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Parallel Analysis Criteria 2

Abstract .

The parallel analysis method for determining the number of
components to retain in a principal components analysis has received a
recent resurgence of support and interest. However, researchers and
practitioners desiring to use this criterion have been hampered by the
required Monte Carlo analyses needed to develop the criteria. Two recent
attempts at presenting regression estimation methods to determine
eigenvalues were found to>behd;;;;i§ﬁémgg-sé&é;;l<;és;é;£;,:;né‘ié;s -
accurate in general, than a simple linear interpolation of tabled random
data eigenvalues. Tables are presented which permit accurate and easy

determination of the parallel analysis criteria within a range of sample

sizes (N = 50 through 1000) and number of variables (P = 5 through 50)

covered by the tables.
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Alternatives to Conducting Monte Carlo Analyses
for Determining Parallel -Analysis Criteria
Researchers using principal components analysic, either as a data
reduction mathod or as a preliminary step in common factor analysis, have
available a number of criteria for determining the number of factors to
retain for rotation and/or interpretation. Perhaps the most prevalent

method in use is Kaiser's (1960) criterion of retainin eigenvalues
\ ning

greater than one for deteimining the number of components, or common
factors, to retgin. However, applying Kaiser's rule, or any of several
other rules that are available, may not be as accurate as using the
parallel analysis (PA) criterion. It has been suggested that both the
minimum average partial correlation method (Velicer, 1976) and the PA
method might both be employed to reach a decision about the number of
components to retain (Zwick and Velicer, 1986). Cliff (1988) has also
called into question the use of eigenvalues-greater-than-one to determine
the number of components or common factors. Horn (1965) initialiy
proposed the PA method as a sample-based adaption of Kaiser's (1960) rule
of retaining all eigenvalues greater than or equal to 1.00. The basic
rationale underlying the PA criterion being that "meaningful" components
extracted from actual sample data should. tend to have eigenvalues larger
in size than eigenvalues of the same order obtained from random normal
variates generated to simulate the same sample size and number of
variables. Since it is the expected value of eigenvalues of random data
that are used for the comparison, it is necessary to simulate many such
datasets and average the respective eigenvalues obtained to estimate the
expected values. A stumbling block for those desiring to implement the PA

criterion in practice is the required number of Monte Carlo analyses.
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Regressiop Estimates of Eigenvalues

Allen and Hubbard (1986) have presented a means by which parallel
analysis coula be made more accessible to practitioners. Their work was
based on earlier work by Montanelli and Humphreys (1976; Eumphreys &
Montanelli, 1975) which had presented a general form of a regression
equation to be used for estimating the ‘eigenvalues of random datza

v

correlation matrices with squared multiple correlations on the diagonal.

Allen and Hubbard (1986) derived a general form of a regression equation

designed to predict values of all but the two smallest (last) eigenvalues
of a random data correlation matrix with unities on the diagonal. The

Allen and Hubbard equation is:

[1] 1og(nk) = a  + b, log(N-1) + ¢ log{(P-k-1)(P-k+2)/2}

+4d, log(X k-1)

where log is the nztural logarithm, N is sample size, P is the number of
variables, k [k = 1,2,...,(P-2)] indexes the Eth eigenvalue 7\k, (7L0 =
1.0) and 2o hk’ Sy and gk are regression modei parameters. The term
weighted by €, was derived from a degrees-of-freé&om rationale offered by
Bartlett (1951) and Lawley (1956). The inclusion of this term necessarily
restricts eigenvalue estimates to the first P-2 eigenvalues. An excellent
fit was obtained between predicted and observed values for all but the
first eigenvalue by including the gk term. Allen and Hubbard's (1986)
empirical equations (hereafter referred to as the ég equations) have been
implemented in the computer program PARALLEL (Hays, 1987).

Recently, Lautenschlager, Lance and Flaherty (in press) have improved

upon Allen and Hubbard's general equation to provide a more nearly exact

estimate of the first eigenvalue. They employed the following revised

o
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equation:
[2] log(7lk9 =2 *+b log(N-1) + [ log{(P-k-1)(P-k+2)/2}
*+ 4 log(Ny ) + ¢ /N

which involves one additional predictor term in addition to the predictors
used in equation 1, namely the ratio of the number of variables to the

sample size. Allen and Hubbard (1986) reported an R2 = .931 between the v

actual first eigenvalues and predicted first eigenvalues for their-data — - ‘- - —momman

using equation 1. Lautenschlager, et al. (in press) obtained an R2 = .933

L

for their data tsing equation 1, and obtained an R2 = .993 using equation

2. The increment in R2 was statistically significant (F = 782.01,

(1, 92)
p<.0001) using equation 2 over equation 1. Revised empirical regression
equations (hereafter referred to.as the LL equations) would appear to have
the advantage of making better predictions of the first eigenvalue, and
hence better predictions all around, owing to the fact that the regression
estimates are recursive, meaning estimates of initial eigenvalues figure
into estimates of later eigenvalues in applications of equations 1 and 2.
Both equations produce regression estimates of eigeﬁvalues that ostensibly
could be used as criteria for a parallel analysis.

Available procedures for implementing PA criteria in practice were
compared. This involved the examination of regression equation methods
that can be used to estimate random data eigenvalues from known values of
the sample ‘size and number of variables. Problems inherent in the.

application of these regression estimation procedures are described, and a

more accurate method for determining PA criteria in practice is presented.
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Method
Procedure
Data were generated in a series of Monte Carlo simulations in which
the number of variables (P) ranged from'5 to 50 in steps of 5, and sample
sizes (N) were chosen as 50, 75, 100, 150, 200, 300, 400, 500, 750 and
1000, to reflect a range typically found in published research. For each
N, P combination the SYSTAT (Wilkinson, 1986) analysis package was -used to

(a) generate random data for N cases on each of P variables from a N(0,1)

population, (b) create a correlation matrix based~on-this-data;—and-(c)— ...

conduct a principal components analysis of the correlation matrix. For
values of P > 10, one hundred replications were generated; for values of
P < 10, two hundred replications were generated. A total of 12,000 unique
datasets were created.

Within each fixed N, z,comsination the results were combined over
replications and averaged to preduce an av;;age first eigenvalue based on
100 values, an average second eigenvalue etc. These averaged values were
then used to form tables of averaged eigenvalues. These datasets had been
used by Lautenschlager, et al. (in press) under the restriction that only
those N, P combinations which satisfied N. > 3P/2 were involved in the

development of the LL equationms.

Proposed Comparisons

The generated data provided the empirical criteria for the comparison
of the regression equationAéstimates using the AH and LL estimation
equations. In addition, tabled values of eigenvalues were used to
interpolate values for eigenvalues not specifically covered by the tables.
The accuracy of these interpolations were investigated vis-&-vis the

regression estimates by conducting additional Monte Carlo simulations to

e
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serve as criteria. The root mean squared error (RMSE), defined as the
square root of the average squared deviation of the interpolations and the
regression estimates from the averaged eigenvalues obtained from these
additional simulations, was .calculated in each case to permit compar.isons.
Because the regression estimation methods only generate P-2 estimates for
any given case, all RMSE calculations involved at most only the first 2-2

cigenvalues.

