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ABSTRACT

Assuming guided inquiry as a pedagogical ideal in mathematics
education implies that teaching must connect students' thinking about a
subject with curricular agendas and instructional goals. Because students
are not typically inclined to consider their active inquiry as a rou.e to
acquiring the knowledge that is valued in school, such teaching must
simultaneously elicit students' engagement in inquiry and legitimate
inquiry as a route to learning. Within this conceptual framework, the
empirical research reported in this paper describes several strategies used
by secondary school geometry teachers as they attempted to practice a
pedagogy of guided inquiry using the Geometric Supposers. The
teachers' strategies are discussed in terms of sociolinguistic theories
about the teacher's role in defining the meaning of mathematical
knowledge in the classroom.



Over the past five years, tt e Educational Technology Center at Harvard
Graduate School of Education has been developing tools for teachers and students to
use in the service of supporting "guided inquiry" in school. Guided inquiry is an
approach to curriculum and instruction which gives the teacher the responsibility for
introducing content in a way that is illuminated and modified in response to
students' ways of thinking about that content. The teacher defines the focus of
inquiry by posing problems for the class while students take an active part in
acquiring knowledge by generating not only answers, but ways of thinking about
problems, definitions of the terms of discourse, and analyses of alternative solutions.
Students collect data and analyze it, and what the teacher aims to teach is
supplemented and complemented by the discussion of student findings. This is the
pedagogical ideal that has guided the Technology Center's work in research and
development. It is also an ideal embraced by mathematics educators more generally
in the U.S. and abroad.

One of the tools developed at ETC to help teachers turn this ideal of guided
inquiry into a classroom reality is a set of problems designed to accompany The
Geometric Supposers, computer software which can be used to construct and
measure geometric figures, namely triangles, quadrilaterals, and circles (Yer:shalmy
and Houde, 1986; Schwartz, Yerushalmy, and Gordon, 1985). TF: problems are
intended for use by students, working alone or in pairs at computer terminals, and
they are also adaptable to class-sized discussions with the teacher working at a large
monitor at the front of the room. By providing teachers and students with the
facility to quickly produce, measure, and compare figures, the software supports the
process of making conjectures about spatial relationships based on induction as a
prior step toward establishing the generality of the relationships with a deductive
proof. Beginning with induction contributes to an environment in which students
may be more likely to bring their own observations to bear on the construction of
mathematical relationships, and to see "proof’ as an appropriate step for making a
particular observation into a general assertion. The Supposers are used in many
secondary school classrooms across the country, and ETC has been working closely
with teachers in some of those classrooms to better understand the problems that
teachers face as they try to implement curriculum and instruction based on the
principle of guided inquiry (Wiske, 1988; Wiske and Houde, 1988).

Although many teachers in schools may try to accommodate students by
responding to their questions at the end of a lesson or even organizing classes
around small group discussions, the ideal of guided inquiry tips the balance even
further toward treating students as active shapers of their own knowledge, while
teachers work to direct their activity toward commonly recognized curricular goals.
The pedagogy of guided inquiry has been studied at ETC with a focus on using the
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Curricular Agendas 2

Supposers in high school geometry, but what is being learned in this project is not
only relevant to the study of teaching that subject or to understanding the
implementation of a new technology. The work of supporting student's inquiry in
school classrooms has been undertaken at many levels of mathematics instruction,
and in other subviect matter areas as well. And yet the teaching strategies that make
up this kind of practice are not very well understood.

Ope of the most persistent questions that arises when teachers try to take
account of students thinking is how to organize lessons in a way that connects the
questions that students care to pursue wit.: _.e goals of teacheis and the schocls in
which they work (Petrie, 1981; Berlak & Berlal-. 1981; Lemke, 1982; Barnes, 1976). The
issue of connecting students' active inquiry with teachers' agendas is a broad one,
spanning not only the mathzmatics curricula in primary and secondary school, but
other school subjects as well (Romberg & Carpenter, 1986; Lampert, 1988b; Brophy, in
press; Lochhead & Clement, 1979; Sinclair, 1988; Cobb, 1988; Schoenfeld, in press).
Whether one begins with a curriculum and asks how it is possible to get students
interested in asking productive questions, or one begins with students' questions and
asks how teachers and schools can go about shaping ther. into a coherent program of
curriculum and instruction, there is a connection problem. From the teacher's point
of view, solving this problem depends on the development of teaching strategies that
are effective in maintaining both students' active engagement with subject matter
and the accomplishment of institutional goals. Such strategies need not be invented
by teachers, but they need to be such that teachers are both capable and disposed to
employ tiiem. The research to be reported in this paper is an exploration of the
strategies teachers using the Geometric Supposers have tried to use to solve the
"connection problem".

THE NATURE OF THE "CONNECTION" PROBLEM
Making students’ inquiry a legitimate way of knowing

The problem of inventing teaching strategies that will connect student
thinking with teachers' agendas is not only a problem of how to teach subject matter
in a way that takes account of what students bring. It is also a problem of
communicating with students in a way that legitimates their active involvement in
creating their own knowledge (Cazden, 1988). In addition to whatever
understanding of the mathematics content students bring to learning mathematics,
they also bring assumptions about what they are supposed to do and what teachers
are supposed to do to cause their learning to happen (Ball, 1988; Cooney, 1987).

