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Abstract

The parallel analysis method for determining the number of

components to retain in a principal components analysis has received a

recent resurgence of support and interest. However, researchers and

practitioners desiring to use this criterion have been hampered by the

required Monte Carlo analyses needed to develop the criteria. Two recent

attempts at presenting regression estimation methods to determine

eigenvalues were found to be deficient in several respects, and less

accurate in general, than a simple linear interpolation of tabled random

data eigenvalues. Tables are presented which permit accurate and easy

determination of the parallel analysis criteria within a range of sample

sizes (N = 50 through 1000) and number of variables (P = 5 through 50)

covered by the tables.
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Alternatives, to Conducting Monte Carlo Analyses

for Determining Parallel Analysis Criteria

Researdhers using principal components analysis, either as a data

reduction method or as a preliminary step in common factor analysis, have

available a number of criteria for determining the number of factors to

retain for rotation and/or interpretation. Perhaps the most prevalent

method in use is Kaiser's ()960) criterion of retaining eigenvalues

greater than one for determining the number of components, or common

factors, to retain. However, applying Kaiser's rule, or any of several

other rules that are available, may not be as accurate as using the

parallel analysis (PA) criterion. It has been suggested that both the

minimum average partial correlation method (Velicer, 1976) and the PA

method m..!.ght both be employed to reach a decision about the number of

components to retain (Zwick and Velicer, 1986). Cliff (1988) has also

called into question the use of eigenvalues-greater-than-one to determine

the number of components or common factors. Horn (1965) initially

proposed the PA method as a sample-based adaption of Kaiser's (1960) rule

of retaining all eigenvalues greater than or equal to 1.00. The basic

rationale underlying the PA criterion being that "meaningful" components

extracted from actual sample data should. tend to have eigenvalues larger

in size than eigenvalues of the same order obtained from random normal

variates generated to simulate the same sample size and number of

variables. Since it is the expected value of eigenvalues of random data

that are used for the comparison, it is necessary to simulate many such

datasets and average the respective eigenvalues obtained to estimate the

expected values. A stumbling block for those desiring to implement the PA

criterion in practice is the required number of Monte Carlo analyses.
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Regression Estimates of Eigenvalues

Allen and Hubbard (1986) have presented a means by which parallel

analysis could be made more accessible to practitioners. Their work was

based on earlier work by Montanelli and Humphreys (1976; Humphreys &

Montanelli, 1975) which had presented a general form of a regression

equation to be used for estimating the 'eigenvalues of random data

correlation matrices with squared multiple correlations on the diagonal.

.Allen and Hubbard (1986) derived a general form of a regression equation

designed to predict values of all but the two smallest (last) eigenvalues

of a random data correlation matrix with unities on the diagonal. The

Allen and Hubbard equation is:

[1] log(lk) = ak + bk log(N-1) + ck log {(P- k- 1)(P- k +2)/2}

+ dk log( k-1)

where log is the natural logarithm, N is sample size, P is the number of

variables, k [k = 1,2,...,(P-2)] indexes the hth eigenvalue l
k,

(71.0 =

1.0) and ak, bk, ck and dk are regression model parameters. The term

weighted by ck was derived from a degrees-of-freedom rationale offered by

Bartlett (1951) and Lawley (1956). The inclusion of this term necessarily

restricts eigenvalue estimates to the first P-2 eigenvalues. An excellent

fit was obtained between predicted and observed values for all but the

first eigenvalue by including the dk term. Allen and Hubbard's (1986)

empirical equations (hereafter referred to as the AH equations) have been

implemented in the computer program PARALLEL (Hays, 1987).

Recently, Lautenschlager, Lance and Flaherty (in press) have improved

upon Allen and Hubbard's general equation to provide a more nearly exact

estimate of the first eigenvalue. They employed the following revised
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equation:

[2] log(n ) = ak + bk log(N-1) + ck log{(P-k-1)(P-k+2)/2}

+ dk loga.

which involves one additional predictor term in addition to the predictors

used in equation 1, namely the ratio of the number of variables to the

sample size. Allen and Hubbard (1986) reported an R2 = .931 between the

actual first eigenvalues and predicted first eigenvalues forthetrdata--

using equation 1. Lautenschlager, et al. (in press) obtained an R
2
= .933

for their data using equation 1, and obtained an R
2
= .993 using equation

2. The increment in R
2
was statistically significant (F(1, = 782.01,

p<.0001) using equation 2 over equation 1. Revised empirical regression

equations (hereafter referred to.as the LL equations) would appear to have

the advantage of making better predictions of the first eigenvalue, and

hence better predictions all around, owing to the fact that the regression

estimates are recursive, meaning estimates of initial eigenvalues figure

into estimates of later eigenvalues in applications of equations 1 and 2.

Both equations produce regression estimates of eigenvalues that ostensibly

could be used as criteria for a parallel analysis.

Available procedures for implementing PA criteria in practice were

compared. This involved the examination of regression equation methods

that can be used to estimate random data eigenvalues from known values of

the sample size and number of variables. Problems inherent in the

application of theSe regression estimation procedures are described, and a

more accurate method for determining PA criteria in practice is presented.

6
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Method

Procedure

Data were generated in a series of Monte Carlo simulations in which

the number of variables (P) ranged from 5 to 50 in steps of 5, and sample

sizes (N) were chosen as 50, 75, 100, 150, 200, 300, 400,.500, 750 and

1000, to reflect a range typically found in published research. For each

N, P combination the SYSTAT (Wilkinson, 1986) analysis package was used to

(a) generate random data for N cases on each of P variables from a N(0,1)

population, (b) create a correlition matax-based-on-this-dataland-(e)-

conduct a principal components analysis of the correlation matrix. For

values of P > 10, one hundred replications were generated; for values of

P < 10, two hundred replications were generated. A total of 12,000 unique

datasets were created.

Within each fixed N, P combination the results were combined over

replications and averaged to produce an average first eigenvalue based on

100 values, an average second eigenvalue etc. These averaged values were

then used to form tables of averaged eigenvalues. These datasets had been

used by Lautenschlager, et al. (in press) under the restriction that only

those N, P combinations which satisfied N.> 3P/2 were involved in the

development of the LL equations.

Proposed Comparisons

The generated data provided the empirical criteria for the comparison

of the regression equation estimates using the AH and LL estimation

equations. In addition, tabled values of eigenvalues were used to

interpolate values for eigenvalues not specifically covered by the tables.

The accuracy of these interpolations were investigated vis -a -vis the

regression estimates by conducting additional Monte Carlo simulations to

7
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serve as criteria. The root mean squared error (RMSE), defined as the

square root of the average squared deviation of the interpolations and the

regression estimates from the averaged eigenvalues obtained from these

additional simulations, was calculated in each case to permit compatisons.

Because the regression estimation methods only generate P-2 estimates for

any given case, all RMSE calculations involved at most only the first P-2

eigenvalues.

Results

ridblems with-Regression-Estimates-of-Eigenvalues

Those who wish to use AH or LL regression equation methods to estimate

the eigenvalues of random data correlation matrices can use the empirical

equations as presented in a table found in each of the respective- papers.

