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ABSTRACT

This paper analyzcs the quantitative and situational structure of algebra story problems.

uses these materials to propose an interpretive framework For written problem solving pro

tarots, and then presents an exploratory study of the episodic structure of algebra story

problem solving in a sizable group of mathematically competent subjects Analyses of writ

ten protocols compare the strategic, tactical, and conceptual content of solution attempts,

looking within these attempts at the interplay between problem comprehension and solo

tion. Comprehension and solution of algebra story problems are complimentary activities,

giving rise to a succession of problem solving epiisodes. While direct algebraic problem solv

ing is sometimes effective, results suggest that the algebrak formalism may be of little help

in comprehending the quantitative constraints posed in a problem text. Instead, competent

problem solvers often reason within the situational context presented by a story problem,

using various forms of "model- based reasoning" to identify, pursue, and verify quantitative

constraints required for solution. The paper concludes by discussing the implications of

these findings for acquiring mathematical concepts (e.g., related linear functions) and fur

supporting their acquisition through instruction.
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. 1. I. I
CZ:.

Confronted with an algebra story problem, a student faces a fundamental sort of "ill

structured problem" (Newell, 1969; Simon, 1973). The problem text gives information

about initial and goal states, but state transition operators taking the text into a quanti.
tative solution are hardly well defined. Even assuming the student has an adequate grasp

of mathematical principles and operators within the formalisms of arithmetic and algebra

(e.g., the distributive property of multiplication over addition or using algebraic substi.
tution), a solution to the presented problem is often obvious only in retrospect. Rather
than searching for a solution path in a well-defined apace of representational states, the
problem solver is more likely to be searching among a space of alternative representations

in an attempt to make the problem routine or familiar. Omitted or incorrectly introduced
constraints within the problem representation

can lead to prolonged and often meaningless

calculations, and may encourage otherwise
sophisticated problem solvers to give up entirely.

Information-processing models of ill-structured problem solving remain elusive.

This state of affairs might be puzzling but acceptable if algebra story problems were

transient disturbances in the secondary school curriculum. However, these problems recur
as a general task throughout the mathematics

curriculum and are even found in the quan.
titative sections of entrance examinations for professional schools. If prevalence alone is

an insufficient basis for study, the unique role of these problems in bringing mathematical

formalisms into contact with everyday experience recommends them highly. Viewed from
within the classroom, story or "applied" problems provide students with an opportunity
to validate acquired mathematical abstractions in more familiar domains (e.g., travelingor
shopping). Viewed in a wider context, these problems may provide a curricular microcosm

of a central pedagogical problem: transfer of training from the algebra classroom to StIV

dents' later educational or life experiences. Interpretations derived from either vantage are

controversial. For example, we have anecdotal evidence that these problems arc avoided
by some teachers as being too difficult for both students and teachers. On the other hand,

S

studies of mathematics in practice suggest that "real world" curricular materials may have

little correspondence with mathematical problems or their solution in "real life" (Lave,

1986, 1988). For psychologists and educationalists alike, the problem iv to determine how

applied problems are solved by competent problem solvers and how acquisition of that

competence might be supported.

'Insert Table I about here.j

Algebra story problems of the sort shown in Table 1 have heen studied extensively by

cognitive and educational psychologists, both as a representative task for mathematical

problem solving (e.g., Ilinsley, Hayes, & Simon, 1977; Kilpatrick, 1967; Mayer, Larein,

Kadane, 1984; and Paige & Simon, 1968) and as experimental materials for studies of trans

far (e.g., Dellarosa, 1985; Reed, 1987; Reed, Dempster, & Ettinger, 1985, and Silver, 1979,

1981). Many studies treat problem solving as an opaque process with an inspet table output

(i.e., correct or incorrect) and duration. Maniculations in problem toutent or presentation;

are introduced, performance data are collected, and inferences are drawn concerning hypo

thetical problem-solving mechanisms. In contrast, much as in Kilpatrick 'scatty work (1967)

and subsequent studies of mathematical problem solving by !Aral (1979) amid Schoenfeld

(1985), we have chosen instead to present subjects with representative problems and then

to observe and analyze their uninterrupted responses in some detail This approach trades

experimental control over the problem solving setting for a richer (albeit interpretive) view

of problem-solving activities. In addition to finding whetheror not a subject has gotten a

problem "right," we are at least partially able to explore the solution strategies that sub

jests select and their tactical course in achieving solutions, right or wrong We find this a

Woeful approach to characterizing what competent problem 6,,Ivers actually do when solving

these problems (i.e., a succession of strategic and tactical efforts). This characterization

is a necessary first step towards finding methods for supporting aquisition of competent

problem-solving behaviors.
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When describing models of algebra story problem solving, we will distinguish between

the ocormtive and predictive capacity' of models (computational or otherwise) as successive

approximations to a robust instructional theory. A model with generative capacity uses an

expressive language for describing problems and their solutions :o produce descriptions of

problem solving activity that obey certain constraints. For example, given a language that

is adequate for expressing arbitrary algebraic expressions, we might like to generate only

those expressions ,liat reflect mathematical relations stated directly in a story problem tttt.

For various instructional purposes. this is an improvement over generating all syntactically

vermlsOble algebraic expressions, but it sails well short 41 addressing typical instructional

problems e.g., why or how has a student generated some particular algebraic expres

shins? This sort of predictive capacity will require considerable extensions to the expressive

language (e.g., a notation for intermediate representational slates) and to constraints tc.st

restrict the process for generating algebraic expressions (e.g.,a vocabulary of justifications

for a subject's choices among alternative problem solving activities). Given a sufficiently

expressive la7cguage and a, appropriate set of constraints, a model may generate &scrip,

lions that correspond closely with students' activities. When this correspondence is of high

fidelity i.e., the model answers questions of why or how in a psychologically plausible

fashion it can be used to support a variety of important instructional tasks. For example,

a predictive model of algebra story problem solving might be used to diagnose students'

errors, to plan tutorial activities, or even to provide basic instructional materials.

Work reported in this paper approaches a predictive model by presenting descriptive

languages for problem-solving activities, examining constraints that arise from interactions

between these languages, and then exploring problem- solving behaviors observed in a siz

able group of competent problem solvers. In the first section of the paper we examine some

'We are not arguing foe explanatory ulequery in the wise nasally reserved loo linguistic theories Whom
shy. 1965) 'fie models discussed in this paper approul descriptive adequacy but do sot yet piopose
mow( constraints on moulting problem solving competence

5
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basic materials out of which algebra story problems and their solutions c an be constructed

Out working hypothesis Is that ID Order to generate a MA1111011 enabling representation of 4

problem, reasoners must a.ssemble quantitative constraints under the guidance of their tin
derstanding of the situarimud rmacrt preseid ell by the story problem context serves

not only as a vehicle for the quantitative problem, but also as a framework for justifying the

existence of quantitative constraints and their interrelationships to cordinglv. we examine

the quantitative and situational structure or typical algebra story prohlems, and then use

representative problems in the exploratory study

In later sections of the paper we analyze the written protocols of 85 upper division

computer science undergraduates who were instru, tech widow their work when solving four,

representative algebra story problems. An interpretive framework is des eloped in which

a written solution attempt is divided into a series of coherent problem solving episodes

Each of these episodes is coded along a set of categories tenor ling strategic and tactical

role, conceptual content, manipulative or conceptual errors, and relationship tic:oil:rounding

episodes. Exploratory analyses of the scored protocols provide evidenc e for the frequency

with which various problem solving behaviorsoccur within subjects' solution attempts, the

content and outcome of the "final episodes" during which subjects (MON& their errOrth,

and the role that "model based reasoning" plays in solution attempts One of our ceutral
findings is that competent problem solvers frequently engage in problem solving activities
"outside" of the traditional algebraic formalism These activities, based on an analysis

of protocol results, often take the form of constructive and elaborative problem solving

inferences within the situational context presented by an algebra story problem These

findings are interpreted as evidence for a model of quantitative problem solving in which

mathematical formalisms (e.g algebraic expressions) provide a sometimes useful tool for

comprehending quantitative constraints In the discussion section, ae relate this model to

existing accounts of mathematical problem solving, and then consider the implications of

6



these findings for acquiring mathematical concepts (c..g., related linear functi, ns) and for

supporting their acquisition through instruction.

PROBLEM STRUCTURE

Before presenting our exploratory study, we ertamine the domain of algebra story prob

Ions at two levels of abstraction: the quantitative structure of related mathematical entities

and the situational structure of related physicat entities within a problem. The central ac

tivity in our model of problem solving is to find convergent constraints through constructer(

elaboration of a problem representation. Structural abstractionsexamined in this section

give two basic materials for such a constructive process. Ultimately, these and other levels

of analysis may provide a relatively complete domain "ontology" (Greeno, 1983) for algebra

story problems aed other situations that give rise to mathematical problem solving. For

the purposes of this paper, we want to identify materials that can provide a descriptive

vocabulary for behavioral observations presented in later sections and can assist our ulna.

itions in framing a model of problem solving, learning, and teaching within this domain.

These materials can play several roles: as a description of the task of solving algebra story

problems, as a hypothetical account of the representations held by subjects during the so.

tuition process, and as an illustrative medium for teaching. This section focuses or. task and

represent nticmal issues; the utility of quantitative and situational structures in education is

examined in the discussion section.

Quantitative structure

Hy the quantitative structure of algebra story problems, we mean the mathematical enti

ties and relationships presented or implied in the problem text. A particular problem I s a

"structure" at this level of analysis to the extent that the relationships between mathemat-

ical entities take a distinguishable fon u when compared with other algebra story problems.

Of course, there might be many ways of characterizing the quantitative structure of an

7
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arbitrary problem or group of ostensibly related problems e g., as algebraic equations or

as matrices of coefficients. llohrow ( 1968) uses algebraic equations as a canonical [Menial

representation of meaning for story problem texts, while Reed et al. (1985) use equations

to define the a priori similarity of problems and their solution procedures. The language of

algebraic equations may be sslicient for analysing the task of algebra!' inampulation, hut

it is less useful when the analysis us to include what students actually understand and use

while learning to solve algebra story problems.

A network language of quantitative entities. We start with a conceptual frame

work originally proposed by Quintero (1981, Quintero do Schwartz, 1981) and later extended

by Sbalin te Bee (1985) and ammo (1985, 1987, Greeno, Brown, RI., Shales, Ike, Lewis,

Vitolo, 1986). The framework serves all three roles mentioned above. as au analysis of

task structure, as x hypothetical account of subjects' representations of algebra problems,

and as an instructional medium. Our interest in this work iv twofold Furst, we will use the

framework as a means for describing constraints essential for problem solution. although

several additions to the framework would be necessary for it to serve as a representatinmil

hypothesis. Second, we will employ some aspects of the framework to describe how an

arbitrary pair of problems might lie considered similar for problem sokmg purposes

Shalin lc Bee (1985) describe the mathematical structiire of an algebra story problem

as a network consisting of quantitative elements, relations over those elements, dud ioni

positions of these relations Quantitative elements are divided olio four them types. an

extensive eletnent denotes a primary quantity (e g., S0111e number of nob a hours), an

intensive element denotes a map between two eeensiveS (e.g., a IWO II/II rate relates tune

and distance); a difference element poses an additive contrast of two extensive, (e g.. one

time interval is 2 hours longer than another); and a factor element gives a nodUphra

live comparison of two extensive% (e.g.. one distance Is twice .1111/i her) 'omposing these

elements according to their type yields quantitative relations A quantitative relation us

8
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defined as an arithmetic operation (i.e.. addition. suhtraction, multiplication, or division)

relating three quantities. For example, the fact that a train traveling 100 km/h for 5.5 hours

covers a distance of 550 km can he expressed as a relational triad over two extensives (550

kilometers and 5.5 hours) and a single intensive (100 kne/h) as shown in Figure 1 Each

element is presented grae'irally as a box containing several expressions. The shape at the

top of the box designates element type - e.g., a reztangular top designates an extensive,

a triangular top an intensive.

!Insert Figure 1 aboitt

As an additional level of structure, relational triads can be composed by sharing various

quantities to yield "problem structures." These are quantitative networks describing typed

quantities and constraints among them. As shown with solid lines2 in Figure 2(a), a single

quantitative network can be used to graphically represent the problem of trains traveling

in opposite directions (problem MOD from Table 1). Sharing a common time, two rates

combine through multiplicative triads to yield parts of the total distance. These parts are

conihined in an additive triad to give a single extensive quantity representing the total

distance. Figure 2(b) shows a quantitative network corresponding to the round trip (MR7)

problem. In both networks, the term "output" serves as a generalization over distance and

work.

taken together, quantities, relations and structures provide a language for descrihing

the quantitative form of particular algebra story problems. While a variety of equiva-

lent graphical languages might be used (e.g., parse trees for arithmetic expressions), this

language gives explicit representational status to mathematical entities, associates a quanti-

tative type with each, and incorporates a metaphorical sense of storage for holding semantic

information (e.g., textual phrases) and intermeuit.te calculations. Constraintson the arith

metic composition of typed quantitative entities restrict the space of possible quantitative

21'ottions or the network in dashed Imes will be discussed shortly

rel.ttions (Green() et al., 1986) For example, the multiplicative (mimosa lllll of intensive And

extensive quantities (rate and time) in Figure I is allowed, while an additive composition

of the same quantities would be disallowed. Greene (1987) points out that constraints are

also availahle Irani compositional restrictions on the units of measurement for quantities3,

although the network language does not presently incorporate these constraints. Finally,

the interconnectivity of a quantitative network supports a form of written algebraic cairn

lus. Expressions can be propagated through the network with the goal of finding convergent

constraints on the given unknown.

