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Lecture 1

MATHEMATICS EDUCATION AND TECHNOLOGY

Christine Keitel
Technische Universitat Berlin




I. 1Introduction: Three Examples

This paper is devoted to the relationship of mathematics education and the
social use of mathematics, i.e. the application of mathematics in and by
society. I intend to focus on some aspects of the topic on a more
theoretical level of consideration which, as far as I see, are still much
neglected. As a consequence, in my view, much labour in the domain is
spent in vain.

As an introduction to more general observations I will report three short
school stories. They represent rather typical classroom situatisns,
characteristic of the problems rooting in the relationship in question.

The first, borrcwed from Alan Bishop, refers to an aboriginal student who
had studied some mathemalics at school.” ...(he) told me that in his
village in Papua, New Guinea, when there were disputes about areas of
gardens the measure used was that of adding the length and the width (the
gardens were roughly rectangular). For him, to multiply these was the
'white man's system' which he had learnt at school, but at home he would
always add!" (Bishop 1988, p. 35)

The second case I met in an English comprehensive school, but it could have
happened anywhere in Germany or France as well. It was a lesson under the
heading of "ratio and proportion” and the teacher told me that she wanted
to approach the mathematical concepts in a practical way. So she offered
the following question: "Somebody is going to have his room painted. From
the paiater's samples he chooses an orange colour which is composed of twn
tins of red and one and a half tins of yellow per square meter. The walls
of his room measure 48 square meters altogether. How many tins of red and
yellow are needed to give the room the same orange as on the sample?” The
problem seemed quite clear and pupils started to calculate using
proportional relationships. But there was one boy who said: "My father
1s a painter and so I know that, if we just do it by calculating, the
colour of the room would not look like the sample. We cannot celculate
as we did, it is a wrong method!" In my imagination I saw a fascinating
discussion starting about the use of simplifying mathematical models in
social practice and their limited value in more complex problems (here the
intensifying effect of the reflection of light), but the teacher answered:
"Sorry my dear, we are about ratio and proportions.”

The third story happened in a German school and is about a lesson given
by a very ambitious teacher who emphasizes the practical value of
mathematics education to the pupils. It is a problem of 'wasting energy'
which she reports in a book on "Practical learning in mathematics and
sciences”. (Kidmmerer 1988) In a previous lesson, the class had discussed
the waste of cnergy. A vivid debate among students was going on when the
mathematics teacher came in. The question was, whether an individual could
contribute sensibly to saving energy, e.g. at home. Spontaneously the
teacher had the idea that she could show how mathematics can help to make
argumentation rational ar1 to clear the debate. She set up the following
task:
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"Let us assume that the radius of a cooking pot is half of the radius of
the electric plate, how much energy is wasted?

a) Give an estimation in percentage!
b) Give reasons for your estimations and check by calculating!"

Besides, the teacher had in mind to do some remedial work on the formula
of area of circles and comparing areas of circles in relation to their
radius, focusing on the difference of linear and quadratic relations.

First estimations were about 20% or 30%. Now she directed them to the
second task to check the estimation by calculating. Students went into
the school kitchen to measure some pots. With the teacher's help and
insistence finally all pupils had a nice and surprising result: If we cook
under the above conditions 75% of the energy will be wasted.

Several girls did not believe that the result was correct, in spite of
their calculation. They did not trust the numbers: "In reality is not
like this!" A normal mathematics lesson would end here. In this case,
it was different. The teacher thought that the superiority of the
mathematically established result could easily be proved by an experiment.
One litre of water war brought to the boil in the smallest pot available,
and then another litre in a big pot, and the times needed respectively were
measured. However crude this experiment was, the result was most
surprising for the teacher: there was no significant difference between
the two pots; in contrary to the calculation the smaller pot even needed
slightly less time. The girls reacted: "We knew from our experience in
the kitchen that it does not matter very much".

What do these stories tell us? All of them deal with geometrical concepts,
namely areas. From the first to the third, the view is narrowing from very
general to specific problems of mathematical applications as reflected in
schonl mathematics.

The first example shows a difference of the treatment of applicational
problems in school ard in society, which here apparently is due to
different cultures effective in a mathematical education imported from cne
culture to a country with quite another one. Admittedly this is an extreme
example, but the better it shows that even the simplest use of mathematical
models in social reality is bound to and relying on a specific background
of values and intentions: on the one hand an exact, however abstract
rating of ground referring to predominant criteria of individually owned
ground versus commons, to taxes, rents, prices; on the other to a concrete
understanding of a garden as a useful piece of land, implying a manageable
(rectangular) shape, and that characteristics such as shadow, humidity,
quality of soil are much more important than the precise size. In Euro-
American societies, such qualities might be expressed in the price per
square meter, in Papua New Guinea they remain properties of a specific
garden. For the comparison of gardens, the size, as approximately
indicated by the sun of length and width, may be, after the comparison of
more relevant properties, a largely sufficient criterion of description.

9
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The second example may contribute to the recognition that society
reproduces its culture in its youths, but not by making its youths
understand its culture. Certainly the latter would not secure reproduction
to the same degree. 3o it may be regarded if not as a deliberate, so as
an effective end to this purpose that application problems provided by
mathematics education do not really refer to sncial practice, but serve
as more or less artificial embodiments of mathematical concepts of
techniques without practical correspondence. Students come to understand
that their practical knowledge may be irrelevant in school mathematics.

In the second example the teacher may simply have been unwilling to leave
the old rut for a moment or she may have been aware of the constraints of
her syllabus or the risks of a plece of reality she just was not too
familiar with. In the third example on the other hand the teacher gets
lost in the complications of the matter. She is not even aware of the
reasons of the fiasco: the mathematisation of the problem mismatches
reality by inadmissible simplification (by equating areas to energy), to
a degree that spoils the result. She gives a faulty example of dealing
witb technology to her students and the result certainly is fateful for
their understanding of applied mathematics.