Results

Froblems withRegression—Estimates~of-Eigenvalues

Those who wish to use AH or LL regression equation methods to estimate
the eigenvalues of random data correlation matrices can use the empirical
equations as presented in a table found in each of the respectivs: papers.
In ovder to produce AH regression estimates, one can use the PARALLEL
program (Hays, 1987). The LL equations have been programmed and can be
ir>lemented through use of the PARANAL program (Lautenschlager, 1988). At
first blush it would appear that the AH equations were at a distinct
disadvantage in comparison with the LL equations, as the latter were
derived from the generated data described above. Neither regression
estimation method was found to be generally useful across the ranges of N
and P from which the equations were developed.

Although for certain N, P combinations the results produced by
regression estimation methods tended to agree with the Monte Carlo
3 simulations, numerous other combinations produced clearly divergent, and
oftén unreasonable results. As a case in point, fixing P = 50 (i.e. 50

variables were involved in the analysis) whenever N > 170 the AH equations

begin to produce predictions of subsequent eigenvalues that were larger

CEYPREN
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N

than preceding eigenvalues (e.g. when N = 171 estimated eigenvalue #45

estimated eigenvalue #44). As sample size grew larger while holding P
50, even more peculiar things happened. Estimated eigenvalues decreased
beyond the first value up to a point but then consistently increased. In
addition, predicted eigenvalues were obtained for eigenvalues past the
(B/2)th -value that exceed the number of variables in the analysis. At the
extreme high end where N = 1000, the estimated first eigenvalue was
reasonably close to the empirical value. However, the estimate for the
48th eigenvalue was slightly over 3,849,433,795. Admittedly, this was at

the extreme upper bound of both N and P, but similar problems accurred for

other combinations of sample sizes and number of variables. Obviously the~
usefulness of these empirically obtained regression equations was not
uniform across the N, P combinations studied by Allen and Hubbard (1986).
Were the LL equations any better at providing estimates of
eigenvalies? The answer was a qualified yes. In general, the estimates
based on the empirical-équations provided by Lautenschlager, et al. (in
press) were better behaved, but not well-behaved in terms of being
generally useful to researchers. The LL empirical equations tended to
produce better ostimates than the AH equations, in the sense that
estimates tended to be closer to the simulated empirical data (from which
the estimation equations were developed), but these equations also
sufferred from the problems, described in the preceding paragraph.
Hovever, for some combinations of N and P the AH estimates were better.
The differences in precision may have been due in part to the differences
in the N, P combinations employed in the two studies and to the number of

replications. Although the LL equations were technically "better" than

the AH equations in terms of overall fit, they also posed problems for

NS pareen 13
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researchers désiriﬁg to implement the PA criterion in the numerous.
research situations ostensibly covered 0y thér range of N and P values used
to derive the AH and LL.equations. It should be noted that these
pronounced problems described above, which were easily identified at the
extreémes, were also present elsewhere in a less obvious form.

S Factors Affecting Regression Estimates of Eigenvalues A

One might wonder why the regression estimates of eigenvalues can be
so far off, even well within the bounds of N and P used to generate the
equations. After all, the smallest Ri reported by Allen and Hubbard
accounted for over 93% of the variance of the first eigenvalue, and that

reported by Lautenschlager, et al. accounted for over 99Z of the variance. >

First, and obviously, the estimates provided by either set of empirically
o derived regression equations must produce estimates that are somewhat

~

closer to the meanhthe set of specific eigenvalues of a given order (e.g.
all first eigenvalues) used in generating the equation. Given the large
st, this may seem a trivial factor. However, what is estimated is the
natural logarithm of the eigenvalue. Small differences in the estimation
accuracy of a logarithm will have a more pronounced impact on the
estimation accuracy of the eigenvalue itself.

Second, as noted by Lautenschlager, et al. (in press), errors in
prediction are cumulative (and likely multiplicative) in effect. This is
because a series of different, but dependent equations must be applied in
sequence to estimate a range of eigenvalues. The prediction of the third
eigenvalue must suffer since the prediction of first and second
eigenvalues were both somewhat in error themselves. Because estimates of

preceding eigenvalues must be used to estimate subsequent eigenvalues, the

proportions of variance accounted for, as reported in the development of
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the regression equétions in these articles, are potentially deceiving
regarding this deterioration.

A third source for lack of fit is likely due to the fact that
eigenvalues must be estimated within a specific N, P combination. On the
other hand, the empirical equations were developed by extracting an
eigenvalue of a specific order from across all N, P combinations.
Variance between N, P conditions for a particular order eigenvalue is

clearly accounted for, but obviously some variance across eigenvalues

within conditions is not captured in the process.

Another Option for Determining Parallel Analysis Criteria

Although the preceding discussion may seem to imply that the PA

criterion can only be employed by thoseé willing~to-conduct-their-own.Monte.

b it e

Carlo simulations, there was another alternative. Given that current
regression estimation methods could not generally be recommended across
the range of the N, P values from which the equations themselves were
developed, a better approach was desired. An alternative means for
applying the PA method was derived through the direct use of the available
simulated data themselves. Taliles 1 through 10 present averaged
eigenvalues from principal components analyses of the 12,000 random data
correlation matrices. The tables reflect all N, P combinations described
earlier, and i ire arranged so that each table covered a specific value of P
and presented the average eigenvalues arranged in decreasing order,
obtained over replications for each specific sample size. These tables

represent an implementation of PA criteria that can he widely used.

- - - e .- - -

et

4



-

Parallel Analysis Criteria 11

Relative Accuracy of Interpolations and Régression Estimates

It was decided that simple linear interpolation of non-tabled N, P
combinationi may prove sufficiently accurate for deriving PA criteria, and
this hypothesis was examined in the sections below. The accuracy of the
various estimation methods was tested by computing RMSEs for each method
based on deviations from averaged eigenvalues of the same order  obtained
from Monte Carlo simulation resﬁlts to cover each of the interpolution
cases described: below. Several specific examples and a number of general
tests of the accuracy of the interpolation method were provided relative
to the AH and -LL regression equation estimates.

Examples of Linear Interpolation

The first interéolation case concerned a value for P which was
covered by one of the tables, for a specific sample size that was not.
For example, when P = 25 and N = 890 the last two columns in Table 5 were
used. In this case the estimated first eigenvalue for random data was
interpolated as:

