DOCUMENT RESUME

ED 30: 467 TM 012 090

AUTHOR Siskind, Theresa G.

TITLE The Basic Skills Assessment Program, Spring 1987.

Annual Report No. 87-24.

INSTITUTION Charleston County School District, SC. Office of

Evaluation and Research.

PUB DATE 2 Nov 87

NOTE 189p.; Some tables may not reproduce well.

PUB TYPE Statistical Data (110) -- Reports -

Evaluative/Feasibility (142)

EDRS PRICE MF01/PC08 Plus Postage.

DESCRIPTORS Annual Reports; Elementary Education; *Elementary

School Students; Ethnicity; Grade 1; Grade 2; Grade

3; Grade 6; Grade 8; Income; *Mathematics

Achievement; *Minimum `ompetency Testing; *Reading Achievement; Scores; Sex Differences; Standardized [.sts; *State Programs; Testing Programs; *Writing

Evaluation

IDENTIFIERS *Basic Skills-Assessment Program; Charleston County

School District SC

ABSTRACT

Information from the administration of the Basic Skills Assessment Program (BSAP) within the Charleston County (South Carolina) School District is presented. Tests are administered in the spring of each school year to students in grades 1, 2, 3, 6, and 8 as part of the BSAP. These tests have been administered statewide since 1981. BSAP tests were designed to assess student achievement in reading, mathematics, and writing. Reading and mathematics tests were administered in grades 1, 2, 3, 6, and 8; writing tests were administered in grades 6 and 8. Data are provided for 17,075 students administered the BSAP during the week of April 27 through May 1, 1987. Analyses presented in this report include: (1) district-wide results including the percentages of students meeting standards and median scale scores; (2) comparisons of district results with state results; (3) breakdowns of district test results by demographic characteristics of the students (including ethnicity, gender, and income); (4) historical results for the district and each school; and (5) percentages of district students mastering each BSAP objective and comparisons of district students answering each item correctly to students statewide answering each item correctly. Notably, second and third graders proved strong in reading and mathematics, while sixth and eighth graders performed relatively poorly in mathematics and eighth-grade students performed relatively poorly in writing. Fifteen tables and 10 figures are included, and eight appendices provide extensive tabulated data. (TJH)

* Reproductions supplied by EDRS are the best that can be made

THE ANNUAL REPORT OF

THE BASIC SKILLS ASSESSMENT PROGRAM

SPRING 1987

by

Theresa G. Siskind, Ph.D.

Test Administration:

Dr. Theresa Siskind

Typing:

Mrs. Denise Fabian

Dr. David P. Sklarz
Deputy Superintendent,
Division of Instruction

Dr. Janet S. Rose
Director,
Office of Evaluation and Research

November 2, 1987

Report No. 87-24

TABLE OF CONTENTS

	Page
List of Tables	ii
List of Figures	iii
List of Appendices	iv
Executive Summary	1
Purpose of Report	5
Students and Grade Levels Tested	6
Description of the Basic Skills Assessment Program Tests	7
Utilization of BSAP Test Results	9
Cautions in the Interpretation and Use of BSAP Test Data	11
County Results	14
Performance of Charleston County Pupils in 1987	14 16 16
Comparisons of Readiness Scores and BSAP Scores for CCSD First Graders	19 29
BSAP Objectives Analysis and Right Response Results	34
Objectives Analysis, 1987	34 36 36
Conclusions	45

LIST OF TABLES

Tables		Page
1.	BSAP Percent Meeting Standard and Median Scale Scores, Spring 1987, Charleston County	15
2.	BSAP Percent Meeting Standard and Median Scale Scores, Spring 1987, Charleston County and South Carolina	17
3.	BSAP Percentages of Students Meeting Standards, 1981 to 1987, Charleston County and South Carolina	· 19
4A.	BSAP Percent Above Standard and Median Scale Scores, 1985 to 1987, Reading	26
4B.	BSAP Percent Above Standard and Median Scale Scores, 1985 to 1987, Mathematics	27
4C.	BSAP Percent Above Standard and Median Scale Scores, 1985 to 1987, Writing	28
5.	Percentages of Students Above Standard on the BSAP, 1986 to 1987, Charleston County, Demographic Report	32
6.	Percentages of Students Above Standard on the BSAP, Spring 1987, Demographic Report for Charleston County and South Carolina	33
7.	Percentage of Students Needing Improvement on Each BSAP Skill, 1987, Charleston County	38
8A. 8B. 8C.	Analysis of BSAP Objective Data, Reading	39 40 41
9A. 9B. 9C.	Relative Weaknesses Among Reading Objectives, 1985 to 1987 Relative Weaknesses Among Mathematics Objectives, 1985 to 1987 Relative Weaknesses Among Writing Objectives, 1985 to 1987	42 43 44

LIST OF FIGURES

.

Figure	s	Page
1.	Percentage of Charleston County and South Carolina Students Scoring Above Standard, 1987, Grade 1	18
2.	Percentage of Charleston County and South Carolina Students Scoring Above Standard, 1987, Grade 2	18
3.	Percentage of Charleston County and South Carolina Students Scoring Above Standard, 1987, Grade 3	18
4.	Percentage of Charleston County and South Carolina Students Scoring Above Standard, 1987, Grade 6	18
5.	Percentage of Charleston County and South Carolina Students Scoring Above Standard, 1987, Grade 8	18
6.	Percentage of Students Meeting Standard on BSAP, 1981 to 1987, Charleston County, Grade 1	20
7.	Percentage of Students Meeting Standard on BSAP, 1981 to 1987, Charleston County, Grade 2	21
8.	Percentage of Students Meeting Standard on BSAP, 1981 to 1987, Charleston County, Grade 3	22
9.	Percentage of Students Meeting Standard on BSAP, 1981 to 1987, Charleston County, Grade 6	23
10.	Percentage of Students Meeting Standard on BSAP, 1981 to 1987,	24

~n 6

LIST OF APPENDICES

Append	lices	Page
Α.	Frequency Distributions of BSAP Scores	47
	Reading, Grade 1	48
	Reading, Grade 2	49
	Reading, Grade 3	50
	Reading, Grade 6	51
	Reading, Grade 8	52
	Mathematics, Grade 1	53
	Mathematics, Grade 2	54
	Mathematics, Grade 3	55
	Mathematics, Grade 6	56
	Mathematics, Grade 8	57
	Writing, Grade 6	58
	Writing, Grade 8	59
	Willing, Grade 6	-
в.	Percentages of Students Meeting BSAP Standards in	
Δ.	Individual Schools	61
c.	Mobility Indices, Percent Free Lunch, and	73
	Percent Handicapped Tested	, ,
	Elementary Schools	74
	Middle Schools	7.5
	Middle Schools	
D.	1986 Readiness Scores and BSAP Scores for First Graders	77
E.	District Demographic Reports	79
	Grade 1	80
	Grade 2	81
	Grade 3	82
		83
	Grade 6	84
	Grade 8	04
F.	District Summary Reports	85
	Grade 1	86
	Grade 2	87
	Grade 3	88
		89
	Grade 8	90
	1-7777 X	

LIST OF APPENDICES (Cont.)

ppend	ices	Page
G.	Percent Needing Improvement on Each BSAP Objective for	01
	Individual Schools	91
	Grade 1	92
	Grade 2 · · · · · · · · · · · · · · · · · ·	97
	Grade 3 · · · · · · · · · · · · · · · · · ·	102
	Grade 6	107
	Grade 8	110
н.	Item Response Summaries	113
	Grades 1-8, Reading	114
	Grade 1, Reading	115
	Grade 2, Reading	117
	Grade 3, Reading	119
	Grade 3, Reading.	121
	Grade 6, Reading	123
	Grade 8, Reading	125
	Grades 1-8, Mathematics	126
	Grade 1, Mathematics	
	Grade 2, Mathematics	128
	Grade 3. Mathematics	130
	Grade 6, Mathematics	132
	Crade S Mathematics	134

EXECUTIVE SUMMARY

The Annual Report of Results from the Basic Skills Assessment Program, Spring, 1987, presents test information from the administration of the BSAP tests to students in Charleston County public schools. Analyses presented in this report include the following:

- Presentations of districtwide results including the percentages of students meeting standards and median scale scores.
- Comparisons of district results with state results.
- Breakdowns of district test results by demographic characteristics of the students: ethnicity; gender; income (defined by free/reduced lunch program participation).
- · Historical results for the district.
- Historical results for each school.
- Percentages of CCSD students mastering each BSAP objective, and comparisons of CCSD students answering each item correctly to SC students answering each item correctly.

Background

Tests are administered in the spring of each school year to students in grades 1, 2, 3, 6, and 8 as part of the Basic Skills Assessment Program (BSAP). These tests have been administered statewide since 1981. BSAP tests were designed to assess the extent to which students have attained statewide objectives in Reading, Mathematics, and Writing. Reading and Mathematics tests are administered at grades 1, 2, 3, 6, and 8, while Writing tests are administered at grades 6 and 8.

Districtwide Results

Percentages of students meeting state standards on the 1987 BSAP tests are as follows:

Subtest	Grade 1	Grade 2	Grade 3	Grade 6	Grade 8
Reading	82.2	87.5	93.6	83.8	78.7
Mathematics	84.2	89.2	87.6	74.5	69.6
Writing				77.4	73.1

Areas of relative strength (in which more than 85% of the students met standards) were second and third grade reading and second and third grade mathematics. Areas of relative weakness (in which less than 75% of the students met standards) were sixth and eighth grade mathematics and eighth grade writing.

Э

A higher percentage of Charleston County students scored above standard compared to their SC peers in 75% of the grade level-subject area combinations. A greater percentage of Charleston County students met Reading and Mathematics standards at grades 2, 3, 6, and 8. Greater overall differences were found for Reading than for Mathematics. At grade 1 where students performed below their SC peers, differences were greater for Reading (-2.1%) than for Math (-.8%). The only other area in which CCSD students showed a relative weakness compared to students statewide was eighth grade Writing where the difference between CCSD and SC students was -2.1%.

Compared to 1986 test results, 1987 performance levels in Reading and In contrast, 1987 Writing scores Mathematics represent an improvement. reflect a slight decline from last year. All grades showed significant improvements since BSAP testing began in 1981 for Reading and Mathematics and in 1983 for Writing. The greatest gains in Reading and Mathematics since 1981 have been at grades 6 and 8. In addition, Charleston County has shown greater increases in both subjects than has South Carolina. Improvements in Writing since 1983 have been comparatively less than those found for Reading and Mathematics over the same four-year period. Compared to progress statewide, CCSD sixth graders made slightly better four-year gains in Writing than SC students, while at grade 8, SC students made better progress than Charleston County students.

Performance by Demographic Subgroups

Gender. A greater proportion of females compared to males scored above the state standard on all subtests for all grade levels except grade 3 Mathematics where performance was approximately the same. Improvements over 1986 scores were demonstrated by males and females for all grade levels and subtests except for grade 1 males and females in Mathematics and grade 8 females in Reading. Both gender subgroups performed better than their South Carolina counterparts in all areas except for grade 6 females in Writing and grade 8 males and females in Writing.

Ethnicity. A higher proportion of white students compared to black students scored above the state standard in 1987 in Reading, Mathematics, and Writing at all grade levels tested. More than 80% of the white students scored above the state standard in all subject areas and for all grade levels tested. More than 80% of the black students scored above the Reading and Mathematics state standard in grades 2 and 3 only. Percentages of ethnic subgroups scoring above the state standard on Reading and Mathematics subtests were greater in 1987 than in 1986 with the exceptions of black first graders in Mathematics and white eighth graders in Reading. With one exception, greater percentages of CCSD white and black students met standards compared to students statewide. The one exception was for first grade black pupils in Reading.

Income. A higher proportion of students not being served by the free lunch program met state standards than students served by the free lunch program for all areas and grade levels tested. More than 90% of the students at grades 1, 2, and 3 not participating in the lunch program scored above the state standards in Reading and Mathematics compared to 75% of the students on free lunch. Among sixth and eighth graders, more than 79% of the students not participating in the lunch program scored above the state standard on Reading, Mathematics, and Writing subtests, compared to 55% of the students

on free lunch. Students in both subgroup categories made improvements in Reading and Mathematics with the exception of grade 1 Mathematics scores for students not participating in the lunch program. A decline in Writing scores resulted in smaller percentages of students in both categories meeting Writing standards. Greater percentages of CCSD pupils than SC pupils in both lunch groups scored above state standards for all subtests and grade level combinations with the exceptions of grade 1 Reading and grade 8 Writing for both lunch groups, and grade 1 Mathematics for students not participating in the lunch program.

PURPOSE OF REPORT

The Annual Report of the Basic Skills Assessment Program, Spring, 1987, presents the results from the administration of the BSAP to students in the Charleston County Public Schools. All students in grades 1, 2, 3, 6, and 8 were tested as part of the South Carolina Basic Skills Assessment Program. The primary reason for administering BSAP tests is to assess how well students perform on identified statewide objectives in reading, mathematics, and writing.

This report responds to three primary questions:

- 1. How are Charleston County public school pupils performing with respect to state achievement standards?
- 2. How does the achievement of Charleston County public school pupils compare to the achievement of other pupils in South Carolina?
- 3. How does achievement for Spring, 1987 compare to previous years?

Test data are presented for all students districtwide, as well as for students within demographic subgroups. Demographic variables include gender, ethnicity and income level (defined by lunch program participation).

This report also presents an analysis of students' responses to groups of items comprising objectives as well as to individual test items. By comparing the percentage of Charleston County pupils responding correctly in each skill area to percentages of students in the state responding correctly, areas of relative strength and weakness can be identified.

There are eight appendices to this report. Appendix A contains frequency distributions for each grade level and subject area tested. Appendix B reports the percentages of students at individual schools meeting BSAP standards for the years 1981-1987. Appendix C lists mobility indices, percentages of students on free lunch, and percentages of handicapped students for individual schools. Appendix D reports Fall 1986 readiness test scores and Spring 1987 BSAP scores for first graders enrolled in CCSD schools during the 1986-87 school year and present for both testing sessions. In Appendix E, District Demographic Reports giving the percentages of students in various demographic categories meeting standards are reprinted. District Summary Reports, reporting percentages of CCSD students meeting standards and needing improvement on each objective, are reprinted in Appendix F, while Appendix G provides the percentages of students needing improvement on each objective for individual schools. Item Response Summaries, giving a description of each BSAP test item and the percentages of CCSD and SC students answering correctly, are reprinted in Appendix H.

STUDENTS AND GRADE LEVELS TESTED

All strdents in the regular instructional program in grades 1, 2, 3,6, and 8 are tested each spring as part of the South Carolina Basic Skills Assessment Program. Students in all of these grades have been tested statewide since 1981; hence test results are available for the past seven years.

Handicapped students in grades 1, 2, and 3 were tested if their Individual Educational Plans indicated that testing was appropriate. All sixth and eighth grade students were tested to ensure practice for the Exit Exam. Scores of handicapped students are included in the analyses presented in this report as well as the analyses of state test data. Special education students were tested according to their nominal grade placement. Large-print editions of the BSAP were available for visually-handicapped students in all grades. Brailled and modified test versions were available for blind, hearing handicapped and orthopedically handicapped students in grades 6 and 8, as appropriate. Flexibility in test scheduling and setting was permitted for learning disabled pupils and other handicapped pupils, : needed.

The South Carolina Exit Exam and readiness test are considered part of BSAP. Results from these two programs, however, are reported separately.

All students were administered the BSAP during the week of April 27 - May 1.

The number of pupils enrolled, and the number and percent of students tested are provided below.

Grade	Number of Pupils Enrolled	Number Tested	Percent Tested	
1	4488	4360	97.1	
2	3745	3593	95.9	
3	3451	3291	95.4	
6	2984	2928	98.1	
8	3083	2903	94.2	

DESCRIPTION OF THE BASIC SKILLS ASSESSMENT PROGRAM TESTS

The Basic Skills Assessment Program (BSAP) tests are group-administered, criterion-referenced achievement tests. Criterion-referenced tests (CRTs) focus upon specific and precisely defined learning objectives. CRTs are designed to assess students "attainment" of specific knowledge or skills and to reference performance to a defined set of objectives. CRT scores are directly meaningful in terms of the degree of learning which the examinee possesses.

The BSAP tests were designed to assess the extent to which students have attained statewide objectives in reading, mathematics, and writing. Reading tests are administered to children in grades 1, 2, 3, 6, and 8 and consist of 36 multiple-choice items. Mathematics tests are administered to children in grades 1, 2, 3, 6 and 8 and consist of 30 multiple-choice items. Writing samples, written in response to a single prompt, are obtained in grades 6 and 8. BSAP tests are not timed.

BSAP Legislation

In 1978 the South Carolina Legislature established the Basic Skills Assessment Program. Part of the BSAP legislation provided for: (1) identification of basic skills objectives; (2) development of criterion-referenced tests in reading and mathematics for grades 1, 2, 3, 6, and 8; (3) development of criterion-referenced writing tests for grades 6 and 8; and (4) setting of minimum standards of achievement for grades tested on the BSAP tests.

Basic Skills Objectives

Sixteen statewide basic skills objectives were identified through a process that involved South Carolina educators and members of the general public. Each objective is repeated at each grade level, but at a different level of complexity. Brief descriptors of the objectives are presented below:

Reading

Decoding and Word Meaning (DW): The student can use word recognition skills and can determine the meanings of words.

<u>Details (DE)</u>: The student can accurately comprehend the details in a reading selection.

Main Idea (MI): The student can determine the main idea of a reading selection.

Reference Usage (RE): The student can locate and utilize desired information in reference sources.

Inference (IN): The student can make valid inferences about a reading selection.

Analysis of Literature (AL): The student can critically analyze a reading selection.

Mathematics

Concepts (CN): The student can apply numerical concepts.

Operations (OP): The student can compute accurately.

Measurement (ME): The student can apply measurement concepts.

Geometry (GE): The student can apply geometric concepts.

<u>Problem Solving (PS)</u>: The student can solve problems involving the use of mathematics.

Writing

Handwriting (HN): The student can write legibly.

Mechanics (MC): The student can spell, capitalize, and punctuate correctly.

Word Usage (WU): The student can use words appropriately.

Sentence Formation (SF): The student can compose sentences.

Composition (CP): The student can communicate ideas in writing.

Objectives are further defined at the subskill level. Subskills tested during a given year vary according to grade level and test form.

Achievement Standards

Minimum standards of achievement were set for writing prior to the Spring, 1981 administration of the BSAP test. Results for writing are given in raw score units. A score of 3 or above indicates adequate performance; whereas, a score below 3 indicates inadequate performance. These standards apply to all forms of the writing test.

Standards for reading and mathematics were established following the Spring, 1981 administration of the BSAP test. Results for reading and mathematics are reported in scale score units. Scale score units permit comparison between different forms of the test within a particular grade level. The minimum standard for reading and mathematics is 700 at all grades tested.

UTILIZATION OF BSAP TEST RESULTS

BSAP test results are utilized by a variety of audiences for various purposes. These include:

- 1. Providing the Superintendent and the School Board of Trustees with an assassment of the levels of achievement in the academic content areas of reading, mathematics, and writing.
- Providing principals with an assessment of their school's achievement in these content areas which can assist them in the identification of relative strengths and weaknesses for further study.
- 3. Providing teachers with an assessment of individual pupil's achievement to aid in the improvement of instruction through further diagnosis and/or counseling with students and parents.
- 4. Providing parents and students with information on students academic achievement.
- 5. Providing the Department of Curriculum with appropriate information about districtwide strengths and weaker areas so they can assist teachers and principals in improving their instructional programs.
- 6. Aiding in the identification of students for special programs, such as Chapter I and EIA Compensatory/Remedial programs.
- 7. Aiding in the evaluation of externally-funded programs, such as Chapter I and EIA Compensatory/Remedial programs.

CAUTIONS IN THE INTERPRETATION AND USE OF BSAP TEST DATA (Reprinted from A User's Guide to BSAP Score Reports, SDE, 1987.)

Criterion-Referenced vs. Norm-Referenced Tests

An understanding of the BSAP test results may be facilitated through a general understanding of the difference between criterion-referenced and norm-referenced tests.

Criterion-referenced tests, such as the BSAP tests, are designed to measure student performance against a desired criterion or standard. In contrast, norm-referenced tests are designed to provide a basis for comparing the performance of a student or a group of students with the average performance (norm) of a representative sample of students. In light of the inherent differences between norm-referenced and criterion-referenced tests, several cautions are presented in the ensuing discussion with respect to making comparisons and interpretations based on the BSAP data.

BSAP Tests as Measures of the BSAP Objectives

The BSAP tests were developed based upon the BSAP objectives and, consequently, are intended specifically for use in Social Carolina. Since the BSAP tests are administered only in South Carolina, there is no information available that indicates how students in other states or in the nation as a whole would perform on the tests. The BSAP tests can be used to compare student performance to the preset state standard, but they cannot be used to compare student performance to some national level of performance. The intended purpose of the BSAP tests, as stipulated in the legislation, is to assist in the improvement of instruction by identifying student deficiencies.

BSAP Tests as On-Grade Level Tests

The BSAP legislation requires the tests to be on-grade level and to be administered to all students at the specified grade levels with the exception of those handicapped students excluded from testing by their Individual Education Plans (IEP's). Consequently, caution must be exercised when interpreting test data for students whose instructional levels are below the grade level of the test they took. Since the match between the ability of the student and the test difficulty is not optimal for students who are below grade level, the test results are not likely to provide as accurate a description of such a student's performance as for a student whose ability is more closely aligned with the test difficulty.

Comparisons Across BSAP Tests

Another caution relates to the legitimacy of making comparisons across basic skill areas and grade levels with the BSAP tests. Since the difficulty of the tests may vary from the mathematics to reading to writing and from grade to grade, comparisons should not be made across different grades or

across different basic skill tests for a given grade. For example, a scale score of 680 on the Grade 8 BSAP Mathematics Test is not comparable to a 680 on the Grade 8 BSAP Reading Test. Since the tests are also not equated across grades, the scale scores are only comparable from one year to the next for the same basic skill area at the same grade level. Consequently, apparent decreases in the percentages of students meeting the standards across grades may be misleading. For example, if a student receives a scale score of 710 on the Grade 2 BSAP Reading Test, and the next year receives a score of 710 on the Grade 3 BSAP Reading Test, the assumption should not be made that the two scores have the same meaning.

Socioeconomic and Other Background Performance Factors

A frequent misuse of test data is the tendency to equate high test scores with educational quality. Users of the data should remember that test data constitute a single type of information that should be used in conjunction with other relevant information to evaluate educational quality. For example, entry characteristics of students such as socioeconomic background and the educational level of parents are factors which are strongly related to test performance. Comparisons of scores among schools and/or districts should not be made unless differences in the characteristics of students are accounted for in these comparisons.

Comparisons Among Student Subgroups

Caution should be exercised in the interpretation of differences in the performance of various subgroups (e.g., male versus female) within the total population at any grade. While data for various subgroups can provide information as to which of the subgroups as a whole may be most in need of additional instruction, the data cannot and should not be used as a basis for making cause and effect statements about the instruction offered to different groups.

Interpretation of Results for Each Objective

A final caution relates to interpretation of performance by objective on the BSAP tests. A small number of items is used to test each BSAP objective. Since these items reflect only a sample of the skills encompassed by each objective, the percentage of students needing improvement should be considered as approximate. For a particular year, differences in achievement across objectives measured by the BSAP Reading and Mathematics Tests can vary. These differences may be partially explained by the fact that the skills reflected in some objectives may be inherently more difficult and receive more instructional emphasis than those included in other objectives. Thus, comparing performance across objectives for a given grade (for example, comparing 6th grade performance across the six reading objectives) provides only an estimation of relative strengths and weaknesses. Additionally, caution must be taken when comparing objectives across years for a particular grade because test items and student populations taking the test change from year to year.

Interpretation of Item Response Data

The percentages of students responding correctly to each test item on the BSAP Reading and Mathematics Tests are included in Item Response Summaries. There are a number of points that should be kept in mind when reviewing data from these summaries. The items on any one test represent a sample of the skills encompassed by each objective and a particular skill may be measured by only one test item. Since the BSAP objectives encompass a range of skill difficulty, the performance of students on one item may not provide an accurate picture of skill performance. Thus, the item response data should be viewed as very tentative approximations of skill performance; and dramatic changes in instructional focus should not be made based on these data in absence of other information.

Performance of Charleston County Pupils in 1987

Table 1 reports the percentages of Charleston County School District (CCSD) students at each grade level tested meeting BSAP standards in reading, mathematics, and writing for 1987 as well as the median scale scores for each subtest and grade level combination. The median is determined by ordering test scores from low to high and locating the score in the middle of the score distribution. The median is therefore the mid-point of the distribution of the set of scores. Half the scores lie below and half the scores lie above the median.

In READING percentages of CCSD students meeting standards were 82.2 at grade 1, 87.5 at grade 2, 93.6 at grade 3, 83.8 at grade 6, and 78.7 at grade 8. The median scale scores for these grades were 805, 806, 799, 772, and 761, respectively. A direct comparison of these median scale scores across grade levels cannot be made.

In MATHEMATICS percentages of CCSD students meeting the state standards were 84.2 at grade 1, 89.2 at grade 2, 87.6 at grade 3, 74.5 at grade 6, and 69.6 at grade 8. The median scale scores for these grade levels were 778, 804, 796, 742, and 736, respectively.

In WRITING 77.4% of the sixth graders and 73.1% of the eighth graders in the county met the state standard. The median score for each grade level was 3.0.

A greater percentage of students at grades 1 and 2 met the mathematics standards than the reading standards, while a greater percentage of students at grades 3, 6, and 8 met reading standards. However, conclusions about the effectiveness of instruction in these content areas must be tempered by an understanding that the two tests are not comparable in terms of difficulty. Hence it would be inappropriate to state that mathematics instruction was more effective than reading instruction in grade 1.

Appendix A contains frequency distributions for each grade level and subject area tested. These distributions present the number and percentage of CCSD students obtaining each BSAP scale score on the 1987 tests. Cumulative frequencies and cumulative percentages are included as well. The tables found in Appendix A can be used to identify the percentage of CCSD students obtaining a perfect score on the BSAP tests. These percentages are as follows:

Grade	Reading	<u>Mathematics</u>	Writing
1	18.9	19.0	
2	15.0	21.4	
3	8.6	11.2	
6	3.4	1.5	15.9
3	5.6	0.3	18.1

.4 2(

Table 1

Basic Skills Assessment Program, Spring 1987
Charleston County
Percent Meeting Standard and Median Scale Score

Subtest	Grade 1	Grade 2	Grade 3	Grade 6	Grade 8
READING % above standard Median	82.2 805	87.5 806	93.6 799	83.8 772	78.7 761
MATHEMATICS % above standard Median	84.2 778	89.2 804	87.6 796	74.5 742	69.6 736
WRITING % above standard Median				77.4 3.0	73.1 3.0

Comparisons With the State Results

Comparisons of CCSD students' performance on the BSAP with the performance of other students in Scuth Carolina can be made by comparing the percentages of students scoring above standard and by comparing the median scale scores. Table 2 reports the percentages of CCSD and SC students scoring above standard on each BSAP subtest, as well as median scale scores for all grade level and subject area combinations. Figures 1-5 illustrate differences in the percentages of CCSD and SC students meeting standards on each BSAP subtest.

At grade 1 a greater percentage of South Carolina students than CCSD students met standards in Reading and Mathematics. The percentages of Charleston County pupils meeting standards at grades 2, 3, and 6 were higher than the percentages of South Carolina pupils meeting standards for all subject areas. A greater percentage of CCSD eighth grade students met standards in Reading and hathematics compared to students statewide; however, a slightly lower percentage of CCSD eighth graders met the Writing standards than their South Carolina peers.

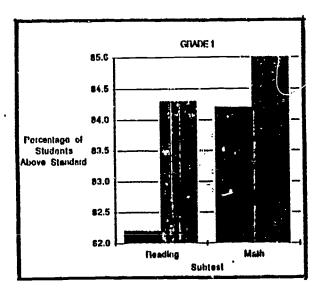
Median scale scores for CCSD pupils in grade 1 were lower than for SC pupils. CCSD median scale scores for grade 2 in both Reading and Mathematics were lower than the SC scale scores even though a larger percentage of CCSD students met standards in grade 2 than South Carolina students. This indicates that more CCSD second grade students met standards, but their scale scores were not as high as students statewide. In grades 3, 6, and 8, CCSD students obtained higher scale scores than South Carolina students in Reading and Mathematics. The median raw scores for writing were the same for Charleston County pupils and South Carolina pupils in grades 6 and 8.

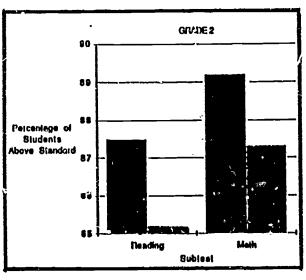
Historical Trends

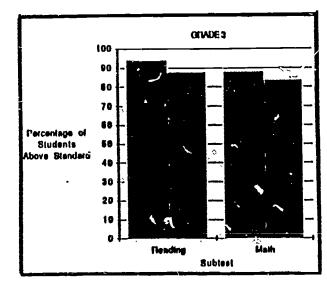
Table 3 reports the percentages of students meeting BSAP standards for the years 1981-1987 for Reading and Mathematics and for the years 1983-1987 for Writing. As illustrated in Table 3 and Figures 6-10, the percentages of students meeting standards in Reading and Mathematics have steadily increased from 1981 through 1987 for all grade levels and subject area combinations. In Reading, six-year differences in percentages meeting standards for grades 1, 2, 3, 6 and 8 were +7, +20, +22, +29, and +31, respectively. In Mathematics, six-year differences in percentages meeting standards for the same grades were +13, +14, +22, +29, and +34, respectively. The greatest changes over the six year period were found at grades 6 and 8.

Although the percentages of students meeting the Writing standards are higher in 1987 compared to 1983, there have been fluctuations in the pattern of change. Scores increased for sixth graders from 1983 to 1986, followed by a slight downward trend in 1987. Eighth grade scores increased during the first three years of the program, decreased slightly in 1986, and continued to decrease in 1987.

