
DOCUMENT RESUME

ED 305 905 IR 013 762

AUTHOR Brandt, Richard C.
TITLE Building Databases for the Computer-Based

Memorization System.
INSTITUTION Utah Univ., Salt Lake City. Dept. of Computer

Science.
SPONS AGENCY Naval Personnel Research and Development Lab.,

Washington, D.C.
PUB DATE 20 Sep 88
CONTRACT N00244-83-C-1759
NOTE 26p.; For a related report, see IR 013 763.
PUB TYPE Guides - Non-Classroom Use (055) -- Reports -

Descriptive (14

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Authoring Aids (Programing); *Computer Games;

Computer Graphics; *Computer System Design;
Courseware; *Databases; Higher Education; Models;
*Networks; *Semantics; Specifications

IDENTIFIERS *Associative Networks; *Computer Based Memorization
System

ABSTRACT

The Computer-Based Memorization System (CBMS), which
specifies the facts that students are to know and how well the facts
are to be known, uses a compiled form of an associative network for
its knowledge database. (An associative network is a knowledge
representation that uses associations for its basic representation of
knowledge.) The CBMS provides eight comouter games which use
randomness and scoring to make the memorization more interesting. In
addition, the games create and modify a file containing a model of
the student's current knowledge of the material in the database. When
the data in this file shows that a student knows a particular fact,
the games stop asking questions about that fact. Three additions to
the use of associative nets have been made in this system: (1)

importance values had to be associated with items and statements to
permit authors to emphasize features and support files containing
models of students' knowledge; (2) pictures had to be associated with
items; and (3) groups of anticipated answers had to be associated
with items to allow a range of acceptable student answers. With these
changes, computer-based memorization systems appear to be an
effective tool for the mastery of factual knowledge. (4 figures and
12 references) (EW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U $ DEAIMAENT Of EDUCATION
Office of Educational F,,search and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

It This document has been reproduced as
received from the person or organization
originating it

C Minor changes have been made to Improve
reproduction quality

Points of VOW of opinions stated in tims docu
ment dd not necessarily represent official
OERI position or policy

Building Databases for the Computer-Based* Memorization System

Richard C. Brandt
Computer Science Department

University of Utah
Salt Lake City, Utah, 84112

September 20, 1988

1 Introduction

Building databases for the Computer-Based
Memorization System (CBMS) is different
from creating ordinary script-based
Computer-Aided Instruction (CAI). In
script-based CAI, authors specify precisely the
materials to be presented and the type of
presentation. In CBMS, authors specify the
facts that students are to know and how well
these facts are to be known. In the domain of
fact acquisition the creation of instructional
materials using CBMS knowledge databases
appears to be significantly less time-consuming
tltn the creation of script-based CAI for the
same purpose. In addition, the use of CBMS
for memorization appears to be on a sounder
theoretical basis than using ordinary
script-based CAI.

'The development of the CBMS programs was sup-
ported in part by the Navy Personnel Research and De-
velopment 0 ater Contract NO0244-83-C-1759. 01987
Richard C. fandt NOTICE: This material may be re-
produc -1 by or for the U.S. Government for its internal
uses.

1

2

CBMS uses an associative network for its
knowledge database. An associative network is
a knowledge representation that uses
associations for its basic representation of
knowledge. Objects in this representation are
described by associating attributes with them.
This paper describes the issues involved in
creating and editing the file that defines an
associative network. The CBMS games use a
compiled form of this associative network.

1.1 CBMS Games

Students use eight CBMS gamest to learn
facts. The eight games us' randomness and
scoring to make the memorization more
interesting. In addition, the games create and
modify a file containing a model of the
student's current knowledge of the material in
the database. When the data in this file shows
that a student knows a particular fact, the
games stop asking questions about that fact.

'The Computer-Based Memorization System Student
Manual[4] describes the games in detail

BEST COPY AVAILABLE

The games distinguish between recall and
recognition answers. Students usually may
enter (recall) the answer to a question. If they
are unable to recall the answer, they can try to
select (recognize) the correct answer from a list
of possible answers.

Although the main purpose of the CBMS
games is the acquisition of factual knowledge,
different games have different purposes that
help students develop a variety of procedural
skills. The particular purposes of the eight
CBMS games are:

Concentration. Concentration's purpose is
to reinforce the perception of relationships
among items. The game uses a matrix board
on which each row and column corresponds to
items in a selected category.

Constraint. Constraint's purpose is to help
students learn to discriminate among members
of a selected category. Students decide whether
a given statement is true or false for each item
in a list of category members.

Flashcard. Flashcard's purpose is to help
students recall all facts about members of a
selected category. Flashcard is an electronic
version of conventional study aids based on
flash cards.

Identify. Identify's purposes are to help
students (1) identify members of a selected
category from short descriptions and (2) review
facts about the identified members.

Jeopardy. Jeopardy uses a matrix game
board to teach students to identify membe-s of
selected categories from their complete

2

:3

descriptions.

Matrix. Matrix's purpose is to help students
learn those items in the database have similar
properties.

Picture Quiz. Picture Quiz's purpose is to
provide students with practice in recognizing
objects from pictures.

Twenty Questions. Twenty Questions'
purpose is to give students practice in selecting
and creating discriminating questions.
Students ask questions with yes/no answers to
eliminate all but a single item from a list of
database items.

1.2 Other CBMS Programs

In addition to the games, there are thee other
CBMS programs.

Browser. Authors and students use Browser
to examine CBMS databases. Browser shows
the structure of a database and lists attributes
of item in the database.

Fromtext. Authors use Frumtext to convert
text representations of associative networks
into forms that can be used by the CBMS
games and Browser.

Totext. Authors use Totext to convert CBMS
databases from the forms used by the CBMS
games to a text representation that can be
examined and modified.

1.3 Cognitive Science Basis The elements are the three phrases

The associative net model of memory
influenced both the design of the Tactical
Gaming System (CBMS's predecessor)
developed by Drs. Ronan, Crawford, and
McCandless of the Navy Personnel and
Research and Development Center[10, 61 and
the design of the CBMS games. The following
sections describe the associative net model and
related recall experiments.

1.3.1 Associative Net Memory Model

The associative net model of memory provides
the theoretical basis for CBMS.2 Variants of
this memory model provide useful descriptions
of memory functions such as retention and
retrieval.

The associative net model of memory3 asserts
that memory is constructed from elements
(words, strings, pictures) interconnected to
form cognitive units called traces. For
example, assume the following fact is in
long-term memory.