1.345 + { ((750 - '890)/250) * (1.345 - 1.298) } = 1.319 o

The AH estimated value in this case was 1.323 and the LL estimated value was

1.341. Subsequent eigenvalues were interpolated and regression estimates

were obtained as well. These values could have been used ‘to serve as PA

criteria. A Monte Carlo sinulation of 100 replications v:as conducted for 9
this case (P = 25 and N = 890) and the results served as a basellne for

computing RMSE values for the sets of eigenvalies estimated using linear

interpclation, AH estimates and LL estimates. Since the regression

methods could only estimate the first 23 eigenvalues, only the first 23

values were used in all RMSE calculations. The RMSE values obtained were
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0.0019, 0.3069 and 0.1477, respectively. It should be noted in this case
that both regression estimation methods produced 21 estimated eigenvalues
greater than 1.0, and some of the latter AH estimates were greater than
preceding estimates. The interpolation method was superior in this case.
A second- interpolation case involved a value for P which was not
covered by the tables, for a specific sample size that was covered. For
example, when P = 17 and N = 75 the second colvmns of Tables 3 and 4 were
used. In this case the estimated first eigenvalue for random data was
calculated as:
2.050 + { ((17 - 20)/5) * (2.050 - 7.861) } = 1.937
This value was closer to the LL regression estimated value of 1.914 than
it was_to the AH value of 2.003. Another Monte Carlo simulation
involving 100 random samples for this particulir case was used to develop
expected eigenvalues. The RMSEs for the sets.of eigenvalues obtained from
linear interpolation, AH estimates and LL estimates were 0.0109, 0.0381
and 0.0264, respectively. Once again linear interpolation ‘vas more
accurate, though the advantage was not as great as in the previous case.
A third interpolation case involved values for both N and P which
were not covered by the tables. For example, when P = 37 and N = 177 the
fourth and fifth columns of Tables 7 and 8 were used. In this case the
estimated first eigenvalue for random data was calculated as:
Step i:
2.058 + { ((150 - 177)/50) * (2.058 - 1.878) } = 1.961
Step ?:
2.157 + { ((150 - 177)/50) * (2.157 - 1.976) } = 2.059
step 3:

2.059 + { ((37 - 40)/5) * (2.059 - 1.961) } = 2.000
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The last step produced the interpolated value. In this case the AH
regression. estimated value was 2.037 and the value was 1.938- for the LL
methodt Based on another Monte Carlec: simulation of 100 replications for
thi; case, the RMSEs for the sets of eigenvalues obtained by linear
interpolation, AH estimates and LL estimates were 0.0055, 0.1682 and
0.2228, respectively. Again, linear interpolation proved more accurate
than either of the regression estimation methods.

A More General Comparison of the Accu;acy of Interpolations

Although the foregoing examples suggested that linear interpolation was
relatively more accurate in a limited scope, it was important that the
accuracy of this methkod be more definitively examined across a wide range of
conditions. To this end the following additional comparisons were made.
Since each table presents 10 separate conditions fof a fixed value of P, it
was possible to "interpolate" eigenvalues for the middle column of each
group of three adjacent colummns. TFor examplé, in Table 1 it was possible to
interpolate values for N = 75 by using the columns for N = 50 and N = 100.
The criterion for accuracy was then the respective column that has been
interpolated. This resulted in a total of eighty sets of interpolations on
values of N produced by interpolating for each of the middle eight columns
in each of the ten tables. The benefit of interpolating for existing
colums in the Tables was that it did not require any further Monte Carlo
simulations. One drawback of this procedure was that the relative accuracy
of the interpolation method was placed at a disadvantage, as interpolations
were made cver ranges of values for N much broader than would be done in

practice. This type of interpolation is hereafter referred to as within-

table interpolation.
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Regression estimates for both the AH and LL equations were made for
each of these conditions, and RMSEs were examined for the interpolations
and regression es;imates. In 71 out of the 80 cases the interpolated
values produced the smallest RMSEs. A comparison of the relative sizes of
the RMSEs for each method is presented in Table 11. Eighty-four percent
of the interpolation RMSEs were less than or equal to .050, while only 34Z%
or less of thé’regression estimates were as accurate. These results
indicated that thé!interpolations were generally superior to either
regression method.

For the 9 cases where a regression method performed better than the
interpolation method, it was always the LL method. In all but two of
these cases N < = 100, but there was no other discernable pattern to these
nine cases. The largest discrepancy resulted from a case where the LL
RMSE was .027 and the interpolation RMSE was .089. The average
improvement in accuracy over these 9 cases was .019. The AH method never
did better than linear interpolation. Focusing on the two regression

methods only, the LL method was better in 54 cases.

It was also possible to conduct a series of interpolations for values
of P across tables, for fixed values of N. For example, using Tables 1
and 3 it was possible to interpolate eigenvalues for P = 10 by using the
same N column in each of the two tables. The criterion for accuracy was
then the respective column in Table 2 that has been interpolated. Making

all such interpolations of this kind produced eighty sets of interpolated

15
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eigénvalues based on values for P in Tables 2 through 8. It should be
noted that for these interpolations it -was only possible to interpolate
for eigenvalues up to the order of the smaller value of P used in the
interpolation (e.g., when interpolating for P = 10 only 5 eigenvalues
could be interpolated). This type of interpolation is hereafter referred
to as across-tables interpolation.

Once again, regression estimates for both the AH and LL equations
were made for each of these conditions, and RMSEs were examined for the
interpolations and regression estimates. In 69 out of the 80 cases the
interpolated values produced the smallest RMSEs. A comparison of the
relative sizes of the RﬂSEs for each method is presented in Table 12. All
80 RMSEs for the interpolations were less than .050, while less than one
third of the values for either of the regression methods were as accurate.
Again it would appear th?t the interpolations were superior to either
regression method.

For the 11 cases where a regression method performed better than
interpolation, it was always.the LL method. Eight of these eleven cases
occurred for P = 10 involving all sample sizes except the two at either
extreme. The largest discrepancy among those 11 cases resulted from an LL
RMSE of .005 and an interpolation RMSE of 0.030. The average improvement
in accuracy over all 11 such cases was .008, which indicated little actual
difference between methods. The AH method never did better than linear
interpolation. Focusing on the two regression methods only, the LL method

vas--better than the AH method in 54 cases.
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More Stringgnt Tests of Interpolation Accuracy

In practice one would rarely want to examine more £han half the
eigenvalues obtained, and more likely only the first third of the
eigenvalues or less. So, as a further check on the accuracy of the
interpolations vis-3a-vis the regression estimation methods,. an additional
series of comparisons were made limitingﬂthe focus to only to the first
third of the possible eigenvalues. These comparisons would tend to -show
the regression estimates in a much better light, however the linear
interpolation mgthod would still suffer the same disadvantage noted -
earlier in spanning at least twice the distance than would be required in
actual use of the taﬁles.

Under these circumstances, computing RMSEs for interpolations and regression
estimates for only the first third of the possible eigenvalues, there was
only a noticeable change for the within;table interpolations. ‘Here the
interpolation method was superior to either regression method in 53 out of
the 80 possible cases. Of the twenty-seven cases where a regression
method was better, 17 were for sample sizes of 75 or 100, with the
remaining ten cases scattered from sample sizes of 150 to 500. For 21 of
these 27 cases the LL regression method was best. Thus although the
regression estimafés improved when the proportion of eigenvalues estimated
was reduced, and one of the regression methods proved more accurate for
the  smallest sample sizes, the interpolations were still generally better
even for these stringent and somewhat biased tests.

It was interesting to note that for the across-tables interpolations

- there was virtually no improvement over the results obtained earlier when

1;7 all estimated eigenvalues were involved. The interpolation method was

superior for 69 of the 80 possible cases. For the 11 cases where a regression

17
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method was better, eight of these cases involved P = 10 for the eight
smallest sample sizes. The LL method was best in 10 of the 11 cases.