!Insert Figure 2 about here.)

Quantitative networks provide a visually accessible notation for comparing the structure

of different algebra story problems. However, the notation and compositional constraints

do not specify which of the permissible quantitative structures a subject might generate

when solving an algebra story problem. For example, the quantitative network shown

with solid lines in Figure 2(a) describes the opposite directionproblem after several crucial

inferences have occurred: component distances have been inferred within the total of 880

kilometers, and a single extensive quantity for travel time has been correct') inserted in

the network. For the same prohlem, consider elahorating the quantitative network to

include network components shown with dashed lines in Figure 2(a) We might imagn

a subject inferring that the given rates can be adoed. The resulting combined rate (160

km/h), when multiplied by the unknown time, gives the total distance without adding

constituent distances. During empirical studies with this and similar problems, we find

considerable variety in the solution approaches taken by different subjet ts as well as by

individual subjects within a single prohlein solving effort.

The r.tworks shown in Figure 2 are idealized graphical representations of prohlem

'An instructional tool developed by Sehwait: (1932) enforces unit constraints to lido users avoid met
evant calculations, particularly when using intensive quaniaties Thompson (1988) conilnne, imaniitative
networks and unit constraints in another tool named "Wok' Problem Aseiatant

10



structure as they might be constructed by problem solvers who understand the quantitative
network language and are able to use the language to comprehend and solve algebra story
problems. These networks give a particular quantitative representation, but their content
is largely the result of inferential processes that draw on other knowledge sources. These
processes may include: recognizing quantitative entities directly contained in or implied
by the problem text, composing these entities into local relational structures, composing
relational substructures into larger problem structures, recognizing familiar substructural
arrangements, and detecting when constraints

are sufficient for solution. The results of each
action lie within the quantitative formalism

for which Shalin & Bee's (1985) framework
provides a functional description. However, the enablement conditions for these actions or
the knowledge sources that support them lie partly outside the formalism. These issues are
explored further when we consider the situational structure of problems.

Quantitative networks as problem classes. Quantitative networks provide an
analytic tool for examining aspects of quantitativesimilarity. At the level of entire problems,
this approach gives a stronger basis for mathematical similarity than simply noting common
equations. At a more fine-grained level, there may be significant areas of substructural
isomorphism in globally dissimilar problems.

The problems from 'Fable I can be grouped into structurally similar pairs as follows:
MOD/WT and AIRT/WC. Each problem in a pair is a "quantitative isomorph" of the
other, as shown graphically in Figure 2. In the MOD/WT pair, extensives for kilometers
travzlerl correspond with those for parts of a job completed (output I and output2). In the
AflIT/IVC pair, a round trip travel extensive corresponds with an extensive for boxes filled
and then checked (output). Comparing prohlems within each pair, extensive and intensive
quantities play identical roles in the surrounding network structure. However, when cone
paring problems across pairs, structural roles of similar quantitative entities change or are
even reversed. For example, the additive extensive

relation for combined distance (or work

II

output) in Figure 2(a) is locally similar to the additive extensive Melton for combined

time in Figure 2(h). but these relations play very different roles in their overall imantita

live structures. In general, A specific quantitative network de fines an equivalence class of

algebraic problems, each of which may hue a different situational imtaiittetion Of

being directly similar in form does not mean that problemsmust be solved in the same way.

Figure 2 presents the quantitative structure of problem materials required for a quantitative

solution. We could as well depict the quantitativestructure of intermediate representational

states in subjects' solutions, an exercise that sumetimes leads to a surprising sequence of

graphical images as various conceptual error:. are introduced or repaired.

Turning to a finer grained level of comparison, we can identify classes of problems that

are similar to each other by sharing particular quantitative substructures. A substructure

is a subgraph within a larger quantitative network consisting of stated quantities, inferred

quantities, and relationships among these quantities. For example, "current" problems are

similar at a quantitative level because they contain an additive relationship between .he

rate of the vehicle (steamer, canoe, etc.) and the rate of the medium in which it travels

(current, tide, etc.). While other aspects of the quantitative structure for a pair of cur

rent problems can be dissimilar, such a shared substructure may contrilmte to subjects'

estimates of problem similarity. As in the results of llinsley et ra. (1979), similarity judg

ments at the level of "river" problems may appear an educational failure: problem solvers

acquire content-specific categorizations when the true pedagogiral goz1 is to 1;,....:;ate their

learning of mathematical forms. /mother interpretation is that quantitativesuktrurtures

are learned through instruction and problem solving experience and this form pert of the

underlying competence in this domain. Since particular substructures are correlated with

problem types, the resulting categorizations appear overly content specific. However, there

may be a functional or pragmatic hasis for learning these problem classes: despite dissim

ilarity of ovzrall mathematical structure, shared quantitative substructures require similar

12
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partial solution strategies.

Situational structure

The quantitative network formalism does not attempt to account for the problem struc-

tures that subjects actually generate during problem solving, although some constraints are

placed on combining quantitative types into relational triads. In this section, we examine

another level of abstraction -- the situational structure of a story problem as a source

of additional constraint when subjects construct a solution-enabling representation of an

algebra story problem. Our view of the situational structure of an algehra story problem

is not synonymous with what other researchers have called "surface content." Although

surface materials like trains, buses, or letters are important problem constituents, and may

be particularly so for novice problem solvers, we will not focus on these materials.

Instead, we present a language for describing the situational structure of "compound"

algebra story problems involving related linear functions, and use the language in a detailed

examination of probles s involving motion or work4 (see Table 1). As with the quantitative

network formalism, our language fur describing the situational structure of problems can

play several roles: as an analysis of problem structure, as a hypothetical cognitive represen

tation, or as an educational medium. Here we develop a relational language for describing

problems, argue for its utility in generating key problem-solving inferences, and then use

the language to piesent a viewpoint on the space of possible algebra story problems that

is complementary to problem classes based on quantitative structure. In later sections

of the paper, we also use the language to help interpret various activities observed in an

exploratory st.../; of algebra story problem solving and then to consider the educational

implications of these findings.

A relational language of situational contexts. We present the basic terms of our

'Motion and work are frequently used u the setting for story problems in algebra texts, comprising 70%
of an extensive sampling by Mayer (MM.

13
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relational language fin followed by an example of their use shown III Figure 3 Onnpound

motion and work problems are assembled around related events e.g., traveling in opposite

directions, working together, riding a bus and walking, or filling envelopes and checking

them. In each event, an agent engages in activity that produces some output (distance

or work) over a period of tune. Hence, output and time are the basic dimensions that

organize story activities. These activities start and stop with particular times, los atioes, or

work products that can be modeled as places ,dung the appropriate dimension. Places that

bound an activity define particular segments of output or time, and these segments i an he

placed in relation to each other within a common dimension'. Rates ofmotion or work give

a systematic correspondence between dimensions of output and time, and using rates in

the solution of a quantitative problem requires a strategy for integrating these

Arranging output and time dimensions orthogonally gives a rectilinear framework in which

rate is a two-dimensional entity. We model these rate entities as inclines that associate

particular output and time segments. Relational descriptions involving typed dimensions,

places, segments, and inclines provide a language for expressing the situational context

of an individual problem.

(Insert Figure 3 ahout here.'

The situational context of problem MOD (from Table I) is shown in Figure 3. Parts

(a) and (b) of the figure show place and segment representations for output (distance) and

time, while part (c) of the figure shows an orthogonal integration of these dimensions with

time on the vertical axis. In part (a) of the figure, trains traveling in opposite directions

from the same station provide two spatial segments ()ustance 1 and Distance 2) sharing a

place of origin (S) but with unknown places for destinations. These segmentsare eellinear

and oriented in opposite directions. Since trains leave from the same place of origin, these

distance segments are also adjacent and can be arranged within the horizontal dimension

'Segment relations within a dimension ate minds, to Allen's Mgt, 19641 relational descripttons of
temporal intervals,

11
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shown in part (c) of the figure. In part (b) of the figure, trains leave at the same time (t0)

and are separated by 880 kilometers at some later time, providing time segments (Time 1

and Time 2) that are congruent (i.e., coinciding at all points) when arranged within the

vertical dimension. We assume collinearity and the same directional orientation for all

time segments. Representing rates of travel as two-dimensional inclines, part (c) of the

figure puts particular instances of output and time in correspondence (e.g., 60 versus 100

kilometers in the rirst hour of travel). Inclines can either represent a concrete situation, as

shown here, or an invariant relation between output and time dimensions. Treating rate

as an invariant relation approaches the algebraic sense of rate as a linear function. Each

interpretation enables different problem-solving activities, discussed below.

Problem-solving inferences based on situational contexts. Before using this re-

latinnal language to describe a space of situationalcontexts for algebra story problems, we

briefly consider its utility as a representation for problem solving. First, we describe how a

representation of situational context like that shown in Figure 3 could be constructed; sec.

and, we consider how this relational description might be useful for problem comprehension

and solution. Both are ongoing research questions that touch on the role of our situational

language as a representational hypothesis and an instructional medium.

On the issue of how these representations might be constructed (either spontaneously

or as an educational exercise), we propose a series of constructive inferences that operate

nn a case frame representation° of the events described in the text of a cm , ud Algebra

stnty problem. These inferences build a situational model of the problem by assembling a

relational description of a particular situational context. Assuming the case frames contain

roles that specify typed places and segments (e.g., the starting location versus the starting
time), we can model these roles as situational places and segments within output and

time dimensions. From these initial situatinnal entities, a series of elaborative inferences

F.'t Badman (1919) for a review of related representation schemes and Kintsch tit Creeno (1985) for
sr' rumple of a cafe frame representation for the tent of word arithmetic problems
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identify places and segments implicit in the problem statement and relations over segments

within ear, dimension. What results is a relational description of situational context as
in Figure 3. Constructive inferences that assemble a relational description of situational
context are similar to the comprehension strategies tha. Kintsch k Green° (1985) use to

take propositional encodings of arithmetic word problems into a net based representation.
On the issue of utility, we suspect that segment relations within situatinnal dunes

SiOnfi support the construction of quantitative
representations like the rotworks of Shalin

fit Bee (1985). For example, knowing that spatial segments are collinear andadjacent while
times are congruent supports two useful problem-solving inferences in problem MOD: con
stituent distances can be added to yield a tntal distance, and the rates of each train can

be added to give a combined rate. The first inference is a necessary quantitative constraint
for solution, while the second inference effectively compresses the compound problem into
a simpler problem which can be solved without extended algebraic manipulation. These

are precisely the inferences about problem structu;e that were not accounted for in our

examination of quantitative structure. For enample, the netwnrk components shown with

duhed lines in Figure 2(a) would result if a student decided to add motion or working

rates. Hence, in addition to constructive inferences that build a situatinnal context, there

are also constraint-generating inferences that take descriptionsof situational strut tore into

quantitative relations. Each inference about a quantitative constraint, supported by red

evant situational relations, gives a substructural component in a larger set of constraints

that may enable a solution.

It is also possible to use dimensions, places,
segments, and inclines directly in a solution

attempt by treating these representational entitiesas a model of the problem situation We

will develop a general account of model based rrasomng as a prnblem solving tat tic here.

Following sections introduce operational categories fnr interpreting thus tactic within the

structure of written protocnis and give an empirical a, count of its use and consent:mice in
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algebra story problem solving.

(Insert Figure 4 about here.)

Placed within a single dimension to model time or output, segments provide an explicit

spatial representation that enables a variety of problem-solving operations like "copying,"

"stacking," "comparing," or "decomposing" their one -die .ensional extent. Similarly, us.

ing inclines as models of rate enables operations like "joining" or "scaling" their two-

dimensional extent. Joining, shown in part (a) of Figure 4, places copies of the concrete

incline along the diagonal in an iterative fashion. Scaling, In put (b) of the figure, treats
the incline as an invariant relation by estimating the extent of a segment In one dimension

And then projecting that value through the incline to generate an associated extent in the

other dimension. Each operation Is based on a different interpretation of rate as a relation

across dimensions, and each coon4inates operations on associated segments within single

dimensions.

Both join and scale operations enable problem solving by model-based reasoning with.

out requiring algebraic representation. Figure 5 shows solution attempts using join and

scale operations on the opposite direction motion problem (MOD). Treating indines as

concrete entities in part (a) of the figure, the join operator enables an iterative simulation

over five successive one hour increments in the time dimension. These correspond to in.

termediate states in a two-dimensional model of the problem, successively constructed and

tested against the given constraint or being 880 kilometers apart after a common interval

of time. Treating inclines as invariant relations in p.tzt (b) of the figure, the scale operator

enables a heuristic estimate of the problem's final state by choosing five hours as the time at

which the trains will be 880 kilometers apart and projecting this choice of a common time

through each incline to find associated distance segments. In both solution attempts, spatial

relations within the twodimensional model support and organizerelatively simple quanti-

tative operations like addition, multiplication, and value comparison. Thus, even without
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utilizing the metric qualities that such a model might afford (e g.. testing whether adjacent

distance segments precisely "fill" the composed 880 kilometer segment ).1111)1114 based sea

sorting can lead to a solution without explicitly constructing an algebraic representation of

the problem.