"Ronald Reagan" was elected" president;

'Associative nets have been used for describing mem-
ory since the initial work of Collins and Quinlan [5]
They have also been used for substantially more com-
plex systems. For example, Rumelhart and Norman[12]
treated networks including nodes for events, concepts,
find episodes. Associative Networks edited by Findler[8]
contains a collection of essays on associative networks.

'Much of the information discussed in this section
comes from John R. Anderson's book, Architecture of
CognitionV. The model discussed here closely follows
the model used in Anderson's ACT* theory.

3

4

"Ronald Reagan"

"was elected"

president

and the trace connects the three phrases to
form a fact. An element can be in many
traces. For example, most people can recall
many traces (facts) involving each of three
elements above.

In the associative net model, a student will
recall a trace or element in long-term memory
only if there is a path connecting it through
traces to elements in working memory. For
example, if a student is trying to name the last
five presidents, and the trace "Ronald Reagan
was elected president" is in the student's long
term memory, there is a certain probability
that the student will recall the element
"Ronald Reagan" because the element
"president" is connected to the element
"Ronald Reagan." In other words, since the
trace "Ronald Reagan was elected president"
is in long term memory of the student, the
student may associate the element "Ronald
Reagan" with the element "president."

In the associative net model, if an element or
trace is in working memory and not yet in
long-term memory, there is a certain
probability (this probability depends on the
individual) that a copy of the element or trace
will be created in long-term memory.
Furthermore, if an element or trace is in both
working memory and long-term memory, the
strength of the element or trace in long-term
memory is increased. The recall probability of

an element or trace is proportional to its
strength. Additional separate occurrences in
working memory of the element or trace
further increase its strength. The strength of
unused elements and traces slowly decreases
with time at a rate that is dependent on the
individual.

The recall probability of a trace or element is
related to its activation. Activation is a
measure of the "activeness" of a trace or
element. If the activation of an item is large,
its recall probability will be higher. The initial
sources of activation are items and images in
working memory that have been received from
the external environment. The activation
spreads from an active mode to its nearest
neighbors (closest associates). For example, if
the element "president" is in working memory,
activation will spread to the elements
"Reagan," "Carter," "Ford," "Nixon,"
"Johnson," and "Kennedy." The relative
activation of these elements will be
proportional to their strength. For example, if
each of the elements has equal strength, the
activation of each one will be equal; or if an
element has much greater strength than the
other elements, its activation will be much
greater than that of the other elements. The
amount of activation that an element can
provide is limited and independent of the
number of its closest associates. For example,
call the amount of activation "A." If an
element has just one associate, it will receive
the entire activation "A." If an element has
five associates, each of equal strength, each will
receive a fifth of the activation, "A/57 This is
called the fan effect.[1]

4

Activation spreads through an associative
network from neighbor to neighbor. An
element or trace may receive activation from
several neighbors. For example, assume a
student is trying to recall the name of the man
"who was elected president in 1800 and wrote
the Declaration of Independence." Then the
elements in working memory that serve as
sources of activation are:

president
1800

"Declaration of Independence"

These all are associates (nearest neighbors) of
the element "Jefferson" and each will
contribute to the activation of the element
"Jefferson."

1.3.2 Recall and Recognition

Recall and recognition experiments have
demonstrated that the length of time that a
trace is continuously in working memory has
little effect on its later recognition or recall.[11]
Consequently, there is no point in having
students repetitively answer the same question
in the CBMS games. The CBMS games use a
two-in-a-row game rule to avoid this.
Specifically, if a student correctly answers a
particular question two times in a row4,5 the
game will not ask the question again.

4Nelson[11] demonstrated a small but not insignifi-
cant positive effect of repetition within a test session,
particularly if there were intervening questions.

'There may be, and almost always are, intervening
questions in a game.

Recall answers are generally more difficult for
students for two reasons. First, in the
associative net model, there is less activation
for a recall answer than a recognition answer
because a students see one more component
(the answer) of a fact in a recognition answer.
Second, recall answers in games require that
students type the answers. Because of these
added difficulties, the CBMS games give more
points for recall answers.6

Past experiments have shown that practice
leads to greater accuracy and shorter recall
times if there are many practice sessions. For
example, Anderson[1] (p. 183) found that the
recognition time for sentences consisted of two
components: an intercept time independent of
the number of practice sessions and a
component inversely proportional to the
number of practice sessions to the 0.36 power;
that is

T = Intercept + Constant * P-°36

where P is the number of practice sessions. In
CBMS, the use of the two-in-a-row rule and an
"Importance" file permits authors to control
the minimum number of separate practice
sessions in which students will have to answer
questions involving a database fact or item
correctly. A number called "Importance' is
associated with each item and fact in a CBMS
database. Each time a student answers a
question involving a particular item or fact
correctly, one is subtracted from its
Importance; each time a student answers a

°During a game students may obtain more points by
selecting recognition answers simply because it takes less
time to move the cursor to a correct answer in a menu
than to type a recall answer.

5

6

question incorrectly, one is added to its
Importance. The probability that a particular
item or fact will appear in a question is
proportional to its Importance. When the
Importance of an item or fact reaches zero, it
will not appear in questions. The two-in-a-row
rule keeps the Importance of an item or fact
from going down more than two during any
game session. This allows an author to specify
in advance the minimum number of practice
sessions that will include a particular item or
fact. For example, if an author initializes the
Importance of an item or fact at 10, the
students will see questions involving the item
or fact in at least five (5 = 10/2) separate
sessions.

1.4 CBMS Databases

CBMS databases are associative networks that
contain the material to be memorized. As
such, they contain statements and items.
Statements correspond to traces in memory
and items correspond to elements in memory.

1.4.1 Statements

CBMS databases contain two types of
statements:

Categorization statements. A
categorization statement specifies the
category to which an element belongs. An
element may belong to only one category.

Attribute statements. An attribute
statement specifies a property of an

element in the databases.

Categorization probably plays a more
important role in CBMS than it does in
memory. The category membership statement
in CBMS is "isa." Categories are important in
CBMS games because to play, students select
one or more categories for study.
Categorization in CBMS is stricter than it is in
memory. Each item in CBMS must belong to
one and only one category. For example,
CBMS prohibits having the following two
statements in the same database.