In order to produce AH regression estimates, one can use the PARALLEL

program (Hays, 1987). The LL equations have been programmed and can be

im?lemented through use of the PARANAL program (Lautenschlager, 1988)% At

first blush it would appear that the AH equations were at a distinct

disadvantage in comparison with the LL equations, as the latter were

derived from the generated data described above. Neither regression

estimation method was found to be generally useful across the ranges of N

and P from which the equations were developed.

Although for certain N, P combinations the results produced by

regression estimation methods tended to agree with the Monte Carlo

simulations, numerous other combinations produced clearly divergent, and

often unreasonable results. As a case in point, fixing P = 50 (i.e. 50

variables were involVed in the analysis) whenever N > 170 the AH equations

begin to produce predictions of subsequent eigenvalues that were larger
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than preceding eigenvalues (e.g. when N = 171 estimated eigenvalue 4145 >

estimated eigenvalue 4144). As sample size grew larger while holding P =

50, even more peculiar things happened. Estimated eigenvalues decreased

beyond the first value up to a point but then consistently increased. In

addition, predicted eigenvalues were obtained for eigenvalues past the

(P/2)th-value that exceed the number of variables in the analysis. At the

extreme high end where N = 1000, the estimated first eigenvalue was

reasonably close to the empirical value. However, the estimate for the

48th eigenvalue was slightly over 3,849,433,795. Admittedly, this was at

the extreme upper bound of both N and P, but similar problems occurred for

other combinations of sample sizes and number of variables. Obviously the

usefulness of these empirically obtained regression equations was not

uniform across the N, P combinations studied by Allen and Hubbard (1986).

Were the LL equations any better at providing estimates of

eigenvali :es? The answer was a qualified yes. In general, the estimates

based on the empirical- equations provided by Lautenschlager, et al. (in

press) were better behaved, but not well-behaved in terms of. being

generally useful to researchers. The LL empirical equations tended to

produce better estimates than the AH equations, in the sense that

estimates tended to be closer to the simulated empirical data (from which

the estimation equations were developed), but these equations also

sufferred from the problems, described in the preceding paragraph.

Hoyever, for some combinations of N and P the AH estimates were better.

The differences in precision may have been due in part to the differences

in the N, P combinations employed in the two studies and to the number of

replications. Although the LL equations were technically "better" than

the AH equations in terms of overall fit, they also posed pfoblems for
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researchers desiring to implement the PA criterion in the numerous

research situations ostensibly covered,by th0 range of N and P values used

to derive the AH and LL.equations. It should be noted that these

pronounced problems described above, which were easily identified at the

extremes, were also present elsewhere in a less obvious form.

Factors Affecting Regression Estimates of Eigenvalues

One might wonder why the regression estimates of eigenvalues can be

so far off, even well within the bounds of N and P used to generate the

equations. After all, the smallest R
2

reported by Allen and Hubbard

accounted for over 93Z of the variance of the first eigenvalue, and that

reported by Lautenschlager, et al. accounted for over 99Z of the variance.

First, and obviously, the estimates provided by either set of empirically

derived regression equations must produce estimates that are somewhat

closer to the mean
I

the set of specific eigenvalues of a given order (e.g.

all first eigenvalues) used in generating the equation. Given the large

R
2
s, this may seem a trivial factor. However, what is estimated is the

natural logarithm of the eigenvalue. Small differences in the estimation

accuracy of a logarithm will have a more pronounced impact on the

estimation accuracy of the eigenvalue itself.

Second, as noted by Lautenschlager, et al. (in press), errors in

prediction are cumulative (and likely multiplicative) in effect. This is

because a series of different, but dependent equations must be applied in

sequence to estimate a range of eigenvalues. The prediction of the third

eigenvalue must suffer since the prediction of first and second

eigenvalues were both somewhat in error themselves. Because estimates of

preceding eigenvalues must be used to estimate subsequent eigenvalues, the

proportions of variance accounted for, as reported in the development of

10
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the regression equations in these articles, are potentially deceiving

regarding this deterioration.

A third source for lack of fit is likely due to the fact that

eigenvalues must be estimated within a specific N, P combination. On the

other hand, the empirical equations were developed by extracting an

eigenvalue of a specific order from across all N, P combinations.

Variance between N, P conditions for a particular order, eiienvalue is

clearly accounted for but obviously some variance across eigenvalues

within conditions is not captured in the process.

Another Option for Determining Parallel Analysis Criteria

Although the preceding discussion may seem to imply that the PA

criterion can only be emiloyed-Bitlifte-wiiling-to-conduct-their-own-Monte

Carlo simulations, there was another alternative. Given that current

regression estimation methods could not generally be recommended across

the range of the N, P values from which the equations themselves were

developed, a better approach was desired. An alternatiVe means for

applying the PA method was derived through the direct use of the available

simulated data themselves. Tables 1 through 10 present averaged

eigenvalues from principal components analyses of the 12,000 random data

correlation matrices. The tables reflect all N, P combinations described

earlier, and i ere arranged so that each table covered a specific value of P

and presented the average eigenvalues arranged in decreasing order,

obtained over replications for each specific sample size. These tables

represent an implementation of PA criteria that can he widely used.

Insert Tables 1 through 10
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Relative Accurac of Inter olations and Re -ression Estimates

It was decided that simple linear interpolation of non-tabled N, P

combinatiolu may prove sufficiently accurate, for deri4ing PA criteria, and

this hypothesis was examined in the sections below. The accuracy of the

various estimation methods was tested by computing RUSES for each method

based on deviations from averaged eigenvalues of the same order obtained'

from Monte Carlo simulation results to cover each of the interpolatiOn

cases described below. Several specific examples and a number of general

tests of the accuracy of the interpolation method were provided relative

to the AH and-LL regression equation estimates.

Examples of Linear Interpolation

The first interpolation case concerned a value for P which was

covered by one of the tables, for a specific sample size that was not.

For example, when P = 25 and N = 890 the last two columns in Table 5 were

used. In this case the estimated first,eigenvalue for random data was

interpolated as:

1.345 + { ((750 -1;90)/250) * (1.345 - 1.298) ) = 1.319

The AH estimated value in this case was 1.323 and the LL estimated value was

1.341. Subsequent eigenvalues were interpolated and regression estimates

,were obtained as well. These values could'have been used fio serve as PA

criteria. A Monte Carlo simulation of 100 replications ':as C'cmducted for

this case (P = 25 and N = 890) and the results served as a base-I:me for

computing RMSE values for the sets of eigenvalueS estimated using linear

interpolation, AH estimates and LL estimates. Since the regression

methods could only estimate the first 23 eigenvalues, only the first 23

valuei.were used in all RMSE calculations. The RMSE values obtained were

' 2



Parallel Analysis Criteria 12

0.0019, 0.3069 and 0.1477, respectively. It should be noted in this case

that both regression estimation methods produced 21 estimated eigenvalues

greater than 1.0, and some of the latter AH estimates were greater than

preceding estimates. The interpolation method was superior in this case.

A second-interpolation case involved a' value for P which was not

covered by the tables, for a specific sample size that was covered. For

example, when P = 17 and N = 75 the second columns of Tables 3 and 4 weze

used. In this case the estimated first eigenvalue for random data was

calculated as:

2.050 + { ((17 - 20)/5) * (2.050 2.861) = 1.937

This value was closer to the LL regression estimated value of 1.914 than

it was to the AH value of 2.003. Another Monte Carlo simulation

involving 100 random samples for this particuldx case was used to develop

expected eigenvalues. The RMSEs for the sets.of eigenvalues obtained from

linear interpolation, AH estimates and LL estimates were 0.0109, 0.0381

and 0.0264, respectively. Once again linear interpolation .ias more

accurate, though the advantage was not as great as in the previous case.