(Insert Figure 5 about here.(

While entities and operations in model based reasoning can support solution attempts

directly, they also provide a vocabulary of problem solving activit es that could be used

to construct an algebraic representation, For example, introducing a variable, 1, as a label

on the unknown common time in part (b) of Figure 5, we can use the scale operator to

project that variable into expressions for labels on each distance segment in the horizontal

dimension. Since these segments are adjacent and must fill the given combined distance of

880 kilometers, addition of label expressions in the horizontal dimension gives an A: bran

expression for the combined distance, 100t + 601 = 880. Thus, model based reasoning

operations can also participate in constraint mauling infervices described earlier

In general, inferences in model based reasoning correspond to relatively opaque oper

ations in the algebraic formalism (e.g., distribution of a product) Their spatial character

and granularity may provide an accessible problem solving medium for subjects who are

newcomers to the algebraic formalism. In addition, the results al these operations could jus

Wy more abstract activities in an algebraic or quantitative network representation, allowing

problem solvers to verify quantitative constraintsor results about which they are uncertain

Evidence for these hypothetical roles of tootlel based reasoning, even in competent problem

solvers, is presented in the sections that follow.

Situational contexts as problem classes. Ileyond their role as a representational

hypothesis or an instructional medium, situational contexts provide a viewpoint on the

space of possible compound algebra story problems that is complementary to the problem

classes provided by quantitative structure Even if we restrict analysis to compound ma

18

23



lion problems in which movement must be collinear and directed, a variety of situational

contexts are possible. Taking two collinear distance segments we can select from a set
of spatial relationships (e.g.,

congruent or adjacent) and combine this selection with direc

tional orientation (e.g., same or opposite) to yield a distinct spatial situation. Also selecting

a relation between time segments (e.g., congruent or adjacent), we can combine segment

relations for distance and time dimensions to yield a particular situational context for a

compound motion problem. For example, problem MOD has adjacent distance segments

oriented in opposite directions and has congruent time segments, yielding the situational

context used in Figure 5.

A similar approach is possible with compound cork problems. Work outputs can also

be modeled as collinear segments, although their direttional orientation is less directly

interpretable. In the present analysis, we exclude a sense of direction for work outputs,

Working "together" can be modeled as adjacent output segments and "competitive" work

as congruent output segments. For example the work together ( W7) problem has adjacent

output segments that add to yield a single job and congruent time segments that, in concert

with additive output, allow addition of working rates. This corresponds directly with the
situational context of problem MOD, without direttiona!orientation of output segments.

The competitive work problem ( WC) can be modeled In a similar fashion. Since Randy

and Jo each work on the same set of boxes, we choose congruent segments to model the

same output. Adjacent time segments are associated with the completion of each output,
leading to a direct situational correspondence with the round trip problem (MN).

(Insert Figure 6 about here.)

Figure 6 shows a matrix of situational contexts formed by crossing segment relations

from output and time dimensions. Compound motion and work problem: in each cell have a

common situational structure (e.g., problems MOD and WTia the upper right cell), and oft

diagonal cells contain pairs of problems that reverse segment relations for time and output
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For example, reversing ndjarcnt distances and mignont times in problem MOD produces

problem AfRT, provided that opposite directions are retained in both problems. Problem

structures in diagonal cells of the figure (shaded) are not used in this study but also provide

the basis for particular algebra story problems. For example. the lower right cell of Figure 6

contains what Mayer (1981) calls "speed change" problems. This constructive approach to
situational contexts can be extended to larger eelational vocabularies for output and time
(e.g., including overlap, disjoint, etc.), yielding a sizable space of situational contexts that

provide the dimensional basis for algebra "stories" about motion and work.

These examples show that our language of dimensions, places, segments, and inclines

can be used to model compound motion and work problems. We have also examined the

coverage of this language over different classes of Algebra story problems, like those in
eluded in Mayer's exhaustive taxonomy (1981). Useful models of situational contest can be

constructed f-4 most of these classes, including
current, mixture, simple interest, cost, and

coin problems. Some extensions of the language appear necessary to model relational con

strainta involving additive and multiplicative comparisons (e.g., "12 stone than" or 'twits

as fast u"). In general, however, models of situational context are possible for any problem

In which related linear functions can sensibly be shown within two dimensions Although

arbitrarily complex quantitative relations can be graphed in a Cartesian plane, the pro

Odor that their dimensions be "sensible" restricts our modeling language to situations

where onedimensional relations like adjacent and two dimensional operatnrs like "joining"

or "scaling" have meaning. Thus. dimensional models of situational context may be ap

plicable beyond textbook algebra story problems and include everyday situations revolving

related linear functions.

Comparison of situational and qunntletlive structure. Isomorphism within cells

and reversed structure across cells of the matrix in Figure 6 partition the space of ((impound

algebra story problems In a way that is complementary to the problem clAssea deotthell
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in the preceding section on quantitative structure. In fact, the problems paired in each

cell also have an isomorphic quantitative structure, and problems from off-diagonal cells

reverse quantitative relations. For example, an additive triad over distance extensives in

problem MOD contrasts with a shared extensive for distance in problem AVM. In our

view, this complementarity arises precisely because the quantitative substructures serve

as a mathematical abstraction for describing situational contexts. In turn, our relational

language of situational contexts providesan abstraction for describing (or modeling) events

within particular,,problems. Thus, choosing segment relations for output and time gives

rise to an organized space of situational contexts for compound motion and work problems,

each with a corresponding quantitative structure.

While quantitative and situational viewpoints on algebra story problems are comple-

mentary, they are not identical. The quantitative network formalism models conceptual

entities of time, output, and rate at abstractions that preserve quantitative type (e.g., ex-

tensive" versus intensive') and value, either as a number o; an algebraic expression. In

contrast, situational segments and inclines model these same entities as individuals that

preserve semantic type (e.g., time versus output), dimensional order (i.e., segments versus

inclines), quantitative value, a physical sense of extent (i.e., the length of a segment or the

slope of an incline), and local "spatial" relations between individual instances of extent

(e.g., the 60 and 100 kilometer segments after the first hour of travel are adjacent). Pre-

serving physical extent and relations of locality allows a problem solver to utilize spatial

knowledge when identifying or verifying quantitative constraints. For example, when a total

distance can be decomposed into component distances which exactly fit within the total,

there is a direct physical justification for their addition. "Joining" or "scaling" inclines us

ing a two-dimensional model of rate promises a similar physical justification for operations

on intensive quantities. Whether students actually use su.h a vocabulary for justification

is an interesting issue, not directly addressed in the present study, that we are exploring
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further (Hall, 1987). We suspect that shared situational strut sire, in addition to quanti

tative structure, contributes to subjects' judgments of similarity between an arbitrary pair

of algebra story problems.

Quantitative and situational structure are not the only materiels in the domain of

algebra story problems that are important for problem solving, learning, and teaching.

Neither can we tacitly assume that these structures, as described above, are actually held

by subjects during problem solving. However, these structural abstractions may help to

understand what subjects actually do when confronted with a problem to he solved, and to

hypothesize what must be learned for competent problem solving to be achieved. Knowl

edge sources that guide the generation of quantitative representations, and the manner in

which they are manifested during problem solving, comprise an important part of compe,

tent performance. By grounding quantitative structure in conceptual understar.ding, these

knowledge sources may allow a problem solver to effectively assemble and validate refire

sentational structures and operators in the algebraic formalism. Having described some

aspects of the underlying situational and quantitative structure of algebra story problems,

we now turn to an exploratory study of problem solving.

METHOD

The primary goal of this study is to characterize the activities of "competent" problem

solvers on representative algebra story problems. When compared with the activities of

beginning algebra subjects, the contrast should give a rough image of the terrain over

which a learner must travel to become a skilled problem solver. We chose to study subjects

who have clearly mastered the algebra curriculum up to existing institutional standards,

but who were not recent recipients of algebra based instruction, Thus we are attempting

to describe a primary target of traditional instruction in algebra: a problem solver who has

mastered the tools of the algebraic formalism, has practiced theseskills during instruction,

and should be able to apply these skills in novel settings, The study In -dyes minimal
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experimental intervention, and our interpretation and analysis of problem-solving protocols

are primarily descriptive.

Subjects

Subjects in this study were 85 undergraduate computer science majors in their junior and

senior years. They were enrolled in an introductorycourse in artificial intelligence, and par.

ticipated in the study as part of their classroom activities. These subjects could be viewed

as "experts" in algebra story problem solving since they must have successfully completed

courses in algebra during secondary schooling. In addition, prerequisites to the artificial

intelligence course include three university-levelcourses in calculus and completion or cur

rent enrollment in courses covering discrete mathematics. Thus the level of mathematical

sophistication in this sample of problem solvers should be high. Alternately, one might

argue that these subjects were expert algebra story problem solvers at one time but that

their skills have in some sense been "retired" with the passage of time. As will be clear

shortly, the solutions offered by many members of this sample do not fit an image of smooth

execution of a practiced "skill."

Materials

Subjects were asked to solve the four algebra story problemsshown in Table 1. Problems

MOD, MRT and WT were taken directly front Mayer's (1981) sample of algebra story

problems, with minor alterations in their number set and phrasing. These alterations were

intended to free students from unwieldy calculations during problem solving and to make

wording between selected pairs of problems more similar. Problem WC was constructed to

be isomorphic to the MRT problem at the level of quantitative structure.

These problems were selected for two reasons. First, r ith the possible exception of WC,

they are highly typical of problems found in secondary school texts. Out of an exhaustive set

of 1097 algebra story problems drawn from 10 texts, Mayer found that problems likeMOD,
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MRT, and WT accounted for 7.8% of all observed problems. Second, different pairings
of there problems allow us to present subjects with opportunities for positive or negative
transfer across contiguously presented problems.

Specifically, problem pairings MOD/WT and MRT/WC are isomorphic in their quanti

tative structure (see Figure 2 for a graphical representation of these pairs) and have similar

situational contexts. In the MOD/WT pair, output dimensions are adjacent, heing collinear

and sharing a starting point, while time dimensions
are congruent, overlapping completely

by sharing both starting and ending times. In the MRT /WC' pair, outputs are congruent

while time segments are adjacent and of different value (see Figure 3). Should subjects
recognize this similarity, they may exhibit some form of positive transfer. Alternately.
problem pairings MOD/MRT and WT /WCare similar at a more superficial level, sharing

types of surface materials (e.g., distance traveled or parts of a job completed) while having

quite dissimilar quantitative and situational structures. In fact, relations over output and

time dimensions are exactly reversed, as described in the preceding section on quantitative

structure. In the MOD/MRTpair for example, outputs in MOD are adjacent and times are

congruent, while outputs in MRT are congruent and times are adjacent. When presented

contiguouely, these problem pairs may induce fairly specific forms of negative transfer (e.g.,

adding rates in the MRT problem after correctly solving the MOD problem).

Procedure

Problem materials were distributed so that subjects with adjacent seating during data

collection would be in different groups. Group membership was not randomly determined

but should reflect no systematic bias. Subjects were allowed eight minutes to solve each

problem, and all subjects worked through the prohlems at the same time Those finishing

early on an individual problem waited until the eight minute time limit expired before

proceeding to the next problem. Before solving any problems, subjects were asked to "show

all of your work" in a written form, to "work from top to hottom, writing new material
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below previous material," and not to erase after making a mistake. Instead, they were

asked to mark through any mistake with a single line. Finally, subjects were instructed to

"...draw a box around your answer." After solving all four problems, subjects were given

20 minutes to explain their solutions in writing on facing pages of the text booklet without

changing their original work.

Problem ordering. The first group of subjects (group M, n = 46) saw problems

in the following order: MOD, WT, WC, MRT. The second group (W, n = 39) saw the

following order: WT, MOD, MRT, WC. Thus, each group solved pairs of problems that were

isomorphic at quantitative and situational levels (MOD/WT or WC /MRT) and also solved

pairs of problems that were superficially similar but had reversed relations in quantitative

and situational structure ( WT/WCor MOD /MRT).

Data collection. The "behaviors" reported here, and all interpretations of them, are

based entirely on subjects' written protocols. Relyingsolely on written protocols has several

obvious disadvantages.

There is no timing information. While students were allowed eight minutes to solve

each problem, we can neither determine how long a subject works on any single prob.

lent, nor how long any particular written episode lasts e.g., performing algebraic

manipulation.

Written material may be a lean or even distorting window on a subject's cognitive

processing. A subject may omit materials that seem unimportant or potentially em

barrassing; alternately the subject may give written evidenceof processes or strategies

that bear little relation to what she actually does.

Since this study is exploratory in nature, we present our results as a heuristic tool for

generating hypotheses, and leave more manipulative procedures forconfirmatory studies

Scoring. Written protocols were scored in committee by the authors, using majority

rule for categorization of troublesome cases. A scoring system was constructed around the
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analysis of problem structure described earlier, using an iterative process with subsets from

the total pool of protocols. Scoring categories were added, refined, or dropped from the

final system when scorers had persistent difficulty reaching consensus.

THE EPISODIC STRUCTURE OF WRITTEN PROTOCOLS

This section describes a qualitative framework for interpreting written problem solving

protocols, showing representative protocols as examples of scored categories within the

framework. We point out connections between several of these categories and hypothetical

representations and inferences described earlier, although these connections are open to

many interpretations. Our framework resembles Schoenfeld's (1985) analysis of mathemat

lea] problem solving by concentrating on coherent episodes of problem solving behavior
(see Ericsson k Simon (1984) for a review of aggregation techniques). We also explicitly

score the transition between problem solving episodes.