"Ronald Reagan" isa Republican;

"Ronald Reagan" isa president;

The category structure in CBMS is similar to
biological classification including inheritance of
attributes. For example, assume the following
three classification statements are in the
database.

hound isa dog;

beagle isa hound;

Snoopy isa beagle;

In CBMS "Snoopy" will inherit the attributes
of dogs, hounds, and beagles. For example,
"Snoopy"will inherit the attributes given in
the following statements:

6

dog has "4 legs";

dog eats seat;

dog "related to" wolf;

hound ears drooping;

hound voice deep;

hound "follows prey by" scent;

beagle coat smooth;

beagle legs short;

beagle size small;

Because of inheritance7, categories may only
have attributes that characterize all or a least
most of their members. Because of inheritance,
authors need to associate directly with a given
item only those attributes that distinguish it
from other members of the same category.

1.4.2 Items

CBMS databases contain four types of items:

Words. A word is a single word.

Strings. A string consists of an ordered list
of words. For example, the phrase
"Ronald Reagan" is a string.

Pictures. A picture may contain graphics,
text, and video.

Alternative Answers. An alternative
answer is a list of words and formatting
statements that define acceptable student
answers associated with an item.

71n CBMS, authors can prevent the inheritance of
particular attributes. For example, it is possible to state
that "birds can fly" and Oen prohibit penguins from
inheriting that attribute.

Alternative answers are used in the
analysis of students' recall answers.

1.4.3 Constraints

A CBMS database is not as expressive as other
associative networks because it contains only
three-part statements. For example, it is not
possible to express in CBMS the following:

Snoopy followed Molly "to the park";

The restriction to three-part statements
simplifies question generation in the games.
Question generation is simple using three-part
Etatements,8 but it is difficult with four-part
statements.

There is an additional practical restriction.
Because students must recall and enter
answers that are one part of a three-part
statement, these parts cannot be too
complicated. CBMS works better with short
answers than with long ones.

2 Specifying the Knowledge

Specification of the facts to be mastered using
a CBMS database is similar to ordinary
instructional design.

sAuthors obtain questions with a particular form by
associating question templates with the "relations" in a
CBMS database.

7

S

2.1 Objectives

The first step in creating a CBMS database is
to define the objectives and the intended
audiences. Witat are students expected to
know? This definition process is far more
specific and restrictive for CBMS than for
ordinary instruction. For example, the
objective of a beginning physics course might
be mastery of elementary mechanics. In the
instructor's mind this includes both procedural
and factual material. This type of specification
is too general for CBMS. A more acceptable
specification would be "the names and
attributes of around 40 basic formulas in
elementary mechanics and the names and
attributes of around 10 problem-solving
procedures." A specification of an expected
audience could be "university freshmen and
sophomores who have already taken one course
in calculus." Another example of a
specification acceptable for CBMS would be
"200 facts on cranial nerves for first-year
medical students in a neuroanatomy course."

Initial objectives may not be too specific
because instructors often don't know how
many facts they are currently presenting to
students. However, setting an initial limit on
the number of facts helps avoid the problem of
too large databases.

9CBMS requires names for all items and that every-
thing be explicit. For example, this requires a name for
a problem-solving procedure, the specification of the cri-
teria for using it, and the listing of its attributes. This is
unlike the standard "example-driven" teaching in physics
where an instructor will show a problem solution, but
will not name the problem-solving procedure or explic-
itly identify the criteria for its use. Often students must
"discover" these criteria by doing homework problems.

2.2 Data Collection

Facts may be obtained from various sources.
Example sources are:

textbooks
reference books and user manuals
teachers and instructors
experts

In the process of collecting facts, the objectives
will become more specific. Usually, the items
that will be subjects of questions will become
well defined. For each item, there will be a list
of attributes that characterize it 10 The initial
lists of attributes probably will include facts
that may not seem absolutely necessary for the
student to know. Initial inclusion of these facts
does not hurt, however, they should be marked
for possible later exclusion. The initial lists
should not include facts that students clearly
do not need to know.

A "naming" problem may occur at this stage if
there are several names for an item or there is
no name for an item. If an item has several
names that should be known by students, the
names may be combined. For example, the
first cranial nerve is called both "Olfactory
Nerve" and "Cranial Nerve I." The two lames
may be combined to form "Olfactory N./CN
I." A more difficult problem is the absence of a
name for an it um. For example, if the item is a
particular problem-solving procedure in
physics, the procedure may have no nar
Two solutions are possible; either a

10Items cannot be distinguished by name alone in
CBMS.

8

9

place-holding name such as "ProcedureC" may
be used, deferring the problem, or a name may
be made up. Since CBMS permits phrases as
names, made-up names can be descriptive.

2.3 Common Features

Features common to many items will usually
appear in the initial fact collection. For
example, most cranial nerves:

have at least one function
enter the cranium thrcugh a foramen
have at least one functional component
have cell bodies in a particular location

Common features of a database item are easier
to spot if its attributes are listed immediately
after it in alphabetical order. Errors of
omission can be detected by reviewing the
common features. For example, a review of a
database may show that many but not all
items have certain features. Should all items,
or at least all similar items, have these
features? If they should, then more data must
be collected.

2.4 Categorization

The categorization of items when the subject
matter has an already defined structure is
easy; the categorization can follow the existing
structure. For example, most biological
systems are already classified. When there is
no usable predefined structure, the items may
be categorized using the following rules.

1. Items with common features belong in
the same category.

2. A category usually should have only
features common to its members.

3. The categorization should be shallow;
that is, a student selecting a category to
study should not have to make more
than one or two choices.

2.5 Expert Review

After the subject matter has been organized
into a database, other subject matter experts
should review it. Generally, they will address
the following questions:

Are there items omitted that should be
included and vice versa?
Are there facts omitted that should be
included anti ce versa?
Is the categLzization reasonable or are
there better categories?

Some disagreement is to be expected. In
particular, there is often disagreement between
individuals who use the information in the
field and those who teach it.

2.6 Revision

Before the database is revised, a limit should
be set on the number of facts that students
will be expected to know. Authors sometimes
make the mistake of including in the database
all facts that the experts think are important.
This ignores the fan effect, which implies that

the more attributes an item has, the more
difficult it will be to recall any particular one.

It is important to identify and include these
facts that experts use in item recognition and
in decision-making. A recent study by Grant
and Marsden on medical diagnosis[9] revealed
that differences in diagnostic :.xpertise between
specialists and medical students could be
explained by identifying facts that the
specialists felt were most important ("forceful
facts") in the diagnosis.