A third interpolation case involved values for both N and P which

were not covered by the tables. For example, when P = 37 and N = 177 the

fourth and fifth columns of Tables 7 and 8 were used. In this case the

estimated first eigenvalue for random data was calculated as:

Step 1:

2.058 + { ((150 - 177)/50) * (2.058 - 1.878) ) = 1.961

Step 1:

2.157 + { (( -150 - 177)/50) * (2.157 - 1.976) } = 2.059

Step 3:

2.059 + ( ((37 40)/5) * (2.059 - 1.961) } = 2.000

13
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The last step produced the interpolated value. In- this case the AH

regression estimated value, was 2.037 and the value was 1.938for the LL

method. Based on another Monte Carle simulation of 100 replications for

this case, the RMSEs for the sets of eigenvalues obtained by linear

interpolation, AH estimates and LL estimates were 0.0055, 0.1682 and

0.2228, respectively. Again, linear interpolation proved more accurate

than either of the regression estimation methods.

A More General Comparison of the Accuracy of Interpolations

Although the foregoing examples suggested that linear interpolation was

relatively more accurate in a limited scope, it was important that the

accuracy of this method be more definitively examined across a wide range of

conditions. To this end the following additional comparisons were made.

Since each table presents 10 separate conditions for a fixed value of P, it

was possible to "interpolate" eigenvalues for the middle column of each

group of three adjacent columns. For example, in Table 1 it was possible to

interpolate values for N = 75 by using the columns for N = 50 and N = 100.

The criterion for accuracy was then the respective column that has been

interpolated. This resulted in a total of eighty sets of interpolations on

values of N produced by interpolating for each of the middle eight columns

in each of the ten tables. The benefit of interpolating for existing

columns in the Tables was that it did not require any further Monte Carlo

simulations. One drawback of this procedure was that the relative accuracy

of the interpolation method was placed at a disadvantage, as interpolations

were made ever ranges of values for N much broader than would be done in

practice. This type of interpolation is hereafter referred to as within-

table interpolation.

14
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Regression estimates for both the AH and LL equations were made for

each of these conditions, and RMSEs were examined for the interpolations

and regression estimates. In 71 out of the 80 cases the interpolated

values produced the smallest RMSEs. A comparison of the relative sizes of

the RMSEs for each method is presented in Table 11. Eighty-four percent

of the interpolation RMSEs were less than or equal to .050, while only 34%

or less of the regression estimates were as accurate. These results

indicated that the interpolations were generally superior to either

regression method.

For the 9 cases where a regression method performed better than the

interpolation method, it was always the LL method. In all but two of

these cases N < = 100, but there was no other discernable pattern to these

nine cases. The largest discrepancy resulted from a case where the LL

RMSE was .027 and the interpolation RMSE was .089. The average

improvement in accuracy over these 9 cases was .019. The AH method never

did better than linear interpolation. Focusing on the two regression

methods only, the LL method was better in 54 cases.

Insert Table 11

It was also possible to conduct a series of interpolations for values

of P across tables, for fixed values of N. For example, using Tables 1

and 3 it was possible to interpolate eigenvalues for P = 10 by using the

same N column in each of the two tables. The criterion for accuracy was

then the respective column in Table 2 that has been interpolated. Making

all such interpolations of this kind produced eighty sets of interpolated

15
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eigenvalues based on values for P in Tables 2 through 8. It should be

noted that for these interpolations it was only possible to interpolate

for eigenvalues up to the order of the smaller value of 'P used in the

interpolation (e.g., when interpolating for P = 10 only 5 eigenvalues

could be interpolated). This type of interpolation is hereafter referred

to as across-tables interpolation.

Once again, regression estimates for both the AH and LL equations

were made for each of these conditions, and RMSEs were examined for the

interpolations and regression estimates. In. 69 out of the 80 cases the

interpolated values produced the smallest RMSEs. A comparison of the

relative sizes of the RMSEs for each method is presented in Table 12. All

80 RMSEs for the interpolations were less than .050, while less than one

third of the values for either of the regression methods were as accurate.

Again it would appear that the interpolations were superior to either

regression method.

For the 11 cases where a regression method performed better than

interpolation, it was always the LL method. Eight of these eleven cases

occurred for P = 10 involving all sample sizes except the two at either

extreme. The largest discrepancy among those 11 cases resulted from an LL

RMSE of .005 and an interpolation RMSE of 0.030. The average improvement

in accuracy over all 11 such cases was .008, which indicated little actual

difference between methods. The AH method never did better than linear

interpolation. Focusing on the two regression methods only, the LL method

was better than the AH method in 54 cases.-

Insert Table 12

1 6
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More Stringent Tests of Interpolation Accuracy

In practice one would rarely want to examine more than half the

eigenvalues obtained, and more likely only the first third of the

eigenvalues or less. So, as a further check on the accuracy of the

intefpolations vis-A-vis the regression estimation methods, an additional

series of comparisons were made limiting the focus to only to the first

third of the possible eigenvalues. These comparisons would tend to show

the regression estimates in a much better light, however the linear

interpolation method would still suffer the same disadvantage noted

earlier in spanning at least twice the distance than would be required in

actual use of the tables.

Under these circumstances, computing RMSEs for interpolations and regression

estimates for only the first third of the possible eigenvalues, there was

only a noticeable change for the within-table interpolations. Here the

interpolation method was superior to either regression method in 53 out of

the 80 possible cases. Of the twenty-seven cases where a regression

method was better, 17 were for sample sizes of 75 or 100, with the

remaining ten cases scattered from sample sizes of 150 to 500. For 21 of

these 27 cases the LL regression method was best. Thus although the

regression estimates improved when the proportion of eigenvalues estimated

was reduced, and one of the regression methods proved more accurate for

the-smallest sample sizes, the interpolations were still generally better

even for these stringent and somewhat biased tests.

It was interesting to note that for the across-tables interpolations

there was virtually no improvement over the results obtained earlier when

all estimated eigenvalues were involved. The interpolation method was

superior for 69 of the 80 possible cases. For the 11 cases where a regression

17
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method was better, eight of these cases involved P = 10 for the eight

smallest sample sizes. The LL method was best in 10 of the 11 cases.

This might have been anticipated in that the maximum number of eigenvalues

that could be interpolated (and hence compared) was necessarily limited to

the smaller value of P involved in the interpolation. In effect, the

number of eigenvalues that were compared was already somewhat reduced in

the initial set of comparisons.

It is important to point out that the within-table interpolations

must necessarily estimate a large number of the exact same sets of

eigenvalues as did the across-tables interpolations. In fact, sixty-four

of the 96 possible interpolation cases were common to the two modes of

interpolating values used here. Yet, a somewhat different picture of the

accurracy of interpolations vis-A-vis the regression estimates occurred

for the two modes of interpolation. Some of this difference in accuracy

can be explained in terms of the range of values for P or N that were

involved in a particular interpolation. Interpolations over values of P

across=tables covered much narrower intervals, and were generally more

precise than were interpolations involving values of N within a given

table.