If we overlook these examples we may find that the first of them suggests
an explanation of the second and the third, it may make us feel like
looking on the small viiible top of a tremendous iceberg, when dealing with
the social practice of mathematics in terms of conventional mathematics
applicaticns in the classroom. We may then stubbornly contend that the
small top is the whole, and clinging to a mathematical programme is very
helpful in that case - this is the second example. Or we may bravely
acknowledge that there is something under the surface and get hold of ~ne
or another odd piece of context, and again miss the complexity of reality -
this is the third example.

How can we resolve the dilemma? In my opinion, there cannot be any
promising way without attempting to get a more comprehensive notion of the
complexity of the iceberg, i.e. mathematics in social practice. Our first
example suggests that by the very fact that social practice is involved,
mathematical application is inextricably interwoven with the constituent
components and holdings of a culture. The impact of culture is effective
in both the conditions, values, intentions which direct us, and in the
technologies which the culture has developed and keeps at hand for us.
In Papua New Guinea the technology for measuring "area” is addition of
lengths, and in our culture it is multiplication.

In the following I shall concentrate on the role of technology as it
mediates the use of mathematics in social practice. This will allow of
keeping closer to our topic (and nonetheless provide a notion of the
pervading influence of culturel premises.)

II. What is technology?

Using a definition of the German sociolegist N. Luhmann (Luhm:nn 1982),
technology can be seen as "the science of the causal relations w: i

10
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underlay practical intentions, and which have to be acknowledzed, if these
intentions aim at succeass". Technology 1is therefore determined by
causality (presupposing the aptness of chronological linear. regular
order), rationality (following the scheme of means and ends) and sociality
(as ends of actions are determined by social sut jects).

The point of interference of mathematics within this complex is the causal-
logical order as a prerequisite of any mathematical modelling, the
mathematical model providing the means ol acting and delineating a scheme
for action. Action is rational if both the context of action and the
adequate modelling follow the principle of causality and if it corresponds
to the "practical intentions" which prompted the action. The ends of
acting represent a second constituent of mathematical modelling, and by
these the technologically determined structure 1is infused with so~ial
implications and significance. The context of action can be mathematics
itself, in that case the role of a mathematical model may contribute to
the technology of mathematics which in turn may generate more generally
applicable mathematical techniques.

This statement about the relationship of mathematics and technology
includes also a relation to school mathematics. If mathematics is a
necessary and essential - although not the only - precondition of
technology, then mathematics teaching and learning 1is a necessary
prerequisite for everybody who wants to understand and reconstruct or
develop technology - and to judge its use or abuse.

On the other hand one can only partly be introduced into understanding
mathematical technology by only referring to mathematics itself, as the
means-and-ends-relation stringently requires knowledge about both the
objective and subjective context of intecference as well. Hence an
introduction into understanding and evalvating technology within
mathematics education cannot be restricted to mathematical techniques or
theorems, but must constantly refer to broad understanding of the subject
of the context.

III. An Example of Technology: The Mechanical Clock

Let me illustrate these abstract considerations by en example of technology
familiar to all of us: I draw on L. Mumford's fas:cinating interpretation
of the invention of the mechanical clock (Mumford 1977): The invention
of the mechanical clock represents a qualitatively new stage in the
development of technology: all technological tools and instruments so far
had served as extensions of man's natural abilities. The clock, however,
1s no longer a sort of artificial, multiplying prothesis but the mechanical
clock is a machine which functions by itself. It is the first autonomous
machine. 1Its construction is based on a particular perception of one
aspect of nature, namely, time in relation to the movement of the planet
system. This approach is generalized and condensed to a mathematical
model, transformed into a technological structure, and as such installed
outside 1its original limited realm of significance. Earlier human
perceptions of time, which had grown out of both individual and collective

11
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experiences and remained bound and restricted to these, were now rivalled
and ultimately substituted by this novel kind of perceiving time.

Its superiority consists in its regula ity, uniform validity and presence,
by all that it is an extraordinary toc!l of measuring. However, the notion
of time loses its connection to and dependence on concrete sensory
experience. From a physical rotion time mutates to a part of social
org nization.

The consequences and implications of this change can hardly be
overestimated:

- a new understanding of time develops: Time particularized by
arbitrarily regular units comes to be viewed as a sum of such units.
The association of time with periodical or circular movements is now
replaced by the idea of time as an irreversible process. The Christian
teleological view of time merges into concepts of progress and endless
evolution;

- the mechanical clock extends the domain of quantification and
measurability. Applying measure and number to time means measuring
and quartifying sll other areas, in particular those where time and
space are related to one another. Measurability of time pushes forward
the development of the natural sciences as (empirical) sciences of
measurement (and hence objective sciences) and mathematics as the
theory of measurement. Protlems of constructing precise and accurate
measuring instruments become a concern of mathematicians;

- the new concept of time encourages explorative approaches to reality
by suggesting an interpretation of the world as a machine, as an
extension of the model of the mechanical clock as a sum of autonomous
subsystems which arbitrarily can be atomized and synthesized;

- the clock, used from the beginning as an instrument of social order
and social coordination, changes the organisation of social life by
allowing rigid, "objective" determination, organization and control
of various social interactions.

Thus the mechanical clock changes the relation between mankind and reality
far beyond its original domain of application. It initiated the creation
of a second nature totally reconstructing the first, however, exclusively
aumitting objective, mathematical laws, devaluating the authority of
individual and collective (subjective) experience or insight.

IV. Mathematics of Social Practice

The above example confirms the truism that technology, and hence
mathematics, pervade present day society, and to a degree far bYeyond the
plain presence of technical apparatus which surround us. So we easily
accept the following statement as a commonplace: "The ultimate reason for
teaching mathematics to students at all educational levels, is that
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mathematics is useful in practical and scientific enterprises in society"
(Carss et al., p. 199).

As often with trivial wisdom, we do not really reflect it. Otherwise we
might note that it is more of a c.ajuration than a justification. For it
does not help to explain a rontradiction vhica is with us since a very long
time, namely

no mod:rn society can exist without mathematics, but the
overvhelming majority in a modern society can and do live quite well
without doing nearlvy any mathematics.