One of the teachers who had been using the Supposers in her Geometry class
for a few months surveyed her students to find out what they thought about using
the computer software to produce and collect data from which they could make
conjectures about geometrical relationships. The students had been spending one or
two days a week in the school's computer lab, exploring definitions and problems
with the constructions they produced on the computer screen. When they were back
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in class, on the other days of the week, the teacher attempted to integrate the findings
of their explorations with discussions, lectures, and homework assignments that
were organized according to a standard textbook. For some of the students, this
integration was experienced in the way it was intended, as an attempt to engage them
in actively constructing their own knowledge. One young woman member of the
class wrote:

Instead of just feeding us the information and expecting us to
understand it instantly, [the Supposer] makes us draw our own
figures in our own ways and makes us figure out the questions by
ourselves. It makes us use our brains a little more; for example, to
draw a figure, we must use some property of it which we then learn
much better, since we must use it for our construction. As we are
doing our own little things in creative ways it is forcing us to
discover new geometry facts and conjectures. We are, in a way, with
the teacher's guidance, teaching ourselves... It is also sort of
rewarding when you've discovered something, and you, for a short
fleeting moment, feel like a genius.

This student's sense of what was happening to her in her high school geometry class
parallels what epistemologists call coming to "know in the strong sense” (Scheifler,
1965). As sl.e directed the computer to make the constructions posed as problems,
she found out about properties of figures and which properties are consistent across
different versions of a figure. The student was not only acquiring information, she
was acquiring the conviction that what she was learning is true by verifying it for
herself, and she was sorting out important information from the superficial
characteristics of figures. She was, with the teacher's guidance, "teaching herself"
geometry, ard learning that mathematical knowledge is knowledge that can be
discovered inductively.

But this student's sense of how one learns mathematics is unusual. both in
classes using the Supposers, and in mathematics classes more generally. More typical
is the student who writes:

I feel that the Supposer could be of help if it was used in conjunction
with a teacher who also re-taught the material, making sure
everyone knew exactly what was going on. What would be good
would be to have the teacher teach the material, then have students
see it for themselves on the computer. But if the teacher teaches the
material, then why bother with the Supposer?... A good teacher
emphasizes important facts; minor things that you would spend four
or five periods on in the computer room can be emphasized in one
class, and move on to more important information. I feel that time
spent in the computer rocm has been pretty much a waste.

This student believed it was the teacher’s job to figure out what he needed to know,
and that he would learn most efficiently if the teacher told him what was important
to know. He did not want to "waste time" exploring problems in order to figure out
for himself what facts were important. He saw Geometry as a subject which can be

~I
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transmitted from teacher to student in a direct form, rather than as a subject in which
the important facts are determined by the perspective of the learner, working on the
sorts of problems the subject was invented to solve. Although this student's beliefs
would not be considered productive by either educational philosophers or cognitive
psychologists, his sense of what knowledge is and how it is acquired fits very well
into the way teaching and learning are usually organized in school, and it also fits
with commonly held assumptions about what kind of knowledge mathematics |
represents. |

Non-mathematical ways of knowing school mathematics

Commonly, mathematics is associated with remembering what to do;
knowing it, with being able to get the right answer, quickly . These cultural
assumptions are reinforcr | by school experience, in which doing mathematics means
following the rules laid down by the teacher; knowing mathematics means
remembering and applying the correct rule when the teacher asks a question; and
mathematical truth is determined when the answer is ratified by the teacher
(Stodolsky, 1988). These beliefs about how to do mathematics and what it means to
know it in school are acquired through years of watching, listening, and practicing
(Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Dossey, Mullis, Linquist, and
Chambers, 1988). It is probably the prevalence of such beliefs that prompts the young
woman quoted above to experience the exaggerated feeling that she must be a
"genius"” if she can actually figure something out for herself in a mathematizs class.
Schoenfeld (1985a) argues that most students approach the study of mathematics
with a theory of knowledge that works against their taking an active role in figuring
out why what they are learning is true. This theory of knowledge or "epistemology”
is non-mathematical in the sense that it contradicts the very foundation on which
mathematical knowledge is ouilt. Coming to know that a mathematical assertion is
true within mathematics is a matter of deriving conclusions from assumptions by a
process of plausible reasoning (Polya, 1954; Lakatos, 1976; Kramer, 1970). But instead
of seeing mathematics as a discipline whose assertions are the result of reasoned
argument, and therefore discoverable, students think of mathematical invention as
the province of a few "geniuses"— and they rarely count themselves as members of
that group. They believe that:

Only geniuses are capable of discovering mathematics [so) If you
forget scmething, too bad. After all, you're not a genius and you
won't be able to derive it on your own... Accept procedures at face
value, and don't try to understand why they work. After all, they are
derived knowledge passed on 'from above'. (Schoenfeld, 1985 a, p.
372)

That many students hold this theory of knowledge and act on it as they are learning
mathematics is confirmed by several empirical studies (Schoenfeld, 1985b; Stodolsky,
1985; Ball, 1988). It is not inconsistent that the same students learn facts and rules
well enough to pass the sorts of tests their teachers administer, even though they are
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missing what is commonly referred to as "understanding”. They do not have the
knowledge to explain why mathematical facts are true or why the rules they apply to
solve problems work (Schoenfeld, 1987).

How is mathematical knowledge acquired?