Comparisons Involving Adjusted Interpolation RMSEs

As noted previously, all the preceding comparisons, whether with all

estimated eigenvalues or only the first third involved, had placed the

interpolation method at a disadvantage. In practice one would

interpolate between adjacent columns either within or across tables.

Thus, in practice either type of interpolation would be much more

accurate than in all the preceding comparisons! To attempt to control for

this disadvantage a final series of comparisons were made. It was assumed

18
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that the lack of fit for linear interpolations was due to two sources,

random error and nonlinearity. Given the number of replications used to

generate the tabled values, the first source was presumed a minor

influence. In addition, it was assumed that even in the face of

nonlinearity the linear interpolations would have to improve when adding a

point that fell between two points, where all three such points were

expected to fall on a specific monotonic curve. Thus, a considerable

improvement in fit was expected since in practice there would be no need

to skip over columns to make interpolations, as had been done above in the

previous two sections (to avoid additional Monte Carlo simulations). It

was further assumed that the linear interpolation RMSEs would potentially

be reduced by a factor of either 25%, 33% or 50% of their previously

estimated values. In view of a monotonic nonlinear relation it is quite

likely that even more than a 50% improvement in RMSEs could be obtained.

Though the exact amount of improvement expected was not known, these

percentage reductions in RMSE values probably range from conservative to

`realistic.

Adjusted interpolation RMSEs were calculated based on the first third

of the possible eigenvalues for the cases involving within-table

interpolations. Under these conditions the linear interpolation method

proved superior in 61 out of the 80 cases assuming only a 25% reduction in

interpolation RMSEs could be expected. The 19 cases where one of the

regression methods was more accurate included: values of P = 10 through

25, with sample sizes of 75 or 100; values of P = 30 through 40, for a

sample size of 75; and values of P = 40 through 50, for a sample size of

100. The LL regression method was best in 14 of these cases. The number

of cases where the linear interpolation method was superior increased to

19
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66 and 69 assuming a 33% and a 50% reduction in interpolation RMSEs,

respectively.

When similar adjustments were made to RMSEs for across-table

interpolations the number of cases, out of 80 possible, where the

interpolation method was superior increased to 75, 76 and.77 assuming a

25%, a 33% and a 50% reduction in interpolation RMSEs, respectively. In

each case where a regression method was the best it was always the LL

method.

Examining Redundant and Non-Redundant Interpolations

Because of the way in which interpolations were made for specific

target columns in Tables 1 through 10, sixty-four of the 80 possible

interpolations conducted within-tables and across-tables were redundant

with one another. As such, it was useful to examine whether there were

any cases where both types of interpolation for a specific combination of

N and P were less accurate than the best regression method. When all

eigenvalue estimates were used in the RMSE calculations this occurred in

only 3 out of the 64 possible cases. Assuming only a 25% reduction in

interpolation RMSEs led to 0 such cases out of the 64.

Still considering those cases where the two modes of interpolation

were redundant with each other, and now limiting the RMSE calculations to

only the first third of the eigenvaiues led to 6 out of the 64 cases where

a regression method was better than either mode of interpolation.

Assuming a 25% reduction in interpolation RMSEs led to only 2 such cases,

and assuming a 33% reduction led to 0 such cases. Of the 32 cases that

were unique to one particular mode of interpolation, a regression method

was best in only 5 of these cases. This number was reduced to 3 assuming a

25% reduction in interpolation RMSEs and to 1 assuming a 507. -:eduction.
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Discussion

It seems reasonable to assume that the linear interpolation method

for non-tabled values will generally be much better than either regression

estimation method across the conditions covered by the tables. In all

cases where either of the regression methods produced estimateof

eigenvalues .which were unreasonable (staying within the bounds of the N, P

combinations used) the interpolation method produced reasonable and

reasonably accurate estimates of eigenvalues. Even where regression

estimates were reasonable, the interpolated values were more accurate in

most cases. This was true in spite of the fact that many of the

comparisons made did not make allowance for the fact that the

interpolations spanned greater distances than would be needed in practice.

One can be reasonably assured that linear interpolation of eigenvalues

based on Tables 1 through 10 is comparable to conducting a Monte Carlo

analysis to establish parallel analysis criteria. Tables 1 through 10 can

be used to provide accurate random data eigenvalue estimates for use as

parallel analysis criteria.

It is unlikely in practice that one would want to interpolate values

beginning with the first eigenvalue, but rather beginning at some point

where tabled values for a given eigenvalue appear close to the same order

eigenvalue in the sample results at hand. This is because the parallel

analysis criterion involves determining where the sample data eigenvalues

become smaller than a random data eigenvalue of the same order. In

effect, if one plots the eigenvalues from sample data along with the

eigenvalues from random data based on the same N and P, the PA criterion

for determining the number of components to retain is at (or before) the

point where the two lines intersect. It seems clear from the above

21



Parallel Analysis Criteria 21

results that use,of the tabled Values presented here should make

implementation of the PA criterion more practical. urtly!r Monte Carlo

analyses within the rangei of N and P covered. by- these tablei should be

unne..assary. The interpolation method for determining parallel analysis

criteria is generally more accurate than available regression estimation

procedures, and relatively easy to apply within the boundarlei of the

tables presented. Though reliance on ,a single. rule-of-thumb for

determining the number of components to retain is ill-advised (cf. Cliff,

1988), those desiring to use the parallel analysis criterion in

conjunction with other rules for determining the number of components to

retain can now more readily do so.

22
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Table 1
Average Eigenvalues of Random N(0,1) Data for P = 5

Root 50' 75 100 150 200 300 400 500 750 1000

1 1.392 1.330 1.297 1.234 1.201 1.166 1.143 1.127 1.104 1.089
2 1.161 1.134 1.120 1.096 1.086 1.070 1.060 1.052 1.046 1.039
3 0.990 0.984 0.989 0.996 0.993 0.995 1.001 0.999 0.999 0.999
4 0.818 0.853 0.867 0.893 0.912 0.925 0.937 0.944 0.953 0.960
5 0.640 0.699 0.729 0.783 0.809 0.844 0.860 0.880 0.900 0.914
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Table 2
Average Eigenvalues of Random N(0,1) Data for P - 10

25

Root 50 75 100 150 200 300 400 500 750 1000

1 1.787 1.611 1.528 1.435 1.366 1.294 1.260 1.230 1.186 1.158
2. 1.529 1.421 1.358 1.297 1.249 1.205 1.179 1.158 1.129 1.110
3 1.330 1.268 1.229 1.188 1.161 1.136 1.118 1.104 1.084 1.074
4 1.159 1.145 1.122 1.102 1.087 1.074 1.067 1.059 1.048 1.043
5 1.012 1.025 1.029 1.021 1.021 1.020 1.016 1.015 1.013 1.015
6 0.876 0.915 0.926 0.945 0.957 0.967 0.969 0.975 0.980 0.985
7 0.760 0.810 0.841 0.870 0.896 0.914 0.925 0.933 0.947 0.954
8 0.633 0.710 0.753 0.800 0.825 0.858 0.877 0.892 0.913 0.923
9 0.519 0.605 0.658 0.719 0.757 0.802 0.826 0.847 0.873 0.892