Table 2

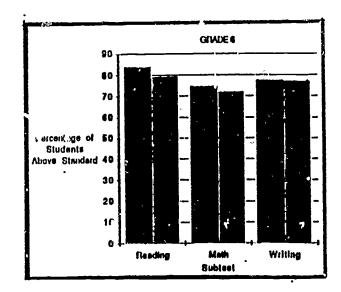

Basic Skills Assessment Program, Spring 1987
Charleston County and South Carolina
Percent Meeding Standard and Median Scale Score


Subtest		Grade 1	Grade 2	Grade 3	Grade 6	Grade 8
READING % above standard Median	CCSD	82.2 805	87.5 806	93.6 799	83.8 772	78.7 761
% above standard	SC	84.3 823	85.2 807	87.2 791	79.1 765	71.5 749
MATHEMATICS % above standard Median	CCSD	84.2 778	89 . 2 804	87.6 796	74.5 742	69.6 736
% above standard Median	SC	85.0 788	87.3 809	83.1 78 8	71.7 749	69.0 741
WRITING % above standard Median	CCSD				77.4 3.0	73.1 3.0
% above standard Median	SC			·	76.8 3.0	75.2 3.0



Figures 1-5

SC Basic Skills Assessment Program Percentage of Charleston County and South Carolina Pupils Scoring Above Standard, 1987



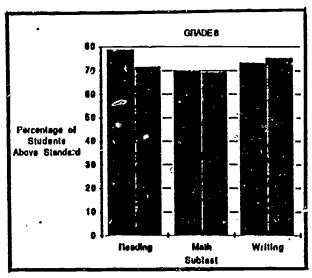

18

Figure 1. DISAP DESULTS FOR CHIVA ESTON COUNTY AND SOUTH CARDINA

Figure 2. IIISAP DESULTS FOR CHARLESTON COUNTY AND SOUTH CATALANA

Figure 3. BSAP DESIRTS FOR CHARLESTON COUNTY AND SOUTH CANOLINA

25

Table 3

SOUTH CARCINA BASIC SKILLS ASSESSMENT PROGRAM
Percentages of Students Meeting Standards, 1981 - 1987
in Charleston County and South Carolina

SUBJECT	YEAR		GRADE 1	GRADE 2	GRADE 3	GR ייE 6	GRADE 8
READING	1987	CCSD SC	82 84	88 85	94 87	84 79	79 72
	1985	CCSD	80 82	82 81	. 91 87	79 72	78 71
	1985	CCSD SC	80 82	83 79	90 84	73 67	71 64
	1984	CCSD SC	80 80	80 76	84 77	72 65	59 60
	1983	CCSD SC	76 75	7 <i>%</i> 70	83 76	64 61	57 56
	1982	CCSD SC	77 72	75 69	72 · 69	62 62	52 52
	1981	CCSD SC	75 70	68 62	72 67	55 55	48 51
матн	1987	CCSD	84 85	89 87	.38 83	75 72	70 69
	1986	CCSD SC	84 84	87 86	84 8บ	70 66	64 60
	1985	CCSD SC	83 84	86 86	84 79	65 61	57 57
	1984	CCSD SC	81 81	85 82	84 79	60 57	50 54
	1983	CCSD SC	74 76	76 76	77 74	51 56	38 42
•	1982	CCSD SC	71 68	67 64	68 68	47 51	34 41
	1981	CCSD SC	71 68	75 69	66 61	46 47	36 43
WRITING	1987	CCSD SC			•	77 77	73 75
	1986	CCSD SC				79 78	78 77
	1985	CCSD				74 76	79 77
	1984					73 72	72 72
) IC	1983				26	67 69	66 65

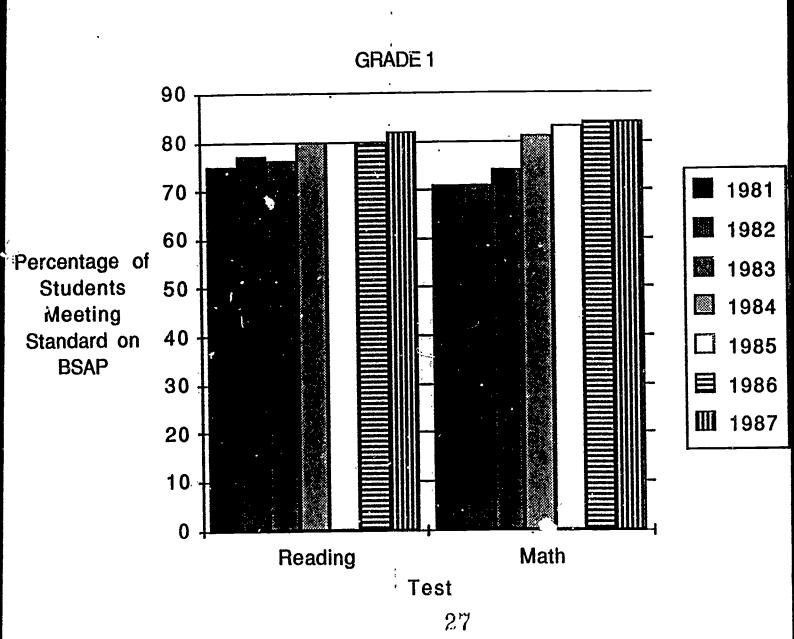


Figure 6. RESULTS FOR CHARLESTON COUNTY SCHOOL DISTRICT

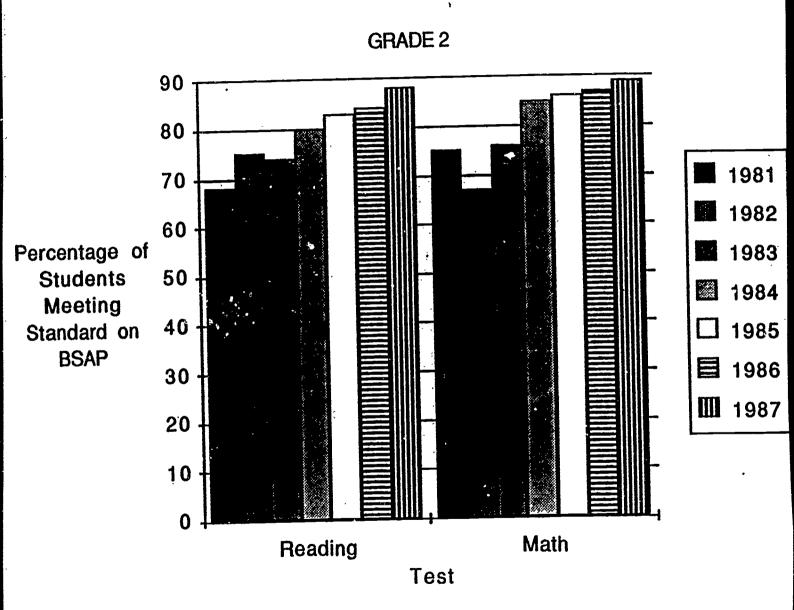


Figure 7. RESULTS FOR CHARLESTON COUNTY SCHOOL DISTRICT

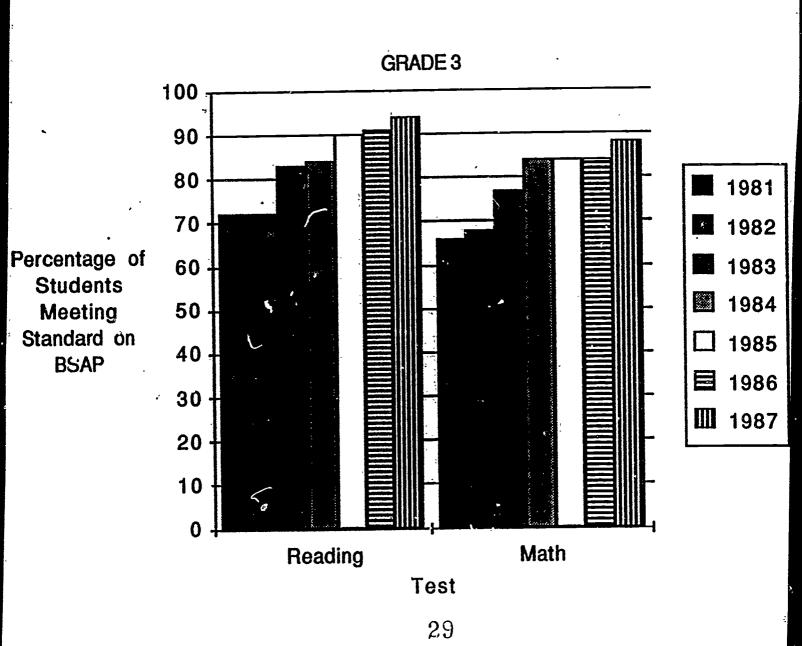


Figure 8. RESULTS FOR CHARLESTON COUNTY SCHOOL DISTRICT

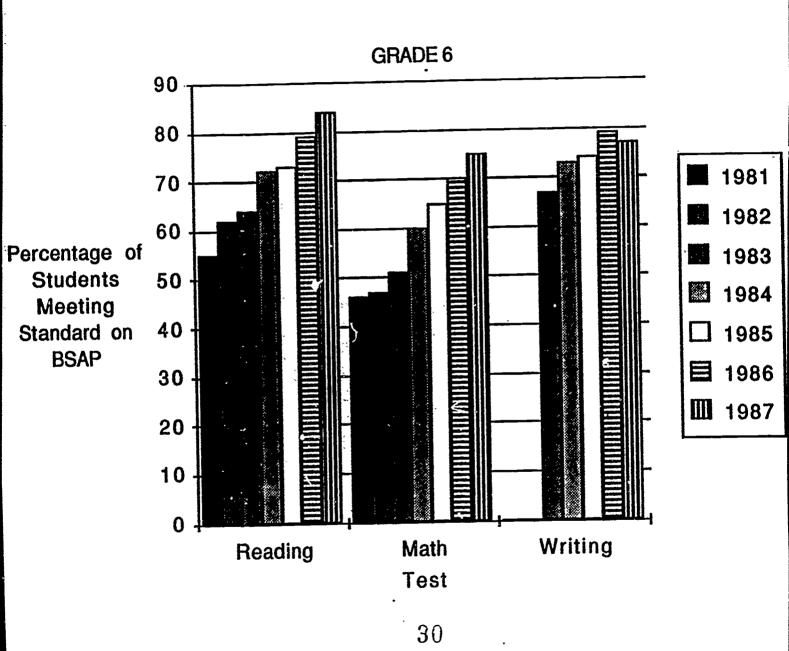


Figure 9. RESULTS FOR CHARLESTON COUNTY SCHOOL DISTRICT

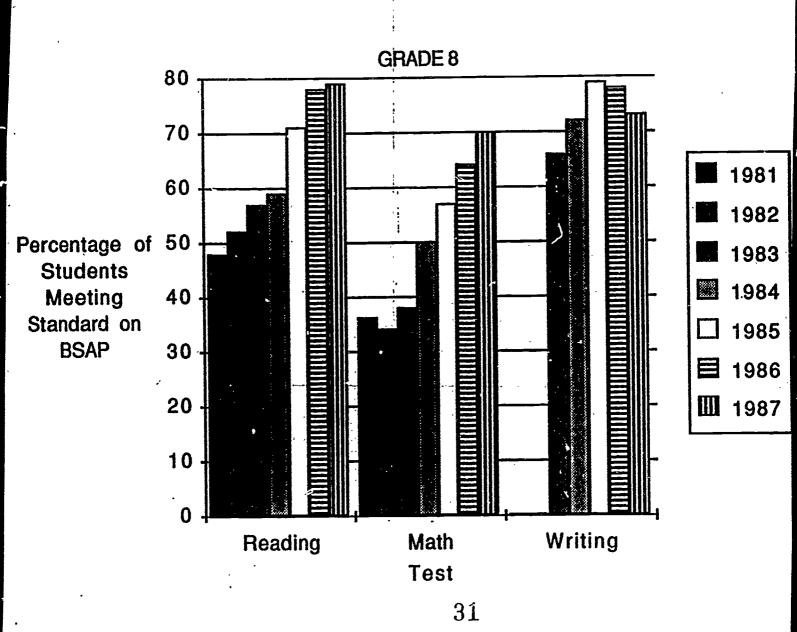


Figure 10. RESULTS FOR CHARLESTON COUNTY SCHOOL DISTRICT

Tables 4A - 4C summarize 1985-1987 data for each test content area by reporting percentages above standard and median scores.

Statewide trends in the percentage of students meeting standards are similar to those demonstrated by Charleston County pupils. Generally, improvements statewide from 1981 to 1987 were not as great as those demonstrated by CCSD at all grade levels except grade 1 where the increases were greater in South Carolina. Fluctuations in Writing scores were also apparent in the statewide scores.

Appendix B reports the percentages of students at individual schools meeting BSAP standards in Reading and Mathematics for the years 1981-1987, and for Writing for the years 1983-1987. Appendix C lists mobility indices, percentages of students on free lunch, and percentages of handicapped students for individual schools.

Comparison of Readiness Scores and BSAP Scores for CCSD First Graders. Appendix D reports Fall 1986 readiness test scores and Spring 1987 BSAP scores for first graders enrolled in CCSD schools for the 1986-87 school year and present for both testing sessions. The number of first graders who took both the CSAB and BSAP tests is reported for each school, followed by the percentage scoring 88 or above on the CSAB and the percentages meeting BSAP Reading and Mathematics standards.

Analyses of prior years' test data have demonstrated a relationship between performance on the CSAB and BSAP such that students who score above standard on the CSAB at the beginning of first grade tend to score above standard on the BSAP tests administered at the end of the year. Thus, percentages of students (taking both tests) meeting standards on the CSAB and BSAP should be similar for a particular school. A grater percentage of students meeting BSAP standards might indicate that instruction had been effective in first grade. However, a difference of 25 percentage points between CSAB standards and BSAP standards would be unusual and should be investigated further.

Among the groups of students taking both tests in 42 CCSD elementary schools during the 1986-87 school year, 31 schools showed an increase of 5 or more points in the percentage of students meeting BSAP Reading standards over the percentage meeting CSAB standards. Thirty-three schools displayed an increase of 5 o more percentage points in Math. One school (Memminger) showed a 10-point loss in Reading, and one school (Berry) showed a 10-point loss in Math. One school, Jane Edwards, showed an unusual gain of more than 25 points in the percentage of students meeting BSAP standards based on their CSAB scores. Similarly, Blaney displayed an unusually high gain in Mathematics.

Please note that while this analysis is appropriate for group data, individual students! CSAB scores should not be viewed as predictive of BSAP scores.

Table 4A

Basic Skills Assessment Program Charleston County School District Percent Above Standard and Median Scale Scores

READING

GRADE	% Above Standard	Median Scale Score		
. -	1985 1986 1987	1985 1986 1987		
1	80.4 80.0 82.2	785 783 805		
2	82.6 84.3 87.5	784 792 806		
3	89.5 91.4 93.6	787 799 799		
6	72.5 78.9 83.8	741 759 772		
8	71.4_78.0_78.7	740 759 761		

- The percentage of Charleston County pupils scoring above standard in Reading increased steadily from 1985 - 1987 for all grade levels except grade 1. First grade scores dipped slightly in 1986 then increased 2.2 percentage points from 1986 to 1987.
- Median scale scores for Charleston County pupils increased each year from 1985 - 1987 with two exceptions. The third grade median remained the same from 1985 to 1987 despite the fact that a greater percentage of students met standards. First grade medians dropped from 1985 to 1986, and rose in 1987.
- 3. The fact that a higher percentage of third graders met standards than students at other grade levels should not be interpreted to mean that third grade instruction is more effective than instruction at other grade levels. Test difficulty is not comparable across grade levels. While percentages of third graders meeting standards rose from 1986 to 1987, the median scale score did not. This may indicate that more students met standards with lower scores.

Table 4B

Basic Skills Assessment Program Charleston County School District Percent Above Standard and Median Scale Scores

MATHEMATICS

% Above Standard	Median Scale Score
1985 1986 1987	1985 1986 1987
83.0 84.3 84.2	791 79 8 778
86.4 87.0 89.2	789 794 804.
83.6 83.6 87.6	772 780 796
65.1 69.6 74.5	721 731 742
57.0 64.1 69.6	708 722 736
	1985 1986 1987 83.0 84.3 84.2 86.4 87.0 89.2 83.6 83.6 87.6 65.1 69.6 74.5

- The percentage of Charleston County pupils scoring above standard in Math increased steadily from 1985 - 1987 for all grade levels except grade 1. First grade percentages decreased by .1 from 1986 to 1987.
- Median scale scores for Charleston County pupils in Math increased each year from 1985 - 1987 for all grades except grade I where the median decreased from 1986 to 1987.
- 3. The fact that a higher percentage of second graders met standard than students at other grade levels should not be interpreted to mean that second grade instruction is more effective than instruction at other grade levels. Test difficulty is not comparable across grade levels.

Table 4C

Basic Skills Assessment Program Charleston County School District Percent Above Standard and Median Score

WRITING

GRADE	% Above Standard	Median Score
	1985 1986 1987	1985 1986 1987
6	73.5 79.0 77.4	2.9 3.1 3.0
8	78.7 77.5 73.1	2.9 3.0 3.0

- 1. The percentage of Charleston County sixth graders scoring above standard in Writing increased from 1985 1987; however, the percentage dropped from 1986 to 1987. The percentage of eighth graders scoring above the writing standard decreased steadily from 1985 1987.
- Median scores for Charleston County sixth graders in Writing followed the same pattern as the percentage above standard: scores increased from 1985 to 1987, and decreased from 1986 to 1987. Median scores for eighth graders increased from 1985 to 1987 and stayed the same from 1986 to 1987, despite a decrease in the percent meeting standard. These data, coupled with a comparison of frequency data in Appendix A to last year's data, indicate that a smaller percentage of students are scoring 1.5 or below and 3 and above, but proportionately more students are scoring 2. Hence the "below standard" students are scoring higher (and presumably writing better) than in the past.

Demographic Analysis

Table 5 reports percentages of CCSD students scoring above standard in 1986 and 1987 on the Reading, Mathematics, and Writing tests for demographic categories. Table 6 compares percentages of Charleston County students scoring above standard in 1987 to percentages of South Carolina students scoring above standard. Demographic variables include gender (male, female), ethnicity (white, black), and income level, defined by lunch program participation (no free/reduced lunch, free/reduced lunch). Approximate numbers of students tested appear in the right-most columns. Note that relatively small numbers of students on reduced-price lunch are reported; care must therefore be used in interpreting data regarding this subgroup. In the discussion below, data on students receiving reduced-price lunches have been excluded. The following sections summarize the demographic data:

Gender

- 1. For grades 1, 2, and 3, in 1987 more than 80% of male and female subgroups scored above the state standard in all areas with the exception of males in grade 1 where 79.1% of the males scored above the state standard in Reading. For grades 6 and 8 more than 70% of male and female subgroup populations scored above state standards in all areas with two exceptions. The exceptions were grade 8 males on the Mathematics subtest and grade 8 males on the Writing subtest.
- 2. A greater proportion of females, compared to males, scored above the state standard on Reading, Mathematics, and Writing subtests for all grade and subject area combinations except grade 3 Mathematics where females scored .7 percentage points below males.
- 3. Percentages of CCSD males and females scoring above the standard in Reading and Mathematics in 1987 were greater than or equal to percentages for 1986 with two exceptions. Grade 1 females showed a decline of .2 percentage points in Mathematics. Grade 8 females showed a decline of 1.1 percentage points in Reading. Percentages of CCSD males and females scoring above the state standard in Writing declined in both sixth and eighth grades.
- 4. CCSD students displayed greater percentages above standard than their SC peers with three exceptions. Proportionately fewer CCSD first grade males and females scored above state standards than other SC students. Grade 6 CCSD females lagged behind females statewide in Writing by .3 percentage points. Grade 8 males and females scored below their South Carolina counterparts in Writing.

Ethnicity

1. More than 80% of the white students scored above the state standard in 1987 in all subject areas and for all grade levels tested. More than 80% of the black students scored above the state standard only in grade 2 and grade 3 Reading and Mathematics.

- 2. A higher proportion of white students, compared to black students, scored above the state standard in 1987 in Reading, Mathematics, and Writing at all-grade levels tested. Differences between white students and black students range from 5.4 points (grade 3 Reading) to 28.4 points (grade 8 Writing). The subtest showing the greatest difference was Writing (averaging 25.4 points). The subtest showing the smallest difference was Reading (averaging 11.2 points). Differences between white students and black students were smallest at grade 3 and greatest at grade 8. For grades 1, 2, and 3 average differences between the achievement levels of black and white students were 8-12 points. For grades 6 and 8 average differences between the percentages of black and white students meeting standards ranged between 19 and 22 points.
- The percentages of white students and black students scoring above the state standard on Reading and Mathematics subtests were greater in 1987 compared to 1986 with two exceptions. A smaller percentage of black first graders met the Mathematics standard in 1987 than in 1986. A smaller percentage of white students in grade 8 scored above the Reading standard in 1987 than in 1986. Percentages of white students and black students scoring above state standards in Writing in 1987 were lower than percentages for 1986. In general, however, Writing scores were lower in 1987 than they were in 1986.
- 4. With one exception, greater percentages of CCSD white and black students met standards compared to students statewide. The one exception was for first grade black pupils in Reading. Positive (CCSD-SC) differences ranged from .1 percentage points for first grade Reading for white pupils to 13.2 points for black eighth graders.

Income

- 1. Data on students in grades 1, 2, and 3 categorized by lunch program participation indicate that more than 90% of the students at these grade levels not participating in the lunch program scored above state standards in Reading and Mathematics. More than 74% of the students on free lunch in grades 1, 2, and 3 scored above the state standard for Reading and Mathematics. Data on students in grades 6 and 8 categorized by lunch program participation indicate that more than 79% of the students at these grade levels not participating in the lunch program scored above the state standard on Reading, Mathematics, and Writing subtests. More than 55% of the students on free lunch in grades 6 and 8 scored above the state standard.
- 2. A higher proportion of students not being served by the free lunch program met state standards than students served with the free lunch program for all areas and grade levels. Differences between students not participating in the lunch program and students on free lunch range from 6.2 percentage points (grade 3 Reading) to 28.6 percentage points (grade 8 Writing). Differences were greatest for the Writing subtest (averaging 26.6 points) and least for Reading (averaging 14.98 points). Differences between the two groups of students were smallest at grade 3 and greatest at grade 8.

- 3. Students in both subgroup categories made improvements in Reading and Mathematics from 1986 to 1987 with the exception of grade 1 Mathematics scores for students not participating in the lunch program. A decline in Writing scores resulted in smaller percentages of students in both categories meeting Writing standards in 1987 than in 1986.
- 4. Greater percentages of CCSD pupils than SC pupils in both lunch groups scored above state standards for all subtests and grade level combinations with few exceptions. The exceptions were grade 1 Reading and grade 8 Writing for both lunch groups and grade 1 Mathematics for students not participating in the lunch program.

District Demographic Reports are reprinted in Appendix E. In addition to the demographic variables of gender, ethnicity and income level, the reports in Appendix E include data for handicapped, gifted and talented, and repeater groups.

Table 5
SC BASIC SKILLS ASSESSMENT PROGRAM Charleston County School District
Percentages of Students Above Standard on the BSAP
Demographic Report, 1986 - 1987

		nemograp							
		REAL		MATHEM		WRIT			Tested
		1986	1987	1986	1987	1986	1987	1986	1987
0 . 1	W-1-	76.5	79.1	82.9	82.9			2185	2240
Grade 1	Male Female	83.8	85.6	85.9	83.7			1945	2115
	Lemaie	03.0	03.0	03.7	03.7			27 .0	
	White	87.2	89.3	89.6	91.2			1978	1792
	Black	74.7	77.0	80.6	79.0			7.400	2502
•		,							
•	No F/R Lunch	88.6	91.1	91.4	90.7			1766	1935
•	Free Lunch	72.3	74.1	78.1	78.2			2098	2112
	Reduced Lunch	83.3	82.3	87.0	84.9			269	305
	W-1-	80.4	84.6	87.1	88.6			1731	1820
Grade 2	Male Female	88.5	90.6	87.1	89.9			1664	1767
	remate	00.5	30.0	07.1	0,1,1				2.0.
	White	89.3	93.0	92.8	94.7			1423	1502
	Black	80.4	83.3	82.5	85.2			1920	2035
	No F/R Lunch	89.1	94.5	92.0	94.6			1524	1682
	Free Lunch	79.0	80.8	82.5	83.6			1625	1616
-	Reduced Lunch	90.0	85.5	86.7	89.8			241	283
Grade 3	Male	89.4	91.9	82.8	87.9	as Amagas		1620	1665
Grade 3	raie Female	93.4	95.4	84.5	37.2			1582	1622
	remare	73.4	,,,,	04.5	0,,_				
•	White	95.7	96.7	91.1	93.7			1391	1373
	Black	88.1	91.3	77.7	82.9			1775	1870
	No F/R Lunch	95.7	96.8	90.7	93.1			1500	1546
•	Free Lunch	86.4	90.6	76.5	81.6			1454	1472
!	Reduced Lunch	94.2	92.0	81.9	88.2			243	263
	Maddeed Dailes								
Grade 6	Male	76.6	80.4	68.4	73.3	73.1	71.8	1517	1529
Grade o	Female	81.5	87.7	70.9	75.9	85.5	83.5	1417	1397
	White	90.3	90.8	81.4	87.0	91.3	90.3	1261	1213
•	Black	70.1	78.9	60.2	65.3	69.4	67.9	1627	1662
							00.0	1/21	1501
	No F/R Lunch	89.2	90.8	79.4	83.8	90.2	88.0	1431	1501
	Free Lunch	67.3	74.9	58.4	62.9	66.2	63.4	1263	1197 226
	Reduced Lunch	78.1	85.8	70.5	75.1	79.3	81.0	237	220
Grade 8	Male	73.5	76.2	64.4	69.1	70.1	67.2	1507	1515
Grade o	Female	82.7	81.6	63.8	70.1	85.1	79.8	1476	1378
	- const	··	30						· ·
_	White	88.0	87.7	79.5	81.5	91.1	88.5	1396	1286
•	Black	68.6	71.0	49.5	59.5	65.0	60.1	1545	1545
:									1505
	No F/R Lunch	87.6		76.2	79.9	87.6	84.8	1654	1591
3	Free Lunch	64.3	65.8	47.1	55.6	62.9	56.2	1127	1086
ERĪC	Reduced Lunch	74.6	75.3	57.7	63.5	77.0	71.8	201	220
Full Text Provided by ERIC				32 30	}				

Table 6 SC BASIC SKILLS ASSESSMENT PROGRAM Charleston County and South Carolina
Percentages of Students Above Standard on the BSAP
Demographic Report, 1987

		Demog	raphic .	Report,	1381					
		READ:	ING SC	MATHEM	ATICS SC	WRITI CCSD	ING SC	Number CCSD	Tested SC	
										
Grade 1	Male Female	79.1 85.6	81.3 87.6	82.9 85.7	84.1 86.0			2240 2115	28182 25940	
	White Black	89.3 77.0	89.2 78.2	91.2 79.0	90.2 78.5	•		1792 2502	29517 24095	
		91.1	91.8	90.7	91.4			1935	26610	
	No F/R Lunch Free Lunch	74.1	75.7	78.2	77.7			2112	23151	
	Reduced Lunch	82.3	84.4	84.9	84.5			305 	4370	
Grade 2	Male	84.6	81.6	88.6	86.4			1820	24059	
Grade 2	Female	90.6	89.1	89.9	88.4			1767	22969	
	White	93.0	90.4	94.7	92.7			1502	26536	
	Black	83.3	78.3	85.2	80.1			2035	19990	
	Mo F/R Lunch	94.5	92.3	94.6	93.2			1682	24471	
	Free Lunch	80.8	76.0	83.6	79.8			1616	18405	
	Reduced Lunch	85.5	84.5	89.8	86.1			283	4131	
Ci- 3	Male	91.9	83.5	87.9	82.6			1665	23060	
Grade 3	Female	95.4	91.1	87.2	83.7			1622	21999	
	White	96.7	91.7	93.7	89.3			1373	25539	
	Black	91.3	80.9	82.9	74.6			1870	19101	
	No F/R Lunch	96.8	93.2	93.1	90.0			1546	23588	
	Free Lunch	90.6	79.3	81.6	74.2			1472	17618	
	Reduced Lunch	92.0	86.6	88.2	81.9	·		263	3880	
Grade 6	Male	80.4	75.1	73.3	70.6	71.8	70.0	1529	22107	
Grade o	Female	87.7	83.2	75.9	72.8	83.5	83.8	1397	21443	
	White	90.8	86.3	87.0	81.9	90.3	86.0	1213		
	Black	78.9	68.6	i5.3	56.7	67.9	63.4	1662	17662	
	No F/R Lunch	90.8	87.5	83.8	82.2	88.0	86.4	1501		
	Free Lunch	74.9	66.1	62.9	55.6	63.4	61.9	1197		
*	Reduced Lunch	85.8	77.6	75.1	68.8	81.0	75.1	226 	3667	
Grade 8	Male	76.2	68.1	69.1	68.6	67.2	68.5	1515		
Grade 0	Female	81.6	75.0	70.1	6 ⁴ .5	79.8	82.0	1378		
	White	87.7	80.3	81.5	78.2	88.5	85.6	1286		
	Black	71.0	57.8	59.5	54.8	60.1	59.1	1545		
~	No F/R Lunch	87.9	81.2	79.9	78.2	84.8	84.9	1591		
EDIC	Free Lunch	65.8	53.5	55.6	52.0	56.2	56.9	1086		
Full Text Provided by ERIC	Reduced Lunch	75.3	66.14	0 63.5	64.7	71.8	70.6	220	. 3334	٠

BSAP OBJECTIVES ANALYSIS AND ITEM RESPONSE RESULTS

Objectives Analysis, 1987

Table 7 reports percentages of students at each grade level needing improvement on each Reading and Mathematics objective and percentages of students scoring below standard in Writing at grades 6 and 8 needing improvement on each Writing objective. Percentages are reported for both CCSD and SC for the Spring, 1987 test administration.

The percentage of students needing improvement on individual objectives varies across grade levels such that there are no patterns reflecting general weaknesses among the grades tested. Table 7, for example, shows that the percentage of CCSD students needing improvement in Inference ranges from a low of 7% at grade 3 to a high of 25% at grade 8. There is a general indication that greater percentages of students at grades 6 and 8 need improvement on the objectives. However, this trend can be explained by lower average scores achieved by middle school students compared with elementary school students. In reviewing Table 7, the reader should keep in mind that the BSAP objectives vary in difficulty, i.e., some objectives are by their nature, more difficult than others.

Skills strengths and weaknesses can be viewed from two perspectives. First, one may identify "Absolute" strengths and weaknesses by locating the objective(s) mastered by the highest percentage of students (strength[s]) and the objectives on which the greatest percentage of students needed improvement (weakness[es]). Instructional strategies, which focus on skills weaknesses identified in this manner, may improve student performance on the entire test and result in higher BSAP scores.

The second approach identifies strengths and weaknesses "Relative" to the difficulty of the individual objectives. In this method, difficulty levels of objectives may be established by the performance of students statewide. The percentages of statewide students mastering objectives or "needing improvement" become standards to which the performance of CCSD students can be compared to determine relative strengths or weaknesses.

These two methods of identifying strengths and weaknesses might not bear the same result; however, each serves a purpose. For example, utilizing CCSD data from Table 7, Operations appears to be the most problematic objective for first and second grade students. However, when these data are compared to SC data, smaller percentages of CCSD pupils need improvement with respect to Operations than SC pupils.

Tables 8A-8C list skills strengths and weaknesses based on the performance of CCSD students on each objective ("Absolute") and the performance of CCSD students as compared to SC students ("Relative"). "Absolute Strengths" identify the one or two objectives which the greatest percentage of CCSD students mastered. "Absolute Weaknesses" identify one or two objectives on which the greatest percentage of CCSD students need improvement. "Relative" strengths and weaknesses are determined by the

degree of discrepancy between the percentages of CCSD and SC students meeting standards on objectives. Only the greatest one or two strengths or weaknesses are listed for each objective. The degree of strength or weakness is denoted by asterisks. A single asterisk (*) indicates a difference of 1-2 percentage points; a double asterisk (**) indicates a difference of .3-5 percentage points; and a triple asterisk (***) indicates a difference of 6 or more percentage points.

In READING (Table 8A), Decoding and Word Meaning was a "Relative" strength at four of the five grade levels tested. "Absolute" strengths varied across grade levels. Students at grades 2, 3, 6, and 8 showed no weaknesses relative to the performance of students stacewide, while first graders showed minor "Relative" weaknesses in four of the six objectives. Details was the most problematic objective for first and second graders from the absolute perspective. "Absolute" weaknesses varied across other objectives for students in grades 3, 6, and 8.