A subject's written protocol for a given problem is interpreted in two stages. First the

protocol is divided into a sequence of coherent problem-solving episodes. and then each

episode is scored individually with re ect to its content, its correctness and its function

in the overall sequence. In nearly all c s, the following definition of a problem solving

episode allowed scorers to reach consensus:

Strategic coherence. The subject is pursuing the same overall goal.

Tactical coherence. The subject is using the same method for attaining this goal.

Conceptual coherence. The subject is exhibiting the sante conceptualization of the
problem.

Although episodes divide problem solving into coherent chunks, the context created by

earlier episodes is assumed to he inherited by later ones, unless there is evidence that a

reconceptualization has occurred. Our definition of an episode will he sharpened in the
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following paragraphs as we specify in detail the scoring categories used to describe episodic

coulee!.

After dividing the written protocol into coherent problem-solving episodes, each episode

is examined to determine its general content. Content categories include: strategic purpose,

tactical content, conceptual content, the presence of conceptual or manipulative errors, and

finally the status of the episode in the overall solution attempt. The latter covers relative

correctness and the reason for transition to a new episode. With the exception of conceptual

content. each of these categories is further differentiated into alternative subcategories, as
shown in Table 2. In some cases only one subcategory is selected as best describing the

more general category (e.g., simulation as a type of model-based reasoning under tactical

content); in other cases, each subcategory can occur within a single episode (e.g., various

kinds of conceptual and manipulative errors).

(Insert Table 2 about here.'

The remainder of this section takes up each of these interpretive categories in detail,

showing representative written protocols as examples of their use in scoring the episodic

structure of subjects' solution attempts. For example, subject m20 in Figure 7 goes through

three error-free episodes, each with a specific purpose, tactic, content, and transition. In

the protocols shown in figures as illustrations of various categories, episodes are separated

by dashed lines, and their sequence is shown with circlednumbers. Several protocol excerpts

are presented directly in the text without accompanying figures.

(Insert Figure 7 about here.'

Strategic purpose

The strategic purpose of an episode is its relation to the ultimate goal of finding a solution.

Judgments of a problem solver's "purpose" are clearly a matter of our own interpretation,

although we present scoring criteria that maim these judgments operatioral across individ-

ual ratings. In this regard, our scoring distinguishes between three abstract problem-solving
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modes.

Comprehension. The subject is not directly seeking a final solution, but is construct
ing a representation of the problem by incorporating various constraints. In episode I of
Figure 7, the subject finds a way to express working rates by considering their outputs after
one hour.

Solution atP.empt. The subject is attempting a series of operations that work directly
toward a solution (Figure 7, episode 2).

Verification. The subject has already produced a solution to the problem and is now
seeking confirmatory evidence for it. for instance by rederiving the solution with another
method or by inserting the answer in some intermediate equations (Figure. 7. episode 3).

Tactical content

The tactical content of an episode is the method used by a subject to achieve some strategic.

purpose. Our operational criteria refer primarily to the protocol material for the current
episode, but, in a few cases information contained directly in the protocol was insufficient to
make an operational category judgment. In these cases, surrounding episodes and post hoe

written explanations supplied by the subject were used to assist scoring.

(Insert Figure 8 about here.]

Annotation. These episodes usually occur early in the protocol when subjects are

collecting information about the problem. Three cases are covered.

Problem elements. The subject is recording elements of the problem text (e.g., VA =
60kmIhr, Figure 8, episode 2).

Retrieval of formulas. The subject is remembering and writing down memorized

formulas which seem relevant, (e.g., v = I, Figure 8, episode 4).

Diagram. The subject draws a pictorial representation of the problem situation (e.g.,

Figure 8, episode I).
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Algebra. An episode is algebraic if it makes use of one or more equations placing
constraints on the value of one or more variables. However, simple

assignments are not
treated as equations. Thus neither 100 + 60 = 160 nor d = 880 are considered equations,
while d = 100 x t is considered an equation. As ehown unusually clearly in the protocol of
Figure 9, the tactical approach of the typical algebraist is to express constraints as a system
of one or more equations (or proportions) and to solve for the appropriate unknown. We
have also found cases of subjects trying equations in a generate-and-test fashion until, as
one subject explained, an equation "looks good."

(Insert Figure 9 about here.)

Model-based reasoning, This category is scored when a ribiets "executes" a model
of the problem situation along the dimension defined by an unknown quantity such as time,
distance or work. Subcategories of

model-based reasoning relate to constructive problem-
solving inferences des:ribed in the preceding section on situational structure.

Simulation'. The subject selects a. base unit for the chosen dimension and "runs"
the model for each successive unit

increment as illustrated in episode 3 of Figure 8.
Consistent with our earlier development of situational structure, a simulation episode
could be interpreted as an iterative "joining" of concrete individual inclines. Simula.
tion can also be partial (just one or two increments) in that it is not used to reach a
solution, but to examine relations between quantities and to enable some other solu
tion method. In both episode I of Figure 7 and episode 5 of Figure 13, a simulation
for one hour establishes the quantitative combination of entities from distinct events.

heuristic. The base quantity "jumps" by variable increments whose magnitude is
determined at each point by estimations of closeness to the solution. A heuristic

'Our use of 'simulation" in somewhat different from its use in computational studiesof common-sensereasoning, for example, de Kleer's (1977, 1979) envisionment" uses quantitative calculation to resolve east.'Wive ambiguity, whiteout sense of M mutation uses physical construction to help disambiguate quantitativeconstraints.

29

model-based reasoning episode could be interpreted as "scaling" inclines that repre

sent invariant relations, as described earlier The progression of this generate and

test approach can be monotonic, as iii episode 2 of Figure 10, or follow some form

of interpolation search. After each generation of a value, the state of the problem

situation being modeled is reconstructed and evaluated.

Pima Figure 10 about here.)

Ratio. This subcategory covers a number of tactics by which relations of proportion

ality between quantities are used, sometimes providing clever "shortcuts" to a solution.

These tactics clearly utilize a representation of quantity (e.g., intensive quantities. as de

scribed earlier), but the manner in which related quantities are Integrated may depend

upon constructive inferences within the situational context (e.g., composing segments or

inclines).

(Insert Figure II about here.)

Whole/port. The subject vilws a part as fitting sonic number of times unto a whole

quantity, as in episode 6 o' Figure 13.

Part /whole and part/part. These two types of ratios compare portions of entities. Ilse

of the part/whole ratio is illustrated in episodes 2-4 of Figure 11, where the subject

considers parts of the total jobs. A version of the part/part ratio appears in episode

2 of Figure 12, involving the respective rates of bus and foot travel.

Proportion. Non-algebraic proportions cover reasoning of the type exhibited by sub,

jest m05 on the work-together (WT) problem: "... they've done a (of a job) in 2

hrs, so hr more would do for (the job) left to he done . ."

'Although this protocol Illustrates the category fleetly, it is probable that successful hoe of thin ratio
veu somewhat fortuitous on the pot of this student, since a general iustifii shun fur its validity IP rather
complex,
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Sealing. The subject solves a related version of the problem or reaches an unexpected
answer, and simply scales the answer to fit the quantities given in the problem. This
may relate to our earlier description of "scaling" rates as invariant two dimensional
inclines. In episodes 3 4 of Figure 12, for example, the subject solves an easier
problem by heuristic model-based reasoning and then scales her answer to "fit" the
MT problem.

(Insert Figure 12 about here.(

Unit. In a few cases, a subject reasons purely in terms of units of measurement given in
the problem. For instance, on the work competitive problem (WC), subject ni44 examines
alternative rate forms with the followingmanipulations:

box

min(ules) rain =
min
-wz- box = min

Procedure. This subcategory is scored when there is evidence that a subject is execute
lug mine stored sequence of actions or operations other than routine algebraic or arithmetic
manipulation. For example, on the work together problem (WT)subject m21 appears to use

a simple averaging tactic for combining quantities, writing "total = 1(5+4) = = 41hrs."

Conceptual content

'The conceptual content of an episode reflects
the subject's conceptualization of theproblem

situation and the resulting set of constraints between problem entities. There is a subtle
but crucial distinction between situational understanding and the quantitative constraints
that are implied by it, as suggested in previous sections. Without further subcategorization,
our scoring of conceptual content simply contains the constraints that the subject clearly
recognizes and uses in the episode. For instance, subject nr39 in Figure 9 manifests an

understanding of all necessary constraints:
equal distances, additive composition of times,

and the distance-rate-time relation.
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(Insert Figure 11 about heaI

Errors

Within each problem solving episode, we consider two broad classes of errors
Conceptual errors. These are stored when a subject either unladen a constianit that

is inappropriate for the problem or excludes a constraint that is a critical requirement for
the current episode.

Errors of commission. These errors are incorrect constraints that the subject intro
duces during an episode, either by incorrectly representing the situational (1/11i1.%t of

the problem or by making
erroneous quantitative inferences. For example, in episodes

4 6 of Figure 13 the subject subtracts
distances because she thinks that the trams

are going in the same direction.

Errors of omission. These
errors are overlooked constraints To be scored as an error

of omission, an overlooked constraint has to be critical to the solution method applied
by the subject. This usually means that two entities are explicitly used while the
relation between them is ignored. In Figure 14, episode :1, the subject lugs overlooked
that working times represented as z and y are equal.

'Insert Figure 14 about here.(

Manipulation errors. Since written protocols usually display algebraic or arithmetic
manipulations clearly, our scoring identifies manipulative errors of three types.

Algebrmi ctrues. For example, on the MOD problem, subject w39 writes "WM = 1.?"
followed by "7' = tE.

Variable e-rors. We observed two types of errors related to the concept of VAttablv hi
"switch errors," the meaning of a variable changes in the enuroe of problem solving
In label errors," subjects are using variables as labels (or quantities. ha Umlaute, in
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the round trip problem (MR7), subject m10 writes theequation "ID .4 8W 7.1 Wirt."

and explains that for every 1 hour on the bus, it takes $ hours to get back."

Mit/melte errors. For example, on the opposite direction motion problem (MOD)

subject m20 writes = lit." After detecting this arithmetic error in a verification

episode, the subject recovers by using the ratio scaling tactic mentioned earlier.

Status of episode within solution attempt

Categories listed so far deal with internal characteristics of an episode. The two aspects of

the storing scheme described here, consistency and transition,concentrate on the relation

of an individual episode to the overall problem-solving effort.

Consistency. This category assesses the correctness of an episode in the context of

the problem-solving sequence and is scored correct or incorrect for three facets.

Before. This subcategory reflects the correctness 4 the context inherited by the

episode. For example, errors may be generated in former episodes and passed into

the current episode, as with the conceptual error of commission (same direction)

passed between episodes 4 and 5 of Figure 13.

During. This scores the correctness of the current episode withrespect to the inherited

context. An episode producing an incorrect result can be internally correct if it is

consistent with an incorrect context. For example, episodes 5 and6 of Figure 13 are

internally consistent with the conceptual error of commission introduced in episode

4.

After This subcategory assesses the absolute correctness of the outcome of the current

episode If a solution is presented, the scoring reflects its correctness, otherwise scoring

assesses whether or not the subject is on a possible right track.
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Transition, The intent here is to determine the reason why a subject passes from one

episode to the next. Unlike comistency, which reflects the scorers' judgment of correctness.

this aspect attempts to captute the subject's point ofview.

Sutgoot. The subject accomplishes an intermediate goal. bringing the episode to

an end (Figure 7, episodes I and 3). Information identified when achieving a sub

goal (e.g.. changing the form of a working rate) is generally carried into subsequent

episodes.

Wrong. The subject decides that she is on the wrong track and abandons the current

approach, usually by marking through the work (Figure 13, episode3) This transition

is often the result of an explicit verification episode.

Impasse. The subject reaches a point where she cannot continue with the current

method. A good example of impasse is shown in episode 3 of Figure it, where the

subject correctly applies simulation by hourly increments, overshoots the non integer

solution, and then switches to an algebra/0 tactic after adding rates,

Lost, The subject reaches a point where she cannot determine how to proceed. as in

episode 2 of Figure 14.

Final solution. The subject reaches a result and presents it as a solution to the

problem.

Found so/triton wrong. The subject realizes or believes that the solution Neu-Mist is

incorrect.

This presentation of our framework fur interpreting wn.ten proton.. gives An overly

linear picture of its use in scoring subjects' solution attempts In fact, categorising the

episodic structure of a written protocol within this framework was usually dime quickly

(from S to 20 minutes per Protocol) and with little Aukcequent disagreement AtimiiK the
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scorers. By design, each category was rated with at least 75% agreement over four scorers;

most categories approached unanimous agreement.

In addition to determining whether or not a subject has managed to find the "cor-
rect" solution to an algebra story problem, this framework for interpreting problem-solving

episodes allows us to describe the internal structure of the subject's solution attempt. Our

interpretation of episodic structure supports more fine-grained explorations of the strate-

gic and tactical course of problem solving. In the quantitative results section that follows,

we form composite analytic categories by identifying episodic patterns among the atomic

category judgments described above. Thus we will be able to speak of subjects reaching a

"final episode" with some particular tacticand content or to examine a series of contiguous

episodes during which model-based reasoningis used. Beyond the results presented here,

we expect the set of scored protocols to provide a rich dataset for continuing analysis.

