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ABSTRACT

‘This paper analyzcs the quantitative and situational structure of algebra story problems,
uses these materials to propose an interpretive framework for written problem solving pro
tocols, and then presents an exploratory study of the episodic structure of algebra story
problem solving in a sizable gronp of mathematically competent subjects Analyses of wnt
ten protocols compare the strategic, tactical, and conceptual content of solution attempts,
looking within these attempts at the interplay between problem comprehension and solu-
tion. Comprehension and solution of algebra story problems are compliinentary activities,
giving rise Lo a succession of problem solving episodes. While direct algebraic problem solv-
ing is sometimes effective, results suggest that the algebraic formalism may be of fittle help
in comprehending the quantitative constrainta posed in a problem text. Instead, cotnpetent
problem solvers often reason within the situational context presented by a story problem,
using various forms of “moadel- based reasoning” to identify, pursue, and verify quantitative
constraints required for solution. The paper concludes by discussing the implications of
these findings for acquiring mathematical concepts (e.g., related linear Munctions) and for

supporting their acquisition through instruction.
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Confronted with an algebra story problem, a stydent faces a fundamental sort of %l
stsuctnred prohlem™ (Newell, 1969; Simon, 1973). The prablem text gives information
ahout initial and goal states, hut state transition operators taking the text into a quanti-
tative solution are hardly well defined. Even assuming the student has an adequate grasp
of mathematical principles and operators within the formalisms of arithmetic and algebra
(e.g., the distributive property of multiplication over addition or using algebraic sybsti-
tution), a solution to the presented problem is often obvious only in retrospect. Rather
than searching for a solution path in a well-defined space of representational states, the
problem solver is more likely to be searching among a space of alternative representations
in au attempt to make the probleni routine or familiar. Omitted or incorrectly introduced
constraints within the problem representation can Jead to prolonged and often meaningless
calculations, and may encourage otherwise sophisticated problem solvers to give up entirely.
Information-processing models of ill-structured problem solving remain elusive.

This state of affairs might be puzzling but acceptable if algebra story problems were
transient disturbances in the secondary school curticulum. However, these problems recur
as a general task throughout the mathematics curriculum and are even found in the quan-
titative sections of entrance examinatioss for professionz] schools. If prevalence alone is
an insufficient basis for study, the unique role of these problems in bringing mathematical
formalisms into contact with everyday experience recommends them highly. Viewed from
within the classroom, story or “applied” problems provide students with an opportunity
to validate acquired mathematical abstractions in more familiar domains (e.g., traveling or
shopping). Viewed in a wider context, these problems may provide a curriculat micsocosm
of a central pedagogical problem: transfer of training from the algebra classroom to sty
dents’ later educational or life experiences. Interpretations derived from either vantage are
controversial. For example, we have anecdotal evidence that these problems are avoided

by sume teachers as being too difficult for both students and teachers. On the other hand,
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studies of mathematics in practice suggest that “real world” currnicular matersals may have
little cortespondence with mathematical problems o their solution in “real life” (Lave,
1986, 1988). For psychologists and educationalists alike, the problem is to determine how
applied problems are solved hy competent problent solvers and how acquisttion of that

competence might he supported.

{insest Table 1 about here.)

Algebra story problems of the sort shown in ‘Table 1 have heen studied extensively by
cognitive and educational psychologisis, Loth as a representative task for mathemasical
problem solving (e.g., Hinsley, Hayes, & Simon, 1977; Kilpatrick, 1967; Mayer, lLarxin, &
Kadane, 1984; and Paige & Sitnon, 1968) and as experimental matertals for studies of trans
fer (e.g., Dellarosa, 1985; Heed, 1987; Reed, Dempster, & Ettinger, 1985, and Silver, 1979,
1981). Many studies treat problem solving as an opaque process with an inapectable output
(i.e., correct or incorrect) and duration. Manigulations in problent ontent ar presentatton
ate introduced, performance data ate collected, and inferences are drawn concerning hy po
thetical problem-solving mechanisms. In contrast, much as in Kilpatrsck's early work {1967)
and subsequent studies of watheinatical ptoblem solving by Lucag (1979) and Schoenfeld
(1985), we have chosen instead to present subjects with representative problems and then
to observe and analyze their uninterrupted responses in some detait Tl approach trades
experimental control aver the problem solving setting for a richer (edbeit interpretive) view
of problem-solving activities. In addition to finding whether of not a subject has gotten a
problem “right,” we are at least partially able to explore the solution strategies that sub
jects select and their tactical course in achieving salutions, right or wrong We find this a
useful approach to charactesizing what conipetent problent selvers actually do when salving
thate problems (i.e., a succession of strategic and tactical efforts). This charactenzation
is & necessary first step towatds finding methods for supporting a.quansition of competent

problem-solving behaviors.
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When deseribing models of algebra stary problem solving, we will distingmish between
the genemtive and predictive capacity' of models (computational or otherwise) as successive
approximations to a robust instructional theory. A model with generative capacity uses an
expressive language for describing problemis and their solutions 0 produce descriptions of
prohlems solving activity that obey certain constraints. For example, given a language that
is adequate for expressing arhitrary Algebraic expressions, we inight like to generate anly
those expressions .hat reflect mathematical relations stated directly in a story problein text.
For various instructional purposes, this is an improvement over generating all syntactically
permiseible algebraic expressions, but it .alls well short of addressing typical instructional
problems  e.g., why or how has a ntudent generated some particular algehraic expres-
sions? ‘This cort of predictive capacity will require considerable extensions to the expressive
language (e.g., a notation for intermediate representational states) and to constraints ty.at
reatrict the process for generating algebraic expressions (e.g., a vocabulary of justifications
for a subject's choices amony alternative problem solving activities). Given a sufficiently
expressive lazguage and '« appropriate st of constraints, a model may generate descrip-
tions that correspond closely with studeats’ activities. When this correspondence is of ligh
filelity  i.e., the model answers questions of why or how in a psychologically plausible
fashion it can be used to support a variety of important instructional tasks. For example,
a predictive model of algebra story prohlem solving might be used to diagnose students’
ettors, 1o plan tutorial activities, or even to provide basic instructional materials,

Work reported in this paper approaches a predictive model by presenting descrptive
langaages for problem- solving activities, exauining constraints that arise from interactions
between these languages, anid then exploring problein-solving hehaviors observed in a g1z

able group of competent problem solvers. In the first section of the paper we examine some

"We ate not arguiag for explanatory adequecy in the sensc usually reserved foc linguntic theottes (Chom
»ky. 1965) The models discossed in this papet spprosh descniptive adequacy bt do aot yet propuse
stlonged constraints on acquinng problem solving competence

el
O

basic mwaterials ont of which algehra stary problewns and thesr solutions can be constructed
Our working liypothenis is that 1 otder to generate a solution enabling representation of 4
ptoblein, reasoners must assemghle quantitative constrants wler the gaidance of their un
derstanding of the situational contert preseuted by the story prablem  Tlas context serves
not anly as a vehicle for the quantitative problem, but also as a framework for Justifying the
existence of quantitative constramts and their mterrelationships A corhngly, we exanne
the quantitative and situational structure of typical algebra story problems, and then use
representative problemns iy the exploratory study

In later sections of the Paper we analyze the wntten protocols of 8% upper dvision
computer science undergraduates who were instru, tod to show their work when solving four,
representative algebra story problems. An interpretive framewark i developed ju whael
a written solution attempt is divided into a series of coherent prohlem solving episodes
Each of these episodes is coded along a set of categones reflecting strategic and tactical
role, conceptual content, manipulative or conceptual errors, and relationshep ta sutrounding
episodes. Exploratory analyses of the scored protocols provide evilence for the fiequency
with which various problem solving hebaviars occur within sthjects’ solation attempts, the
content and outcome of the “final episodes” during which subjects condude ther efforts,
and the role that “inadel based reasaning”™ plays i solution attempts Oue of our central
findings is that competent problem solvers frequently eugage 1 problem solving activities
“outside” of the traditional agebraie formmalism  Those activities, based on an analysin
of protocol results, often take the form of constructive and elaborative problens aolving
inferencea within the situstional context presented by an algehra story problem  These
findings ate interpreted as evidence for a madel of quantitative prablem solving i which
mathematical formalisms {e.g , algebraic expressions) provide a sometntes wsefst tool for
comprehending quantitative constramnts I the disenssion section, se relate this model to

existing accounts of mathematical problem solving, and then coustder the nphications of
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these findings for acquiring mathematical enncepts (¢.g., related linear functi ns) and for

supporting their acquisition throngh instruction.

PROBLEM STRUCTURE

Before presenting our exploratory study, we examine the domain of algebra story prob
tems at two levels of abstraction: the guantitative structure of related mathematical entities
and the situational structure of related physicat entities within a problemn, The central ac-
tivity ip our model of problem solving is to find con\'e'rgcnt constraints through constructive
clzaoration of a prablem representation. Structural abstractions examined in this section
give two basic materials for such a constructive process. Ultimately, these and other levels
of analysis may provide a relatively complete domain “ontology” (Greeno, 1983) for algebra
story problems ard other situations that give rise to matheniatical problem solving. For
the purposes of this paper, we want to identify materials that can provide a descriptive
vacabulary fnr behavioral observations presented in later sections and can assist our tntu-
itions in framing a model of problem solving, learning, and teaching within this domain.
“These materials can play several roles: as a description of the task of solving algebra stnry
problems, as a hypothetical account of the representations held by subjects during the so-
Iution process, and as an illustrative inedium for teaching. This section focuses on vask and
representztiuizl issues; the utility of quantitative and situational strnctures in education 15

examined ju the discussion section.

Quantitative structure

Iy the quantitative strncture of algehra story problems, we mean the mathematical enti
ties and relationships presented or implied in the problem text. A particular problem ¥ 52
“structure” at this level of analysis to the extent that the relationships hetween mathemat.
ical entities take a distinguishable fors s when compared with other algebra story problems.

Of course, there might he many ways of characterizing the quantitative structure of an

atbitrary problem or gronp of ostensibly related problems o g-» as algebraic equations of
as matrices of coeflicients. Hohrow {1968) nves algebraic eqaations as a canomcal internal
representation of meaning for story problem texts, while Reed et al. (1985) bse equations
to define the a prior: sinularity of problems and their snlution procedutes. “The language of
algebraic equations may he st ficient for analyzing the task of algebrate mamipilation, hot
it is less useful when the anc lyss is to melude what students actually nnderstand and nse
while learning to solve algebra story problemts.

A network language of quantitative entities. We start with a conceptual frame
work originally proposed by Quintero (1981, Quintero & Schwartz, 1981) and Jater extendod
by Shalin & Bee (1985) and Greeno (1985, 1987, Greena, Bruwn, Foes_ Shalm, Bee, Lowts,
& Vitolo, 1986). The framework serves all three roles mentioned above. as an analysis of
task structure. as 2 hypothetical account of subjects’ representations of algebra problems,
and as an instructional mediunt. Our snterest i this work v twofold Furst, we will use the
ftamework 2s a means for describing constraints essential for ptoblem solution, although
several additions to the framework would be necessaty for it to serve as a representatinnal
hypothesis, Second, we will emplay some aspects of the framework to descnibe how an
arhitrary pair of problems might be considered similar for probless solving purposes

Shalin & Bee (1985) describe the mathematical structute of an algebra story problem
as a network consisting of quantitative olements, relations over these elements, and com
pasitions cf these relations Quantitative elements are divided o four baste types. an
extensive eleinent denotes a primary quantity (e g, some namber of mtk o hones), an
intensive element denotes a niap hetween two extensives (e.g.. a molion rate relates tone
and distance); a difference clement poses an additive contrast of two eXLensives (e g.. one
time interval is 2 hours Innger than another); and a factor element gives 2 maltiphca
tive cownpatison of two extensives (8-, one distance 15 twice another) Compoang, these

clements according to their type yields quantitative relations A gquantitative relation 1s
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defined as an arithietic operation (i.c.. addition. suhtraction, multiplication, or division)
telating three quantitics. For example, the fact that a trajn traveling 100 kin/h for 5.5 hours
covers a distance of 550 km can he expressed as a relational triad over two extensives (550
kilometers and 5.5 hours) and a single intensive (160 kni/h) as shown in Figure 1. Each
clement 1s presented grap™ically as a hox containing several expressions. ‘The shape at the
top of the hox designates element type - €., a rectangular top designates an extensive,
a triangular top an intensive.
[Insert Figure 1 aboult kere.]

As an additional level of structure, relationa! triads can be composed by sharing various
quantities to yield “problem structures.” These are quantitative networks describing typed
quantities and constraints among them. As shown with solid lines? in Figure 2(a), a single
quantitative network can be used to graphically represent the problem of trains traveling
in opposite directions (problem MOD from Table 1). Sharing a comim.on time, two rates
combine through multiplicative triads 10 yield parts of the total distance. These parts are
comhined in an additive triad to give a single extensive quantity representing the total
distance. Figure 2(b) shows a quantitative network corresponding to the round trip (MRT)
prablem. In both networks, the term “output™ serves as a generalization over distance and
~ork.

Taken together, quantities, relations and structures provide a language for descrihing
the quantitative form of particular algebra story problems. While a variety of equiva.
lent graphical languages might be used (e.g., parse trees for arithnietic expressions), this
language gives explicit representational status to mathematical entities, agsociates a quanti-
tative type with each, and incorporates a metaphorical sense of storage for holding semantic
infonination (e.g., textual phrases) and isiermediute calculations. Constraints on the arith.

metic composition of typed quantitative entities restrict the space of possible quantitative

Pottions of the network 1 dashed ines will be discussed shortly

relations (Greeno ef al., 1986) Vor example, the maluplicative composition of intensive 4

extensive quantities (rate and tnne) in Figure | allowed, while an additive composition
of the same quantitics would he disallowed. Greeno (1987) pints out that coustraimis are
also availahle from compositional restrictions on the ynits of Measarement for quantities3,
although the network fanguage does not presently incorporate these constraints. Finally,
the interconnectivity of a quantitative network supports a form of written algebraic caleu

lus. Expressions can be propagated through the network with the goal of finding convergent
constraints on the given unknown.