9

10

3 Implementation

Implementing a CBMS database includes four
steps:11

creating and editing the defining text file
with an ordinary te>_., editor
creating and editing pictures with the
sequence editor
compiling the files with Fromtext
evaluating the databases with Browser
and the game programs

3.1 CBMS Text Files

CBMS text files may be edited and created
with any text editor that produces an ASCII
text file.

"Implementation of CBM3 databases is described in
detail in the Computer-Based Memorization System Au-
thor and Instructor Manual[3].

3.1.1 Form

The categorization and attribute statements in
a CBMS text file consist of three parts:

1. subject
2. relation
3. object

Each part may be a word or a string. A string
is just an ordered collection of words or
numbers; for example, the phrases "Ronald
Reagan" and "4 wheels" are strings. Double
quotation marks mark the beginning and end
of strings. Statements always end with a
semicolon. Example statements are:

"Ronald Reagan" "was elected" president;
"abducens nucleus" isa nucleus;

Occasionally the second part of a statement,
the relation, corresponds to a verb.

Categorization All items in CBMS
databases belong to a category. An item
belongs directly to a category if there is a
categorization statement of the form:

item_name isa category_name;

An item is an indirect member of a particular
category if it is a member of another category
that is either a direct or indirect member of the
particular category. There are four predefined
categories: the most general category to which
all items in the database indirectly belong,
db_item, and the three categories:

10

11

db_element

db_relation

db_object

All items that are to be subjects of questions
must belong either directly or indirectly to the
category db_element. A member of the
category db_element may be either the subject
or object in statements. Items that may be
either the subject or the object in statements
but not the subjects of questions belong to the
category db_other. Relations must belong to
the category db_relation.

Attributes Attributes describe items in the
database. The complete description of an item
consists of attributes specific to the item and
attributes that characterize the categories to
which the iterr? belongs. For example, the
attributes specific to a beagle are:

beagle coat smooth;

beagle legs short;

beagle size small;

Beagles also have the attributes of hounds and
dogs since they are members of the categories
hounds and dogs. Note that the preceding
statements are terse and the relations in the
statements restrict the possible objects. In
CBMS, the question formats that specify how
questions are to be generated, are associated
with the relations. Questions that might be
generated from the preceding three statements
are:

What type of coat does a beagle have?

What length (short, medium, long) legs

does a beagle have?

How large a dog is a beagle?

If a more general relation such as "has" is
used, the questions cannot be as specific. For
example, assume the attributes specific to a
beagle are:

beagle has "smooth coat";

beagle has "short legs";

beagle has "small size";

Then only one general question is possible.

What does a beagle have?

This question with its three answers is more
difficult than the preceding three specific
questions.

The games also use relations in hint
generation. The alternatives presented in the
hint list are other objects of a relation. For
example, other objects of the specific relation
"coat" might be: "heavy," "rough," "short,"
"wire-haired," and "long." The use of closely
related alternatives is often desirable. The
generation of these alternatives depends on the
use of the same relation. For example, if an
author uses the relation "hair type" and the
relation "coat", the objects of "hair type" will
not be used as hints for an object of a relation
using "coat."

A further advantage to the use of the same
relation when possible (for example, rather
than using "coat" and 'hair type" using only

11

12

"coat") is that its use helps create alternative
paths to an object in the mind; these help
students remember objects. For example, if
students cannot remember the type of coat a
beagle has they might think that a beagle is
like a fox hound and has a similar coat.

If there is no problem with ambiguity, relations
can be terse. For example, "coat" is a terse
relation. Terse relations require less typing and
often are easier to locate in a database.
However, terse relations may result in a
database that ,s hard to read and to evaluate.

3.1.2 Organization

It is easier to review a database tnat has a
consistent structure. The alphabetical outline
method is one reasonable way to organize an
database. In this method, all items belonging
to db_element are placed first, all items
belonging to db_other are placed second, and
all items belonging to db_relation are placed
last. For each major category, the items and
categories that are its direct members are
placed in alphabetical order. Finally, the
attributes of each item are listed in
alphabetical order. Indentation similar to that
used in ordinary outlines may be used.

If there is some natural order, then this should
be used when appropriate. For example, the
twelve cranial nerves are listed in numerical
order.

Categories in the database should not have too
many direct members. There are two problems
with having too many direct members; first,

the fan effect will reduce the activation of each
member 'nd second, impossible and unfair
questions may be generated. For example, one
experimental database 'salted in the
instruction:

Nene the Democrats tn Congress.

3.1.3 Sentence Templates

Sentence templates are patterns used to
convert attribute and classification statements
into forms that can be used in the games.
They are necessary because questions directly

eructed from attribute or classification
statements may sound awkward or be difficult
to understand. Sentence templates are
associated with the relations in a database.
There are four types of sentence templates:

Statement
Subject
Object
Ye__No

Statement templates are used to convert
database statements to acceptable English.
For example, a Statement template may
convert the database statement, "beagle coat
smooth," to "The coat of a beagle is smooth."

Subject templates are used to create questions
when the answer will be the subject of a
database statement. For example, a Subject
template may generate the question "What
type of hound has a smooth coat?" from the
database statement, "beagle coat smooth."

12

13

Object templates are used to create questions
when the answer will be the object of a
database statement. For example, an Object
template may generate the question "What
type of coat does a beagle have?" from the
database statement, "beagle coat smooth."

Yes_no templates are used to create questions
with yes or no answers from a database
statement. For example, a Yes_no template
may generate the question "Does a beagle have
a smooth coat?" from the database statement,
"beagle coat smooth."

Because sentence templates are associated with
relations, they cannot explicitly mention either
the subject or object of a particular database
statement. Instead special symbols represent
the three general components of database
statements.

"%s%" stands for the subject in a database
statement, except when it is used in a Subject
template. In a Subject template %s% stands
for the category to which the statement
subject belongs.

"%o%" stands for the object in a database
statement, except when it is used in 2. Object
template. In a Object template %o% stands
for the category to which the statement object
belongs.

"%r%" stands for the relat;on in a database
statement. Since sentence templates are
associated with relations, use of %r% is
necessary only when sentence templates are
shared by several relations. Templates
associated with a category of relations are
"inherited" and hence shared by the category

members. For example, if the category "dog
feature" has the members "coat," "muzzle,"
and "tail," these members will share sentence
templates associated with "dog feature "

Examples of sentence templates that may be
associated with the relation "coat" are:

coat STATEMEIT "The %a of a %s% is

coat SUBJECT "What has a %o% UV";

coat SUBJECT "What type of %s% has

a %o% %r% ? ";

coat OBJECT "What type of %r% does

a %s% have?";

coat YES_IO "Does a %s% have a %0%

%r%?";

These sentence templates will generate the
example sentences and questions on beagles
contained in this section (p. 12) when "beagle"
replaces %s% (in the second Subject template,
"hound" replaces %s%), "coat" replaces %r%
and "smooth" replaces %o%.