Psycnologists and philosophers would take exception with the idea that only
“geniuses” are capable of discovering and understanding why the mathematical facts
and procedures they learn in school make sense. Scholars in boti: of these traditions
assert that the quality and availability of knowledge depends on the active part that
the learner plays in acquiring it, figuring out for him or her self what is true (e.g. Van
Lehn, 1986; Resnick, in press; Scheffler, 1965; Peters, 1967). Knowledge which is "fed"
to the learner is hardly considered to be knowledge at all: "knowing in the strong
sense is more than just true belief, involving also the ability to justify or back up the
belief in an appropriate manner." (Scheffler, 1965, p. 55) Learning depends on
learners of a discipline knowing strategies which they can use to evaluate whether o~
not an assertion is true; it is more than memorizing what is passed down "from
above". According to cognitive theory, learning occurs when the learner considers
new knowledge in light of what he or she already knows to be true, and constructs a
relationship between the new knowledge and the old (Anderson, 1981; Van Lehn,
1986; Hiebert, 1987; Schoenfeld, 1987b). It is not necessary for students to discover the
whole of mathematics in order to acquire new knowledge, but they do need to take a
critical attitude toward what they are teld is true by teachers and books,
reconstructing information to make sense of it on their terms. The teacher's role is
to provide the environment in which the student can "confront reality for himself"
(Scheffler, ibid.).

And yet the common assumptions that underlie how people think about
mathematical knowledge and its acquisition depend heavily on the authority of
teachers and books to define mathematical "reality”. These authorities are
considered by learners to be reliable sources of information about what is worth
knowing and legitimate standards against which to measure whether they are
learning what is important. As a respected "record of knowledge", the contents of a
textbook are taken as a given. memorized, and repeated back on tests (Romberg,
1983). For the most part, neither classroom interactions nor written assessments of
students' knowledge are designed to find out whether students have subjected the
facts and rules they are taught to the sort of critical evaluation that psychologists and
philosophers consider prerequisite to learning. Some scholars have asserted that it is
the very fact that such evaluation is missing in schools that makes it unlikely that
students will undertake serious inquiry (Bereiter and Scardamalia, 1986; Cuban,
1985).
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The prob’em of teaching students to be active learners

This is the "problem space” within which teachers who want to enact a
pecagogy of guided inquiry do their work. If their students are going to learn what
they need to know through engaging in guided inquiry, teachers must teach in a way
that manages the contradiction between these common assumptions about
intellectual authority and the idea that mathematical knowledge can and should be
actively constructed as it is learned. And they must do this even as the traditional
norms of the situation in which they teach work against students taking their own
thinking seriously as a route to being successful (Cuban, 1985; Cohen, 1988). Recent
comprehensive studies of high schools suggest that few high school students are
sitting around jus: dying to figurs out what they think abrut relationships among
geometric figures, and even the few who do are not likel;, to come into a Geometry
class assuming that what they think has much to do with what is important for them
to learn (Powell, Farrar, & Cohen, 1985). The findings of the developers of the
Geometric Supposer materials concur with these general studies; for example, they
concluded from an extensive set of interviews with students who had used the
materials for a year that

~.students prefer to learn in ways that require less work. Thus some
students prefer a traditional classroom where the teacher does a ‘ew
examples of a kind of problem and then homework is to do a set of
problems like those done in class. (Yerushalmy, Chazen, & Gordon,
1988, p. 23)

Other studies of particular educational innovations that are built on the assumption
that the ideal student is curious and actively engaged in inquiry come to similar
conclusions about students’ propensities to become active learness in school (Doyle,
1986; Stephens, 1982; Brophy, in press).

So then what is the nature of the problem that needs to be addressed by
teachers who wish to enact a pedagogy of guided inquiry? If a teacher chooses to
challenge students’ expectations about the kinds of academic tasks that constitute
their educational program - and I have argued he.e that this would be a necessury
part of engagir.g students in this sort of learning process -- then teaching strategies
need to be employed which not only CONNECT student inquiry with teachers'
curricular agendas, but also ELICIT acts of inquiry on which to ouild these
connections, and LEGITIMATE inquiry as a process that will result in students
learning what they need to know to be successful in school. The strategies that will
be described here were used by teachers as they tried to accomplish these threz goals
simultaneously.

How do teachers organize and teach lessons so that learners can and will
explore a topic from the perspective of their own understanding and teachers can and
will take account of that understanding in what and how they teach? How can
intellectual and social coherence be maintained in classrooms where teachers do let
students’ ways of thinking about mathematics become a substantial part of the
agenda of mathematics lessons? How can a different social structure be created in the
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classroem, so that the teacher retains social and intellectual authority, bu: also takes
seriously the need for students to verify knowledge for themselves in order to learn
what is being taught? How can teachers attend to the predictably diverse ways of
understanding a mathematical idea that students will bring to a topic, aad also
conduct lessons that are orderly and predictable enough to fit the school's
institutional structure? How can students’ inquiry be plausibly linked with the
content goals that are assigned to schools? These are large questions which have
been on the minds of educational reformers for more than a hundred years. The
research to be reported here makes a modest stab at addressing them biy looking at
strategies teachers have used to address the three-part goal of eliciting, and
legitimating students' inquiry in the field of geometry, and connecting ..at inquiry
with curricular goals.

DATA COLLECTION AND ANALYSIS

An advisor, Richard Houde, was employed part-time by ETC at the beginning of the
1986-87 school year to consult with a "Users Group" of six teachers who were
experimenting with the Geometric Supposers in three differeut kigh schools (small
rural, large urban, and affluent suburban) to teach geometry with. a pedagogy of
guided inquiry. [See Shepard & Wiske (in press) for a fuller description of the
teachers and schools.] He observed and advised these teachers on a regular basis
during two school years. Some of the consultations were short term visits, wherein
he would spend a half day in a school every few weeks. Others were more extensive,
consisting of daily visits to one teacher over several days, dv ring which they would
plan, carry out, and evaluate an activity together. Houde was also a Geometry
teacher and Mathematics Department Head, and he retained this position half time,
simultaneously with his advisory work.