This might have been anticipated in that the maximum number of eigenvalues
that coul& be interpolated (and hence compared) was necessarily limited to
the smaller value of P involved in the interpolation. In effect, the
number of eigenvalues that were compared was already somewhat reduced in
the initial set of comparisons.

It is important to point out that the within-table interpolations
must necessarily estimate a large number of the exact same sets of
eigenvalues as did the across-tables interpolations. In fact, sixty-four
of the 96 possible interpolation cases were common to the two modes of
interpoiating values used here. Yet, a somewhat different picture of the
accurracy of interpolations vis-4-vis the regression estimates occurred
for the two modes of interpolation. Some of this difference in accuracy
can be explained in terms of the raﬁge of values for P or N that were
involved in a particular interpolation. Interpolations over values of P
‘across=tables covered much narrower intervals, and were generally more
precise than were interpolations involving values of N within a given
table.

Comparisons Involving Adjusted Interpolation RMSEs

As noted previously, all the preceding comparisons, whether with all
estimated eigenvalues or only the first third involved, had placed the
interpolation method at a disadvantage. In practice one would
interpolate between adjacent columns either within or across tables.

Thus, in practice either type of interpolation would be much more
accurate than in all the preceding comparisons! To attempt to control for

this disadvantage a final series of comparisons were made. It was assumed

i8
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that the lack of fit for linear interpolations was due to two sources,
random error and nonlinearity. Given the number of replications used to
generate the tabled values, the first source was presumed a minor
influence. In addition, it was assumed that even in the face of
nonlinearity the linear interpolations would have to improve when adding a
point that fell between two points, where all three such points were
expected to fall on a specific monotonic curve. Thus, a considerable
improvement in fit was expected since in practice there would be no need
to skip over columns to make interpolations, as had been done above in the
previous two sections (to avoid additional Monte Carlo simulations). It
was further assumed that the linear ihterpolation RMSEs would potentially
be reduced by a factor of either 25%, 337 or 507 of their previously
estimated values. In view of a monotonic nonlinear relation it is quite
likely that even more than a 507 improvement in RMSEs could be obtained.
Though the exact amount of improvement expected was not known, these
percentage reductions in RMSE values probably range from conservative to
realistic. - SR - -

Adjusted interpclation RMSEs were calculated based on the first third
of the possible eigenvalues for the cases involving within-table
interpolations. Under these conditions the linear interpolation method
proved superior in 61 out of the 80 cases ass&ming only a 257 reduction in
interpolation RMSEs could be expected. The 19 cases where one of the
regression methods was more accurate included: values of P = 10 through
25; with sample sizes of 75 or 100; values of P = 30 through 40, for a
sample size of 75; and values of P = 40 through 50, for a sample size of
100. The LL regression method was best in 14 of these cases. The number

of cases where the linear interpolation method was superior increased to

19
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66 and 69 assuming a 337 and a 50% reduction in interpolation RMSEs,
respectively.

When similar adjustments were made to RMSEs for across-table
interpolations the number of cases, out of ‘80 possible, where the
interpolation method was superior increased to 75, 76 and: 77 assuming a
25Z, a 337 and a 50Z reduction in interpolation RMSEs, respectively. In
each case where a regression method was the best it was always the LL
method. |

Examining Redundant and Non-Redundant Interpolations

Because of the way in which interpolations were made for specific
target columns in Tables 1 through 10, sixty-four of the 80 possible
interpolations conducted within-tables and across-tables were redundant
with one another. As such, it was useful to examine whether there were
any cases where both types of interpolation for a specific combination of
N and P were less accurate than the best regression method. When all

eigenvalue estimates were used in the RMSE calculations this occurred in

-only 3 .out of the 64 possible cases. Assuming only a 25% reduction in

interpolation RMSEs led to 0 such cases out of the 64.

Still considering those cases where the two modes of interpolation
were redundant with each other, and now limiting the RMSE calculations to
only the first third of the eigenvalues led to 6 -out of the 64 cases where
a regression method was better tﬁan either mode of interpolation.

Assuming a 257 reduction in interpolation RMSEs led to only 2 such cases,
and assuming a 337 reduction led to 0 such cases. Of the 32 cases that
were unique to one particular mode of interpolation, a regression method
was best in only 5 of these cases. This number was reduced to 3 assuming a

25% reduction in interpolation RMSEs and to 1 assuming a 50% -eduction.

: <0
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Discussion

It seems reasonable to assume that the iﬁnear interpolation method ;
for non-tabled values will generally be much better than either regression
estimation method across the conditions covered by the tables. In all
cases where either of the regression methods produced estimates. of ‘5
eigenvalues which were unreasonable (sta;ing within the bounds of the N, P
combinations used) the interpolation method produced reasonable and
reasonably accurate estimates of eigenvalues. Even where regression
estimates were reasonable, the interpolated values were more accurate in

most cases. This was true in spite of the fact -that many of the

Ly,

comparisons made did not make allowance for the fact that the
interpolations spanned greater distances than would be needed in practice.
One can be reasonably assured that linear interpolation of eigenvalues
based on Tables 1 through 10 is comparable to conducting a Monte Carlo
analysis to establish parallel analysis criteria. Tables 1 through 10 can
be used to provide accurate random data eigenvalue estimates for use as
parallel analysis criteria.

VIt is unlikely in practice that one would want to interpolate values
beginning with the first eigenvalue, but rather beginning at some point
vwhere tabled values for a given eigenvalue appear close to the same order
eigenvalue in the sample results at hand. This ié because the parallel
analysis' criterion involves determining where the sample data eigenvalues
become smaller than a random data eigenvalue of the same order. In
effect, if one plots the eigenvelues from sample data along with the
eigenvalues from random data based on the same N and P, the PA criterion
for determining the number of components to retain is at (or before) the

point where the two lines intersect. It seems clear from the above

21
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results that use of the tabled values presented here should make
implementation of the PA cv{terion more practical. Furthe:r Monte Carlo
analyses within the ranges of ‘N and 2 covered by these tables should be
unne essary. The interpolation method for determining parallel analysis
criteria is generally more accurate than available regression estimation
procedures, and relatively easy to apply within the boundaties of the
tables presented. Though reliance on.a single rule-of-thumb for
determining the number of components to retain is ill-advised (cf. Cliff,
1988), those desiring to use the parallel analysis criterion in
conjunction with other rules for determining the number of components to

retain can now more readily do so.