[Insert Figure 2 about here.]

Quantitative networks provide a visually accessible notation for comparing the structure
of different algebra stary problems. However, the notation and compositional constraints
do not epecify which of the periissihle quantitative structures a subject might generate
when solving an algebra story problem. For example, the quantitative network shown
with solid lines in Figure 2(a) describes the opposite direction prohlein after several erycial
inferences have occurred: component distances have heen iferred within the total of 880
kilometers, and a single extensive quantity for travel time Lias bheen correctly inserted in
the network. For the same prohlem, consider clahorating the quantitative network to
include network components shown with dashed lines in Figure 2(a) We mught imagu »
a subject inferring that the given rates can be adaed. The resulting combined rate (160
km/h), when multiplied by the unknown time, gives the total distance without adding
constituent distances. During empirical studies with this and sumilar problems, we find
considerable variety in the solution approaches taken by different subjects as well as by
individual subjects within a single prohlein solving effort.

The +.iworks shown in Figure 2 are idealized graphical representations of prohlem

2 An 1astructional tool developed by Schwaitz (1932) enforces unit constramnts to help usets avond srzel
evant calculations, particulatly when using yntensi quantities  “Thomp (1988) cominnes quantitative
networks and unit constraints in anuthet tool named “Word Problem Asaistant *




struetnee as they might be constrneted by problen: solvers who understand the quantitative
uctwork language and are able to use the language to comptehend and solve algebra story
probleins. ‘These networks give A paruicalar quantitative representation, hut their content
is largely the result of inferential processes that draw on other knowledge sources. “I'hese
processes may include: recoguizing quantitative entitjes directly contained in or imnplied
by the problen; text, composing these eatities into Jocal relational structures, contposing
relational substructures into larger problem structures, recognizing familiar substructural
arrangeinents, and detecting when constraints are sufficient for solution. The results of each
action lie within the quantitative formalism for which Shalin & Bee's (1985) framework
provides a functional description. However, the enablement conditions for these actions or
the knowledge sources that support them lie partly outside the formalism. These issues are
explored further when we consider the situational structure of problems.

Quantitative networks as problem classes. Quantitative networks provide an
analytic tool for examiuing aspects of quantitative similarj ty. At the level of entire probleins,
this approach gives a stronger basis for mathematical similarity than simply noting common
equations. At a more fine-grained level, there may be significant areas of substructyral
isomorphism in globally dissisnilar problems,

‘The problems from Table | can be grouped into structurally similar pairs as follows:
MOD/WT and MHT/WC. Each problem in a pair is a “quantitative isomorpk™ of the
other, as shown graphizally in Figure 2. In the MOD/WT pair, extensives for kilometers
travaled correspond with those for parts of a job completed (output! and output?). In the
MRT/WC pair, a round trip travel extensive corresponds with an extensive for boxes filled
and then checked (output). Comparing prohlems within each pair, extensive and intensjve
quantities play identical roles in the sutrounding network structure. Towever, when com.
paring problens across pairs, structaral roles of similar quantitative entities change or are

even reversed. For exaniple, the additive extensive relation for combined distance (or work
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output) in Figure 2(a) is locally similar 10 the additive extenstve relation for combined

time in Figure 2(b). hat these relations play very ditferent roles ur thetr overall qrantita
tive structures. In general, a specific quantitative network defines an equivalence class of
algentaic problems, each of which may have a d:ffcrent sttnational imtantiation Of coutses,
being directly similar in form does not tneatt that problents nmst be sulved i the samie way,
Figure 2 presents the quantitative structure of ptoblem materials required for a yuantitative
solution. We could as well depict the quantitative structure ol mtenmediate tepresentational
states in subjects’ solutions, an exerrise that sumetitmes leads to a suIprising sequence of
graphical images as various conceptual errorz. are introduced or repated.

Tutning to a finer grained level of compatison, we can identify classes of problems that
are similar to each other by sharing particular quantitative substructures, A substructure
is a subgraph within a larger quantitative network consisting of stated quantities, inferred
quantities, and relationships aniong these quantities. For example, “current” probleins are
similar at a quantitative level hecause they contain an additive relationship hetween Jhe
rate of the vehicle (steamer, canoe, etc.) and the rate of the medium in which it travels
(current, tide, etc.). While other aspects of the quantitative structure for a pair of cur
rent problems can be dissimilar, such a shared substructure may contrihite to subjects®
estimates of problem similarity. As in the results of Hlinsley ¢t al. (1979), similarity judg
ments at the level of “river™ problems may appear an educational fatlure: prohleus solvers
acquire conteui-specific categorizations when the true pedagogical gozl 1s to fa. .biate their
learning of mathematical forins. Another interpretation is that quantitative substructures
are learned through instruction and problen:-solving expericnce and thus forin part of the
underlying competence in this domain. Since particular substructures are correlated with
problem types, the resulting categorizations appear averly content specific. However, thete
may he a functional or pragmatic hasis for learning these problem classes: deapite dissim

ilarity of overall mathematical structure, shared quantitative substructures requite similar

J=t
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partial solution strategies.

Situational structure

‘The quantitative network formalism does not attempt to account for the prohletn struc-
tures that subjects actually generate during problem solving, although some constraints are
placed an combining quantitative types into relational triads. In this section, we examine
another level of ahstraction - the situational structure of a story problem — as a source
of additional constraint when subjects construct a solution-enabling representation of an
algebra story problem. Qur view of the situational structure of an algehra story problem
is not synonymous with what other researchers have cajled “surface content.” Although
surface materials like trains, buses, or letters are important problem constituents, and may
be particularly so for novice problem solvers, we will not focus on these materials.

Instead, we present a language for describing the situational structure of “compound”
algebra story problems involving related linear functions, and use the language in a detailed
examination of problet s involving motion or work* (see Table 1). As with the quantitative
network fornialism, our language fur describing the situational structure of problems can
play several roles: as an analysis of problem structure, as a hypothetical cognitive represen.
tation, or as an educational medium. Ilere we develop a relational language for describing
problems, argue for its utility in generating key problem-sgolving inferences, and then use
the language to present a viswpoint on the space of possible algebra story problems that
is complementary to problem classes hased on quantitative structure. In later sections
of the paper, we also use the language to help interpret various activities observed in an
exploratory sw.d of algebra story problem snlving and then to consider the educational
implications of these findings.

A relational language of situational contexts. We present the basic terms of onr

*Motion and work are frequenily used a3 the seiting for story problems in algebra texts, compnising 20%
of an extensive sampliag by Mayer (1981).

relational language fire  followed by an example of thesr use shown m Figure 3 Compound

motion and work problems are assembled around related events e.g., travelingin opposite
directions, warking together, riding a bus and walking, or filhiag envelopes and checking
them. In each event, an agent engages in activity that produces some outpat (distance
or work) over a perind of tine. Ifence, output and time are the basic dimensions that
organize story activities. These activities start and stop with particular thnes, locations, or
work products that can be madeled as places atong the appropriate dunension. Places that
bound an activity define particular segments of output ar time, and these segnients can e
placed in relation to each other within a common dimension®. Rates ef motion or work give
a systematic correspondence between dimensicns of autput and tune, znd nsIng rates in
the solution of a quantitative problen: requires a strategy for integrating these dinsenstons.
Arranging output and time ditnensions arthagonally gives a rectilinear framework in which
rate is a two-dimensional entity. We rnodel these rate entities as inclines that associate
particular output and time segments. Relational descriptions involving typed diunensions,
places, segments, and inclines provide a language for expressing the situational context
of an individual problem.
(Insert Figure 3 ahaut here.)

The situational context of problem MOD (from Table 1) 15 shown i Figare 3. Parta
(a) and (b) of the figure show place and segment representations for output (distance) and
time, while part (c) of the figure shows an arthogonal integration of these dimensions with
titne on the vertical axis. In part (a) of the figure, trains traveling in opposite directions
from the same station provide two spatial segments (Distance 1 and Distance 2) sharing a
place of origin ($) but with unknown places for destinations. These segments are collinear
and oriented in opposite directions. Since trains leave from the same place of ongin, these

distance segments are also adjacent and can be arranged within the honzontal dinension

Segment relatiors within a dimension ate sinalar to Allen’s (1983, 1984) relational descriplions of
temporal intervals,
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shawn in part (¢} of the figure. In part (b) of the figure, trains leave at the san:e time (10)
and are separatend by 880 kilometers at some later time, providing time segments (Tinte |
and Time 2) that are congruent (i.c., coinciding at all points) when arranged within the
vertical dimension. We assume collinearity and the same directional orjentation for all
time segments. Representing rates of travel as two-dimensional inclines, part (c) of the
figure puts particular instances of output and time in correspondence (e.g-, 60 versus 100
kilometers in the first hour of travel). Inclines can either represent a concrete situation, as
shown here, or an invariant relation between output and time dimensions. Treating rate
as an invariant relation approaches the algebraic sense of rate as a linear function. Fach
interpretation enables different problem-solving activities, discussed below.

Problem-tolving inferences based oy situational contexts. Before using this re-
latinnal language to describe a space of situational contexts for algebra story problems, we
briefly consider its utility as a representation for problem solving. First, we describe how a
representation of situational context like that shown jn Figure 3 could be constructed; sec-
ond, we c:)mider bow this relational description might be useful for problem comprehension
and solution. Both are ongoing research Questiona that touch on the role of our situational
language as a representational hypothesis and an instructional medium.

On the issue of how these representations might be constructed (either spontancously
01 as an educalional exercise), we Propose a series of constructive inferences that operate
RN a case [rame representation® of the events described inthe text of a cor., ad algebra
stnry problem. These inferences build a situational model of the problem by assembling a
telatioal description of a particular situational context. Assuming the case frames contain
rules that specify typed places and segments (e.g-, the starting location versus the slarting
time), we can model these roles as situational places and segments within output and

time dimensions. From these initial situatinnal entities, a series of elaborative jnferences

“See Brachman (1979) for & review of related representation schemes and Kintach & Greeno (1985) for
An exsmple of g caze frame sepreseatation for the text of word anthmetic problems
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identily places and segments isnplicit in the problem statement and relations over segments
within eacr dimiension. What results js a relational description of situational context as
in Figure 3. Constructive inferences that assemble a relational description of situational
context are similar to the comprehension strategies tha, Kintsch & Greeno (1985) use to
take propositional encodings of arithnietic word problems into a set based representation,

On the ieaue nf utility, we suspect that segment relations within situatinnal dimen.
sions support the construction of quantitative representations like the n:tworks nf Shalin
& Bee (1985). For example, knowing that spatial segments are collinear and adjucent while
times are congruent supports two useful problem~solving inferences in problem AQD: con.
stituent distances can be added to yield a tntal distance, and the rates of each {rajn can
be added to give a combined rate. The ﬁr;t inference i3 a necessary quantitative constraint
for solution, while the second inference effectively compresses the compound problem into
a simpler problem which can be solved without extended algebraic manipulation, These
are precisely the inferences about problem structuse that were not accounted for ju our
examination of quantitative structure. For example, the netwnrk components shown with
dashed lines in Figure 2(a) would result if a student decided tc add motion or working
rates. Hence, in addition to constructive inferences that build a situatingal context, there
are also constraint-generating inferences that take descriptions of situational strue ture into
quantitative relations. Each inference about a quantitative constraint, supported by rel
evant situational relations, gives a substructural companent in a larger set of coustraints
that may enable a solution.

It is also possible to use dimensions, places, segments, and inclines directly in a solution
attempt by treating these representational entities as a madel of the problem situation We
will develop a general account of snode! based reazoning as a problem solving tactic bere.
Following sections introduce operational categores fnr tterpreting this tactic within the

structure of written protocnls and give an empirical account of 1ts ise and consequence
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algebra story prohlei solving,

lnsert Figure 4 about here.)

Placed within a single dimension to model time or output, seginents provide an explicit
spatial representation that enables a variety of problem-solving operationa like “copying,”
“stacking,” “comparing,” or “decompoting™ their one-dis sensional extent. Similatly, ua.
ing inclines as models of rate enables operations like “joining™ or “scaling™ their two-
dimensional extent, Joining, shown in part (a) of Figure 4, places copies of the concrete
incline along the diagonal in an iterative fashion. Scaling, in part (b) of the figure, treata
the incline a8 an invariant relation by estimating the extent of a segment In one dimension
and then projecting that value through the incline to generate an associated extent in the
other dimension, Each operation ja based on a different interpretation of rate as a relation
across dimensions, and each coordinates operations on associated segments within aingle
dimensions.

Both join and scale operationa enable problem solving by model-based reasoning with-
out requiring algebralc representation. Figure 5 showa solution attempts using join and
scale operations on the opposite direction mosion problem (MOD). Treating inclines as
concrele entities in part (a) of the figure, the Join operator enables an iterative simulation
over five successive one hour jncrements in the time dimension. These correspond to in-
termediate states in a two-dimensional model of the problem, successively corstructed and
tested against the given constraint of being 880 kilmeters apart after a common interval
of time. ‘Ireating inclines as invariant relations in prt (b) of the figure, the scale operator
enables a heuristic estimate of the prablem’s final state by choosing five hours as the time at
which the trains will be 880 kilometers apart and projecting this choice of a cominon time
through each incline to find associated distance segments. In both solution attempts, spatial
relatinns within the twodimensional node) support and organize relatively simnple quanti-

tative operations like addition, multiplication, and value comparison. Thus, even withnut
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utilizing the metric qualities that auch a model uight afford (e g., tosting whether adjacent
distance seginents precisely “fill" the composed 880 kilometer segment ), model based rea
soning can lead to a solution withont expheitly constructing an algebraie representation of
the problem.

(Insert Figure 5 about here.)