In fact, the hand-calculator is the recent culminstion so far of a
development by which, while reality is being structured more and more by
mathematics, the average individual is more and more dispensed of using
mathemati.s. The old objection to learning mathematics - again and again
nourished by common practice and proved by empirical research - that in
general one does not really need the mathematics learned at school - seems
more justified today than ever.

It is true, of course, that an immeasurable amount of mathematical
knowledge is available today and rapidly expanding, and there exist people
who professionally use specific sections of this knowledge. However, the
very scope of it and of eventual specialization put it beyond general
education, and, as R. Fischer (Fischer 1984) points out, numerous agencies
outside school fill in this gap, and they are much more prepared to provide
special knowledge purposefully and effectively to those who need it. In
fact, the need of high achievement in mathemavics for all cannot be
Justified by this kind of argumentation.

So what about the contradiction of increasing mathematisation of modern
society together with potential demathematisation of 1its members
(Chevallard 1988)7

Demathematisation is enabled by the very existence of the products of our
technologically structured environment: demathematisation is inherent to
these products as it is to technology.

If we turn back to an early technological achievement as represents the
clock, we immediately see that the original mathematical considerations
which resulted in the conceptualization of the clock and its eventual
construction may be extremely far from the thoughts of an actual user of
a watch, who does not wish to miss his train. And so may be all subsequent
additions of mathematical and technical ingeniousity up to quartz-crystal
clockwork and digital equipment. They :11 are incorporated in the actual
instrument - and yet, for appropriate use, we must not have the slightest
idea of then.

Thus it is an effect of technology to substitute our own imagination,
mathematical knowledge and technical skill, and even more: it summarizes
the best talents of generations of specialists before us. It is conceived
to replace them.

13
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Thus, the quintessential product, which is in our hands, makes the
mathematics enclosed implicit mathematics. Mathematics continues to be
effective, but without requiring respondent capabilities on the user's
side. That 1is how demathematisation takes place. Whereas explicit
mathematics vanish beyond the clouds in the summits of research and
extreme specialization, implicit mathematics makes mathematics disappear
from social practice.

From time to time lightenings from the heights of exp lcit mathematics
illuminate the society. Scientific mathematics is the met with more
respect, the more it is wrapped in mystery and the more astonishing
technological achievements it epparently inspires. Contrarily, little
attenticn is attracted to implicit mathematics - and that is also how
school mathematics reacts to these phenomena.

V. 1Tichnology in School Mathematics

The pretention of usefulness of mathematics as the ultimate justification
of school mathematics must be viewed in a historical context. The period
of demathematication of everyday social reality was preceded by a period
of trivialization of mathematics (see also R. Fischer 1987).
Trivialization resulted from both more general use of mathematics in social
practice and the didactical progress of schools, whicn enabled mathematics
to be taught at ever earlier stages; arithmetics e.g. shifted from
university level to elementary school. Whereas the rank of mathematics
as a formative discipline decreased, the demand of socially useful
mathematical training became more and more pressing.

The argument of usefulness was readiy adopted by educators, and in fact
became the greatest asset in an argumentation in favour of general
mathematics education. And it is still viewed as such by many educators,
as shows the above quotatinm. In my opinion, this position bears great
risks. It is not difficult to preview that the legitimacy of general
mathematics education will again be placed on the agenda. Already at the
present time informatics rivals with mathematics about social usefulness,
already now the progress of demathematisation can hardly be overlooked.

The argument of usefulness could easily prove to be a deadleck: If the
claim of usefulness is upheld, the phenomena of demathematisation cannot
be acknowledged, for demathematisation makes the usefulness of traditional
general mathematics education fictitious. Thus, by maintaining the idea
of uszefulness, the probiems of mathematisation and demathematisation in
modern society cennot become a matter of concern and appropriate response.
And that is indeed what we observe in current mathematics education.

How is technology dealt with in present day school mathematics? Technology
1s no topic in mathematics education. There is no planned, purposeful
treatment of ends and means of technology. Although mathematical
techniques and technological constructs appear in school mathematics
teaching in various ways, they serve quite different ends. They are mostly
determined by:

14
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- educational policies and their established claims ("social needs"):

- by didactical-methodological intentions (artificial, dressed tasks as
"problems", "embodiments" of mathematical structures, the introduction
of modern technological equipment for various purposes);

- by pedagogical conceptions in which tech.ologically determined
situations or subject matter play different roles.

Among the latter, the following more influential tendencies expressly
address technological phenomenon. But they are not the only ones and they
may occur in various blends.

- There still is much impact of the old utilitarian conception of schuol
mathematics which aims at a simple and direct correspondence of school
tasks to those in social practice. By mere persistence a body of such
tasks survived in many curricula far beyond any practical significance.
By these no understanding of technology is intended nor achieved.

- In opposition to this approach other didactical intentions follows a
compensatory intention. They also velate school mathematics rather
exclusively to technologically determined social practice, however
aiming at a backing of the individual against the pressure of society.
There 1is integrated mathematics teaching and project work, but
mathematics is only dealt with as a means of problem solving, only the
instrumental aspect 1s recognized, and the theoretical level of
mathematics, its systematic aspect, and that of technology are rarely
attained: mathematics ends in "daily 1life" practice, as does
technology.

- Another approach attempts to combine methodological or psychological
demands, a social perspective, and (implicit) orientation towards
mathematics and sciences as theory. Mathematical concepts and
theoretical insights are developed through teaching units which start
out from technologically determined situations.

We may roughly state an advancement - both historically and in the
awareness of complexity - in the sequence of these approaches: The
traditional instruction which mainly aims at practical skills is
complemented by the goal of understanding a mechanism, and to ensure this,
the conditions of cognitive development may in addition be observed. A
claim of greater realism extends particularized tasks to larger sections
of social practice, and finally the pedagogical intentions may also
envisage to convey an introduction into the theories of mathematics and
natural sciences.

These approaches either aim at mastering different activities related to
technological phenomena (with varying ideological undertones), or they
refer to these phenomena for other purposes, e.g. for learning mathematics.
Accordingly, their concept of usefulness, rarely explicitly stated, varies
from mere functioning in pre-determined social practice, to competence on
a more general level of actively using mathematics and technology.
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None of these approaches explicitly responds to the dilemma of
mathematisation and demathematisation. As the dilemma at the seme time
is a soclal problem - taking part actively in the process of
mathematisation being a matter of high standard professions - it can easily
be left to separate consideration along with traditional problems of
differentiation.