If a database is to be used with all the games
and Browser, each of the four types of sentence
templates must be associated directly or
indirectly through inheritance with each
relation in the database.

Creating Templates A sentence template
for a question is formed by (1) creating a
question from a database statement and (2)
replacing the instances of the subject in the
question with %r% and the instances of the
object with %o%. Statement templates are
created in a sirr.:lar manner. Questions must
be carefully written so that they are not

13

14

ambiguous. Students regard ambiguous
questions as unfair. Since the templates are
associated with relations, the relations do not
have to appear in templates. Often using
words different from the words in the relation
will result in a clearer question or statement. If
questions or statements cannot be made dear
for all potential objects or subjects, it may be
necessary to introduce additional relations.

The articles used in the templates must be
chosen with care. If none of the objects or
subjects that appear after an article either
start with a vowel or are plural, use of the
article "a" is acceptable; otherwise, it is better
to use the article "the."

3.1.4 Anticipated Answers

Anticipated answers are specified by using the
MATCHED_WITH relation in statements. For
example, the statement:

"Oculomoter ./CI III" MATCHED_WITH "CM
III I oculomotor I cranial nerve III";

associates the anticipated answer "CN III I

oculomotor I cranial nerve III" with the
database item "Oculomotor N./CN III."
Students' answers are first compared exactly
against the item's name ("Oculomotor N./CN.
III" in the preceding example). If a student
answer matches exactly, it is correct. If a
student answer does not match an item's name
and an anticipated answer has been specified,
the student answer is compared with the
anticipated answer. If they match, the student
answer is correct.

The use of anticipated answers makes the
games much more acceptable to students and
distinguishes CBMS databases from ordinary
associative nets that do not use anticipated
answers. Because the answer analyzer strips
punctuation marks from student answers,
anticipated answers do not contain
punctuation marks. Anticipated answers and
the ways in which they are matched against
student answers are described using the
following terms.

Tokens Anticipated answers are constructed
from special symbols and tokens. A token may
be a number or an identifier. There must be a
space on both sides of a token unless it is the
first or last token in the anticipated answer.

A number is a sequence of digits that may
include a few special characters. Examples are:
"122," "1000, " and "1.34e-15." The default
tolerance is ±3%. For example, if an
anticipated answer is 100, student answers
between 97 and 103 will match. A different
tolerance is specified by including after a
number a percentage. For example, an
anticipated answer of 100 %1 match
student answers between 99 and 101, inclusive.
A range may be specified instead. A range is
specified by a lower bound followed by two
dots (periods) and then an upper bound. For
example, if the anticipated answer is 101 ..
103, student answers between 101 and 103
inclusive will match.

An identifier is any sequence of letters and
digits that is not a number. Examples of
identifiers are: "ball," "operation," and

14

"lfflOd." Identifiers in anticipated answers
may include a spelling tolerance. The default
tolerance is 20%. A different tolerance may be
specified by placing a percent symbol after the
answer followed by the tolerance percentage. A
0% tolerance requires exact matches. A
spelling checker computes a score when it
compares two words and compares this score
with the tolerance. The spelling checker
assigns different weights to different errors. For
example, the initial letter of each word counts
twice as much as the other letters and a
transposition of characters counts as one third
of a letter that disagrees. The spelling checker
will remove the last "s" from a student answer
if doing so improves the match. Examples of
anticipated identifiers are: "trip," "helicopter
%0," and "gadhafi %50."

Modifiers Modifiers are special symbols
used as prefixes for tokens in anticipated
answers so that student answers will be
interpreted in special ways. There are four
modifiers.

Oc means that the cases of the letters
(upper-case and lower-case) in a student's
answer are important. Normally the cases are
;pored. For example, the answers trip, Trip,
and TRIP match the anticipated identifier
trip. If the anticipated identifier is Oc Trip %0,
then only the answer Trip will match it. A
letter in the wrong case counts as a letter that
disagrees.

01 means that the number following 01 is to
be interpreted as a character sequence rather
than as a number. For example, only the

15

answer 5 will match 015; the answer 5.00 will
not. This format is useful in counting and with
numbers used for identification lather than as
numbers; for example, Boeing 01737.

Op means that the token is to be used as a
pattern rather than as a separate token. A
word will match the token if a portion of the
word 1+-ts the same pattern. For example, the
pattern Opamp will match the student answers
amps, amperes, amp, damp, kiloamps since in
each case the pattern amp is present. Patterns
are case seLstive; for example, Opamp will not
match Amp.

0 means that the identifier following 0 is to
be interpreted as a character sequence and that
no further processing to be done on it. This
permits anticipated answers to contain special
symbols that are used in answer specification.
For example, the pattern ©(expression) will
match the student answer (expression).

There is no space between a modifier and the
token it mod.fies.

Words A word is a token or a token
prefixed WW1 3 modifier. Examples of words
are: "hel:cu: and "©cWashington."

Wordlist:: Zv!,.-scil Answers A word
list can b, word or a list of words
separatec' ..k.i,ces. Examples of word lists
are:

five 116

a the

helicopter

15

1G

Word lists are used in "Or" anticipated answer
parts and "Optional" match anticipated
answer parts.

An Or answer part consists of the special
symbol Co and a word list inside parentheses.
If a student's answer contains one item in the
word list it will match the Or part.

The Optional answer part consists of the
special symbol 0? and a word list inside
parentheses. An example is " © ?(a the)." If a
student's answer contains one or none of the
words in the word list it will match the
Optional part.

An example of an anticipated answer
containing an Or and an Optional part is: "I
like © ?(a the) 0o(red white) rose". It
matches the following student answers:

I like red roses.

I like the red rose.

I like a white rose.

Since the spelling checker removes the last "s"
from tokens if that will improve the match, the
first student answer matches although it
contains "roses" instead of "rose."