While entities and operations in model hased reasoning can support solution attempts
directly, they also provide a vocahulary of problem solving activit es that conld be used
to construct un algebraic representation. For example, introducing & variable, 1, as a labe!
on the unknown common time in part (b) of Figure 5, we can use the scale operator 1o
project that variable into expressions for lahels on each distance segment in the horizontal
dimenaion. Since these segments are adjacent and must fill the given combined distance of
880 kilometers, addition of label expressions in the liorizontal dimension gives an apshraic
expression for the combined distance, 100¢ + 60f = 880. Thus, model based reasoning
opesations can also participate in constrain! gencruling inferences described carher

In general, inferences in model based reasoning correspond to relatively apaque oper
ations in the algebraic formalism (e.g., distribution of a product} Their spatial character
and granularity may provide an accessible problem solving medium for subjects who are
newcomers to the algebraic formalism. In addition, the results of these operations could jus
iy 1nore abstract activities in an algebraic or quantitative network represeutation, allowing
problein solvers to verify quantitative comtraints or results about which they are uncertai
Evidence for these hypothetical roles of model based Tcasoning, even in competent problem
solvers, is presented in the sections that follow.

Situational contexta na problem classes. lleyond their role as a representational
hypothesis or an instructional medium, situational contexts provide a viewpoint on the
space of possible compound algebra story problems that 15 complementary to the problen

classes provided by quantitative structure Even if we restrict analysis to compound mo
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tion problems jn which movement must be collincar and directed, a variety of situational
contexts are possible. Taking two collinear distance segments we can select from a set
of spatial relationships (e.g., congruent or adjacent) and combine this selection with direc
tional orientation (e.g., same or opposite} to yield a distinct spatial situation. Also selecting
a relation hetween time segments {e.g., congruent or adjacent), we can combine segment
relations for distance and time dimensions to yleld a particular situational context for a
compound motion problem. For example, problem A/0D has gdjccent distance segments
oriented in opposite directions and has congruent time segments, yielding the situational
context used in Figure 5.

A similar approach is poszible with compound otk problems. Work outputs can also
be modeled as collinear segments, although their direcliona! orientation Is Jeas directly
interpretable. In the preseat analysis, we exclude a sense of direction for work outputs,
Working “together™ can be modeled as adfacent output segments and “competitive™ work
43 congruent output segments, For example the work together ( WT) problem has edjocent
output segnients that add to yield a single job and congruen! time segments that, in concert
with additlve output, allow addition of working rates. This corresponds directly with the
altuational coatext of problem AOD, without directional orientation of output segments.
The competitive work problem (WC) can be modeled In a similar fashion. Siace Randy
and Jo each work on the same set of boxes, we choose congruent segments to mode! the
same output. Adjacent time segments are associated with the completion of each output,
leading to a direct situational correspandence with the round trip problem (MRT).

[Insert Figure 6 about here,)

Figure G shows a matrix of situational contexts formed by crossing segment relations
from output and time dimensions. Compound motion and work problems in each cell havea
commonsituational structure (e.g., problems AfOD and WTln the upper right cell),and off-

diagonal cells contain pairs of problems that reverse segment relations for time and output
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Far example, reversing ndjacent distances and congruent times ya prablem AOD produces

problemn ART, provided that oppasile directions are retained in both prnblems. Problem
structures in diagona] cells of the figure (shaded) are wot used in this study but also pravide
the basis for pasticular algebra story problems. For example, the Jower right cell of Figure 6
contains what Mayer (1981) calls “speed change™ problema. This constructive approach to
situational contexts can be extended to larger celational vocabularies fur output and time
(.8 including overlap, disjoint, etc.), yielding a sizable space of situational contexts that
provide the dimensional basis for algebra “storjes® ahout motion and work.

These examples show that our language of diinensions, places, segmients, and inclines
can be used to model compound miotion and work problems. We have alo exatined the
coverage of this language over different classes of algebra stary prnblems, like those m
cluded in Mayer's exbaustive taxonomy (1981). Useful models of mtuational canteat can be
constructed f5r most of these classes, including current, mixture, simple interest, cost, and
coln problems. Some extensions of the language appear necessary to model relatinnal con
straints javolving additive an2 multiplicative comparisons (e.g., *I2 mnre than® or “twice
as fast as™). In general, however, models of situatjonal context are possible for any problem
In which related linear functions can tensibly be shown within two dunensions Although
arbitrasily complex quantitative relations can be graphed in a Cartesian plaue, the pro
vislor that their dunensions be “sensible” restricts our modeling language to sitestions
where one-dimenalonal relations like adjacent and two- dimensional operators Jike “janing”
or “scaling”™ have meaning. Thus, dimentional models of situational context way be ap
plicable beyond textbook algebra story problems and include everyday situatsonsigvolving
related linear functions,

Comparison of situational and quzstitative structure, honorphism within cells
and reversed structure across cells of the niatrix in Figure 6 partition the apace of contpound

algebra story problems in a way that 15 complementary to the probilemn classes described
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in the preceding section on quantitative structure. In fact, the problems paired in each
cell also have an isomorphic quantitative structure, and problems from off-diagonal cells
reverse quantitative relations. For example, an additive triad over distance extensives in
problem MOD contrasts with a shared extensive for distance in problem MRT. In our
view, this complementarity arises precisely because the quantitative substructures serve
as a mathematical abstraction for describing situational contexts. In turn, our relational
language of situational contexts provides an abstraction for describing (or modeling) events
within particular problems. Thus, choosing segment relations for output and time gives
rise to an organized space of situational contexts for compound motion and work problems,
each with a corresponding quantitative structure.

While quantitative and situational viewpoints on algebra story problems are comple-
mentary, they are not identical. The quantitative network formalism models conceptual
entities of time, output, and rate az abstractions that preserve quaatitative type (e.g., ex-
tensives versus intensives) and value, either as a number o7 an algebraic expression. In
contra.;t, situational segments and inclines model these same entities as individuals that
preserve semantic type (e.g., time versus output), dimensional order (i.e., segments versus
inclines), quantitative value, a physical sense of extent (.., the length of a segment or the
slope of zn incline), and local “spatial” relations between individual instances of extent
(e-g.. the 60 and 100 kilometer segments after the first hour of travel are adjacent). Pre-
serving physical extent and relations of locality allows a problem solver to utilize spatial
knowledge when identifying or verifying quantitative constraints. For example, when a total
distance can be decomposed into component distances which exactly fit within the total,
there is a direct physical justification for their addition. “Joining” or “scaling” inclines us-
ing a two -dimensional model of rate promises a similar physical justification for operations
on intensive quantities. Whether students actually use such a vocabulary for justification

is an interesting issue, not directly addressed in the present study, that we are exploring
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further (Ilall, 1987). We suspect that shared situational structure, w addition to quanti.
tative structure, contributes to sub jects' judgments of similanity between an arhitrary pair
of algebra story problems.

Quantitative and situational structute are not the only matertals in the domain of
algebra story problems that are important for problem solving, leartting, and teaching.
Neither can we tacitly assume that these structures, as described above, are actually held
by subjects during problem solving. Iowever, these structural abstractions mnay help to
understand what subjects actually do when confronted with a problem to he solved, and to
hypothesize what must be learned for competent problem solving to be achieved. Knowl
edge sources that guide the generation of quantitative representations, and the manner
which they are manifested during problem solving, comprise an important part of compe-
tent performance. By grounding quantitative structure in conceptual understarding, these
knowledge gources may allow a problem solver to effectively assemble and validate repre
sentational structures and operators in the algebraic formalisni. Having described some
aspects of the underlying situational and quantitative structure of algebra story problems,

we now turn to an exploratory study of problem solving.

METHOD

The primary goal of this study is to characterize the activities of “competent” problem

solvers on representative algebra story prob! \When compared with the activities of

beginning algebra subjects, the contrast should give a rough unage of the terrain over
which a learner must travel to becomne a skilled problem solver. We chase to study subjects
who have clearly mastered the algebra curriculum up to existing institutional standards,
but who were not recent recipients of algehra- based instruction, Thus we are attempting
to describe a primary target of traditional instruction in algebra: a problem sulver who has
mastered the tools of the algebraic formalism, has practiced these skills durng mstruction,

and should be able to apply these skills in novel settings. The study i olves minimal
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experimental intervention, and our interpretation and analysis of problem-solving protocols

are primarily descriptive.

Subjects

Subjects in this study were 85 undergraduate computer science majors in their junior and
senior years. They were enrolled in an introductory courte in artificial intelligence, and par-
ticipated in the study as part of their classroom activities. These subjects could be viewed
a3 “experts” in algebra story problem solving since they must have successfully completed
courses in algebra during secondary schooling. In addition, prerequisites to the artificial
intelligence course include three university-level courses in calculus and com pletion or cur-
rent enrollment in courses covering discrete mathematics. Thus the level of mathematical
sophistication in this sample of problem solvers should be high. Alternately, one might
argue that these subjects were expert algebra story problem solvers at one time but that
their skills have in some sense been “retired” with the passage of time. As will be clear
shortly, the solutions offered by many members of this sample do not fit an image of smooth

execution of a practiced “skill.”

Materials

Subjects were asked to solve the four algebra story problems shown in Table 1. Problems
MOD, MRT and WT were taken directly from Mayer's (1981) sample of algebra story
problems, with minor alterations in their number set and phrasing. These alterations were
intended to free gtudents (rom unwieldy calculations during problem solving and to make
wording between selected pairs of problems more similar. Problem WC was constructed to
be isomorphic to the MRT problem at the level of quantitative structure.

These problems were selected for two reasons. Firat, v ith the possible exception of W(,
they are highly typical of problems found in secondary school texts. Out of an exhaustive set

of 1097 algebra story problems drawn from 10 texts, Mayer found that problems fike MOD,
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MRT, and WT zccounted for 7.8% of all ohserved problems. Second, different pairings
of these problems allow us to present subjects with opportunities for positive or negative
transfer across contiguously presented problems. ‘
Specifically, problem pairings MOD/WT and MAT/W(" are isomorphic in their quanti.
tative structure (see Figure 2 for a graphical representation of these pairs) and have sinular
situational contexts. In the MOD/WT pair, output dimensions are adjacent, heing collinear
and sharing a starting point, while time dimensions are congruent, overlapping contpletely
by sharing both starting and ending times. In the MRT/WC Pair, outputs are congruent
while time segments are adjacent and of different value (see Figure 3). Should subjects
recognize this similarity, they may exhibit some form of positive transfer. Alternately,
problem pairings MOD/MRT and WT/WC are similar at a more superficial level, sharing
types of surface materials (e.g., distance traveled or parts of a job completed) while having
quite dissimilar quantitative and situational structures. In fact, relations over output and
time dimensione are exactly reversed, as described in the preceding section on quantitative
structure. In the MOD/MRT pair for example, outputs in MOD are adjacentand tines are
congruent, while outputs in MRT are congruent and times are adjacent. When presented
contiguouely, these problem pairs may induce fairly specific forms of negative transfer (eg.

adding rates in the MRT problem after correctly solving the MOD problem).

Procedure

Problem materials were distributed so that subjects with adjacent seating during data
collection would be in different groups. Group membership was not randomly determined
but should reflect no systematic bias. Subjects were allowed eight minutes to solve each
problem, and all suhjects worked through the probleins at the same tunie “Phose finishing
early on an individua! problem wajted until the cight minute time limit expired belore
proceeding to the next problein. Before solving any problems, subjects were asked to “show

all of your work” in a written form, to “work from top to hottom, wniling new matenal
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below previous material,” and not to erase after making a mistake. Instead, they were
asked to mark through any mistake with a single line. Finally, subjecis were instructed 1o
“...draw a box around your answer.” After solving all four problems, subjects were given
2( minutes to explain their solutions in writing on facing pages of the text booklet without
changing their original work.

Problem ordering. The first group of subjects (group M, n = 46) saw problems
in the following order: MOD, WT, WC, MRT. The second group (W, n = 39) saw the
followingorder: WT, MOD, MRT, WC, Thus, each group solved pairs of problems that were
isomorphic at quantitative and situational levels (MOD/WT or WC/MRT) and also solved
pairs of problems that were supetficially similar but had reversed relations in quantitative
and situational structure (WT/WC or MOD/MRT).

Data collection. The “behaviors™ reported here, and all interpretations of them, are
based entirely on subjects® written protocols. Relying solely on written protocols has several

obvious disadvz‘ntages.

¢ There is no timing information. While students were allowed eight minutes to solve
cach problem, we can neither determine how long a subject works on any single prob-
lem, nor how long any particular written episode lasts — e.g., performing algebraic

manipulation.

o Written material may be a lean or even distorting window on a subject’s rognilive
processing. A subject may omit materials that seem unimportant or poteatially em-
barrassing; alternately the subject may give written evidence of processes or strategies

that bear fittle relation to what she actually does.

Since this study is exploratory in nature, we present our results as a heuristic tool for
generating hypotheses, and leave more manipulative procedures for confirmatory studies
Scoring. Written protocols were scored in committee by the authors, using majority

tule for categorization of troublesome cases. A scoring system was constructed around the
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analysis of problem structure described eatlier, using au iterative process with subsets from
the total pool of protocols. Scoring categories were added, refiued, or dropped from the

final system when scorers had persistent difficulty roaching consensus,

THE EPISODIC STRUCTURE OF WRITTEN PROTOCOLS

This section describes a qualitative framework for interpreting written prohlein solving
protocols, showing representative protocols as examples of scored categories within the
framework. We point out connections between several of these categories and bypothetical
Tepresentations and inferences descrihed earlier, although these connections are open to
many interpretations. Qur framework resembles Schoenfeld’s (1985) analysis of inatheinat-
ical problem solving by concentrating on coherent episodes of ptoblem salving behavior
(see Ericsson & Simon (1984) for a review of aggregation techniques). We also explicitly
score the transition between problem -solving episodes.