In general, the same strength and weakness patterns were demonstrated by all students tested and by students scoring below standard. The most striking exceptions include: a) "below standard" students in grade 3 showed greater "Absolute" weaknesses in Details and Inference than in Main Idea, as identified for "all students," (b) sixth grade "below standard" students showed a "Relative" weakness in Analysis of Literature when compared to students statewide, and (c) eighth grade "below standard" pupils displayed "Relative" weaknesses in Details*, Main Idea**, Inference**, and Analysis of Literature**. Students scoring below standard must be remediated. Many of them are included in remedial programs (EIA, Chapter I), and this information may benefit instructional planning in those programs.

MATHEMATICS (Table 8B) illustrates possible "apparent" contradictions presented by these kinds of analyses. Objectives which appear as "Absolute" weaknesses at some grade levels, also appear as "Relative" strengths at the same grade levels. At both first and second grades, for example, Operations is designated as the "Absolute" weakness and as the "Relative" strength. Apparent contradictions, however, illustrate how this type of analysis puts data into perspective.

Operations was a "Relative" strength in both first and second grades, while Concepts was the "Absolute" strength at those grade levels. Geometry was the strength identified by both techniques at grade 3. At grade 6, Concepts appeared as a strength when both methods were used. At grade 8, different objectives were identified by the different methods.

Measurement was identified as a "Relative" weakness in three of five grade levels tested (grades 2, 6, and 8). Operations was designated as the "Absolute" weakness at grades 1 and 2. At grade 3, Problem Solving was identified as a weakness by both methods, as was Measurement at grade 6, and Concepts at grade 8.

Mathematics results were generally the same for below standard students and all students tested. The most salient change was that Concepts appeared as both an "Absolute" and "Relative" strength in first and second grade among students scoring below standard.

4.2

Objective data for WRITING (Table 8C) are only available for students who did not meet Writing standards on the overall test. Writing results indicate that Composition and Word Usage were the "Absolute" strength and weakness, respectively, in both grade levels tested, while Sentence Formation was the "Relative" weakness.

Appendix F includes District Summary Reports for each grade tested reporting percentages of CCSD students meeting standards and needing improvement on each objective as well as the Total Test for Reading, Math, and Writing. Percentages are given for All Students, Students Who Met Standards, and Students Who Did Not Meet Standards. District Summary Reports also provide summary statistics (mean, median, highest score, lowest score) for CCSD students.

Appendix G includes the percentage of students needing improvement on each objective for each CCSD school, as well as percentages meeting standards, means, medians and numbers of students tested.

Objectives Analysis, 1985-1987

For instructional planning, analyses of objective performance across several years is beneficial in distinguishing patterns from yearly fluctuations. Since the corposition of the BSAP test forms varies from year to year, analyses of objective performance over time can be misleading. This shortcoming can be modulated by making a comparison of the "Relative" weaknesses for several years, since "Relative" weaknesses should not be as subject to fluctuations in test content as "Absolute" weaknesses. Tables 9A-9C list "Relative" weaknesses in each subject area tested for the years 1985-1987.

READING data indicate that Details and Inference have been weaknesses in first grade Reading in 1985, 1986, and 1987; but Decoding and Word Meaning is the only objective not cited as a weakness in first grade Reading during this period. In all other grade levels tested, CCSD pupils outscored SC pupils on all Reading objectives.

In MATHEMATICS, patterns were not as visible. Geometry and Measurement appeared consistently as weaknesses in grade 2; Problem Solving was a clear weakness in grade 3; and Concepts was an eighth grade weakness in two of the three testing periods.

WRITING results indicate that Sentence Formation was a weakness for both grade levels tested in 1985 and 1987. CCSD students displayed no relative weakness in 1986.

Item Analysis

Item data which could be used for further analyses of skills strengths and weaknesses are given in Appendix H. The Item Response Summaries provide a description of each item on the BSAP tests, the percentage of students in the district answering the item correctly, the percentage of students in the state answering the item correctly, and the difference in state and district percentages.

The Item Response Summary reports data for individual items and should be used cautiously since a sample of one item does not provide adequate information for generalization to a subskill. Item difficulty is not constant across items.

When reviewing Item Response data, "Relative" and "Absolute" approaches can also be used. "Relative" strengths and weaknesses can be identified by the positive District-State differences (strengths) or negative District-State differences (weaknesses). "Relative" comparisons should be tempered by "Absolute" data such as the District or State Percent Correct. For example, the first item on the first grade test (1-DW 1 Identify a picture which represents a grade 1 sight word) might appear to be a weakness since a negative number appears in the difference column (-.1). However, 98.1% of the students in CCSD and 98.2% of the students statewide answered that item correctly. Similarly, Item 4-GE 2, Determine the Congruent Angles Using Given Angle Measures, might appear as a strength with a +1.0 District-State difference on the eighth grade test. However, only 39.5% of the students in Charleston and 38.5% of the students in the state answered correctly.

Table 7

SC BASIC SKILLS ASSESSMENT PROGRAM Charleston County School District

Percentage of Students Needing Improvement on Each BSAP Skill, 1987

	Grade									
	1		2		3		6			8
Skill	CCSD	sc	CCSD	SC	CCSD	SC	CCSD	sc	CCSD	sc
READING*										
Decoding/ Word Meaning	9	10	11	14	6	13	21	25	20	25
Details	21	19	15	18	7	13	17	21	9	11
Main Idea	15	13	7	9	8	13	10	12	21	23
Reference Usage	10	8	13	14	6	10	9	12	19	26
Inference	14	12	11	14	7	12	14	17	25	29
Analysis of Literature	19	17	11	13	7	10	22	23	21	24
MATHEMATICS*				•						ا
Concepts	11	10	3	5	16	17	14	16	39	36
Operations	22	23	21	24	7	10	25	27	18	18 .
Measurement	12	11	11	9	21	22	30	28	31	27
Geometry	12	1,0	6	6	2	7	28	27	21	22
Problem Solving	12	11	9	9	24	23	21	24	31	32
WRITING**										
Mechanics							53	60	65	65
Word Usage							75	75	83	86
Sentence Formation							66	60	68	63
Composition							9	9	6	9

^{*}The percentages for reading and mathematics include students who met the standard but viose test performance revealed a need for assistance on one or more skills.

^{**}The percentages for writing include only those students who were below the standard on the Writing test since they were the only students whose papers were scored fo 'eficiencies.

Table 8A SC Basic Skills Assessment Program Charleston County School District Analysis of Objective Data for Reading

Grade	Stren Absolute	gths Relati ve	Weakne Absolutz	esses Relative
1 .	Decoding/ Word Meaning	Decoding/Word Meaning*	Details	Details*, Main Idea*, Reference Usage*, Infer- ence*, Analysis of Literature**
2	Main Idea	Decoding/Word Meaning**, Details**, Inference**	Details	NONE
3	Decoding/ Word Meaning, Reference Usage	Decoding/Word Meaning***	Main Idea	NONE
6	Reference Usage	Decoding/Word Meaning**, Details**	Decoding/Word Meaning, Anal of Literature	ysis
8	Details	Reference Usage***	Inference	NONE .

^{*} Differences between CCSD and SC of 1-2 percentage points ** Differences between CCSD and SC of 3-5 percentage points

^{***} Differences between CCSD and SC of 6 or more percentage points

Table 8B SC Basic Skills Assessment Program Charleston County School District Analysis of Objective Data for Mathematics

	Stre	engths	Weakn	esses
Grade	Absolute	Relative	Absolute	Relative
1	Concepts	Operations*	Operations	Geometry*
2	Concepts	Operations**	Operations	Measurement*
3	Geometry	Geometry**	Problem Solving	Problem Solving*
6	Concepts	Concepts*, Problem Solving**	Measurement	Measurement*
8	Operations	Geometry*, Problem Solving*	Concepts	Concepts **, Measurement***

^{*} Differences between CCSD and SC of 1-2 percentage points

^{**} Differences between CCSD and SC of 3-5 percentage points

^{***} Differences between CCSD and SC of 6 or more percentage points

Table 8C SC Basic Skills Assessment Program Charleston County School District Analysis of Objective Data for Writing

Grade	Strengths Absolute Relative		· · · · · · · · · · · · · · · · · · ·		Abasinto Polar	
6	Composition	Mechanics***	Word Usage	Sentence Formation***		
8	Composition	Word Usage**, Composition**	Word Usage	Sentence Formation**		

^{*} Differences between CCSD and SC of 1-2 percentage points ** Differences between CCSD and SC of 3-5 percentage points

^{***} Differences between CC_0 and SC of 6 or more percentage points

Table 9A SC Basic Skills Assessment Program Charleston County School District Relative Weaknesses Among Reading Objectives, 1985-1987

Grade	1985	1986	1987
1	Details*, Main Idea**, Reference Usage*, Inference*	Details**, Inference*, Analysis of Literature	Details*, Main Idea*, Reference Usage*, Inference*, Analysis of Literature
2	NONE	NONE	NONE
_ 3	NONE	NONE	NONE
6	NONE	NONE	NONE
8	NONE	NONE	NONE

^{*} Differences between CCSD and SC of 1-2 percentage points
** Differences between CCSD and SC of 3-5 percentage points

^{***} Differences between CCSD and SC of 6 or more percentage points

Table 9B SC Basic Skills Assessment Program . 1 Charleston County School District Relative Weaknesses Among Mathematics Objectives, 1985-1987

Grade	1985	1986	1987
1	Measurement*, Problem Solving*	Concepts*, Operations*	Geometry*
2	Measurement*, Geometry*	Measurement*, Geometry*	Measurement*
3	Problem Solving*	Problem Solving*	Problem Solving*
6	Geometry*	NONE	Measurement*
8	Concepts**, Problem Solving*	NONE .	Concepts**, Measurement***

^{*} Differences between CCSD and SC of 1-2 percentage points ** Differences between CCSD and SC of 3-5 percentage points

^{***} Differences between CCSD and SC of 6 or more percentage points

Table 9C SC Basic Skills Assessment Program Charlston County School District Relative Weaknesses Among Writing Objectives, 1985-1987

Grade	1985	1986	1987
6	Sentence Formation*	NONE .	Sentence Formation***
8	Word Usage**, Sentence Formation**	NONE	Sentence Formation**

^{*} Differences between CCSD and SC of 1-2 percentage points ** Differences between CCSD and SC of 3-5 percentage points *** Differences between CCSD and SC of 6 or more percentage points

CONCLUSIONS

Spring, 1987 district BSAP data indicate that, in general, achievement levels of students at grades 1, 2, 3, 6, and 8 are higher than the achievement levels of South Carolina students with the exceptions of first grade Reading and Mathematics scores and eighth grade Writing scores.

Reading and Mathematics scores have improved for all grade levels tested during the six year period of BSAP implementation. The greatest changes have occured at the sixth and eighth grades. CCSD performance levels have improved more than SC performance during this time.

Although Writing scores have improved since 1983, they appeared to take a downward trend in 1987. CCSD and SC Writing score patterns mirror one another; however, CCSD score drops were greater than SC drops.

Objective Analysis results suggest that the following skills should be addressed districtwide: Details and Inference (Reading, grade 1); Geometry and Measurement (Mathematics, grade 2); Problem Solving (Mathematics, grade 3); Concepts (Mathematics, grade 8); Sentence Formation (Writing, grades 6 and 8).

APPENDIX A

Frequency Distributions of BSAP Scores

TEST_GRD=1

READ_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
536	1	0.0	1	0.0
552	1	0.0	2	0.0
566	1	0.0	3	0.1
57 8	3 .	0.1	6	0.1
589	4	0.1	10	0.2
600	12	0.3	22	0,5
610	18	0.4	40	0.9
619	20	0.5	60	1.4
628	40	0.9	100	2.3
637	55	1.3	155	3.6
645	59 50	1.4	214	4.9
653	73	1.7	287	6.6
661	89	2.0	376	8.6
669	96	2.2	472	10.8
677	103	2.4	575	13.2
685	8.9	2.0	664	15.2 .
693	110	2.5	774	17.8
701	105	2.4	879	202
709	97	2.2	976	22.4
717	110	2.5	1086	24.9
726	112	2.6	1198	27.5
735	114	2.6	1312	30.1
744	144	3.3	1456	33.4
754	129	3.0	1585	36.4
765	165	3.8	1750	40.1
777	160	3.7	1910	43.8
790	183	4.2	2093	48.0
806	210	4.8	2303	52.8
826	308	7.1	2611	59.9
852	385	8.8	2996	68.7
895	540	12.4	3536	81.1
955	824	18.9	4360	100.0

READ_SS	F-REQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
543	1	0.0	1	0.0
555	3	0.1	4	0.1
565	2	. 0.1	6	0.2
575	4	0.1	10	0.3
584	9	0.3	19	0.5
593	13	0.4	32	0.9
602	18	0.5	50	1.4
610	24	0.7	74	2.1
618	29	0.8	103	2.9
626	25	3.7	128	3.6
634	33	0.9	161	4.5
642	29	0.8	190	5.3
650	38	1.1	228	6.3
658	27	0.8	255	7.1
666	44	1.2	299	8.3
674	54	1.5	353	9.8
683	42	1.2	395	11.0
691	54	1.5	449	12.5
701	54	1.5	503	14.0
710	67	1.9	570	15.9
721	92	2.6	662	18.4 22.1
732	133	3.7	795	26.9
745	173	4.8	968	33.1
759	221	6.2	1189	41.6
776	306	8.5	1495	52.0
797	375	10.4	1870 2377	66.2
825	507	14.1	3054·	85.0
871	677	18.8	3593	100.0
935	539	15.0	2093	100.0

TEST_GRD=3

READ_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
547 557 576 585 594 603 612 620 628 637 646 654 663 672 682 692 702 713 725 737 751 767 785	1 1 1 4 3 2 3 5 9 17 16 14 17 25 41 50 60 81 106 165 241 328 396	0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.5 0.4 0.5 0.8 1.2 1.8 2.5 3.2 5.0 7.3 10.0 12.0	FREQUENCY 1 2 3 7 10 12 15 20 29 46 62 76 93 118 159 209 269 350 456	
807 837 884 951	489 500 434 284	14.8 15.2 13.2 8.6	2075 2575 3009 3293	78.2 91.4 100.0

TEST_GRD=6

READ_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
450	1	0.0	1	0.0
472	ī	0.0	2 5	0.1
490	3	0.1	5	0.2
507	6	0.2	11	0.4
522	4	0.1	15	0.5
536	7	0.2	22	0.8
549	7	0.2	29	1.0
562	8	0.3	37	1.3
574	14	0.5	51	1.7
585	9	0.3	60	2.0
596	12	0.4	72	2.5
607	11	0.4	83	2.8
618	22	0.8	105	3.6
628	19	0.6	124	4.2
638	31	1.1	155	5.3
649	36	1.2	191	6.5
659	52	1.8	243	8.3
669	60	2.0	303	10.3
680	78	2.7	381	13.0
690	. 92	3.1	473	16.1
701	115	3.9	588	20.1
712	122	4.2	710	24.2
724	143	4.9	853	29.1
736	184	6.3	1037	35.4
749	173	5.9	1210	41.3
763	235	8.0	1445	49.3
778	216	7.4	1661	56.7
796	253	8.6	1914	65.3
816	252	8.6	2166	74.0
840	263	9.0	. 2429	82.9
873	223	7.6	2652	90.5 96.6
927	176	6.0	2828	
1002	101	3.4	2929	100.0

TEST_GRD=8

READ_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
404	1	0.0	1	0.0
460	1	0.0	2	0.1
479	1	0.0	3	0.1
[.] 496	· 2	0.1	5	0.2
511	4	0.1	9	0.3
524	7	0.2	16	0.6
536	12	0.4	28	1.0
547	12	0.4	40	1.4
558	17	0.6	57	2.0
568	13	0.4	70	2.4
578	22	0.8	92	3.2
588	19	0.7	111	3.8
597	23	0.8	134	4.6
606	27	0.9	161	5.5
61.5	19	0.7	180	6.2
624	30	1.0	210	7.2
633	38	1.3	248	8.5
642	39	1.3	287	9.9
651	46	1.6	333	11.5
660_	63	2.2	396	13.6 15.6
670	58	2.0	454	
680	83	2.9	537	18.5 21.3
690	82	2.8	619 727	25.0
700	108	3.7	881	30.3
711	154	5.3	1049	36.1
723	168	5.8	1225	42.2
736	176	6.1 6.8	1423	49.0
751	198	7.9	1651	56.9
767	228	9.5	1927	66.4
786	276 283	9.7	. 2210	76.1
810	263 289	10.0	2499	86.1
842	269 241	8.3	2740	94.4
894	163	5.6	2903	100.0
· 968	103	0.0	2000	

MATH_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
MATH_SS 510 522 535 546 558 569 581 592 604 615 628 640 654 668 684 701 722 746 779	2 2 6 7 8 11 13 29 32 37 62 68 85 122 201 275 382 567 750	PERCENT 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.7 0.7 0.8 1.4 1.6 2.0 2.8 4.6 6.3 8.8 13.0 17.2	2 4 10 17 25 36 52 81 113 150 212 280 365 487 688 963 1345 1912 2662	0.0 0.1 0.2 0.4 0.6 0.8 1.2 1.9 2.6 3.4 4.9 6.4 8.4 11.2 15.8 22.1 30.9 43.9 61.1
833 908	870 826	20.0 19.0	3532- 4358	100.0

MATH_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
490	1	0, 0	1	0.0
542	2	0.1	3	0.1
554	2	0.1	. 5 8	0.1
567	3	0.1		0.2
580	4	0.1	12	0.3
592	12	0.3	· 24	0.7
605	6	0.2	30	0.8
619	19	0.5	49	1.4
633	39	1.1	88	2.5
649	59	1.6	. 147	4.1
665	88	2.5	235	6.5
683	152	4.2	387	10.8
703	218	6.1	605	16.8
726	343	9.6	948	26.4
754	447	12.4	1395	38.8
791	603	16.8	1998	55.6
850	826	23.0	2824	78.6
931	767	21.4	3591	100.0

MATH_SS	FREQUENCY	PERCEN:	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
445	1	0.0	1	0.0
485	1	0.0	2	0.1
551	3	0.1	5	√0.2
566		0.1	9	0.3
581	4 8	.0.2	17	0.5
596	13	0.4	30	0.9
610	12	0.4	42	1.3
625	26	0.8	68	2.1
640	35	1.1	103	3.1
655	68	2.1	171	5.2
. 670	88	2.7	259	7.9
686	149	4.5	408	12.4
703	188	5.7	596	18.1
721	198	6.0	794	24.1
740	279	8.5	1073	32.6
762	303	9.2	1376	41.8
787	349	10.6	1725	52.4
817	372	11.3	2097	63.7
857	437	13.3	2534	77.0
922.	390	11.8	2924	88.8
1012	368	11.2	3292	100.0

MATH_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
365	1	0.0	1	0.0
428	2	0.1	3	0.1
487	1 2 1 6	0.0	4	0.1
496		0.2	10	0.3
520	1.	0.4	21	0.7
541	12	0.4	33	1.1
559	16	0.5	49	1.7
576	16	0.5	65	2.2
591	29	1.0	94	3.2
606	42	1.4	136	4.7
621	41	1.4	177	6.1
635	66	2.3	243	8.3
648	83	2.8	326	11.2
661	137	4.7	463	15.8
675	138	4.7	601	20.6
688	144	4.9	745	25.5
702	197	6.7	942	32.2
715	198	6.8	1140	39.0
729	. 244	8_3_	1384	47.3
744	212	7.3	1596	54.6
759	208	7.1	1804	61.7
775	215	7.4	2019	69.1
793	176	6.0	2195	75.1
812	168	5.7	2363	80.8
833	135	4.6	2498	85.5
858	129	4.4	2627	89.9
888	113	3.9	2740	93.7
928	85	2.9	2825	96.6
992	54	1.8	2879	98.5
1082	44	1.5	2923	100.0

MATH_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
472	3	0.1	3	0.1
509	4	0.1	7	0.2
537	21	0.7	28	1.0
560	25	0.9	53	1.8
579	37	1.3	90	3.1
597	53	1.8	143	4.9
613	48	1.7	191	6.6
627	82	2.8	273	9.4
641	92	3.2	365	12.6
654	105	3.6	470	16.2
667	99	3.4	569	19.6
679	158	5.4	727	25.1
691	156	5.4	883	30.4
703	169	5.8	1052	36.3
715	186	6.4	1238	42.7
727	162	5.6	1400	48.3
739	195	6.7	1595	55.0
752	170	5.9	1765	60.8
765	. 177	6.1_{-}	1942	66.9
778	194	6.7	2136	73.6
792	154	5.3	2290	78.9
807	130	4.5	2420	83.4
824	120	4.1	2540	87.6
843	125	4.3	2665	91.9 94.7
864	81	2.8	2746	
. 891	60	2.1	2806	96.7
927	56	1.9	2862	98.7
985	29	1.0	2891	99.7
1067	10	0.3	2901	100.0

WRITE_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0	12	0.4	12	0.4
ĭ	16	0.5	28	1.0
1.5	. 23	0.8	51	1.7
2	610	20.9	661	22.6
3	1232	42.1	1893	64.8
3.5	364	19.3	2457	84.1
4	466	15.9	2923	100.0

WRITE_SS	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
0 1 1.5 2 3 3.5	8 13 26 731 1035 557 523	0.3 0.4 0.9 25.3 35.8 19.3	8 21 47 778 1313 2370 2893	0.3 0.7 1.6 26.9 62.7 81.9

APPENDIX B

Percentages of Students Meeting BSAP Standards in Individual Schools

S.C. Basic Skills Assessment Program Charleston County School District

Percentages of Students Meeting BSAP Standards in Reading, Mathematics, and Writing Grades 1 - 8 1981-1987

	T		Re	dine	1		1	lathe		cs		Writi	
School	Year	-	G	rade					cade			Grad	
		1	2	3	6	8	1	2	3	6	8	6	8
Angel Oak	1981 1982 1983 1984 1985 1986 1987	58 80 79 78 79 83 85	52 65 72 88 92 84 88	51 52 72 81 91 90			59 74 80 82 83 85 82	68 54 78 91 93 90	35 57 66 81 87 92 95				
Ashley River	1981 1982 1983 1984 1985 1986 1987	90 91 99	94 95 97	95 96 99	96		90 87 99	93 94 99	91 94 99	93		100	
Berry	1981 1982 1983 1984 1985 1986 1987	76 52 57 70 75 68 67	58 61 64 68 81 72 63	78 48 86 86 79 86 75			66 46 66 74 69 74 62	58 47 47 81 91 81 74	70 57 79 90 71 61 68				
Birney, Alice	1981 1982 1983 1984 1985 1986				63 65 66 86 83 82 83	61 67 69 67 81 84 82				58 54 53 83 71 73 82	47 51 53 51 67 69 74	73 86 79 82 85	83 89 92 88 82
Blaney	1981 1982 1983 1984 1985 1986 1987	81 60 80 81 91 95 80	78 76 79	56 54 73 74 76		•	67 66 63 57 78 98 90	55 64 79 76	75 77 59				

WPI9-98MH

		Reading				Mathematics					Writing		
School	Year		G	cade					rade			Gra	
		1	2_	3_	6	8	1	2	3	6	8	6	8
Brentwood	· 1981 1982 1983 1984 1985 1986 1987				54 69 74 74 77 85	50 58 61 80 82				41 57 51 61 59 70	38 35 41 59 67 60	70 73 73 78 73	72 74 89 78 66
Buist	1981 1982 1983 1984 1985 1986 1987	100 100			98 100	•	98 100	_	100 95	96 94		98 100	
Burns	1981 1982 1983 1984 1985 1986 1987	72 72 75 72 67 64 71	83 77 84 85 83 79 84	78 83 92 91 93 89 88	•		70 57 73 68 73 68 72	77 66 71 83 85 84 80	60 71 83 89 88 77 92				
Chicora .	1981 1982 1983 1984 1985 1986 1987	56 62 51 65 66 71 63	50 67 66 72 68 71 66	54 59 80 81 90 77 91			60 61 64 70 80 80 66	66 53 61 79 68 79 75	66 30 6. 83 83 73 73				
Corcoran	1981 1982 1983 1984 1985 1986	90 81 83 83 84 84 84	90	79 92 83 93 90			79 60 82 76 70 67 85	64 80 89	57 80 67 84 77				
Courtenay	1981 1982 1983 1984 1985 1986 1987				42 44 44 48 68 76	33 32 35 45 55				25 40 29 51 56 64 51	13 11 21 28 40	54 61 51 66 58	44 51 66

WPI9-98MH

			Re	adin	g .		1	Math	emat	ics		Writ	
School	Year		G	rađe				G	rade			Gra	
		1	2	3	6	8	1	2	3	6	8	6	8
Drayton Hall	1981 1982 1983 1984 1985 1986 1987				71 80 85 88 88 91 93	80 71 80 83 91 94 90				63 64 70 72 84 84 87	59 52 54 73 73 83 80	84 86 88 91 88	83 90 93 93 92
Edwards, James B.	1981 1982 1983 1984 1985 1986 1987	88 86 86 85 91 88	90 84 90 97 93	81 94 98 99 99			84 83 83 85 92 87	76 85 91 95 96	89 86 94 88 95				
Edwards, Jane	1981 1982 1983 1984 1985 1986 1987	38 47 57 89 80 68 90	22 55 57 63 60 88 67	36 22 55 89 83 94 100	19 47 37 40 32 75 79		52 53 81 78 84 100 77	44 65 79 37 75 94 48	20 33 75 78 67 94 90	14 24 26 30 37 67 36		37 40 58 100 71	
Ellington	1981 1982 1983 1984 1985 1986 1987	69 84 81 78 84 78 71	58 59 60 77 69 96 90	61 66 81 74 83 89 97			69 84 71 89 89 85 85	86 69 74 81 93 100 92	59 71 90 83 83 95 96			e med per product skirtykan omnigen desilence product skirtykan designer	
Ford, Mary	1981 1982 1983 1984 1985 1986 1987	68 64 69 50 54 66 83	77 69 49 44 75 87 90	55 75 85 60 61 89			63 48 62 70 €8 67 74	83 74 67 42 86 78 85	65 66 85 68 91 78 84			AND THE PROPERTY OF THE PROPER	
Ft. Johnson Middle	1981 1982 1983 1984 1985 1986 1987				81 83 86 93	75 83 87 83	e entagnis stagnis departe entagnis dellaçõe entagnis entagnis entagnis entagnis entagnis entagnis entagnis en			69 81 83 83	68 67 79 80	78 76 90 8	87 88 83 80

WP19-98MH

				1	Mathe		Writing Grade						
School	Year			cade		-	7	<u>G</u>	ade 3	6	8		8
		1	2	3	6	8	1		3	0	-		-
Fraser	1981 1982 1983 1984 1985 1986 1987	63 59 68 85 81 84 81	53 66 64 71 71 87 80	64 62 71 75 77 91			62 53 61 81 76 87 81	55 51 62 81 70 89 84	60 51 77 78 81 78 85				
Frierson	1981 1982 1983 1984 1985 1986 1987	91 82 79 55 65 68 67	56 78 58 64 67 79 77	49 48 57 82 8	49 60 56 80 81 87 100		94 71 57 63 80 85 80	74 69 58 91 78 61 74	22 30 54 86 88 61 94	36 54 44 66 81 78 100		68 69 91 78 92	
Goodwin	1981 1982 1983 1984 1985 1986 1987	82 90 86 89 80 78 82	72 79 77 88 88 90 95	80 79 93 86 94 94			81 84 81 78 87 88	76 76 80 91 90 91.	72 79 83 84 91 89 93				
Harbor View	1981 1982 1983 1984 1985 1986 1987	83 82 84 83	80 85 89 82	90 89 97 97			89 89 87 83	80 83 82 88	89 84 92 91			regard despite original surgical sections of the section of the se	
Haut Gap	1981 1982 1983 1984 1985 1986 1987				43 48 48 55 61 80 81	31 38 39 46 59 64 76				25 25 35 41 51 61 75	17 16 32 47 51	63 59 68 72 66	56 57 74 69 68
Hughes, Minnie	1981 1982 1983 1984 1985 1986 1987	82 71 73 78 79 71 68	. 59 71 8 83 9 83	48 69 72 96	3 2 5 2		75 80 73 84 80 75 73	43 71 87 85 95	65 92 85				

WPI9-98MH

- ERIC

				adin	a			Math	Writing Grade				
School	Year		G	rade 3	6	8	1	2	rade 3	6	8	6	8
Hunley Park	1981 1982 1983 1984 1985 1986 1987	68 82 81 90 90 82 94	71 83 74 84 80 95 89	85 73 83 81 94 95	<u> </u>	J	64 81 80 91 89 85 87	81 74 84 86 91 96 94	79 70 78 82 81 91				
James Island Middle	1981 1982 1983 1984 1985 1986 1987				75 66 91 92	68 81 84 92				63 56 81 83	61 75 80 85	84 73 91 91	77 88 85 89
Ladson	1981 1982 1983 1984 1985 1986 1987	94 93 78 95 84 84 78	78 86 75 80 91 89 92	71 86 90 83 95 95			88 88 84 96 88 89 86	82 63 79 94 88 86 93	72 84 81 92 84 95 92			and, provinting a cultural halping a copies inflator of finish and analysis.	
Laing	1981 1982 1983 1984 1985 1986 1987		-		51 68 65 80 84 92 91	54 61 66 70 80 87 85			o eta cuatating	52 63 61 72 81 85 86	47 53 49 63 70 76 80	67 79 86 90 82	71 76 78 83 87
Lambs	1981 1982 1983 1984 1985 1986 1937	88 87 94 95 95 84 94	74 90 82 83 88 86 93	80 79 92 87 97 97			76 78 93 95 93 92 96	78 86 81 84 87 84 97	65 62 87 87 89 91				
Lincoln High	1981 1982 1983 1984 1985 1986 1987		`			22 26 23 27 28 60 60					16 8 11 12 26 30 40		34 24 41 60 63

WP19-98MH

				dirg			1		mati	CS		Writi Grad	
School	Year _			rade	6	8	1	2	rade 3	6	8		8
		1	2	3	0	-				<u> </u>			
Memninger	1981 1982 1983 1984	59 58 71 76	54 59 61 70	61 66 86 71 85			56 54 78 76 75	65 56 60 82 80	68 50 80 83 81				
	1985 1986 1987	72 68 63	76 78 80	78 87			79 82	83 94	76 88				
Midland Park	1981 1982 1983 1984 1985 1986 1987	65 78 77 94 88 90 85	73 66 83 82 82 94 93	85 73 82 93 92 96 94			71 73 80 98 94 93 92	92 74 76 96 92 100 95	80 80 93 94 82 88				
Mitchell	1981 1982 1983 1984 1985 1986 1987	94 75 79 73 77 73 80	61 89 74 77 84 77 93	62 71 84 87 81 73			87 73 70 76 82 84 86	75 60 65 84 90 88 97	45 57 66 80 70 68 74				
Moore, Jennie	1981 1982 1983 1984 1985 1986 1987	78 90 81 72 58 70 93	51 71 77 75 73 60 86	57 64 76 83 88 83 90			81 78 78 · 74 75 81 95	56 53 73 86 89 75 96	57 72 61 89 82 77 83				
Morningside	1981 1982 1983 1984 1985 1986 1987				60 57 61 67 82 82	54 59 56 64 62 70				40 44 55 65 72 64	32 40 47 53 52 56	59 66 72 83 79	70 77 77 75 65
Moultrie	1981 1982 1983 1984 1985 1986 1987				80 77 85 85 93 90 89	64 69 67 70 86 88 80				76 68 80 80 84 87 83	56 60 53 66 79 74 75	84 89 90 88 86	79 86 92 89 82

