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OVERVIEW

This chapter will deal with arithmetic programming for children who have been
determined to be significantly below average in mental ability. We will present
information of use to teachers of such children if they are willing to adapt existing
programs to accommodate the children. Traditional math programming as it exists in
regular classrooms has been trimmed, compacted, and watered down for those
students who have been classified as Mildly Mentally Retarded. In order to provide
these students with the best and most appropriate education in mathematics,
teachers must break out of the traditional mold from which they themselves were
educated in math, and be willing to be innovative and creative. Mathematical
programming for children with mild mental disabilities requires a comprehensive
perspective that minimally must include attention to matters of curriculum,
instruction and appraisal. This short chapter cannot provide an all-inclusive look at
arithmetic programming for mildly handicapped children, but will provide one
perspective that is needed to adapt teaching methods to meet their needs.

BASIC CONSIDERATIONS

Curriculum is an essential programming consideration because it determines
what will be taught, the sequence and level at which it will be taught, the amount of
time that will be devoted to each topic and the contextual scheme (i.e., use of a ditto
or a real experience such as shopping) in which the topic will be presented.

Curriculum decisions are paramount in programs for children with mild mental
disabilities because known levels of attainment (Cawley & Miller, in progress;
Cawley, Miller and Watts, in progress; Cawley & Goodman, 1968) indicate only
modest levels of acquisition and facility in applying skills to problem solving (Grise,
1980) and to real-life situations (Levine & Langress, 1985). Therefore, the curriculum
decision, or what, when and where certain topics shall be covered, is fundamentally
our most important issue. We need to choose those components of mathematics that
meet more than the traditional single criterion that there are sufficient dittos
available to keep the students busy. What we need to do is to select and teach those
elements of mathematics that meet the needs of individuals as children and as
adults. If we were truly to do so, we would likely eliminate dittos that stress rote
computation from a particular school program.

Instructional considerations must be capable of by-passing the effects of one
disability or obstacle, and they must also provide a systematic and flexible system for
teacher presentation and learner performance across manipulative, pictorial, spoken,
and written alternatives. Ironically, it is the latter type that dominates school
programming while the initial three dominate mathematics external to school.

Appraisal enters into our program equation in an important manner. It is
appraisal that will provide curriculum specialists and instructional personnel with a
representation of the child to guide provision of an appropriate education. This will
not be provided through single topic standardized tests such as the Wide Range
Achievement Test (Jastak & Jastak, 1978) that measures computation, or through
Curriculum-Based Assessment approaches (e.g., Marston & Magnusson, 1985) that do
the same unless, of course, computation is our only interest.
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BEST PRACTICES

While arithmetic computation is the basis for th_ preparation of this chaptLr, we
do not agree that programs for children with mental disabilities should be dominated
by computation. We do however, propose two appropriate functions for computation
in the curriculum for the mentally disabled child. We take the position that
computation is valid for school purposes in part due to its value in determining the
correct answer in problem solving. The second reason computation is valid for school
purposes is its assistance to the individual in estimating or determining an acceptable
response in real-life situations.

We reject the proposition tnat computation is valid because children need to
complete reams of dittos or that they have to pass certain tests of basic skills. The
Florida data (Grise, 1980) and that of the Everyday Cognition specialists (Levine &
Langress, 1985) clearly show that what we do by way of computation in school is of
little or no long-term value to children with mental disabilities. Recognizing this,
the State of Connecticut (Carter & Leinwand, 1987) has gone so far as to provide
35,000 hand-held calculators to nonhandicapped and handicapped children when they
take the state competency test. This allows for a concentration on problem-solving
and the role of computation is subordinated.

What we support is functionally-relevant computation, conceptually and
meaningfully presented within a framework of problem-solving and applied
experiences. Two brief vignettes support our proposal.