A subject's written protocol for a given problem is interpreted in two stages. First the
protecol is divided into a sequence of coherent problem-solving episodes. and then each
episode s scored individually with 1. ect to its content, its correctness and its function
in the overall sequence. In nearly all ¢ 8, the following definition of a problem solving

epizode allowed scorers to reach consensus:

® Strategic coherence. The subject is pursuing the same overall goal,
¢ Tactical coherence. The subject is using the same method for attaining ths goal.

o Conceplual coherence. The subject iy exhibiting the same conceptualization of the

problem.

Although episodes divide prohlem solving into coherent chunks, the context created by
earlier episodes is assumed to he inherited by later anes, unless thete 1s evidence that a

reconceptualization has accurred. Our defimition of an episode will be sharpened in the
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following paragraphs as we specify in detail the scoring categories used to describe episodic
conten?.

After dividing the written protocol into coherent problem-solving episodes, each episode
is examined to determine its general content. Content categoriesinclude: strategic purpose,
tactical content, conceptual content, the presence of conceptual or manipulative errors, and
finally the status of the episode in the overall solution attempt. The latter covers relative
correctness and the reason for transition to a new episode. With the exception of conceptual
ontent, each of these categories is further differentiated into alternative subcategories, as
shown in Table 2. In some cases only one subcategory is selected as best describing the
more general categury (e.g., simulation &8 a type of model-based reasoning under tactical
content}); in other cases, each subcategory can occur within a single episode (e.g., various
kinds of conceptual and maxipulative errors).

(insert Table 2 about here.}

The remainder of this section takes up each of these interpretive categories in detail,
showing representative written protocols as examples of their use in scoring the epizodic
structure of subjects’ solution attempts. For example, subject m20 in Figure 7 goes through
three error-free episodes, each with a specific purpose, tactic, content, and transition. In
the protocols shown in figures as illustrations of various categories, episodes are separated
by dashed lines, and their sequence is shown with ciscled numbers. Several protocol excerpts

are presented directly in the text without accompanying figures.

{Insert Figure 7 about here.]

Strategic purpose

‘The strategic purpose of an episode is its refation to the ultimate goal of finding a solution.
Judgments of a problem solver’s “purpose™ are clearly a matter of our own interpretation,
althongh we present scoring criteria that make these judgments operatioral across jndjvid-

ual ratinge. In this regard, our scoring distinguishes hetween three abstract problem-solving
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modes.

Comprehension. The subject is not directly secking a final solution, but is construct-
ing a representation of the problem by incorporating various constraints. In episode 1 of
Figure 7, the subject finds a way to express working rates by considening their outputs after
one hour.

Solution at‘empt. The subject s attenipling a series of operations that work directly
toward a solution (Figure 7, episode 2).

Veriflcation. The subject has already produced a solution to the problem and is now
secking confirmatory evidence for it, for instance by rederiving the solution with another

method or by inserting the answer jn some intermediate equations (Figure 7, episode 3).
Tuctical content

The tactical content of an episode is the method used by a subject to achieve some strategic.
purpose. Qur operational criteria refer primarily to the protocol material for the current
episode, but in a few cases information contained directly in the protocol was insufficient to
make an operational category judgment. In these cases, surrounding episodes and post hoe

written explanations supplied by the subject were used to assist scoring.

{Insert Figure 8 about here.]
Annotation. These episodes usually occur early in the protocol when subjects are

collecting information about the problem. Three cases are covered.

¢ Problem elements. The subject is recording elements of the problens text (e.g., V4 =

60km/hr, Figure 8, episode 2).

® Retrieval of formulas. The subject is remembering and writing down meinonzed

formulas which seem relevant, (e.8., v = £, Figure 8, episode 4).

¢ Diagram. The subject draws a pictorial representation of the problem situation (e.8.

Figure 8, episode I).
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Algebra. An episode is algehraic if it makes use of one or more equations placing

%’ constraints on the vzlue of one or more varjables. However, simple assignments are not

treated as equations. Thus neither 100 + 60 = 160 nor d = 880 are considered equations,

while d = 100 x ¢ is considered an equation. As shown unusually clearly in the protocol of

Figure 9, the tactical approach of the typical algebraist is to express constraints as a system

of one or more equations (or proportions) and to solve for the appropriate unknown. We

have also found cases of subjects trying equations in a generate-and-test fashion until, as
one subject explained, an equation “looks good.”

{Insert Figure 9 about here.]
Model-based reasoning. This category is scored when a s1bisce “executes” a model
of the problem situation along the dimension defined by an unknown quantity such as time,

distance or work. Subcategories of model-based reasoning relate to constructive problem-

solving inferences des:ribed in the Preceding section on situational structure,

o Simulation”. The subject selects a base unit for the choeen dimension and “ryns”
the model for each successive unit increment as illustrated in episode 3 of Figure 8.
Consistent with our eaglier development of situational structure, a simulation episode
could be interpreted as an jterative “joining” of concrete individual inclines. Simula.
tion can also be partial (just one or two increments) in that it is not used to reach a
solution, but to examine relations between quantities and to enable some other soly-
tion method. In both episode | of Figure 7 and episade 5 of Figure 13, a simulation

for one hour establishes the quantitative combination of entities from distinct events.

o Heuristic. ‘T'he base quantity “jumps” by variable jncrements whose magnitude s

determined at each point by estimations of closeness to the solution. A heuristic

'Ou‘u uu'ol “simulation” is somewhat diflecent from its use in computational studies of common-eense
teasoning, For example, de Kleer's (1977, 1979) “envisionment™ uses quantilative calculation 10 resolve qual-

ftative ‘lmbisnily. while our sense of simutation uses physical construction 1o help disambiguate quantitative
constraints,
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model-based reasoning episade cauld he interpreted as “scaling™ mchues that repre
sent invariant relations, as describied earlier ‘The progtession of this generate and

test approach can be monotonic, as in episade 2 of Figure 10, or follow sume form
of interpolation search. After each generation of a value, the state of the problem

situation being nindeled is reconstructed and evaluated.

lInsert Figure 10 about here.}

Ratio. This subcategory covers a number of tactics by which relations of proportion
ality between quantities are used, soinetimes providing clever “shortcuts” to a solution.
These tactics clearly utilize a representation of quantity (e.g.. intensive quantitics, s de
scribed eatlier), but the manner in which related quantities are integrated may depend
upon constructive inferences within the situational context (e.8., composing segments or

inclines).

{Insert Figure 11 ahout here.}

o Whole/part. The subject viows a part as fitting some number of thines mto a whole

quantity, as in episode 6 o’ Figure |3.

o Part/whole and part/part. These two types of ratios compare portions of entities. lse
of the part/whole ratio is illur¢rated in episodes 2-4 of Figure 11, where the subject
considere parts of the total job%. A version of the part/part ratio appears n episode

2 of Figure 12, involving the respective rates of hus and foot travel.

® Proportion. Non-algebraic nropartions cover reasoning of the type exlubited by sub.
ject m05 on the work-together (WT) problem: *... they've done 3 [of a job] in 2

hts, 50 § hr more would do for [the job] feft to be done ..."

SAlthough thus protocol (lustrates the category clearly, it 15 probable that successful une of this ratio
was somewhat fortuitous on the part of this student, since a genetal justification for 1ts vahidiny 1a cather
complex,
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Scaling. The subject solves a related version of the problem or reaches an unexpected
answer, and simply scales the answer to fit the quantities given in the problem. This
may relate to our earljer description of “scaling” rates as invariant two dimensional
inclines. In episodes 3 4 of Figure 12, for examiple, the subject solves an easier
problem by heuristic model-based reasoning and then scales her answer to “ft” the
MRT problem.

(Insert Figure 12 about here.]
Unit. Inafew cases, a subject reasons purely in terms of units of measurement given jn
the problem. For instance, on the work competitive problem (WC), subject m44 examines

alternative rate forms with the following manipulations:

z inin = boz min boz = min
———— = — =
min(ules) boz

Procedure. This subcategory is scored when there is evidence that a subject is execut.
ing somne stored sequence of actions or operations other than routine algebraic or arithmetic
manipulation. For example, on the work together problem (WT) subject m21 appears to use

a simple averaging tactic for combining quantities, writing “folal = H5+4)= ¥ = alhrar
Conceptual content

‘The conceptual content of an episode reflects the subject's conceptualization of the problem
situation and the resulting set of constraints between problem entities, There is a subtle
hut crucial distinction belween situational understanding and the quantitative constraints
that are implied by it, as suggested in previous sections, Without further subcategorization,
our scoring of conceptual content simply contains the constraints that the subject clearly
recognizes and uses in the episode. For instance, subject m39 in Figure 9 manifests an
understanding of all necessaty constrainte: equal distances, additive composition of times,

and the distance-rate-timne relation.
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{nsert Figure 13 abaut here |

Errors

Within each problem solving episade, we comsider twa broad classes of etron
Conceptual errors. These are stored whew a subjeet either wiclades a couatiatnt that
is inappropriate for the problem or excludes a constramt that 1 a critical requirctnent for

the current episode.

* Errors of commission. These ertots are incorroct constraints that the subject intro
duces during an episode, cither by incorrectly representing the situational coutext of
the problen; or by making erroneous quantitative inferences. For example, iy episodes
4 6 of Figure 13 the subject subtracts distances because she thenks that the trains

are going in the same ditection,

¢ Lrrors of omission. These crrors are overlooked constraints To be seored as an error
of omission, an overlooked constraint has to be entical to the solution wethod applied
by the subject. This usually incans that two eatities are explicitly used while the
relation between them s ignored. In Figure 14, epiule 3, the subjject has overlooked

that working times represented as x and ¥ are equal.

[fnsert Figure 14 ahout here.)
Manipulation errors. Since written protocols nsually display algehrace ar anthmet

manipulations cearly, our scoring identifies manipulative errors of three typos.

o Algebrun errurs. For exainple, on the MO problem, subject wild writes “RR(O) = l-i‘-q"
followed by “T" = #20.»

o Variable r-rors, We abserved two types of errors refated to the concept of vanable oy
“switch errors,” the meaning of a variable changes in the coutse of prablen, volving

In “label errors,” subjects are using vaniables as labels for quantities. For instance, iy
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N the round trip problem (MRT), subject m10 writes the cquation “1} ¢ 8 = Ghra"

and explains that “for every | hour on the bus, it takes 8 houts to get back.”

¢ Anthmelic errors. For example, on the opposite ducction niotion problem (MOD)
subject m20 writes "m = 1‘1.‘ After detecting this arithmetic error in a verification

episode, the subject recovers by using the ratio scaling tactic mentioned earlier.

Status of episode within solution attempt

Catrgories listed 3o far deal with jnternal characteristics of an episode. The two aspects of
the scoring scheme described here, consistency and transition, concentrate on the relation
of an individual episode to the overall problem-solving effort.

Counsistency. This category assesses the correctness of an cpisode in the context of

the problem-solving tequence and is acoted correct or incorsect for three farets.

o Uefore. This subcategory reflects the correctness ¢ the context inherited by the
epitode. For example, errors may be generated in former epicodes and passed into
the cusrent episode, as with the conceptual error of commission {same direction)
passed between epitodes 4 and § of Figare 13,

® During. This scores the correctness of the current epirode with respect to the inherited
context, An epltode producing an incorsect result can be Internally correct if it is
consistent with an incorrect context, For example, episodes § and 6 of Figure 13 are
internally consistent with the conceptual etror of commiission introduced in episode
4.

¢ After Thissubeategory assesses the absolute correctness of the outcome ol the current
episude Ifasolutionis presented, the scoring seflects its correctness, atherwise sconng

assesses whethier or not the subject is on a possible right track.
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Transition. The intent hete is to determine the reason why a aubject passes from one
episade to the next. Unlike contistency, which reflects the scorera” Judgment of cotrectness,

this aspect attempts to captuce the subject’s point of view,

¢ Subgoal. The subject accomplishes an intermediate goal, bonging the episosde ta
an end (Figure 7, episodes | and 3). Information identificd when aclieving a aub
goal (e.g.. changing the forin of a working rate) is gencrally earried into anbsequent
episodes.

o Wrong. The subject decides that sheis on the wrong track and abandons the cutrent
approach, usually by marking through the wark (Figure 13, episode 3) This teansition

is often the result of an explicit verification episcde.

¢ Impasse. The subject reaches a point where she ¢annat continue with the current
method. A good example of impasse is show: In episode 3 of Figure B, whete the
subject correctly applies simulation by hourly increnients, avershoota the non integer

solution, and then switches to an algebrai~ tactic sfter adding rstes.

¢ Lost. The subject reaches a point where she cannot determine how to proceed, as in

episode 2 of Figure 14.

¢ Final solution. ‘The subject reaches a result and presents it as a solution to the

problem.

¢ Found solution wrong. ‘The subject realizes or behieves that the solutton presented 15

Incorrect,

This presentation of our framewatk fur intespreting weidlen protuce fves an ovelly
linear picture of its use in scoring aubjects’ solution attempts  ln fact, categonpmg the
episodic structure of & written protocol wathin this framework was usually dowe quickly

(from $ to 20 minutes per protocol) and with httls subisequent disagieement among the
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scorers. By desigr, each category was rated with at least 75% agreement over four scorers;
most categories approached unanimous agreement.

In addition to determining whether or not a subject has managed to find the “cor-
rect” solution to an algebra stary problem, this framework for interpreting problem-solving
episodes allows us to describe the internal structure of the subject's solution attempt. Qur
interpretation of episodic structure supports more fine-grained explorations of the strate-
gic and tactical course of problem solving. In the quantitative results section that follows,
we form composite analytic categerics by identifying episodic patterns among the atomic
category judgments desctibed above. Thus we will be able to speak of subjects reaching a
“final epitode™ with some particular tactic and content or to examine a geries of contiguous
episodes during which mode}-based reasoning is used. Beyond the results presented here,

we expect the set of scored protocols to provide a rich dataset for continuing analysis.