QUANTITATIVE ANALYSIS OF PROBLEM-SOLVING EPISODES

In the section on problem structure, we argued that competent problem solving pro-
ceeds as an elaborative, interdependent exploration of two distinct problem spaces: the
situational context of a story problem and the quantitative constraints given explicitly or
implied in the prolem statement. Results presented in this section provide evidence for this

interdependency at a global level of problem-solving activity and at a more detailed level

of episodic content. Our aralysis distinguishes betwee Jubjects' problem-solving attempts

and the episodic structure of those attempts. By problem-solving attempt, we mean all of

the activities evident in the written protocol, which may include several distinct episodes.

By episodic structure we mean the alternation of problem-solving episodes of various types,

and the constraints or errors that are contained within and across those episodes.

First we examine the tactical content, strategic purpose, transitional status, and er-

rors present in subjects' solution attempts. These analyses pool episodes within solution

attempts to show the prevalence of different interpretive categories, and so they provide
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only a coarse image of competent problem solving Second, we look within individual so
lution attempts and examine two episodic patterns in detail. Aii analysis of the episode
during which a final solution is offered provides a liner image of problem solving ouicome,
describing relations between solution outcomes and other interpretive categories within the
episode. We also identify individual episodes of model based reasomny to permit a closer
examination of problem-solving activity outside of the traditional algebraic formalism. fly
considering the content of surrounding problem

solving episodes, we can begin to examine
subjects' reasons for using model-based reasoning and to assess its effectiveness for making
correct problem-solving inferences or recovering from existing errors. The section ends with

summary of major qzontit alive findings.

Problem-solving attempts

Since many of our rated categories represent hypotheses about problem solving processes,

we present their frequency of occurrence within s jects' problem solving attempts. 'fa
ble 3 shows the percentage of subjects having one or more episodes in which various rated
categories were observed. Percentagesare shown separately for each problem (MOD, MRT.
WT, WC) but are collapsed over groups (M, W) since none of these contrasts were statis-
tically reliable. Most findings are as expected, while several are surprising.

(Insert Table 3 about here.)

Tactical content of scored episodes. While most subjects use algebra in their
solution attempts (63.5 to 85.9% across problems), reasoning within the situational context
presented by the problem is surprisingly common.

Looking within individual problems, at least one model based episode is used by
22.4% to 47.1% of subjects, depending on the problem. A separate aralysis pooling

across problems shows that 72.9% of subjects have one or more episodes of model

based reasoning in their written protocols. These episodes are explored more fully
later.
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Use of ratios is the next most prevalent non-algebraic tactic (14.1% to 42.4% across

problems) and may depend upon a variety of factors: the complexity of the constraints

presented by a problem's quantitative structure, the accessibility of situational justi-

fications for those constraints, and the manner in which the constraints are presented

in the problem text.

Few solution attempts contain episodes using a "procedure" or reasoning with "units."

Most subjects using a procedure on the WT problem chose to take an average over

working rates, a strategy that violated the situational meaning of "working together"

in that problem and generally led to an incorrect solution.

Annotations, in the form of diagrams or notations about problem elements, were ei-

ther scarce or common, depending upon the situational and surface content of the

story problem. Motion problems (MOD, MRT) showed few notations (7.1%, 15.3%)

but more frequent diagrams (69.4%, 36.5%), while work problems showed frequent

notations (21.2%, 29.4%) but fewer diagrams (8.2%, 9.4%). Although it is likely

that the spatial content of motion problems makes them more accessible to diagram-

matic representation, some subjects are able to construct effective diagrams for work

problems (e.g., see Figure 11, episode 3).

Strategic purpose of scored episodes.

Most subjects show explicit attempts at comprehension in their written protocols

(57.6% to 84.7% across problems), typically through diagrams, notationsor model-

based reasoning.

While all subjects make some attempt to solve the problem, only a minority give

evidence of attempting to verify the results or their work (7.1% to 28.2% across

problems).
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Transitions out of scored episodes.

Most subjects find and explicitly present a solution (either correct or incorrect) as

part of their problem-solving attempt, although problems MR'/'and WT appear more

difficult than their quantitative isomorphs in this regard ( WC and MOD) A more

detailed analysis of solution outcomes follows shortly.

Likewise, the three transitions without sol in' oil (i.e., impasse, lost, or wrong) are most

common in the more difficult problems (MRT and WT).

Errors in scored episodes.

Conceptual errors of omission and commission increase for the more difficult prob-

lems (MRT and WT), and appear much more frequently than manipulative errors

(arithmetic, algebraic, or variable errors) on all problems.

Several interesting patterns emerge in these findings. First, subjects' written protocols

are not composed solely of material generated while performing algebraic transformations.

Instead, many subjects appear to use various forms of direct situational reasoning, which we

have termed model-Lased reasoning, conducted within their understanding of the context

posed by &story problem text. Second, although most subjects du present a solution in some

form, their efforts do not appear as a smooth progression toward a quantitative solution.

Rather, their problem-solving efforts are often interrupted by varied conceptual difficulties

that must be repaired before asolution is found. Third, manipulation errors within algebraic

and arithmetic formalisms do occur, but these are overshadowed by conceptual errors of

omission or commission as a primary source of problem -solving difficulty. Consistent with

our earlier treatment of problem structure, we interpret these findings to mean that students

form an understanding of the problem at the level of its situational context and then use

this understanding to introduce quantitative constraints. As a result, many of the activities
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present in an episodic analysis of algebra story problem solving fall outside the traditional

algebraic formalism.

Final episodes: outcome, tactical content, and errors

Examination of the written protocols c..sarly shows that subjects undertake a variety of

problem-solving activities when attempting to solve these problems, particularly when they

encounter difficulties in reaching a solution. However, the previous findings speak only to

the presencr of various conditions in subject's problem-solving efforts. By our scoring,

subjects averaged approximately 2.5 scored episodes per problem-solvingeffort, with some

protocols presenting evidence for as many as 10 distinct episodes. In the following analyses,

we look within individual protocols for more finely-detailed episodic structure.

Within an individual's efforts on any given problem, we extract a `final episode" for a

first level of detailed analysis. This episode seed not be the subject's last effort in a solution

attempt, but it is final in one of three senses: it Is the last episode during which a subject

presents a solution that is correct, the last episode during which they present &solution that

is incorrect, or the last episode of a problem-solvingeffort in which no solution is presented.

"Incorrect" mesas the subject presents an incorrect final solution without detecting any

errors. The "no solution" category includes subjects who present an incorrect solution but

realize they have done so during a subsequent attempt at verification, without being able

to recover. Thus, the final episode may be either correct, incorrect, or present 110 solution.

(Insert Table 4 about here.)

Performance outcomes across groups. Table 4 shows the final outcomes for each

problem, broken out to show anticipated effects of problem ordering. For example, on

oroblem MOD group W should perform better than group M (shown as M < W in the

taLte), since subjects in group W are exposed to an isomorphic problem (WT)just before

seeing problem MOD. If positive transfer occurs, subjects in group M should be at a relative

disadi Wage, having seen no prior problem. None of the group contrasts were statistically
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significant, even taking into account whether subjects were correct or incorrect on preceding

problems. Thus. the problem ordering manipulation introduced to provide opportuniti:s

for positive and negative transfer appears to have had little effect on subjects' performance

at the level of solution correctness. We consider this findingat a more detailed level in the

discussion section. Clearly, problems MRT and WT were most difficult, with percentages

of subjects reaching a correct solution on these problems (51.8% and 61.2%) falling well

below those reaching correct solutions on problems MOD and WC (90 6% and 91.8%).

[Insert Table 5 about here.)

Relation between solution outcome and tactical content. Tables shows tactical

content and error categories for final problem solving episodes. For tactical content,

subject receives a sinzle category score, so cell frequencies sum to give appropriate column

totals. A few protocols contain insufficiert information to score tactical content in the final

episode. For errors, a subject may achieve a correct solution in the final episode but still

demonstrate an error, et they may have several types of errors. As a result, cell entries for

errors do not always add up to coincide with column totals.

The prevalence of tactical content and error categories in the final episode is generally

consistent with findings for overall solution attempts. However. by looking within these

attempts we can focus more closely on relations between tactic and outcome

Even within the final episode, not all solutions (correct or incorrect) are found using

algebra. Excluding those with no solution or with contents that were not scorable,

between 22.0% and 44.0% of subjects (across problems) ised other tactics to find

their final solution.

Use of ratios is the most prevalent form of non algebraic reasoning in final episodes.

with the exception of an incorrect averaging procedureon problem WT. Model based

reasoning is the next most prevalent tactic.

Algebra, model-based reasoning, and ratio tactics are about equally effective in the
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final episode. Pooling across problems, algebra is slightly more successful (number cor.

rest /total observed) and slightly less error-prone (number incorrect/total observed)
than either of the non-algebraic tactics.

Thus, even within the final episode where a solution might be found, a normative account

of problem solving consisting of successive algebraic transformations would be disconfirmed

by these data. Instead, subjects find solutions through a variety of reasoning strategies

that, in some taste, involve relatively little formal algebra. In a moment, we examine the

episodic structure of model-based reasoning tactics more closely.

Relations between solution outcome and errors. Errors observed during final
episodes are also interesting although more difficult to interpret since individual subjects

can have multiple errors. We distinguish between "conceptual errors," which arise through

omission or ccatmission of specific quantitative constraints, and "manipulative errors,"

which arise through improper use of arithmetic, algebraic operations, or variables. These

error categories are shown in the lower panel of Table 5.

With the exception of problem MOD, conceptual errors are more prevalent than

manipulation errors. This is particularly true of the more difficult problems (MRT
and Wn.

Subjects who achieve a correct solution have fewer conceptual errors than those with

an incorrect solution or no solution (1:6, 0:30, 1:37 and 1:4 across problems). In the

few cases where a solution is found despite conceptualerrors, offsetting manipulative

MOTs fortuitously "correct" these conceptual errors.

Although manipulative errors are found among subjects who do not reach a correct

solution, they are also observed among subjects givinga correct solution. These errors

are repaired within the final episode to allow for a correct solution.
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A niong subjects who reach an incorrect solution, the t ttttt iber with manipulative errors

could not account for more than a third of these failures (2/6. 5/15, 7/21. and 1/5

across problems). Alternately, at least two thirds of the incorrect solutions muss be

based oil conceptual errors.

One interpretation of these results is that manipulative errors are less frequent and

more recoverable than conceptual errors. That is, subjects who make an error during a

problem-solving episode are more likely to recover from that error lit stems from arithmetic

or algebraic manipulation than if it is a result of misunderstanding or misencoding the

structure of the problem. Since errors may persist across episodes, this conclusion cannot

be unambiguously supported. Nonetheless, the most serious errors among this group of
relatively competent problem solvers are conceptual rather than manipulative.

Episodic structure of model-based reasoning

One of the most intriguing findings in these data are subjects' use of what we 4 all 'model

based reasoning." In these episodes, subjects depart from the algebraic formalism and

reason directly within the situational context presented by the story problem. In this

section, we examine the functional role that model based reasoning plays within the overall

solution effort. We are interested in determining under what rtreninstances this form of

reasoning occurs, what purpose it serves within a particular solution attript. and what

outcomes are likely when subjects reason iii this fashion.

As with the analysis of final episodes, we identify specific episodes within subjects'

solution attempts where model based reasoning occurs. We also extract the preceding

problem-solving episode in the hopes of identifying enabling conditions for model based

reasoning. Since some subjects' only use of model based reasoning occurs during their first

scored episode, they will have no preceding episode.

(Insert Table 6 about here.)

42

47



Precursors to modelbased reasoning. A first task for describing the role of model
based reasoning in subjects' solution attempts is to determine their reasons for using this
method. We will contrast the correctness and transition out ofan immediately preceding
episode with the purpose (as we have rated it) for using model-based reasoning.

Table 6 shows the number of subjects who
use model-based reasoning for some purpose

(scored as comprehension, solution attempt, or verification) subsequent to various condi.
Lions in the preceding episode. A subject may either have no preceding episode, have a
preceding episode without errors, or five a preceding episode with one or more scored
errors (i.e., an error of commission, omission,

or manipulation from which the subject does
not recover in that episode).

From 26.3% (5 of 19 on MRT) to 70.0% (21 of 30 on WT) of model-based reasoning

episodes occur as the first episode in a solution attempt.

Of these initial model -based episodes, the majority (except for problem MRT) are
undertaken for the apparent purpose of comprehending some aspect of the presented

problem. The remaining initial episodes are scored as solution attempts.

For subjects having a preceding episode, their transition out of this episode is scored as
achieving a subgoal, finding a solution, reaching an impasse, or deciding they are wrong. Of
the model-based reasoning episodes following

an error-free episode, there are two essentially

different conditions. In the first,a subject's preceding episode ends with achieving a subgoal

or finding a solution. This subject could be considered "on track" in her solution attempt.
In the second condition, subjects "abandon"

the preceding episode after reaching an impasse
(also after getting lost, as described earlier) or deciding that their efforts are wrong. These

subjects are technically on track since their preceding episodes are free of errors, but they

encounter sufficient difficulty that they abandon a previous line of reasoning in favor of
model based reasoning
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Amost all subjects whoare "on track" in a preceding episode either attempt a solution

or continue attempts at comprehension during the model based reasoning crignd..