1. During the 1986-1987 academic year we (Cawley & Miller, in progress)
conducted a demonstration project in science and mathematics for
elementary school handicapped children. We employed a regular science
and a regular math teacher, neither of whom had any special education
background. Each day, Ms. Sandra Bennett, the mathematics teacher
taught two self-contained class periods and four resource periods. These
segments included children with mental disabilities, behavioral difficulties
and a myriad of learning disabilities. Throughout the school year this
teacher did not use a single "ditto master" of the traditional computational
type. In one 9 week period of work with primary age children with mental
disabilities - defined in Louisiana as two standard deviations from the mean
- this teacher approached computation from a problem-solving and
conceptual perspective every day. The dominant medium was animal
crackers and the children learned to compare, to match, to make greater
or fewer by certain criteria, to join and to separate and to tabulate. The
regular special education teacher could not believe the complexity of the
interactions the children were displaying with the basic operations. She
kept waiting for the dittos, when, in fact, none were needed.

2. Our second vignette involves six secondary school age youngsters with mild
mental disabilities according to the Louisiana criteria described above.
Each of these youngsters was given a 92 item test of arithmetic
computation. Success was limited to items that did not require renaming.
When asked what each would like to learn, they all responded with
"division." Their teacher, Ms. Diane Noto, taught them meaningful division
in a way that excluded subtraction and multiplication. Once they
demonstrated a complete understanding of division, they were
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introduced to calculators to minimize the computational burden. As
follow-up, the children and the teacher spent the entire 1986-1987 school
year working on units that focused on applications and solutions to social
problems. Computers and calculators replaced the ditto.

Our two vignettes indicate that it is possible to provide long term and systematic
instruction without the ever present workbook or ditto complete with computation
items. They also indicate that it is possible to teach children within contextual
settings and to focus on meanings and understandings in place of rote learning. They
also indicate that it is possible to teach any of the four basic operations on whole
numbers in different sequences and that our absolute dependency on addition to
subtraction to undertake multiplication to division is unwarranted. Finally, they
indicate that it is possible for children to learn about computation in a manner that
clears the way for extended nonpaper-pencil activities and the eventual use of
calculators.

Counting

Counting by one or more to identify the cardinal property of a set and counting
to ten in its many combinations (e.g. ten 10's equal 100) are two skills necessary for
effective computation. The former provides the basis for single digit operations and
the ratter provides the basis for combinations of two or more digits and renaming.

Basic Concepts

Two basic concepts, one-to-one and many-to-one relationships form the basis for
counting. Instruction in these areas can take place in the forms of arrangements,
patterns and sets.

Arrangements (see Figure 1) provide experiences in one-to-one relations via
perceptval and spatial configurations. Making an object as long or the same as one
shown (item A) when given the same number of blocks or other objects does not
invoke courting, per se. Individuals can make the match by simply aligning the
objects with one another. Later, different numbers can be given to the children (item
B) and they can observe relative to the extent to which they provide only the correct
match. Item C shows two triangles of different sizes. The children could be given
sticks of a length equal to the size of a side in the small triangle and instructed to
place the sticks on the lines so they make the triangle (this is also a good experience
for congruence). They could then be shown the larger triangle and instructed to put
the sticks on the line so they make that triangle. Here two smaller sticks would be
required and the child would be working with many-to-one relations.

Additional one-to-one activities can be done with item D, only thi'4 time items of
different length would be utilized.

Patterns are somewhat different from arrangements in that there are specific
rules that guide the construction, matching or symbolization that takes place. Figure
2 shows two illustrations. In tne first illustration (A), the one-to-one correspondence
is developed by matching alternating combinations (i.e., a black box/a white box) r d
the child must build the figure by placing black/white or white/black combinations.
The second illustration (B), requires the child to build the alternating combination but
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this time the items are all of the same color, but different shapes. Thus, the child
must build the triangle/circle or circle/triangle combination. Most of you as readers,
will note that the task in the second illustration is what Zeaman and House (1963)
described as an interdimensional shift. Shifts were integral facets of their research
on attention theory among children with mental disabilities. We thus see that it is
possible to integrate the findings and methods of some of our most basic research
into our curriculum and instructional programming.