QUANTITATIVE ANALYSIS OF PROBLEM-SOLVING EPISODES

In the section on problem structute, we argued that competent problem solving pro-
ceeds as an elaburative, interdependent exploration of two djstinct problem spaces: the
situational context of a stoty problem and the quantitative constraints given explicitly or
implied in the protlem statement. Results presented in this section provide evidence for this
interdependency at a globa! luvel of problem-solving activity and at a more detailed level
of episodic content. Qur anulysis distinguishes betwee Jubjects' problem-solving attempts
and the episodic structure of those attempta. By problem-solving attempt, we mean all of
the activities evident in the written protocol, which may include several distinct episodes.
By episodic structure we mean the alternation of problem-solving episodes of various types,
and the constraints or errors that are contained within and across those episodes.

First we examine the tactical content, strategic purpose, transitional status, and et-
tors present in subjects’ solution attempts. These analyses pool episodes within solution

attempts to show the prevalence of different interpretive categories, and so they provide
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only a coarse image of competent problem solving Second, we look within individual g,

lution attempts and examine two episadic patterns jn detail. An analysis of the episode
during which a final solution is offered provides a finer image of problem solving onicome,
describing relations between solution outcoines and ather intetpretive categoties within the
episode. We also identify individual episodes of model based reasoming to permit a closer
examination of problem-solving activity outside of the traditional algebraic formalism. By
considering the content of surrounding problein solving episodes, we can begin to examine
subjects’ reasons for using model -based reasoning and to assess its effectiveness for making
correct problem-solving infetences or recovering from existing errors. The section ends with

» summary of major quantitative findings.

Problem-solving attempts

Since many of our rated categories tepresent hypotheses about problem solving processes,
we present their frequency of occurrence within s jects’ problem sofving attempts. Ta
ble 3 shows the percentage of subjects having one or more episodes in which varions rated
categories were observed. Percentages are shown separately for each problem (MOD, MRT,
W1T, WC) but are collapsed over groups (M, W) since none of these contrasts were statis-
tically reliable. Mot findings are as expected, while several are surprising.
[Insert Table 3 about hete.)

Tactical content of scored episodes. While most subjects use algehra in their

solution attempts (63.5 to 85.9% across problems), reasoning within the situational context

presented by the problem is surprisingly common.

¢ Looking within individual problems, at least one madel based episode is used by
22.4% 10 47.1% of subjects, depending on the problem. A separate aralysis pooling
actoss problems shows that 72.9% of subjects have one or more epmisodes of model
based reasoning in their written protocols. These episades are cxplored more fully

later.
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¢ Use of ratios is the next most prevalent non-algebraic tactic (14.1% to 42.4% across
problems) a;nd may depend upon a variety of factors: the complexity of the constraints
presented by a problem’s quantitative structure, the accessibility of situational justi-
fications for those constraints, and the manner in which the constraints are presented

in the problem text.

Few solution attempts contain episodes using a “procedure” or reasoning with “units.”
Most subjects using a procedure on the WT problem chose to take an average over
working rates, a strategy that violated the situational meaning of “working together”

in that problem and generally led to an incorrect solution.

Aanotations, in the form of diagrams or notations about problem elements, were ej-
ther scarce or common, depending upon the situational and surface content of the
story problem. Motion problems (MOD, MRT) showzd few notatjons (7.1%, 15.3%)
but more frequent diagrams (69.4%, 36.5%), while work problems showed frequent
notations (21.2%, 29.4%) but fewer diagrams (8.2%, 9.4%). Although it is likely
that the spatial content of motion problems makes them more accessible to diagram.
matic representation, sume subjects are able to construct effective diagrams for work

problems (e.g., see Figure 11, episode 3).
Strategic purpose of scored episodes.

& Most subjects show explicit attempts at comprehension in their written protocols
(57.6% to 84.7% across problems), typically through diagrams, notations or model-
based reasoning.

o While 2ll subjects make some attempt to solve the problem, only a minority give
evidence of attempting to verify the results of their work (7.1% to 28.2% across

problems).
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Transitions out of scored episodes.

¢ Most subjects find and explicitly present a solution (either correct or incorrect) as
part of their problem -solving attemnpt, although problems AfR7"and WT appear more
difficult than their quantitative isomorphs in this regard (W' and MOD) A more

detailed analysis of solution outcoines follows shortly.

¢ Likewise, the three transitions without solution (i.e., impasse, lost, or wrong) are miost

common in the more difficult problems (MRT and WT).

Errors in scored episodes.

 Conceptual errors of omission and ¢ ission increase for the tnore difficalt prob.
lems (MRT and WT), and appear much more frequently than manipulative errors

(arithmetic, algebraic, or variable errors) on all problems.

Several interesting patterns emerge in these findings. First, subjects’ written protocols
are not composed solely of material generated while performing algebraic transformations.
Instead, many subjects appear to use various forms of direct situational reasoning, which we
have termed model-based reasoning, conducted within their understanding of the context
posed by astory problem text. Second, although most subjects do present a solution in some
forin, their efforts do not appear as a smooth progression toward a quantitative solution.
Rather, their problem-solving efforts are often interrupted by varied conceptual difficulties
that must be repaired before a solution is found. Third, manipulation errors withmn algebraic

and arithmetic formalisms do occur, but these are overshadowed by conceptua! errars of

Or commission as a primary source of problem -solving difficulty. Consistent with
our earlier treatment of problem structure, we intespret these findings to mean that students
form an understanding of the problem at the level of its situational context and then use

this understanding tointroduce quantitative conatraints. As a result, many of the activities
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present in an episodic analysis of algebra story problem solving fall outside the traditional

algebraic formalism,

Final episodes: outcome, tactical content, and errors

Examination of the written protocols ¢ varly shows that subjects undertake a variety of
problen-solving activities when attempting to solve these problems, particularly when they
encounter difficulties in reaching a solution. Howevet, the previous findings speak only to
the presence of various conditions in subject’s problem-solving eflorts. By our scoring,
subjects averaged approximately 2.5 scored evisodes per problem-solving effort, with some
picodes. In the following analyzes,

we look within individual protocols for more finely-detailed episodic structure.

protocols presenting evidence for as many as 10 distinct

Within an individual’s efforts oa any givea problem, we extract a *final episode” for a

firat level of detailed analysis, This episode need not be the aubject’s last effort in a solution
attempt, but it is final in one of three sensea: it is the last eplsode during which a subject
presents a solution that is correct, the last episode during which they present a solution that
is incortect, or tke last episode of a problem-solving effort in which no solution is presented,
“Incorrect™ meaas the subject preseats an incorsect fral solution witkout detecting any
errors. The “go solution” category includes subjects who preseat an incorrect solution but
realize they have done so during a subezquent attempt at verification, without being able
to recover. Thu, the final episode may be either correct, incosrect, or preseat 1o solution,
{Insert Table 4 about hete.)

Performante cutcomes across groups. Tatle 4 shows the §inal outcomes for each
problem, broken out to show anticipated effects of probleni ordering. For example, on
yroblem MOD group W should perform better than group M (shown as M < W in the
tavle), since subjects in group W are exposed to an Isomazphic problem (WT) just before
seeing problem MOD. If positive transfer occurs, subjects in group M should be at a relative

disads antage, having seen no prior problem. None of the group contrasts were statistically
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significant, even taking into account whether subjects wete correct or imcorrect on preceding
problems. Thus, the problem ordeting manipulation introduced to provide opportunitics
for positive and negative transfor appears to have had little effect on subjocts® perlormance
at the level of solution correctness. We consider this finding at a mote detaled level in the
discussion section. Clearly, probleme MAT and W7 wete most difficult, with percentages
of subjects reaching a correct solution on these problems (51.8% and 61.2%) falling well
below thoee reaching correct solutions on problems MOD and WC (99 6% and 91.8%).
(Insert Table 5 about here.

Relatioas between solution outcome and tactical content. Table 5 shows tactical
content and error categonies for final probiem solving episodes. For tactical content, =
subject receives a sinzle category score, 50 cell frequencies sum to give appropriate columin
totals. A few protocols contain insufficiert informatjon to score tactical content in the final
episode, For errors, a subject may achieve a correct solution in the final episode but still
demonstrate an error, cr they may have several types of errors. As a result, cell entries for
errors do not always add up to coincide with column totals.

The prevalence of tactica! content and error categories in the final eptsode 15 generally
consistent with findings for overall solution attempts. However. by looking within these

attempts e can focus more closely on relations between tactic and outrome

¢ Even within the final episode, not all solutions (cortect or incorsect) are found using
algebra. Excluding those with no solution or with contents that were not scorable,
between 22.0% and 44.0% of subjects (across problems) vsed other tactics to find
their final solution.

¢ Use of ratios is the most prevalent form of non algebraic reasoning in final episodes.
with the exception of an incorrect averaging procedure on problem W7, Model based

feasoning is the next most prevalent tactic.
¢ Algebra, model-based reasoning, and ratio tactics are about equally eflective in the
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final episode. Poolingacross problems, algebrais slightly more successful (number cor-
rectftotal observed) and slightly less error-prone (number incorrect/total observed)

than either of the non-algebraic tacties.

Thus, even within the final episode where a solution might be found, a normative account
of problem solving consisting of successive algebraictransformations would be disconfirmed
by these data. Instead, subjects find solutions through a variety of reasoning strategies
that, ia some cases, involve relatively little formal algebra. In a moment, we examine the
episodic structure of model-based reasoniag tactics more closely.

Relations between solution outcome and errors. Errors observed during final
epicodes are also interesting although more difficult to interpret gince individual subjects
can have multiple errore. We distinguish between “conceptual errors,” which arise through
omission or ccximission of specific quantitative constraints, and “mazipulative errors,”
which atise through improper use of arithmetic, algebraic operations, or variables. These

error categories are shown in the lower panel of Table 5.

® With the exception of problem MOD, conceptual errors are more prevalent than
manipulation errors. This is particulazly true of the more difficult problems (MRT
and WT).

¢ Subjects who achieve a correst solution have fewer conceptual errors than those with
an incorrect solution or no solution (1:6, 6:30, 1:37 and 1:4 across problems). In the
few cases where a solution is found despite conceptual errors, offsetting manipulative

errors fortuitously “correct” theze conceptual errors.

o Although manipulative errors are found among subjects who do not reach a correct
solution, they are also obszerved among subjects giving a correct solution. These errors

are repaired within the final episode to allow for a correct solution.
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® Among subjects who reach an mcorrect solution, the nmuber with m:anpulative errors
could not account for more than a third of these falures (2/6. 5/15, 7/21. and 1/5
across problems). Alternately, at least two thirds of the jneorrect soluttons must be

bhased on conceptual errors,

One interpretation of these results 1s that mampulative errors are less frequent and
more recoverable than conceptual errors. ‘That 13, subjects who make an error during a
problem-solving episode are more likely to recover from that error if st stems from anthmetic
or algebraic manipulation than if it is a result of misunderstanding or misencoding the
structnre of the problem. Since errors may persist across episodes, this concluston cannot
be unambiguously supported. Nonetheless, the most serious errors among this group of

relatively competent problem solvers are conceptual rather than manipulative.

Episodic structure of model-based reasoning

One of the most intriguing findings in these data are subjects’ use of what we «all “mode!
based reasoning.” In these episodes, subjects depart from the algebraic formalism and
reazon directly within the situational context presented by the story problem. In this
tection, we examine the functional role that model bhased reasoning plays witlun the overall
solution effort. We are interested in determining under what circamstances this form of
reasoning occurs, what purpose it serves within a particular solution attetupt. and what
outcomes aze likely when subjects reason in this fashion,

As with the analysis of final episodes, we identufy spectfic episodes within snhjects’
solution attempts where model baged reasoning occurs. We also extract the preceding
problem-solving episode in the hopes of identifying enabling conditions for niodel hased
reasoning. Since some subjects’ only use of mode! hased reasoning occurs during their first

scored episode, they will have no preceding episode.

[insert Table 6 about here,]
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Precursors to model-based reasoning. A first task for describing the role of model-
based reasoning in subjects’ solution attempts i3 to determine their reasons for using this
method. We will contrast the correctness and transition out of an immediately preceding
episode with the purpose (as we have rated it) for using model-based reasoning.

Table 6 shows the number of subjects who use model-based reasoning for some purpose
(scored as comprehension, solution attempt, or verification) subsequent to various condi-
tions in the preceding episode. A subject may either have no preceding episode, have a
preceding episode without errors, or have a preceding-epicode with one or more scored
errors (i.e., an error of com mission, omission, or manipulation from whick the subject does

not recover in that episode).

¢ From 26.3% (5 of 19 on MRT) to 70.0% (21 of 30 on WT) of model-based reasoning
episodes occur as the first episode in a solution attempt,

¢ Of these initial model-based episndes, the majority (except for problem MRT) are
undertaken for the apparent purpose of comprehending some aspect of the presented

problem. The remaining initial episodes are scored as solution attempts.

For subjects having a preceding episode, their transition out of this epitode is scored as
achieving a subgoal, finding a solution, reaching an impasse, or deciding they are wrong. Of
the model-based reasoning episodes following an error-free episode, there are two essentially
diferent conditions. ll.l the first, a subject’s preceding episode ends with achieving a subgoal
or finding a solution. This subject could be considered “on track” in her solution attemgps,
In the second condition, subjects “abandon” the preceding episode after reaching an iinpasse
(also after getting lost, as described eatlier) or deciding that their efforts are wroog. These
subjects are technically on track since their preceding episodes are free of errors, but they
encounter sufficient difficulty that they abandon a previous Jine of reasoning in favor of

wadel- based reasoning

13

¢ Amost all subjects who are “on track™ in a preceding episode ¢ither attempt a solution

or continue attempts at comprehension during the model based reasoniog erisoda,

¢ Only a few subjects are “on track” and undertake miodel based reasoning for the
purpose of verification. On problem WC these verification episodes follow finding a
sclution; the single verification attempt on problem WT comes from a subject who

verifies a recalled formula using a sunplification of the ongimal problem.

