiable processes by which it may be

solved. This setting can then be used in future problems, and as a stepping

stone towards independent investigations. If we are successful in following the

steps outlined in this model the student will possess not just a single answer

8
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schema, but an entire structural linkage which can be utilized by the student in

varied circumstances. The student has developed a scund conceptual building

block which can be used in later, more complex endeavors in problem solving.

It is in helping students make the leap from the sketch to the abstraction

that the power and potential of the microcomputer can playa much greater role

than is currently utilized. The tremendous flexibility of the microcomputer makes

it possible to create learning environments utilizing the very presentation

schemata, system of rewards, and instructional settings hinted at earlier. In an

effort to address this need, we are developing a microcomputer based

interactive icon processor for use in helping students developing a referent

base for the solution of systems of simultaneous linear equations. The icon

processor displays a well developed and flexible mental representation in the

form of user-controllable graphics objects (icons) which are in turn based upon

plausible physical manipulatives. This program, written in the IBM Handy

authoring language (1), is implemented on a 640K IBM PC AT with an EGA

graphics card. Our initial efforts have concentrated upon creating a flagpole

world within which problems involving two equations and two unknowns may be

addressed and solved (2).

In this flagpole world, flagpoles are constructed graphicallyon the

computer screen using various numbers of labeled long and short flagpole

sections, corresponding to variables in formally presented algebraic equations.

In using the program, the student is initially presented with a graphic

representation showing the lengths of two distinct flagpoles formed from integer

combinations of long and short sections. These initial flagpoles always

correspond to a consistent system of two equations, oach of which has two

unknowns. For the student, the final goal is to use the icon processor to derive

9
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the lengths of the long and short sections. In working towards the solution,

various operations are available to the student for manipulating the flagpoles

themselves. For instance, flagpoles may be made longer by integral

coefficients, corresponding to the elementary row operation of multiplying a

single equation by a constant; flagpoles can be compared and the difference

computed, corresponding to the elementary row operation of subtracting one

equation from another; and so on. At each stage of this process the newly

created flagpoles are displayed graphically together with their associated

values, if known, and this information is available for further use by the student.

Comparing strategically constructed flagpoles leads to derivation of the lengths

of the component sections, equivalent to solving the system for eachunknown.

In the Appendix we present a sample problem worked through using the

graphic representation system developed for "The Flagpole Factory" software.

Such a world, conceived as consisting of dynamically changing

configurations of graphics objects, each of which has associated properties, is

ideally implemented on a microcomputer. The icon processor developed thus

far is capable of manipulating flagpoles according to the user's directions,

although more is planned for it in the future. This program has the potential to

lead the learner to understand concepts underlying linear algebraic algorithms.

For example, imagine the situation in which the student uses a multiple of one

flagpole which when subtracted from another flagpole results in the removal of

all sections of a certain type. When this is done we have, in a formal sense,

accomplished the elimination of one of the variables. Once the length of the

remaining section type is known, this newly discovered value can then be used

to determine the length of the ether section. Because the work is done from

wittth a graphical representation, all of this is done quite intuitively by using the

program to compare developed icons and to perform potentially interesting

10
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manipulations of these quantitative objects. When we view this sequence of

operations from a formai perspective, however, we see that the student is

building a flexible referent for later. formal :oncepts such as Gaussian

elimination and back-substitution.

Of course, for a computer-assisted instructional program to be of use in a

drill and practice situation, intelligible feedback must be provided by the

program to the student. The position we have taken is that for instructional

purposes, we must provide more than a ['Ink-box which always gives the right

answer; the box itself must be transparent and its methods obvious and

analogous to those ultimately desired of the student interacting with the

computer. This has required the development of an expert capable of using

thought processes similar to those found in a skilled user. This

anthropomorphic expert is then available to be called upon to act as an advisor

when help or feedback is needed, and as currently implemented, possesses a

certain degree of responsiveness to individual differences in problem solving

strategy. Even in simple two by two systems of equations, multiple solution

paths are possible. Either variable may be solved for first, although given the

configuration of the problem, it may be more economical, in terms of the number

of operations to be performed, to cnoose one variable over the other. Although

there may be a unique optimal solution, what is more important to reinforce is

the general strategy by which any system may be solved. The expert has thus

been coded not to force only one solution path upon the student. It the student

is determined to solve for the long section first and asks the expert for help, the

next step in that solution path will be provided, even if it might be easier in the

particular system to solve for the short section first. However, if the student has

no idea as to how to proceed, the expert will choose to present the easiest

solution path (i.e., the one requiring the fewest steps). Furthermore, if the

11.
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student has developed from the original problem facts any flagpole which might

lead him or her closer to the solution, the expert will make use of that flagpole in

suggesting how to proceed, rather than constructing a new flagpole which

might lie on a different solution path and possibly confuse the student.

Besides providing expert feedback, the program can play other important

roles in the educational process. The computer keeps a chronological record

of the operations a student using the software performs, as well as the number,

content, and sequencing of hints given. This trace can illustrate differences in

the approach utilized during successfu and unsuccessful attempts at problem

solving. Such information can be invaluable in determining the domain

knowledge, heuristics, and the control strategies utilized by the students which,

as argued by Collins, Brown and Newman (in press), is critical in the design of

effective learning environments.

12
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Ppoindix

Visually-Oriented Solution of a 2 x 2 System of Linear Equations

Sample Word Problem

A flagpole factory has two different mewhines used to
m.Inufacture flagpole sections. These machines can be set to make
any length of section, but once set they cannot be changed until the
next day. On Monday there were two different lengths of flagpole
sections, one longer than the other. The length of 3 of the shorter
section and 1 of the longer is 45 feet. The length of 2 of the longer
ahl 1 of the shorter is 65 feet. What are the lengths of each type of
flagpole section?

Solution Steps

(1) Draw the flagpoles to represent the problem facts.

fact is 451...i...I
1 L 3 S

fact 2s 1
65

2 L 4. 1 i

(2) Make fact 1 twice as long to get a common number of long
sections (this corresponds to the elementary row operation of
mult4p1' g an equation by a non-zero constant).

fact 1;
2 L + 6

fact 21 1
65

2 L 4. 1

(3) Remove fact 2 from fact 1 (this corresponds to subtracting one
row in the matrix from another).

90 OOOOOOO I

fact is
ss

few; 21 1
65

1

2 L 4. 1 i

16
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(4) Divide fact 1 by 5.

foot is
1 3

Perot 2: 1

63
2 L

1

+ 1

(5) Enter the length now determined for the short section into the
other flagpole (i.e., backsubstitute the value of the known
variable).

foot 1: 11
foot 2: 1

63
1

2 L + 5

(6) Remove the length of the known fl. --)ole section from fact 2
(i.e., eliminate the effect of the S variable).

foot 1:
p.1
1 3

foot 2:
24L

(7) Divide fact 2 by 2.

foot 1:
1.2.1

1 3

foot 2:
I 30 I

1 L

(8) The length of each type of flagpole section (i.e., the value of
each variable) is now known. Long sections (L) are 30 feet long;
short sections (S) are 5 feet long.

I'