DN
o

<
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Root

U B WA =

50°

1.392
1.161
0.990
0.818
0.640

Table

Parallel Analysis Jriteria

1

Average Eigenvalues of Random N(0,1) Data for P = 5

75

1.330
1.134
0.984
0.853
0.699

100

1.297
1.120
0.989
0.867
0.729

150

1.234
1.096
0.996
0.893
0.783

N
200

1.201
1.086
0.993
0.912
0.809

300

1.166
1.070
0.995
0.925
0.844

400

1.143
1.060
1.001
0.937
0.860

500

1.127
1.052
0.999
0.944
0.880

750

1.104
1.046
0.999
0.953
0.900

24

1000
1.089

1,039

0.999
0.960
0.914
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1SS

Table 2
Average Eigenvalues of Random N(0,1) Data for P = 10

N =
Root 50 75 100 150 200 300 400- 500 750 1000

1.787 1.611 1.528 1.435 1.366 1.294 1.260 1.230 1.186 1.158
1.529 1.421 1.358 1.297 1.249 1.205 1.179 1.158 1.129 1.110
1.330 1.268 1.229 1.188 1.161 1.136 1.118 1.104 1.084 1.074
1.159 1.145 1.122 1.102 1.087 1.074 1.067 1.059 1.048 1.043
1.012 1.025 1,029 1.021 1.021 1.020 1.016 1.015 1.013 1.015 -
0.876 0.915 0.926 0.945 0.957 0.967 0.969 0.975 0.980 0.985 L
0.760 0.810 0.841 0.870 0.896 0.914 0.925 0.933 0.947 0.954
0.633 0.710 0.753 0.800 0.828 0.858 0.877 0.892 0.913 0.923
0.519 0.605 0.658 0.719 0.757 0.802 0.826 0.847 0.873 0.892
0.399 0.493 0.559 0.627 0.680 0.732 0.765 0.790 0.830 0.850

CVBNAUEWN L

[




Root

VONOUEWN -

50

2.065
1.799

1.605

1.438

1.281

1.140
1.024
0.915
0.815
0.710
0.609
0.529
0.444
0.361
0.264

Table

3

Parallel Analysis Criteria

Average Eigenvalues of Random N(0,1) Data for P = 15

75

1.861

1.636-

1.486
1.350
1.231
1.125
1.033
0.946
0.867
0.777
0.701
'0.616
0.537
0.461
0.373

100

1.724

1.551
1.417
1.308
1.215
1.119
1.039
0.961
0.882
0.811
0.743
0.669
0.601
0.527
0.433

150

1.573
1.442
1.347
1.252
1.181
1.106
1.036
0.973
0.913
0.853
0.790
0.726
0.673
0.603
0.534

N
200

1.491
1.378
1.296
1.219

1.150

1.093
1.035
0.984
0.929
0.877
0.821
0.772
0.714
0.657
0.585

300

1.399
1.310
1.235
1.572
1.122

1.077

1.032

-0.987

0.944
0.901
0.855
0.811
0.770
0.720
0.665

400

1.349
1.268
1.212
1.158
1.110
1.071
1.031
0.991
0.952
0.913
0.874
0.836
0.793
0.749

0.692

500

1.306.
1.239
1.188
1.143
1.103
1.063
1.025
0.991
0.958
0.923
0.889
0.854
0.816
0.773
0.729:

750

1.253

1.194
1.154
1.115
1.084
1.054
1.022
0.993
0.966
0.938

0.907-

0.880
0.849
0.816
0.775

26

1000

1.212
1.167
1.131
1.099
1.071
1.045
1.022
0.998
0.972
0.948
0.923
0.897
0.870
0.843
0.803




Root

LoNOTUVESEWNE-

Table

Parallel Analysis Criteria

4

Average Eigenvalues of Random N(0,1) Data

for P = 20

50

2.334
2.041
1.835
1.669
1.513
1.379
1.255
1.139
1.029
0.940
0.840

- 0747~

0.667
0.585
0.504
0.433
0.369
0.304
0.244
0.175

75 100

2.050 1.909
1.837 1.710
1.673 1.584
1.543 1.470
1.432 1.373
1.329 1.287
1.221 1.196
1.130 1.117
1.041 1.038
0.956 0.970
0.881 0.908

0.812-—-0+843

0.740 0.781
0.671 0.720
0.602 0.661
0.544 0.606
0.480 0.550
0.417 0.490
0.359 0.428
0.284 0.358

150

1.716
1.577
1.469
1.378
1.301
1.233
1.170
1.106
1.046
0.991
0.936

-0:878:

0.827
0.779

-0.728

0.679
0.629
0.577
0.521
0.459

N
200

1.604
1.483
1.402
1.332
1.266
1.209

1.151

1.097
1.044
0.994
0.948

0,901

0.856
0.812
0.768
0.718
0.675
0.630
0.583
0.526

300

1.492
1.401
1.330
1.274
1.217
2 1.164
1.123
1.080
1.039
1.005
0.964
0.925
0.885
0.845
0.808
0.772
0.734
0.695
0.650
0.597

400

1.422

1.337
1.283
1.238
1.192
1.146
1.111
1.075

1.039

1.003
0.966

0.935

0.900
0.870

0.835

0.804
0.769
0.733
0.695
0.646

500

1.371
1.300
1.251
1.208
1.171
1.131
1.097
1.069
1.036
1.006
0.975
0.947
0.914
0.888
0.858
0.825
0.795
0.759
0.722
0.679

750

1.301
1.247
1.206
1.172
1.140
1.108
1.080
1.053
1.029
1.005
0.980
0.955
0.931
0.908
0.882
0.857
0.831
0.804
0.774
0.736

27

1000

1.259
1.212
1.178
1.148
1.122
1.095
1.071
1.049
1.026
1.004
0.983
0.961
0.941
0.922
0.901
0.877
0.853
0.830

0.803

0.767




Root 50
1 2.588
2 2.289
3 2.064
4 1.870
5 1.722
6 1.584
7 1.461
8 1.342
9 1.225

10 1.121

11 1.029

12 0.934

13  0.843

14 0.761

15+ 0.688

16— 0.615

17 0.543

18 0.480

19 0.424

20 0.361

21 0.309

22 0.255

23 0.210

24 0.165

25 0.116

Parallel Analysis Criteria

Table 5

Average Eigenvalues of Random N(0,1) Data

for P = 25

75

2.257
2.037
1.853
1.717
1.592
1.487
1.383
1.292
1.214
1.121
1.039
0.962

0893
0.828
0.761
0.700
0.641
0.583
0.535
0.485
0.432
0.373

0.326
0.274
0.216

100

2.053
1.878
1.745
1.627
1.519
1.429
1.344

1.268

1.182
1.110
1.047
0.980

‘05918 -

0.868
0.806

0.749

0.697
0.646
0.599
0.551
0.500
0.448
0.396
0.346
0.294

150

1.840
1.689
1.586
1.506
1.424
1.357

1.289

1.221
1.166
1.109
1.054
1.002

05952

0.901
0.854
0.805
0.763
0.718
0.673

0.629

0.585
0.542

‘.0 . 49,5‘

0.451
0.389

N =
200 300

1.713 1.574
1.608 1.486
1.517 1.417
1.440 1.357
1.373 1,297
1.312 1.248
1.256 1.208
1.199 1.162
1.148 1.119
1.096 1.082
1.947 1.046
1.003 1.008

‘05959 -0.973-

0:916 0.940
0.877 0.904
0.835 0.872
0.795 0.838
0.757 0.805
0.718 0.774
0.677 0.738
0.636 0.706
0.600 0.672
0558 0.634
0.509 0.593
0.453 0.546

29

400

1.494
1.412
1.351
1.309
1.259
1.217
1.178
1.142
1.107
1.073
1.042
1.008

0.979-

0.947

'0.921

0.893
0.862
0.835
0.806
0.775
0.746
0.715

0.681

0.646
0.602

500

1.432
1.365
1.311
1.270
1.234
1.197
1.163
1.130
1.101
1.069
1.042
1.013
0.985
0.958
0.930
0.904
0.878
0.851
0.825
0.796
0.770

0.743

0.714
0.681
0.640

750

1.345
1.293
1.254
1.219
1.189
1.159
1.134
1.108
1.083
1.061
1.037
1.013
0.993
0.968
0.944
0.923
0.903
0.881
0.860
0.836

0.813.
0.788
0.763

0.734
0.698

28

1000

1.298
1.255
1.220
1.190
1.163
1.141
1.115
1.094
1.074
1.053
1.033
1.012
0.993
0.974
0.954
0.934
0.916
0.897
0.877
0.858
0.837

-0.815
'0.794

0.766
0.738
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50

2.813
2.517
2.301
2:109

1.932.