Already today we may state that arithmetical operations as processes within
human brains have largely disappeared from vast areas of social practice.
For the routine cases in specific Jobs the necessary formulae are at hand
and the operations themselves are executed by a machine. Under these
circumstances, the maintenance of extensive arithmetics learning in
mathematics education is either beyond justification ("you simply must know
how to ..."), or founded in nostalgis ("at least for one time in his life,
one should have done ..."), or merely a relic in the syllabuses, or a
formative enrichment like art and music, which at best feed into leisure
time occupations Is that usefulness?

I would not criticize any such justification, if we could be sure, that
by the respective organization of mathematics educatien ve would not miss
truly essential requirements. However, that I fear, is what occurs.

As we know, the increasing use of technology, tnat is to say of rational
devices in social practice, has not fostered rational reconstruction of
social processes. Instead, paradoxically, it rather created new
mystification: Ever more processes disappear in the black boxes of
technological instruments, and in them the processes become ever less
reconstructible - in fact as far as to definitely defy intellectual
control, as happens with very complex computer programs which involve a
larger group of specialists (Weizenbaum 1967; BooR-Bavnbek 1988).

On a daily-life level, mystification is much more due to insufficient
comprehension. And comprehension here not only refers to the acquaintance
with a mechanical structure, as didactical approaches mcstly suggest, but
also to the und:vstanding of the significanc. of its use.

VI. Anothe: fuazile >f Technology

What I wish *> 5.y by this can best be illustrated by another example.
I propose tc .ouh at the economic instrument of the double-entrance book-
keeping or calculation-model. It 1is, although not an autonomous, but a
rather detached system which early spread beyond the field in which it
emerged over all economic areas. Its efficacy is based on three
characteristics: (Damerow et al. 1974).

- the entire calculation system of an enterprise can be organised
according to one single, uniform reference unit and relative to one
function. The reference unit is the capital invested;

- it allows to fcrmalize all processes or occurrences within the economic
system and thus to operate them in terms of mathematics;

16
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- as a result of complete formalization of all processes the model is
an excellent instrument of controlling and directing the enterpric-.

The double-entrance book-keeping or calculation-model brought abou. two
fundamental innovations, which initiated and fostered a development towards
modern economic systems, but in turn only came to display the whole range
of their possibilities and implications under the conditions of more
developed economic systems. The one innovation was to treat all processes
of trading - of both transformation and change of value within a system -
detached of their concrete real properties exclusively and uniformly
according to the rules of the calculation model; the other innovation was
to separate labour structurally from capital: within the system labour
is necessarily treated as costs, whereas added value and profits are
allocated to the capital.

The development of this model can plausibly be explained by its origin:
it really was a product of practice, not of theoretical construction: it
originated from business activities of the big trading and banking houses
ir Lhe Renaissance, in which all merchandise exchange was integrated within
the banking activities and hence all goods tended to be treated as exchange
value or capital value only, not in terms of concrete significance or
utilicy.

Whereas the calculation-model was well in conc~rdance with the practices
and requirements of banking houses, at the _ame time it offered a
completely new interpretation of the economic process of manu{acturing and
industrial production. By its transfer to these areas the economic model
of capitalistic calculation became an enormous stimulus and driving force
for development. The word "capitalistic" here proves not to emanate from
philosophy or ideology but originally to denote appropriately a capital-
centered technological construct for controlling and directing economic
processes.

An important implication - 1f one may say so, the trick of the machine,
- is the fact that the capital-orientation is built in, implicitly and
eventually unnoticed. When applying the machine this orientation is
adopted, consciously or not, with all its consequences and implicaticns.
The logic of the machine produces arguments and seemingly objec:ive
constraints, which on the basis of other premises might 1look quite
different.

In all that works mathematics - at the core of the technological system.
That may give an idea of what is implicit mathematics. Because of its
enormous diffusiveness the calculation-model penetrates practically all
fields of social practice related to money. And comparable to
crystallisation in a liquid, which starting from one point expands over
the whole surface, the calculation-model sets going systematization and
formalization all over the area where it is applied. In industrial
enterprises where for a long time production followed its own traditional
patterns, "scientific management” and "system analysis" ultimately led to
restructuring all production processes down to the most minute detail

y 17
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towards systematization and standardization, in order to bring them under
the control of the calculation-model and its prescriptions.

The balance of trade is the center-piece of the technology of economics.
It determines prices, taxes, wages everywhere. This is the most obvious
way by which the technological system interferes directly with the daily
life of all of us, and again and again challenges competent reaction. Does
nmathematics education in any way contribute to prepare students to this
reality, su as to improve their chances to meet this challenge competently?
I do not think so.

VII. School Mathematics and the Intercourse of Mathematics and Reality

I hope that the above example may have helped to substantiate my previous
statement about implicit mathematics in technology. And it may have become
clear that teaching mathematics as such - whether extensive arithmetics
or advanced new mathematics, whether illustrated by tasks from social
arithmetics and sciences, or not - is not the solution of the problem and
does not even address it. The problem is making implicit mathematics
explicit, and elucidating the significance of its application. That is
to say: to address the intercourse of mathematics and reality.

Focus of all elements of technological construction is the mathematical
model. In it mathematics and reality concur. It represents an
intermediate ‘evel between mathematics and reality and hence requires
translations and interpretations to different sides. Mathematics has, and
real objects and contexts must have, specific properties which enable them
to uwerge into instruments for rational and purposeful acting. So it is
crucial to understand them in order to understand technology (Skovsmose
1987).

On the side of mathematics, it is its dual aspect: mathematics as means
and as system (Fischer 1988). Mathematics as means, that are the
instrumental, procedural, hence technological qualities of mathematics,
whereas mathematics as system refers to its axiomatic order and systematic
relations, which reprcsent the prerequisites and basis of mathematical
acting, whether in pure mathematics or in applications. For mathematics
the coincidence of both the instrumental and the systematic aspect are
constitutive, as mathematical concepts always are means and systems at the
same time, and mathematical activity presupposes an awareness of that.