Range and Anything Match Answers
Anything match answers, Oa answers, are
appropriate when the particular tokens in the
student answer are not important; only the
number of tokens is important. Three methods
for specifying ranges are supported with "Oa":
an asterisk, *, specifies a range of zero or more
tokens; a plus sign, +, specifies a range of one

or more tokens; and two numbers separated by
a comma, m, n, specify a range explicitly. For
example, the anticipated answer "a big Oa*
ball" will match the following student answers:

a big ball

a big red ball

a big red and white ball

The tokens "red", "and", "white", match Oa*.
An example of the use of an explicit range is
"a big 0a1,3 ball ". It matches the first two
but not the second two of the following four
answers:

a big red ball

a big red and white ball

a big ball

a big red white and blue ball

Part A part of an anticipated answer may be
a word, an Anything match of a range of
words, an Or match of one word in a word list.,
or an optional match to one word in a word
list. For example, in the anticipated answer "I
like 0?(a the) Co(red white) rose" the parts
are:

I

like

0?(a the)

0o(red white)

rose

Partlist A partlist is a list of one or more
parts. An example of a partlist is:

16

17

I like 0?(a the) 0o(red white) rose

A partlist is matched if each of its parts match
corresponding parts in the same order in the
student answer.

Pattern A pattern is a partlist that may be
marked at the beginning with ©b or at the
end with ©e. If CO marks the beginning of a
partlist, the text after Ob must be at the
beginning of a student answer. If Oe marks the
end of a partlist, the preceding text must be at
the end of a student answer.

For example, the anticipated answer

wo I like 0?(a the) red rose

will match the student answers:

I like red roses and purple violets.

I like the red rose that won first

place in the contest.

but not the answers:

In the park, I like the red roses best.

I like violets and I like red roses.

If neither Oe nor ©b is present, the partlist
may appear anywhere in the student's answer.
If both Oe and Ob are present, a student
answer containing the anticipated answer part
alone is the only matching answer.

Excludes Occasionally, it is useful to look
for the absence of some pattern in a student
answer. Preceding a pattern with the minus
sign, -, excludes it. For example, the following
anticipated answer

0?(a the) red rose -00(not Opn't)

will match the following student answers:

I like red roses

he does like red roses

but not:

I do not like red roses

he doesn't like red roses

The excluded wordlist "not ©pn't" provides a
way of handling single negatives in student
answers.

Pattern list A patternlist is a list of patterns
separated with the special symbol "In and
optionally followed by a group of patterns that
are excluded. For example, the anticipated
answer

0?(a the) rod rose -00(not Opn't)

is a patternlist because it contains an excluded
pattern. The first pattern is

and the second pattern (which is excluded) is

00(not Opn't)

Technically, all anticipated answers are
patternlists; usually, they will consist of only
one pattern. An example of a patternlist using
the special symbol "In is

He likes red roses I She likes violets

Note that there must be a space on both sides
of the special symbol "I". In separates the
patterns in a patternlist. Students' answers
match if they match a pattern in the
patternlist.

3.1.5 Changing Default Values

Default values are used for items such as the
tolerance to simplify editing. The default
values can be changed or overridden by
including appropriate statements in a CBMS
datafile.

Default Tolerances The default tolerances
for numbers (3%) and strings (20%) may be
changed. The change will affect following
items in the file. For example, the statement

DEFIULT_OUNERICAL_TOLERAICE 10;

changes the default numerical tolerance from
e?(a the) red rose its current value to 10%. The statement

17

18

DEFIULT_STRINO_TOLERANCE 16;

changes the default string tolerance from its
current value to 15%. Default tolerances may
be changed at several places in a CBMS
datafile.

Specifying Importances The Importance
of an item or a fact determines the net number
of times a student must correctly answer
questions involving it before it is "known."
The games do not ask questions about
"known" items and facts. The net number is
the number of correct answers minus the
number of incorrect answers. For example, if
the fact:

beagle coat smooth IMPORTANCE 10;

is included in a CBMS database text file, the
games will continue to ask questions involving
it until the number of correct answers to
questions involving it entered by a student
exceeds the number of incorrect answers by 10.

The Default Importance is used when the
Importance of an item or fact is not explicitly
specified as above. Initially it is 3. Its value is
changed by including a statement specifying a
new value for it. For example, the following
statement changes it to 10:

DEFAULT_INPOITANCE 10;

The Importance of the items and facts
following this statement in the database will
be 10 unless specified otherwise.

18

Inheritance The games use attribute
inheritance, that is members of a category by
default "inherit" the attributes of the category.
For example, if beagles belong to the category
of hound, beagles will "inherit" the attributes
of hounds (drooping ears, deep voice, etc.).
Sometimes, it is desirable for a category to
have attributes that are not inherited by all
the category members. This is done by placing
the word "NOINHERITANCE" after a
statement of the attribute that would normally
be inherited by a category member. For
example, the statements

bird ability fly;

penguin isa bird;

penguin ability fly NO_INHERITANCE;

assert that all members of the category birds
except penguins have the ability to fly.

Synonyms SYNONYM_FOR is a predefined
relation that associates either a word with its
synonym or a unit with a number and a
related unit. Examples are:

in STIONIT_FOR "1 inch";

in smortm_Foi. "2.64 ca ";

lest SYNONYN_FOR "12 inch";
foot SYNOMYM_FOR feet;

yard STIONYM_FOR "3 feet";

meter SYNOWYM_FOR "100 cm";

When a student plays a game, the game uses
the conversion tables specified with the
SYNONYMYOR statements. These convert
units appearing in student answers. For

19

example, if the anticipated answer is "1000
yards" and a student enters "3000 feet," the
student's answer will match the anticipated
answer if the preceding SYNONYM_FOR
statements are in the database.

Hidden By default the games will present all
possible questions. Occasionally it is
undesirable to generate questions involving a
particular item or relation. Often it is
desirable to hide the "isa" relation because the
categorization information can result in trivial
questions. For example, in a database on
cranial nerves, the class membership question
"What is the abducens nerve?" appears with
the trivial answer of "cranial nerve" because
the database contains the categorization
statement:

"Abducens 11./0 VI" isa "cranial nerve";

Class membership questions will not appear if
the following statement is in the database:

isa HIDDEN;

Including this statement "hides" the relation
"isa" and blocks the presentation of any class
membership questions. In general, placing the
word "HIDDEN" after a relation or an item,
"hides" it. The games do not generate
questions involving a hidden relation or item.

3.2 Pictures

Pictures induding graphics, video, and text
may be associated with items in the database.

