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ABSTRACT

Several traditional statistical techniques for assessing the

external validity of statistical results are discussed. The

author presents reasons why the jackknife technique is superior

to these traditional techniques. A small data set is used to

illustrate the value of the jackknife statistic in determining

the stability of discriminant function coefficients.
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Use of the Jackknife Statistic to Establish the
External Validity of Discriminant Anal7sis Results

Discriminant analysis is a powerful multivariate technique

which may be used in educational research to classify

individuals into groups or to identify specific dimensions or

qualities which differentiate among individuals in various

groups (Afifi & Clark; 1984). When employing discriminant

analysis (or any other parametric statistical procedure),

researchers are usually concerned with the validity of the

obtained results with respect to the broader population of

interest. As with any statistical technique, there is always the

possibility that discriminant analysis results may simply

capitalize on artifacts Of the sample employed for the study, and

as a result, may not be generalizable to the larger population of

interest. Generalizability is particularly at risk in cases in

which the sample size is extremely small or when the

representativeness of the sample is questionable (Frank, Massey,

& Morrison, 1965).

Researchers and statisticians have developed a number of

approaches for assessing the external validity of statistical

results, yet the value of many of the approaches is offset by

certain weaknesses. In the present study, four traditional

approaches to validation of disc--:minant analysis results are

briefly discussed. Problems inherent to each of these

approaches are presented. Two alternative methods, the U-method
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and the jackknife statistic are discussed, with emphasis upon how

these methods are superior to traditional methods. Selected

variables from a small data set are used to perform a

discriminant analysis to illustrate the value of the jackknife

statistic in a concrete fashion.

Traditional Approaches to Assessing External Validity

Four traditional approaches to assessing the stability of

discriminant function coefficients have been summarized in the

literature (Afifi & Clark, 1984; Cooil, Winer, & Rados, 1987;

Montgomery, 1975). These methods include the following:

(1) The "empirical" method. In this method, the

discriminant function coefficients obtained in a given analysis

are applied to predict group membership in the same sample used

for deriving the coefficients. The degree of "goodness of fit"

is assessed by determining the proportion of cases which have

been correctly classified. Although this method is probably the

most computationally straightforward of all validation

techniques, it tends to produce very biased estimates of

generalizability, particularly when the sample size is small. In

general, use of the "empirical" method tends to overestimate

classification probability since it employs the same sample for

both deriving and validating the discriminant functions (Afifi &

Clark, 1984).

(2) The "holdout" ("cross validation," "split half," or

"invariance") method. Using this method, a researcher can cross-

validate statistical results "by randomly splitting the original



sample. . .into two [approximately equivalent) subgroups: one for

deriving the discriminant function and one for cross-validating

it" (Afifi & Clark, 1984, p. 266). Ideally, discriminant

t.

function coefficients should be calculated for each of the

subsamples, and then validated .using the other sample. The

invariance method is appealing for at least two reasons. First,

it requires the use of a single sample, and consequently can be

easily used within the domain of a single research study.

Second, it minimizes the problem of bias inherent to the

"empirical" method by using different samples to derive and

validate results. For these reasons, the invariance method has

been called "the most popular approach to cross-validation. . .in

all of the social sciences" (Cooil et al., p. 271). The

invariance method is problematic, however, when the sample size

is small, since splitting an already small sample increases the

risk that the function coefficients obtained in the even smaller

groups are merely artifacts of the sample (Morrison, 1969).

(3) The "Monte Carlo" method. Using Monte Carlo

methodology, researchers can randomly generate synthetic data

from which discriminant functions are derived with the same

degrees of freedom as the original data. These data can be used

to validate the predictive discriminant function coefficients

derived using the original data set. The Monte Carlo method is

useful when all predictor variables are independent of one

another, e.g., when uncorrelated factor scores are used as

predictors (Crask & Perreault, 1977). In most cases in which
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multiple predictors are used, however, the predictors will tend

to be correlated. As a result, Monte Carlo methods are

problematic in that it is difficult to reproduce the variance-

covariance structure of the original data using randomly-

generated data (Montgomery, 1975).' However, a computer program

available from Morris (1975) can be Used for this purpose.

(4) The "random assignment" method. In this procedure,

discriminant functions are computed based upon repeated random

assianment of actual cases from the original sample to groups.

Once several sets of discriminant functions are derived using

the randomly assigned cases, the results of these

classifications may be compared to the original sample's results

(Montgomery, 1975). This method is appealing in that it uses

actual rather than synthetic data, and therefore preserves the

appropriate interrelationships among the variables. However,

since this method relies upon random or chance classification,

its use is questionable as an assessment in an "absolute" sense

of the performance of discriminant function coefficients (Crask &

Perreault, 1977).