Contrarily, in the concretisation of a technological structure outside
mathematics this balance tends to get lost: it is just for making do
without the systematic background that the construction is undertaken.
The mathematical process is encapsulated in the technological structure -
the application is cut off from the requirements of explicit mathematical
knowledge, without any regard for a-posteriori deduction or understanding.

On the side of a piece of reality and its context, which become object of
technological structuring, the concurrence with a matching mathematical
model presupposes a theoretical conceptualization of the part of reality
in question. Theories about objects are intermediate steps of
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formalisation, by which relevant elements or properties of the object are
selected, and their relation is determined.

Only in very simple and uninteresting cases we will find a direct and
obvious one-to-one correspondence between model and object. That means
that normally a model is not a model of reality as such, but a model of
a conceptual system, created by a specific interpretation which is based
on a more or less elaborated and more or less explicit theoretical
framework. The establishing of conceptual systems takes place in different
ways depending on the technology in question.

The mathematical model provides a morphism to this conceptual system and
reveals possibilities to apply mathematical techniques: If the model is
based on an exact, verified scientific theory of the object, the validity
of the model can be verified by empirical data. If the model could be
based on various contradictory theoretical approaches, it is necessary to
analyze all premises and assumptions of these approaches.

Intentional orientation of the technological construction influences
already the selection of the theories on the object, then the transforming
of elements of reality into the conceptual systems. Purposes and interests
determine the process directly as they cause the construction, and finally
intentions determine the use of the structure which may be quite different
from the original intention.

VIII. Conclusion

Let me try to draw a few conclusions from these peculiarities of
technology. The most obvious insight, I think, is that we cannot hope to
provide a serious and appropriate approach to the phenomena of technology
in treating them in a by-the-way manner, by incidental glances from a
"regular” mathematics syllabus. We cannot expect to convey understanding
by using mathematical applications just for illustration of mathematical
concepts.

Reconstructing technological instruments - not simply using them -
requires, if not the same ingeniousity (for we know the results), but
nearly as much understanding of the contexts and backgrounds, in both
mathematics and reality, as did the original construction. Understanding
of technology demands full consciousness of the connections, relations and
processes on different levels of application - a meta-level of knowledge,
consideration, and communication.

A major requirement to this end - and at the same time a major deficiency
in present-day mathematics education - is a very strong emphasis on
reasoning, interpreting, reflection and experimental attitude. With
respect to mathematics this would in particular mean to stress the
systematic aspect of mathematics, and to make the dual character of
mathematics a subject of education. In fact one may state that the actual
presence of applications in mathematics teaching tends to prevent insight
into systematic structural relationships and connections rather than to
promote them. (A typical example is the traditional social arithmetic
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teaching, where classical as well as modernized word problems, tasks, lead
only to knowing rules, but not to theoretical insight). Technologically
oriented mathematics education has to undertake particular efforts to
overcome this immanent anti-systematical tendency of technology: only by
theoretical mathematical concepts the duality of mathematics as means and
system can be experionced, and duality is the germ of applicational
potential, also future potential.

Again, interpretation, translation, valuation are the most important
features of establishing and handling a mathematical model fitting a
reality context and a specific activity impulse related to it, and thus
they must also pertain to the field of social practice in view. A
reflective attitude towards the subject in social practice not only implies
to study the "raw material” in relation to respective theories about it,
but before all to examine the intentional character of interferences on
various stages.

Strengthening the reflective character of mathematics education (at the
expense of a maximum amount of subject matter) would eventually meet with
similar suggestions starting out from another peint. I refer to
considerations by R. Fischer (Fischer 1984) who compares the menace that
the predominance of mathematics, science and technology represents for many
of us, to the menace formerly emanating from an undomesticized nature.
Fischer infers that similar to the liberation from the dominance of nature
- by mathematics, sciences, and technology! - today a liberation from these
blessings would seem to be necessary, liberation in the sense of reflected
distance and self-determination. Thus entering into a better understanding
of technology through mathematics education would not foster an svermore
complete surrender to, but contribute to a freer, more critical and more
self-conscious intercourse with technology.
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I'm very glad to have the opportunity to come to Canada and participate,
albeit rather late, at the end of your discussions. The informal chats
I've had so far with people suggest to me that CMESG is a fairly special
kind of group. I don't think there's anything in the United States that's
comparable to it. If there were, maybe we wouldn't be in quite such a
pickle as we are now. All of our similar meetings are big and huge, so you
can't get anything done. CMESG seems like a group that has a certair
direction and self-consciousness about what it wants to accomplish.

What I want to do this evening is to talk about efforts that are going on
in the United States to try to revitalize mathematics education. The
intent of my title, All One System, is to emphasize the principle driving
spirit behind a lot of necessary changes. First, we have to look at
mathematics from kindergarten through graduate school; dealing with just
pre-college level work or just university work all by itself simply is not
going to work because of the type of feedback loops involved. Second, I
also intended to convey a sense--especially important in the United
States--that we have to view mathematics education as education for gll
citizens and not simply for those who happen to grow up with a tradition
of mathematics education. The challenge is to deal with these themes in
a country as diverse and complicated as the United States.

Mathematical Sciences Education Boaxd

Some of you may know that about four years ago the Conference Board of the
Mathematical Sciences (CBMS), which represents the fourteen major U.S.
professional societies of mathematics, recommended to the U.S. National
Academy of Sciences that they set up a national board on mathematical
sclences education. That board has been established; it's called the
Mathematical Sciences Education Board. What I am going to do this evening
1s to spend the first part of my talk dealing with bureaucracy to give you
a sense of who the players are, what they're dealing with, and why they're
doing what they are doing. Then in the second part, I'll present some of
the areas of consensus that have emerged from all this bureaucracy, which
we hope in the next four or five years is going to have some impact on
mathematics education in the United States.