1.774
1.642
1.527
1.404
1.295
1.194
1.096
1.014
0.933
0.852
0.775
0.697
0.631
0.567
0.506
0.449
0.396

0345

0.296
0.251
0.210
0.171
0.134
0.100
0.068

Table

6

Parallel Analysis Criteria

Average Eigenvalues of Random N(0,1) Data

for P =

30

75

2.434
2.192
2.035
1.879

1.755

1.648
1.546
1.447
1.362
1.273
1.199
1.114
1.037
0.967
0.905
0.840
0.778
0.724
0.669
0.613
0.563
0.514

03465
0.422
0.378
0.333
0.292
0.248
0.209
0.161

100

2.181
1.994

1.869-

1.747
1.646
1.560
1.479
1.403
1.323
1.247
1.175
1.120
1.049
0.993
0.937
0.884
0.829
0.779
0.733
0.681
0.633
0.586
0.543
0.499
0.415

0.372

0.332
0.291
0.242

150

1.945
1.812
1.700
1.612
1.531
1.455
1.394
1.326
1.269
1.216
1.156
1.104
1.059
1.008

-0.960

0.913
0.869
0.825
0.782
0.745
0.709
0.668

0.629

0.589
0.554
0.516
0.476
0.437
0.395
0.345

N
200

1.812
1.686
1.594
1.521
1.456

1.394

1.339
1.284
1.235
1.187
1.142
1.099
1.058
1.018
0.975
0.935
0.895
0.860
0.823
0.790
0.750
0.715

0.680-

0.647

0.610

0.577
0.540
0.502
0.460
0.416

‘,l‘
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
,0:!
0.
0.
0.
0.
0.
0.
0.

30

300

643
560
483
422
370
320
276
239
199
158
122
089
052
019
985
955
922
893
861
831
800
768

740
709

679
649
617
583
551
505

400

1.546
1.470
1.411
1.365
1.321
1.279
1.243
1.207
1.174
1.141
1.112
1.080
1.050
1.021
0.994
0.964
0.937
0.910
0.882
0.855
0.827
0.801

07706

0.749
0.721
0.693
0.666
0.635
0.604
0.566

500

1.481-

1.414
1.366
1.323

1.288

1.250
1.216
1.186
1.155
1.128
1.098
1.079
1.044
1.020
0.994
0.970
0.945
0.921
0.897
0.874
0.851
0.828

‘0.803

0.778
0.752
0.728
0.703
0.672
0.642
0.604

750

1.387
1.331
1.295
1.262
1.232
1.206
1.179
1.153
1.128
1.104
1.083
1.061
1.041

1.021

0.998
0.979
0.957
0.938
0.917
0.898
0.879

0.860-
"03840°

0.819
0.799
0.777
0.753
0.730
0.703
0.670

29

1000

1.333
1.291
1.259
1.227
1.202
1.178
1.154
1.132
1.112
1.092
1.073
1.055
1.036
1.018
1.001
0.982
0.966
0.949
0.931
0.913
0.894
0.878

‘0+859:

0.841
0.822
0.805
0.785
0.765
0.739
0.709
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50

3.050
2.721
2.499
2.306
2.128
1.977
1.832
1.703
1.582
1.484
1.374
1.267
1.176
1.086
0.997
0.916
0.840
0.767
0.704
0.638
0.573
0.518
0.464
0.410
0.362
0.319
0.273
0.240
0.202
0.167
0.139
0.108
0.082
0.058
0.038

Average

Table 7

Eigenvalues of Random N(0,1) Data for P=

75

2.588

2.353
2.175
2.039
1.917
1.801
1.689
1.595
1.499
1.406
1.327
1.251
1.179
1.108
1.039
0.972

0.910

0.849
0.796
0.738
0.684

0.636

0.582
0.532
0.492
0.453
0.411
0.373
0.337
0.300
0.262
0.229
0.195
0.161
0.126

100

2.326
2.152
2.001
1.884
1.781
1.690
1.595
1.519
1.431
1.362
1.303

1.231

1.171
1.107
1.051
0.993
0.945
0.893

0.838:

0.789
0.744
0.699
0.655
0.615
0.571
0.533
0.496
0.459
0.419
0.384
0.348
0.309
0.275
0.238
0.193

150

2.058
1.914
1.799
1.705
1.624
1.561
1.489
1.423
1.363
1.306
1.254
1.207
1.153
1.101
1.056
1.010
0.967
0.928
0.889
0.846

0.807
0.767
0.730
0.697
0.662
0.625
0.589
0.556
0.520
0.487
0.454
0.418
0.385
0.347
0.302

N
200

1.878
1.769
1.685
1.610
1.540
1.473
1.418
1.371
1.318
1.270
1.227
1.182
1.143
1.099
1.064
1.025
0.988
0.947
0.913
0.878
0.844
0.805

0,773

0.742
0.709
0.676
0.645
0.618
0.587
0.554
0.521
0.487
0.454
0.417
0.371

L

300

1.708
1.624
1.553
1.492
1.443
1.393
1.349
1.306
1.262
1.225
1.192
1.155
1.122
1.089
1.057
1.024
0.993
0.964
0.935
0.908
0.879
0.847

6.820
0.792
0.766
0.739
0.713
0.684
0.655
0.627
0.596
0.571
0.541
0.508
0.469

400

1.602
1.533

1.471

1.419
1.374
1.337
1.299
1.263
1.231
1.200
1.168
1.137
1.109
1.083
1.057
1.030
1.000
0.975

0.949,

0.923
0.899
0.874
0.851
0.825
0.800
0.775

0,748

0.725
0.702
0.675
0.651
0.625
0.596
0.565
0.527

500

1.536
1.463
1.415
1.374
1.337
1.300
1.272
1.242
1.211
1.180
1.152
1.127
1.099
1.074
1.048
1.026
1.003
0.977
0.956
0.933
:0.911
0.889
0.868
0.846
0.824
0.799
0.779
0.757
0.732
0.709
0.686
0.661
0.635
0.606
0.573

* Parallel Analysis Criteria

750

1.428
1.376
1.337
1.303
1.273
1.243
1.218
1.194
1.171
1.149
1.127
1.104
1.084
1.066
1.046
1.026
1.005
0.987
0.968
0.949
0.930
0.912