Sets used with or without specific arrangements offer an excellent opportunity
to begin the actual counting process and to pro, ide numerous instances for
generalization. Sets are just about anything anyone wants them to be. We focus on
sets with one-to-one correspondence and sets with many-to-one correspondences.
The instructor can put down a number of objects and the child can be requested to
put down as many. The objects can be of any category or type. We see this in two
basketball teams with 6 players each or one carton of milk for each child at the lunch
table. Many-to-one correspondences are beautifully represented with sets. We see
the many apples on a single tree, the four tires on an automobile, the two tires on a
bike, the large number of cars on a single street, which we often call a traffic jam,
an even larger number of people in a single football stadium and an even larger
number of grains of rice in a jar. Each member of a group can be given a jar and
each can be requested to put the same amount of rice in his/her jar. They can do this
by the spoonful or handful and make many-to-one correspondences perceptually.
What we need them to understand is that there are numerous grains in each jar and
that they agree on their sameness on a perceptual basis. One could always ask them
to count, but in such a case one should use very small jars.

One-to-one and many-to-one correspondences are all about us, but the children
fail to attend to these. Show them an automobile with only three wheels and they
will tell you that it won't run. Intuitively, they know these forms of relationships.
What we need to do is highlight them in mathematical terms and to heighten the
attention of the children to them.

Counting

Kids like to count. They also like to say the numbers in sequence. Our job is to
bring the two into their proper alignment so that when the children say "five" they
mean that 5 items represent the ''howmanyness" of a set and they mean this
regardless of the types of objects in the sets.

We recommend the following stages for use in beginning counting.

1. Counting to name a set after it has iicen formed.

The teacher takes some objects and places them on the table and says, "I
have three. See my three here. Tell me how many I have here."
The child says, "Three."

2. Counting to produce a set.

The teacher places a set of objects on the table and says, "Show me
three ." The child counts out three objects and the teacher says,
"Good, there are three ..
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A.

B.

C.

D.

A

Figure 1

I

r1

lay sticks (3) over

Example

Child's Response

lay sticks (6) over (2 per side)
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A.

B.

Figure 2

A
A 0

3. Counting to identify a set with that many.

Example

Response

Example

Response

The teacher places two or more sets of objects on the table and says, "See
these. Point to the one that has three." Child points.

4. Counting to name the set.

The teacher places some objects on the table and says, "See these. How
many do you see?"

There are two additional stages we deem important for counting. The first is
"counting on" to join and to name two or more sets as one. The teacher places two or
more sets of objects on the table as shown in Figure 3A. The teacher asks the child
to count the number of items in each set separately. The teacher then pushes the
two sets together and asks the child to count the number of items in the new set.
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A.

B.

The teacher next places two or more sets on the table and asks the child to tell
how many there are altogether, first by counting the number in one set and then by
counting on to the next set, Figure 3. The child counts the first set and says.
"Three." As soon as this is done, the teacher removes the set and asks the child to go
on to the next set where he counts (four/five) and says, "Five." Our goal is to get the
child to "count on." We want to inhibit the type of counting ',ere the child counts
the objects in the first set, then counts the objects in the next. set and then begins
again with the first set to count all the way through. The initial set can be held in
the teachers hand and removed as soon as it is counted. Objects can be placed in
paper bags or even hidden in different places in the room. The child counts the
number in one location, goes to the other and tells how many altogether.

Figure 3
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The second important element is the counting of "ten." Activities at this stage
begin with the counting of sets with ten or more objects. Each time ten is reached
the child is to set this many aside or wrap them with a rubber band. Counting to ten
initiates the move to renaming and to place value. Children need to understand the
interrelationships between ten l's as one 10 and one 10 as ten l's. The children
described in our second vignette were able to describe ten l's as one ten when they
counted each stick individually Lind wrapped them with a band. However, when the
band was removed and they were asked how many they had, they found it necessary
to count the sticks. When students fully understand this relationship, they are ready
to join two or more sets whose sum is greater than 9.

As soon as the children are able to count ten and understand the
interrelationships among ten l's and one 10, they should begin counting by ten and
eventually understand the interrelationships among ten l's and one 10 and ten 10's
and100 and one hundred l's as ten 10's. Once this level has been reached, they are
ready to join two or more sets which have sums greater than 19, but less than 100.
They need to know that 46 is the same as 30 plus 16, that 23 plus 46 is the same as 20
+ 3 plus 40 + 6. Children will understand these relationships naturally if the
instruction takes place with set of counting objects (e.g. toothpicks). They will not
see the relationships if the instructional approach is dominated by paper-pencil
activities.