Let me start by explaining what the National Academy of Sciences is and
how it relates to the National Research Council. The most important thing
about the Academy is that it is pot a group of mathematicians. That's
crucial because we can't change mathematics education if we are only
working with mathematicians or mathematics educators. The National
Academy of Sciences (NAS) is a private organization, chartered by Congress
during the administration of Abraham Lincoln. It is an honorary body
consisting of the nation's top scientists. They elect 40 or 50 new members
every year and usually three or four or five are in mathematics; about
that many die, so the membership of the National Academy stays pretty
stable as the top several hundred scientists in the United States.
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There is a similar National Academy of Engineering that is much younger
--it was started after the Second World War--and even more recently an
Institute of Medicine. The three organizations together operate what is
called the National Research Council (NRC). The National Research Council
1s the operating agency of these three groups--The National Ac.demy of
Sciences, cthe National Academy of Engineering, and the Institute of
Medicine. The President of the National Research Council (and of NAS) is
Frank Press, a geophysicist, who was science advisor to former President
Carter.

NRC is & large organization that commissions studies, principally, in
everything ranging from highway safety to health and nutrition, from AIDS
research to space stations. Any time that Congress wants to know something
about science, they go to the National Research Council and say, "Will you
please advise us about this?"” NRC sets up boards and commissions to carry
out this work. Sometimes NRG gets furding directly from Congress, but
more normally they are supported through one of the agencies like the
National Science Foundation. Apart from that, they are independent. They
have a chance to say things independently--to speak for the scientific
community.

The reason that the Conference Board of Mathematical Sciences decided to
ask the Nationa) Academy of Sciences and the National Research Council to
set up thie board--rather than doing it themselves--is because CBMS felt
that it was crucial to get the backing of scientists and engineers if they
were going to make any changes in mathematics. Without that backing they
knew they would fail. What the National Research Council did was to set
up a very large board, the Mathematical Sciences Education Board (MSEB),
chaired by Shirley Hill who is a former president of the National Council
of Teachers of Mathematics, and professor of mathematics education at the
University of Missouri. The board has two or three mathematicians who are
members of the National Academy of Sciences (Andrew Gleason, David
Blackwell, Isadore Singer, people like that...); it has half a dozen
professional people with Ph.D.'s in mathematics education who train
doctoral students in mathematics education; and it has about six or seven
school teachers. In addition, MSEB has chief state school officers (these
are the people who are either elected or appointed by governors to be the
head of education in particular states). The Chief from New York went off
the Board; now the Chiefs from Arizona and Illinois are on it. There are
representatives from business, (a vice president of Citibank New York is
there), the past president of the Parent Teacher Association, the National
School Board Association... . It's a kind of Board whose members know how
to get things done.

MSEB Agenda

Now, I want to use a chart (Figure 1) to show you what that Board is up
to--to give you a sense of what they are trying to accomplish. I'm mostly
going to talk about one little column in this chart, but first I want to
show you the o.erview. MSEB is looking at issues that concern national
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needs and potential, focusing on concern about international scores as
typified by the fact that the U.S. did so poorly on the 1982 international
assessment. There's also a major study going on about the needs of
business and industry--that mathematics is a wellspring of innovation for
business and industry; MSEB's goal is to get business and industry to look
at the national impact of the status of mathematics education. Third,
there is--in another column--plans for a series of conferences on women
and minorities to try to do more to bring under-represented groups into
full participation in mathenatics.

The curriculum and instruction column principally deals with the

pre-college curriculum. (There is a separate project under collegiate
mathematics that looks at college-level issues.) There is a series of
conferences, as well as a group that is developing what they call a
curricular "framework," or more recently, a "philosophy and framework"
document. It started out as a framework document, but then they decided
they had to add some philosophy in front to make it comprehensible. This
is not a curriculum in the sense of a scope and sequence report. It is
intended, rather, to be an ' “~ellectual framework which can provide a good
backdiop for the new Stanaards of School Mathematics that the National
Council of Teachers of Mathematics (NCTM) is working on. I'm sure many
of you here have probably seen the draft document on the NCTM Standards,
which is listed in the middle of the curriculum column in Figure 1.

The assessment column represents an issue which many people think is the
most important of the whole lot. Not surprisingly, the MSEB group
responsible for assessment has had tne most difficulty getting anything
done so far. They are looking at the impact of standardized testing, ac
the question of what kind of skills are really being emphasized and
rewarded on standardized tests. In the U.S., most mathematics testing is
multipie choice testing--except for the New York State Regents' exams and
the Advanced Placement exams for college entrance. Most mathematics tests
require no writing--no creativity activity on the part of the students.
However, in many states now governors and legislators are putting a lot
of pressure on the school boards to measure students' performance based
upon standardized tests. That means that the flow of money, the flow of
resources, the incentives of teaching are going to be based to a large
extent on the norms established by these tests.

At a meeting I attended in Washington about t : months ago--there must
have been about 200 people therz from many dif. :rent education-related
careers--somebody frcm this task force asked the audience how many of them
in the last three years had actually examined any national standardized
test which was being administered in the United States. There were maybe
four or five out of 200 who had actually done that. By and large, when
a school board or a superintendent decides to buy a test and use it,
nobody in that district looks at the test. They have no ide~ what they
are buying. Then they put out those scores and the politiciaus use them
to rank the schools and sometimes fire teachers. The American public does
¢ . sorts of things based on test scores, but they have no idea what is
in these tests. It is a really big issue, but that is all I am going to
say about it today because it is not one that I've been working with.
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The MSEB agends on the teaching profession has generated a great deal of
movement in the U.S., not particularly because of MSEB but more because
of a major report that the Carnegie Commission sponsored that I'm sure
many of you have heard of. This report calls for radical restructuring of
schools in the United States as well as in the way that teachers are
prepared.

It includes such things as recommending that undergraduate education
majors be abolished. In fact 1 think what they recommend is more the
commonn practice in Canada where students take a subject matter degree
first and then they enter a school of education. Is that common all over
Canaca? I think that is generally the case. But it is not the case in
the United States. Virtually all zersons who enter elementary school
teachirg go from high school into a university or college in which they
take a degree in education. Typically an eiementary school teacher will
have just one course in mathematics. In high school they usually got a
poor grade in geometry and took no more mathematics; then they take one
more course in college which is an elementa.y discussion of numbers. That
is typically all the mathematics our elementary teachers have. A'though
MAA and NCTM recommendations are for four courses, the average nationally
is only one. The Carnegie Commission recommended that there be major
changes at that level.