Only a few subjects are "on track" and undertake model based reasoning for the

purpose of verification. On problem WC these verification episodes follow finding a
solution; the single verification attempt on problem IV7' comes from a subject who

verifies a recalled formula using a simplification of the original problem.

Subjects "abandon" (i.e., lost, impasse or wrong) a prior, error free episode infre

quently and subsequently use model-based reasoning for comprehension or to attempt
a solution.

Model -based reasoning episodes following an episode with errors are less frequent than

those discussed above, but fall into similar categories. Relatively few subjects have preced

ing errors, are unaware of those errors, and proceer: as if "on star k" (sebum... a subgoal or
find a solution). Subjects who are aware of their preceding error nearly always deride that

they are wrong and "abandon" the preceding episode.

Among those who "abandon" a preceding episode with errors, subsequent model

based reasoning is used either for comprehension or as an attempt to find a solution.

Although based on a sunset ssf all s'.ojecte studied, these findings support an inter.

pretation in which model-based reasoning plays four basic roles in problem solving: as

a pmparnfory comprehension strategy when the model based episode is either the first
problem-solving activity attempted or follows other comprehension episodes, as a solution

strategy when subjects feel they are on track, a. an evidence gathering strategy "hen a so.

lution has been found previously (this is infrequent), or as a creamery strategy when subjects

suspect that their comprehension or solution efforts te..), be "off track " These interpret

tions are consistent with our earlier argument that reasoning within the situational context
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of a problem supports the generation of quantitative constraints, can be used directly as a

solution method, or can he used to verify that these constraints are appropriate.

(Insert Table 7 about here.)

Effectiveness of model-based reasoning. As well as inferring subjects' reasons

for undertaking model-based reasoning, we would like to characterize the effectiveness of

this reasoning strategy. To assess efficacy, we examine the occurrence of any errors within

successive episodes. Table 7 shows the relationship between errors during a preceding

episode (when there is one) and errors within the model-based tenoning episode.

When model-based reasoning is the subject's first evident activity, as indicated by

"No episode" in Table 7, errors are not often encountered within that episode. The two

errors shown for problem MRT are mis-conceptualizations in which subjects assume

that round trip times are equal. The error in problem WTcomes from a subject who

assumes that Mary and Jane do equal amounts of work.

When a previous episode contains errors, the subsequent model-based episode is

usually error-free. Thus, existing errors may be "repaired" during model-based rea-

soning.

Following an error-free episode, only one subject introduces a new error with model-

based reasoning by omitting the constraint that distances are equal on problem MRT.

While these findings are not conclusive, they are again consistent with the four hypotheti-

cal roles for model-based reasoning described in the analysis of final episodes. Preparatory

comprehension promotes an error-free conceptualization of the problem situation, enabling

subjects to correctly assemble the quantitative structure of the problem during later rea

soning episodes. Subjects also attempt to find solutions directly through model-based

reasoning, generally without introducing errors. Alternately, after encountering an error

during previous problem-solving activities, subjects may be able to recover through the
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use of model- based reasoning. Finally, model based reasoning can play a confirmatory role

when subjects have identified imp.rtant problem constraints or a possible solution.

Summary of quantitative findings

As part of our effort to explore the episodic structure of algebra story problem solv

ing, this section presents three levels of quantitative analysis: the prevalence of different

interpretive categories in subjects' overall solution attempts, relations between outcomes,

tactical content, and errors in subjects' final episodesof problem solving, and the role and

effectiveness of model -based reasoning episodes within the wider problem -solving context.

Each successive. .4 of analysis tightens the focus on findings at coarser levels.

A global view of solution attempts reveals significant non' algebraic reasoning as a preva-

lent and somewhat unexpected constituent ofcompetent problem solving. Most prevalent

among these tactics is model-based reasoning. Among observed errors, conceptual omis

sions or commissions are more frequent than manipulative errors within arithmetic or alge.

braic formalisms. An examination of final episodes, the "bottom line" in a very lean view

of these problems, corroborates this global image of significant non algebraic reasoning on

non-routine problems. Looking more closely at errors, we find that manipulative errors

are both less frequent and less damaging than conceptual morn, since subjects are more

likely to recover from errors of manipulation within the final episode. Finally, we examine

the episodic structure of model-based reasoning and propose four roles for this tactic: as

preparatory comprehension, as a solution method, as evidence-gathering for a candidate

solution, or as a recovery method for errors generated earlier in the solution attempt. Chew

quantitative analyses of problem solving agree with out earlier description of the interplay

between the quantitative and situational structure of algebra story problems

DISCUSSION

Interpreted as a series of problem solving episodes, the written protocols described
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above provide an opportunity to look within individual solution attempts for evidence of
strategic and tactical upproach. We have also been able to look across a relatively large
sample of mathematically sophisticated subjects in an effort to describe 'typical" problem-
solving behaviors. In this section, we compare the results of our study with otherresearch on

mathematical problem solving and discuss the Implications of these findings for conceptions
of mathematical "knowledge and instruction.

Competent problem solving

Our findinge are offered asa preliminary exploration of "competent" algebra story problem
solving. By choosing the term competent, we hope to contrast the problem-solving behay.
iota we have observed against images of "expertise" in problem solving as they are often
portrayed in the literature. Po example, Mosley et aL (1977) and Mayer et aL (1984)
report that experienced problem solvers

use problem-solving schemata to categorize prob.
lems by type and then represent these problems using familiar quantitative constraints.
While this account corresponds with some of our protocols, many subjects in our sample
appear to eon:inlet solutions to algebrastory problems. Rather than a smooth execution of
a highly practiced Al, these constructions often proceed with some difficulty and include
reasoning :divide. only partly connected to algebraic or arithmetic formalisms.

As noted earlier, subjects In this study should be considered mathematically sophis.

Reeled. Nonetheless, judging from the varied behaviors we have observed, the algebra
story problems we presented to subjects are not routine problems. On problems MRTand

WT, for example, many subjects fail to reach a correct solution, and those who do sue
coed often experience considerable difficulty. Analyses of errors encountered by subjects

when attempting solutions suggest that conceptual errors of omission and commission are
both more prevalent and more damaging than manipulative errors In algebra or arithmetic.
These results support a model of algebra story problem solving in which problem compre
hension and solution are complimentary processes. Integrating dual representations of a
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problem at situational and quantitative levels is a central aspect of competence. These
intermediary structures provide a representational bridge between the text of a problem
and a quantitative solution. Reasoning about the situational context of a problem can
serve as a justification foe assembling

quantitative constraints that may eventually lead to
a correct solution. Thus, a substantial portion of a subject's activity is devoted to reach.
ing an understanding of the problem that is sufficient for applying the routine of formal
manipulation.

Despite their mathematical backgrounds, perhaps our subjects have yet to achieve corn.
petent algebra story problem solving,

well beyond the curricula: setting designed to teach
it. Alternately, they may have been "experts" during and shortly after algebra instruction,
but with the passage of time have lost the facile performance demonstrated by Ilinsley et
al. (1977). Whichever explanation is chosen, the iuue remains how to characterize os.
tensility competent problem solving in a population for whom the algebra curriculum is
designed. Recent studies of mathematical problem solving in "practice (Carraher, Calm
her, Sc Schliemann, 1987; Carraher & Schliemann, 1987; and de. It Rothe, 1986) present
similar images of competent quantitative reasoning; problem solvers organize their quan
titative knowledge around the demands of the situational context presented by the task,
art." using the problem situation (or knowledge of it) to assemble or verify quantitative
constraints. If an image of competent problem rolving in this domain is to inform teaching
efforts i.e., it is to have some predictive

capacity as described in the introduction of this
paper then activities like these are a legitimate topic of study. We return to issues of
competence and acceptable transitional performance in a moment

Transfer effects

Aside from their use as representative wildcat solving tasks, algebra story ptohlents of
ten serve as materials for studies of analogical transfer. (inert a target Nowell, to wise.
subjects exhibit positive transfer when they can use the solution method from a ;nevi
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ously encountered source problem to help solve the target problem. Alternately, subjects

exhibit negative transfer when they access and use the solution from an inappropriately

related source problem. Studies of analogical transfer with algebra story problems have

produced mixed results, but show that both positive and negative transfer sometimes oc-

cur. Positive transfer has been more likely when subjects are alerted to the experimental

manipulation (Reed, 1987; Reed, Dempster, & Ettinger, 1985) or are high in mathematical

achievement (Novick, 1987). Transfer effects related to higher achievement have been at.

tributed to subjects' improved attention to aspects ofquantitative structure (Novick, 1987;

Silver, 1979) and better memory for previous solution methods (Silver, 1981). Negative

transfer in subjects with lower achievement (Novick, 1987) has been attributed to a re.

Hance on inappropriate problem features and an inability to reject misleading analogical

sources. Finally, Dellarosa (1985) has experimentally manipulated subjects' use of analog.

ical and schematic problem comparisons to produce improvements in their categorization

and solution of related problem:.

In the present study, we did not alert subjects to the comparability of problems, nor

did we encourage them to look back over their prior solutions as they worked through

the problems. Their backgrounds insare high mathematical achievement, and entrance

requirements for academic majors in computer science and engineering preselect for high

quantitative abilities. There is no performance-level evidenceof positive or negative transfer

within the problem-solving session, despite ozir manipulation of ptobiem structure and

presentation order to elicit these effects. At the aggregate level, our suhjects appear to take

the "school math" task we present them at face value: each problem, presented individually

on a blank sheet of paper, is treated as a sail-contained exercise, rather like vch at a student

might face during examinations in a course on algebra. However, en inspection of

individual protocols and explanatory remarks we find that several subjects give evidence

for some form of negative transfer.
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In some cases, transferred material directly violates the quantitative and situational

structure of the target problem. For example, subject w08 incorrectly attempts to add
working rates on problem WC, first writing 1/5 bores + 1/2 bores = 56, followed by
7/10 bores = 56. In explanatory remarks, w08 states that 'Ile mistake 1 made was

that I assumed it was like problem 1 where they work together." In the preceding solution
to WI', this subject had written "Together = 1/5 + 1/4 in one hour = 9/20" and then

correctly divided one job by the combined rate. Adding working rates in problem WT is

justified since Mary and Jane work together at the same time. However, situational and

quantitative relations are exactly reversed in problem WC(see Figures 6 and 2(1))). Since

times are added together (adjacent) and work is performed on the same boxes (congruent),

the addition of working rates (i.e., output over time) cannot be similarly justified.

In other cases, subjects recognize an appropriate source problem, but then fail to transfer

information at the correct level of abstraction. For example, on problem MOD subject

wet correctly attempts to add motion rates, but uses an algebraic expression of the form:

1/60 + 1/100 = z/880. On the previous (WT) problem, the subject manages a correct

solution using an expression of the form, 1/5 + 1/4 = 1/z, and remarks that this "... is a

formula used to find a total of time they work together." Although the addition of rates

can be justified in both problems, it appears that the rate form in the retrieved formula

is reversed (i.e., time over output) when used in a solution attempt on the MOD problem.

Thus in a situation where we anticipate that the subject will benefit by transfer of a solution

approach, their failure to justify transferred material actually produces a negative effect.

it may be that the problem-solving context, completing a test booklet in a proctored

examination setting, as well as our decision not to alert subjects to the comparability of

problems, prevented them from recognizing and elaboratingeffecti ve analogical comparisons

between problems. In more detailed verbal protocol studies where subjects are encouraged

to make problem comparisons (Hall, 1987, 1988), attempts at analogical inferences between



algebra story problems are quite common. These comparisons are usually lengthy and
can introduce misconceptions, but also frequently lead to fruitful explorations of problem

structure, both quantitative and situational. In addition, comparisons need not encompass
the entire problem structure, but often instead make effective use of relevant substructural

similarities. These alternative findings are largely consistent with other verbal protocol

studies of learning from worked examples (Pirolli & Anderson, 1985; Singley, 1986; Chi,
Bassok, Lewis, Reiman, & Glaser, 1987), and suggest that analogical comparison may be
a common problem-solving and learning strategy in settings where subjects have some
control over their work.

Model-based reasoning

We are not the only researchers to note the prevalence of model -based reasoning during
mathematical problem solving. A number of psychological studies have found similar ev-

idence, although interpretations of this activity vary. Paige & Simon (1966), comparing
human protocols with Bobrow's (1964) computational model of translating algebra story
problems into equations, found that subjects with varied mathematical backgrounds used

"auxiliary representations" of the physical setting of a problem. These representations

allowed some subjects to detect impossible problems or to assemble relevant quantitative

constraints (e.g., additivity in part-whole relations). Using verbal protocols to study the
prevalence of Pclya's (1945) heuristics for mathematical problem solving, Kilpatrick (1967)

reported that 60% of an above-averagegroup of eighth graders usc., "successive approxima

tion" while attempting to solve word problems. These trial - and -error approacheswere often

successful and were sometimes combined effectively with more deductive solution strate-
gies. Silver (1979) found similar successful approximation strategies in students who had
yet to receive formal algebraic training. Studying geometry problems, Schoenfeld (105)
found that students used a trial-and-error approach to generate hypotheses about geomet

tic relations and then evaluated these hypotheses by physical construction. Ile argued that
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these exploratory episodes of "naive empiricism" were usually poorly organized and often

interfered with forms of deductive verification that students knew how tc use. Finally,

Kintsch & Gismo (1985) described a process model of solving arithmetic word problems

in which quantitative strategies were triggered by information contains,' in a "situation

model" of the problem. The situation model was constructed during text comprehension

and contained a set-based representation of typed quantities and their interrelationships

(e.g., part-whole). Follow-on studies (Kintsch, 1986) have shown that the construction of

a situation model is important for recall, inference, and learning from text.