Systematizing Instruction

For many years, our approach to instruction has been guided by the principle that
one must be both systematic and flexible. In the classroom or resource setting, we
have used a scheme referred to as the Interactive Unit to operationalize our guiding
principle. Figure 4 shows the Interactive Unit (Cawley, 1985).

As can be seen there are 16 combinations of teacher/learner interactions with an
innumerable number of activities that can take place within each.

The Interactive Unit (Cawley, 1985) meets needs by:

1. systematically varying input/output relations

2. partialling out the effects of one difficulty (e.g. reading) on performance in
another area (e.g. math)

3. providing equivalence among manipulative and symbolic representations to
develop conceptual learnings

4. guiding the development of an unlimited amount of instructional tasks and
materials

The IU consists of rows and columns. As one goes across a row, it is the teacher
behavior or input that changes. As one goes down a column it is the learner or
response behavio, that changes. The teacher can select any input or response
combination to meet the needs of the children and to develop the meanings that
underlie the operations.
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Figure 4

Interactive Unit

Manipulate ... Manipulation of objects (piling, arranging and movement)
Display (Instructor Interaction Presentation of displays (pictures,

arrangement of materials)
Say Oral discussion
Write Written materials (letters, numerals, words, signs of operation) and

marking of these types of materials
Identify Learner Interaction Selection from multiple choices of nonwritten

materials (pictures, objects)

P-1

0

INPUT INSTRUCTOR

w
P 41

S

MANIPULATE DISPLAY SAY WRITE

>-,
4_,
i-f

i-f

The IU is not hierarchical. Manipulation is not viewed as a lower level of
cognition or understanding than symbolic representations. To illustrate, we would
wager that more children can do the long division algorithm via paper-pencil than
there are those who can do it with toothpicks. Further, there are more errors and
deviant representations with paper-pencil than there are with manipulatives. The
reason for this is likely our misguided notion of "concrete." Special educators have
for years been told that to be concrete is synonymous with the manipulation or the
use of objects. Objections to such an interpretation were raised many years ago
(Cawley & Vitello, 1972) and they remain today.

Manipulatives are frequently used to teach in a rote manner. Clearly, rote use
of manipulatives or the rote learning of basic facts and paper-pencil algorithms (e.g.,
start with the column on the right; Pelligrino & Goldman 1987 are more
intellectually damaging to the handicapped child than a meaningful representation
with blocks.
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Within the schemata of the IU, the teacher can develop an unlimited number of
instructional activities and accompanying materials. Ten of the 16 combinations of
the IU can be utilized to prepare worksheets. Figure 5 shows 4 of these combinations
used to represent single digit multiplication.

Figure 5

Item 1 Write/Write
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Examine item 3. It shows a worksheet developed form the Display/Write
format. One could easily exchang the positions of the pictures and the numerals to
produce an activity sheet with a symbolic (write) input and a pictorial (identify)
response. Each of the pictures could be changed (e.g., pumpkins to sailboats) and a
new worksheet created. Such an approach would enable the child to practice and to
generalize.

Algorithms

The algorithms or approaches used in schools and in school texts were developed
as we moved more into paper-pencil arithmetic. No one has inferred that these
approaches are more meaningful than others. The paper-pencil algorithms originally
became popular because they are efficient and because they take up comparatively
little space on paper. Schools contributed to their popularity because they fit nicely
into the textbook, they are easily prepared (e.g., dittos can be cranked out quickly)
and they are easily manageable (i.e., they can be handed out to the entire class in a
few seconds).

But, the sole reliance on the traditional textbook algorithm seriously limits our
ability to develop meanings, to demonstrate alternative approaches, to conduct
appraisals and to assist individual children whose performance is highly unusual. It is
ironic, that in the days of high-tech and the ever increasing popularity of hand-held
calculators that we insist on the right-hand column as the sole beginning point when
the calculator works from left-to-right (Pelligrino & Goldman, 1987).