The Commission also recommended changes ii terms of professionalism--the
way that schools are organized--so that teachers would come in under a
mentorship relationship and later on become lead teachers. These changes
are intended to give teachers more autonomy with fewer rules and
regulations from the adminis-ration. Because Shirley Hill, who is the
Cha'r of MSEB, is a member of the Carnegie Board on Teaching, MSEB is
working closely with this issue.

The column in Figure 1 on Collegiate Mathematics is what I plan to spend
some of my time talking about. The "Calculus for a New Century" project
is a big part of that effort. There's a big project called Mathematical
Sciences in the Year 2000 (MS 2000) which is an effort to look at
everything happening in colleges and universities, including teacher
education programs, undergraduate degreas, masters degrees, doctoral
degrees, stc., to see how these programs are working.

The column on the far right in Figure 1--Outreach and Impact--has to do
with making sure that this board actually accomplishes something. This
effort deals with public information, government relations, state
organizations--with all the outreach that is needed to get things done.
The MSEB emphasis on outreach brings me back to my first point: everybody
involved in MSEB knows that they can't hope to make any progress if
mathematics people only talk to the mathematics education people, because
mathemztics is just too big an operation.




Mathematical Sciences in the Year 2000

Now, as an example, I am going to show you the Issues Chart that the
project Mathematical Sciences in the Year 2000 is working with (Figure 2).
This, you remember, is just one of those five MSEB columns; other columns
would have a similar kind of structure. MS 2000 is 1looking at
undergraduate studies, graduate studies, professional development and
research, continuing education, and other things that go on after people
leave the formal educational system. They are looking at the question of
na.ional needs and potential. Are we producing people with the right
qualities, the right kind of education for va.ious national needs? What
about the curriculum and instruction in different levels and programs?

Are the resources available to departments and universities adequate to
meet the various needs?

You can see in Figure 2 all these interlocking connections. That's one of
the main themes of this type of large national study. You have to
orchestrate an examination of the system as a whole because there are so
many feedback loops and so many unintended interactions.

I began by discussing the global picture (Figure 1) and then gave you one
look at a column (Figure 2). Now I want to give a detailed look at the
structure of one column in Figure 2 and then get on to some of the issues.
Within the MS 2000 chart (Figure 2) there is a curriculum column; Figure
3, for example, shows what MS 200u will be trying to look at in that area.
Because of its structure, the National Research Council is not trying to
duplicate work that is going on in other organizations. What they want
to do is provide national leadership and try to pull people together.
This is especially important because we have many other professional
socleties: the American Mathematical Society (AMS), the Mathematical
Association of America (MAA), the National Council of Teachers of
Mathematics (NCTM), the Society for Industrial and Applied Mathematics
(SIAM), and many others. MS 2000 is going to those groups with concerns
about the undergraduate and graduate curriculum and saying, in effect,
"Let's pull you people together, gather the best thoughts that you have,
and have some meetings to spread widely the best ideas of what is going
on."

What MS 2000 is doing, in effect, is farming out the undergraduate work
to the MAA, the master't degree study to SIAM--because the principal role
of the Master's degree is to prepare people for entering jobs in
indvstry--and the doctoral study to the AMS. In this strategy they are
not asking for just a study of degrees which are of interest to those
particular professional socie. ss; rather, they are asking those societies
to take on the responsibility .f looking at the whole national scene.

The master's degree is a good example of the complexity, because half of
the master's degrees glven in the U.S. are for people whose principal
occupation is high schuol teaching. Frequently they are earned through
a succession of part-time study over a period of ‘rears. The other half
of the degrees divide about equally among those wh. teach in the community
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colleges, those who go into industry, and those who are working on a Ph.D.
Now SIAM is an organization that fs principally interested in the industry
component, but they are being asked to pull people together who have
knowledge about all these other areas so that they can put together a
report on what is going on in all types of masters degrees.

Jhen each report is ready, they will have a conference to pull it all
together and discuss relations among the degree levels. After subsequent
review and revision, they will arrange a big national conference similar
to the "Calculus for a New Century" Conference. This is a typical
mechanism that is used in every one of those columns in MSEB as a meanc
of generating national focus. This strategy has already had certair
significant effect, notably in calculus. By getting 600 people together
to wrestle with calculus, putting out a report, and distributing it
widely, you empower those people who want to make a change to go back to
their local situation and start working on it. That's really what MSEB
is all about.
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U.S, Mathematics Degrees

Now the obvious question ought to be, "Why on earth would anybody set up
such a huge bureaucracy to look at a subject that has been around for 3000
years and is likely to stay there even if you didn't have a bureaucracy?”
One reason is that we are not sure it's going to stay there, at least in
the United States. Figure 4 shows degree figures for doctoral degrees,
masters degrees and bachelors degrees from 1970-86 in the U.S. Graphs
like these began to alarm people. Now, in 1988, it is clear that they are
bottoming out. But the numbers of degrees was declining so precipitously
during the 1970's and early 1980's that people were really beginning to
be alarmed. All of the studies that led up to the creation of MSEB
actually started in the early 80's when the decline was still going on.

Decline in mathematics graduates is one indication of the dilemma facing
the United States. There are other data that compare degrees to needs and
it's clear from such comparisons that we are in deep trouble. (This data
is only for mathematics--not computer science. If you add the computer
science data, bachelor's degree totals would decline to about 1975 or 1976
and then they would start rising. The total would rise higher than the
30,000 figure in Figure 4: it went up to about 45,000. But now it's going
back down again because the bachelor's degrees in computer science are
dropping off more rapidly than the mathematics ones are rising.)