Considering Alternatives to Traditional Validation Methods

As previously noted, traditional approaches to assessing the

external validity or generalizability of discriminant analysis

results are replete with a number of inherent weaknesses. As a

result of these weaknesses, the several traditional validation

techniques tend to produce biased estimates of the stability of

the obtained results. Two less-frequently-used validation
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methods, the "U-method" (Bartlett, 1952; Mantel, 1967) and the

"jackknife statistic" (Gray & Schucany, 1972; Tukey, 1958)

attempt to remedy the shortcomings associated with the

traditional methods. The "U-method," which focuses upon

classification errors, involves .computation of a series of

discriminant functions, each omitting one case or subset of cases

from the oriainal samp'le. At each step of the U-analysis, the

obtained discriminant functions are used to classify the case(s)

omitted at that step of the analysis.

The "jackknife statistic," although a similar technique,

focuses upon the stability of the discriminant function

coefficients obtained in the c:iginal analysis. In this

technique, one case or*.- 'subset of cases is eliminated from the

oriainal data set and the discriminant function is computed using

the remaining observations. This procedure is repeated, with

each individual observation or unique subgroup, in turn, omitted.

In each step of the analysis, "pseudovalues" (Quenouille, 1956)

are computed based upon the computation of the original And the

cases-minus-one discriminant function coefficients. These

pseudovalues are averaged to provide a "jackknifed" estimate of

the discriminant function coefficients. Stability of the

original values is assessed by determining whether they fall

within confidence intervals for the jackknifed values.

U-method and jackknife approaches are superior to other

traditional validation methods in that they make use of all of

the data in a particular data set while eliminating bias in

8
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estimates of stability by "averaging out" the effects of atypical

or outlying cases within a given data set. Use of these

techniques has been demonstrated to produce more conservative and

less biased estimates of true population characteristics (Crask &

Perreault, 1977). These techniques are particularly useful when

sample size is small as they minimize sample splitting (Fenwick,

1987). The jackknife statistic offers a method for evaluating

stability of discriminant function coefficients while the U-

method estimates error rates in the classification of cases. The

two methods may be used together or in isolation depending upon

the researcher's purposes. In the present study, the use of the

jackknife statistic will be illustrated.

Computing the Jackknife Statistic--An Overview of Procedure

According to Crask and Perreault (1977), "[t]he essence of

the jackknife approach is to partition out the impact or effect

of a particular subset of the data (e.g., a single case) on an

estimate derived from the total sample" (p. 61). GenerLlly, the

jackknife statistic is derived by computing a statistical

estimator (e.g., a discriminant function coefficient) using the

entire population, and then computing the same estimator

eliminating given subsets of the data. The averaged weighted

value of the estimator when the analysis is run repeatedly with

the various subsets of the data is used to compute the jackknifed

value of the estimator. A brief explanation of the mathematical

procedures involved in computing the jackknife statistic as

explained by Crask and Perreault 11977) and based on the
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pioneering work of Quenouille (1956) may be helpful.

In computing the jackknife statistic, a given sample of

size N is partitioned into x subsets of size M (kM = N). All

subsets must be of the same size (M) and may be as small as one

case or as large as the largest multiplicative factor of N. A

predictive estimator (e.g., a discriminant function coefficient),

designated as theta-prime (e ) is then computed using all k of

the subsamples from the original sample of size N. The same

estimator is also computed with the ith subset (i = 1 to k)

omitted from the sample. This estimator is designated as 91 .

This procedure is repeated k times with a different subset

omitted each time.

Before computina'' the jackknifed estimator, weighted

/1/
combinations of the to and 9' values are computed. These

weighted values are called pseudovalues (Quenouille, 1956), and

are designated by the letter J. The pseudovalues are computed

using the equation:

O-) Ji ei) 17 A 0/ (k--1) ei
where i = 1, 2, 3,. . k.

The average of the pseudovalues is the jackknifed estimator:

() :I (91) ei)j //k
Tukey (1958) argued that a given set of pseudovalues could

be regarded as an approximately normal distribution; hence the

stability of a given jackknifed estimator may be evaluated by

determining confidence intervals about the. estimator, and then

testing to determine whether the researcher can conclude that the
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population estimator falls within those confidence interval

bands. This test may b., done by dividing the estimator by its

associated standard error to obtain a Student t-value. The

degrees of freedom for this t-value equal the numbers of

partitions of the original sample ,(and, consequently, the number

of pseudovalues) minus one A jackknifed estimator is

considered stable if its calculated t-value exceeds the t-

critical value.