10 0.399 0.493 0.559 0.627 0.680 0.732 0.765 0.790 0.830 0.850
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Table 3
Average Ei envalues of Random N(0,1) Data for P = 15

26

N =
Root 50 75 100 150 200 300 400 500 750 1000

1 2.065 1.861 1.724 1.573 1.491 1.399 1.349 1.3J6 1.253 1.212
2 1.799 1.636 1.551 1.442 1.378 1.310 1.268 1.239 1.194 1.167

3 1.605 1.486 1.417 1.347 1.296 1.235 1.212 1.188 1.154 1.131

4 1.438 1.350 1.308 1.252 1.219 1.W2 1.158 1.143 1.115 1.099

5 1.281 1.231 1.215 1.181 1.150 1.122 1.110 1.103 1.084 1.071

6 1.140 1.125 1.119 1.106 1.093 1.077 1.071 1.063 1.054 1.045
7 1.024 1.033 1.039 1.036 1.035 1.032 1.031 1.025 1.022 1.022
8 0.915 0.946 0.961 0.973 0.984 0.987 0.991 0.991- 0.993 0.998
9 0.815 0.867 0.882 0.913 0.929 0.944 0.952 0.958 0.966 0.972

10 0.710 0.777 0.811 0.853 0.877 0.901 0.913 0.923 0.938 0.948

11 0.609 0.701 0.743 0.790 0.821 0.855 0.874 0.889 0.907 0.923

12 0.529 0.616 0.669 0.726 0.772 0.811 0.836 0.854 0.880 0.897
13 0.444 0.537 0.601 0.673 0.714 0.770 0.793 0.816 0.849 0.870
14 0.361 0.461 0.527 0.603 0.657 0.720 0.749 0.773- 0.816 0.843
15 0.264 0.373 0.433 0.534 0.585 0.665 0.692 0.729 0.775 0.803
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Table 4
Average Ei envalues of Random N(0 1 ) Data for P = 20

27

N, =
Root 50 75 100 150 200 300 400 500 750 1000

1 2.334 2.050 1.909 1.716 1.604 1.492 1.422 1.371 1.301 1.259

2 2.041 1.837 1.710 1.577 1.483 1.401 1.337 1.300 1.247 1.212
3 1.835 1.673 1.584 1.469 1.402 1.330 1.283 1.251 1.206 1.178

4 1.669 1.543 1.470 1.378 1.332 1.274 1.238 1.208 1.172 1.148

5 1.513 1.432 1.373 1.301 1.266 1.217 1.192 1.171 1.140 1.122

6 1.379 1.329 1.287 1.233 1.209 1.164 1.146 1.131 1.108 1.095

7 1.255 1.221 1.196 1.170 1.151 1.123 1.111 1.097 1.080 1.071

8 1.139 1.130 1.117 1.106 1.097 1.080 1.075 1.069 1.053 1.049
9 1.029 1.041 1.038 1.046 1.044 1.039 1.039 1.036 1.029 1.026

10 0.940 0.956 0.970 0.991 0.994 1.005 1.003 1.006 1.005 1.004

11 0.840 0.881 0.908 0.936 0.948 0.964 0.966 0.975 0.980 0.983
12 0.747- 0.812 -07843 0.878 0.901 0.925 0.935 0.947 0.955 0.961
13 0.667 0.740 0.781 0.827 0.856 0.885 0.900 0.914 0.931 0.941

14 0.585 0.671 0.720 0.779 0.812 0.845 0.870 0.888 0.908 0.922
15 0.504 0.602 0.661 0.728 0.768 0.808 0.835 0.858 0.882 0.901

16 0.433 0.544 0.606 0.679 0.718 0.772 0.804 0.825 0.857 0.877

17 0.369 0.480 0.550 0.629 0.675 0.734 0.769 0.795 0.831 0.853

18 0.304 0.417 0.490 0.577 0.630 0.695 0.733 0.759 0.804 0.830
19 0.244 0.359 0.428 0.521 0.583 0.650 0.695 0.722 0.774 0.803
20 0.175 0.284 0.358 0.459 0.526 0.597 0.646 0.679 0.736 0.767
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Table 5
Average Eigenvalues of Random N(0,1 Data for P = 25

28

N =
Root 50 75 100 150 200 300 400 500 750 1000

1 2.588 2.257 2.053 1.840 1.713 1.574 1.494 1.432 1.345 1.298
2 2.289 2.037 1.878 1.689 1.608 1.486 1.412 1.365 1.293 1.255
3 2.064 1.853 1.745 1.586 1.517 1.417 1.351 1.311 1.254 1.220
4 1.870 1.717 1.627 1.506 1.440 1.357 1.309 1.270 1.219 1.190
5 1.722 1.592 1.519 1.424 1.373 1.297 1.259 1.234 1.189 1.163
6 1.584 1.487 1.429 1.357 1.312 1.248 1.217 1.197 1.159 1.141
7 1.461 1.383 1.344 .1.289 1.256 1.208 1.178 1.163 1.134 1.115
8 1.342 1.292 1.268 1.221 1.199 1.162 1.142 1.130 1.108 1.094
9 1.225 1.214 1.182 1.166 1.148 1.119 1.107 1.101 1.083 1.074

10 1.121 1.121 1.110 1.109 1.096 1.082 1.073 1.069 1.061 1.053
11 1.029 1.039 1.047 1.054 1.047 1.046 1.042 1.042 1.037 1.033
12 0.934 0.962 0.980 1.002 1.003 1.008 1.008 1.013 1.013 1.012
13 0.843 0.893 0:918 0.952 0:959- 0:973 0.979 0.985 0.993 0.993
14 0.761 0.828 0.868 0.901 0.916 0.940 0.947 0.958 0.968 0.974
15 0.688 0.761 0.806 0.854 0.877 0.904 0.921 0.930 0.944 0.954
16---0.615 0.700 0.749 0.805 0.835 0.872 0.893 0.904 0.923 0.934
17 0.543 0.641 0.697 0.763 0.795 0.838 0.862 0.878 0.903 0.916
18 0.480 0.583 0.646 0.718 0.757 0.805 0.835 0.851 0.881 0.897
19 0.424 0.535 0.599 0.673 0.718 0.774 0.806 0.825 0.860 0.877
20 0.361 0.485 0.551 0.629 0.677 0.738 0.775 0.796 0.836 0.858
21 0.309 0.432 0.500 0.585 0.636 0.706 0.746 0.770 0.813 0.837
22 0.255 0.373 0.448 0.542 0.600 0.672 0.715 0.743 0.788 0.815
23 0.210 0.326 0.396 0.495 0 958 0.634 0.681 0.714 0.763 0.794
24 0.165 0.274 0.346 0.451 0.509 0.593 0.646 0.681 0.734 0.766
25 0.116 0.216 0.294 0.389 0.453 0.546 0.602 0.640 0.698 0.738
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Table 6
Average Eigenvalues of Random N(0,1) Data for P = 30