Figure 5 shows data for doctor's degrees in the U.S.--which is really what
concerns people at the National Academy of Sciences. They weren't too
worried about the bachelsr's degree issue in mathematics, but they are
very concerned about the doctor's degrees. And you can see from Figure
5, first of all, that the number of U.S. males declined precipitously; the
number of foreign students stayed roughly constant but expanded a little
bit in recent years; and the women, interestingly, have stayed essentially
constant for more than a decade. 1It's uncanny that women Ph.D.'s have
remained so constant. It may be because the increased emphasis on making
sure that women do continue studying mathematics was exactly counteracted
by the general decline in interest in mathematics. So the result came out
constant. That is one plausible explanation. But the real problem is
with U.S. males. You can see their dat~ shows a monotone decrease and it
still is going down. Graduate school enrollment data right now shows that
Ph.D. production will continue to decline for a while. Although
percentages are not shown in Figure 5, it is clear from the graph that
this year more than 508 of the Ph.D.'s granted by U.S. universities will
be to non-U.S. citizens.

(Again, this data does not include computer science. The phrase

"mathematical sciences” in the United States does not normally include
computer science. It includes statistics, operations research, applied
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mathematics, but usually not computer science. If computer science is
included, it is usually stated explicitly. U.S. computer science Ph.D.'s
are about 220 to 250, total. I think the ratio is about 60% U.S. citizens
and 40% foreign.)

We are down now to about 380 U.S. citizen Ph.D. de2grees. Ii this chart
had been carried in the other direction, back to 1962/63/64, you cruld see
that in that period the total was about 350, almost all U.S. citizens.
So we are right back down to where we were 30 years ago.

Another type of evidence, which gets back to the point of my title about
"All One System,"” is this: if you look at the total Black, Hispanic, and
Native American population in the United States, between 1950 and the year
2000, this minority total, as a percentage of the whole, is rising from
13% back in 1950 to 40% in the year 2000. In public school systems, the
percentage of minorities is already well over 50% in almost all the major
cities. The ten largest public school systems in the United States are
70% Black and Hispanic.

With figures like that for the population pool as a whole, the kind of
indication in Figure 6 about what is going on in mathematics is especially
alarming. This figure takes a little bit of explanation to understand.
It shows a percentage of the mathematics pipeline, which is why it all
comes out constant at the top. In fact the numbers in the pipeline
obviously go way down, but this figure is looking only at percentages, at
roughly 4-year intervals. It indicates for each one of those levels (8th
grade, 12th grade, bachelor's, and doctor's degrees) the percentage of
students who are still in the mathematics pipeline classified as Black,
Hispanic, White female, White male, and Asians. You can see an enormous
drop off: nearly 2/3 of the population at 8th grade is female, Black, or
Hispanic and that fraction drops to about 20% by the time you get to a
doctor's degree. There is, of course, an increase in the Asian fraction.
But our real concern is the under-representation of 50% or more of the
population.

Women and minorities are simply being squeezed out by the way that
mathematics is taught in schoois. That's the other driving force behind
MSEB. It is hard to look at this data and still say that we are all one
country, that we are all one system. We have to figure out a way to make
sure that members of our society who are not making their way through the
pipeline will have a reasonable chance of doing so. A great deal of
concern is based on the obvious fact that mathematics is increasingly
important for jobs that have economic leverage. Many studies from various
labor groups predict that because of the computer age, society is going
to be divided between service occupations and information-based careers.
To the extent that these predictions are right, what is happening in the
United States is that the service-based occupations are becoming
increasingly identified with the under-represented groups while the White,
male, and Asian populations are ircreasingly dominating the high-tech,
information-based society. That kind of division into two cultures is a
very serious matter. It is why so many people are willing to work so hard
on this particular issue at this particular time.
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Undergraduate Mathematics Enrollments

Now that we've seen the big picture of degres patterns, I'd like to give
you one example of relevant detail. Figure 7 shows what has been going
on in university enrollments. This one figure shows about as well as
anything what's happened to U.S. mathematics. 1'll summarize it in one
sentence: In the United States, mathematics in the colleges and
universities is no different than mathematics in the high schools. For
all practical purposes, tnere is no higher education in mathematics in the
United States.

Figure 7 charts enrollments from a study carried out every five years by
the Conference Board of the Mathematical Sciences (CBMS). Remedial
enrollments refer to those courses covering Algebra I and II; they would
at most go through the quadratic formula, but would not go into
exponentials or trigonometry or any elementary function work at all. Pre-
calculus enrollments represent the fourth year of high school mathematics,
including trigonometry and elementary functions; it is the course from
which one would be well prepared to go on to calculus. This category also
counts finite mathematics, high school matrix algebra, elementary
probability, and statistics as a pre-calculus course. Then there is
calculus which is well defined, and then everything that is taught beyond
calculus. The entire undergraduate major is in that little band up on the
top.

Figure 7 shows the jattern of total enrollments in all institutions of
higher 2ducation in the U.S. In the United States we have a large number
of two year colleges. Something in the range of 40-50% of freshmen and
sophomore students take their work in two-year colleges. Many of them
don't go on any further, but sometimes they transfer into a four-year
institution. So to get a proper perspective it is important to examine
separately the two-year and four-year data. Figure 8 shows data from only
those institutions which offer a four-year bachelor degree. It includes
all four-year colleges and universities. The pattern is basically the
ame as in Figure 7, except for the bottom where remedial enrollment is
much lower because most of those institutions have entrance requirements
vhich prevent regular degree credit for courses below the level of a pre-
calculus course for students who are enrolled in a bachelor's degree
program.

Community colleges, on the other hand, bear the brunt of all that remedial
work and so they really are nothing more than an extension of high school
(see Figure 9). It's basically high school done over again until you get
out ef it. You have remedial enrollment, pre-calculus, and a thin band
of calculus. Here the other mathematics enrollments whict are above
calculus on the graph are really below calculus in the mathematical level.
This cluster is mostly mathematics for trades: for plumbing, tor
carpentry, for electronics technicians. In the community colleges the
highest mathematics course is calculus, even though in this graph it
happens to be the very middle of the chart. You can see again the
division that was visible in the total: a huge chunk of remedial work,
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Undergraduate Mathematics Enroliments
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