An Application of the Jackknife Technique

In the following example, selected variables from a small

data set (Daniel & Okeafor, 1987) will be used to illustrate the

jackknife technique as applied to the validation of discriminant

function coefficients. The original study was designed to test

the relationship between teachers' levels of teaching experience

and the decree of confidence they placed in the professional

performance of themselves and other teachers. Teachers at

varying experience levels rated themselves, the typical beginning

teacher, and the typical experienced teacher on three subscales

of a "logic of confidence" measure (OkLafor, Licata, & I 'ker,

1987). These subscales were "overlooking" (the degree to which

the respondent felt undesirable behaviors of the teacher should

be overlooked by superiors), "avoidance" (the degree to which the

respondent felt administrators should avoid direct supervision

of the teacher), and "professionalism" (the degree to which the

respondent felt the teacher should be regarded as a

professional) . Data were analyzed using three one-way



multivariate analyses of variance, with teachers' level of

experience (preservice, novice, or experienced) serving as the

predictor variable for each set of ratings.

For the purposes of the present study, only the data

pertaining to ratings of the typical beginning teacher will be

used. In order to ease interpretation of results, the three

levels of experience will be collapsed into two, with both

preservice and novice teachers coded as "inexperienced."

Although the theoretical soundness of collapsing these two

categories into one may be debatable, the intent of the present

study is to illustrate the usefulness of the jaetknifc statistic,

and not necessarily to add substaritivell to the findings of the

original study. The data used in the present study are

presented in Table 1. The 69 cases were randomly assigned to 23

(k) groups of three persons each (M), for the purposes of

performing the jackknife analysis.

INSERT TABLE 1 ABOUT HERE

Data from the entire sample (N = 69) were analyzed using the

SPSSx DISCRIMINANT procedure. Standardized discriminant function

coefficients derived from the analysis for the three predictor

variables were -.57065 (profssionalism subscale), -.61074

(avoidance subscale), and -.12889 (overlooking subscale). The

DISCRIMINANT procedure was repeated 23 more times with one unique

k group omitted from the sample in each repetition. Standardized

discriminant function coefficients obtained for each of the

12
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repetitions as well as for the original sample are presented in

Table 2.

INSERT TABLE 2 ABOUT HERE

Using the data from Table 2, weighted pseudovalues (JI,

where i = 1 to 23) were computed for each of the 69 discriminant

function coefficients obtained with the given subset i deleted at

each of the 23 steps. These pseudovalues were computed using

equation (1). Jackknifed discriminant function coefficients

(average of the 23 pseudovalues for each discriminant function

coefficient) were also computed. In addition, a calculated t-

value was com ated for each jackknifed coefficient using 22

degrees of freedom (number of pseudovalue repetitions minus one).

Pseudovalues, jackknifed discriminant function coefficients, and

associated t-values are presented in Table 3. Ninety-five

percent confidence intervals for the jackknifed coefficients are

presented in Table 4.

INSERT TABLES 3 AND 4 ABOUT HERE

Discussion

As previously noted, the jackknife statistic is useful in

evaluating the stability of a given estimator by eliminating bias

due to the inclusion of outlying or atypical cases in a given

sample. In the present example, the stability of jackknifed

discriminant function coefficients for three predictors of

teachers' level of experience was assessed. The jackknifed

13
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coefficients for all three of the predictors were quite close in

value to the original coefficients obtained using the entire

sample. Standard error confidence intervals and t-values were

computed for each coefficient. Based upon these last

computations, presented in Tables 3 and 4, the stability of the

jackknifed coefficients for two of the three predictors

(professionalism and avoidance subscales) was supported while the

stability of the coefficient for the third predictor (overlooking

subscale) was not. These findings indicate that the first two

predictors may be considered as valid discriminators between the

twc groups of teachers, and that the results may be appropriately

generalized to the larger population of interest. As indicated

by the data presented in Table 3, the thir' variable

(overlooking) tends to be unstable against changes in the

composition of the sample, and therefore is a more biased

indicator. Furthermore, the near-zero magnitude of the third

predictor's discriminant function coefficient using the total

sample, reported in Table 2, and using the jackknifed estimate,

reported in Table 3, suggests that this variable has little

predictive validity.

Summary

The jackknife statistic may be used to reduce the bias in an

estimator which is attributable to artifacts of the sample

employed for the study. Since jackknife methods minimize sample

splitting through sample omission and reuse, they are

particularly useful when sample size is small. The present study

14
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has demonstrated an appropriate use of the jackknife statistic as

a tool for assessing the stability of discriminant analysis

results.
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Table 1
DATA LISTING--SUBSCALE SCORES

CASE K-GROUP EXPER1 AVOID2 OVERLOOKS PROFESS'