WPI9-98MH

		Reading	Mathematics	Writing		
School.	Year	Grade	Grade	Grade		
		1 2 3 6 8	1 2 3 6 8	6 8		
Mt. Pleasant	1981	71 71 70	79 74 83			
	1982	90 88 83	73 65 92			
	1983	81 65 93	83 69 94			
	1984	82 80 80	88 85 90			
	1985	85 94 95	88 94 100	1		
	1986	76 92 100	81 81 91			
	1987	83 98 95	81 96 95			
	130/	83 98 93	01 30 33			
Marine ToCoine	1981	68 49 64	68 70 47			
Murray LaSaine		65 71 56	72 57 48	ļ		
	1982		70 69 69	}		
	1983	67 68 76		1		
	1984	68 60 83	80 77 78			
	1985	85 70 93	92 80 88	į .		
	1986	85 70 89	91 86 86	i		
	1987	82 9 1 92	85 94 92			
•	1		•			
North Charleston	1981	62 80 60	66 80 49	1		
Elementary	1982	76 89 73	60 87 69			
2,20,0002,	1983	82 86 74	65 86 65	-		
	1984	84 79 86	81 ธิธิ 84	•		
	1985	64 87 86	77 92 74			
		84 81 93	80 85 78			
	1986		87 90 76			
	1987	87 92 96	07 30 70			
	1981	80 67 81	71 76 74			
Oakland	_		77 73 76	1		
	1982	75 75 77	· · · · · · · · · · · · · · · · · · ·	}		
	1983	73 76 90				
	1984	86 84 89	80 88 88	Ì		
	1985	80 89 95	75 88 85			
	1986	76 89 94	88 94 91			
	1987	83 81 96	80 95 94			
Crange Grove	1981	83 82 92	77 82 79			
	1982	81 87 91	76 84 86	1		
	1983	84 89 92	81 89 85			
	1984	92 90 95	93 94 96	!		
-	1985	88 93 96	88 92 89	1		
		89 89 96	97 92 94	1		
	1986		90 99 90			
	1987	93 98 97	1 30 33 30			
n	1001	59 56 66	49 62 65	ļ		
Park Circle	1981		73 65 55	ì		
	1982	80 75 71	N Control of the Cont	1		
	1983	70 62 88		1		
	1984	78 77 86	84 70 89	Ĭ		
	1985	76 70 97	84 81 83	į		
	1986	82 84 96	87 90 86			
	1987	92 87 97	92 87 93	j		
l				<u> </u>		

WPI9-98MH

		Reading Grade						Mathe	Writing Grade				
School	Year	1	<u>G</u>	cade 3	6	8	1	2	rade 3	6	8	6	8
Pepperhill	1981 1982 1983 1984 1985 1986 1987	85 83 81 91 89 81 79	76 91 67 93 84 85 92	89 79 94 86 97 90			74 70 74 83 86 82 78	73 75 81 95 89 91 85	77 73 79 86 89 79 78				
Remount Road	1981 1982 1983 1984 1985 1986 1987	73 63 53 73 78 77 69	79 63 60 65 87 78 83	76 70 81 88 90 94			75 61 66 71 87 84 86	79 66 78 86 95 85 82	51 72 81 84 76 71 78				
Rivers	1981 1982 1983 1984 1985 1986 1987				36 45 44 59 56 62 69	33 32 41 52 € 72				24 28 34 38 55 55 67	9 14 7 31 37 45 68	46 50 56 62 58	35 50 67 62 58
Ronald E. McNair	1981 1982 1983 1984- 1985 1986 1987	52 66 56 69 82 77 76	73 53 54 80 71 83 88	43 51 73 51 83 96 92			53 60 58 74 85 71 71	78 53 69 84 84 67 88	24 62 62 57 92 76 94				
Sanders-Clyde	1981 1982 1983 1984 1985 1986 1987	79 79 70 74 80 76	84 71 81 64 82	54 69 71 71 82			79 83 65 83 81 83 82	81 78 90 77 83	30 65 71 72 80				
Schroder	1981 1982 1983 1984 1985 1986 1987	A Common configuración de configuración			33 37 51 52 59 57 74	26 32 30 45 64				25 24 40 43 47 44 56	9 21 30 33 42	57 49 65 64 73	51 61 57

WPI9-981H

			Ra	adin	ıg			Math	emat	ics		Writing
School	Year		G	rade	:				rade	}		Grade
		1	2	3	6	8	1	2	3	6	8	6 8
Simons, James	1981 1982 1983 1984 1985 1986 1987	54 64 65 85 87 84 88	58 71 72 77 80 85 84	59 66 76 81 78 90 86			50 58 57 75 89 83 87	71 59 70 77 86 89 85	68 74 54 69 62 83 85			
Springfield	1981 1982 1983 1984 1985 1986 1987	88 83 97 91 88 92 95	76 86 92 92 93 98	91 86 94 93 97 96		•	73 73 91 89 91 90 95	82 75 90 94 90 96	75 83 87 98 86 85 94			
St. Andrew's Elementary	1981 1982 1983 1984 1985 1986 1987	89 75 80 82 76 82 78	68 82 81 87 92 88 87	88 77 86 93 90 89 99			80 64 78 85 78 81 86	62 64 78 81 87 74 84	66 65 82 86 79 72 95			
St. James-Santee	1981 1982 1983 1984 1985 1986 1987	.57 50 60 72	70 51 58 69	40 66 75 89	47 46 53 82		75 65 77 85	77 63 74 75	53 55 77 94	33 49 71 66		57 53 50 58
Stiles Point	1981 1982 1983 1984 1985 1986 1987	89 88 86 79 85 75 87	90 88 83 88 83 79 94	85 87 94 85 93 99			85 86 83 77 87 84 89	93 90 91 91 82 84 93	80 87 94 90 82 94 88			
Stono Park	1981 1982 1983 1984 1985 1986 1987	80 88 70 87 90 79 82	82 83 85 84 92 89 94	86 91 96 99 98 95 93			74 83 76 84 90 84 83	86 83 84 90 92 100 99	83 93 100 99 94 79 82			

WPI9-98MH

			Re	adin	य				emat	ics_		Writ	
School	Year		G	rade					rade			Grad	
School		1	2	3	6	8	1	2	3	6	8	6	8
Sullivan's Island	1981 1982 1983 1984 1985 1986 1987	98 98 91 100 98 100 97	98 98	92 84 100 100 100 100 98			83 93 97 98 96 95	98 81 100 96 98 96 95	81 82 94 100 96 92 92				
Toole	1981 1982 1983 1984 1985 1986				49 44 66 63 66 77	43 57 52 68 73 76				37 32 53 56 49 66	20 27 45 45 57 66	51 67 67 59 69	61 57 67 66 65
Whitesides	1981 1982 1983 1984 1985 1986 1987	90 94 85 86 87 89	84 79 95 83 86 94 91	93 83 95 97 96 94 98			88 89 77 84 86 86 83	76 93 93 94 85	86 88 92 93 93				
Williams, C.E.	1981 1982 1983 1984 1985 1986 1987				66 74 77 80 71 81 85	64 64 66 68 7(84 82				53 58 58 67 66 70 74	52 31 38 57 54 66 69	73 79 75 89 84	78 79 82 78 75

WP19-98MH

APPENDIX C

Mobility Indices, Percent Free Lunch, and Percent Handicapped Tested

CHARLESTON COUNTY SCHOOL DISTRICT

Mobility Indices, Percent Free Lunch, and Percent Handicapped Students Tested

Elementary Schools

School	Mobility Index	% Free Lunch	% Handicapped
Angel Oak	15.9	56.2	9.5
Ashley River	7.9	9.9	8.2
Berry	36.1	73.8	16.8
Blaney	23.4	73.1	5.6
Buist	8.6	8.3	0.8
Burns	30.9	58.0	12.0
Chicora	22.6	86.6	9.0
Corcoran	23.5	27.9	12.4
Edwards, James B.	25.2	17.0	11.4
Edwards, Jane	17.0	87.3	25.4
Ellington	16.3	69.2	13.0
Ford, Mary	18.3	81.1	15.4
Fraser	16.5	89.1	9.9
Frierson	10.9	79.2	11.7
Goodwin	32 . 8 .	20.0	9.2
Harbor View	18.1	19.5	15.0
Hughes, Minnie	8.5	87.8	13.0
Hunley Park	, 39 . 6	28.0	16,0
Ladson	29.8	35.1	10.7
Lambs	19.9	12.6	13.0
McNair, Ronald	21.8	97.1	13.4
Memminger	14.4	72.4	14.2
Midland Park	29.1	35.0	13.0
Mitchell	17.1	89.0	15.0
Moure, Jennie	17.7	41.4	12.0
Mt. Pleasant Academy	17.9	17.0	14.0
Murray LaSaine	23.9	32.1	12.8
North Charleston	29.0	47.1	5.7
Oakland .	19.4	29.1	11.5
Orange Grove	25.1	22.1	12.3
Park Circle	30.3	52.3	15.0
Pepperhill	25.2	29.0	9.7
Remount Road	38.0	70.0	11.0
Sanders-Clyde	13.2	100.0	13.5
Springfield	16.4	17.2	12.3
St. Andrews	22.8	41.4	14.3
St. James/Sa tee	8.2	76.9	13.0
Simons, James	8.3	70.0	11.1
Stiles Point	15.8	31.1	11.1
Stono Park	19.2	37.0	10.1
Sullivan's Island	12.3	2.8	15.0
Whitesides	15.7	20.4	23.4

CHARLESTON COUNTY SCHOOL DISTRICT

Mobility Indices, Percent Free Lunch and Percent Handicapped Students Tested

Middle Schools

School School	Mobility Index	% Free Lunch	% Handicapped
Birney, Alice	25.6	25.5	10.3
Brentwood	25.4	37.3	10.1
Courtenay	8.7	70.4	5.6
Drayton Hall	17.3	12.0	7.8
Fort Johnson	9.9	26.3	16.3
Haut Gap	11.5	52.3	14.0
James Island	13.5	16.1	8.2
Laing	18.1	25.0	5.1
Morningside	32.5	45.8	16.3
Moultrie	15.0	16.8	21.0
Rivers	12.3	81.1	12.3
Schroder	29.1	71.0	9.3
	28.5	59.0	4.2
Toole Williams, C.E.	16.3	28.0	10.1

APPENDIX D

1986 Readiness Scores and BSAP Scores for First Graders

S.C. BASIC SKILLS ASSESSMENT PROGRAM Charleston County School District

Percentages Scoring Ready on the CSAB and Meeting BSAP Standards Among 1986-87 First Graders in Each School Taking Both CSAB and BSAP

x	_			1987 BSAP
	Number of	Fall 1986 CSAB		g Standard
School	Students	% Ready	Reading	Mathematics
Angel Oak	154	75%	86%	83%
Ashley River	75	91%	99%	99%
Berry	70	73 %	69%	63%
Blaney	55	58%	80%	91%
Buist	40	100%	100%	98%
Burns	157	62%	71%	71%
Chicora	162	56%	64%	65%
Corcoran	106	77%	82%	87%
Edwards, James	158	82%	87%	87%
Edwards, Jane	26	38%	88%	73%
Ellington	60	72 %	70%	85%
_	57	63% .	84%	74%
Ford, Mary	108	74 %	81%	81%
Fraser	47	68%	70%	79%
Frierson	157	75 %	£2 %	89%
Goodwin		75% 84%	84 %	83%
Harbor View	110			74%
Hughes, Minnie	58	50 %	69 %	1
Hunley Park	80	75 %	96 %	90%
Ladson	92	74%	78%	87%
Lambs	103	84%	97%	98%
McNair, Ronald	61	54%	75%	70%
Memminger	96	71%	61%	82%
Midland Park	90	70%	84%	92%
Mitchell	118	73%	79%	86%
Moore, Jennie	111	82%	94%	95%
Mt. Pleasant Academy	66	71%	85%	83%
Murray LaSaine	110	70%	82%	84%
North Charleston	61	79%	89%	89%
Oakland	106	78%	84%	80%
Orange Grove	122	85%	93%	89%
Park Circle	69	80%	93%	93%
Pepperhill	132	79 %	78%	78%
Remount Road	83	63%	70%	84%
Sanders-Clyde	101	72%	79%	82%
Simons, James	153	67%	88%	86%
Springfield	137	91%	95%	94%
St. Andrew's	99	78%	77%	86%
St. James-Santee	101	63%	72%	86%
Stiles Point	111	80%	86%	89%
Stono Park	91	69%	80%	82%
Sullivan's Island	62	94%	97%	95%
Whitesides	88	78%	92%	83%
MITTERINER	00	, og	76/1	33/

81

APPENDIX E

District Demographic Reports

DISTRICT DEMOGRAPHIC REPORT

DISTRICT: 17 CHARLESTON

GRADE 1 TEST DATE: : :IAY 67

DISTRICT COPY 1

[MA ^T	THE	MA	TIC	S					RE	ADI	NG			
			,		NEEDIN	TOTAL G IMPR		NT					NER		TAL % APROVE	MENT	
_	NUMBER TEBTED	MEAN SCALE SCORE	% ABOVE \$TD	СИ	ОР	ME	GĽ.	PS	NUMBER TESTED	MEAN SCALE SCORE	% ABCVE \$TD	DW	DE	MI	RE	iN	AL
SEX MALE FEMALE UNKNOWN	2240 2113 5	777 782 747	82,9 85.7 60.0	12.1 8.7 40.0	23.5 20.4 40.0	11.9 11.8 20.0	10.7 12.5 20.0	11.7 12:3 20.0	2240 2115 5	796 819 773	79.1 85.6 80.0	10.3 6.7 0.0		16,9 12.0 0,0	11,5	17.11	21.4 15.7 20.0
ETHNICITY WHITE BLACK HISPANIC ASIAN-AMERICAN AMERICAN INDIAN UNKNOWN	1791 2501 25	801 763 797 823 780 759	91.2 79.0 86.0 100.0 100.0 75.0	8.8 11.6 0.0 3.3 14.3 25.0	15.5 26.9 24.0 3.3 42.9 25.0	13.7 86.0	15.2	16.5 8.2 6.7 0.0	2502 25 30	837 785 826 864 815 826	89.3 77.3 80.0 96.7 100.0 100.0	12.0	24.5 22.0 3.3	19.2	13,0	18,1 88,0 3,3	12.2 23.5 12.0 6.7 14.3
LUNCH PROGRAM NO F/R LUNCH FREE LUNCH REDUCED LUNCH TOTAL F/R LUNCH UNKNOWN HANDICAPPED	2417 8	759 784 762 746	70.2 84.9 79.0 75.0	12.4 12.5	27.0 25.0	13.8 25.0	16,2 10,5 15,5 12,5	16.7 9.5 15.8 0.0	305	776 800 779 814	91%1 74,1 82,3 75,2 87.5	12.8 5.9 12.0 12.5	26.6 37.5	21.3 13.8 20.3 12.5	4.4 14.6 8.9 13.9 25.0	20.0 13.4 19.2 12.5	25.1 12.5
HANDICAPPED NOT HANDICAPPED UHKNOWN	580 3750 28	786 2748	87.0 71.4	217.9 217.9	35.7	10.0 25.0	10.5	9.8 7.1	2752 28	816 783	85.1 75.0	6.8	18.8		8,0 10.7	12.2	16.5
GIFTED&TALENTED NOT GIFT/TALENTED UNKNOWN	97 4166 95	860 777	100.0 83.8 87.4	2.1	4.1 22.5	12.0	. 2,1	1.0	%169	937 804	97.9 81:8 86.2	0.0	1.0	0.0	0.0 10.0 6.4	2,1 14,4 14,9	2.1
REPEATER REPEATER NON-REPEATER UNKNOWN	752 3553 53	777	83,0	11,4	15.4 23.3 30.2	112.9	10 6 11.8 2.4	210.5 12.4 211.3	3556 3556 .63	912 807 2785	80.8		17.0 21.5 26.4	15,7	10.9	15,0	19.7
ALL STUDENTS	43	, 7/9	84.2	10.5	22.1	11.9	11.6	12.0	4360	807	82.2	8.5	20.8	14.5	9.7	14.1	13.4

DISTRICT DEMOGRAPHIC REPORT

DISTRICT: 17 CHARLEST

FEMALE

WHITE

HISPANIC ASIAN-AMERICAN AMERICAN INDIAN

LUNCH PROGRAM

NO F/R LUNCH FREE LUNCH

REDUCED LUNCH

TOTAL F/R LUNCH

ALL STUDENTS

UNKNOWN

MALE.

UNKNOWN ETHNICITY

BLACK

UNKNOWN

12 794

3591

85

804

	- 1	MA.	THE	MA	TIC	S					RE	ADI	<u>NG</u>			
		Vi		-	TOTAL G IMPR	%	NT					NE	TO DING II	TAL % MPROV	EMENT	
NUMBER CATEST	MEÁN SCALE SCORE	% ABOVE STD	CN	ОР	ME	GF	PS	NUMBER TESTED	MEAN SCALE SCORE	% ABOVE STD	WD	DE	МІ	RE	IN	AL
1819 1766	808 796	88.6 89.9 83.3	2.6 2.8 16.7	23.3 19.4 33.3	10.9 10:5 0.0	7.3 5.6 0.0	3.1		794 813 756	84.6 90.6 66.7	11.5 9.3 33.3	111.8 10.7 33.3	8.5 6.1 33.3	16.2 9.8 16.7	14.1 8.6 16.7	13.7 9.2 0.0
1500 2035 22 25	829× 785 809× 843	1. 30.42	3,2 0,0 16,7	26.7 13.6 12.0	13.4 313.6 0.0 16.7	7,9	11.7 0.0 0.0	25	803	83,3	13,4 27,3 4.0	29.1 12.0	12.0	8.1 16.8 13.6 12.0 0.0 0.0	4.0	7 14 . 2 13 . 6 8 . 6 33 . 3
1681 161! 28: 189	777 8 804	94.6 83.6	3.5	29.6	10.6	8.6	12.4		774	80,8 85,5 81.5	15.9 12.0	21,2 18.4 20.8	11.0 10.2 10.9	19.0 14.8	17.0 13.4 16.5	16. 12, 16.

. 23.1 HANDICAPPED 33:0 16:2 23.5 25.3 16.4 14.7 12.4 451 740 72.1 18.6 5.1 32.4 × 450 775 81:1 HANDICAPPED *** 9.7 12.7 3128 809 89,8 ..9.3 8.0 5.2 19.8 9.9 808 90.4 2,3 28.6 0.0 NOT HANDICAPPED 3127 14.3 14.3 35.7 14.3 21.4 27.1 14.3 21.4 21.4 767 78.6 7.1 ...14 78.6 UNKNOWN .769 GIFTED&TALENTED (W.) 0.6 0.0 0.0 0.0 0.6 1.3 0.0 158 891 86.5 8.8 3340 799 100.0 0.0 0.0 3.8 1.3 2.8 22.1 11.1 99.4 GIFTED&TALENTED 158 887 11.9 12.0 27.7 13.8 15.9 86:9 11.0 801 88.8 NOT GIFT/TALENTED 3338 95, 9.5 11.6 49,9 4.3 89.5 803 13.7 25.3 12.6 11,6 764 86,3 95 UNKNOWN REPEATER 85.6 28.1 11.6 12.5 11.6 9.4 20.9 19:1 8:8 37.5 11.6 320 792 ₩2.5 90.9 REPEATER 320 802 11.5 13,3 34.4 89.0 2.7 21.6 10.9 6.4 8.3 89.8 3.6 18.6 11.9 3.4 86.8 3214 27.6 10.5 14.9 804 3212 804 NON-REPEATER 93.2 11.9 10.2 3.4 8.5 10.2 8.5 59 83359 UNKNOWN : 824

8.6

10.7

21.4

2.7

89.2

6.4

3593

803

13.1

7.3

11.4

11.4

15.3

10.5

87.5

DISTRICT COPY 1

GRADE 2 TEST DATE: HAY 87

٠,٠ ٠

DISTRICT: 17 CHARLESTON

DISTRICT DEMOGPAPHIC REPORT

DISTRICT	COPY	1
----------	------	---

				MAT	THE	MA	TIC	S					RE	ADI	NG			
					1	NEEDIN	TOTAL G IMPR	% OVEME	VT					NEE		TAL % APROVE	MENT	
		NUMBER TESTED	MEAN SCALE SCORE	% ABOVE STD	CN	ОР	ME	GE.	PS	NUMBER TERTED	MEAN SCALE SCORE	% ABOVE \$TD	DW	DE	МІ	RE	IN	AL
,	SEX MALE FEMALE UNKNOWN	1664 1622 4	813 807 864	87, 2	14.4 17.5 25.0	7.8 6.9 0.0	17.7 24.2 25.0	2,9 1.8 0.0	24,2 24,7 0.0	1665 1622 4	797 810 876	91.9 95.4 100.0	6.9 5.9 0.0	2.7	9.2 7.4 0.0	6.8 5.3 0.0	8.9 5.2 0.0	7.0 5.9 0.0
	ETHNICITY WHITE::: BLACK HISPANIC::::::::: ASI::N-AMERICAN AMERICAN:INDIAN::: UNKNOWN	1373 1848 19 26	784 797 867 721	96.2	9.8 20.6 10.5 11.5 25.0	0.0	12.2 27.1 26.3 23.1 50.0	3.1 0.0 0.0 50.0	31.2 10.5 19.2 50.0	26 22.4	524 788 808 830 797	94.7 91.3 89.5 100.0 100.0	3.5 5.5 3.6 3.0 0.0	5.2 9.1 5.3 7.7 0.0 0.0	4.7 11.0 5.3 3.6 25.0 0.0	8.7	9,4 10.5 7,7	8.3 10.5 3.8 0.0
,	LUNCH PROGRAM NO F/R LUNCH FREE LUNCH REDUCED LUNCH TOTAL F/R LUNCH	1546 1470 263 1733	839 781 800 763	93.1 81.6 88.2 82.6	11.3 21.0 16.3 20.3	9.3 9.3 5.3 8.7	30:500	1.7 3.1	\$660X	1545 1472 263	824 782 805	96.8 90.6 92.0 20.8	2 9 10 0 6 5 0 0	9.5 10.1 10.6	5.9 11.7 9.9 11.4	2.4	3.9 9.9 9.5 9.9	9,1 9,2
•	UNKNOY/N HANDICAPPED HANDICAPPED NOT HANDICAPPED UNKNOWN	330 2951	×783	88.2	21.5 15.4 11.1			2,3	22.4	331 2951 9	778	84.6 94.7 88.9	12,1 5.8 0.0	15.7 6.5 11.1	16.6 7.6 33.3	12.1 5.4 80.0	14.5 6.2	9.7 6.1 0.0
,	GIFTED&TALENTED GIFTED&TALENTED NOT GIFT/TALENTED UNKNOWN REPEATER	222 3064 3064	800 817	100.0 \$6.7 100.0	,0,0	0,0	#2007	20,0	25.0	3065	798	100.0 93.2 100.0	0,0	0.0 8.0 25.0	0.0	0.0 5.5 0.0	0.0 7.5 25.0	0,0 6,9 0.0
<u>~</u>	REPEATER NON-REPEATER UNKIJOWN	2920	811 815	87.4 88.2 87.6	12.1	# ? : 8	20.7 18.4	%173	24.2 823.7	2921 76	8008	93,7	6.5 %5;3	7.3 211:6	9.9 8.1 11.6 8.3	6.0 10.5	6.7	6,4

DISTRICT DEMOGRAPHIC REPORT

DISTRICT COPY 1

GRADE 6
TEST DATE: HAY 87

DISTRICT: 17 CHARLESTON

3020112011 21 011111		DEADU																						
			MA	THE	MA	TIC	S					RE	ADI	NG						<u> W</u>	RITI	<u>NG</u>		
						TOTAL	%	٧T					NEE	TO DING II	TAL % MPROVE	EMENT						TOTAL G IMPR	% OVEME	TV
	NUMBER NUMBER	MEAN SCALE SCORE	% ABOVE S1D	CN	ОР	ME	GE	PS	NUMBER TESTED	MEAN SCALE SCORE	% ABOVE STD	WD	DE	мі	RE	IN	AL	NUMBER TESTED	% ABOVE STD.	ни	мс	WU	SF	СР
SEX MALE FÉMALE UNKNOWN	1526 1394 2	753 753 682	73.3 75.9 0.0	15.6 12.7 0.0	28.4 21.7 0.0	25.7 35.2 100.0	28.2 27.8 100.0	23.0 18.1 50.0	1529 1397	768 788 665	80.4 87.7 97.0	20.8 21.0 50.0	11.5	10.3 9.0 50.0	11.8 6.4 50.0	17.3 10.7 0.0		1524 1396 2	71.8 83.5 50.0	0.1 0.0 0.0	25.7 8.1 0.0	21.0 12.4 0.0	18.6 10.9 50.0	2.2 1.7 0.0
ETHNICITY WHITE BLACK HISPANIC ASIAN-AMERICAN AMERICAN INDIAN	1210 1658 23 26	793 723 735 821	87.0 65.3 69.6 84.6 100.0	17,4	19.7 29.3 30.4 15.4 50.0	14.3 42.2 30.4 15.4 0.0 100.0	35.1 43.5 26.9 25.0	12.2 27.0 17.4 15.4 0.0	1213 1662 23 25	752 765 807	90.8 78.9 73.9 64.0 75.0	10.3 28.6 21.7 16.0 50.0	19.7 26.1 16.0 0.0	17,4 16.0	6.4 11.1 13.0 8.0 0.0	5.6 18.0 21.7 16.0 50.0	13.4 28.6 26.1 20.0 50.0 100.0	1211 1659 23 24	90.3 67.9 69.6 91.7 50.0	0.0 0.1 0.0 0.0 0.0	7.8 15.2 17.4 4.2 50.0	6.2 24.9 13.0 0.0 50.0	6.9 21.0 17.4 4.2 25.0 0.0	1.4 2.4 4.3 0.0 0.0 0.0
LUNCH PROGRAM NO F/R LUNCH FREE LUNCH REDUCED LUNCH TOTAL F/R LUNCH UNKNOWN	1998 1195 225 1420	783 718 743 722	83.8 62.9 75.1 64.9	/11.5 17.2 16.4 17.0	32.7 22.7	19.5 43.6 34.2 42.1 50.0	38.7 27.1	14:5 28:5 20:4 27:2	1501 1197 226 1423	742 775 747	90.8 74.9 85.8 76.7 25.0	31.7 19.0 29.7	22.1 15.0 20.9	16.1	9,3 12.4		31.3 21.7 29.8	1194 226	88.0 63.4 81.0 66.2 60.0	0.0 0.2 0.0 0.1	7.6 17.8 10.6 16.7 40.0	7.7 28.6 15.5 26.5 40.0	8.1 24.1 11.5 22.1 20.0	2.6 3.1 2.7 20.0
HANDICAPPE D HANDICAPPED NOT HANDICAPPED UNKNOWN	287 2625 *10	664 763	37.6 78.7	36,2	57;5 21.6	.53.0	53.0 25.3	53,3 17.0		787	47.2 87.9 80.0	17.5	13.1	7.6	1	11.1	19.3	2630 10		0.7 0.0 0.0	40.4 8.9 40.0	14.0	l	11.3 1.0 0.0
GIFTED&TALENTED GIFTED&TALENTED NOT GIFT/TALENTED UNKNOWN	231	740	99.6 72.4 50.0	:15.3		32.9	30.3		232 2688	767	99.1 82.6 75.0		18.0		9,9	15.3	24.1	2683	99.6 7.3.5 57.1		13.0		0.4 16.3 0.0	0,0 2,1 0,0
REPEATER REPEATER NON-REPEATER UNKNOWN	2608	756	71.5 74.6 70.3	14.5	24.8	29.3	27.5	20.3	2614	782	74.2 85.0 74.5	20.3	16.1	8.8	8.8	13.4	21.0	2608	78.5	0.0	11,8	16,0	14.0	2.0
ALL STUDENTS	2922	753	74.	5 14.2	25.2	30.3	28.1	20.	7 292	в 777	83.8	20.9	16.8	9.7	9.2	14.1	22.3	2922	77.4	0.1	12.1	16.9	15.0	2.0
	I	1	1		l	1																		/*

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

DISTRICT DEMOGRAPHIC REPORT

DISTRICT COPY 1

GRADE 8 TEST DATE: HAY 87

DISTRICT: 17 CHARLESTON

<u> </u>			ΜΑ	THE	MA	TIC	<u>s</u>					RE	ADI	NG						WF	RITI	NG		
					NEEDIN	TOTAL	%	NT			·			то	TAL % MPROVI					I		TOTAL G IMPR	% OVEME	VT
·	NUMBER TESTED								NUMBER TESTED	MEAN SCALE SCORE	% ABOVE \$TD	DW	DE	мі	RE	IN	AL	RBGMUN Datest	% ABOVE \$TD	НN	мс	WΠ	SF	СР
SEX MALE FEMALE UNKNOWN	1513 1378 10		69.1 70.1 60.6	38.9 38.1 40.0	20.4 15.7 30.0	26.2 36.6 40.0	23.7 19.0 20.0	31,2 29.9 50.0	1515 1378 10	759 270 697	76.2 31.6 40.0	19.7 19.2 40.0	10,8 27,3 30,0	20.7 21.6 30.0	22.0 16.1 20.0	29,6 20.5 50.0	23.4 18.1 50.0	1508 1376 9	67·2 79.8 33·3	0,0		26.4 17.4 55.6	21,7 14.8 22,2	2.1 1.2 0.0
ETHNICITY WHITE BLACK HISPANIC ASIAN-AMERICAN AMERICAN INDIAN UNKNOWN	1284 1545 18 38	768: 714 721: 830 720:	81.5 59.5 55.6 89.5 60.0	43.8	.22.2 5.3	43.3 27.8 7.9 20.0	16.7 25.7 27.8 5.3 20.0 27.3	19.2 40.3 50.0 7.9 20.0 54.5	1545 18 38 55 11	.743	87.7 71.0 66.7 97.4 80.0 54.5	11.2 26.4 22.2 15.8 40.0 27.3	5.9 12.1 5.6 0.0 20.0 18.2	11.9 29.1 22.2 7.9 20.0 18.2	12.5 25.1 22.2 5.3 20.0 18.2	18.6 31.3 16.7 13.2 90.0 36.4	14.3 26.8 27.8 5.3 20.0 36.4	1278 1544 18 38 5 10	88.5 60.1 61.1 94.7 100.0 40.0	0.0 0.0 0.0 0.0 0.0	8.5 25,1 16.7 2.6 0.0 30.0	7.4 34.7 33.3 2.6 0.0 50.0	7.4 27.7 33.3 2.6 0.0 30.0	0.5 2.7 0.0 0.0 0.0
LUNCH PROGRAM NG F/R LUNCH FREE LUNCH REDUGED LUNCH TOTAL F/R LUNCH UNKNOWN	1591 1085 219 1304	764 706 726 709	79.9 55.6 63.8 56.9	47,1	26.2 18.3		15.4 29.2 27.4 28.9	41.3	1086 219 1305	757 730	87.9 65.8 75.3 67.4 85.7	31.0 21.0	5.7 14.7 6.8 13.4 14.3				30.8	1587 1080 220 1300	84.8 56.2 71.8 58.8 66.7	0.0 0.0 0.0	11.1 26.8 15.9 24.9 33.3	11.2 37.9 24.1 35.5 33.3	10.6 30.6 13.6 27.8 33.3	0.7 3.2 0.9 2.8 0.0
HANDICAPPED HANDICAPPED NOT HANDICAPPED UNKNOWN	2556	2646 751	21.5 75.2	72.4	60.9	27,9	63.1 16.5 812.1	26.5	-(311 5559	653 777 756	84.4	59.5 14.7 21.2	5.7	54.7 17.1 15.2	58.8 14.4 21.2		16.1	2552	34,4 77.9 60.6	0.0 0.0	49.7 13.4 21.2		41.6 15.5 24.2	6.8 0.8 0.0
GIFTED&TALENTED GIFTED&TALENTED NOT GIFT/TALENTED UNKNOWN	162 2730		99,4 67.8 77.8	40.2	19.2	×32.9	22.4	32.	162	757.	100.0 77.5 44.4	20.5	189.7	1.2 22.3 33.3	20.2	26.8	22.1	2723	99,4 71.6 55.6	0.0 0.0 0.0	0.6 18.3 22.2		0.6 19.4 44.4	0.0 1.7 11.1
REPEATER REPEATER NON-REPEATER UNKNOWN	18! 267	5 ×719 5 741 5 ×716	70.	5 (45.4 37.7 5 (58.1		30.5	24.3 21.0 39.1	30.	0 2676	766	70.1 79.4 .69.6	19,4		20,7	18,5	24.9	20,6	2668	74,0		22.7 16.6 38.6	21.7	17,3	1.6
ALL STUDENTS	290	739	69.	38.5	18.2	31.	21.4	30.	6 290	764	78.7	19.5	9.2	21.1	19.2	25.4	21.0	2893	73.1	0.0	17.4	22.2	18.4	1.7