0893
0.875
0.857
0.838
0.819
0.801
0.783
0.763
0.742
0.721
0.699
0.673
0.643

30

1000

1.365
1.326
1.294
1.267
1.238
1.215
1.192
1.171
1.149
1.130
1.111
1.092
1.076
1.057
1.040
1.022
1.005
0.989
0.974
0.956
0.940
0.923
0.907
0.891
0.875
0.858
0.841
0.826
0.809-
0.792
0.775
0.757
0.735
0.714
0.686

R



Average

Table 8
Eigenvalues of Random N(0,1) ‘Data

Parallel Analysis Criteria

for P = 40

Root 50 75

3.263 2.741
2.928 2.512
2.699 2.341
2.511 2.184
2.318 2,055
2.172 1.939
2.023 1.833
1.890 1.732
1.761 1.638
1.548
1.461
1.389
1.311
1.237
1.161
1.092
1.034
0.972
0.912
0.852
0.799
0.746

VOOV H™WN -

0+ 696

0.647
0.600
0.553
0.514
0.473
0.435
0.399
0.360
0.327
0.293
0.263

0.227°

0.201
0.174
0.146
0.118
0.088

100

2.466
2.279
2.132
2.014
1.905

1.807

1,715
1.630
1.554
1.479
1.404
1.341
1.279
1.219
1.165
1.102
1.044

0.995

0.946
0.900
0.851
0.807

‘0 0“760:

0.715
0.671
0.631
0.592
0.556
0.517
0.482
0.448
0.415
0.383
0.351
0.320
0.287
0.257
0.227
0.197
0.158

150

2.157
2.005
1.903
1.810
1.731
1.658
1.585
1.521
1.460
1.399
1.346
1.292
1.240
1.194
1.150
1.105
1.058
1.019
0.972

0.936.

0.899
0.859

‘0.819

0.783
0.749
0.715
0.683
0.648
0.615
0.586
0.552
0.518
0.488
0.456
0.427
0.398
0.368
0.337
0.302
0.263

N
200

1.976
1.864
1.768
1.693
1.630
1.568
1.505

11.450

1.405
1.356
1.310
1.268
1.221
1.181
1.137
1.095
1.061

1.028 °

0.989
0.954
0.921
0.882

‘05845

0.816
0.786
0.756
0.728
0.696
0.669
0.642
0.613
0.584
0.553
0.525
0.495
0.467
0.438
0.409
0.375
0.336

w@W

oo

300

1.766
1.671
1.608
1.549
1.504
1.460
1.411
1.371
1.330
1.292
1.255
1.221
1.187
1.153
1.123
1.093
1.060
1.030
1.001
0.971
0.946
0.917

0.893:

0.864
0.837

-0.810

0.786
0.760
0.738
0.712
0.686
0.662
0.637
0.612
0.587
0.560
0.532
0.503
0.469
0.433

400

1.659
1.582
1.529
1.482

1.436

1.393
1.357
1.316
1.286
1.254
1.222
1.191
1.167

1.138

1.108
1.081
1.055
1.029
1.003
0.978
0.956
0.932

:0 .'909

0.886
0.863
0.839
0.818
0.796
0.772
0.750
0.728
0.707
0.683
0.659
0.638
0.615
0.591
0.563
0.533
0.495

&
500

1.573

1.517
1.464
1,424
1.390
1.352
1.318
1.288
1.256
1.227
1.201
1.172
1.150
1.124
1.099
1.077

.1.052

1.031

1.008

0.985
0.964
0.942

0,918

0.899
0.879
0.859
0.840
0.820
0.799
0.779
0.757
0.737
0.718
0.697

0.674

0.653
0.631
0.606
0.579
0.542

750

1.465
1.415
1.376
1.344
1.314
1.285
1.257
1.235
1.211
1.190
1.168
1.145
1.124
1.104
1.085
1.067
1.048
1.030
1.012
0.993
0.976
0.957

0:950

0.922
0.905
0.887
0.870
0.854

-0.838

0.820
0.803
0.786
0.767
0.748
0.729
0.710
0.690
0.670
0.645
0.614

31

1000

1.397
1.357
1.323
1.295
1.269
1.245
1.224
1.203
1.181
1.163
1.142
1.126
1.109
1.091
1.074
1.057
1.041
1.026
1.010
0.995
0.981
0.966

0)-051

T2 L

0.935
0.921
0.905
0.890
0.876
0.861
0.847
0.830
0.814
0.799
0.783
0.767
0.750
0.731
0.712
0.692
0.663




VOO WD -

Root

50

3.474
3.121
2.880
2.664
2.480
2.329
2.187
2.048
1.927
1.801
1.690

1.582"

1.474
1.381
1.283
1.206
1.122
1.047

.0.971

0.901
0.832

0.759-
0.703

0.642
0.581
0.528

0,478

0.424
0.385
0.339

0,299

0.262
0.232
0.198
0.168
0.143
0.118
0.096
0.076
0.059
0.043
0.030
0.019
0.010
0.004

Parallel Analysis Criteria 32

Table 9

Average Eigeénvalues of Random N(0,1) Data

for P = 45

75

2.908
2.660
2.489
2.338

2.193

2.073
1.961
1.858
1.765
1.669
1.581
1.503
1.427
1.351
1.278
2.209
1.146
1.083
1.022
0.966
0.908
0.853
:0.801
0.754
0.707
0.656
0,614
0.572
0.532
0.492
0.456
0.418
0.384

'0.348
0.319
0.286
0.260
0.232
0.206
0.180
0.153
0.132
0.109
0.086
0.064

100

2,584

2.390
2.249
2.128
2.021
1.917
1.832
1.747

.1.663

1.586
1.522
1.455
1.387
1.326
1.264
1.207
1.149
1.098
1.040
0.998
0.948
0.901

-:0+855-

0.814
0.770
0.729
0.689
0.652
0.613
0.575
0.541
0.509
0.475
0.444
0.409
0.380
0.351
0.319
0.292
0.261

0.233

0.210
0.185
0.158
0.126

150

2,239
2.100
1,992
1.909
1.811
1.740
1.671
1.606
1.547
1.495
1.439
1.387
1.330

1.284

1.235
1.188
1.142
1.101
1.060
1.019
0.981
0.944

-0.907

0.870
0.834
0.801
0.769
0.734
0.699
0.667
0.636
0.605
0.576
0.543
0.516
0.487
0.459
0.432
0.406
0.380
0.351
0.324
0.293
0.264
0.227

N
'200

2.055
1.932
1.842
1.765
1.700
1.637
1.582
1.527
1.474
1.425
1.379
1.335
1.293
1.251
1.211
1.176
1.137
1.101
1.065
1.031
0.997
0.961

0.929-
0. 899

0.865
0.834
0.803
0.775-
0.747
0.718
0.690
0.663
0.635.
0.610
0.584

0.558

0.531
0.505
0.478
0.453
0.427
0.400
0.373
0.343
0.304

W

300

1.828
1.745
1.674
1.619
1.563
1.519
1.473
1.432
1.393
1.356
1.318
1.284
1.248
1.216
1.182
1.153
1.120
1.089
1.060
1.030
1.005
0.976

:0.950-

0.926
0.900
0.873
0.850
0.825
0.800
0.777
0:754
0.730
0.706
0.683
0.660
0.637
0.614
0.590
0.569
0.545
0.522
0.497
0.469
0.439
0.399

e

400

1.699
1.628
1.576
1.531
1.488

1.444
1.407

1.375
1.340
1.307
1.277
1.248
1.218
1.189

1.162

1.136
1.108
1.082
1.060
1.034
1.010
0.988

-0:964-

0.940
0.919
0.897
0.874
0.853
0.832
0.810
0.789
0.770
0.749
0.726
0.706
0.684
0.665
0.645
0.623
0.602
0.578
0.556
0.532
0.504
0.471

500

1.628

1.561.