During the 1987-88 school year, Houde also tock on the role of an "action
researcher” (Lewin, 1948), in addition to being an advisor. As a participant observer
in these six teachers' classrooms during that year, he collected extensive fieldnotes,
which included descriptions of the strategies the teachers attempted in their effort to
build lessons in response to students' thinking, as well as records of his own
interventions. His perspective was that of a teacher and a teacher supervisor, and
thus he brings a practical rather than a theoretical bias to research. In addition,
classroom observations of the same teachers wsre conducted by the author over three
week-long periods during 1986-87 and 1987-88. Observational field notes were
supplemerted by audiotapes collected by the author in two teachers' classrooms.
Field notes were expaaded immediately after each class session observed, using the
audiotapes when available, Lo ensure as complete and accurate a record as possible of
the teachers' actions in the classroom. Pre-observation and post-observation
interviews were conducted with each of the teachers by the author. These interviews
were structured to address directly tha teachers plans to employ strategies that were
intended to connect student thinking wiik the curriculum, as well as the teachers'
post-lesson reflections on those strategies. All interviews were tap--recorded and
later transcribed.
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The question that grided this data col'ection effort was: What practices
intended to support guided inquiry are yossible under the constraiats of ordinary
classroom teaching? In addition, the data analysis identified teaching strategies that
were designed to communicate to students that their own inquiry was considered to
be a legitimate source of knowledge about geometry in school. Observation and
interview cata collected by Houde and the author were analyzed to identify strategies
which the teachers used. No attempt was made to evaluate whether the strategies
attempted were effective. ! Strategies which were tried once were included in the
analysis as well as those which occurred on a regular basis

These methods were designed to capture the practitioner’s perpective on a
teaching innovation that has been favored by educational theory and research. Data
collected by the teacher-advisor was filtered through his role as a consultant who was
regularly invited by teachers to help them figure out how to do what they wanted to
do. The teacher participants believed that guided inquiry was an appropriate
approach to teaching and learning geometry, and that the Supposers were an
appropriate tool to support that approach (Lampert, 1988a). But they had many
questions about how to act on their beliefs in the context of their responsibilities for
curriculum and instruction. The strategies that they used to make students' thinking
a more central part of lesson agendas were often collaboratively developed with the
advisor and undertaken with his encouragement. Teachers and advisor jointly
evaluated the teacher's practices and devised revisions in strategies. The reliability of
the advisor's reports was checked by the author's observations and interviews with
the teachers.

The intent was to capture practices that were experimental attempts tu teach
in a way that tips the balance of classroom activity more heavily in the direction of
student's taking an active role in producing the knowledge they acquire; this
approach might be called “transformative" research from the perspective of current
reform agendas (Silver, in press). It was assumed that these practices would be a
practical adaptation of theoretical ideals, compromises worked out by teachers to fit
the circumstances of their work (Wiske & Houde, 1988; Lampert, 1985; Crosswhite,
1987 ). In practice, teachers must often compromise to manage all aspects of their
work (Brophy, 1988), and we know little about the extent to which ideals -- like
guided inquiry -- can be retained in those corapromises. The Supposers constituted a
technological interventior which invited students to be more active in acquiring
knowledge about geometry, and gave them a means for becoming so; at the same
time, the innovation gave teachers new problems with which to cope. More of the
students’ naive knowledge of geometry wi ~ exposed, and the teachers were
confronted with figuring out ways to build on this knowledge while at the same time
being responsible for the curriculum.

! Such research awaits the design of adequate tools for measuring the extent to which
students' own knowledge results from constructing a connection between their own
active inquiry and the content of the curriculum that the teacher is teaching.

12
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The teachers who experimented with the Supposers, like many others, began
from the pedagogical baseline of lecturing and answering students questicns as if the
knowledge of the subject matter could be transferred directly from books or syllabi to
students trough lectures and practice with the problems at the end of each chapter in
the textbook. Whate"er compremises they made to accommodate guided inquiry
thus represents a cons: derable shift in practice toward the ideal. In the literature on
mathematics educatton, we have many treatises on what is wrong with current
teaching methods (e.g. Whitney, 1286; Steen, 1988), and a few portraits of what ideal
teaching might look like (e.5. Fawcett, 1934). But these portraits are suspect because
they are not derived from teachin{ tuat occurs in ordinary circumstances
(Crosswhite, 1987).  The strategies tha are described here are meant to be something
of an "existence proof” to contradict the notion that it is not possible for ordinary
teachers to incrrporate students’ thinking into classroom practice, but they also
illustrate the practical comprom:ises that are made when ideals are transformed into
reality.

TEACHING STRATEGIES
The "Three Blackboard" Method

Perhaps the most straightforward attempt to make a relationship between
students’ individual thinking and the formal curriculum in teaching practice was
the "three blackboard” method which some Supposer teachers attempted to use. This
teaching routine made a visible connection between the results of the relatively
private inquiry that occurred when students worked in pairs at the computer and the
public discourse of the class lecture-discussion. Used primarily io follow a computer
lab session, this strategy had the teacher writing on the board, first with the intention
of simply taking down what students said in answer to a general question about the
lab activity like, "What did you notice?" or "What patterns did you st in the data?"
After several students' findings were written down in the student's words for
ever) one else to see, the teacher asked students to make these observations into
more formal assertions about the figures they had been constructing an1 measuring.
These assertions were written down on the second blackboard. Often a student
formalized his or her own observations, but once informal statements were written
on the blackboard, they were considered to be available for others in the class to think
about and formalize, as well. Some teachers wrote students' names next to both
informal and formal assertions, and referred to a conjecture verbally as oelonging to
the student who offered it in class, saying for example, "Tomorrcw we're going to
work on Sandy’s conjecture ab~ut the ratio of the sides.” or "I want you to try and
prove Denise’s conjecture about parallelism for homework." Some of the time it was
the teacher who translated informal assertions into potentially provable conjectures.
In the transition from sirst to second blackboard, the teacher may also have
intervened with the introduction of new conventions of terminology or labeling, or
reminded students to reword their thinking in terms of mathematical conventions
with which they were already familiar.