91

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

APPENDIX F

District Summary Reports

DISTRICT SUMMARY REPORT

COPY 1

GRADE 1

TEST DATE: MAY 87

SKILL AREA	TOTAL TESTED	ADEQUA		TUDENTS NEED IMPROV	DING VEMENT		ITS WHO		NDARD DING VEMENT	ADEQU NUMBER	JATE T	S WHO T STANDA NEED IMPROVE NUMBER	DING
MATHEMATICS MEAN= 779 HIGHEST= 908 MEDIAN= 778 LOWEST= 510 STANDARD= 700; SCORE RANGE= 222-908	4358	3670	34.2	688	15.8								
OBJECTIVES: CONCEPTS		3902	89.5	456	10.5	3481	94.9	189	5.1	421	61.2	267	38.8
OPERATIONS		3397	77.9	961	22.1	3247	88.5	423	11.5	150	21.3	538	78.2
MEASUREMENT		3841	88.1	517	11.9	3480	94.8	190	5.2	361	52.5	· 327	47.5
GEOMETRY	4.0	3854	88.4	504	11.6	3426	93.4	244	6.6	428	62.2	260	37.8
PROBLEM SOLVING		3834	88.0	524	12.0	3496	95.3	174	4.7	338	49.1	350	50.9
READING MEAN= 807 HIGHEST= 955 MEDIAN= 803 LOWEST= 536 STANDARD= 700; SCORE RANGE= 355-955	4360	3586	82.2	774	17.8								
OBJECTIVES: DECODING & WORD MEANING		5928	91.5	372	8.5	3484	97.2	102	2.8	504	65.1	270	34.9
DETAILS	以 以第	3454	79.2	906	20.8	3197	89.2	389	10.8	257	33.2	517	66.8
MAIN IDEA	经出身	3727	85.5	633	14.5	3473	96.8	113	3.2	254	32.8	520	67.2
REFERENCE USAGE	38%	3936	90.3	424	9.7	3524	98.3	62	1.7	412	53.2	362	46.8
INFERENCE		3745	85.9	615	14.1	3463	96.5	123	3.4	282	36.4	492	63.6
ANALYSIS OF LITERATURE	N. W.	3547	81.4	813	18.6	3334	93.0	252	7.0	213	27.5	561	72.5

95

DISTRICT SUMMARY REPORT

COPY 1

GRADE 2

TEST DATE: MAY 87

DISTRICT: 17 CHARLESTON

SKILL AREA	TOTAL TESTED	ADEQUA		TUDENTS NEEDI IMPROV		STUDEN ADEQU		MET STAN NEE IMPROV NUMBER	DING	DID N ADEQU NUMBER I	ATE 1	S WHO STANDA NEED IMPROVE NUMBER	ING MENT %
MATHEMATICS MEAN = 804 HIGHEST = 931 MEDIAN = 804 LOWEST = 490 STANDARD = 700; SCORE RANGE = 188-931	3591	3204	89.2	387	10.8								
OBJECTIVES: CONCEPTS	To be designed to	3493	97.3	98	2.7	3172	99.0	32	1.0	321	82.9	66	17.1
OPERATIONS		2824	78.6	767	21.4	2738	85.5	466	14.5	86	22.2	301	77.8
		3206	89.3	385	10.7	3000	93.6	204	6.4	206	53.2	181	46.8
MEASUREMENT		3360	93.6	231	6.4	3099	96.7	105	3.3	261	67.4	126	32.6
GEOMETRY		3283	91.4	308	8.6	3075	96.0	129	4.0	208	53.7	179	46.3
PROBLEM SOLVING READING MEAN = 803 HIGHEST = 935 MEDIAN = 806 LOWEST = 543 STANDARD = 700; SCORE RANGE = 296-935	3593	3144	87.5	449	12.5								
OBJECTIVES: DECODING & WORD MEANING	18 7 7 19 19 19 19 19 19 19 19 19 19 19 19 19	3217	89.5	376	10.5	2972	94.5	172	5.5	245	54.6	204	45.4
DETAILS		3042	84.7	551	15.3	2949	93.8	195	6.2	93	20.7	356	79.3
MAIN IDEA		3329	92.7	264	7.3	3063	97.4	81	2.6	266	59.2	183	40.8
REFERENCE USAGE		3123	86.9	470	13.1	2972	94.5	17%	5.5	151	33.6	298	66.4
		3183	88.6		11.4	3085	97.5	79	2.5	118	26.3	331	73.7
INFERENCE ANALYSIS OF LITERATURE	1 700		88.6	1	11.4	3037	96.6	107	3.4	145	32.3	304	67.7

DISTRICT SUMMARY REPORT

COPY 1

GRADE 3

TEST DATE: MAY 87

DISTRUCT: 17 CHARLESTON

SKILL AREA	TOTAL TESTED	ADEQUA NUMBER	ATE †	STUDENTS NEEDI IMPROV	1	STUDENT ADEQU		MET STA! NEE IMPRO\ NUMBER	DING	DID N ADEQU NUMBER	ATE 1	S WHO T STANDA NEED IMPROVE NUMBER	DING
MATHEMATICS MEAN= 810 HIGHEST= 1012 MEDIAN= 796 LOWEST= 445 STANDARD= 700; SCORE RANGE= 155-1012	3290	2882	87.6	408	12.4								
OBJECTIVES: CONCEPTS	202	2765	84.0	525	16.0	2604	90.4	278	9.6	161	39.5	247	60.5
OPERATIONS '			93.1	226	6.9	2801	97.2	81	2.8	263	64.5	145	35.5
MEASUREMENT		Č	79.1	687	29.9	2453	85.1	429	14.9	150	36.8	258	63.2
GEOMETRY	1000	il e	97.6	78	2.4	2848	98.8	34	1.2	364	89.2	44	10.8
PROBLEM SOLVING			75.6	1	24.4	2409	83.6	473	16.4	78	19.1	330	80.9
READING MEAN= 804 HIGHEST= 951 MEDIAN= 799 LOWEST= 547 STANDARD= 700; SCORE RANGE= 318-951	3291		93.6	209	6.4								
OBJECTIVES: DECODING & WORD MEANING	WEST.	3081	93.6	210	6.4	2965	96.2	117	3.8	116	55.5 <u>.</u>	93	44.5
DETAILS		3046	92.6	245	7.4	2967	96.3	115	3.7	79	37.8	130	62.2
MAIN IDEA		3017	91.7	274	8.3	2922	94.8	160	5.2	95	45.5	114	54.5
REFERENCE USAGE		3092	94.0	199	6.0	2969	96.3	113	3.7	123	58.9	86	41.1
INFERENCE		3059	93.0	232	7.0	2984	96.8	98	3.2	75	35.9	134	64.1
ANALYSIS OF LITERATURE		4,	93.5	5 213	6.5	2969	96.3	113	3.7	109	52.2	100	47

98

DISTRICT SUMMARY REPORT

COPY 1 **GRADE 6**

TEST DATE: MAY 87

SKILL AREA	TOTAL TESTED	ADEQUA		TUDENTS NEED IMPROV		ADEQ	JATE T	IMPRO	NDARD EDING VEMENT	DID N DID N ADEQU	ATE 1	S WHO T STANDA NEED IMPROVE NUMBER 1	ING MENT
	1	NUMBER	%	NUMBER	-%	NUMBER	*	NUMBER	^	TOMBER			4
MATHEMATICS MEAN = 753 HIGHEST = 1082 MEDIAN = 742 LOWEST = 365 STANDARD = 700: SCORE RANGE = 277-1082	2922	2177	74.5	745	25.5					Se e e			
OBJECTIVES: CONCEPTS	表示	2507	85.8	415	14.2	2044	93.9	133	6.1	463	62.1	282	37.9
	35.	2186	74.8	736	25.2	1900	87.3	277	12.7	286	38.4	459	61.6
OPERATIONS		2037	69.7	885	30.3	1804	82.9	373	17.1	233	31.3	512	68.7
MEASUREMENT		2102	71.9	820	28.1	1830	84.1	347	15.9	272	36.5	473	63.5
GEOMETRY		2318	79.3	604	20.7	2027	93.1	150	6.9	291	39.1	454	60.9
PROBLEM SOLVING		2316	77.3	004		-			• 1		.,		
READING MEAN = 777 HIGHEST = 1002 MEDIAN = 772 LCWEST = 450 STANDARD = 700; SCORE RANGE = 257-1002	2928	2455	83.8	473	16.2		, , ,	,	1 1 2	h			
OBJECTIVES: DECODING & WORD MEANING	and the	2316	79.1	612	20.9	2138	87.1	317	12.9	178	37.6	295	62.6
DETAILS		2437	83.2	491	16.8	2262	92.1	193	7.9	175	37.0		63.0
MAIN IDEA		2643	90.3	285	9.7	2373	96.7	82	3.3	270	57.1		42.9
REFERENCE USAGE	**	2658	90.8	270	9.2	2377	96.8	78	3.2	281	59.4	192	40.6
INFERENCE	\$30.00 A	2514	85.9	414	14:1	2322	94.6	133	5.4	192	40.6	281	59.4
		2275	77.7	653	22.3	2139	87.1	316	12.9	136	28.8	337	71.2
WRITING MEAN= 3.0 HIGHEST= 4.0 MEDIAN= 3.0 LOWEST= 0.0	2922	1	77.4		22.6								
STANDARD = 3; SCORE RANGE = 0 - 4		7. J.	6.	1	1 11 117	30, 5			· · · · · · · · · · · · · · · · · · ·	659	99.7	2	0.3
OBJECTIVES: HANDWRITING	1,700		12.	The same	1.7	37 1				308	46.6	353	53.4
MECHANICS				1.1.1.1		- 	* 			168	25.	4 493	74.8
WORD USAGE	32	3 - 23		1 27 27			-	-	7	224	33.	9 437	66.
SENTENCE FORMATION	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 327.		**	-	- 	 	 	604			
COMPOSITION	4.1.		(2 , , ;)	1000			1	NOT MEET	THE STAI		71.	1)	

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

e results indicate adequate objective performance in relation to the total Statewide Standard. Additional improvement may still be needed in these objectives.

101

DISTRICT: 17 CHARLESTON

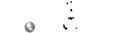
DISTRICT SUMMARY REPORT

DISTRICT: 17 CHARLESTON

COPY 1

GRADE 8

TEST DATE: MAY 87


SKILL AREA	TOTAL TESTED	ADEQUA		TUDENTS NEED IMPROV		STUDEN ADEQU	JATE T		NDARD DING /EMENT	DID N ADEQL NUMBER	IATE	S WHO T-STANDA NEED IMPROVE NUMBER	ING .
MATHEMATICS MEAN= 739 HIGHEST = 1067 MEDIAN= 736 LOWEST = 472 STANDARD = 700 SCORE RANGE = 329-1067	2901	2018	69.6	883	30.4								
OBJECTIVES: CONCEPTS		1784	61.5	1117	38.5	1575	78.0	443	22.0	209	23.7	674	76.3
OPERATIONS		2374	81.8	527	18.2	1957	97.0	61	3.0	417	47.2	466	52.8
MEASUREMENT		1996	68.8	905	31.2	1700	84.2	318	15.8	296	33.5	587	66.5
GEOMETRY		2279	78.6	622	21.4	1867	92.5	151	7.5	412	46.7	471	53.3
PROBLEM SOLVING		2012	69.4	889	30.6	1719	85.2	299	14.8	293	33.2	590	66.8
READING MEAN= 764 HIGHEST= 968 MEDIAN= 761 LOWEST= 404 STANDARD= 700; SCORE RANGE= 277-968	2903	2284	78.7	619	21.3								
OBJECTIVES: DECODING & WORD MEANING	出现主	2336	80.5	567	19.5	2090	91.5	194	8.5	246	39.7	373	60.3
DETAILS		2636	90.8	267	9.2	2254	98.7	30	1.3	382	61.7	237	38.3
MAIN IDEA		2290	78.9	613	21.1	2066	90.5	218	9.5	224	36.2	395	63.8
REFERENCE USAGE		2345	80.8	558	19.2	2098	91.9	186	8.1	247	39.9	372	60.1
INFERENCE		2167	74.6	736	25.4	2054	89.9	230	10.1	113	18.3	506	81.7
ANALYSIS OF LITERATURE	4.87.14	2295	79.0	610	21.0	2099	91.9	185	8.1	194	31.3	425	68.7
WRITING MEAN= 3.0 HIGHEST= 4.0 MEDIAN= 3.0 LOWEST= 0.0 STANDARD= 3: SCORE RANGE= 0.4	2893	2115	73.1	778	26.9						2-3-7-K		
OBJECTIVES: HANDWRITING	*****		例為	W. 342	规则		THE REAL PROPERTY.		海溪 》	778	100.0	0	0.0
MECHANICS			经 期			BEAR	\$ 10g	_ · · _ · _ · _	為特別	276	35.5	502	64.5
102 WORD USAGE			<i>F37</i> 8							136	17.5	642	82.5
SENTENCE FORMATION	1921.0	S. 1917			門部	TO THE REAL PROPERTY.				246	31.6	532	68.4
COMPOSITION			THE STATE OF		<i>k</i> ; <i>k</i> ; <i>y</i>			上的	海光素	730	93.8	46	36.2

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

These results Indicate adequate objective performance in relation to the total Statewide Standard. Additional improvement may still be needed in these objectives.

APPENDIX G

Percent Needing Improvement on Each BSAP Objective for Individual Schools

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

		MA	TH	EM/	ATIO	CS			<u> </u>	R		DIN			
	_,Z,()	I Q			ENT NE ROVEM			ZI Z.	L SE			RCENT MPROV	NEEDIN	G 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING <u>N</u> MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
002 ANGEL OAK EL	161 754 745	132 82.0	19.3	£1.7	10.6	17.4	16.8	161 796 799	136 84.5	10.ẻ	14.9	12.4	11.2	9.3	20.5
098 ASHLEY RIVER ELEM	77 836 847	76 98.7	2.6	10.4	1.3	2.6	0.0	77 881 899	76 98.7	1.3	5.2	3.9	0.0	2.6	3.9
086 BERRY J HOMARD EL	81 741 739	50 61.7	16.0	42.0	21.0	17.3	24.7	81 770 767	54 66.7	17.3	25.9	30.9	25.9	21.0	28.4
004 BLANEY ELEM	59 809 817	53 89.8	5,1	11.9	6.8	6.8	11.9	59 829 830	47 79.7	11.9	18.6	6.8	8.5	15.3	10.2
099 BUIST ACADEMY	40 838 846	40 100.0	0.0	7.5	2.5	0.0	2.5	40 895 925	40 100.0	0.0	2.5	0.0	0.0	0.0	0.0
089 DURNS EDHUND A ELEH	164 745 737	118 72.0	19.5	35.4	19.5	18.3	17.7	164 762 749	117 71.3	14.0	31.1	25.6	18.9	26.2	29.9
090 CHICORA ELEM	168 721 721	110 65.5	20.8	36.3	16.7	23.2	23.2	169 730 722	107 63.3	18.3	38.5	26.6	25.4	24.3	34.9
021 CORCORAN A C ELEM	121 765 763	103 85.1	17.4	15.7	13.2	14.0	14.0	121 788 781	100 82.6	5.0	24.0	17.4	10.7	14.9	19.6
092 BOHARDS JAMES B ELEM	167 783 787	145 86.8	12.0	24.6	7.8	5.4	10.2	168 842 860	147 87.5	•	13.7	11.3	11.3	9.5	13.1

COPY 1

GRADE 1

TEST DATE: HAY 87 TOTAL TESTED: 4361

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

COPY 1

GRADE 1

TFST DATE: MAY 87 TOTAL TESTEO: 4361

[MA	THE	EM/	ATIC	CS				R	EAL				
	$ \Box$	±₽ T			NT NEE			ZI_	RD CS			CENT N	HEEDING		
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT		PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
023 EDMARDS JANE EL	30 757 755	23 76.7	36.7	16.7	16.7	3.3	23.3	30 767 740	27 90.0	10.0	23.3	20.0	0.0	20.0	23.3
024 ELLINGTON EL	66 753 752	56 84.8	13.6	16.7	13.6	21.2	13.6	66 772 774	47 71.2	18.2	25.8	24.2	6.1	10.6	31.8
025 FORD HARY EL	58 741 747	43 74.1	15.5	27.6	19.0	15.5	15.5	58 779 754	48 82.8	12.1	27.6	10.3	10.3	17.2	24.1
019 FRASER ELEM	113 773 774	91 89.5	11.5	16.8	6.8	20.4	18.6	113 796 779	91 80.5	13.3	23.0	15.9	6. 8	15.9	25.7
028 FRIERSON EDITH L	49 752 755	39 79.6	8.2	38.8	20.4	8.2	18.4	49 782 801	67.3	8.2	22.4	32.7	18.4	18.4	26.5
092 GOODHIN H B ELEH	184 782 773	162 88.9	10.3	26.1	8.7	11.4	13.0	184 807 802	150 81.5		26.1	9.2	11.4	11.4	17.4
031 HARBOR VIEW ELEMENTARY	114 785 797	94 82.5	7.9	25.4	13.4	9.6	9.6	114 839 871	95 83.3	1	14.0	14.0	7.9	10.5	16.7
033 HUGHES MINNIE ELEM	59 742 736	43 72.9		28.8	18.6	13.6	18.6	59 740 737	67.8	•	27.1	23.7	20.3	23.7	35.6
034 HUNLEY PARK ELEH	108 791 790	94 87.0	1	17.6	11.1	11.1	5.	108 834 848	101 93.1	- 1	11.1	4.6	3.7	5.6	11.1

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

COPY 1
GRADE 1

TEST DATE: HAY 87 TOTAL TESTED: 4361

		MA	TH	EM/	4TI	CS				R	EAI	OIN			
	70	RO			ENT NEI			zi	RD RD			RCENT MPROV		G 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
037 LADSON EL	108 789 802	93 86.1	15.7	24.1	9.3	3.7	9.3	108 811 816	84 77.8	5.6	23.1	19.4	9.3	16.7	19.4
039 LAMBS ELEM	118 818 828	113 95.8	2.5	13.6	5.9	8.5	1.7	118 860 885	111 94.1	5.1	10.2	6.8	3.4	5.1	7.6
044 HEMMINGER EL	103 766 757	84 81.6	17.5	19.4	14.6	19.4	12.6	103 751 752	65 63.1	6.8	34.0	35.0	15.b	32.0	30.1
046 HIDLAND PARK EL	101 813 827	93 92.1	5.0	9.9	5.0	8.9	8.9	102 828 839	87 85.3	3.9	20.6	11.8	6.9	9.8	12.7
047 HITCHELL EL	123 790 805	106 86.2	9.8	18.7	11.4	10.6	23.6	123 812 808	98 79.7	8.9	15.4	15.4	13.0	17.1	19.5
048 MOORE JENNIE EL	122 821 830	116 95.1	3.3	16.4	4.9	2.5	4.9	122 840 850	114 93.4	2.5	18.9	6.6	3.3	8.2	8.2
051- HT PLEASANT ACADEMY	72 791 797	58 80.6	9.7	20.8	11.1	5.6	13.9	72 812 798	60 83.3	5.6	20.8	9.7	8.3	19.4	18.1
053 MURRAY LASAINE ELEM	116 780 782	98 84.5	8.6	26.7	6.9	14.7	12.1	116 795 787	95 81.9	13.8	24.1	12.9	13.8	19.8	19.0
054 MACH CHARLESTON ELEM	69 763 754	60 87.0	13.0	18.8	10.1	14.5	10.1	69 794 780	60 87.0	8.7	14.5	13.0	10.1	10.1	14.5

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

		MA	TH	EMA	ATIC	S				·R	EAL				
		F.Q.			NT NEE			ZI	F.G.			APROVE	NEEDING MENT	· - 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAĜE	INFERENCE	ANALYSIS OF LITERATURE
OAKLAND ELEM 056	113 777 776	90 79.6	13.3	30.1	10.6	15.9	15.9	113 807 811	94 83.2	10.6	20.4	11.5	9.7	15.9	21.2
057 ORANGE GROVE ELEM	136 796 798	123 90.4	7.4	10.3	8.8	10.3	3.7	136 838 839	126 92.6	5.9	16.2	4.4	2.2	9.6	12.5
058 PARK CIRLE EL	73 799 795	67 91.8	4.1	16.4	13.7	13.7	6.8	72 843 849	66 91.7	6.9	12.5	6.9	4.2	6.9	8.3
059 PEPPERHILL ELEH	147 759 750	115 78.2	8.8	30.6	21.1	12.2	4.1	147 797 787	116 78.9	4.1	25.2	14.3	5.4	17.7	21.1
G93 REMOUNT ROAD ELEM	91 761 757	78 85.7	6.6	18.7	9.9	12.1	16.5	91 769 762	63 69.2	14.3	33.0	29.7	13.2	18.7	31.9
094 RONALD E MCNAIR	62 753 734	44 71.0	11.3	24.2	16.1	17.7	17.7	62 772 771	47 75.8	1	21.0	22.6	21.0	25.8	16.3
067 SANDERS CLYDE ELEM	101 773 784	83 82.2	9.9	21.8	21.8	16.8	13.9	101 793 785	80 79.2		23.8	20.8	10.9	16.8	19.8
069 SIMONS JAMES EL	163 781 778	141 86.5	3.1	23.3	11.0	8.6	10.4	163 823 821	144 88.3		15.3	10.4	4.9	6.7	16.0
070 SPRINGFIELD EL	145 831 852	137 94.5	2.8	13.8	4.1	4.8	6.3	145 867 888	138 95.2		9.7	4.8	2.8	4.8	4.8

GRADE 1
TEST DATE: HAY 87
TOTAL YESTED: 4361

COPY 1

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

													<u> </u>		
	<u> </u>	MA	\TH	EM/	4TI (CS				R		DIN			
	Z ω	ARD		PERCI	ENT NE	EDING ENT		zi v z o	ARD			RCENT MPROV	NEEDING EMENT	5 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT WEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF
064 ST ANDREHS EL	103 779 779	89 86.4	9.7	17.5	8.7	11.7	14.6	103 781 768	80 77.7	11.7	25.2	17.5	8.7	18.4	25.2
097 ST JAMES SANTEE ELEM	102 781 775	87 85.3	3.8	35.3	6.9	7.8	11.8	102 766 752	73 71.6	11.8	36.3	16.7	10.8	22.5	26.5
072 STILES POINT EL	118 800 802	105 89.0	8.5	8.5	12.7	11.0	8.5	118 831 848	103 87.3	8.5	13.6	10.2	6.8	10.2	14.4
073 STONO PARK EL	94 763 758	78 93.0	10.6	24.5	30.9	4.3	7,4	94 784 784	77 81.9	5.3	25.5	18.1	8.5	17.0	24.5
074 SULLIVANS ISLAND EL	65 795 790	62 95.4	6.2	21.5	4.6	1.5	1.5	65 895 923	63 96.9	1.5	9.2	1.5	0.0	3.1	3.1
079 MHITESIDE MAMIE EL	94 790 794	78 83.0	8.5	21.3	10.6	10.6	16.0	94 835 835	86 91.5	3.2	14.9	9.6	4.3	7.4	8.5
-113															

COPY 1

GRADE 1

TEST DATE: HAY-87 TOTAL TESTED: 4361

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRIC : 17 CHARLESTON

COPY I GRADE 2

TEST DATE: HAY 87 TOTAL TESTED: 3595

		MA	THI	EM/	ATIO	CS				R	EAL)INC	3		
		늘			NT NEE			zi_	F.O.			APROVI	NEEDING EMENT_	3	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING SYANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
002 ANGEL OAK EL	144 796 788	129 89.6	2.1	17.4	7.6	7.6	7.6	144 791 797	126 87.5	12.5	13.9	6.3	13.2	11.8	10.4
098 ASHLEY RIVER ELEH	75 862 874	74 98.7	1.3	5.3	4.0	4.0	2.7	75 853 868	73 97.3	6.7	4.0	1.3	4.0	2.7	2.7
086 BERRY J HOHARD EL	65 754 732	48 73.8	10.8	32.3	30.8	20.0	16.9	65 744 740	41 63.1	32.3	33.8	21.5	33.8	32.3	29.2
004 BLANEY ELEH	53 740 717	35 66.0	3.8	34.0	32.1	15.1	24.5	53 747 745	35 66.0	22.6	35.8	5.7	30.2	30.2	28.3
099 BUIST ACADEMY	40 865 872	40 100.0	e.o	7.5	2.5	2.5	0.0	40 880 891	40 100.0	2.5	0.0	0.0	0.0	0.0	0.0
089 BURNS EDMUND A ELEM	129 769 767	103 79.8	3.9	27.1	13.2	13.2	11.6	129 773 771	108 83.7	19.4	19.4	14.7	16.3	15.5	16.3
090 CHICORA ELEM	110 746 734	82 74.5	6.4	41.8	20.0	10.0	21.8	110 746 745	72 65.5		30.9	17.3	32.7	23.6	30.0
021 CORCORAN A C ELEM	59 828 827	59 100.0	0.0	11.9	8.5	0.0	0.0	59 813 802	.57 96.6		5.1	1.7	3.4	5.1	6.8
082 EDMARDS JAMES B ELEM	151 819 820	138 91.4	1	21.2	5.3	6.0	6.6	151 846 853	149 98.7		6.0	1.3	6.6	1.3	0.7

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

GRADE 2
TEST DATE: HAY 87
TOTAL TESTEO: 3593

COPY 1

		MA	TH	EM/	4TI (CS	î			R	EAI				
	7.0	F.G.	-	PERC	ENT NEI	EDING ENT		zi_	F Q			RCENT I	NEEDING EMENT	3 ——~	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
023 EDHARDS JANE EL	21 694 690	10 47.6	9.5	76.2	14.3	33.3	14.3	21 728 733	14 66.7	19.0	38.1	14.3	33.3	23.8	28.6
024 ELLINGTON EL	49 786 781	45 91.8	6.1	18.4	12.2	10.2	4.1	49 806 813	64 89.8	14.3	10.2	10.2	2.0	10.2	10.2
025 FORD MARY EL	48 775 768	41 85.4	2.1	29.2	16.7	4.2	6.3	48 783 784	43 89.6	14.6	16.7	4.2	16.7	14.6	6.3
019 FRASER ELEM	95 791 789	80 84.2	1.1	22.1	22.1	8.4	13.7	95 791 793	76 80.0	11.6	20.0	17.9	16.8	14.7	10.5
028 FRIERSON EDITH L	35 767 737	26 74.3	5.7	51.4	14.3	8.6	8.6	35 775 777	27 77.1	5.7	20.0	20.0	20.0	11.4	22.9
092 GOODHIN H B ELEM	129 856 884	122 94.6	2.3	12.4	3.9	3.9	3.9	129 847 861	122 74.6	3.1	7.0	4.7	7.0	4.7	3.9
031 HARBOR VIEW ELECENTARY	111 798 804	98 88.3	2.7	21.6	9.9	9.0	6.3	111 783 781	91 82.0		21.6	11.7	20.7	18.0	19.8
033 HUGHES MINNIE ELEM	39 751 743	32 82.1	12.8	25.6	20.5	10.3	12.8	39 748 763	30 76.9		33.3	7.7	23.1	23.1	15.4
034 HUNLEY PARK ELEM	102 812 811	96 94.1	2.9	21.6	9.8	4.9	3.9	102 811 821	91 89.2		18.6	3.9	8.8	7.8	9.8

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

GRADE 2

COPY 1

TEST DATE: HAY 87 TOTAL TESTED: 3593

		MA	THE	EM/	ATIC	CS				R	EA				
		높			ENT NEE			zi_	ξQ	_		RCENT I	NEEDING EMENT	• • • • • • • • • • • • • • • • • • •	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT (GEOMETRY	PROBLEM. SOLVING	MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
037 LADSON EL	71 802 797	66 93.0	8.5	11.3	5.6	5.6	4.2	71 804 805	65 91.5	7.0	11.3	7.0	12.7	5.6	11.3
039 LAHBS ELEH	86 815 817	83 96.5	3.5	16.3	30.5	1.2	4.7	86 811 811	80 93.0	3.5	11.6	5.8	10.5	7.0	12.8
044 MEHMINGER EL	81 795 778	76 93.8	1.2	24.7	16.0	4.9	3.7	81 766 765	65 Ev.2	16.0	23.5	18.5	21.0	17.3	16.0
04% MIDLAND PARK EL	61 862 878	58 95.1	0.0	4.9	6.6	0.0	3.3	61 821 832	57 93.4	9.8	13.1	0.0	9.8	9.8	4.9
047 MITCHELL EL	90 826 827	87 96.7	0.0	8.9	5.6	1.£	10.0	90 815 814	84 93.3	12.2	16.7	1.1	11.1	- 2.2	7.8
048 HOORE JENNIE EL	125 834 845	120 96.6	8.0	16.0	4.0	1.6	7.2	127 810 819	109 85.8	9.4	18.9	8.7	7.1	15.7	6.3
051 MT PLEASANT ACADEMY	49 794 789	47 95.9	0.0	38.8	8.2	2.0	6.1	49 826 836	48 98.0		8.2	2.0	6.1	4.1	8.2
053 HURRAY LASAINE ELEM	113 825 830	106 93.8	0.9	20.4	4.4	4.4	4.4	113 821 824	1') 91.2		12.4	7.1	7.1	7.1	9.7
054 NORTH CHARLESTON ELEM	52 783 768	47 90.4		19.2	17.3	13.5	15.4	52 804 808	92.3		5.8	1.9	17.3	13.5	7.7

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

		MA	TH	EM/	ATIC	CS				R	EAI	ONIC	3		
	7.0	F Q			ENT NE			zi z.	L CR			RCENT I		G	
NAME	MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
056 CAKLAND ELEM	99 829 842	94 94.9	2.0	12.1	11.1	6.1	5.1	99 786 785	80.8	17.2	21.2	8.1	20.2	17.2	19.2
057 ORANGE GROVE ELEH	112 840 842	111 99.1	0.0	8.0	7.1	1.8	3.6	112 829 829	110 98.2	6.3	6.3	2.7	3.6	1.8	5.4
058 PARK CIRLE EL	62 781 768	54 87.1	3.2	27.4	12.9	12.9	8.1	62 803 807	54 87.1	9.7	17.7	6.5	11.3	12.9	12.9
Q59 PEPPERHILL ELEM	141 789 783	120 85.1	3.5	22.0	15.6	2.8	10.6	141 805 804	129 91.5	5.7	14.2	2.8	10.6	8.5	11.3
093 REMOUNT ROAD ELEM	84 773 762	69 82.1	1.2	33.3	20.2	8.3	10.7	84 774 768	70 83.3	14.3	17.9	9.5	15.5	10.7	17.9
094 RONALD E HCNAIR	67 792 789	59 88.1	3.0	16.4	16.4	7.5	11.9	67 769 769	59 88.1	17.9	16.4	13.4	20.9	11.9	7.5
067 SANDERS CLYDE ELEM	69 761 753	58 84.1	2.9	42.0	11.6	8.7	13.0	69 778 771	55 79.7		23.2	15.9	5.8	14.5	14.5
069 SINONS JAHES EL	177 789 788	150 84.7	3.4	20.9	13.3	7.3	9.0	177 800 801	148 83.6	•	14.2	4.0	18.6	16.4	15.8
070 121 SPRINGFIELO EL	121 831 840	116 95.9	0.8	14.9	5.8	4.1	6.0	121 833 832	119 98.3		7.4	0.0	6.6	5.8	4.1

COPY 1

GRADE 2

TEST DATE: HAY 87 TOTAL TESTED: 3593

¥ 1

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON															
		MA	TH	EM/	ATIC	S				R		ONIC			
				PERC	ENT NEE	DING		ZI_	F.G			RCENT I		3 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
064 ST ANDRENS EL	79 788 775	66 83.5	2.5	24.1	11.4	8.9	17.7	79 816 831	69 87.3	10.1	10.1	7.6	11.4	11.4	6.3
097 ST JAMES SANTEE ELEM	80 770 759	60 :75.0	6.3	40.0	8.8	8.8	18.8	80 746 733	55 68.8	18.8	36.3	18.8	20.0	25.0	27.5
072 STILES POINT EL	98 829 837	91 92.9	2.0	16.3	4.1	1.0	12.2	98 828 832	92 93.9	6.1	.9.2	5.1	6.1	4.1	6.1
073 STOND PARK EL	69 836 843	68 98.6	1.4	14.5	7.2	5.8	1.4	69 829 837	65 94.2		8.7	4.3	5.8	5.8	4.3
074 SULLIVANS ISLAND EL	64 831 837	61 95.3	0.0	20.3	4.7	4.7	3.1	64 852 858	63 98.4		4.7	0.0	4.7	3.1	1.6
079 HHITESIDE HAHIE EL	86 810 821	79 91.9		22.1	7.0	7.0	9.3	86 820 830	78 90.7		10.5	7.0	18.6	7.0	9.3
		+-	-												

0367A3

124

COPY 1 **GRADE 2**

TEST DATE: HAY 87

TOTAL TESTEO: 3593

DISTRICT: 17 CHARLESTON .