1.512
1.469
1.431
1.396

1.363

1.334
1.305
1.275
1.245
1.218
1.195
1.171
1.149
1.124
1.099
1.078
1.055
1,032
1.012
0.990
0.971
0.950
0.930
0.912
0.892
0.871
0.852
0.834
0.815
0.796
0.777
0.756
0.738
0.720
0.701
0.682
0.662
0.641
0.622
0.599
0.576
0.547
0.514

750

1.509
1.452
1.414
1.378
1.352

1.323.

1.297
1.270
1.244
1.224
1.202
1.182
1.161
1.142
1.123
1.103
1.085
1.067
1.050
1.031
1.014
0.998

‘0:981

0.964
0.949
0.933

0.917

0.900
0.884
0.868
0.851
0.837
0.820
0.804
C.788
0.772
0.753
0.736
0.720
0.704
0.685
0.664
0,643
0.619
0.588

1000

1.430
1.386
1.353
1.326
1.300
1.276
1.254
1.234
1.215
1.196
1.177
1.158
1.141
1.124
1.107
1.091
1.076
1.060
1.045
;030
1.016
1.000
0.986
0.972
0.957
0.943
0.929
0.914
0.900
0.885
0.872
0.858
0.844
0.830
0.816
0.803
0.789
0.773
0.758
0.742
0.726
0.707
0.690
0.668
0.643




Root

VBN WN -

Table

10

Parallel Analysis Criteria

Average Figenvalues of Random N(0,1) Data for 50 Items

50

3.675
3.336
3.073
2.861
2.665
2.493
2.355
2.212
2.083
1.968
1.844
1.737
1.639
1.528
1.433
1.347
1.252
1.169
1.081
1.006
0.938
0.873
0.797
0.740
0.680
0.622
0,571
0.521
0.474
0.432
0.385
0.343
0.307
0.273

0.237

0.207
0.176
0.149
0.125
0.106
0.085
0.066
0.050
0.036
0.024
0.015
0.008
0.003

75

3.044
2.804
2.621
2.474
2.334
2.216
2.092
1.997
1.888
1.794
1.703
1.621
1.546
1.465
1.394
1.322
1.263
1.197
1.134
1.074
1.015
0.962

0.852
0.803
0.757
0.711
0.668
0.623
0.578
0.539
0.501

0.465.

0.433
0.398
0.365
0.337
0.307
0.278
0.248
0.223
0.198
0.175
0.153
0.132
0.114

'0.095

0.077

100

2.712
2.500
2.372
2.247
2.137
2.036
1.941
1.852
1.771
1.695
1.622
1.556

1.490

1.428
1.365
1.304
1.249
1.196
1.146
1.096

1.045

0.998

0.948.

0.899
0.854
0.813
0.774
0.736
0.697
0.660
0.620

'0.584

0.552
0.519
0.490
0.458
0.430
0.401
0.374
0.345
0.320
0.292

0.269
0.244

0.219
0.195
0.174
0.149

150

2.331
2.188
2.079

'1.985

1.905
1.829
1.755
1.690
1.627
1.570
1.520
1.465
1.416
1,368
13519
1.270
1.226
1.185
1,139
1.099
1.060
1.020

0..984-

0.949
0.912
0.877
0.843
0.808
0.776
0.744
0.714
0.683
0.655
0.624
0.596
0.567
0.539
0.513

0,486

0.463
0.437
0.412
0.388
0.361
0.334
0.311
0.286
0.262

N
200

2.124
2.015
1.928
1.849
1.776
1.714
1.655
1.607
1.552
1.501
1.455
1.409
1.368
1.322
1.279
1.241
1.204
1.165
1.130
1.090
1.057
1.025

0,997

0.966
0.936
0.903
0.874
0.846
0.815
0.787
0.761
0.732
0.707
0.681
0.654
0.631
0.606
0.582
0.557
0.531
0.508
0.483
0.457
0.435
0.410
0.387
0.364
0.337

400
1.759
1.685
1.628
1.579
1.531
1.492
1.455
1.420
1.385
1.353
1.324
1.295
1.268
1.236
1.209
1.185
1.160
1.134
1.110
1.086
1.063
1.041
1.018
0.994
0.971
0.949
0.928
0.910
0.886
0:867
0.845
0.826
0.806
0.785
0.765
0.746
0.726
0.706
0.687
0.667
0.648
0.628
0.608
0.588
0.568
0.547
0.523
0.500

500

1.678
1.612
1.558
1.511
1.476
1.442
1.408
1.373
1.345
1.316
1.291
1.263
1.238
1.216
1.191
1.168
1.146
1.125
1.101
1.079
1.060
1.039

1.017

0.997
0.977
0.957
0.938
0.918
0.900
0.881
0.863
0.844
0.827
0.809
0.791
0.773
0.756
0.738
0.721
0.702
0.684
0.666
0.647
0.628
0.609
0.589
0.570
0.549

750

1.533
1.483
1.445
1.412
1.382
1.355
1.330
1.305
1.281
1.257
1.237
1.215
1.197
1.178
1.157
1.139
1.121
1.103
1.087
1.068
1.051
1.037
1.021
1.005
0.988
0.972
0.956
0.941
0.926
0.909
0.894
0.879
0.864
0.848
0.834
0.819
0.804
0.790
0.774
0.757
0.742
0.726
0.709
0.694

0 . 6'78'

0.660
0.642
0.622

33

1000

1.457
1.415
1.382
1.352
1.327
1.305
1.283
1.262
1.241
1.222
1.205
1.187
1.171
Y.154
1.139
1.122
1.107
1.091
1.077
1.062
1.048
1.033
1.020
1.006
0.993
0.979
0.966
0.952
0.937
0.923
0.910
0.897
0.883
0.869
0.856
0.843
0.831
0.817
0.804
0.792
0.778
0.763
0.749
0.734
0.720
0.704
0.687
0.670




Table 11

Parallel Analysis Criteria

Ranges of RMSE Values for Interpolations on N Within Tables

Method of
Eigenvalue
Estimation

Linear
Interpolation

LL
Equations
AH
Equations

<.01

34

.01-.02

20

.02-.05

13

15

16

0
N

RMSE Range
005-010

12

19

16

010-020

17

15

«20~.50

10

17

34

>.5

15




Table 12

Parallel Analysis Criteria

Ranges of RMSE Values for Interpolations on P Across Tables:

Method of
Eigenvalue
Estination

Linear
Interpolation

LL
Equations

Al
Equations

<.01

47

.01-.02
23

10

002-005
10
14

15

36

RMSE Range
.05-.10

17

19

3\10-020

<

21

16

020-050

17

35

>.5

12

es.d
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