Looking over this evidence, we find that studies of mathematical problem solving con

sistently encounter activities similar to what we call model-based reasoning: subjects con.

struct some form of situation model, take inferences within the model to help comprehend

and sometimes to solve a quantitative prohlem, and use the model in a supportive role for

assembling or verifying quantitative constraints. Beyond model-based reasoning in math-

ematical problem solving, similar evidence is available across a wide range of cognitive

activities. For example, Johnson-Laird (1983) argues for a model driven arc of syllo-

gistic reasoning that underlies common-sense inference. Given a pair of prem < . like, AU

the artists are beekeepers/Alt the beekeepers are chemists, Johnson Laird's subjects appear

to build successively more elaborate models of the situation described by the premises when

searching for valid inferences. The validity of each inference, rather than being logically

deduced by sound rules of inference, is evaluated with respect to these concrete models

of the premises. Errors occur when subjects are unable to build sufficient models of the

premises and thus overlook or fail to eliminate various inferences. Relatively concrete forms

of reasoning outside traditional (i.e., schooled) formalisms have also been observed for de-

cision making under uncertainty (Tversky & Kahneman, 1974), various forms of statistical

reasoning (Nisbett, Fong, Lehman, & Cheng, 1987), and explanations of physical processes

(Clement, 1983; McCloskey, 1983).
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In general, these studies raise questions about the relationship between what students

bring to an educational setting i.e., their "preconceptions" about a subject matter

and materials that the curriculum explicitly presents. In the domain of mathematical prob-

lem solving, students' "preconceptions" and associated activities are often pushed to the

background of legitimate practice and inquiry. At best they are "auxiliary" to quantitative

reasoning, while at worst they interfere with preferred problem-solving activities and pro-

duce 'lost opportunities, unfocused work, and wasted effort" (Schoenfeld, 1985, p. 308).

In their stead, the manipulation of symbolic representations of quantity, quite apart from

the situations that give rise to these quantities, is held in the foreground. Our findings

on model-based reasoning, in concert with other studies reviewed briefly above, suggest

that this foreground/background conception of quantitative problem solving may need to

be reconsidered.

In our sample of "competent' subjects, a routine problem is one in which the use of

familiar algebraic operations will provide a precise value for an unknown entity. This is

the power of the algebraic formalism: it is perfectly general, sound, and often simple to

apply. However, quantitative precision is of little value when the subject is uncertain about

the problem's structure. Our characterization of overall episodic activity, the frequency

and consequence of conceptual versus manipul dive errors during those episodes, and the

role of model-based reasoning show that routhe activities within the algebraic formalism

make up only a portion of competent problem-solving. For many of our subjects, algebra

story problems are not routine exercises. Instetd, much of their problem-solving activity is
devoted to assembling a sensible set of constra.nts on a desired quantity, an effort that uu

covers the problem's structure. When algebraic constraints are unclear, subjects sometimes

attempt solutions using model-based reasoning (e.g., Figure 8), a tactic that approximates

a certain value for an unknown =t1ty. The value is certain when quantitativeconstraints

that determine its derivation are grounded in a representation ofproblem structure that is
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familiar to the subject.

The strategic significance of this activity is consistent with varying explanations. On

one hand, enacting a set of physical constrai. ay provide otherwise skilled quantitative

problem solvers with an efficient means of estimating quantitative solutions. Under this

interpretation, the model-based episode shown in Figure 8 may result simply from the

subject's preference for repeated additions over a more complicated thoisian.

(1981) makes a similar argument when interpreting results of a developmer.tal study on the

relationship between velocity, time, and distance. In contrast, we argue that episodes of

model-based reasoning serve as problem solving strategies in their own right, and are used

when more "(nemal" activities (e.g., algebraic substitution)are unreachable given the cur-

rent problem representation. Under this interpretation, the subject in Figure 8 undertakes

model-based reasoning because her representation of the problem cannot justify a division

of the total distance by a combined rate. Enacting motion and time constraints over suc-

cessive hours of travel makes the quantitative structure of the problem more certain. The

results of model-based reasoning support a conceptualization of quantitative constraints

in which the total distance can be divided by a combined rate to give a precise account

of the elapsed time. Further constraints are introduced by establishing that the correct

quantitative solution falls between the fifth and sixth hours of travel.

Interpreting model-based reasoning as an alignment of certain and precise represen

tations of problem structure leads to deeper questions about a competent understanding

of mathematical concepts, in this case related linear functions. One point of view takes

mathematical concepts as objects of knowledge in and of themselves,quite apart from their

physical embodiment in a situational context. Hence the story in an algebra story problem

serves only as a vehicle for carrying a mathematical structure. An alternative point of view

takes mathematical concepts as tools for modeling physical situati- s, in this case related

motion or work events as presented in problem texts. The question is how far vehicles
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will travel or how long it will take to complete a job, and mathematical concepts serve as
sometimes-useful tools for answering these questions.

We suspect that these points of view are not incompatible. In fact, the latter view
may provide an educational bridge to mathematical concepts as self-containel sources of
knowledge. That is, a competent mathematical

conception of related linear functions is
based on and extended through a physical understanding of the situational context that
the "story" of an applied problem presents. An activity like iterative simulation "joins"

concrete inclines, allowing the subject to successively construct a systematic relationship

between rata and providing an introduction to related linear functions that tan be directly

supported within a familiar context. Over time, the mathematical concept reflects a history
of use as a tool for modeling physical tituations.

The concept of rate changes as its modeling

role is extended over a wider range of situational
contexts, perhaps leading to heuristic

estimates or algebraic construction based on "scaling" inclines as invariant relations. The

fault could eventually resemble a relatively context-free mathematical abstraction. Of
course, this account of the acquisition of mathematical concepts is highly speculative and
not a focus of our study. However, judging from

the problem-solving behavior observed
in this study, even ostensibly "competent"

mathematical problem solvers continue tc base
their quantitative efforts within the situational context of presented problems.

Educational implications

Wo have interpreted the relative prevalence and consequence of conceptual versus manipula
tive errors as evidettee that subjects have difficulty is assembling the quantitative structure

of algebra story problems, long after they havemastered the algebraic formalism. Likewise,

the prevalence and functional role of model-based reasoning are interpreted as evidence
that even mathematically-sophisticated problem solvers explore the situational context of
these problems in an attempt to construct or repair a representation that will ,ipport a
solution. Rased on these findings and their interpretation, we examine several implications
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for teaching mathematical problem solving.

The primacy of conceptual errors and use of model based reasoning, in some cases to
recover from these errors, suggest that instruction based solely within the mathematical
formalism may be inadequate for solving non-routine problems. Textbook instruction in
algebra story problem solving typically addresses this issue by providing some suggestions
for "... translating from words to appropriate algebraic forms" (Kolman & Shapiro, 1981, p.

64). These range from direct translation rules taking textual phrases into equations (e g.,
rewrite "twice" as 2x) to the construction of tables that organize quantitative entities and
their interrelationships around known formulas. The desired result is a set of simultaneous

linear equations amenable to algebraic operations. While these suggestions provide a sort
of organizational strategy for the student's problem-solving activity, they fall well short
of specifying how quantitative relations, particularly those that are only implied by the
problem text, can be identified, arranged as entries in a table, or effectively used. Instead,

the results of our study point to persistent
problem-solving difficulties that the traditional

algebra curriculum addresses weakly ifat all.

How might these components of competent problem solving be taught more effectively?
We argue that the situational context of an algebra story problem, and in particular the
correspondence ber.veen situational relations and quantitative constraints, should be a le
gitimate object of teaching in the algebra curriculum. This is clearly appreciated in other

problem-solving curricula. For example, consider the utility of forte diagrams for solving

statics problems in physics. Students who ignore or incorrectly construct force diagrams
can be expected to manipulate equations or formulas without visible signs of progress.
This is quite similar to Paige & Simon's (1966) finding that "auxiliary representations"

helped subjects to detect impossible algebra story problems, sometimes before writing any
equations at all. Our quest:on, then, is whether there might not be a similar organizing

representation for algebra story problem solving? There are some suggestive precedents:
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Gould & Finzer (1982) describe an animated computational environment that allows stu-

dents to make guesses in a one-dimensional world of notion; Greeno (1983) describes an

effective instructional technique in which students use an electric train set to help calculate

solutions to compound motion problems.

As one possibility among many, we present a representation that drawa directly from the

analysis of situational structure presented earlier and consider under what circumstances

it could provide a useful instructional model for constructive problem solving. As with

any model used in teaching, there are problems of registration: the model may cover some

aspects of the target domain well but cover other aspects poorly. Our proposal addresses

relations and operations possible within a representation of the situational structure of

compound algebra story problems, and the correspondence of these aspects to relations

and operations possible with a representation of quantitative structure. We expect that in

combination with a quantitative model like that proposed by Greeno et at (1986), their

joint contribution could prove more effective than either used alone.

(Insert Figure 15 about here.)

Figure 15 shows paired graphical representations of situational and quantitative struc.

ture for the AMT problem. At the top of the figure, a dimensional frame displays orthogo-

nal output (in this case, distance) and time dimensions, with entities arranged along those

dimensions by their respective situational relations: times are adjacent and distances con-

gruent. At the bottom of the figure, a quantitative network (Shalin & Bee, 1985) shows the

common distance found by applying motion rates to component times. Esch represents-

tional device provides a directly accessible illustration for important aspects of competence

in this problem-solving domain.

In contrast with translation rules or tabular arrangements, the illustroive medium

of dimensional frames provides a spatial abstraction for compound rate problems that

promotes a physical justification for essential quantitative constraints. Time segments
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add because they are adjacent within the vertical dimension, whiledistance segments are

equal because they are congruent within the horizontal dimension. As noted in our earlier

discussion of quantitative structure, substructures corresponding to these constraints must

be constructed before using the quantitative network to find a solution e.g., the additive

triad over time extenaives that centers the quantitative network in Figure 15. The ability

to appropriately select and place these quantitative substructures appears to require a

substantial investment in training time (Greeno et at, 1986). We expect chat a well

designed illustrations around the idea of dimensional frames could effectively support the

acquisition and use of a quantitative network illustration

In contrast with a set of algebraic equations, quantitative networks provide a spatial

abstraction for variables and equivalence relations that makes the global structure of what

would otherwise be a linear encoding more apparent. Rather than writing a set of equa-

tions with repeated variable names or constants, a notation that can obscure the role of

quantitative entities and make the applicability of certain algebraic operations difficult to

recognize, the quantitative network directly captures the notion of shared variables or con.

stants and multiple ways of reaching a particular unknown. The network provides a visually

inspectable form of algebraic calculus, essentially constraint propagation, that may prove

easier for students to learn than more traditional instructional methods (i.e., algebraic op-

erations on linear equations). Thus, the two illustrative media are collaborative III that

they provide interdependent representational stages intermediate between a problem text

and a correctly manipulated set of algebraic constraints.

Returning to Figure 15, we give a more detailed treatment of this collaborative inter-

dependence. As a compound motion problem, MRT involves two events, each contributing

entities modeled as segments on output and time dimensions. Across events, segments on

each dimension are related in manner that determines their quantitative composition.

.01ilasoa (ix press) give* prescriptive methodology for co aaaaa coax mteractore tfluarohons u wellas
a particular illsatratioa, called "Rectsagle World, for the ratio state of rational lumbers

58

63



Adjacent time segments can be composed to yield a single segment whose extent along the

vertical dimension corresponds directly to the value of total time traveled, thus implying an

additive relation over extensive' in the quantitative network. Similarly, congruent segments

in the distance dimension have an identical extent, implying the same (and same-valued)

extensive in the quantitative network. Within each event, the rate provides a comparative

mapping between dimensions, modeled as Individual inclines in the figure. Placed at the

top of the dimensional frame, walking covers 3 miles In one hour, and after transformation

to reflect a common output (discussed in a moment), the bus is shown to cover the same 3

miles in hours at the bottom of the frame.

la addition to sanctioning relations among quantitative entities, more direct problem -
solving inferences using model-bated reasoning are also possible within the dimensional

frame. Treated as invariant relations across dimensions, motion inclines can be "scaled" to

give heuristic estimates of common distance and composedtimes, as shown with dashed lines

in Figure 15. Alternately, treating rates as concreteassociations, inclines could be "joined"

together during an iterative simulation of compound motion. In eath case, a model-based

solution is reached when a common distance is found that precisely requires six hours for

round trip traversal. Both forms of model-based solution attempts are consistent with

observed protocols. For example, subject m31 uses a form of "scaling" to make heuristic

estimates of 24, 12, and 15 miles for a common distance, checking the combined time

required for each estimate against the given six hours. After the third estimate, she notices

that "each mile takes... A hours" and later uses this constraint to construct an algebraic

expression in a single unknown, -A x X = 6." In contrast, subject m18 uses a form of

"joining" by choosing 3 miles as a concrete distancesegment, determining that the bus takes

7.5 minutes to cover this distance (shown as hours in Figure 15), and then extending these

concrete relations in a simulation of successive three -mile return trips. Both subjects alter

the form in which motion rates are expressed (i.e., output over time) during their model-
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based solution attempts, and subject mil finds a way of conihining rates for a "return trip

mile." In each case, activities within model based reasoning episodes observed in written

protocols directly sanction multiplicative relations between rates (intensives) and timer,

(extensive') shown in the quantitative network of Figure 15.