It is important, therefore, that the teacher become familiar with a variety of
algorithms, and be able to detect the subtle differences between what seems to be a
strange approach on the part of the child and the use of a different algorithm. Our
position is that instruction will be more efficient and learning more effective when
the teacher utilizes a least correction model. That is, the teaches should correct
only the error that is occurring and not the overall performance style of the child.
Examine the two items below.

653

4-544

/ROO
90_____2:._

/.777

6'5'3

-544

Note that in each instance the child worked from left-to-right and that in each
instance the answer is incorrect. Our experience is that the teacher is likely to begin
by informing the child that going from left-to-right is wrong and that he/she should
begin on the right. But, where did the actual errors occur? Clearly, not in the use of
the alternative algorithm. The errors were computational and it is in computation
that the correction should made. Once the child has mastered the left-to-right
algorithm and the arithmetic combinations, the teacher might then suggest that there
are other approaches, one being right-to-left.
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B.)

Approach Computation

In our introduction, we indicated that the primcry reasons for computation are to
provide the correct response to problems and to provide accurate data for dealing
with real life problems. The illustrations that follow (see Figure 6) are taken from a
problem solving test that is presently under development (Cawley & Miller, in
progress).

These illustrations focus on two conceptual schemes, clown( and animal
trainers. The teacher can develop the needed background and vocabulary through
language arts activities, visits to a circus or zoo or through films or other media.
Developing the background is important for the more the children know about a topic,
the less they will be burdened by extraneous concerns.

A.)

Figure 6

41..

400.14

4
41. 0 011111._

Al* Os

Figure 6A displays two pictures of clowns with balloons. The input is:

1. See the clowns.

2. Each clown has some balloons.

3. How many balloons do the clowns have in all?
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The initial statement directs the attention of the child to the context. The
second statement directs the attcition of the child to the items that will be joined
(i.e., added together). The third statement signals the joining action. Note carefully
the use of the indefinite quantifier "some" in the second statement. Note also that
no mention is made of the number of balloons each clown possesses. There are
specific reasons for phrasing the statements in this manner. First, the use of the
indefinite quantifier forces the child to utilize the pictures to identify the number of
balloons possessed by each clown. Had the numbers been givr n, the child would not
use the pictures. Second, the indefinite quantifier forces the child to count the
objects and to utilize counting as the process for joining. Again, had the number been
given the child would likely have searched 3 + 2 only to realize that he or she is
unable to amalgamate them or does not remember these facts. Thus, with the
indefinite quantifier the child can (must) meaningfully approach the process of
addition without as yet having dealt with the so-called "facts." The same is true with
Figure 6B, only this time the child is joining/adding 4 sets. The child is utilizing a
form of the associative property of addition and it is now that the importance of our
earlier concerns for "counting on" emerge. The teacher could vary the task to
encourage counting on by first displaying one picture, then another and so forth.

We come now to the point where we must differentiate between the processes
and understandings of addition, subtraction, multiplication and division as being
different from the rote memorization and application of the traditional algorithm.
To do so, it is important to group the operations and the proficiencies of the children
with mental disabilities who perform them into selected stages. These stages are (a)
single digit by single digit, (b) two digits by two digits and (c) three or more digits by
combinations of one or more digits. Once they understand the operation, children can
be helped to memorize the single digit combinations. But, memorization should not
precede understanding.

Once they understand place value and renaming, children with mental disabilities
can be introduced to operations with combinations of two digits. Proof of the levels
of understandings should be determined via manipulative and pictorial representations
and by their ability to perform two digit calculations with expanded notation. After
they are able to perform two digit calculations at high rates of percent correct and
at the fastest possible rates in time, the children can move to combinations with
three or more digits by one or mor digits.

Three digit by other combinations pose unique problems for the teacher and the
child. In one of our companion studies (Magwili, in progress) it was found that only 15
percent of nonhandicapped children in the fifth grade and only 54 percent of
nonhandicapped children in the eighth grade successfully answered:

46 / 4060

In another study among children with learning disabilities (Miller & Milam, in
press) it was found that the majority of errors on problems of the above type were in
subtraction and multiplication and not in division, per se.