29

N =
Root 50 75 100 150 200 300 400 500 750 1000

1 2.813 2.434 2.181 1.945 1.812 1.643 1.546 1.481 1.387 1.333

2 2.517 2.192 1.994 1.812 1.686 1.560 1.470 1.414 1.331 1.291

3 2.301 2.035 1.869. 1.700 1.594 1.483 1.411 1.366 1.295 1.259

4 2.109 1.879 1.747 1.612 1.521 1.422 1.365 1.323 1.262 1.227

5 1.932. 1.755 1.646 1.531 1.456 1.370 1.321 1.288 1.232 1.202

6 1.774 1.648 1.560 1.455 1.394 1.320 1.279 1.250 1.206 1.178

7. 1.642 1.546 1.479 1.394 1.339 1.276 1.243 1.216 1.179 1.154

8 1.527 1.447 1.403 1.326 1.284 1.239 1.207 1.186 1.153 1.132
9 1.404 1.362 1.323 1'.269 1.235 1.199 1.174 1.155 1.128 1.112

10 1.295 1.273 1.247 1.216 1.187 1.158 1.141 1.128 1.104 1.092

11 1.194 1.199 1.175 1.156 1.142 1.122 1.112 1.098 1.083 1.073

12 1.096 1.114 1.120 1.104 1.099 1.089 1.080 1.070 1.061 1.055

13 1.014 1.037 1.049 1.039 1.058 1.052 1.050 1.044 1.041 1.036
14 0.933 0.967 0.993 1.008 1.018 1.019 1.021 1.020 1.021 1.018

15 0.852 0.905 0.937 0.960 0.975 0.985 0.994 0.994 0.998 1.001

16 0.775 0.840 0.884 0.913 0.935 0.955 0.964 0.970 0.979 0.982

17 0.697 0.778 0.829 0.869 0.895 0.922 0.937 0.945 0.957 0.966
18 0.631 0.724 0.779 0.825 0.860 0.893 0.910 0.921 0.938 0.949
19 0.567 0.669 0.733 0.782 0.823 0.861 0.882 0.897 0.917 0.931
20 0.506 0.613 0.681 0.745 0.790 0.831 0.855 0.874 0.898 0.913
21 0.449 0.563 0.633 0.709 0.750 0.800 0.827 0.851 0.879 0.894
22 0.396 0.514 0.586 0.668 0.715 0.768 0.801 0.828 0.860 0.878
23 0.345 0:465 0.543 0.629 0.680 0.740 0.776 0.803 0.840 0.859
24 0.296 0.422 0.499 0.589 0.647 0.709 0.749 0.778 0.819 0.841
25 0.251 0.378 n.458 0.554 0.610 0.679 0.721 0.752 0.799 0.822
26 0.210 0.333 0.415 0.516 0.577 0.649 0.693 0.728 0.777 0.805
27 0.171 0.292 0.372 0.476 0.540 0.617 0.666 0.703 0.753 0.785
28 0.134 0.248 0.332 0.437 0.502 0.583 0.635 0.672 0.730 0.765
29 0.100 0.209 0.291 0.395 0.460 0.551 0.604 0.642 0.703 0.739
30 0.068 0.161 0.242 0.345 0.416 0.505 0.566 0.604 0.670 0.709
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Table 7
Average Eigenvalues of Random N(0,1) Data for P= 35

30

14 =
Root 50, 75 100 150 200 300 400 500 750 1000

1 3.050 2.588 2.326 2.058 1.878 1.708 1.602 1.536 1.428 1.365
2 2.721 2.353 2.152 1.914 1.769 1.624 1.533 1.463 1.376 1.326
3 2.499 2.175 2.001 1.799 1.685 1.553 1.471 1.415 1.337 1.294
4 2.306 2.039 1.884 1.705 1.610 1.492 1.419 1.374 1.303 1.267
5 2.128 1.917 1.781 1.624 1.540 1.443 1.374 1.337 1.273 1.238
6 1.977 1.801 1.690 1.561 1.473 1.393 1.337 1.300 1.243 1.215
7 1.832 1.689 1.595 1.489 1.418 1.349 1.299 1.272 1.218 1.192
8 1.703 1.595 1.519 1.423 1.371 1.306 1.263 1:242 1.194 1.171
9 1.582 1.499 1.431 1.363 1.318 1.262 1.231 1.211 1.171 1.149
10 1.484 1.406 1.362 1.306 1.270 1.225 1.200 1.180 1.149 1.130
11 1.374 1.327 1.303 1.254 1.227 1.192 1.168 1.152 1.127 1.111

12 1.267 1.251 1.231 1.207 1.182 1.155 1.137 1.127 1.104 1.092
13 1.176 1.179 1.171 1.153 1.143 1.122 1.109 1.099 1.084 1.076
14 1.086 1.108 1.107 1.101 1.099 1.089 1.083 1.074 1.066 1.057
15 0.997 1.039 1.051 1.056 1.064 1.057 1.057 1.048 1.046 1.040
16 0.916 0.972 0.993 1.010 1.025 1.024 1.030 1.026 1.026 1.022
17 0.840 0.910 0.945 0.967 0.988 0.993 1.000 1.003 1.005 1.005
18 0.767 0.849 0.893 0.928 0.947 0.964 0.975 0.977 0.987 0.989
19 0.704 0.796 0.838 0.889 0.913 0.935 0.949, 0.956 0.968 0.974
20 0.638 0.738 0.789 0.846 0.878 0.908 0.923 0.933 0.949 0.956
21 0.573 0.684 0.744 0.807 0.844 0.879 0.899 0.911 0.930 0.940
22 0.518 0.636 0.699 0.767 0.805 0.847 0.874 0.889 0.912 0.923
Z3 0.464 0.582 0.655 0.730 0.773 0.820 0.851 0.868- 0.893 0.907
24 0.410 0.532 0.615 0.697 0.742 0.792 0.825 0.846 0.875 0.891
25 0.362 0.492 0.571 0.662 0.709 0.766 0.800 0.824 0.857 0.875
26 0.319 0.453 0.533 0.625 0.676 0.739 0.775 0.799 0.838 0.858
27 0.273 0.411 0.496 0.589 0.645 0.713 0.748 0.779 0.819 0.841
28 0.240 0.373 0.459 0.556 0.618 0.684 0.725 0.757 0.801 0.826
29 0.202 0.337 0.419 0.520 0.587 0.655 0.702 0.732 0.783 0.809
30 0.167 0.300 0.384 0.487 0.554 0.627 0.675 0.709 0.763 0.792
31 0.139 0.262 0.348 0.454 0.521 0.596 0.651 0.686 0.742 0.775
32 0.108 0.229 0.309 0.418 0.487 0.571 0.625 0.661 0.721 0.757
33 0.082 0.195 0.275 0.385 0.454 0.541 0.596 0.635 0.699 0.735
34 0.058 0.161 0.238 0.347 0.417 0.508 0.565 0.606 0.673 0.714
35 0.038 0.126 0.193 0.302 0.371 0.469 0.527 0.573 0.643 0.686
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Table 8