¢ Subjects “abandon” (i.c., lost, impasse or wrong) a prior, error [ree episade infre
qQuently and subsequently use model-based reasoning for comprehension or to attenipt

a solution.

Model-based 1 ing episodes following an episode with errors are Jess frequent than
those discussed above, but fall into similar categories. Relatively few subjects have preced.
ing errors, ate unaware of those errors, and proceer. as if “on track™ (achtevo 2 subgoal or
find a solution). Subjects who are aware of their preceding error nearly always decide that

they are wrong and “abandon” the preceding episode.

o Among those who “abandon” a preceding episode with ersors, subscquent model

bazed reasoning is used either for comprehension or as an attempt to find a solution.

Although based on a subser of al} st.ojecte studied, these findings support an inter-
pretation in which model-based reasoning plays four hasic roles io problem solving: as
a preparalory comprehension strategy when the model based episade is cither the first
problem-golving activity attempted or follows other comprehension episodes, as a solution
strategy when subjects feel they are on track, as ao evidence gathering strategy when a so-
lution has beea found previously (thisisinfrequent), or as a recovery strategy when subjects
suspect that their comprehension or solution efforts .y be “ofl track ” These interpret

tions are consistent with our eatlier argument that reasoning wathin the situational context
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of a problem supports the generation of quantitative constraints, can be used directly as a
- s solution method, or can be used to verify that these constraints are appropriate.
{Insert Table 7 about here,}

Effectivencas of model-based reasoning. As well as inferring subjects’ reasons
for undertaking model-based seasoning, we would like to characterize the effectiveness of
this reasoning strategy. To assess efficacy, we examine the occurrence of any errors within
successive episodes. Table 7 shows the relationship between errors during a preceding

episode (when there is one) and errors within the model-bazed reracning episode.

® When model-based reasoning is the subject’s first evident activity, as indicated by
“Noepitode” in Table 7, errors are not often encountered within that epicode. The two
errors shown for problem MRT are mis-conceptualizations in which subjects assume
that round trip times are equal. The error in problem W7 comes from a subject who

assunies that Mary and Jane do equal amounts of work.

When a previous episode contains errors, the subsequant model-based episode is
usually error-free. Thus, existing errors may be “repaired” during model-based rea-

soning.

¢ Following an error-free episode, only one subject introduces a new error with model-

based reasoning by omitting the constraint that distances are equal on problem MRT.

While these findings are not conclusive, they are again consistent with the four hypotheti-
cal roles for model-based reasoning described in the analysis of final episodes. Preparatory
comprehension promotes an error-free conceptualization of the problem situation, enabling
subjects to correctly assemble the quantitative structure of the problem during later rea.
soning episodes. Subjects also attempt to find solutions directly through model-based
reasoning, generally without introducing errors. Alternately, after encourtering an error

during previous problem-solving activities, subjects may be able to recover through the
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use of niodel-based reasoning. Finally, model hased reasoning can play a confirmatory role

When subjects have identified imp._rtant problem constraints or a possible solutjon.

Summary of quantitative findings

As part of our effort to explore the episodic structure of algebra stary problem solv
ing, this section presents three levels of quantitative analysis: the prevalence of different
interpretive catagories in subjects’ overall solution atfempts, relations between outcones,
tactical content, and errors in subjects’ final epssodes of problem solving, and the role and
effectiveness of model-based reasoning episodes within th: wider problem -solving context.
Each successive A of analysis tightens the focus on findings at coarser levels.

A global view of solution attempts reveals significant non- algebraic reasoning asa preva.
lent and somewhat unexpected constituent of competent problem solving. Most prevalent
among these tactics is model-based reasoning. Aniong observed crros, conceptual omis.
sions or commissions are niore frequent than manipulative errors within arithmetic or alge-
braic formalisms. An examination of final episodes, the “bottom line™ in a very lean view
of these problems, corroborates this global image of significant non algebraic reasoning on
non-routine problenis. Looking more closely at errors, we find that manipulative errors
are both less frequent and less damaging than conceptual erjors, since subjects are piore
likely to recover from errors of manipulation within the final episode, Finally, we examine
the episodic structure of model-based reasoning and propose four roles for this tactic: as
preparatory comprehension, as a solution method, as evidence-gathering for a candidate
solution, or as a recovery method for errors generated earlier in the solution attemnpt, Ihese
quantitative analyses of problem solving agree with out earlier description of the interplay

between the quantitative and situational structure of algebra story problems

DISCUSSION

Interpreted as a scries of problem solving episodes, the written protocals described
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above provide an opportunity to ook within individual solution attempts for evidence of
strategic and tactical upproach. We have also heen able to look acroes a selatively lasge
sample of mathematically sophisticated subjects In an effart to describe “typical” problem-
solving behaviors. In this section, we compare the results of our study with other research on
matbhematical problem solving and discuss the implications of these findings for conceptions

of matbematical “knowledge™ and instruction,

Competent problem solving

Our findings are offered as a preliminary exploration of “competent™ algebra story probiem
sol4ing. By choosing the term competeat, we hope to contrast the problem-solving behav.
jors we have observed against images of “expertise® in problem solving as they are often
portrayed in the literature. For example, Hinsley ef ol (1977) and Mayer et ol {1984)
report that experienced problem solvers use problem-solving schemata to categorite prob.
lems by type and then represent these problems using familiar quantitative constraints.
While this account corresponds with some of our protocols, many subjects in our sample
Appear to construct solutions to algebra story probilems. Ratber than a smooth execution of
 highly practiced ), tbese constructions often proceed with some difficulty and jnclude
reasoning activities only partly connected to algebraic or arithmetic formalisms.

As noted earlier, subjects in this study should be considered mathematically sopbis.
ticated. Nonetheless, judging from the varied bebaviors we bave observed, the algebra
story probleins we presented to subjects are not routine problems. On problems MRT and
WT, for example, many subjects faj} to reach a correct solution, and those who do suc-

ceed often experience considerable difficulty. Analyses of errors encountered by subjects

when attempting solutions suggest that conceptual errors of omission and commission ase
both more prevalent and more damaging than manipulative errors in algebra or arithmetic.
These results support a model of algebra story problem solving in which problem compre-

hension and solution are complimentary processes. Integrating dual representations of a
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peoblem at situational and HQuantitative levels is a central aspect of conipetence. These

intermiediaty structures provide a representational bridge between the text of a problem
and a quantitative solution. Reasoning about the situational context of a problem can
serve a5 a justification for assembling quantitative constrants that tay eventually lead to
a correct solution. Thus, a substantial portion of a subject’s activity is devoted to reach.
ing an understanding of the problem that is sufficisnt for applying the routine of forsnal
manlpulation,

Despite their mathematical backgrounds, perhaps our subjects have yet to achieve com.
petent algebra story problem solving, well beyond the curricolar setting designed to teach
it. Alternately, they may have been “experts® during and shortly after algebra instruction,
but with the passage of time have Jost the facile performance demonstrated by UHinsley et
al (1977). Whichever explanation is chosen, the jgaue remalns how to characterize os.
tensibly competent problem solving in a population for whom the algebra curriculum fs
designed. Recent studies of mathematica) problem solving in “practice™ (Carraher, Carra.
ber, & Schliemann, 1987; Casraher & Schliemann, 1987; and de la Rocha, 1986) present
similas images of competent quantitative reasoning: problem solvers organize their quan
titative knowledge around the demands of the situational context presented by the tak,
vt~n using the problem eituation (or knowledge of it) to assemble of verify quantitative
constraints. If an image of competent problein colving in this domaln is to inform teaching
eflorts - i.e., it is to bave some predictive capacity as described i the introduction of this
paper ~ then activities like these are a legitimate topic of study, We return Lo jseues of

competence and acceptable transitional performance in a tnonent

Transfer effects

Aside from thelr use as representative problem solving tasks, algebra story problems of
ten serve 28 materials for studies of analogical transfer. Grven a target problem to solve,

subjects exhibit positive transfer when they can use the solution method from a previ
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ously encounterad source problem to help solve the target problem. Alternately, subjects
exhibit negative transfer when they access and use the solution from an inappropriately
related source problem. Studies of analogical transfer with algebra story problems have
produced mixed results, but show that both positive and negative transfer sometimes oc-
cur. Positive transfer has been more likely when subjects are alerted to the experimental
manipulation (Reed, 1987; Reed, Dempster, & Ettinger, 1985) or are high in mathematical
achievement {Novick, 1987). Transfer eflects related to higher achievement have been at.
tributed to subjects’ improved attention to aspects of quantitative structure {Novick, 1987;
Silver, 1979) and better memoty for previous solution methads (Silver, 1981). Negative
transfer in subjects with lower achievement (Novick, i987) has been attributed to a re-
liance on inappropriate problem features and an inability to reject misleading analogical
sources. Finally, Dellarosa (1985) has experimentally manipulated subjects’ use of analog-
ical and schematic problem comparisons to produce improvements in their categorization
and solution of telated problems.

In the present study, we did not alert subjects 1o the comparability of problems, nor
did we encourage them to look back over their ptior solutions as they worked through
the problems. Their backgrounds insare high mathematical achievement, and entrance
requirenients for academic majors in computer gcience and engineering preselect for high
quantitativeabilities. There is no petformance-level evidence of positive or negative transfer
within the problem-solving session, despite our manipulation of probiem structure and
presentation order 1o elicit these effects. At the aggregate level, our subjects appear to take
the “school math” task we present them at face value: each problem, presenied individually
on a blank sheet of paper, is treated as a s2lf-contained exercise, rather like what a student
might face during examinations in a course on algebra. Howewer, oz closzr inspection of
individual protocols and cxplanatoty remarks we find that ecveral subjects give evidence

for some form of negative transfer.
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In some cases, transferred material directly violates the quantitative and situational
structure of the target problem. For example, subject w08 incorrectly attempts to add
working rates on problem WC, first writing 1/5 « bozes + 1/2 « bores = 56, followed by
7/10 » bozes = 56. In explanatory remarks, w08 states that “The nustake | jnade was
that | assumed it was like problem 1 where they work together.” In the preceding solution
to WT, this subjert had written “Together = 1/5 + 1/4 in one hour = 9/20™ and then
correctly divided one job by the combined rate. Adding working rates in problem WTis
justified since Mary and Jane wotk together at the same time. However, situational and
quantitative relations are exactly reversed jn problem W(: (see Figures 6 and 2(b)). Since
times are added together (adjacent) and work is petformed on the same boxes (congruent),
the addition of working rates (i-e., output over time) cannot be similarly justified.

In other cases, subjects recognize an appropriate source problem, but then fail to transfer
information at the correct level of abstraction. For example, on problem MOJ subject
w0l correctly attempts tu add motion rates, but uses an algebraic expression of the form:
1/60 +1/100 = z/880. On the previous (WT) problem, the subject manages a correct
solution using an expression of the form, 1/5 4 1/4 = 1/z, and remarks that this “... is a
formula used t6 find a total of time they work together.” Although the addition of rates
can be justified in both problems, it appears that the rate form in the retrieved formula
is reversed (i.e., time over output) when used in a solution attempt on the MOD problem,
Thus in a situation where we anticipate that the subject will benefit by transfer of a solution
approach, their failute to justify transferred material actually prodnces a negative effect.

It may be that the problem-solving context, completing a test booklet in a proctored
examination setting, as well as our decision not to alert subjects to the comparability of
problems, prevented them from recognizing and elaborating effective analogical comparisons
between problems. In mote detailed verbal protocol studies whete subjects are encoutaged

to make problem comparisons (Hall, 1987, 1988), attempts at analogical inferences between
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algebra story problems are quite common. These comparisons are usually lengthy and
can introduce misconceptions, but also frequently lead to fruitful explorations of problem
structure, both quantitative and situational. In addition, comparisons need not encompass
the entire problem structure, but often instead make eflective use of relevant substructural
similarities. These alternative findings are largely consistent with other verbal protocol
studies of learning from worked examples (Pirolli & Anderson, 1985; Singley, 1986; Chi,
Bassok, Lewis, Reiman, & Glaser, 1987), and suggest that analogical comparison may be

3 commos problem-solving and learning strategy in settings where subjects have some

rontro! over their work.

Model-based reasoning

We are not the only researchers to note the prevalence of model-bascd reasoning duting
mathematical problem solvizg. A number of psyckological studies have found cimilar ev-
idence, although interpretations of this activity vary. Paige & Simon (1966), comparing
human protocols with Bobrow’s (1964) computational mode! of translating algebra story
groblems into equations, found that subjects with varied mathematical backgrounds used

“auxiliasy representations™ of the physical setting of a problem. These representations

allowed gome subjects to detect impossible problems or to ble relevant quantitative
constraints (e.g., additivity in part~whole relations). Using verbal protocols to study the
prevalence of Pclya’s (1945) heuristics for mathematical problem solviag, Kilpatrick (1967)
seported that 60% of an above-average group of eighth graders uscu “successive approxima.
tion” while attempting to eolve word problems. These trial-and-~error approaches were often
successful and were sometimes combined effectively with more deductive solution strate-
gies. Silver (1979) found similar euccessful approximation strategies in students who had
yet to receive formal algebsaic training. Studying geometry problems, Schoenfeld (1985)
found that students used a trial-and-error approach to generate hypotheses about geomet-

ric relations and then evaluated these hypotheses by physical construction. Ife argued that
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these exploratory episodes of “naive empiticism™ were usually poorly organtzed and often
P i ¥

interfered with forms of deductive verification that students knew how tc use. Finally,
Kintsch & Greeno (1985) described a process model of solving arithmietic word problems
in which quantitative strategies were triggered by information contained in a “situation
model” of the problem. The situation model was constructed durning text comprehension
and contained a set-based cepresentation of typed quantities and their interrelationships
(e-g., part-whole). Follow-on studies (Kintsch, 1986) have shown that the construction of
a situation model is important for recall, inference, and learning from text.