In the transition from the second to the third blackboard, the teachers took a
more directive role, choosing one of the formalized student conjectures and writing

13
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it as it might be found in a geometry textbook. At this point, conjectures were
formulated in ways that would lead to the deductive arguments that turn them into
theorems and they were made to look like the standard statements found in books.
In one teacher's classroom, what was written up on the third blackboard, and then
proven, in lecture, discussion, or assignment form, was then considered to be a
statement that could be used as a reason in a subsequent proof. Students and teacher
would refer to such assertions in terms of whether they have been "done on the
blackboard yet" using this contextual distinction to stand in for the formal distinction
between a conjecture based on induction and a theorem whose truth has been
established with a publicly constructed deductive proof.

From pairs to paper

Another strategy for surfacing and using students’ thinking was to have them
work in pairs in the lab to produce a single report of their observations. The
information recorded on the "third blackboard" was actually several steps away from
the student's inquiry as it occurred in the lab, and at each step, the language and
symbols for expressing what the student might "know" about a figure became more
and more conventional, until they resembled the language and symbols used in the
textbook. The most undirected student work that occurred in most of the Supposer
user's classrooms-otcurred ir the computer lab, where students usually worked at
terminals in pairs.

The teaching strategy of having students work in pairs sets up a learning
situcti~n in which individuals would make assertions and other individuals would
challenge them because the two students needed to agree about what would be
written down on paper. The first step from individual thinking to mathematical
discourse was taken when the pairs of students talked with one another about what
they thought might be patt=rns in the measurements they h:d taken. Then as they
worked together on deciding "what to put down" on paper while pointing to figures
on the screen, they negotiated with one another about what might be worth saying
about the figures, developing their own idiosyncratic language for communicat'ng
about geometric properties and figures.

Because of time constraints, students’ written lab reports were usually
finished - . 2 homework assigninent and then their papers were brought to class for
discussion. This step meant that individuals would review what they had discussed
with their partners in the lab, and refine it further. Putting findings into a form that
would be "handed in" meant that they were challenged to communizate their
observations in terms that would be meaningful to the teacher. Some of the teachers
had students read from their papers in the class discussion of the lab work, but others
had students turn in their papers, putting off the discussion for a few days untii they
read them over to plan a class lecture or discussion. Although some of the teachers
thought this latter approach would better enable them to distill students’ findings
into a coherent lesson, they also thought that something of what they called the
"students’ ownership of the ideas” was lost if too many days passed between informal
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informal inquiry in pairs and its formalization as part of the public agenda for the
whole class. Often this time lag was forced by the logistics of scheduling lab time and
the unpredictability of the school schedule.

Transporting stude 1ts ideas from one class to another

One routine that the Supposer teachers devised to cope with this time lag was
to use conjectures that stucents came up with in one class group as the basis for a
discussion in another class group. Particularly in the second year of using the
Supposers, the teachers had sume idea of the kinds of conjectures that students were
likely to come up with, given a particular lab problem. So if they intended to teach a
lesson that followed from discoveries that students might make in the lab, but they
could not schedule the exploration to coincide with their lesson plan, they would use
one class’s lab reports as the basis for moving another class from discoveries to
theorems. For example, one of the teachers began a class by saying, "A student in my
fourth period came up with this method for constructing a similar triangle inside of
another triangle, so that the corresponding sides are parallel. Why do you think it
works?"

Here student inquiry as a route to acquiring important knowledge was
legitimized, even though the teacher was not using the thinking of a member of the
class she was teaching as the basis for discussion. Especially when students were
experienced users of the Supposers, they responded to this strategy as if they could
readily imagine themselves coming up with an assertion like the one the teacher
reported as having come from another class. They seemed to be chall=nged by the
idea that someone in another class came up with an jdea that the teacner was
impressed with, and there was some competitive spirit involved in moving it to the
next step by producing a proof of why a particular construction "worked".
Competition entered in another way, as students speculated about the teacher
possibly taking their conjectures into another class to e proven.

Teacher interaction with conjecturing pairs

When students were working in the computer lab, they were spread around
the periphery of the room facing computer screens, with their backs to the center of
the room. This made it difficult for the teacher to address the class as a whole, or to
use the blackboard in a didactic way. When the \eachers wanted to give or clarify a
direction, some of them would walk around the room instead of talking to students'
backs or causing physical disruption by having them turn their chairs around, saying
the same thing repeatedly to different pairs of students. When students had
something to say to the teacher, this format made their assertion less of a public
performance and more like sharing an idea with a collaborator.

Because the teacher represents intellectual authority in school, the classroom
agenda is formally set by what she is saying to whom. If ti.is talk occurs to pairs of

15




Curricular Agendas 12

students, and it has academic substance, then what the teacher can communicate is
that what the pairs are doing is as important to their learning as what happens when
everyone in the class is supposed to be listening to the teacher. Although it was
exhausting and time consuming, this strategy enabled the teacher to time the giving
of directions differently for different students, and it had the efect of legitimizing the
private, inquiry criven activity that was going on between pairs of students.