DISTRICT SUMMARY BY ORIGIN SCHOOL

BISIRICI: 17 CHARLESTON :															
		MA	THI	EM/	ATIC	CS		 -		R	EAI	OINC	3		
	Z.o	RD R			NT NEE			ZI V Z W	ARD ARD			RCENT I		3	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GECIMETRY	PROBLEM SCILVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USÁGE	INFIERENCE	ANALYSIS OF LITERATURE
002 , ANGEL OAK EL	117 819 804	111 94.9	18.8	5.1	14.5	0.0	17.9	117 806 804	106 90.6	4.3	10.3	10.3	6.8	5.1	7.7
098 ASHLEY RIVER ELEM	80 867 854	79 98.8	6.3	0.0	8.8	2.5	3.8	80 849 348	79 98.8	1.3	2.5	2.5	2.5	1.3	5.0
086 BERRY J HOMARD EL	68 729 733	46 67.6	47.1	20.6	33.8	5.9	42.6	68 740 744	51 75.0	29.4	26.5	19.1	17.6	25.0	23.5
GO4 BLANEY ELEM	48 748 727	36 75.0	37.5	14.6	31.3	6.3	35.4	48 755 752	38 79.2	6.3	25.0	22.9	12.5	33.3	14.6
099 BUIST ACADEHY	40 884 897	38 95.0	7.5	2.5	5.0	5.0	10.0	40 877 879	40 100.0	0.0	0.0	0.0	0.6	0.0	0.0
089 BURNS EDHUND A ELEM	100 777 772	92 92.0	20.0	5.0	30.0	1.0	37.0	100 776 773	88 88.0	4.0	12.0	18.0	14.0	10.0	12.0
090 CHICORA ELEM	124 750 739	90 72.6	24.2	14.5	35.5	1.6	50.8	124 773 768	113 91.1	19.4	8.9	9.7	10.5	11.3	7.3
021 CORCORAN A C ELEM	71 762 753	39 83.1	18.3	7.0	29.6	4.2	33.8	71 782 784	90.1	4.2	8.5	9.9	2.8	11.3	9.9
082 125 EDHARDS JAMES B ELEM	121 857 852	115 95.0	10.7	2.5	15.7	0.8	15.7	121 837 834	120 99.2		4.1	0.8	4.1	3.3	5.6
					_										

COPY 1 **GRADE 3**

TOTAL TESTED: 3292

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

COPY 1

GRADE 3

TEST DATE: HAY 87 TOTAL TESTED: 3292

		MA	THE	EM/	ATIC	CS				R	EAL		_		
	7.0	FQ.			NT NEE			zi Z (0	L C C C C C C C C C C C C C C C C C C C		PEF	RCENT I	NEEDING	• 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
023 EDHARDS JANE EL	20 777 765	18 90.0	5.0	5.0	30.0	0.0	30.0	20 790 786	20 100.0	0.0	0.0	15.0	5.0	5.0	5.0
024 ELLINGTON EL	70 858 837	67 95.7	10.0	2.9	21.4	0.0	14.3	70 809 807	68 97.1	4.3	7.1	5.7	4.3	8.6	4.3
025 FORD HARY EL	37 776 773	31 83.8	16.2	2.7	24.3	0.0	27.0	37 787 779	33 89.2	2.7	8.1	18.9	2.7	10.8	5.4
019 FRASER ELEM	66 795 781	56 84.8	21.2	6.1	21.2	0.0	36.4	66 797 791	62 93.9	1.5	3.0	13.6	4.5	3.0	4.5
028 FRIERSON EDITH L	36 806 793	34 94.4	13.9	5.6	27.8	0.0	16.7	36 794 791	34 94.4	8.3	11.1	11.1	5.6	5.6	8.3
092 GOODHIN H B ELEH	143 822 806	133 93.0	11.9	0.7	14.0	4.2	18.9	143 815 810	137 95.8		4.9	4.2	4.9	7.7	5.6
031 HARBOR VIEW ELEMENTARY	88 830 837	80 90.9	13.6	4.5	17.0	1.1	26.1	88 811 799	85 96.6		4.5	4.5	٥.5	4.5	4.5
033 HUGHES HINNIE ELEH	41 745 741	31 75.6	34.1	17.1	26.8	2.4	36.6	41 766 761	36 87.8		7.3	19.5	17.1	14.6	22.0
034 HUNLEY PARK ELEM	83 829 818	78 94.0		4.8	16.9	0.0	14.!	83 834 828	98.8	-	2.4	1.2	0.0	4.8	2.4

0367A3

ERIC Full Taxet Provided by ERIC

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

COPY 1
GRADE 3

TEST OATE: MAY 87 TOTAL TESTED: 3292

			MA	\THI	EMA	ATIO	CS				R	EAI	DIN	G		
		7.0	F.Q			ENT NEI			ZI	F C			RCENT MPROV	NEEDING EMENT	G	
ħ	IAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM	TOTAL READING I MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
037 LADSON EL		83 811 804	76 91.6	13.3	3.6	12.0	1.2	32.5	83 809 864	82 98.8	2.4	4.8	4.8	0.0	2.4	3.6
039 LAMBS ELEM	- 5	90 787 784	80 - 88. 9	13.3	7.6	17.8	3.3	21.1	90 814 805	89 9 8.9	4.4	5.3	2,,2	2.2	4.4	1.1
044 MEMMINGER E	L	84 803 792	74 88.1	9.5	3.6	25.0	4.8	19.0	84 770 769	73 86.9	8.3	9.5	11.9	11.9	11.9	7.1
046 MIDLAND PAR	K EL	69 817 800	61 88.4	11.6	4.3	18.8	1.4	24.6	69 802 797	65 94.2	1.4	10.1	8.7	5.8	5.8	7.2
047 MITCHELL EL		97 752 743	72 74.2	20.6	11.3	39.2	6.2	35.1	97 776 775	88 90.7	12.4	5.2	11.3	7.2	8.2	8.2
048 MOORE JENNI	E EL	86 814 798	71 82.6	17.4	5.8	22.1	1.2	29.1	86 794 792	77 89.5	10.5	11.6	8.1	8.1	10.5	9.3
051 MT PLEASANT	ACADEHY	38 866 867	36 94.7	10.5	0.0	10.3	2.6	5.3	38 823 819	36 94.7	0.0	5.3	13.2	5.3	2.6	2.6
053 HURRAY LASA	129	92 808 795	85 92.4	16.3	7.6	13.0	0.0	22.8	92 799 798	85 92.4	5.4	8.7	10.9	2.2	7.6	7.6
054 NORTH CHARL		53 765 761	40 75.5	22.6	5.7	28.3	15.1	28.3	53 803 801	51 96.2	3.8	11.3	5.7	1.9	3.8	5.7

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

COPY 1
GRADE 3

TEST DATE: HAY 87 TOTAL TESTED: 3292

		MA	THE	EM/	ATIC	S				R	EAC				
		₽₽		PERCE	NT NEE	DING		zi_	FQ.			CENT I	NEEDING EMENT	; 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	1	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE . USAGE	INFERENCE	ANALYSIS OF LITERATURE
056 OAKLAND ELEH	111 334 820	104 93.7	15.3	1.8	18.0	3.6	15.3	111 820 813	107 96.4	3.6	4.5	7.2	8.1	4.5	5.4
057 ORANGE GROVE ELEM	110 834 833	99 90.0	14.5	8.2	21.8	0.9	18.2	110 829 829	107 97.3	9.1	8.2	2.7	0.9	6.4	2.7
058 PARK CIRLE EL	58 819 806	54 93.1	13.8	1.7	17.2	3.4	22.4	58 814 805	56 96.6	6.9	6.9	3.4	3.4	1.7	5.2
059 PEPPERHILL ELEM	125 788 769	98 78.4	24.0	12.5	29.6	0.8	27.2	126 795 783	123 97.6	8.7	6.3	7.1	8.7	4.0	3.2
093 REHOUNT ROAD ELEM	67 760 749	52 77.6	19.4	19.4	28.4	0.0	47.8	67 797 797	63 94.0	7.5	10.4	4.5	4.5	9.0	9.0
094 RONALD E MCNAIR	49 816 813	46 93.9	20.4	4.1	24.5	0.0	22.4	49 788 782	91.8		12.2	10.2	6.1	4.1	8.2
067 SANDERS CLYOE ELEM	75 738 733	53 70.7	26.7	17.3	32.0	13.3	22.7	7 <u>5</u> 793 781	96.0		5.3	9.3	6.7	4.0	4.0
069 SIHONS JAMES EL	146 832 837	124 84.9		6.2	16.4	2.7	26.0	146 787 791	12 <u>5</u> 85.6		11.0	15.8	13.0	13.0	12.3
070 SPRINGFIELD EL	107 842 845	100 93.5		4.7	15.0	0.0	21.5	107 824 820	104 97.2		2.8	4.7	3.7	3.7	7.5

DISTRICT SUMMARY BY ORIGIN SCHOOL

DISTRICT: 17 CHARLESTON

GRADE 3

COPY 1

TEST DATE: HAY 67 TOTAL TESTED: 3292

		MA	HT	EM/	ATIC	CS		-	ļ	R	EAI	_			
	-Z (0	F.G.		PERCI	ENT NEI	DING ENT		ZI	RD RD			RCENT MPROY	NEEDIN EMENT	G 	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE
064 ST ANDRENS EL	84 824 809	80 95.2	11.9	2.4	19.0	0.0	22.6	84 808 795	83 96.8	. 1.2	6.0	4.8	3.6	2.4	2.4
097 ST JAHES SANTEE ELEH	54 845 837	5± 94.4	1.9	3.7	16.7	0.0	24.1	54 791 796	43 88.9	5.6	7.4	18.5	3.7	11.1	1.9
072 STILES POINT EL	80 827 808	70 87.5	10.0	12,5	17.5	1.3	18.8	80 818 816	74 92.5	5. 0	6.3	5.0	7.5	6.3	2.5
073 STOND PARK EL	44 829 820	36 81.8	18.2	11.4	11.4	2.3	18.2	44 825 811	41 93.2	2.3	6.8	6.8	6.8	2.3	4.5
074 SULLIVANS ISLAND EL	50 869 869	46 92.0	4.0	8.0	8.0	2.0	18.0	50 842 839	49 98.0	4.0	6.0	2.0	0.0	2.0	2.0
079 MHITESIDE MAMIE EL	85 869 863	80 94.1	7.1	7.1	15.3	2.4	9.4	85 828 818	83 97.6	1.2	2.4	8.2	3.5	2.4	2.4
										, ,					
. - 133														<u> </u>	
,															

DISTRICT SUMMARY BY ORIGIN SCHOOL

COPY 1

GRADE 6

TEST DATE: MAY 87 TOTAL TESTED: 2938

DISTRICT: 17 CHARLESTON

DIZIKICI: 1) CHARLESTON																						
		MA	THI	EM/	ATIC	S				R	EAL	אוכ	G					NRI	TIN			
		•		PERCE	NT NEE	DING		zi_	F Q			RCENT I	NEEDING EMENT	G		ZZ	ARD		PER	CENT N IPROVE	eeding <u>Ment</u>	
NAME	MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT		PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE	TOTAL WRITING N MEAN & MEDIAN SCORES	NUMBER & PERC MEETING STAND OF 3	HANDWRITING	MECHANICS	WORD USAGE	SENTENCE	COMPOSITION
098 ASHLEY RIVER ELEH	44 850 823	41 93.2	0.0	11.4	13.6	11.4	13.6	44 815 800	42 95.5	6.8	4.5	2.3	0.0	6.8	2.3	44 3.3 3.2	44 100.0	0.0	0.0	0.0	0.0	0.0
009 BIRNEY ALICE HIOOLE	314 770 760	256 81.5	13.1	20.4	25.2	22.6	18.8	315 776 771	262 83.2	20.6	15.6	10.5	11.4	14.6	22.9	314 3.1 3.1	266 84.7	0.0	11.1	11.1	8.6	1.9
088 BRENTHOOD FIXEDLE	236 725 723	166 70 3	17.4	35.2	32.2	36.4	23.3	238 767 764	201 84.5	21.4	19.7	10.9	11.3	14.3	27.7	236 2.9 2.8	171 72.5	0.0	20.8	17.8	17.4	4.7
099 BUIST ACADEMY	50 811 796	47 94.0	8,0	18.0	8.0	10.6	4.0	50 877 862	50 100.0	0.0	2.0	0.0	2.0	0.0	0.0	3.7	100.0	0.0	0.0	0.0	0.0	0.0
080 C E HILLIAMS HIODLE	195 744 732	145 74.4	14.4	21.0	30.3	22.1	26.2	195 768 767	165 84.6	22.1	21.0	12.3	10.3	14.4	20.0	195 3.0 2.9	163 83.6	0.0	9.7	10.3	6.7	1.5
022 COURTENAY HIODLE	163 700 697	83 50.9	18.4	41.1	46.0	49.7	34.4	164 749 734	124 75.6		22.0	11.0	8.5	21.3	37.8	164 2.7 2.7	95 57.9	0.0	13.4	28.0	31.1	2.4
077 DRAYTON HALL MIOOLE SCH	252 793 782	218 86.5	10.7	17.1	19.0	19.4	11.1	251 812 808	234 93.2	1	8.4	4.8	8.0	8.0	13.9	251 3.3 3.4	222 88.4		10.4	10.0	7.6	2.0
023 EDHAROS JANE EL	14 694 678	35.7		50.0	42.9	42.9	50.0	14 724 730	11 78.6		14.3	7.1	7.1	14.3	42.9	14 2.8 2.8	10 71.4	•	21.4	28.6	9.0	0.0
095 FORT JOHNSON MIDDLE SCH	137 780 764	83.2		20.4	16.1	14.6	19.0	137 806 796	128 93.4		8.8	4.4	3.6	7.3	10.	3.1		0.0		<u> </u>		<u> </u>

0366A3 ERIC NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE EXAMPLE.

SCUTH CAROLINA BASIC SKILLS ASSESSMENT PROGRAM

DISTRICT SUMMARY BY ORIGIN SCHOOL

COPY 1

GRADE 6

TEST DATE: HAY 87 TOTAL TESTED: 2938

DISTRICT: 17 CHARLESTON

		MATHEMATICS PERCENT NEEDING							R	EAI	OIN	G				1	WRI	TIN				•		
, ,	•				PERC		EDING		zi_	žΩ			RCENT MPROV	NEEDIN EMENT	G		ziz	ES S			CENT N	EEDING MENT		
	NAME	NAME 26 26 26					PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE US;:3E	INFERENCE	ANALYSIS OF LITERATURE	TOTAL WRITING N MEAN & MEDIAN SCORES	NUMBER & PERCENT MEETING STANDARD OF 3	HANDWRITING	MECHANICS	WORD USAGE	SENTENCE FORMATION	COMPOSITION	-	
,	028 FRIERSON EDITH L			0.0	3.8	23.1	0.0	11.5	26 787 787	25 100.0	34.6	15.4	0.0	3.8	3.8	7.7	26 3.3 3.4	24 92.3	0.0	3.8	7.7	3.3	0.0	
	032 HAUT GAP HIDDLE	118 741 747	88 74.6	8.5	27.1	32.2	22.9	27.1	118 755 757	95 80.5	30.5	22.9	10.2	10.2	16.1	27.1	118 2.9 2.9	78 66.1	0.0	12.7	19.5	21.2	2.5	
)	035 JAMES ISLAND HIDDLE	162 764 761	134 82.7	14.2	25.3	17.3	20.4	8.0	163 794 790	150 92.0	14.7	17.8	5.0	2.5	8.0	18.4	162 3.1 3.0	147 90.7	0.0	6.8	6.8	6.8	0.6	
,	038 LAING HIDDLE	200 785 766	172 86.0	12,5	16.5	23.5	14.0	11.0	202 815 803	184 91.1	14.9	7.9	5.4	6.9	11.9	14.9	202 3.2 3.3	166 82.2	· 0.0	8.4	12.9	14.9	1.0	
	049 HORNINGSIDE HIDDLE	170 735 727	109 64.1	24.1	33.5	37.6	33.5	22.9	171 768 770	140 81.9	17.5	18.1	12.9	11.1	13.5	24.0	171 3.0 2.9	135 78.9	0.0	5.3	14.0	14.0	1.2	
	050 HOULTRIE MIDDLE	169 803 803	141 83.4	8.9	24.3	18.3	16.0	13.0	169 825 824	150 88.8	12.4	11.8	5.9	8.9	8.9	11.8	168 3.3 3.5	145 86.3	0.0	10.1	11.3	13.1	3.0	
	083 NORMAN C TOOLS MIDDLE	224 724 718	147 65.6	17.0	26.3	40.6	42.9	22.8	223 755 752	172 77.1	26.0	22.0	12.1	11.7	16.1	22.9	224 2.8 2.8	154 68.8	0.0	10.7	27.7	24.6	3.1	
	063 RIVERS HIDDLE 137	261 726 724	176 67.4	19.2	26.4	45.6	34.1	27.6	261 729 730	179 68.6		23.8	19.9	13.4	24.5	37.9	258 2.6 2.7	150 58.1	0.8	20.2	32.9	26.7	1.2	
SCHRODER R D HIDDLE 702 55.9 17.5 30.1 46.9 53.1 32.2						143 741 739	106 74.1	37.8	23.8	11.2	11.2	23.1	<u> </u>	2.9	105 73.4 AREAS N	0.0		22.4		13	38			

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

SOUTH CAROLINA BASIC SKILLS ASSESSMENT PROGRAM

DISTRICT SUMMARY BY ORIGIN SCHOOL

COPY 1

GRADE 6

TEST DATE: HAY 87 TOTAL TESTED: 2938

DISTRICT: 17 CHARLESTON

MATHEMATICS											FΔI	OINC	G				1	WR	TIN	G		
							z!	ĻΩ		PE	RCENT MPROV	NEEDIN	G		ziz			PER		NESDING MENT	;	
NAME	TOTAL MATH N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	OPERATIONS	MEASUREMENT OF	GEOMETRY	PROBLEM	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE	TOTAL WRITING MEAN & MEDIA SCORES	NUMBER & PERCENT MEETING STANDARD OF 3	HANDWRITING	MECHANICS	WORD USAGE	SENTENCE FORMATION	COMPOSITION
097 ST JAHES SANTEE ELEM	44 720 729	ξ9 65 , 9	6.8	29.5	43.2	47.7	31.8	44	36 81.8	25.0	18.2	11.4	9.1	18.2	22.7	45 2.7 2.6	26 57.8	0.0	11.3	35.6	33.3	2.2
																_						
	 -								_				<u> </u>									
		-														 						
		-					ļ. -	-	-				-		-		-				 -	
	-	-											-	_	-				-		-	+-
		<u> </u>	-	<u> </u>	<u> </u>		-		-		-		-	-		-			-		-	
																	<u> </u>				<u> </u>	<u> </u>

O366A3 ERIC NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

SOUTH CAROLINA BASIC SKILLS ASSESSMENT PROGRAM

DISTRICT SUMMARY BY ORIGIN SCHOOL

COPY 1

GRADE 8

TEST DATE: HAY 87 TOTAL TESTED: 2915

DISTRICT: 17 CHARLESTON

		MA	TH	EM/	ATIC	CS				R	EAL	DIN					<u> </u>	NRI	TIN	G_		
		•		PERCE	NT NEE	DING		z!_	눌			RCENT I	NEEDIN	3		ziz	ARD ARD			CENT N	EEDING MENT	
NAME	MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	CONCEPTS	CPERATIONS	MEASUREMENT C	GEOMETRY	PROBLEM	TOTAL READING MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE	TOTAL WRITING N MEAN & MEDIAN SCORES	NUMBER & PERCI MEETING STAND OF 3	HANDWRITING	MECHANICS	WORD USAGE	SENTENCE	COMPOSITION
009 BIRNEY ALICE HIDDLE	294 745 741	216 73.5	43.2	17.3	25.2	15.6	24.5	294 776 775	240 81.6	19.0	7.5	19.4	15.3	22.4	15.3	292 3.1 3.1	239 81.8	0.0	15.4	13.7	8.9	0.3
088 BRENTHOOD HIDDLE	247 724 720	148 59.9	50.6	24.3	29.1	29.1	31.6	247 754 753	191 77.3	20.6	10.1	24.7	21.9	28.7	23.1	247 2.8 2.8	162 65.6	0.0	22.7	23.9	25.9	0.8
080 C E MILLIAMS HIDDLE	239 737 735	165 69. 0	37.2	18.8	34.7	32.2	29.7	239 767 771	197 82.4	18.4	9.6	15.5	19.2	21.8	22.6	240 3.0 3.0	179 74.6	0.0	16.7	21.3	17.5	4.2
022 COURTENAY HIDDLE	156 722 722	104 66.7	31,4	16.0	47.4	21.8	32.1	157 741 737	113 72.0	23.6	7.6	28.7	21.0	28.7	31.8	157 2.6 2.6	83 52.9	0.0	20.4	37.6	33.8	3.2
077 DRAYTON HALL HIDDLE SCH	322 765 761	257 79.8	34.5	12.4	18.0	14.9	22.4	321 801 798	289	11.8	4.0	11.8	10.0	17.1	10.6	322 3.6 3.5	295 91.6	0.0	4.7	6.2	5.3	1.2
095 FORT JOHNSON HIDDLE SCH	182 767 770	146 80.2	29.1	14.3	30.2	14.3	21.4	182 776 777	151 83.0	15.9	8.2	15.9	18.7	20.9	23.1	182 3.1 3.3	145 79.7	0.0	13.2	28.7	13.2	2.2
032 HAUT GAP HIDDLE	163 725 718	108 66.3	35.6	19.6	43.6	20.9	38.7	163 123 738 75.5 22.1 6.1 22.7 22.1 27.0 28.2						162 2.8 2.7	110 67.9	0.0	16.0	24.7	16.0	0.6		
035 JAMES ISLAND HIDDLE	152 767 764	129 84,9	28.3	7.2	16.4	11.2	21.7	153 7 794 784	140 91.5		7.2	10.5	7.2	15.7	11.	151 3.2 3.1	134 88.7	0.0	8.6	10.6	6.6	0.0
038 LAING HIDDLE 141	192 774 767	153 79.7		8.9	19.8	14.1	19.3	192 795 795	163 84.9		6.3	16.1	15.1	24.0	11.	190 3.3 3.4	165 86.8		7.9	10.5	11.1	0.5

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

SOUTH CAROLINA BASIC SKILLS ASSESSMENT PROGRAM

DISTRICT SUMMARY BY ORIGIN SCHOOL

COPY 1

GRADE 8

TEST DATE: HAY 87 TOTAL TECTED. 201E

DISTRICT: 17 CHARLESTON																			1	TOTAL 1	TESTED:	2915
•		MA	TH	EM/	ATIC	S				R	EAD	OINC	3					WRI				
				PERCI	NT NEE	DING		zl_	F Q			RCENT I		G		ZIZ	ARD			CENT N IPROVE	EEDING MENT	
NAME	TOTAL MATH N MEAN & MEDIĀN SCALE SCORES	NUMBER & PERCEI MEETING STANDAI OF 700	CONCEPTS	OPERATIONS	MEASUREMENT	GEOMETRY	PROBLEM SOLVING	TOTAL READING N MEAN & MEDIAN SCALE SCORES	NUMBER & PERCENT MEETING STANDARD OF 700	DECODING & WORD MEANING	DETAILS	MAIN IDEA	REFERENCE USAGE	INFERENCE	ANALYSIS OF LITERATURE	TOTAL WRITING MEAN & MEDI/ SCORES	NUMBER & PERCENT MEETING STANDARD OF 3	HANDWRITING	MECHANICS	WURD USAGE	SENTENCE FORMATION	COMPOSITION
041 LINCOLN HI	48 687 683	19 39.6	64.6	27.1	47.9	27.1	47.9	48 721 722	29 60.4	25.0	6.3	39.6	22.9	41.7	22.9	48 2.7 2.7	30 62.5	0.0	33.3	31.3	25.0	0.0
049 HORNINGSIDE MIDDLE	160 '705 707	89 55.6	48.1	20.6	45.6	34.4	43.8	161 736 738	112 69.6	26.1	14.3	28.0	25.5	32.9	29.8	159 2.8 2.8	104 65.4	0.0	27.7	25.2	22.6	1.9
050 HOULTRIE HIDDLE	195 758 763	146 74.9	44.1	15.9	21.5	22.1	26.7	195 783 792	156 80.0	14.9	13.3	21.0	20.0	22.1	19.5	195 3.2 3.3	159 81.5	0.0	11.8	14.9	10.3	0.5
083 NORHAN C TOOLE HIDDLE	209 733 726	138 66.0	36.8	22.5	35.4	13.4	38.8	208 747 744	157 75.5	17.3	10.6	27.4	22.6	25.5	22.1	206 2.8 2.8	133 64.6	0.0	25.2	33.0	27.7	3.4
063 RIVERS HIDDLE	195 722 728	132 67.7	34.4	22.1	35.4	30.8	35.4	195 743 742	140 71.8	26.7	15.9	23.1	26.7	33.3	24.3	194 2.7 2.7	132 57.7		28.4	38.7	35.1	0.5
060 SCHRODER R D HIDDLE	147 690 690	68 46.3		36.1	50.3	28.6	53.7	148 706 708	83 56.1	46.6	12.8	37.2	32.4	41.2	35.8	148 2.5 2.4	65 43.9		31.1	51.4	37.8	5.4
																				<u> </u>	<u> </u>	ļ
																		,				
		1							1													
		1	1	1	ı	1	1	1	1	•	1	1 _	1									

NOTE: AREAS NEEDING IMPROVEMENT IN WRITING ARE ONLY INDICATED FOR STUDENTS WHO DID NOT MEET THE STANDARD.

APPENDIX H

Item Response Summaries

SOUTH CAROLINA BSAP ITEM RESPONSE SURVARY GRADES 1 - 8 READING

THE ITEM RESPONSE SUMMARY PROVIDES DESCRIPTIVE INFORMATION ABOUT GROUP AND STATEMIDE PERFORMANCE ON THE SPECIFIC ITEM USED TO ASSESS A SUBSKILL. AS YOU REVIEW THE INDIVIDUAL ITEM DESCRIPTIONS, YOU MILL NOTE THAT THERE IS A POSSIBILITY THAT OTHER DISTINCT ITEM TYPES MAY BE ELIGIBLE TO ASSESS THE SAME SUBSKILL. CONSEQUENTLY, INTERPRETATION OF BATA SHOULD RELATE TO THE SPECIFIC MATURE OF THE ITEM TESTED AND NOT EXTEND TO THE SUBSKILL ASSESSED. FOR A COMPLETE LISTING OF ALL ELIGIBLE ITEM TYPES FOR A GIVEN SUBSKILL, REFER TO THE SKILL DIFFICULTY CHARTS IN THE TEACHING AND TESTING OUR BASIC SKILLS OBJECTIVES MANUALS (TAT).

GENERATE AN INFERRED STATEMENT OF THE MAIN IDEA

. READING SELECTION.

MIEN THE MAIN IDEA IS NOT EXPLICITLY STATED IN A

THE PERCENT OF STUDENTS RESPONDING CORRECTLY TO EACH ITEM IS PROVIDED AT THE SCHOOL, DISTRICT, AND STATZ LEVELS. BY COMPARING GROUP TO STATEMIDE PERFORMANCE, SPECIFIC AREAS OF RELATIVE STRENGTED AND HEAKNESSES ON OBJECTIVES CAN BE DETERMINED.

SINCE THE BSAP MAS DESIGNED TO SAMPLE BEHAVIORS FOR EACH OBJECTIVE, THE REPORT DOES NOT PROVIDE COMPREHENSIVE DIAGNOSTIC INFORMATION. THE DISTRICT'S: HETHOUS OF PROVIDING CONTINUOUS ASSESSMENT FOR EACH INDIVIDUAL STUDENT SHOULD BE UTILIZED TO GATHER THIS TYPE OF DIAGNOSTIC INFORMATION.

ALS. CRITICAL ANALYSIS - THE STUDENT CAN DETERHINE

READING SELECTION.