Looking over this evidence, we find that studies of mathematical problem solving con-
sistently encounter activities similar to what we call model-based reasoning: subjects con-
struct some form of situation model, take inferences within the model to help comprehend
and sometimes to solve a quantitative prohlem, and use the model in a supporttive role for
assembling or verifying quantitative constraints. Beyond model-hased reasoning in math-
ematical problem solving, similar evidence is available across a wide range of cognitive
activities. For example, Johnson-Laird (1983) argues for a model driven acc of syllo
gistic reasoning that underlies commion-sense inference. Given a pair of premn . . like, All
the artists are beckeepers/All the beckeepers are chemists, Johnson Laird's subjects appear
to build successively more elaborate models of the situation descihed by the preniises when
searching for valid inferences. The validity of each inference, rather than being logically
deduced by sound rules of inference, is evaluated with respect to these concrele models
of the premises. Errors occur when subjects are unable to build sufficient models of the
premises and thus overlook or fail to eliminate various inferences. Itelatively concrete forms
of reasoning outside traditional (i.e., schooled) formalisms have also been observed for de-
cision making under uncertainty (Tversky & Kahnewnan, 1974), various forms of statistical
reasoning (Nisbett, Fong, Lehman, & Cheng, 1987), and cxplanations of physical processes
(Clement, 1983; McCloskey, 1983).
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In general, these studies raise questions about the relationship betweeo what students
bring to an educational setting i.c., their “preconceptions” abont a subject matter —
and materials that the curriculum explicitly presents. In the domain of mathematical prob-
lem solving, students’ “preconceptions”™ and associated activities are often pushed to the
background of legitimate practice and inquiry. At best they are “auxiliary” to quantitative
reasoning, while at worst they interfere with preferred problem-solving activities and pro-
duce ‘lost opportunities, unfocused work, and wasted effort” (Schoenfeld, 1985, p. 308).
In their stead, the manipulation of symbolic representations of quantity, quite apazt from
the siluations that give rise to these quantities, js held in the foreground. Qur findings
on model-based teasoning, in concert with other studies teviewed briefly above, suggest
that this foreground/background conception of quantitative problem solving may need to
be reconsidered,

In our sample of “competent™ subjects, a routine problem is one in which the use of
familiar algebraic operations will provide a precise value for an unknown entity. This s
the power of the algebraic formalism: it is perfectly general, sound, and often simple to
apply. However, quantitative precision is of little value when the subject is uncertain about
the problem’s structure. Qur characterization of overall epizodic activity, the frequency
and contequence of conceptual versus manipul stive errors during those epizodes, and the
role of model-based reasoning show that routise activities within the algebraic formalism
make up only a portion of competent problem-solving. For many of our subjects, algebra
story problems aze not routine exercises. Instead, much of their problem-solving activity is
devoted to assembliog a sensible set of constra.cts on a desired quantity, an effort that yu.
covers the problem’s structure. When algebraic constraints are unclear, subjects sometimes
attempt solutions using modaj-based reasoniry (e.g., Figure 8), a tactic that approximates
a certain value for an unknown z2t3ty. The value is certain when quantitative constraints

that determine its derivation are grounded in a representation of problem structure that is

§3

familiar to the subject.

The strategic significance of this activity is consistent with varying explanations. On
one hand, enacting a set of physical constrai. ay provide otherwise skilled quantitative
problem solvers with an efficient means of estimating quantitative solutions. Under this
interpretation, the model-based episode shown in Figare 8 may result simply from the
subject’s preference for repeated additions over a more complicated d.vision. Wilkaning
(1981) makes a similar argument when interpreting results of a developmer.tal study on the
relationship between velocity, time, and distance. In contrast, we argue that episodes of
model-based reasoning serve as problemn solving strategies in their own right, and are used
when more “/nvmal” activities (e.g., algebraic substitution) ase unreachable given the cur-
rent problem representation. Under this interpretation, the subject in Figure 8 undertakes
inodel-based reasoning because her representation of the problem cannot justify 3 division
of the total distance by a combired rate. Enacting motion and tisne constraints over suc-
cessive hours of travel makes the quantitative structure of the problem more certain. The
results of model-based reasoning support a conceptualization of quantitative constraints
in which the total distance can be divided by a combined rate to give a precise account
of the elapsed time. Further constraints are introduced by establishing that the correct
quantitative solution falls between the fifth and sixth hours of travel.

Interpreting model-based reasoning as an alignment of certain and precise represen.
tations of problem structure feads to deeper questions about a competent understanding
of mathematica! concepts, in this case related linear functions. One point of view takes
mathematical concepts as objects of knowledge in and of themselves, quite apart from their
physical embodiment in a situational context. Hence the story in an algebra story problem
serves only as a vehicle for carrying a mathematical structure. An alternative point of view
takes mathematical concepts as tools for modeling physical situati- s, 1n this case refated

motion or work events as presented in problem texts. The question is how far vehicles
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will travel or how long it will take to complete a job, and mathematical concepts serve as
sometimes-useful tools for answering these questions.

We suspect that these points of view are not incompatible. In fact, the Jatter view
may provide an educational bridge to mathematical concepts as self-containef sources of
knowledge. That is, a competent mathematical conception of related livear functions js
band;n and eztended through a physical understanding of the situational context that
the “story™ of an applied problem presents. An activity like iterative simulation “joins™
concrete inclines, allowing the subject to successively construct a systematic relationship
between rates and providing an introduction to related linear fanctions that can be directly
supported within a familiar context. Over time, the mathematical concept reflects a history
of use as a tool for modeling physical situations. The concept of rate changes asits modeling
role is extended over a wider range of eituational contexts, perhaps lcading to heuristic
estimates or algebraic constructions based on “scaling” inclines as invasiant relations. The
teault could eventually rezemble a relatively context-free mathematica) abatraction. Of
course, this acccunt of the acquisition of mathematijcal concepts is highly speculative and
not a focus of our study. However, judging from the problem-solving behavior observed
in this study, even ostensibly “competent” mathematical problem solvers continue tc base

their quantitative efforts within the situationa) context of presented problems.

Educational implications

We have interpreted the relative prevalence and ¢

quence of conceptual versus manipula-
tive errors as evidepce that subjects have difficulty ia assembling the quantitative structure
of algebra story problems, long after they have mastered the algebraic formalism, Likewise,
the prevalence and functional role of model-based reasoning are interpreted as evidence
that even mathematically-sophisticated problem zolvers explore the situational context of
theze prohlems in an attempt to construct or Fepair & ieprecentation that wilf apport a

solution. Based on these findings and their interpretation, we examine several implications
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for teaching mathematical problem solving.

The primacy of conceptual errors and use of model based reasoning, in some cases to
recover from these errors, suggest that instruction based solely within the mathematical
formalism may be inadequate for solving non-routine problems. Textbook instruction in
algebra story problem solving typically addresses this 1ssue by providing same suggestions
for “... translating from words to appropriate algebraic forms™ (Kolman & Shapiro, 1981, p.
64). These range from direct translation rules taking textual phrases into equations (e g.,
rewrite “twice™ as 2x) to the construction of tables that organize quantitative entities and
their interrelationships around kaown formulas. The desired result is a got of simultaneous
linear equations amenable to algebraic operations. While these suggestions provide a gort
of organizational strategy for the student’s problem-solving activity, they fall well short
of specifying how quantitative relations, pasticularly those that are only implied by the
problem text, can be identified, arranged as entries in a table, or effectively used. Instead,
the results of our study point to persistent problem-solving difficulties that the traditional
algebra curriculum addresses weakly if at all.

How might these components of competent problem solving be taught more effectively?
We argue that the situational centext of ag algebra story problem, and in particular the
correspondence bet:veen situational relations and Quantitative constraints, should be a Je.
gitimate object of teaching in the algebra curriculum. This is clearly appreciated in other
problem-solvirg curricula. For example, consider the utility of force diagrams for solving
statics problems in physics. Students who ignore or incorrectly construct force diagrams
can be expected to manipulate equations or formulas without visible signs of progress.
This is quite similar to Paige & Simon’s (1966) finding that “auxiliary representations™
helped subjects to detect impossible algebra story problems, sometimes before writing any
equations at all. Qyur auest,on, then, is whether there might not be a simiilar organizing

representation for algebra story problem solving? There are some suggestive precedents:
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Gould & Finzer {1982) describe an animated computational environment that allows stu-
dents to make guesses in a one-dimensional world of aotion; Greeno (1983) describes an
effective instructional technique in which students use an electric train set to help calculate
solutions to compound motion problems.

As one possibility among many, we present arepresentation that draws directly from the
analysis of situational structure presented earlier and consider under what citrcumstances
it could provice a useful instructional model for constructive problem solving. As with
any model used in teaching, there are problems of registration: the model may cover some
aspects of the target domain well but cover other aspects poorly. Our proposal addresses
relations and operations poesible within a tepresentation of the situational structure of

compound algebra story problems, and the cor pond: of these aspects to relations

and operations pousible with a representation of quantitative structure. We expect that in
combination with a quantitative model jike that proposed by Greeno et al. (1986), their
j?inl contribution could prove more effective than either used alone.

[Insert Figure 15 about here.)

Figure 15 shows paired graphical representations of situational and quantitative stryc.
ture for the MRT problem, At the top of the figure, a dimensiona! frame displays orthogo-
nal output (in this case, distance) and time dimensions, with entities arranged along those
dimensions by their respective situational relations: times are adjocent and distances con-
gruenl. Atthe bottom of the figure, a quantitative network (Shalin & Bee, 1985) shows the
common distance found by applying motion rates to component times. Each representa.
tional device provides a directly accessible ilustration for important aspects of competence
in this problem-solving domain.

In contrast with translation rules or tabular arrangementy, the illustrative medium
of dimensional frames provides a spatial abstraction for compound rate problems that

promotes a physical justification for essential quantitative constraints. Time segments
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add because they are adjacent within the vertical dimension, while distance ¢egments are
equal because they are congruent within the horizontal dimension. As noted in our earlier '
discussion of quantitative structure, substructures corresponding to these constraints must
be constructed before using the quantijtative network to find a solution e.£., the additive
triad over time extensives that centers the quantitative network in Figure 15. The ability
to appropriately select and place these quantitative substructures appeats to require a
substantial investment in training time (Greeno ¢! al., 1986). We expect chat a well
designed illustration® around the idea of dimensiona’ frames could effectively support the
acquisition and use of a quantitative network illustratioy

In contrast with a set of algebraic equations, quantitative networks provide a spatial
abstraction for variables and equivalence relations that makes the global structure of what
would otherwise be a linear encoding more apparent. Rather than writing a set of equa
tions with repeated variable names or constants, a notation that can obscure the role of
quantitative entities and make the applicability of certain algebraic operations difficult to
recognize, the quantitative network directly captures the notion of shared variables or con:
staats and multiple ways of reaching a particular unknown. The network provides a visually
inspectable form of algebraic calculus, essentially constraint propagation, that tay prove
easier for students to learn than more traditional instructional methods (i.e., algebraic op-
erations on linear equations). Thus, the two illustrative media are collaborative tn that
they provide interdependent representational stages intermediate between a problens text
and a correct!y manipulated set of algebraic constraints.,

Returning to Figure 15, we give a more detailed treatment of this collaborative inter

d dence. Asac

¥

pound motion problem, MAT involves two events, cach contributing
entities modeled as egments on output and time dimensions. Across events, segments on

each dimension ase related in & manner that determines thesr quantitative composition.

*ONlsson (in press) gives & prescriplive methodology for constrecung tnteractive sllustrations as well so
s particelac itlustration, called *Rectangle World,” for the ratio sease of tational aumbers
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Adjacent time segments can be composed to yield a single segment whose extent along the
vertical dimension corresponds directly to the value of total time traveled, thus implying an
additive relation over extensives in the quantitative network, Similarly, congruent segments
in the distance dimension have an identical extent, implying the same (and same-valued)
extensive in the quantitative network. Within each event, the rate provides a comparative
mapping between dimensions, modeled as indjvidual inclines in the figure, Placed at the
top of the dimensional frame, walking covers 3 miles in ozne hour, and after transformation
to reflect a common output (discussed jn a moment), the bus is shown to cover the same 3
miles in } hours at the bottom of the frame,

In 2ddition to sanctioning relations among quantitative eatities, mote direct problem-
solving inferences using model-baged teasoning are also poesible within the dimeational
frame. Treated as invariant relations across dimensions, motion inclines can be “scaled” to

give heuristic estimates of common distance and ¢ posed times, as shown with dashed lines

in Figure 15. Alternately, treating rates as concrete associriions, inclines could be “joined”
together during an iteratlve simulation of compound motiox. In eath cise, 2 model-based
solution is reached when a common distance is found that precisely requires six hours for
round trip traversal. Doth forms of model-based solution attempts are consistent with
observed protocols. For example, subject m31 uses & form of “scaling” 10 make heutistic
estimates of 24, 12, and 15 miles for a comuaon distance, cliecking the combined time
required for each estimate agalnet the given six hours. After the third estimate, she notices
that “ech mile takes...  hours™ aad later uses this constraint to construct an algebralc
expression in a single unknown, “% %X = 6" In contrast, subject m18 uses a form of
“joining” by choosing 3 miles as a concrete distance segment, determining that the bus takes
7.5 minutes to cover this distance (shown as } bours in Figure 15), and then extending these
concrete relations in a simulation of successive three-mile return trips. Both subjects alter

the form in which motion rates are expressed (i.¢., output over time) during their model-
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based solution attempts, and subject 31 finds a way of conthining rates for a “return trip
mile.” In each case, activities within model based reasoning episodes observed in written
protocols directly sanction multiplicative relations between rates (intensives) and timec
(extensives) shown in the quantitative petwork of Figure 15.