Since the Supposer produces different figures for each pair of students when
they direct it to construct, say, an acute triangle, the teacher talking with pairs is even
more particularized. What she says to one pair to get them to focus their
observations and conjectures on a specific part of the figure will te different from
what she says to others, and this interaction has the further potential of
communicating to students that it is appropriate that not everyone is doing the same
thing at the same time (o learn what it is important to know to be a successful
geometry student.

Teacher and students challenging one another to "Prove it"

The way that teachers and students interacted around subject matter was quite
dramatically affected by the fact that students could get access to many examples of a
geometric relationship that were not given to them by a teacher or book. Teachers
and books might instruct by stating an abstract principle, like a definition or a
theorem, first and then they may or may not give a particular exar:ple to help
"explain” the principle. In the Supposer labs, students could generate example after
example without any such abstraction to organize their perceptions. To the extent
that they were looking for something as they generated these examples, the
something they were lookiig for was an abstraction of their own construction.

When a pair ¢ “hudents found a mathematical relationship among figures
that seemed generalizz .. ey :’ere directed to make another construction on the
screen with similar ¢t .rac < -irace and find out if the relationship would hold for that
construction. This i the fo. s rrocedure to follow if one is being strictly inductive
about generating an zss- i~ But in actuaiity, students were often so certain that
the relationship th . .ound in one example was universal that they said they did
not need to try it out agzain to know that it was always true. This would evoke the
challenge, "Prove it!" either from the teacher or from peers, and thus studerts would
be drawn into the deductive process by the kinds of interactions that were
engendered by Supposer problems.

Having established this way of interacting informally in the lab, teachers were
able to use the "Prove it!" refrain when students made a similar generalization in a
class discussion. In lab sessions, the idea of logica! argument in support of assertion
had been separated somewhat from the formality of the proofs that appeared in
textbooks in two columns of "statements" and "reasons", and this set the stage for
teachers being able to ask students to generate informal explanations of why an
assertion made sense to them in their own terms, without being overwhelmed by the
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standard for deductive argument set by the texttook.2 In most classrooms, this sort
of discussion occurred and incorporated student inquiry into the agenda, but it often
was conducted along side of rather than integrated with teaching and learning about
formal proof.

Fudging on grades

In order to alleviate their students’ worries about evaluation enough to get
them to be willing to risk making conjectures, the teachers made various kinds of
accommodations in their grading systems as a way of teaching students something
about the difference between inquiry and authority as sources of knowledge. All of
the teachers had given homework, quizzes and tests in the past which assessed
students’ abilities to produce conventionally correct definitions and conventionally
structured proofs for theorems that used correct statements and reasons. But they
could not evaluate conjectures generated from a lab activity on the same sort of
"correct vs. incorrect” standard. Not having enough evidence does not make a
conjecture "wrong" in the same way that not having appropriate reasons makes a
proof "wrong". Throughout the two years that the Supposer experiment occurred in
these classrooms, teachers and students struggled with how to evaluate students'
conjectures — but that is another story (Cf. Wiske and Houde, 1988).

In terms of teaching strategies used to elicit and connect student thinking with
the curricular agenda, what can be said here is that the teachers relaxed their grading
standards in an attempt to give students room to experiment with ideas that might or
might not turn o :* *o lead in fruitful directions. They tried to be flexible in the ways
in which they took account of both the quantity and the quality of the thinking
students did about what they observed in the computer lab. Students did not have
the choice of not writing observations or conjectures, but a wide range of productions
were taken as acceptable.

CASES OF STRATEGY USE

In order to put these disembodied strategies in some context, three lessons
will be described her2 that illustrate the sort of teaching that happened in the
Supposer classrooms. As ihese cases show, the separate strategies described above are
woven together in practice and adjusted to the subject matter and the overall style
and circumstances of the teacher who is using them. The lessons described here are |

2 The leap from induction to deduction in these kinds of exchanges was a messy one,
more like that which characterizes work in mathematics itself than that which
characterizes mathematical pedagogy (Davis and Hersh, 1987), and similar to that
which is found when students are given the task of proving that a mathematical
assertion is true to their peers outside cf the classroom context (Balachef, 1988).
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typical of lessons taught by each of the teachers. Classroom lessons, rather than lab
sessions, are used here as illustrations because they have more potential for having
been taught under circumstances one would consider "ordinary” in secondary
schools.

Making definitions

At the beginning of the school year, one of the teachers planned a lab session
and subsequent class discussions with two major goals in mind, one a more
conventional curriculum related goal and the other oriented to students learning
something about their own role in generating mathematical knowledge.3 He
wanted his students to learn how to distinguish different kinds of triangles from one
another, and he wanted them to learn the conventional terms that are used to refer
to the different kinds of triangles. But he also wanted his students to learn that
definitions in geometry are invented, and that there was a relationship between the
definitions one accepted and the inferences that could be drawn.

The assignment for the lab session was very open-ended. Students were told
to "Find out everything you can about different kinds of triangles by measuring
angles and sides, and make a list of the fact that you think are true about different
kinds of triangles."4 In the class after this iab, the teacher announced that he was
going to "list all your facts about triangles on the board" and then the class would
"discuss what makes a good definition." As he began making the list, it was difficult

3 This is what ETC calls a "metacurricular goal" (Position Paper, 1987) and others call
"metacognition” or "epistemic” learning (e.g. Schoenfeld, 1987b).