Pictures, which consist of a linear sequence of
text, graphics, and video frames, are called
sequences. In CBMS datafiles, a picture is
identified by naming file containing the
picture and then assocutCaig the picture with
an item. A statement consisting of the word
"USE_DISPLAYFILE" followed by the name
of the file containing the pictures identifies the
file. Since pictures are always stored in
sequence files, the file name extension, ".SEQ,"
is omitted. For example, the following
statement identifies the file "nerves.SEQ."

USE_DISPLAYFILE nerves;

Pictures are associated with items by including
a statement consisting of the word
"USE_DISPLAY" and the name of the
sequence that is the picture. For example, the
following statement associates the sequence
"abducens" with the item "Abducens N./CN
VI."

" Abducens 11./01 VI" USE_DISPLAY

abducens;

Authors use the Sequence Editor,12 se, to
create and edit sequences. The Sequence
Editor is started by entering in response to the
system prompt "se" followed by the name of
the file to be edited or created. For example,
to edit or create the file nerves,

SO nerves

"The Sequence Editor is described in detail in the

Sequence Editor 14anual[21

19

20

FILE: /cal/chess/interaction/nerves
Targets: (frames) Sequence, Display

Identification

1. ..
2. abducens
3. oculomotor

<Parent>
<Sequence>
<Sequence>

Select from Above

Identify: Inspect Select Create Copy 1.4nk_to Quit

Figure 1: Identification Menu

is entered in response to the system prompt.
The screen will be cleared and the
Identification Menu (see Fig. 1, p. 20) will be
displayed.

The Identification menu lists the sequences in
the file and the "parent" of the file that is
represented by two dots. A sequence is created
by choosing the command Create and then
entering its name. A sequence is edited by
moving the cursor to the sequence's name (use
the up and down arrow keys or CTRL P and
CTRL N) and then choosing the command
Select. After a sequence is selected a created,
the screen is cleared and the Sequence
Instruction Menu (see Fig. 2) will be displayed.

The Sequence Instruction Menu lists the
sequence instructions. A sequence instruction
usually consists of a command that identifies
the type of frame and the frame name. For
example, the instruction

Show_graphics "abducens highlight"

..

Sequence: abducens

Sequence Instructions

1. Show_video "abducens"
2. Show_graphics "abducens highlight"
3. Wait System
4. End of List

Select from Above

Seq.: Edit Window Line Menu Graphics Video Note
Clear Prompt Wait Backup Name Tryout >>

Figure 2: Sequence Instruction List

specifies the display of the graphics frame
named "a.dbucens highlight." The
commandline at the bottom of the screen lists
the commands. Only the following three
commands are described here: Edit, Graphics,
and Video. An instruction is edited by moving
the cursor next .1 the instruction and then
choosing the command Edit. A graphics or
video instruction is created by choosing the
command Graphics or Video and then entering
the name for the graphics or video frame.

Graphics When a graphics frame is edited
or created, the screen is cleared and the main
graphics commandline along with the graphics
is displayed (see in Fig. 3).

Authors use the graphics command Edit to
create and edit graphics. When the Edit
command is selected, the Edit commandline
shown below is displayed. This commandline
lists the graphics objects that may be used:

20

21

EDIT: Line Circle Arc Curve Fill Zone Symbol

FRAME: Edit Undo Working View Name Clear Quit
Status Modify Reorder Copy Examine >>

Figure 3: Graphics Editing

Group Delay Bound Quit

Symbols are user-defined graphics objects that
are stored in a library. For example, in the
graphics shown in Fig. 3, the triangular
objects are symbols called "inverters" and the
objects with the semicircular ends are symbols
called "Nand2 gates."

Selecting a graphics object adds graphics to a
picture. When an object is selected, new
commandlines appropriate to that object are
displayed. For example, when Line is selected,
the following commandline is displayed:

LINE: Add Delete Relocate Move Rotate Extend
Zoom Undo Color Background Index Pause
Default Line Circle Arc Curve Fill Zone >>

Graphics objects are created by placing points
on the screen using the Add command. For

Video: abducens

Video Control Frame

1. Start Frame 1298
2. End Frame 1298
3. Play Speed Normal
4. Video Image On
5. Audio Channel Both
6. Final Video State On
7. Frame # Display Of
8. Student Control None
9. Videodisc Name <none>

Select from Above

VIDEO: Edit Tryout Clear Undo Name Quit

Figure 4: Video Control Frame

example, if Line has been selected and points
are added, a sequence of lines will be drawn
through the points.

Video When a video frame is edited or
created, the screen is cleared and the Video
menu and commandline (see Fig. 4) will be
displayed.

The Video Control Frame contains the data
necessary to specify the display of the video.
An item is edited by moving the cursor next to
the item and then choosing the command Edit.
For example, to edit the Start Frame, move
the cursor next to it and choose the command
Edit. The Video commandlines will be
displayed.

Halt On Halt_Off Next Slow Normal Fast Browse
Jump Direction Display Audio Keep Enter >>

The commands may be used to find the
desired video material. If the frame number is
already known, the Enter command may be
selected to enter it.

3.3 Compilation

Authors use the program Fromtext to compile
CBMS textfiles to forms usable by the CBMS
games. Fromtext is started by entering the
word "fromtext" followed by the name of the
CBMS text file. For example, entering the
following line in response to the operating
system prompt

troatext cranial.txt

will compile the CBMS textfile "cranial.txt."
While Fromtext compiles a text file, it prints
on the screen error messages and data that
explain what it is doing. Three flags may be
used with Fromtext: the flag 'q' turns off the
screen display; the flag 'd' prints debugging
information on the screen; and the flag 'o'
specifies that any preceding file with the same
name is to be overwritten. For example, to
compile the CBMS textfile "cranial.txt" and to
display debugging messages

iroatext -d cranial.txt

is entered in response to the operating system
prompt.

Fromtext places the error messages in a file
with the same name as the source file with the

extension is ".ERR." For example, the file
"cranial.ERR" will contain the error messages
generated from the compilation of
"cranial.txt." CBMS files should not be used
with the games if any errors other than those
associated with missing sequence files are
detected.

The program Totext may be used to convert
CBMS databases from the form used by the
games to a text representation. Because
Fromtext discards comments, no comments will
be present in the text file generated by Totext.