Magwili (in progress) took the item shown above and broke it down into many of
its component parts, Figure 7. Her data show that 85 percent of the fifth grade
sample got the single digit item correct. Performance fell below the 50 percent level
on the single digit divided into three digit example.
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Figure 7

4/4 4/10 4/38 6/38 4/4060 6/40 6/400

4/330 6/4C60 46/380 6/380 6/380 46/406 46/4060

One other recent study (Cawley, Miller & Watts, in progress) showed that only 30
percent of P sarnl..le of senior high school children with mental disabilities accurately
performed division problems with two digit divisors. Clearly, the curriculum decision
to emphasize "long division" via the traditional approach is questionable. An
alternative is needed and that alternative exists as follows:

1. Develop a clear and precise understanding of each operation

2. Develop computational proficiency with two digit by two digit
combinations through three digit by one digit combinations

3. Develop proficiency with estimation as a process and as a competency
(Cawley, 1985)

4. Develop proficiency with the 1- -held calculator

5. Minimize worksheet/ditto and paper-pencil activities

6. Make problem solving and situational computation the dominate school
activity

Expanded Notation. a La Step Before Computation

Counting ' i .volves regrouping when objects are used and renaming when
symbols are use-' 11 changes between columns in items with two or more places
involve the same mbinations. Figure 8 shows both a manii.alative and a symbolic
representation of two digit by two digit addition. The exchange that takes place
between formats generally begins when the child has erred in the symbolic format. In
this situation, the teacher will gather a set of materials and represent the item for
the child. The child may even build the representation. Our experience suggests that
the direct exchange between the manipulative and the traditional symbolic
representation must be mediated by an intermediate activity, namely expanded
notation. In effect, expanded notation is the format through which place value is
expressed.
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Expanded notation involves the numerical representation of each pla,:e value
position. Thus, 23 becomes 20 + 3 and 265 becomes 200 + 60 + 5. In our illustration
in Figure 8, the manipulative representation of 23 plus 32 would be shown as 20 + 3
plus 30 + 2 (Figure 8A). The symbolic representation in expanded notation is shown in
Figure 8B, and the traditional symbolic representation is shown in Figure 8C. The
inverse would take place if we began with the symbolic form.

Figure 8

A. ) #4* HI
+ 11-14 11 11

B.)

C.)

20 + 3
+ 30 +2

23
+ 32.
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What this does is provide a symbolic display of the manipulative form thereby
helping the child to see more directly the relationship between the expanded format
that exists with manipulatives and the traditional format with closed columns. These
three components, the manipulative representation, expanded notation and the
traditional closed column form, enable us to perform two important functions. First,
they enable us to give proper meaning and understanding to the operations and skills
that are so importan' to the child with mild mental disabilities. Second, they enable
us to teach the operations in any sequence so that we can meet needs independert of
the influence of prerequisite deficits (e.g., we can teach multiplication to a child who
does not subtract).

Computation

As stated at the start of this chapter, we do not intend to provide a step-by-step
manual of how to teach computation to mildly handicapped children. What we will do
here at the conclusion of this work is to provide an example of how our theories and
methods could be used in a class for these children. As we noted earlier, we have
found that the traditional order in which computation is taught (e.g. addition, then
subtraction, followed by multiplication, and finally division) is not at all necessary for
students to understand and perform computations. We have been bound by tradition,
and how we were taught when we ourselves were youngsters. It should be up to us as
modern teachers to be willing to accept changes in time honored methods if these
changes are for the good of our students. What we propose here is the teaching of
multiplication, independent of the other operations of addition and subtraction. The
reader should bear in mind however, that we did note that the basic concepts of
counting and place value (expanded notation) must be mastered before any instruction
beyond single digit computation is attempted.

For our example we will begin instruction in multiplication with the fact "4 x 3 =
12". We are not going to have the child memorize this fact, but will have the child
understand this fact and generalize from this fact to all other multiplication facts.
We will make extensive use of arrays in our lessons, and would begin as follows:

1. Present the child an array of manipulatives (beans, blocks, etc.) as shown:

xxx xxx xxx xxx

Have the child count the number of things in each set and the number of
sets (here we are using the concept of equal sets). Say: "Make one like
mine." Child copies arrays and recounts.