An appropriate combination of these representations could be a helpful artifact for in.

struction in algebra story problem solving. First, representational choices in the dimensional

frame can serve as justifications for more abstract relations or operations in the quantita

live network. As argued above, a justification for adding times within the quantitative

formalism is that their composed spatial extent is tensible within the situational context

of the story. As a more complex example, subject m3I's decision to transform and then

add motion rates in this problem cleverly restructures the dimensional frame to have single

segments on both time and output diroensions e.g., A hours for each "return trip" mile.

The corresponding quantitative network would require only three entities: a time extensive

(6 hours, given) results from multiplying the combined rate intensive (A hours per mile,

inferred) by an unknown extensive for round trip distance. This is a sensible change in

representation only because the time segment given in the "goal state" of the problem is

presented as a composed whole (i.e., "... he was gone for 6 hours" in the text of problem

ART), and round trip distance segments are congruent. Thus, representational choices

in the dimensional frame provide justification for construction of a simplified quantitative

network.

Second, problem-solving activity (e.g., iterative simulation) within the dimensional

framework can actually help to recover from prior conceptual errors. For example, con.

eider a subject who first attempts a solution within the algebraic formalism and omits the

constraint that distances are the same (i.e., the same variable). Finding two simultaneous

Ham equations in three variables, this subject reaches an impasse. (looting model based

reasoning for the purpose of comprehension in the next episode, the subject immediately
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faces a representational decision in the distance dimension: should positionally distinct

or identical spatial segments be chosen? Certainly, the possibility of an incorrect choice

remains, but when mailing this choke In the algebraic formalism of the prior episode,

the consequences of an Incorrect representational decision were less apparent. Correctly

choosing congruent distance segments in the dimensional frame could allow this subject to

achieve a solution within the model-based reasoning episode, or to return to the algebraic

formalism with a more complete representation.

in summary, choosing an apt combination of situational and quantitative models for

instructional purposes is SSW hating problem. Our suggestion for the dimensional frame as

an illustrative mechanism would require further refinement to achieve effective integration

with an algebraic Illustration, as discussed above. Nonetheless, we feel this approach is

Interesting in several respect,. First, our proposal is consistent with an empirical picture of

episodic problem-solving behavior in mathematically sophisticated subjects. Taking these

findings as evidence for competent (if not expert) problem solving, we are interested in

supporting what problem solvers actually do during their attempts to solve non-routine

problems. Our instructional proposal is based on a characteritarion of these attempts and

an analysis of common problem-solving difficulties. Second, although the solution of a

particular class of problems may become routine with practice, the ability to construct an

algebraic representation will continue to be important for novel problems or problems that

have become unfamiliar with the passage of time. Being able to construct a representation

in the algebraic formalism, based on the constraint-generating Inference:Awe have des:ribed

AS one role for model-based reasoning, may never become entirely routine. Last,combined

Illustrative media may be of some practical value in delivering instructionon algebra story

problem solving, whether provided through computer-based instruction or a traditional

algebra curriculum.
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Table 1: Representative algebra story problems.

Motion: Opposite direction (MOD).

Two trains leave the same station at the same time. They travel in opposite directions.
One train travels 60 km/h and the other 100 km/h. In howmany hours will they be
880 kin apart?

Motion: Round trip (MRT).

George rode out of town on the bus at an average speed of 24 miles per hour and
walked back at an average speed of 3 miles per hour. How far did he go if he was gone
for six hours?

Work: Together absolute ( WT).

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they work together,
how long will it take to do the job?

Work: Competitive ( WC).

Handy can fill a box with stamped envelopes in 5 minutes. His boss, Jo, can check a
box of stamped envelopes in 2 minutes. Randy works filing boxes. When A is done,
Jo starts checking his work. How many boxes were filled and checked if the entire
project took 56 minutes?
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Table 2: Categories for interpreting the purpose, content, errors, and relative statue. of
problem-solving episodes.

Strategic purpose
Comprehension
Solution attempt
Verification

Tactical :ontent
Annotation

Problem elements
Retrieval of formulas
Diagram

Algebra
Model-based reasoning

Simulation
Heuristic

Ratio
Whole/part
Part/whole, part/part
Proportion
Scaling

Unit
Procedure

Conceptual content

Erro
,ptual errors

Errors of commission
Errors of omission

Manipulation errors
Algebraic errors
Variable errors
Arithmetic errors

Status of episode within solution attempt
Conwaency

Before
During
After

Transition
Subgoal
Wrong
Impasse
Lost
Final solution
Found solution wrong
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Table 3: Percentage of subjects with a scored category during their solution attempts.

Problem HOD MRT WT WC
Tactical content

Algebra 82.4 85.9 71.8 63.5
Model 30.6 22.4 35.3 47.1
Ratio 17.6 14.1 15.3 42.4
Pncedure 0.0 1.2 21.2 0.0
Units 3.5 1.2 1.2 1.2
Notations 7.1 15.3 21.2 29.4
Diagram 69.4 36.5 8.2 9.4

Strategic purpose
Comprehension 84.7 64.7 57.6 60.0
Soluttoz attempt 100.0 100.0 100.0 100.0
Verification 28.2 20.0 7.1 20.0

Episode transitions
Solution 97.6 75.3 85.9 97.6
Impasse 9.4 10.6 7.1 4.7
Lost 4.7 21.2 15.3 3.5
Wrong 16.5 38.8 25.9 16.5

Errors

. Omission 7.1 21.2 23.5 11.8
Commission 17.6 49.4 42.4 14.1
Arithmetic 9.4 4.7 3.5 2.4
Algebra 5.9 8.2 8.2 0.0
Variable 1.2 5.9 14.1 2.4
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Table 4: Final episodes: percentage correct by subject groupings.

Problem MOD MRT WT WC
Group contrast' M < W M > W M > W M < W
Correct 89.1 92.3 47.8 56.4 58.7 64.1 93.5 89.7
Incorrect 6.5 7.7 19.6 15.4 28.3 20.5 6 5 5.1
Nosolution 4.3 0.0 32.6 28.2 13.0 15.4 0.0 5.1
* M sees MOD. WT. WC. MRT:W sees WT. MOD. Af RT. WC
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Table 5: Final episodes: tactical content and errors uy correctness.

Problem MOD MKT WT WC
Outcome'` C I NCIINC IN
n 77 6 2 44 15 1 26 52 21 12 78 5 2
Tactical content

Algebra 58 6 0 36 8 20 43 5 7 44 2 I
Model 3 0 0 4 2 6 2 1 2 12 1 0
Ratio 13 0 2 4 3 0 5 3 2 22 1 1
Procedure 0 0 0 0 0 0 1 11 1 0 0 0
Units 2 0 0 0 0 0 0 0 0 0 0 0
Not scored 1 0 0 0 2 0 I 1 0 0 1 0

Errors

1Conceptual 1 6 0 0 14 16 1 27 I0 1 4 0
Manipulative 7 2 0 1 5 2 4 7 1 II 2 1 0

`C = correct; I = incorrect; N = no soIution

7 8
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Table 6: Errors and transitional status of a previous episode compared with the impost- of
a model-based reasoning episode.

Problem MOD ( MET I WT WC
n 26 I 19 I 30 I 40

VPurpose EjEguirm S pc C S VIC s
No preceding

episode 7 1 0 1 4 0 17 4 0 10 2 0
No errors in

preceding episode
r

On track
Abandon

3
1

9
0

0
0

0
I

6
I

0
0

2
0

2
2

I

0
10

0
11

0
2
0

U

0

Errors in preceding
episode
On track
Abandon

1

2
0
2

0
0

4 (1

1

0
5

0
0

0
0

0
2

0
0

1

1

1

2ate_ .. . -
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Table 7: Errors before and during model-based reasoning.

Problem MOD MRT WT WC
n 26 19 30 40
Model episode Errors None Errors None Errors None Errors None
Previous episode

No episode
Errors
No errors

0
1

0

8
4

13

2
2 4 0 2 r I

12

4

23

IR
distance
100 5.5

550 kilometers

A.
rate

100 kph

III
time

5.5 hours

Figure 1: A multiplicative relation involving two extenSIVeN and a tilligle 11111.11SIVi

8114 Y 8C,
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(a)

output
ratel (total time2)

= rate2 , time2
unknown

l'igure 2: The quantitative structure of two problem classes: (a) contains problems MOD,11'7' while (b) contains MRT, WC.
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(a)

Collinear A Opposite direction
(b)

Colt:near

Distance t Distance 2 'Time 1 'rmie 2

0 0 0 C.) 0
(C)

Congruent

60 k
100k A stpse e Id

Figure 3 A situational context for motion in opposite directions (a) ant (b) show places
and segments for output and time, while (c) shows inclines for rates wh..41 these dimensions
are arranged orthogonally.
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4

I

(a (b

4

.1

Figure 4: Operations based on different interpretations of two-dimensional inclines: (a)
shows a concrete situation successively "foiled" to give an iterative simulation of states
within the problem model; (b) shows an invariant relation "scaled" to give a heuristic
estimate of a final state in the model.
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Ite

880 kilometers

(b)
144

880 kilometers

Figure 5: Solution attempts using model-based reasoning on problem MOO: (a) loins"
successive concrete inclines in an iterative simulation; (b) "scales" inclines as an invariant
multiplicative relation in a heuristic estimation.

NO 85



C

T o

I
M g, r
" u

e

R
E
L 3
A d
T j
1 a
O c
N e
S n

t

OUTPUT RELATIONS
Congruent Adjacent

Figure 6: A matrix of situational contexts for pairs of isomorphic motion and work problems.



Mary can do job in 5 hours and Jane can do the job in 4 hours. If theywork together, how long will it take to do the job?

Nal doe/.

jeud 1-4

.1011. voNs. olmr. alm 1 IRMO

dovece

CU

Q-)

.1111, gRea

Figure 7: Protocol of subject m20 on the WT problem.
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Two trains leave the same station at the same time. They travel opposite
directions. One train travel. 60 km/h and the other 100 km/h. In haw many
hours will they be 880 km apart?

C.) A

\far .-_-. 14- /14...v, C.)

1 P I z-<1 5
womm. ago. . = qzp f

A
.. 4 1;441

6 49 17O
,/,..I; tV \e 1 ../,.) .2J)')o'

1-c 99 ft /-./ 1 S-t?
3r1.2

i 44 (tr.-, d 4 V 4 r°
L170.,5 1.2

1
(if- 700 -17-

AP, Cpl. 3(0 U O--)
J -roma 111. ono* mm0

d 4-

--a- 3

iv°

Figure 8: Protocol of subject w06 on the MOD problem.
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George rode out of town on the bus at an average speed of 24 miles per hourand walked back at an average spe-,:d of 3 miles per .lur. How far did he goif he was gone for six hours?

ais-fmeice 4 Ar)(x how's)
to0.165 oils-ft:no r (3 r4,1es/kr)

(so als4ance uutttkvt3 aviance

&%4 miles-( &r) (X Lan) = (3 mi lerA,)(,

ayx - t8 -3x
0 27x. ISX 3 1100'

bus dis4toice = (tk rA1esAr) t Ft)tikrs)

1)(kS 151-rtnce I 2$ rni\eS walking Ais4ance

1>te way = Ilo miles
gou.na-trif Ba

Figure 9: Protocol of subject m39 on the MRT problem.
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Two trains leave the same station at the same time. They travel in opposite
directions. One train travels 60 km/h and the other 100 km/h. In how many
hours will they be 880 km apart?

0 r.t1/4

/00 lc/It/ it

60 em /H

ieo Km/h.
..1=110 mgeeee NINIIM AMINO alMa

ffer

/80 01 :100 tn:

lik'S

300 ,r/t7 5.00

330 kin 350 ktn

Figure 10: Protocol of subject m03 on the MOD problem.
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Mary can do a job in 5 hours and Jane can do the job in 4 hours. If theywork together, how long will it take to do the job?

111a4-4.
0

hrs
HisSark - 4 r

5A1 cc :10) i 0

fn :: HA Di- 1017

aAk - Cti : 9'1 T.

4/1 1C4

old .4-o

Job u.).4 It -bk.t.

rm

. 241 hrs,
o e(i.ko

CD

Figure 11: Protocol of subject m32 on the WT problem.
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TrINVIPMBRINCEIMMIZOCIEIMIELSOD-Aarenter,

George rode out of town on the bus at an average speed of 24 miles per hour
and walked back at as average speed of 3 miles per hour. How far did he go
if he was gone for six hours?

gct

24 mbj: ®
3 ,niiir=

q, 4 -ca5tir t4.4o1 64-y

e
f3us +ravels 24- mile; -cc( one Ivor,

67639c -frAileI6 back 2it wiles 6 Vscor6

remlb_n_45-._ 3 hoar; 47:ADJ..

304- L6e wan-4- (0 hours u.hTick

vvi 2- -
raii 3

1(.0 mites

Figure 12: Protocol of subject w17 on the MRT problem.
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Figure 13: Protocol of subject m19 on the MOD problem.
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Mary can do a job ln 3 hours and Jane can do the job in 4 hours. If they
work together, how long will it take to do the job?

Asti 1144 "Ta.,/ t4.4.4

= ..ti
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Figure 14: Protocol of subject w23 on the WT problem.