Average Eigenvalues of Random N(0,1)Tata for P = 40

31

N
Root 50- 75 100 150 200 300 400 500 750 1000

1 3.263 2.741 2.466 2.157 1.976 1.766 1.659 1.573 1.465 1.397
2 2.928 2.512 2.279 2.005 1.864 1.671 1.582 1.517 1.415 1.357
3 2.699 2.341 2.132 1.903 1.768 1.608 1.529 1.464 1.376 1.323
4 2.511 2.184 2.014 1.810 1.693 1.549 1.482 1.424 1.344 1.295
5 2.318 2.055 1.905 1.731 1.630 1.504 1.436 1.390 1.314 1.269
6 2.172 1.939 1.807 1.658 1.568 1.460 1.393 1.352 1.285 1.245
7 2.023 1.833 1.715 1.585 1.505 1.411 1.357 1.318 1.257 1.224
8 1.890 1.732 1.630 1.521 1.450 1.371 1.316 1.288 1.235 1.203
9 1.761 1.638 1.554 1.460 1.405 1.330 1.286 1.256 1.211 1.181
10 1.636 1.548 1.479 1.399 1.356 1.292 1.254 1.227 1.190 1.163
11 1.526 1.461 1.404 1.346 1.310 1.255 1.222 1.201 1.168 1.142
12 1.429 1.389 1.341 1.292 1.268 1.221 1.191 1.172 1.145 1.126
13 1.321 1.311 1.279 1.240 1.221 1.187 1.167 1.150 1.124 1.109
14 1.227 1.237 1.219 1.194 1.181 1.153 1.138 1.124 1.104 1.091
15 1.137 1.161 1.165 1.150 1.137 1.123 1.108 1.099 1.085 1.074
16 1.053 1.092 1.102 1.105 1.095 1.093 1.081 1.077 1.067 1.057
17 0.982 1.034 1.044 1.058 1.061 1.060 1.055 1.052 1.048 1.041
18 0.904 0.972 0.995 1.019 1.028 1.030 1.029 1.031 1.030 1.026
19 0.833 0.912 0.946 0.972 0.989 1.001 1.003 1.008 1.012 1.010
20 0.762 0.852 0.900 0.936. 0.954 0.971 0.978 0.985 0.993 0.995
21 0.693 0.799 0.851 0.899 0.921 0.946 0.956 0.964 0.976 0.981
22 0.637 0.746 0.807 0.859 0.882 0.917 0.932 0.942 0.957 0.966
23 0.583 0.696 0.760 0.819 07849 0.893 0.909 0.918 0;940 0:951
24 0.526 0.647 0.715 0.783 0.816 0.864 0.886 0.899 0.922 0.935
25 0.475 0.600 0.671 0.749 0.786 0.837 0.863 0.879 0.905 0.921
26 0.427 0.553 0.631 0.715 0.756 0.810 0.839 0.859 0.887 0.905
27 0.378 0.514 0.592 0.683 0.728 0.786 0.818 0.840 0.870 0.890
28 0.334 0.473 0.556 0.648 0.696 0.760 0.796 0.820 0.854 0.876
29 0.295 0.435 0.517 0.615 0.669 0.738 0.772 0.799 0.838 0.861
30 0.258 0.399 0.482 0.586 0.642 0.712 0.750 0.779 0.820 0.847
31 0.220 0.360 0.448 0.552 0.613 0.686 0.728 0.757 0.803 0.830
32 0.187 0.327 0.415 0.518 0.584 0.662 0.707 0.737 0.786 0.814
33 0.156 0.293 0.383 0.488 0.553 0.637 0.683 0.718 0.767 0.799
34 0.128 0.263 0.351 0.456 0.525 0.612 0.659 0.697 0.748 0.783
35 0.102 0.227 0.320 0.427 0.495 0.587 0.638 13.674 0.729 0.767
36 0.080 0.201 0.287 0.398 0.467 0.560 0.615 0.653 0.710 0.750
37 0.061 0.174 0.257 0.368 0.438 0.532 0.591 0.631 0.690 0.731
38 0.044 0.146 0.227 0.337 0.409 0.503 0.563 0.606 0.670 0.712
39 0.028 0.118 0.197 0.302 0.375 0.469 0.533 0.579 0.645 0.692

40 0.016 0.088 0.158 0.263 0.336 0.433 0.495 0.542 0.614 0.663
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Table 9
Average Eigenvalues of Random N(0,1) Data for P = 45

32

N =-

Root 50 75 100 150 200 300 400 500 750 1000

1 3.474 2.908 2.584 2.239 2.055 1.828 1.699 1.628 1.509 1.430
2 3.121 2.660 2.390 2.100 1.932 1.745 1.628 1.561. 1.452 1.386
3 2.880 2.489 2.249 1.992 1.842 1.674 1.576 1.512 1.414 1.353
4 2.664 2.338 2.128 1.909 1.765 1.619 1.531 1.469 1.378 1.326
5 2.480 2.193 2.021 1.811 1.700 1.563 1.488 1.431 1.352 1.300
6 2.329 2.073 1.917 1.740 1.637 1.519 1.444 1.396 1.323- 1.276
7 2.187 1.961 1.832 1.671 1.582 1.473 1.407 1.363 1.297 1.254
8 2.048 1.858 1.747 1.606 1.527 1.432 1.375 1.334 1.270 1.234
9 1.927 1.765 1.663 1.547 1.474 1.393 1.340 1.305 1.244 1.215
10 1.801 1.669 1.586 1.495 1.425 1.356 1.307 1.275 1.224 1.196
11 1.690 1.581 1.522 1.439 1.379 1.318 1.277 1.245 1.202 1.177
12 1.582' 1.503 1.455 1.387 1.335 1.284 1.248 1.218 1.182 1.158
13 1.474 1.427 1.387 1.330 1.293 1.248 1.218 1.195 1.161 1.141
14 1.381 1.351 1.326 1.284 1.251 1.216 1.189 1.171 1.142 1.124
15 1.283 1.278 1.264 1.235 1.211 1.182 1.162 1.149 1.123 1.107
16 1.206 1.209 1.207 1.188 1.176 1.153 1.136 1.124 1.103 1.091
17 1.122 1.146 1.149 1.142 1.137 1.120 1.108 1.099 1.085 1.076
18 1.047 1.083 1.098 1.101 1.101 1.089 1.082 1.078 1.067 1.060
19 0.971 1.022 1.040 1.060 1.065 1.060 1.060 1.055 1.050 1.045
20 0.901 0.966 0.998 1.019 1.031 1.030 1.034 1.032 1.031 TA30
21 0.832 0.908 0.948 0.981 0.997 1.005 1.010 1.012 1.014 1:016
22 0.759 0.853 0.901 0.944 0.961 0.976 0.988 0.990 0.998 1.000
n144 0.703 0.801 0.855 0.907 0.929- 0.950- 0.964 0.971 0.981 0.986
24 0.642 0.754 0.814 0.870 0.899 0.926 0.940 0.950 0.964 0.972
15 0.581 0.707 0.770 0.834 0.865 0.900 0.919 0.930 0.949 0.957
26 0.528 0.656 0.729 0.801 0.834 0.873 0.897 0.912 0.933 0.943
27 0.478 0.614 0.689 0.769 0.803 0.850 0.874 0.892 0.917 0.929
28 0.424 0.572 0.652 0.734 0.775 0.825 0.853 0.871 0.900 0.914
29 0.385 0.532 0.613 0.699 0.747 0.800 0.832 0.852 0.884 0.900
30 0.339 0.492 0.575 0.667 0.718 0.777 0.810 0.834 0.868 0.885
31 0.299' 0.456 0.541 0.636 0.690 0.754 0.789 0.815 0.851 0.872
32 0.262 0.418 0.509 0.605 0.663 0.730 0.770 0.796 0.837 0.858
33 0.232 0.384 0.475 0.576 0.635. 0.706 0.749 0.777 0.820 0.844
34 0.198 0.348 0.444 0.543 0.610 0.683 0.726 0.756 0.804 0.830
35 0.168 0.319 0.409 0.516 0.584 0.660 0.706 0.738 0.788 0.816
36 0.143 0.286 0.380 0.487 0.558 0.637 0.684 0.720 0.772 0.803
37 0.118 0.260 0.351 0.459 0.531 0.614 0.665 0.701 0.753 0.789
38 0.096 0.232 0.319 0.432 0.505 0.590 0.645 0.682 0.736 0.773
39 0.076 0.206 0.292 0.406 0.478 0.569 0.623 0.662 0.720 0.758
40 0.059 0.180 0.261 0.380 0.453 0.545 0.602 0.641 0.704 0.742
41 0.043 0.153 0.233 0.351 0.427 0.522 0.578 0.622 0.685 0.726
42 0.030 0.132 0.210 0.324 0.400 0.497 0.556 0.599 0.664 0.707
43 0.019 0.109 0.185 0.293 0.373. 0.469 0.532 0.576 0.643 0.690
44 0.010 0.086 0.158 0.264 0.343 0.439 0.504 0.547 0.619 0.668
45 0.004 0.064 0.126 0.227 0.304 0.399 0.471 0.514 0.588 0.643
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Table 10
Average Eigenvalues of Random N(0,1) Data for 50 Items
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N =
Root 50, 75 100 150 200 300 400 500 750 1000