4 The Supposer for triangles has a menu that allows the student to command the
computer to draw six different kinds of triangles: right, acute, obtuse, isosceles,
equilateral, and "your own." If the student selects the "your own" option, then the
message at the bottom of the screen will change to:

1 side 2 side 3 angle
side angle side
side side angle

O<side<9

allowing three different ways to specify the kind of triangle to be drawn.

i8
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to hold students back from commenting on one another's "facts". The class became a
quick and lively exchange of assertions, counterassertions, and evidence, during
which the teacher consciously collected information about "what these students
already knew" about the properties of geometrical figures. Once there was a long list
of findings up on the board, written in language close to that used by the students
who asserted them, the teacher observed, speaking to the students, that some of their
"facts" focused on the relationships among angles in a triangle, and some focused on
relationships among sides.

For homework, after this class discussion, the teacher assigned his students to
pick either "angles" or "sides" and rewrite all of their "facts" using only one or the
other characteristic. He used this work as the basis for a lecture in the next class,
where he demonstrated that what was true about the sides could be implied from
what was true about the angles, and vice versa. He then challenged the class to think
about "what makes a good definition." During the discussion, students began to
speculate about combinations of characteristics, asking questions like, "Can you have
a right triangle that is also isosceles?" or "Does an equilateral triangle have to be
acute?" The students did not arrive at any consensus about what a good definition
should include, and the way that the discussios: ended represented something about
the difficulties of teaching in a way that respects the thinking that students bring to
understanding a subject. One of the students asserted, "We would not be having all
this trouble if we just used the book definitions."” Several other members of the class
agreed, and said that book definitions were better than any they could come up with
on their own. Since this discussion pressed well beyond the "bell” that sig’.aled the
end of Geometry period, the teacher closed the discussion with the promise that they
would return to this issue several more times in the course of the year.

Conjecturing in class

In a school where few classes include any sort of discussion, one of the
Supposer teachers led a post-lab session in which students were expected to find
patterns in the data they had collected about medians and altitudes in different kinds
of triangles. She began the class by asking three students to go to the board , draw
their lab drawings (sketches of what the Supposer had produced on the screen), ard
list their data. Where data was incomplete, other students were asked to fill in. She
did not diverge from the lesson at that point to talk about standards of completion,
but kept the class focused on looking for patterns in the data by asking them what
observations they could make about "relationships” between parts of figures. She
restated her question as "What did you get for conjectures?”, indirectly teaching
students that their observations about relationships are what are called conjectures,
but again, she did not diverge from the content to speak didactically about the nature
of conjecturing.

One student offered, "The height is always greatest from vertex to A." The
teacher asked the rest of the class, "Look at your papers; did you get that result?" and
a discussion ensued i which many informal ways of referring to figures, some
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general and other particular were used. The teacher did not infuse the discussion
with lessons that would direct students toward referring to "A" in more generic
terms. Instead, she kept coming back to the relationship between statements about
relationships and evidence in the data. Other assertions were offered by students:
"The altitudes in acute triangles are all inside.” "In obtuse triangles, one altitude is
inside, and the other two are outside.” To such assertions, the teacher responded
with questions like, "What is your evidence?" "Did anyone else find a similar
relationship?” "Does that always work?" and then, "Why do you think that will
always be true?" In this way, the class discussion moved from assertions based on
induction to more general statements based on arguments about plausible
generalizations.

When students began to lose interest in the discussion, the teacher turned on
the large monitor in the front of the room and booted the Supposer disc for
quadrilaterals, challenging the students to extend their conjectures about triangles to
four-sided figures. At this point in the lesson, she also tried to draw in students who
had not been active participants in the earlier discussion, one of whom said
straightforwardly, "I'm not good at this conjecturing stuff.” She modeled the process
for the more reticent students so that they could make some assertions without
producing the whole conjecture themselves.

"Proving it" as a part of ordinary classroom discourse

With a group of students who were further along in their study of Geometry,
a teacher wrote on the board, "If ratios of corresponding sides are congruent, then the
triangles are similar." Without saying anything about proof, she then asked a
student to "Give me a small triangle." The student responded "4,5,2" following a
routine that had obviously been established in previous interactions. The teacher
then went to the Supposer on the computer in the front of the ,;oom and constructed
a triangle with sides of the lengths she had been given by the student. (The Supposer
constructs on the basis of a unit that is approximately one-tenth of the width of the
screen in length.) She then went to the board and sketched the "4,5,2" triangle to
look like the one on the Supposer screen, and labeled the lengths of the sides as 4, 5,
and 2. Next to it she drew a larger similar-looking triangle, and labeled its
corresponding sides 8, 10, and 4. She asked the class, "What do we have to know if
these triangles are similar?” A student responded, "Congruent angles." In the
context of the class, this shorthand was a way of establishing that in order to prove
that the two triangles were similar, it would need to be established the the
corresponding angles of the two triangles were congruent.

The teacher went to the Supposer and used the "Measure" option to
determine the measures of each of the angles of the "4,5,2" triangle that had been
constructed on the screen. She then constructed another triangle on the screen by
typing in the conditions that the sides should measure 8, 10, and 4 units, and
measured the angles of this triangle. Many students called out that these angle
measures were the same as those for the "4,5,2" triangle. In the midst of this melee,
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one student called out above the others, "Prove it!" The teacher responded by saying,
"Find the proof in your book and read it for homework." She had succeeded in
setting the class up for this assignment, and although her response to the student's
recognizing the need for proof could have been more creative, she did recognize that
the reading of the proof in the book would be enhanced by this dramatic
demonstration of how one characteristic of similar triangles implied another.