An appropriate combination of these repiesentations could be a helpful artifact for in.
struction in algebra story problem solving. First, representational choices in the dimensionat
frame can serve as justifications for more abstract relations or operations in the quantita.
tive network, Ag argued above, a justification for adding times within the quaatitative
formalism is that their composed spatial extent is censible within the situationa! context
of the story. As & more complex example, subject m31'% decision to transform and then
add motion rates in this problem cleverly restructures the dimentional frame to have single
segments on both time and output dineniions - eg., ﬁ hours for each “return trip” mile.
The corresponding quantitative petwork would require only three entities: a time extensive
(6 bours, given) recults from multiplying the combined rate intensive (& bours per mile,
inferred) by an unknown extensive for round trip distance. Thit is a sensible change in
representation only because the time segment given in the “goal state” of the problem is
presented as a composed whole (i.e., “... he was gone for 6 hours” in the text of problem
MRT), and round trip distance segments are congruenl. Thus, representational choices
in the dimensional frame provide justification for construction of a simplified quantitative
network,

Second, problem-solving activity (e.g., iterative simulation) within the dimensional
framework can acteally help to recover from prior conceptual errors. For example, con.
sider a subject who first attempts a solution within the algebraic fonnalism and oniits the
constralat that distances are the same (i.e., the same vasiable). Finding two simultancous
licear equations in three vasiables, this subject reaches an impasse. Choosing mode] based

reasoning for the purpose of comprehension in the next episode, the subject immediately
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faces a representational decision In the distance dimnersion: should positionally distinct
or Identical spatial segmentt be chosen? Certainly, the possibility of an incorrect choice
re;na.lnl. but when making this cholce In the algebrale formalism of the prior episode,
the consequentes of an incorrect represeatational decision were less apparest, Correctly

chooslig congruent distance segments in the dj #onal frame could allow this subject to

achieve a solution withia the model-based reasoning -episode, or to retutn fo the algebrale
formalism with a more complete representation,

In summaty, chooslng an apt comblnation of situntional and quantitative models for
instructional purposes is 3 challziging problem, Qur sugyestion for the dimensional frame as
an illustrative mechanism would requise further refinement to achieve effective lategration
with an algebralc Hlustration, as discussed above, Nonetheless, we feel this approach is
Interesting in several respects. First, our proposal is consisteat with an empirical picture of
epicodic problem-solving behavior in mathematically sophisticated subjects. Taking these
findings as evidence for competent (if not expert) problem yolving, we are jnterested in
supporting what problem solvers actually do during their attampts to solve zon-routine
problems. Our iastructional proposal is based on a characterization of taese attempts 2nd
an analysis of common problem-solving difficulties. Second, although the solution of a
particulsr class of problems may become routine with practice, the ablility to construct an
algebrale representation will continue to be important for novel problems or problems that
have become uafamiliar with the passage of time, Being able to construct a representation
in the algebrale formalism, besed on the consiraint-generatinginferences we have des:ribed
as one role for inodel-based reasoning, may never become entirely routine, Last, combined
Wustrative media may be of some practical value In delivering instruction on algebra story
problem solving, whether provided through computer-based instruction or a traditional

algebra curriculum,
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Table 1: Representative algebra story problems.

Mation: Opposite direction (MOD).

Two trains leave the samie etation at the same time. They travel in opposite directions.

One train travels 60 km/h and the other 100 kmy/h. In how many hours will they be
880 kin apart?

Motivn: Round trip (MRT).
George rode cut of town on the bus at an average speed of 24 miles per hour and

walked back at an average speed of 3 mules per hour. How far did he go if he was gone
for six hours?

Work: Together absolute ( WT).

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they wosk together,
how long will it take to do the job?

Work: Competitive (WC).

Randy can fili a box with stamped envelopes in 5 minutes. His boss, Jo, can check a
box of stamped envelopes in 2 minutes. Randy works filling boxes. When ¢ is done,

Jo starts checking his work. How many Loxes were filled and checked if the entire
project took 56 minules?
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Table 2: Categories for interpreting the purpose, content, errors, and relative status of

problem-solving episodes.

Strategic purpose
Comprehension
Solution attempt
Verification

‘Tactical content

Annciation
Problein elements
Retrieval of formulas
Diagram

Algebra

Model-based reasoning
Simulation
Heuristic

Ratio
Whole/part
Past/whole, part/part
Proportion
Scaling

Unit

Procedure

Conceptual content

Erro

ptual errors
Errors of commission
Errors of omission

Manipulation errors
Algebraic errors
Variable errors
Arithmetic errors

Status of episode within solution attenipt
Conswtency
Before
During
Aflter
Transition
Subgoal
Wrong
Impasse
Lost
Final solution
Found solution wrong
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Table 3: Percentage of subjects with a scored category during their solution attempts.

Problem MOD | MRT [ WT | wC
Tactical content
Algebra 8241 859 71.8] 635
Modet 306 ] 224 353 47.1
Katio 176 14.1] 153 424
Precedure 0.0 1.2} 212 0.0
Unils 3.5 1.2 1.2 1.2
Necations 711 15.3] 212] 294 Table 4: Final episodes: percentage correct by subject groupings,
_ Diagram 69.4] 36.5 8.2 94
_Tﬁtegicpurpose Problem MOD MRT wT we
Comprehension | 84.7] 64.7| 57.6 | 60.0 Group contrast™ | M<W [ M>W || M>W || M<W
Solutiox attempt | 100.0 | 100.0 | 100.0 | 100.0 Correct 89.1792.3 478564 [ 58.7] 64.1 | 93.5 | 89.7
Verification 28.2 ] 20.0 7.1 | 20.0 Incorrect 65| 7711196 154 || 283 ) 205 65 51
Episode transitions No-solution 431 0.0 1132.6 [28.2(113.0] 154 00] 51
Solution 976} 753 859 976 ¥"M sees MOD, WT, WC, MAT; W sees WT, MOD, MAT, WC(".
linpasse 94| 106 7.1 4.7
Lost 471 21.2| 153 3.5
Wrong 16.5] 3881 259 16.5
Errors
Omission 7.1 212 235 11.8
Commission 176 494 424 14.1
Arithmetic 9.4 4.7 35 24
Algebra 5.9 8.2 8.2 0.0
Varjable 1.2 591 14.1 2.4
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" . . Table 6: Errors and transitional status of a previous episode compared with the puipose of
Tahle 5: Final episodes: tactical content and errors by correctness. a model-based reasoning episode.

Problem MOD MRT WT WC Problem MOD || MRT WT W
Outcome* ClIINTCTITNT C I{NYC|I]N n 26 19 30 10T
n 76| 2441526 5221 |12 8|5] 2 Purpose’ CISTVIT STV CTsIvVIIcrsIv
‘Tactical content No preceding i

Algebra 58161 0H36| 82043 5] 714212 1 episode Tjrjoflvfayefrilaloflel 2|0

Model dlojofl 4] 2| 6] 2{ 1 20121110 N ; Bl

Ratio 1lol2ff 4| 3l off 5] 3] 2f22]1{1 °°::;:n“eiwde

Procedure ofotofl of of off 1{nnf 1 ofolo e I IR RICARE AR e

Units 270108 0 o]l off o} of 0 oo o

Notscored | 1]0j0f o 2) of 1] 1{of oli]o Abandon Lol optltiofojajoj of ofo
Errors Brr:ir:oi(;lepreteding

Conrzptual 6ol ofta| 6 1l tw@ 11410 g

Manipulative | 712 o 1] 5] 2§ 4] 7] 14 2|1]0 n track HHHRE HIHBE ol
*C = correct; | = incorrect; N = no solution. ancon = 7

EC’= comprehension; S = solution attempt; V = verification,
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Table 7: Errors before and during model-based teazoning.

T R N RN

Problem

MOD

MRT

WT

weC

26

19

30

Model episode

Errors | None

Errors | None

Frrors | None

Essors | None

Previous episode

No episode 0 8 2 3 1 20 0 12

Errors 1 4 2 4 0 2 1 4

No errors 0 13 1 7 0 1 0/ 23
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[ |
distance
100 ¢ 5.5

550 kilowncters

e

rate time

100 kph

5.5 hours

Figure 1: A multiplicative relation jnvolving two extensives and a single intensve
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(2)

total output
prodl + prod2

output | output 2
o ratel s time rate2 « time
(inferred) {inferred)
o"“-'"*-..
¥ ...
J
oty
total rate time
ratel + rate2
(inferred) unknown)
|2y
rate | rate 2
(given) (given)

£

(b)

ratel « (total - time2)
= rate2 + time2

output

unknown

M

total time

(given)

rate 1 time | time 2 rate 2
total - time2
{given) inferred) inferre ') (given)
Vigure 2: The quantitative structure of two

W7 while (b) contains MRT, W(",
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problem classes: (a) contains problems MOD,

(a)

(b)
Collinear A Opposite direction

Distance *

Collinear
Distance 2

Time 1 Tine 2
Q) ® Q) Q)

(c)
lhtlh’
0 k/h

Congruent

100 k/h

—_———
100 k Adyjscent
60 k
Figure 3- A situational context for motion in o
and segments for output and time, while (c) shows inciines for rates whon these dimensions
are arranged orthogonally.

78

co
W

pposite directions (a) and (b) show places




—
s s Fu 3
f ’I”: h h '.. :-:
E /" i 3 (l: K "
4 4 ) .
! ; S r r
] o ' e 1 s s “ i
1 7 H 1 e H " ;
l : i s M
: l H L L S e LM
'
""""" ) () 1) e
(a) ———— - - (b) —— — 100 |
880 kilometers 880 kilometers

Figure 4: Operations based on different interpretations of two-dimensional inclines: (a)
shows a concrete situation successively “joined” to give an iterative simulation of states
within the problem model; (b) shows an inveriant refation “scaled” 1o give a heuristic
estimate of a final state in the model.

Figure 5: Solution attempts using model-based reasoning on problem MOD: (a) “joins”
successive concrate inclines in an iterative simulation; (b) “scales™ inclines as an invariant
multiplicative relation in a Leuristic estimation,
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+
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problems
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Figure 6: A matrix of situational contexts for pairs of isomorphic motion and work problems.
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Mary can do + job in § hours and Jane can do the job in 4 hours. If they
work together, how long will it take to do the

job?

% (V54 Yy) =)
'z(%o*{/:o)‘(
rx[,/zo)=| @

=% ]

-.-——‘--—-———

Dovie cneer
Is (%% ) +(*%) Y%=
Yar % =t ®

Figure 7: Protocol of subject m20 on the WT problem.
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Two trains leave the same station at the same time. They travel ity
directions. One train travels 60 km

opposite
/h and the other 100 km/h. In howp F::nany
hours will they be 880 km apart?

|
| V= @2 \“”'//‘wu®
|

————————— I\’?,*b'-- €¢o ko o.port
A UN e e n e o

Lrst e 0 oo =162

sed v ao vy =399

7‘{«_97 oy I 35V = 40 @

4 b 94D 400 = co?%

s b 500 o) - fo(:o

3 b 360 oy = AT

Figure 8: Protocol of subject w06 on the MOD problem.




George rode out of town on the buy at an average speed of 24 wiles per hour
and walked back at an averag

e sperd of 3 miles per *~ur. How far did he go
if he was gone for six hours?

bus distance = @L{ miles /kr)(x )wou.rs)
wa[kmj Al'S'ﬁlﬂ(e < (3 m“{f/‘\r) (b-' X hour;J
bus distance = wa.\kl'ns distance
é.q m”ef/l\r) (X Lours) = (3 mile/he)-x Lours)
WM x = |8-3x
A% = 18
@ X = %8—_7 = '2'5' hours
}M\S Ais"(’unce = @‘* m'\\es/hr) (%)wurs)

bus distance = 1o miles = uuo.\k«'rg distance

Dne way = |k miles
Round Teip = 32 miles

Figure 9: Protocol of subject m39 on the MRT problem.
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Two trains leave tue same station at the same time. They travel in opposite
directions. One train travels 60 km/h and the other 100 km/h. In how many
hours will they be 880 km apart?

éo s/
—————p
100 km[H @

60 kMK
<“ -
100 em/b

180 tm  FO0 ke

5 Hes
JOOkpr 5§00 knmm @

330 km §50 km

Figure 10: Protacal of subject m03 on the MOD problem.
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Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they
work together, how long will it take to do the job?
N ﬂ\a,ra.-— S hes - —© /
\ Jont = Y s O == ’
_...__......_.....r.__..q_._m._
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Figure 11: Protocol of sub ject m32 on the WT problem.




o

George rode out of town on the bus at an average speed of 24 miles per hour
and walked back at an average speed of 3 miles per hour. How far did he go
if he was gone for six hours?

=4y ~3 | 24 m
l ;\/hr ¢
@%"Aﬁ‘/” 2 ] gu(’ +Y‘£\Vglé 6x 41[{5{—{1' Han éearjg
Liim |

—— ey amme  wwmwe  en emew

o o 25 Bus rails 24 miles Ko
é’@rﬂc dravels pace 24 miles for B hours

tesutng. 9 hours ke ®

—— e  aam e w— — - -

eone heur,

et

Bub uwe want (p nowrs whith is Zxq.

%T’" b ™

h(,) Wh(c:s

\

Figure 12: Protocol of subject w17 on the MRT problem.
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Two trains leave the same station at the same time, They travel in opposite

directiont. One “rain travels 60 km/h and the other 100 km/h. In how many
houry will they oe 880 km apart?
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Figure 13: Protorol of subject m19 on the MOD problem.




Mery can do a job in 3 hours and Jane can do the job in 4 bours. If they
work together, how long will it take to do the job?

Han‘- Ty Saw =4 @

T eeem e e e e et e o L

i !
Masodseod i tia

RETES . ffﬂ'” deoy ot M
Yx+sy =10 @

Figure 14: Protocol of subject w23 on the WT problem.
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? miles

=
distance
(3/38)*(6-1)
=3 % tg
(unknown)

L1
total time
6 hours
(given)

rate 1 time 1 j time 2 rate 2
3m/Lh 6~1i i 3 m/h
(given) (inferred) | (inferred) (given)

Figure 15: Combining interactive illustrations: a two-dimensiona. ‘rame and a quantitative
network for problem MRT.
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