1 9 1 28 21 50
2 8 1 26 14 47

3 15 1 27 30 43

4 16 1 11 9 11

5 2 1 41 38 53
6 7 1 24 13 63
7 12 1 14 22 43

8 11 1 25 14 35

9 10 1 15 18 38
10 5 1 22 16 50
11 13 1 22 20 40

12 6 1 10 15 46

13 20 1 33 28 43

14 14 1 30 28 48

15 15 1 24 22 40
16 3 1 26 32 42

17 3 1 28 24 49

18 8 1 29 24 52

19 9 1 16 10 26

20 5 1 30 31 42

21 9 1 28 23 48

22 7 1 27 25 31

23 2 1 24 19 39

24 3 1 28 18 46

25 21 1 23 18 48

26 8 1 27 15 54

27 2 1 31 16 45

28 6 1 32 24 43

29 19 1 27 20 24

30 12 1 22 13 43

31 21 1 27 14 42

32 21 1 23 11 51

33 13 1 23 26 41
34 11 1 33 19 48

35 5 2 27 19 45

36 14 2 33 23 62

37 22 2 33 29 52

38 10 2 13 16 36

39 1 2 33 15 58

40 4 2 32 30 47

41 11 2 34 30 40

42 12 2 43 29 59

43 1 2 36 29 42
44 3 2 16 10 41
45 4 2 33 14 61
46 4 2 30 23 50

(continued next page)
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Table 1 (continued)

47 19 2 40 32 43
48 17 2 42 18 64
49 19 2 40 24 50
50 17 2 40 24 60
51 18 2 37 24 53
52 18 2 26 23 39
53 16 2 28 13 53
54 13 2 28 25 49
55 17 2 29 24 48
56 15 2 32 26 54
57 23 2 32 21 45
58 6 2 22 12 61
59 20 2 41 18 53
60 10 2 19 18 48
61 22 2 21 23 38
62 1 2 42 36 56
63 20 2 42 24 59
64 23 2 32 30 33
65 23 2 32 29 55
66 14 2 23 25 49
67 22 2 24 27 42
68 18 2 40 27 53
69 16 1 21 20 45

1Level of experience (1 = experiex.,.:ed, 2 = novice)
2Avoidance subscale--rating of beginning teacher
3Overlooking subscale--rating of beginning teacher
'Professionalism subscale--rating of beginning teacher

19
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Table 2

STANDARDIZED DISCRIMINANT FUNCTION VALUES WITH SUCCESIVE
SUBSAMPLES DELETED FROM ORIGINAL SAMPLE

K-GROUP PROFESS AVOID OVERLOOK
DELETED

none -.57 -.61 -.13
1 -.60 -.57 -.13
2 -.53 -.63 -.18
3 -.56 -.57 -.23
4 -.55 -.64 -.12
5 -.60 -.56 -.18
6 -.50 -.61 -.16
7 -.60 -.57 -.12
8 -.63 -.59 -.07
9 -.58 -.59 -.13
10 -.49 -.76 -.07
11* -.56 -.65 -.04
12 -.62 -.52 -.16
13 -.56 -.63 -.12
14 -.49 -.69 -.09
15 -.55 -.58 -.19
16 -.68 -.50 -.30
17 -.56 -.62 -.13
18 -.60 -.60 -.13
19 -.54 -.61 -.10
20 -.56 -.57 -.20
21* -.58 -.65 -.02
22* -.54 -.72 -.03
23 -.63 -.57 -.10

*Actual function values for this repetition had positive
signs. These "reflected" values were converted to negative
values (multiplied by -1) so that they would be directly
comparable to results from other repetitions.
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Table 3

PSEUDOVALUES AND JACKKNIFED DISCRIMINANT FUNCTION COEFFICIENTS
FOR PREDICTOR VARIABLES

REPETITION PROFESS AVOID OVERLOOK

1 .15 -1.44 -.08
2 -1.52 -,20 1.08
3 -.86 -1.48 2.19
4 -.92 -.00 -.29
5 .17 -1.76 .99

6 -2.07 -.53 .54
7 .11 -1.55 -.31
8 .68 -1.C3 -1.34
9 -.41 -1.08 -.02
10 -2.36 2.70 -1.39
11 -.76 .32 -2.12
12 .49 -2.68 .63

13 -.73 -.11. -.32
14 -2.43 1.12' -.95
15 -.95 -1.38 1.18
16 1.86 -2.98 3.65
17 -.72 .46 -.19
18 .09', -.79 -.19
19 -1.16 -.54 -.73
20 -.80 -1.47 1.51
21 -.31 .21 -2.59
22 -1.16 1.78 -3.59
23 .73 -1.54 -.78

Jackknifed
Coefficients -.56 -.65 -.14

t-calc. values
(df = 22)

t-crit. values

2.66*

2.07

2.41*

2.07

.42

2.07
(2 = .05)

*Indicates coefficient stability.
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Table 4

UPPER AND LOWER BOUND (95% CONFIDENCE LEVEL) INTERVALS
FOR JACKKNIFED COEFFICIENT VALUES

PaOFESS AVOID OVERLOOK

Original
Coefficients -.57 -.61 -.13

Jackknifed
Coefficients -.56 -.65 -.14

Lower Bound -.98 -1.18 -.78

Upper Bound -.14 -.11 .51
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