2. Rearrange your materials into the array shown below:

Say: "Make one like mine." Child copies array lind notes that there are 4
rows of 3, the same number as before the array was produced.
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3. Reform your array as shown:

Say: "Make one like mine." Child copies array and notes that there are
now 3 rows of 4, and that the array is now turned sideways. The child
notes that there are the same number or items regardless of the way they
are presented. You have now presented the commutative property of
multiplication (e.g. 3 x 4 is the equivalent of 4 x 3). This is an important
step in the teaching of multiplication as once the child understands the
commutative property, the number of facts that must ultimately be
learned is almost cut in half. Have the child change the array several
times to cement the concept.

4. You could now present the various permutations of the first fact, 4 x 3.
Arrange an array as shown:

xxx xxx
xxx
xxx

Say: "Make one like mine." Child copies array. Note that there are now
two facts represented: 1 x 3 and 3 x 3. Stress the idea that there are still
the same number of items in the array, but they are now in two sets. IYou
recognize this as the distributive property of multiplication.] Use
"counting on" to demonstrate that 1 x 3 and 3 x 3 is the same as 4 x 3. You
can divide the array into the other permutations, always demonstrating
that no matter what formation is give, the items always represent 4 x 3

Note: We recommend that the numerical representation of each expression
be used starting at step four if not before. The numerical expression could
be used throughout if desired, simply present the expression on a card
which the child can view as he or she manipulates the items as instruction
progresses. At all steps, the child could also supplement the manipulatives
with paper and pencil representations of each array. The teacher simply
says: "Draw it."

5. The next step is the presentation of multiplication "problems" rather than
simple "facts". This occurs when numerals of 10 or more are used. For
example, the problem:

13
x3

would become cumbersome if 3 rows of 13 ones were required. We have
already noted that knowledge of place value and expanded notation is
required prior to instruction in computation, and it is at this point in the
multiplication instruction when this knowledge is required. The child must
know that 13 is made up of one 10 and 3 ones. The "+" sign could be used
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here to indicate "and" rather than an operation, so the expression 10 + 3 =
13 does not presuppose any knowledge of addition on the part of the
student.

It is good to use items such as popsicle sticks, etc. which can be bundled
into groups of 10 for these problems. For the above problem, make an
array as follows:

(# represents one bundle of 10)

# xxx 10 + 3
# xxx 10 + 3
# xxx 10 + 3

3 9

In order to solve this problem, the child counts the number of items in the
ones column (9) and the number of bundles of 10 (3) and arrives at the
correct answer (39).

6. Ah ha! You are now thinking, "What happens when there are more than 9
tens in the ones column?" Remember that the student is proficient in
expanded notation and place value. When presented with the problem:

13
x4

the student would form an array as shown.

# xxx 10 + 3
# xxx 10 + 3
# xxx 10 + 3
# xxx 10 + 3

The child counts the number of items in the ones column and when 10 is
reached, he or she automatically "bundles" the ten, places it with the other
bundles of ten, and continues counting the remaining ones (2). The student
then counts the number of bundles in the 10's columns and notes that there
are 5, thus arriving at the correct answer of 52.

# 10
# xx 10 +2
# 10
# 10
# 10

5 2

7. The teacher could continue to provide manipulatives indefinitely as the
child works multiplicaticn problems. However, the student understands the
concept of multiplicaticn and is able to perform the operation which is
what the instruction is all about in the first place. At this point, we
recommend that the teacher provide the students with a hand-held
calculator.
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The above example demonstrates clearly how the operations used in mathematics
could be taught independent of each other. Basically the same steps could be used
for either of the other three operations in mathematics.

SUMMARY

All too frequently, we find ourselves caught in the web spun by our predecessors
it teaching only to find that we are reluctant to change our views and methods. It
was our aim in this work to offer alternatives to traditional methods and to alert
practitioners to the dangers of stagnation in mathematics teaching.

We must be aware that students are able to learn mathematics in alternative
ways. We must also be able to accept these alternatives when offered. It is our hope
that this work will provide a thought provoking stimulus for action on the part of
those who teach mathematics to the mildly handicapped.
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