1 3.675 3.044 2.712 2.331 2.124 1.885 1.759 1.678 1.533 1.457
2 3.336 2.804 2.500 2.188 2.015 1.802 1.685 1.612 1 483 1.415
3 3.073 2.621 2.372 2.079 1.928 1.730 1.628 1.558 1.445 1.382
4 2.861 2.474 2.247 1.985 1.849 1.675 1.579 1.511 1.412 1.352
5 2.665 2.334 2.137 1.905 1.776 1.623 1.531 1.476 1.382 1.327
6 2.493 2.216 2.036 1.829 1.714 1.573 1.492 1.442 1.355 1.305
7 2.355 2.092 1.941 1.755 1.655 1.526 1.455 1.408 1.330 1.283
8 2.212 1.997 1.852 1.690 1.607 1.482 1.420 1.373 1.305 1.262
9 2.083 1.888 1.771 1.627 1.552 1.445 1.385 1.345 1.281 1.241
10 1.968 1.794 1.695 1.570 1.501 1.406 1.353 1.316 1.257 1.222
11 1.844 1.703, 1.622 1.520 1.455 1.370 1.324 1.291 1.237 1.205
12 1.737 1.621 1.556 1.465 1.409 1.339 1.295 1.263 1.215 1.187
13 1.639 1.546 1.490 1.416 1.368 1.304 1.268 1.238 1.197 1.171
14 1.528 1.465 1.428 lep68 1.322 1.273 1.236 1.216 1.178 1.154
15 1.433 1.394 1.365 1M19 1.279 1.239 1.209 1.191 1.157 1.139
16 1.347 1.322 1.304 1.276 1.241 1.209 1.185 1.168 1.139 1.122
17 1.252 1.263 1.249 1.226 1.204 1.178 1.160 1.146 1.121 1.107
18 1.169 1.197 1.196 1.185 1.165 1.150 1.134 1.125 1.103 1.091
19 1.081 1.134 1.146 1.139 1.130 1.121 1.110 1.101 1.087 1.077
20 1.006 1.074 1.096 1.099 1.090 1.091 1.086 1:079 1.068 1.062
21 0.938 1.015 1.045 1.060 1.057 1.067 1.063 1.060 1.051 1.048
22 0.873 0.962 0.998 1.020 1.025 1.039 1.041 1.039 1.037 1.033
23. 0.797 0.907- 0.948 0.984 0.997 1.012 1.018 1.017 1.021 1.020
24 0.740 0.852 0.899 0.949 0.966 0.988 0.994 0.997 1.005 1.006
25 0.680 0.803 0.854 0.912 0.936 0.961 0.971 0.977 0.988 0.993
26 0.622 0.757 0.813 0.877 0.903 0.935 0.949 0.957 0.972 0.979
27 0.571 0.711 0.774 0.843 0.874 0.912 0.928 0.938 0.956 0.966
28 0.521 0.668 0.736 0.808 0.846 0.887 0.910 0.918 0.941 0.952
29 0.474 0.623 0.697 0.776 0.815 0.863 0.886 0.900 0.926 0.937
30 0.432 0.578 0.660 0.744 0.787 0.839 0.867 0.881 0.909 0.923
31 0.385 0.539 0.620 0.714 0.761 0.816 0.845 0.863 0.894 0.910
32 0.343 0.501 0.584 0.683 0.732 0.793 0.826 0.844 0.879 0.897
33 0.307 0.465 0.552 0.655 0.707 0.770 0.806 0.827 0.864 0.883
34 0.273 0.433 0.519 0.624 0.681 0.747 0.785 0.809 0.848 0.869
35 0.237 0.398 0.490 0.596 0.654 0.725 0.765 0.791 0.834 0.856
36 0.207 0.365 0.458 0.567 0.631 0.705 0.746 0.773 0.819 0.843
37 0.176 0.337 0.430 0.539 0.606 0.683 0.726 0.756 0.804 0.831
38 0.149 0.307 0.401 0.513 0.582 0.660 0.706 0.738 0.790 0.817
39 0.125 0.278 0.374 0.486 0.557 0.639 0.687 0.721 0.774 0.804
40 0.106 0.248 0.345 0.463 0.531 0.617 0.667 0.702 0.757 0.792
41 0.085 0.223 0.320 0.437 0.508 0.594 0.648 0.684 0.742 0.778
42 0.066 0.198 0.292 0.412 0.483 .0.572 0.628 0.666 0.726 0.763
43 0.050 0.175 0.269 0.388 0.457 0.551 0.608 0.647 0.709 0.749
44 0.036 0.153 '0.244 0.361 0.435 0.529 0.588 0.628 0.694 0.734
45 0.024 0.132 0.219 0.334 0.410 0.507 0.568 0.609 0.678 0.720
46 0.015 0.114 0.195 0.311 0.387 0.485 0.547 0.589 0.660 0.704
47 0.008 '0.095 0.174 0.286 0.364 0.462 0.523 0.570 0.642 0.687
48 0.003 0.077 0.149 0.262 0.337 0.437 0.500 0.549 0.622 0.670
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Table 11
Ranges of RMSE Values for Interpolations on N Within Tables

Method of
Eigenvalue
Estimation <.01 .01-.02 .02-.05

RMSE Range
.05-.10 .10-.20 .20-.50 >.5

Linear
Interpolation 34 20 13 12 1 0 0

LL
Equations 4 8 15 19 17 10 7

AH
Equations 0 1 16 16 15 17 15
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Table 12
Ranges of RMSE Values for Interpolations on P Across Tables,

Method of
Eigenvalue RMSE Range
EstiOation <.01 .01-.02 .02-.05 .05-.10 40-.20 .20-.50 >.5

Linear
Interpolation 47 23 10 0 0 0 0

LL
Equations 2 10 14 17 21 8 8

All

Equations 0 1 15 19 16 17 12
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