RELATIONSHIPS BETHEEN STRUCTURAL ELEHENTS IN A

			j		
		BELON IS A LIST OF THE SUBSKILLS TESTED	AND THE SUBSKILL CODES US	SED ON	THIS REPORT.
DECIDING AND HORD CAN DETERMINE THE	HEANTHG HEANTHG	(DNY-THE STUDENT CAN USE HORD RECOGNITION SKILLS AND	REFERENCE USAGE (RI IN REFERENCE SOURCE	13.	STUDENT CAN LOCATE AND STILLIZE DESIRED INFORMATION
TESTED AT GRADES:			1, 2, 3, 6, 8	REL.	SELECTING A REFERENCE SOURCE - THE STUDENT CAN SELECT THE APPROPRIATE REFERENCE SOURCE FOR REQUESTED INFORMATION.
1, 2, 3, 6, 8		SIGHT RECOGNITION - THE STUDENT CAN RECOGNIZE HORDS BY SIGHT.	1, 2, 3, 6, 8	REZ.	MINTHS A REFERENCE SOURCE - THE STUDENT CAN USE A REFERENCE SOURCE TO FIND REQUESTED INFORMATION.
1, 2, 3		PHINETIC BECTOTHS - THE STUDENT CAN RECOGNIZE HORDS BY APPLYING PHONETIC MULES.		STUDE	IT CAN MAKE VALID INFERINCES ABOUT A READING
2, 3, 6, 8	DH3.	CONTEXTUAL HORD MEANING - THE STUDENT CAN DETERMINE THE HEANINGS OF HORDS USED IN A SELECTION FROM THE CONTEXT OF THE SELECTION.	<u> </u>	Dil.	MAKING COMPARISONS - THE STUDENT CAN MAKE COMPARISONS BASED ON A READING SELECTION.
6, 8	Min.	STRUCTURAL HORD HEANING - THE STUDENT CAN DETERMINE THE HEANINGS OF HORDS IN A SELECTION BY APPLYING STRUCTURAL RULES.	1, 2, 3, 6, 8	DHZ.	DETERMINING CAUSE AND EFFECT - THE STUDENT CAN DEDUCE CAUSES AND EFFECTS BASED ON A READING SELECTION.
PETAILS (DE) THE	STUDENT	CAN ACCURATELY CHAPREHEND THE DETAILS IN A READING	1, 2, 3, 6, 8	Mi.	PRAITING CONCLUSIONS - THE STUDENT CAN DRAW CONCLUSIONS BASED ON A READING SELECTION.
<u>SELECTION</u> . 1, 2, 3, 6, 8	•		1, 2, 3, 6, 8	IH.	PREDICTING OUTCOMES - THE STUDENT CAN PREDICT OUTCOMES BASED ON A READING SELECTION.
MATH TOPA (MT)	THE STU	DENT CAN DETERMINE THE MAIN IDEA OF A READING	ANALYSIS OF LITERA SELECTION.	ATURE (AL) THE STUDENT CAN CRITICALLY ANALYZE A READING
1, 2, 3	HTL.	RESTATED MATH 19FA - THE STUDENT CAN IDENTIFY OR GENERATE A VERBATIM STATEMENT OF THE MAIN IDEA HIEN THE HAIN IDEA IS EXPLICITLY STATED IN A	1, 2, 3, 6, 8	ALL	NATE OF THEORNATION - THE STUDENT CAN DETERMINE THE NATURE OF THE INFORMATION PRESENTED IN A READING SELECTION.
ı, 2, 3, 6, 8	MI2.	READING SELECTION. PARABHRAGER MAIN THEA - THE STUDENT CAN IDENTIFY	1, 2, 3, 6, 8	ALZ.	STRUCTURAL FLEHENTS - THE STUDENT CAN DETERMINE THE STRUCTURAL ELEMENTS UTILIZED IN A READING SELECTION.
146		OR GENERATE A PARAPHRASED STATEMENT OF THE MAIN IDEA WHEN THE MAIN IDEA IS EXPLICITLY STATED IN A READING SELECTION.	1, 2, 3, 6, 8	ALZ.	RHETORICAL DEVICES - THE STUDENT CAN DETERMINE THE RHETORICAL DEVICES UTILIZED IN A READING
m1, 2, 3, 6, 8	HIS.	INFERRED MATH IDEA - THE STUDENT CAN IDENTIFY OR			SELECTION. 147

DATE: HAY 87 PAGE: 1

SOUTH CAROLINA BSAP ITEH RESPONSE SUMMARY GRADE 01 READING

	SOUTH CAROLINA BSAP ITEH RESPONSE SURVA	uri	PAGE: 1
DISTRICT: 17 CHAN	CRADE O1 READING	DISTRICT ST % RIGHT % RI	ATE DISTRICT-STATE GHT DIFF % RIGHT
RECORTING AND MIRD	HEANING (PH):		•
THE STUDENT CAN U	HEANING (PH): SE HORD RECOGNITION SKILLS AND CAN DETERMINE THE HEANINGS OF HORDS.	98.1 98.2	1
1-DH1 IDE	NTIFY A PICTURE HHICH REPRESENTS A GRADE 1 SIGHT HORD .	97.4 96.0	. .8
2-DH1 IDE	NTIFY A PICTURE WHICH REPRESENTS A GRADE 1 SIGHT HORD	89.2 88.	2 + 1.0
3-DH1 IDE	NTIFY A PICTURE WHICH REPRESENTS A GRADE 1 SIGHT MORD	96.0 96.	3
A=DH2 ' IDi	INTIFY A NONSENSE HORD BY RECOGNIZING THE ENDING CONSONANT BLEND	96.0 96.	1
5-DH2 ID	ENTIFY A NONSENSE HORD BY RECOGNIZING THE INITIAL CONSONANT BLEND	79.8 79.	. + .8
6-DH2 ID	ENTIFY A NONSENSE HORD BY RECOGNIZING THE INITIAL CONSONANT BLEND	77.6	•
DETAILS (DE):	THE DETATES THE A READING SELECTION.		0.4
THE STUDENT CAN	ACCURATELY COMPREHEND THE DETAILS IN A READING SELECTION.	81.7	
	MPREHEND A DETAIL FROM A SELECTION - HHO	76.8 79	
	HPREHEND A DEVAIL FROM A SELECTION - HOM HANY	71.3 74	- 2.8
	HPREHEND A DETAIL FROM A SELECTION - HHICH	71.4 76	.4 - 5.0
4-DEO C	MPREHEND A DETAIL FROM A SELECTION - MHERE	64.8 67	- 2.2
5-DEO C	DEPREHEND A DETAIL FROM A SELECTION - WHEN	60 .6 65	- 4.8
6-DEO C	OMPREHEND A DETAIL FROM A SELECTION - HHAT		
HATH IDEA (HI):	DETERMINE THE HAIN IDEA OF A READING SELECTION.		- 1.0
THE STOPERT CAN	ELECT THE MAIN IDEA MITCH IS RESTATED FROM A SELECTION	70.5	1.5
1-HI1 \$	ELECT THE HAIN IDEA MIICH IS RESTATED FROM A SELECTION	81.9	3.7 - 1.9
2-HI1 \$	SELECT THE HAIN IDEA HHICH IS PARAPHRASED FROM A SELECTION	ej.1 8	8.0
3-HI2	SELECT THE MAIN IDEA MILLI IS PARAFURASED FROM A SELECTION	84.1	5.2 - 1.1
4-HI2	SELECT THE MAIN IDEA HILL IS PARAPHRASED FROM A SELECTION	87.7	9.7 - 2.0
5-HI3	SELECT THE MAIN IDEA MITCH MUST BE INFERRED FROM A SELECTION	74.3	77.4 - 3.1
6-HI3	SELECT THE MAIN IDEA MHICH MUST BE INFERRED FROM A SELECTION	•	

INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE PRICE IS BELOW THE STATE INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE INDICATES AVERAGE DISTRICT PERFORMANCE IS AVERAGE DISTRICT PERFORMANCE INDICATES AVERAGE DISTRICT PERFORMANCE IS AVERAGE DISTRICT PERFORMANCE INDICATES AVERAGE DISTRICT PERFORMANCE PERFORMAN

DATE: HAY 87

PAGE: 2

SOUTH CAROLINA BSAP İTEM RESPONSE SUMMARY GRADE 01 * READING

,	GRADE OI / READING			
	•	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
REFERENCE US	AGE (RE): CAM LOCATE AND UTILIZE DESIRED INFORMATION IN REFERENCE SOURCES.	,		
1-RE1	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - TABLE OF CONTENTS	78.1	81.8	- 3.7
2-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - PICTURE DICTIONARY	89.6	90.2	4
3-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	90.2	91.1	9
4-RE2.	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	89.1	91.0	- 1.9
5-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	92.3	93.7	- 1.4
6-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	91.8	93.4	- 1.6
INFERENCE ()	IN): CAN HAKE VALID INFERENCES ABOUT A READING SELECTION.			
1-181	MAKE A COMPARISON BASED ON INFORMATION IN A SELECTION	82.5	83.5	- 1.0
2-IN2	IDENTIFY THE CAUSE FOR AN EVENT DESCRIBED IN A SELUCTION	79.4	83.4	- 4.0
3-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION	73.3	75.1	- 1.8
4-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION	76.3	76.4	1
5-IN4	PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION	85.6	85.4	+ .2
6-I 116	PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION	75.4	17.3	- 1.9
ANALYSIS OF THE STUDENT	LITERATURE (AL): CAN CRITICALLY ANALYZE A READING SELECTION.			
1-AL1	IDENTIFY A SENTENCE IN WHICH THE NATURE OF INFORMATION IS MAKE-BELIEVE	77.8 ·	.80 .9	- 3.1
2-AL1	EDENTIFY A SENTENCE IN WHICH THE NATURE OF INFORMATION IS MAKE-BELIEVE	71.7	74.8	- 3.1
- 3-ALC	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - DESCRIPTION OF CHARACTER	75.8	78.4	- 2.6
4-212	AHALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - SUMMARY OF THE PLOT	71.4	72.1	7
150°-AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - RHYHE	72.0	74.1	- 2.1
6-AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - RHYHE	64.2	66.6	- 2.4

INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE ENDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

DISTRICT: 17 CHARLESTON

DATE: HAY 87

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE 02 READING

-BISTRICT:	17 CHARLESTON	South Carolina BSAP Item response survary Grade 02 Reading		•	PAGE: 1
F-404			DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
DECODING A	NO HURD HEARING IT CAN USE HURD	(DH): RECOGNIZZON SKILLS AND CAN DETERMINE THE HEAMINGS OF HORDS.		88.6	2
1-DH1		DEFINITION OF A GRADE: 2 SIGHT MORD	68.4		+ 4.6
2-DH1		DEFINITION OF A CRADE & SIGHT MORD	92.9	88.3	+ .2
3-DH2		NONSENSE HORD BY RECOGNIZING THE CONSONANT DIGRAPH	9 8.7	98.5	+ .3
4-DH2		NONSENSE WORD BY RECOGNIZING THE FINAL COMMON WORD ENDING	99.5	99.2	+ 2.6
5-DH3	z TOENTTEY A	DEFINITION OF AN UNKNOWN HORD USING THE SITUATION AS A CONTEXT CLUE	93.1	90.5	2
6-DH	3 IDENTIFY A	DEFINITION OF AN UNKNOWN HORD USING THE SITUATION AS A CONTEXT CLUE	75.9	76.1	
DETAILS (DE): HT CAN ACCURATE	LY COMPREHEND THE DETAILS IN A READING SELECTION.		00.0	+ 1.3
1-DE		A DETAIL FROM A SELECTION - HHICH	94.2	92.9	+ 1.4
2-DE		A DETAIL FROM A SELECTION - WHERE	92.4	91.0	+ 1.6
2-0. 3-0E		A DETAIL FROM A SELECTION - WHERE	87.9	86.3	_
		A DETAIL FROM A SELECTION - WIEN	89.0	87.5	+ 1.5
4-08		A DETAIL FROM A SELECTION - WIO	85.1	84.2 .	.9
5-DE 6-DI		A DETAIL FROM A SELECTION - HHAT	87.2	84.9	+ 2.3
HAIN IDE		IE THE HAIN IDEA OF A READING SELECTION.		a 7	+ 1.0
1-H		HAIN IDEA MHICH IS RESTATED FROM A SELECTION	88.0	. 87.0	- 1.7
. 2-H		HAIN IDEA WHICH IS RESTATED FROM A SELECTION	80.6	82.3	+ 2.6
3-H		MAIN IDEA HIICH IS PARAPHRASED FROM A SELECTION	85.8	83.2	
5-c		HAIN IDEA HHICH IS PARAPHRASED FROM A SELECTION	79.3	79.3	+ .0
-		MAIN IDEA WHICH MUST BE INFERRED FROM A SELECTION	85.8	82.5	+ 3.3
5-t 6-t		HAIN IDEA HHICH HUST BE INFERRED FROM A SELECTION	64.7	61.4	+ 3.3

Full Text Provided by ERIC

DATE: HAY 87 PAGE: 2

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE 02 READING

	•	:	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
REI THI	FERENCE US/ E STUDENT (LGE (RE): CAN LOCATE AND WITLIZE DESIRED INFORMATION IN REFERENCE SOURCES.			•
	1-RE1	SELECT THE DEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - TABLE OF CONTENTS	84.8	85.6	∹8 .
	2-RE1	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - PICTURE DICTIONARY	86.8	87.0	2
	3-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - MAP	96.4	94.5	+ 1.9
	4-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	92.7	92.8	1
	5-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS	95.3	94.5	+ 1.0
mr.	6-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED EMFORMATION - PICTURE DICTIONARY	94.3	92.5	+ 16
r In Th	FERENCE (I E STUDENT	N): CAN HAKE VALID INFERENCES ABOUT A READING SELECTION.			
	1-IN1	HAKE A COMPARISON BASED ON INFORMATION IN A SELECTION	89.6	88.6	+ 1.0
	2-IN1	HAKE A COMPARISON BASED ON INFORMATION IN A SELECTION	86.6	84.7	+ 1.9
	3-IN2	IDENTIFY THE EFFECT FOR EVENT DESCRIBED IN A SELECTION	83.3	82.3	+ 1.0
	4-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION	87.2	86.0	+ 1.2
	5-IN4	PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION	88.0	86.2	+ ì.8
	6-IN4	PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION	85.7	83.8	+ 1.9
AN TH	IALYSIS OF IE STUDENT	LITERATURE (AL): CAN CRITICALLY MALYZE A READING SELECTION.			
	1-AL1	IDENTIFY A SENTENCE IN MHICH THE NATURE OF INFORMATION IS MAKE-BELIEVE	88.2	86.6	+ 1.6
	2-AL1	IDENTIFY A SENTENCE IN MICH THE NATURE OF INFORMATION IS MAKE-BELIEVE	87.4	85.3	+ 2.1
***	3-AL2	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - SETTING	93.7	91.9	+ 1.8
	4-ALZ	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - SETTING	92.2	90.7	+ 3.5
15	5-AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - RHYME	81.3	82.6	- 1.3
15	6-AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - RHYHE	66.1	71.6	- 5.5 155
ERU Provides	(INDIC	ATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE ATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE			

DATE: HAY 87 PAGE: 1

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY
GRADE 03. READING

DISTRICT	17 CHARLESTON	SRADE US. READING	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE. DIFF 2 RIGHT
DECODING AN	ND HORD HEANING (DH): I can use hord recognition skills an	D CAN DETERMINE THE HEANINGS OF HORDS.	96.7	93.0	+ 3.7
1-DH1	IDENTIFY A DEFINITION OF A GRADE	3 SIGHT HORD	80.2	67.4	+ 12.8
2-DH1	IDENTIFY A DEFINITION OF A GRADE	3 SIGHT HORD	96.1	96.3	2
3-DH2	ASENTARY A NONSENSE HORD BY RECO	OGNIZING THE INITIAL CONSONANT BLEND	97.8	94.7	+ 3.1
1-DH2	IDENTIFY A NONSENSE MORD BY RECO	OGNIZING A CONHON WORD ENDING	. 94.7	91.0	+ 3.7
5-DH3	IDENTIFY A DEFINITION OF AN UNK	NOHN HORD USING THE SITUATION AS CONTEXT CLUE	98.0	96.1	+ 1.9
6-DH3	IDENTIFY A DEFINITION OF AN UNK	NORM HORD USING THE SITP'ATION AS CONTEXT CLUE	70.0		
DETAILS (D	DE): IT CAN ACCURATELY COMPREHEND THE DET	AILS ZH A READING SELECTION.	26. 9	91.0	+ 3.2
1.DE(STATE SOM A SELE		94.2 97.5	96.2	+ 1.3
2-DE6	A DETAIL SOOM A SELE		77.5 94.0	91.4	+ 2.6
3-DE(A DETAIL SDOM A SELE		94.3	92.8	+ 1.5
4-DE	O COMPREHEND A DETAIL FROM A SELI	ECTION - MHAT	91.5	87.9	+ 3.6
5-DE	O COMPREHEND A DETAIL FROM A SELI	ECTION - SEQUENCE	91.3	66.9	+ 4.4
4-DE	O COMPREHEND A DETAIL FROM A SEL	ECTION - SEQUENCE	****		•
HAIN IDEA	A (HI): EHT CAN DETERHINE THE HAIN IDEA OF A	READING SELECTION.			+ 3.3
	THE STORY TO	RESTATED FROM A SELECTION	91.3	88.0	+ 1.4
1-H1	MATE THE BUTCH TR		82.9	81.5	+ 2.9
2-HI 3-HI	THE SHAPE THE LINICU TS		93.9	91.0	+ 5.5
5-11 4-H	THE TAX THE TAX THE TAX THE TAX TO THE TAX T		60.0	54.5	4 4.2
4-n 5-H		ST BE INFERRED FROM A SELECTION	90.5	86.3	4 3.9
6-H		ST BE INFERRED FROM A SELECTION	88.8	84.9	

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
"-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

DATE: HAY 87

SOUTH CARGLINA BSAP ITEH RESPONSE SUMMARY READING

PAGE: DISTRICT: 17 CHARLESTON CRADE 03 i DISTRICT-STATE STATE DISTRICT DIFF X RIGHT X RIGHT 2 RIGHT REFERENCE WAVE (RE): THE STUDENT CAN LOCATE AND UTILIZE DESIRED INFORMATION IN REFERENCE SOURCES. - 3.0 40.9 57.9 SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - ENCYCLOPEDIA 1-RE1 71.5 72.6 SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - TABLE OF CONTENTS 2-RE1 98.6 USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TABLE OF CONTENTS 99.4 3-RE2 + 1.8 97.5 95.7 USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - CARD CATALOG 4-RE2 + 2.9 88.5 91.4 USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - HAP 5-RE2 + 5.8 83.9 89.7 USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - DICTIONARY 6-RE2 INFERENCE (IN): THE STUDENT CAN HAKE VALID INFERENCES ABOUT A READING SELECTION. + 1.9 93.2 95.1 MAKE A COMPARISON BASED ON INFORMATION IN A SELECTION 1-IN1 + 4.2 82.9 87.1 IDENTIFY THE EFFECT OF AN EVENT DESCRIBED IN A SELECTION 2-IN2 + 3.8 74.8 78.6 IDENTIFY THE CAUSE OF AN EVENT DESCRIBED IN A SELECTION 3-IN2 + X.D 91.3 93.3 DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION I'S A SELECTION 4-INS + 3.8 87.8 91.6 DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION 5-IN3 84.7 89.5 PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION 6-IN4 AHALYSIS OF LITERATURE (AL): THE STUDENT CAN CRITICALLY ANALYZE A READING SELECTION. + 1.2 94.7 95.9 IDENTIFY A SENTENCE IN MICH THE NATURE OF INFORMATION IS MAKE-BELTEVE 1-AL1 + 1.6 93.7 95.3 IDENTIFY A SENTENCE IN WHICH THE NATURE OF INFORMATION IS MAKE-BELIEVE Z-AL1 + 2.1 95.3 ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - SUMMARY OF THE PLOT 97.4 3-AL2 + 3.4 86.1 89.5 ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - DESCRIPTION THE CHARACT 4-ALZ 59.0 58.6 ANALYZE A SELECTION TO EDENTIFY A RHETORICAL DEVICE - SIHILE 5-AL3 - 4.2 65.0 69.2

** INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE

6-AL3

٠Ń٠

ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - SIMILE

DATE: HAY 87 PAGE: 13 "

SOUTH CAROLINA BSAP ITEM RESPONSE SUPPLARY GRADE 06 READING

·	DISTRICT: 17 CHARLESTON	SOUTH CAROLINA BSAP ITEM RESPONSE SURMARY GRADE 06 READING			PAGE: 13
,	WISIRIUI. 27 CHAMBERTON	•	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
	DECODING AND HORD HEANING (DH): THE STUDENT CAN USE HORD RECOGNITION SKILLS AND CAN D	ETERMINE THE NEAMINGS OF HORDS.	%.7	93.4	+ 1.3
	1-DH1 IDENTIFY A DEFINITION OF A GRADE 6 SIGN	IT HORD	89.9	89.6	+ .3
•	2-DH1 IDENTIFY A DEFINITION OF A GRADE 6 SIGN	IT HORD	97.8	97.6	4 .2
	3-DH3 IDENTIFY A DEFINITION OF AN UNKNOWN HOS	RD USING THE SITUATION AS A CONTEXT CLUE	97.0	96.7	+ .3
	4-DH3 IDENTIFY A DEFINITION OF AN UNKNOWN HO	RD USING THE SITUATION AS A CONTEXT CLUE	67.8	65.7	+ 2.1 ·
	5-DH4 · IDENTIFY A DEFINITION BY APPLYING A STI	RUCTURAL RULE - SUFFIX	70.1	66.8	+ 3.3
(F	6-DH4 IDENTIFY A DEFINITION BY APPLYING A ST	RUCTURAL RULE - PREFIX			
	DETAILS (DE): THE STUDENT CAN ACCURATELY COMPREHEND THE DETAILS IN	A READING SELECTION.	9 2.0	91.0	+ 1.6
	1-DEO COMPREHEND & DETAIL FROM A SELECTION -		91.5	68.5	+ 3.0
,	2-DEO COMPREHEND A DETAIL FROM A SELECTION -	- Mi O	#5.7	83.4	+ 2.3
	3-DEO COMPREHEND A DETAIL FROM A SELECTION -	- MIAT	84.4	80.7	+ 3.7
	4-DEO COMPREHEND A DETAIL FROM A SELECTION .	- HOH	90.2	87.9	+ 2.3
	5-DEO COMPREHEND A DEVAIL FROM A SELECTION .	- SEQUENCE .	83.3	81.3	+ 2.0
•	6-DEO COMPREHEND A DETAIL FROM A SELECTION	- SEQUENCE	32.5		
T	HAIN IDEA (HI): THE STUDENT CAN DETERMINE THE HAIN IDEA OF A READIN	G SELECTION.		93.4	. 1
	1-HI2 SELECT THE HAIN IDEA WHICH IS PARAPHR	MASED FROM A SELECTION	93.5	73. 7 70.7	+ 1.8
Ţ	2-HI2 SELECT THE HAIN IDEA HHICH IS PARAPHR	RASED FROM A SELECTION	72.5	53.3	+ 1.9
	3-HI2 SELECT THE HAIN IDEA WHICH IS PARAPHE	RASEO FROM A SELECTION	55.2	75.7	+ 2.5
	4-HI3 SELECT THE GAIN IDEA WHICH HUST BE IN	NFERRED FROM A SELECTION	73.2	66.5	+ 2.4
	5-HI3 SELECT THE HAIN IDEA WHICH MUST BE I	NFERRED FROM A SELECTION	68.9	66.8	+ 3.7
i	6-HIS SELECT THE HAIN IDEA WHICH HUST BE I	NFERRED FROM A SELECTION	70.5	*****	

* "+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

_ASTRICT COPY

SOUTH CAROLINA BSAP ITEH RESPONSE SUMMARY

GRADE 06 READING

DATE: MAY 87
PAGE: 2

	•	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
REFERENCE US/ THE STUDENT O	ige (RE): Can locate and utilize desired information in reference sources.			
1-REJ	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - TELEPHONE DIRECTORY	93.1	93.3	2
2-RE1	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED PURPOSE - HAP	92.0	92.1	1
3-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - INDEX	93.6	92.6	+ 1.0
4-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - CARD CATALOG	90.3	89.4	+ .9
5-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - TELEPHONE DIRECTORY	9 0.7	90.7	+ .0
6-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFORMATION - ENCYCLOPEDIA	91.0	84.0	+ 7.9
INFERENCE (II	N): CAN MAKE VALID INFERENCES ABOUT A READING SELECTION.			
1-IN1	MAKE A COMPARISON BASED ON INFORMATION IN A SELECTION	69.9	67.0	+ 2.9
. S-INS	IDENTIFY THE CAUSE FOR AN EVENT DESCRIBED IN A SELECTION	85.1	82.0	+ 3.1
3-IN2	IDENTIFY THE CAUSE FOR AN EVENT DESCRIBED IN A SELECTION	70.2	66.1	+ 4.1
4-IN3	DRAM AM APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION	72.6	70.3	+ 2.3
5-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORMATION IN A SELECTION	61.2	60.1	+ 1.1
6-IH4	PREDICT AN OUTCOME BASED ON INFORMATION IN A SELECTION	82.0	81.0	+ 1.0
AHALYSIS OF THE STUDENT	LITERATURE (AL): CAN CRITICALLY ANALYZE A READING SELECTION.		•	
1-AL1	IDENTIFY A SENTENCE IN WHICH THE NATURE OF INFORMATION IS A FACT	67.3	65.4	+ 1.9
2-AL1	IDENTIFY A SENTENCE IN MIICH THE NATURE OF INFORMATION IS AN OPINION	60.3	57.6	+ 2.7
3-AL2	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - SETTING	61.1	65.8	- 4.7
4-AL2	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL ELEMENT - PLOT	51.5	51.5	+ .0
16 & AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - HETAPHOR	77.2	75.6	+ 1.6
6-AL3	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL DEVICE - HETAPHOR	62.4	63.0	163.

ERIC MOZCATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE MOICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

SOUTH CAROLINA BSAP ITEM RESPONSE SURFIARY GRADE 08 READING

DISTRICT COPY

DATE: HAY: 87 PAGE: 1

		DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
DECODING AND THE STUDENT C	HORD MEANING (DH): AN USE HURD RECOGNITION SKILLS AND CAN DETERMINE THE MEANINGS OF HORDS.	. 91.9	88.8	+ 3.1
1-041	IDENTIFY A DEFINITION OF A GRADE 8 SIGHT NORD	83.5	79.9	+ 3.6
2-DH1	IDENTIFY A DEFINITION OF A GRADE 8 SIGHT HORD	96.1	96.2	1
3-DH3	IDENTIFY A DEFINITION OF AN UNKNOWN HORD USING THE SITUATION AS A CONTEXT CLUE	77.7	73.5	+ 4.2
4-DH3	IDENTIFY A DEFINITION OF AN UNKNOWN HORD USING THE SITUATION AS A CONTEXT CLUE	89.6	85.8	+ 3.8
5-944	IDENTIFY A DEFINITION BY APPLYING A STRUCTURAL RULE - PREFIX	83.5	81.6	+ 1.9
6-D 114	IDENTIFY A DEFINITION BY APPLYING A STRUCTURAL RULE - PREFIX			
DETAILS (DE) THE STUDENT	CAN ACCURATELY COMPREHEND THE DETAILS IN A READING SELECTION.	93.8	93.6	+ .0
1-DEO	COMPREHEND A DETAIL FROM A SELECTION - HOM MANY	93.6	92.7	+ .9
2-DEO	COMPREHEND A DETAIL FROM A SELECTION - WHERE	83.0	81.3	+ 1.7
3-DEO	COMPREHEND A DETAI' FROM A SELECTION - HHICH	81.8	78.9	+ 2.9
4-DEO	COMPREHEND A DETAIL FROM A SELECTION - HHAT	72.3	70.7	+ 1.6
5-DEO	COMPREHEND A DETAIL FROM A SELECTION - SEQUENCE	84.5	81.5	4. %.0
. 6- DE0	COMPREHEND A DETAIL FROM A SELECTION - MIY	01.5		
HAIN IDEA (MI): Can determine the main idea of a reading selection.			9
1-HI2	SELECT THE MAIN ILEA WHICH IS PARAPHRASED FROM A SELECTION	90.6	91.5	+ 3.0
2-HI2	SELECT THE HAIN IDEA WHICH IS PARAPHRASED FROM A SELECTION	84.4	81.4	+ 2.3
3-HI2	SELECT THE HAIN IDEA WHICH IS PARAPHRASED FROM A SELECTION	81.0	78.7	+ 1.9
4-1113	SELECT THE HAIN IDEA WHICH MUST BE INFERRED FROM A SELECTION	80.2	78.3	1
5-HI3	SELECT THE HAIN IDEA HHICH HUST BE INFERRED FROM A SELECTION	65.9	66.0	- 1.3
6-HI3	SELECT THE HAIN IDEA WHICH HUST BE INFERRED FROM A SELECTION	46.8	48.1	

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

165

Full Text Provided by ERIC

DATE: HAY 87

PAGE: 2

SOUTH CAROLINA BSAP ITEH RESPONSE SUPPLARY

DISTRICT: 17	CHARLESTON ' SU	GRADE DS READING		•	***************************************
DISIRICI: 17	CHARLESTON	GRADE DO READER	DISTRICT % RIGHT	% BIGHT	DISTRICT-STATE DIFF % RIGHT
REFERENCE US!	GE (RE): AN LUCATE AND UTILIZE DESIRED INFORMATION IN REFE	RENCE SOURCES.	94.7	92.9	+ 1.8
1-RE1	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED	PURPOSE - TELEPHONE DIRECTOR	92.5	92.2	+ .3
2-RE1	SELECT THE BEST REFERENCE SOURCE FOR A SPECIFIED	PURPOSE - CARD CATALOG	76.5	74-4	+ 2.1
3-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFO	CHATION - BIBLIOGRAPHY	88.6	82.0	€ 6.6
4-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFO	RHATION - HEHSPAPER INDEX	87.6	84.5	+ 3.1
5-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFO	RHATION - DICTIONARY	77.1	74.0	+ 3.1
6-RE2	USE A REFERENCE SOURCE TO LOCATE SPECIFIED INFO	RMATION - ENCYCLOPEDIA	••••		
INFERENCE ()	H): Can make valid inferences about a reading selecti	ON.		73.6	÷ 5.0
1-INI	MAKE A COMPARISON BASED ON INFORMATION IN A SEL	ECTION	78.6	75.0 77.1	+ 1.4
2-IN2	IDENTIFY THE CAUSE FOR AN EVENT DESCRIBED IN A	SELECTION	78.5	72.8	+ 4.5
3-IN2	IDENTIFY THE CAUSE FOR AN EVENT DESCRIBED IN A		77.3	67.7	+ 1.3
4-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORM	ATION IN A SELECTI 3N	69.0	67.5	+ 1.8
5-IN3	DRAM AN APPROPRIATE CONCLUSION BASED ON INFORM	ATION IN A SELECTION	69.3	77.0	4
6-INA	PREDICT AN OUTCOME BASED ON INFORMATION IN A S		76.6	77.0	
ANALYSES OF	LITERATURE (AL): CAN CRITICALLY ANALYZE A READING SELECTION.				+ 3.4
	IDENTIFY A SENTENCE IN HICH THE NATURE OF INF	ORNATION IS A FACT	78.6	75.2	+ 4.0
1-AL1 2-AL1	IDENTIFY A SENTENCE IN WHICH THE NATURE OF IN	FORHATION IS A FACT	74.3	70.3	5
2-AL1	ANALYZE A SESECTION TO IDENTIFY A STRUCTURAL E	ELEHENT - CHARACTER	92.0	91.5	- 1.0
4-AL2	ANALYZE A SELECTION TO IDENTIFY A STRUCTURAL I		65.8	66.8	+ 1.0
166 5-ALS	ANALYZE A SELECTION TO IDENTIFY A RHETORICAL		71.9	70.9	9
G-AL4	THE PERSON TO DETERMINE	A CHARACTER'S POINT OF VIEW	70.8	71.7	167
EDIC.	THE STATE OF THE S			•	and A. A.