3.4 Testing

Fromtext detects the syntactic errors in CBMS
textfiles. These errors must be corrected before
testing for errors is begun.13 The remaining
errors can be found by using the games and
Browser. Browser may be used with the flag
`b' to detect placement problems and poorly
worded statements. For example, to detect
problems with the database "cranial"

browser -b cranial

is entered in response to the operating system
prompt. The flag 'b' permits examination of
the db..other and db_relation categories.
Because Fromtext distinguishes between nodes
by the spelling of their names, a common
problem is the accidental misplacement of an
item because of a spelling error. A version of
the item with one spelling will appear where it

"Error messages resulting from missing sequence files
can safely be ignored.

22

23

was anticipated, the other version will be
placed in the db_other category "Not placed."
Careful examination of the "Not placed"
category will disclose these problems.

Other problems and errors are detected by
playing the games. Common problems are not
providing anticipated answers and misspelling
item names.

4 Revision

Once a CBMS database is running and
appears to be error free, it should be reviewed.
This review supplements the initial reviews of
the subject matter and addresses three issues:

Matched_with statements
Assigning importance
Item exclusion

4.1 Matched_with Statements

The use of anticipated answers specified with
MATCHED WITH statements permits some
latitude in student answers. However, the
latitude is subject-matter specific; the range of
an acceptable anticipated answer needs to be
specified by experts in the field. Anticipated
answers can be evaluated by having experts
play the games and enter answers. Where their
answers are not matched by an anticipated
answer, the anticipated answer must be
modified." The problem of specifying an

"Sometimes the questions are not sufficiently precise.
Solution of this problem generally requires the addition

23

24

acceptable anticipated answer is similar to the
problem of recognizing computer commands[71
with one major difference. While the objective
in recognizing computer commands is to
recognize the commands the user enters, the
objective in recognizing anticipated answers is
to accept only those answers that are
acceptable to experts in the field. For example,
"cranial nerve vii" is considered acceptable by
neuroanatomists, but "cranial nerve 7" is not.

4.2 Assigning Importance

The Importance of items and statements in a
database determines the minimum number of
sessions in which students will have to answer
questions involving the item or statement. One
way to assign Importances is to divide the
items and statements into three groups:
critical, important, and needed but not
impirtant. The Importances can then be
computed by determinn.-; "- maximum
number of separate sessions in wincli btlluta....
can reasonably be expected to use the
database; this number times 2 can be assigned
to the critical items and statements. Then
some fraction of this number can be assigned
to the important and needed but not
important items and statements. For example,
3/4 of the critical importance might be
assigned to important items and statements
and 1/2 of the critical importance might be
assigned to needed but not important items.

of different relations and new sentence tLwplates.

4.3 Item Exclusion

In the revision process databases may become
larger. Experts often are convinced that all
items and statements that seem important to
them must be added to a database. The
consequence of these additions is a database
that is either difficult or impossible for
students to master in the allocated time. At
this point, items and statements must be
removed. There are two ways that this can be
done. First, any items or statements that were
not marked as at least needed can be removed.
Second, entire categories that are not
considered important or critical can be
removed.

5 Summary

The Computer-Based Memorintion System
represents a method for using associative
(semantic) nets, already widely used in
Artificial Intelligence, for Computer-Aided
Instruction. Three additions had to be made
to associative networks to make them useful
for education:

Importance values had to be associated
with items and statements to permit
authors to emphasize features and to
support files containing models of
students' knowledge

Pictures had to be associated with items

Groups of anticipated answers had to be
associated with items to allow a range of
acceptable student answers

24

With these changes, CBMS appears to be an
effective tool for the mastery of factual
knowledge.

The Computer-Based Memorization System is
one part of the Computer-Based Educational
Software System (CBESS). Other parts of
CBESS address vocabulary acquisition,
equipment problem solving practice,
instructional management, and script-based
CAI. CBESS may be licensed 15

5.1 Acknowledgements

Drs. Henry Halff of Halff Associates and
Douglas Wetzel of the Navy Personnel
Research and Development Center evaluated
the games and made many helpful suggestions.
Richard B. Paulsen wrote the current !rsions
of the games and Bradley N. Davis designed
and implemented the libraries used by the
CBMS programs.

The development of the CBMS programs was
supported in part by the Navy Personnel
Research and Development Center through
Contract N00244-83-C-1759.

References

[1] John R. Anderson. The Architecture of

15Darbick Instructional Software Systems, P.O. Box
81157, Salt Lake City, Utah, 84108, licenses CBESS in
both source and executable form for use under UNIX
and MS-DOS operating system. UNIX is a registered
trademark of AT&T Bell Laboratories and MS-DOS is a
registered trademark of Microsoft, Inc.

Cognition. Harvard University Press,
Cambridge, MA, 1983.

[2] R.C. Brandt. Sequence Editor. Computer
Science Department, University of Utah,
Salt Lake City, Utah 84112, April 1987.

[3] R.C. Brandt, L. Gay, B. Othmer, and
H. Raiff. Computer-Based Memorization
System Author and Instructor Manual.
Computer Science Divartment, University
of Utah, Salt Lake City, Utah 84112, April
1987.

[4] R.C. Brandt and R.B. Paulsen.
Computer-Based Memorization System
Student Manual. Darbick Instructional
Software Systems, P.O. Box 81157, Salt
Lake City, Utah 84108, July 1987.

[5] A.M. Collins and M.R. Qui than. Retrieval
time from semantic memory. Journal of
Verbal Learning and Verbal Behavior,
8:240-247, 1969.

[6] A.M. Crawford and J.D. Ho llan.
Development of a computer-based tactical
training system. Speck.' 82-, Navy
Personnel Research and Development
Center, July 1982. Draft Version.

[7] S.T. Dumas, G. Pumas, L.M. Gomez, and
T.K. Landauer. The vocabulary problem
in human system communication.
Communications of the ACM,
30(11):964 -971, November 1987.

[8] Nicholas V. Findler. Associative
Networks. Academic Press, New York,
New York, 1979.

[9] J. Grant and P. Marsden. The structure
of memorized knowledge in students and
clinicians: an explanation for diagnostic
expertise. Medical Educatiln, 21:92-98,
1987.

[10] Timothy McCandless. Computer-based
tactical memorization system. Technical
Note 81-8, Navy Personnel Research and
Development Center, March 1981.

[11] T.O. Nelson. Repetition and depth of
processing. Journal of Verbal Learning
and Verbal Behavior, 16(2):151-171, 1977.

[12] D.E. Rumelhart and D.A. Norman.
Active semantic networks as a model of
human memory. In Proceedings of the 3rd
International Joint Conference on
Artificial Intelligence, pages 450-457,
1973.

25

26