"+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
"-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY CRADES 1 - 8 MATHEMATICS

THE ITEM RESPONSE SUMMARY PROVIDES DESCRIPTIVE INFORMATION ABOUT GROUP AND STATEMIDE PERFORMANCE ON THE SPECIFIC ITEM USED TO ASSESS A SUBSKILL. AS YOU REVIEM THE INDIVIDUAL ITEM DESCRIPTIONS, YOU HILL NOTE THAT THERE IS A POSSIBILITY THAT OTHER DISTINCT ITEM TYPES HAY BE ELIGIBLE TO ASSESS THE SAME SUBSKILL. CONSEQUENTLY, INTERPRETATION OF DATA SHOULD RELATE TO THE SPECIFIC NATURE OF THE ITEM TESTED AND NOT EXTEND TO THE SUBSKILL ASSESSED. FOR A COMPLETE LISTING OF ALL ELIGIBLE ITEM TYPES FOR A GIVEN SUBSKILL, REFER TO THE SKELL DIFFICULTY CHARTS IN THE TEACHING AND TESTING OUR BASIC SKILLS OBJECTIVES MARKIALS (TAT).

168

THE PERCENT OF STUDENTS RESUGNING CORRECTLY TO EACH ITEM IS PROVIDED AT THE SCHOOL, DISTRICT, AND STATE LEVELS. BY COMPARING GROUP TO STATEHIDE PERFORMANCE, SPECIFIC AREAS OF RELATIVE STRENGTHS AND HEAKNESSES ON OBJECTIVES CAN BE DETERMINED.

SINCE THE BSAP HAS DESIGNED TO SAMPLE BEHAVIORS FOR EACH OBJECTIVE, THE REPORT DOES NOT PROVIDE COMPREHENSIVE DIAGNOSTIC INFORMATION. THE DISTRICT'S HETHODS OF PROVIDING CONTINUOUS ASSESSMENT FOR EACH INDIVIDUAL STUDENT SHOULD: BE UTILIZED TO GATHER THIS TYPE OF DIAGNOSTIC INFORMATION.

	BELON IS A LIST OF THE SUBSKILLS TESTED AND THE SUBSKILL CODES USED ON THIS REPORT.							
•		MEASUREMENT (ME) THE STIMENT CAN APPLY HEASUREMENT CONCEPTS.						
CONCEPTS (CH) THE	STUDENT CAN APPLY NAMERICAL CONCEPTS.		-					
TESTED AT GRADES:		1, 2, 3, 6, 8 HEL. IDENTIFYING UNITS OF MEASUREMENTS - THE STUDENT CAN DETERMINE THE APPROPRIATE TYPE OF MEASUREMENT						
1, 2, 3	CHI. COUNTING - THE STUDENT CAN COUNT.	AND SELECT THE APPROPRIATE UNITS OF HEASUREHEMT HITHIN A GIVEN HEASUREHENT SYSTEM.	'					
1, 2, 3, 6, 8	CH2. IDENTIFYING EQUIVALENCIES - THE STUDENT CAN IDENTIFY EQUIVALENT HAYS OF PRESSING THE SAME NUMERICAL QUANTITY.	3, 6, 8 HE2. ESTINATION - THE STUDENT CAN ESTIMATE MEASURABL QUANTITIES MITHIN A GIVEN MEASUREMENT SYSTEM.						
1, 2, 3, 6, 8	CH3. ESTABLISHING RELATIONSHIPS - THE STUDENT CAN ESTABLISH RELATIONSHIPS BETWEEN NUMERICAL EQUALITIES.	1, 2, 3 8 ME3. USING MEASURING DEVICES - THE STUDENT CAN READ AND INTERPRET INFIGRICATION BY USING A MEASURING DEVICE HITHIN A GIVEN MEASUREMENT SYSTEM.						
1, 2, 3, 6, 8	DETERMINING PLACE VALUE - THE STUDENT CAN DETERMINE THE PLACE VALUE OF NAMERICAL QUANTITIES.	3, 6, 8 HES. CONVERSIONS AND OPERATIONS - THE STUDENT CAN HAVE DECESSARY CONVERSIONS USING UNITS OF HEASUREMENT NITHIN A GIVEN HEASUREMENT SYSTEM AND CAN PERFORM	,,,					
2, 5 . 6, 8	CHS. INTERPRETING TABLES AND GRAPHS - THE STUDENT CAN EXTRACT AND INTERPRET INFORMATION FROM TABLES AND	CALCULATIONS HHICH HAY INVOLVE CURVERSIONS.						
	GRAPHS.	6, 8 <u>Heb.</u> <u>Scale Drahtnes</u> — The Student can read, interpri and construct scale drahings Hithin a given Heasurement System.	ET,					
		GEOMETRY (GE) THE STUDENT CAN APPLY CEMETRIC CONCEPTS.						
OPERATIONS (OP) TO	IE STUDENT CAN COMPUTE ACCURATELY.	1, 2, 3, 6, 8 GE1. IDENTIFICATION - THE STUDENT CAN IDENTIFY GEOMETRIC REPRESENTATIONS THROUGH THE USE OF THEIR PROPERTIES.						
- 1, 2, 3, 6, 8	OP1. ADDITION - THE STUDENT CAN ADD ACCURATELY.	AMURANTEMA THE STIMENT CAN CO. JARE GEOMETRIC	С					
ml, 2, 3, 6, 8	OP2. SUBTRACTION - THE STUDENT CAN SUBTRACT ACCURATELY.	REPRESENTATIONS THROUGH THE USE OF THE LIKE PROPERTIES.						
3, 6, 8	OPY. HULTIPLICATION - THE STUDENT CAN MULTIPLY ACCURATELY.	6, 8 GES: APPLICATION - THE STUDENT CAN APPLY GEOMETRIC CONCEPTS TO DETERMINE THE PERIMETER, AREA, OR LUMB OF GEOMETRIC REPRESENTATIONS.	ŀ					
3, 6, 8	OP4. DIVISION - THE STUDENT CAN DIVIDE ACCURATELY.	PROBLEM COLVING (PS) THE STUDENT CAN SOLVE PROBLEMS INVOLVING THE USE OF MATURIATICS.	E					

1, 2, 3, 6, 8

DATE: HAY 87 PAGE: 3

TEM DECOMME CIRCLEY

DISTRICT: 17	CHARLESTON	INA BSAP ITEH RESPONSE SUMMARY GRADE 01 MATHEMATICS	DISTRICT % RIGHT	STATE % RIGHT	PAGE: 3 . DISTRICT-STATE DIFF % RIGHT
CONCEPTS (CH) THE STUDENT C	W VELT HAIRDANN AND AND AND AND AND AND AND AND AND		95.6	95.7	1 2
1CN1	COUNT NUMBER OF OBJECTS PICTURED		95.5	9 5.7	9
2-CN1	COUNT NUMBER OF OBJECTS PICTURED		95.1	96.0	
3-CN2	IDENTIFY 2-DIGIT NAMBER EQUIVALENT TO GIVEN HORD NAME	•	95.1	96.0	9
4-CN3	DETERMINE THO EQUIVALENT SETS BY MATCHING OBJECTS	1	93.2	91.7	+ 1.5
5-CN4	IDENTIFY 2-DIGIT NUMBER EQUIVALENT TO GIVEN HORD HAME	•	70.8	74.4	- 3.6
6-CN4	USE PLACE VALUE TO IDENTIFY DIGIT IN ONE'S PLACE	, , ,;	•		
OPERATIONS (OP): CAN COMPUTE ACCURATELY.	. AND RECORDING	89.6	89.9	3
1-091	AND (UEST.): 1-DIGIT + 1-DIGIT + 1-DIGIT, PROLE NOSE	5, NO REGREGATION	85.2	85.1	+ .1
2-0P1	ADD (HORIZ.): 1-DIGIT + 1-DIGIT, MHOLE MAMBERS, BASIC	FACT C 10	80.2	82.1	- 1.9
3-0P1	ADD AVERT 1: 2-DIGIT + 1-DIGIT; MHOLE NUMBERS, NO REGR	OCHINA '	89.0	88.8	+ .2
.\-0P2	CURTUALT (HORIZ.): 1-DIGIT - 1-DIGIT, HIGLE NUMBERS, N	D KERKOOPINA	86.4	85.3	+ 1.1
5-0P2	CURTACT (VERT.): 2-DIGIT - 1-DIGIT, NIOLE MANDERS, NO) KERKOOLTUR	82.1	80.9	+ 1.2
6-0P2	SUBTRACT (HORIZ.): 2-DIGIT - 1-DIGIT, HHOLE NUMBERS, E	BASIC FACT < 18			
MEASUREHEN	(HE):	:			2
THE STUDEN	CAN APPLY MENDONLIMITE THE	•	90.0	90.2	.2 .
1-HE1	RECOGNIZE THE COIN OF A GIVEN VALUE		91.7	91.5	. 5
(2-HE1	RECOGNIZE THE COIN OF A GIVEN VALUE	•	84.1	83.4	9
3-HE1	RECOGNIZE HONTH WHICH PRECEDES A GIVEN HONTH	!	96.2	97.1	
170 4-HE3	READ THE CLOCK TO DETERMINE TIME TO THE HOUR	; ,	97.6	98.1	- 1.4
5-HE	READ THE CLOCK TO DETERMINE TIME TO THE HOUR	r T	85.1	86.5	171
TO 6-HE	•				- · ·
Full Took Provided by ERIC	ICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE				The second secon

DISTRICT-STATE

DIFF % RIGHT

.2

DATE: HAY 87

PAGE: 4

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE 01 HATHEHATICS

CEDMETRY (CE): . THE STUDENT CAN APPLY GEOMETRIC CONCEPTS. RECOGNIZE A CIRCLE 1-GE1 RECOGNIZE AN OPEN CURVE 2-GE1 RECOGNIZE A SQUARE 3-GE1 COMPARE SIZES OF OBJECTS TO FIND SMALLEST 4-GE2 COMPARE SIZES OF OBJECTS TO FIND LARGEST 5-GE2 COMPARE SIZES OF OBJECTS TO FIND LARGEST 6-GE2 PRODLEM SOLVENIG (PS): THE STUDENT CAN SOLVE PROBLEMS INVOLVING THE USE OF MATHEMATICS. SOLVE A PROBLEM: SUBTRACTION, HINUENO < 10 1-PS0 SOLVE A PROBLEM: ADDITION, SUM = 10 2-PS0 SOLVE A PROBLEM: ADDITION HITH HONEY, SUM < 10 3-PS0 SOLVE A PROBLEM: SUBTRACTION, HINDEND < 10 4-PSO SOLVE A PROBLEM: ADDITION HITH HONEY, SUM < 10 5-PSO SOLVE A PROBLEM: SUBTRACTION, HINUEND < 10 6-PSO

82.4	86.1	- 3.7
91.4	93.8	- 2.4
98.3	98.3	+ .3
89.9	90.8	9
90.4	91.1	7
\$1.9	95.7	8
92.7 [.]	93.8	- 1.1
91.4	91.7	- ,3
92.3	92.3	+ .0
94.0	94.2	2
85.2	86.3	- 1.1

STATE

% RIGHT

97.9

DISTRICT

Z RIGHT

97.7

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STAYE

^{* &}quot;-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOM THE STATE

1						DISTRICT COPY
	DISTRICT:	17 CHARLESTON	SOUTH CAROLINA DSAP ITEM RESPONSE SUMMARY GRADE 02 MATHEMATICS			DATE: MAY 87 Page: 3
				DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF & RIGHT
	CONCEPTS (CN): IT CAN APPLY HAMERICAL CONCEPTS.				_
	1-CN1	COUNT FORHARD BY 2'S		98.9	98.6	+ .3
	z-cnz	IDENTIFY NUMBER EQUIVALENT TO	GIVEN HORD NAME > 100	9 8.1	96.1	+ 2.0
	3-CN2	IDENTIFY NUMBER EQUIVALENT TO	DIVEN HORD NAME > 100	98.2	97.1	+ 1.1
	4-CN2	IDENTIFY NUMBER EQUIVALENT TO	DIVEN HORD NAME < 100	97.2	95.1	+ 2.1
	5-CN3	FIND CORRECT RELATIONSHIP BETH	EEN THO NUMBERS < 10	79.2	76.9	+ 2.3
	6-CN5	5 INTERPRET INFORMATION IN A BAR	GRAPH	99.2	99.2	+ .0
	OPERATIONS THE STUDEN	B (OP): IT CAN COMPUTE ACCURATELY.				
	1-OP	ADD (HORIZ.): 2-DIGIT + 1-DIGI	T, HHOLE HUMBERS, MITHOUT REGROUPING	95.8	. 94.6	+ 1.2
	2-QP	ADD (VERT.): 2-DIGIT + 1-DIGIT	, MHOLE NUMBERS, MITH REGROUPING	89.1	87.3	+ 1.8
	3-0P	ADD (VERT.): 3-DIGIT + 3-DIGIT	, HHOLE NUMBERS, HITH REGROUPING	75.2	72.5	+ 2.7
	4-0P	2 SUBTRACT (VERT.): 3-DIGIT - 2-	DIGIT, MHOLE MUMBERS, NO REGROUPING	93.8	93.6	÷ .2
	5-0P	2 SUBTRACT (HORIZ.): 2-DIGIT - 1	-DIGIT, MHOLE NUMBERS, NO REGROUPING	92.9	91.6	+ 1.3
	6-OP	2 SUBTRACT (VERT.): 2-DIGIT - 1-	DIGIT, MHOLE NUMBERS, HITH REGROUPING	71.3	69.0	+ 2.3
	HEASUREHEI THE STUDE	NT (HE): NT CAN APPLY HEASUREHENT CONCEPTS.	•			
	1-HE	1 SELECT APPROPRIATE UNIT TO HEA	SURE TEMPERATURE, CUSTOMARY	78.9	82.0	- 3.1
	2-HE	1 SELECT APPROPRIATE UNIT TO HE	ISURE HIDTH, HETRIC	82.1	83.2	- 1.7
-	 3-HE	3 READ PICTURED SCA'S TO DETERM	THE HEIGHT OF OBJECT, CUSTOHARY	99.3	99.1	+ .2
	4-HE	3 READ PICTURED RULER TO DETERM	INE LENGTH: CUSTOHARY	99.4	9 9.5	1
1	74 5-HE	READ PICTURED RULER TO DETERM	THE LENGTH, CUSTOMARY	98.3	98.2	175 • 4
_	G 6-HE	READ CLOCK TO DETERMINE TIME T	TO HALF-HOUR	88.3	90.2	- 1.9
A	FULL Provided by ERIC IND	DICATES AVERAGE DISTRICT PERFORMANCI LICATES: AVERAGE DISTRICT PERFORMANCE	E IS ABOVE THE STATE E IS BELON THE STATE			

DÍSTRICT: 17 CHARLESTON

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE 02 HATHEHATICS

DISTRICT COPY

DATE: HAY 87 PAGE: 4

DISTRICT: 1		GRADE OZ HATHERATICS	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
1-GE1	CAN APPLY GEOMETRIC CONCEPTS. RECOGNIZE A CLOSED CURVE RECOGNIZE A SQUARE		96.9 85.9	96.2 85.3	+ .7 + .6
2-GE1 3-GE1 4-GE2 5-GE2 6-GE2	RECOGNIZE A CLOSED CURVE RECOGNIZE THE FIGURES WITH THE SAME SHAPE RECOGNIZE THE FIGURES HITH THE SAME SIZE AND SHAPE RECOGNIZE THE FIGURES HITH THE SAME SIZE AND SHAPE		81.3 98.3 97.7 98.3	85.6 98.7 98.1 . 98.6	- 4.3 4 4 3
			97.1 91.3 96.2 96.7 92.2 88.9	97.6 91.7 96.4 96.8 91.1 88.2	5 4 2 1 + 1.1 + .7

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
"-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

DATE: HAY 87 SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY PAGE: 3 DISTRICT: 17 CHARLEL ON GRADE 03 NATHEMATICS DISTRICT-STATE DISTRICT STATE DIFF X RIGHT % RIGHT % RIGHT CONCEPTS (CH): THE STUDENT CAM APPLY HUMERICAL COMCEPTS. 68.4 67.8 COURT B!...KHARD BY 3'S 1-CN1 1.3 88.9 90.2 COUNT BACKHARD BY 5'S 2-CN1 86.2 86.8 USE SHADED FIGURE TO DETERMINE FRACTIONAL PART 3-CN2 97.9 98.4 IDENTIFY A CORRECT ARITHMETIC SENTENCE INVOLVING BASIC FACTS 4-CN3 93.7 93.2 USE PLACE VALUE TO IDENTIFY THE DIGIT IN 10'S PLACE 5-CH4 93.7 94.3 EXTRACT INFORMATION FROM A BAR GRAPH 6-CH5 OPERATIONS (OP): THE STUDENT CAN COMPUTE ACCURATELY. + 1.1 94.6 95.7 ADD (VERT.): 3-DIGIT + 3-DIGIT, MHOLE NUMBERS, HITH REGROUPING 1-0P1 94.0 94.9 ADD (HORIZ.): 2-DIGIT + 2-DIGIT, MHOLE NUMBERS, MITH REGROUPING 2-0P1 + 1.4 79.9 78.5 SUBTRACT (VERT.): '2-DIGIT - 2-DIGIT, NHOLE NUMBERS, HITH REGROUPING 3-0P2 + 7.1 70.0 77.1 SUBTRACT (HORIZ.): FRACTIONS, LIKE DENOMINATORS, NO REGROUPING, NO REDUCING 4-0P2 + 3.6 79.4 83.0 MULTIPLY (HORIZ.): 2-DIGIT X 1-DIGIT, MIGLE HUMBERS 5-0P3 + 3.0 92.5 89.5 DIVIDE (HORIZ.): 2-DIGIT BY 1-DIGIT NUMBERS, NO REMAINDER 6-0P4 HEASUREMENT (HE): THE STUDENT CAN APPLY HEASUREHENT CONCEPTS. 92.5 92.5 SELECT APPROPRIATE UNIT TO HEASURE TIME 1-HE1 64.9 63.4 ESTIMATE LENGTH OF OBJECT, CUSTOMARY 2-HE2 96.2 96.8 READ HEASURING SCALE TO DETERMINE HEIGHT, METRIC 3-HE3 + 1.4 96.0 97.4 DETERMINE THE VALUE OF PICTURED HONEY 4-HE3 86.6 87.7 CONVERT UNIT OF TIME, CUSTOMARY 5-HE4 + 1.5 76.4 74.9 6-HE4 CONVERT UNITS OF HONEY 179

ERIC Full Tax t Provided by ERIC

"+" INDICATES AVERAGE LISTRICT PERFORMANCE IS ABOVE THE STATE
"-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

DATE: HAY 87 PASE: 4

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE 03 HATHEMATICS

DISTRICT:	17 CHARLESTON	GRADE 03 HA	THEHATICS DISTRICT RIGHT	STATE '% RIGHT	DISTRICT-STATE , DIFF % RIGHT
GEOMETRY ((GE): NT CAN APPLY GETHETRIC	CONCEPTS.	78.5	78.9	4
1-6E	1 RECOGNIZE A LINE S	ECHENT	91.8	73.5	+ 18.3
2-GE	1. RECOGNIZE A POINT		84.0	71.1	+ 12.9
3-GE			9 7.3	96.7	+ .6
4-GE		RY TO IDENTIFY THE PART WHICH COMPLETES FIGURE	96 .1	95.3	+ .8
5-GE		IGURE TO DETERMINE LINE OF SYMMETRY	96.9	95.2	+ 1.7
6-GE	2 COMPARE PARTS OF	FIGURE TO DETERMINE LINE OF SYMMETRY			•
PROBLEM S THE STUDI	SOLVING (P\$): ENT CAN SOLVE PROBLEMS	DIVIDENTIAL USE OF MATHEMATICS.	93.6	93.4	+ .2
1-P		ADDITION HITH REGROUPING	64.4	66.9	- 2.5
2-P	SO SOLVE A PROBLEM:	ADDITION AND SUBTRACTION WITH REGROUPING	68.0	70.9	- 2.9
3-P			90.1	90.7	6
4-P		ADDITION HITH REGROUPING .	74.3	74.7	4
5-P		ADDITION AND SUBTRACTION HITH REGROUPING	64.2	66.1	- 1.9
6-F	SOLVE A PROBLEM:	HULTAPLICATION			

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
* "-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

180

DISTRICT: 17 CHARLESTON

I

					ı)ISTRI(CT COPY
DISTRICT:	17 CHARLESTON	SOUTH CAROLINA BSAP YTEM RESPONSE SUMMARY GRADE OF MATHEMATICS			DATE: PAGE:	HAY	87 :
			DISTRICT % RIGHT	STATE % RIGHT			RICT-STATE F % REGHT
CONCEPTS (CH): IT CAN APPLY NUMERICAL CO	NCEPTS.					
1-CH2	IDENTIFY FRACTION EQ	UIVALENT TO GIVEN MIXED NUMBER	82.4	77.8		•	4.6
2-CN2	IDENTIFY DECIHAL NUM	BER EQUIVALENT TO GIVEN HORD	77 : 3	76.4		•	.9
3-CN3	COMPARE FRACTIONS US:	IN3 ≥ OR ≤	53.6	59.1		-	5.5
4-CN3	COMPARE FRACTIONS US:	ING ≥ OR ≤	44.1	51.1		-	7.0
5-CN4	USE PLACE VALUE TO I	DENTIFY DECIHAL NUMBER TO GIVEN EXPANDED FORM	49.6	52.5		-	2.9
€-CHE	INTERPRET INFORMATION	N IN A PICTURE GRAPH, COMPUTATION INVOLVED	85.9	84.7	*	•	1.2
OPERATIONS THE STUDEN	(OP): IT CAN COMPUTE ACCURATELY	•	•				
1-091	ADD (HORIZ.): 3 DECI	HAL ADDENDS, HITH REGROUPING	86.4	85.7		+	.7
2-091	ADD (VERT-1: 2 FRACT)	IONS, LIKE DENOM., MITH REGROUPING AND REDUCING	50.3	51.0		-	.7
3-0P2	SUBTRACY (VERT.): HIN	OLE NUMBER-DECIMAL, MITH REGROUPING	85.7	86.3		-	.6
4~0P2	SUBTRACT (VERT.): HI	KED NUMBER, HITH REDUCING	75.0	73.9		•	1.1
5-093	HULTIPLY (VERT.): 2 1	DECIMALS, MITH REGROUPING	51.4	49.9		•	1.5
6-OP4	DIVIDE: 3-DIGIT BY 2-	-DIGIT MHOLE NUMBERS, NO REHAINDER	89.5	88.7		•	.8
HEASUREHEN THE STUDEN	IT (HE): IT CAN APPLY HEASUREMENT (CONCEPTS.					
1-HE1	SELEGT APPROPRIATE U	NIT TO MEASURE MEIGHT, CUSTOMARY	77.8	78.7		-	.9
2-HE2	ESTIMATE LENGTH, CUST	тоначу .	66.2	69.9		_	3.7
3-HE4	CONVERT BETHEEN UNITS	S OF LENGTH, CUSTOHARY	47.8	55.4		_	7.6
$182_{\text{\tiny 4-HE4}}$	CONVERY BETHEEN UNITS	S OF LENGTH, HETRIC, INVOLVES DECIMALS	47.7	49.6	183	_	1.9
5-HES	USE SCALE DRAHING TO	ESTIMATE LENGTH, METRIC	56.5	56.4	200	+	.1
ERIC 6 - ites	USE SCALE DRAMING TO	ESTIMATE LENGTH, HETRIC	51.3	49.8		+	1.5
\sim							

: 88

DATE: HAY 87

PAGE: 4

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE OF MATHEMATICS

		outpi rotoli	SOUTH CAROLINA BSAP ITEM RESPONSE SUITARY			PAGE: 4
**		CHARLESTON	GRADE OS HATHEHATICS	DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
•	CECHETRY (CE) THE STUDENT C	D: CAN APPLY GEOMETRIC CONCEPTS.		64.6	58.5	+ 6.1
	1-GE1	RECOGNIZE A FIGURE MITH A CIRCUMFEREN	CE	62.6	67.1	- 4.5
	2-GE1	IDENTIFY A LINE SEGMENT		74.1	74.1	+ .0
	3-GE1	RECOGNIZE A SPHERE		79.1	82.8	- 3.7
	4-GE3	DETERMINE THE PERIMETER OF A SQUARE,		38.8	44.6	- 5.8
	5-GE3	DETERMINE THE AREA OF A RECTANGLE, CU		21.8	26.9	- 5.1
	6-GE3	DETERMINE THE AREA OF A SQUARE, CUSTO	DMARY			
;	PROOLEH SOLV	VING (PS): CAN SOLVE PROBLEMS TRYOLVING THE USE O	F MATHEMATICS.	03.6	81.0	+ .6
	1-PS0	ESTIMATE A PROBLEM SOLUTION: ADDITIO	N AND SUBTRACTION, MONEY	81.6 85.6	85.0	+ .6
	2-PS0	SOLVE A PROBLEM: ADDITION AND HULTIP		77.7	75.2	+ 2.5
	3-PS0	SOLVE A PROBLEM: ADDITION AND SUBTRA	ICTION- HONEY	73.5	70.8	. + 2.7
	4-PS0	SOLVE A PROBLEM USING A BAR GRAPH: S	SUBTRACTION	80. 9	78.6	+ 2.3
	5-PS0	SOLVE A PROBLEM: ADDITION AND SUBTRA	ACTION, MONEY	55.1	55.0	+ .1
	6-PS0	SOLVE A PROBLEM INVOLVING HEASUREMEN	HT: DIVISION	<i>33.</i> 4.		

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE
* "-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE SYSTE

DATE: HA. 87

PAGE:

SOUTH CAROLINA BSAP ITEM RESPONSE SURMARY GRADE OB HATHEMATICS

	BRADE OF INTILLIANTOS			
		DISTRICT % RIGHT	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
GEOMETRY (GE THE STUDENT	D: CAN APPLY GEOMETRIC CONCEPTS.			. 4.4
1-GE1	DETERMINE COORDINATES OF POINT ON A GRID	72.1	67.7	
2-GE1	RECOGNIZE A PERPENDICULAR LINE SEGHENT IN FIGURE	54.9	57.8	~ 2.9
3-GE2	DETERMINE THE TRIANGLE CONGRUENT TO TRIANGLE ENBEDDED IN FIGURE GIVEN	87.9	88.2	3
	DETERMINE THE CONGRUENT ANGLES USING GIVEN ANGLE MEASURES	39.5	38.5	+ 1.0
4-GE2	DETERMINE THE VOLUME OF A SOLID, METRIC	64.7	66.3	- 1.6
5-GE3 6-GE3	DETERMINE THE VOLUME OF A SOLID, METRIC	58.0	60.5	2.5
PROBLEM SOLV	VING (PS): CAN SOLVE PROBLEMS DIVOLVING THE USE OF HATHEMATICS.		•	•
	ESTIMATE A PROBLEM SOLUTION USING TABLE: MULTIPLE OPERATIONS, MONEY	62.8	62.7	+ .1
1-PS0	ESTIMATE A PROBLEM SOLUTION USING TABLE: MULTIPLE OPERATIONS	23.6	25.6	- 2.0
2-PS0		80.5	80.3	+ .2
3-PS0	SOLVE A PROBLEM: HULTIPLE OPERATIONS	69.9	69.5	+ .4
4-PS0	SOLVE A PROBLEM: MULTIPLE OPERATIONS, TIME	52.7	51.5	+ 1. 2
5-PS0 6-PS0	SOLVE A PROBLEM: MULTIPLE OPERATIONS, MIXED MUMBERS SOLVE A PROBLEM USING A CIRCLE GRAPH: MULTIPLE OPERATIONS, PERCENTAGE	40.4	43.2	- 2.8
-	THE THE STATE OF T			

^{* &}quot;+" INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE # "-" INDICATES AVERAGE DISTRICT PERFORMANCE IS BELOW THE STATE

DATE: HAY 87 PAGE: 3

SOUTH CAROLINA BSAP ITEM RESPONSE SUMMARY GRADE OB HATHEHATICS

	EKADE 00 terinizio			
		DISTRICT % Right	STATE % RIGHT	DISTRICT-STATE DIFF % RIGHT
CONCEPTS (CH THE STUDENT	D: CAN APPLY HUHERICAL CONCEPTS.		•	,
1-CN2	IDENTIFY FRACTION EQUIVALENT TO GIVEN DECIMAL	48.4	51.0	- 2.6
2-CN2	IDENTIFY PERCENT EQUIVALENT TO GIVEN DECIMAL	35.6	38.1	- 2.5
3-CN3	DETERMINE THE LARGEST FRACTION IN A SET, UNLIKE DENOMINATORS	31.9	34.7	- 2.8
4-CN4	USE PLACE VALUE TO HATCH HHOLE NUMBER TO EXPANDED EXPONENTIAL FORM	63.9	66.6	- 2.7
	USE PLACE VALUE TO HATCH DECIHAL TO VERBAL FORM	55.0	62.2	- 7. 2
5-CN4 6-CN5	INTERPRET INFORMATION IN A TABLE	66.7	65.0	+ 1.7
0-CN 5	,			
OPERATIONS O	OP): CAN COMPUTE ACCURATELY.			
1.0P1	ADD (HORIZ.): 3 DECIHALS, HITH REGROUPING	60.6	68.1	- 7.5
2-0P2	SUBTRACT (VERT.): 2 DECIMALS, HITH REGROUPING	86.2	86.4	2
3-0P2	SUBTRACT (HORIZ.): HHOLE NO HIXED NO., HITH REGROUPING	57.3	53.5	+ 3.8
4-0P3	MULTIPLY (HORIZ.): HIXED NO. X HIXED NO., WITH REGROUPING	61.5	61.9	4 ·
•	HULTIPLY (HORIZ.): PERCENTAGE OF GIVEN WHOLE NUMBER	69.1	70.5	- 1.4
5-OP3 6-OP4	DIVIDE: DECIMAL NO. BY DECIMAL NO.	77.7	77.7	. 0
6 -01-4	,			
HEASURSIENT THE STUDENT	(HE): Can apply heasurement concepts.			•
1-HE1	SELECT APPROPRIATE UNIT TO HEASURE VOLUME, HETRIC	60.8	68.4	- 7.6 .
.t-HE2	ESTIHATE AREA, CUSTOHARY	41.1	40.8	+ .3
3-11E3	USE PICTURED PROTRACTOR TO DETERMINE HEASURE OF ANGLE, 90 DEGREES	73.9	77.9	- 4.0
4-HE3	USE PICTURED PROTRACTOR TO DETERMINE HEASURE OF ANGLE, 90 DEGREES	62.8	66.1	- 3.3
•	SUBTRACT UNITS OF LENGTH, HETRIC HITH CONVERSION	32.2	39.5	- 7.3
5-HE4	AND COALS PRAYING TO ESTIMATE DISTANCE, CUSTOMARY	62.2	60.0	+ 2.2

INDICATES AVERAGE DISTRICT PERFORMANCE IS ABOVE THE STATE ERIC

"END OF DOCUMENT"

189

6-HE5

USE SCALE DRAHING TO ESTIMATE DISTANCE, CUSTOMARY