Going on with the lesson, the teacher asked the students if they thought that
having only two pairs of corresponding sides proportional was enough to guarantee
similar triangles. A student asserted that two pairs of sides was not enough and
suggested dimensions for two triangles which the teacher then sketched on the
board. One was a "3,4,5" right triangle, and the other was a "6,120 degree, 8" triangle.
She asked the other students what they thought, and several concurred that the
conjecture was false. Next the teacher posed another conjecture: "What if the angles
contained in the two pairs of corresponding sides are equal?” Students drew "test"
triangles at their seats while she constructed some using the Supposer.

After some discussion and another reference to a proof to read for homework,
a student made a conjecture: "Wouldn't the ratios of the areas be the same as the
ratios of the sides?" The teacher responded, "Let's see." and went to the Supposer
again to produce a test case. She constructed two triangles whose corresponding sides
were in the ratio 1.5:1, and asked the class, "How many people think the area ratio
will be 1.5?" before she calculated it on the computer. One student asserted that the
ratio of areas would be "1.5 squared” and another student quickly followed with,
“Yeah. That has to be true because the altitudes of the triangles are in the ratio 1.5."
The teacher checked out this assertion using the Supposer to measure. Then she
calculated the ratio between the areas which came out to be 2.25:1.

Moving to a different level of argument, a student then asked, "But have we
proved that these two triangles are similar?" He was going back to the conjecture
about two pairs of corresponding sides with the same ratio and included angles that
are equal, and wondering if that always would produce similar triangles. The teacher
asked the class, "Have we proved it?" There was a chorus of "No" and one student
called out: "We haven't done the steps on the board," referring to the teacher's
routine for writing out formal arguments, using suggestions from the class, on the
board.

DISCUSSION
Teachers' terms of discourse

In the context of the high school Geometry classes that used the Supposers,
students’ perspectives on spatial relationships were referied to as "observations" or
“conjectures” by teachers, students, advisor, and researchers. The distinction
between observations and conjectures had to do with the extent to which the
student's assertion was tied to particular cases, drawn on the computer screen with
one of the Supposers. Observations were particular, and led to inductive statements
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about figures. Conjectures were stated in terms of a generalization, and in most
classes the next step was to go on to prove that the conjecture was true using
deduction on conjectures that had already been proven and agreed upon definitions.
These categories were not hard and fast, however, and the terms were often misused
by students and sometimes by teachers.

In all of the classes, teacher and students moved, physically and conceptually,
between "the lab" and "the classroom”. In the lab, students worked in pairs on
Supposer problems, in which they were assigned to make various constructions and
measure parts of them. They collected data on charts and then looked for patterns.
Regularly, the teachers stated that the purpose of this activity was "to come up with
your own conjectures” but in actuality, because of time constraints, the work of
conjecturing was often given for homework or undertaken outside of the lab, in the
classroom. When students and teachers were together in the classroom, their work
was guided by a textbook. Sometimes, there was no mention of the Supposer or lab
problems, even though teacher and students moved back and forth between these
two environments about once a week. More typically, lab problems were discussed
in the classroom, and on a few occasions, teachers used the software on a large
monitor in front of the room to demonstrate or explore constructions.

The physical division within the school setting between the lab and the
classroom was undoubtedly symbolic of the conceptual division between student
inquiry and the teache:'s agenda. Certainly geographical separation between
computer-based activities and regular classroom lessons contributed to the
integration problem, but was not entirely responsible for it. On some occasions,
teachers undertook lab-like work in the context of a whole class discussion using a
large monitor in the classroom, but most admitted to using it more when the advisor
was observing than they otherwise would. Easy access to hardware and fluid facility
with it might help teachers connect student inquiry with their planned curricula, but
discontinuity had other roots as well.

The phrases "connecting the labs with the classroom” and "connecting the
labs with the textbook" came up over and over again as the teachers talked about the
problems they were having eliciting student's thinking, making inquiry a legitimate
route to acquiring knowledge, and connecting student's assertions with the content
they wanted them to learn. Referring to the distinct physical spaces became a
shorthand for the conceptual dichotomy they were trying to manage. In contrast, the
teachers spoke of “conjectures” in a way that blurred the distinction between
students’ discoveries and the theorems in the textbook. They saw the lab activities as
a route to student’s acquiring what they called "ownership" of the ideas that they
wanted them to learn. For the most part, they designed and directed the labs so that
the progression of students' findings would follow the same linear path through

Euclidean geometry that was taken in the textbook. 5

5 In notable exception, they sometimes would diverge from the order in the textbook
in their second year of using the Supposer, because they had observed students taking
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Teaching about knowing by structuring interactions

One way to look at the strategies that the Supposer teachers used to try to
connect student inquiry with curricular agendas and instructional goals is in terms of
the ways in which they changed the interaction patterns between teacher and
students. Teaching is not only about teaching what is conventionally called
“content”. It is also teaching students what a lesson is and how to participate in it
(Jackson, 1968; Florio, 1978; Mehan, 1979). From the activities the teacher sets for
them, students learn what counts as knowledge and what kind of activities constitute
legitimate academic tasks (Lemke, 1982; Doyie, 1985, 1986; Leinhardt & Putnam, 1988;
Cazden, 1988). Face to face interaction between students and their teacher follows
context specific rules, and cues within these contexts signal how what anyone says is
to be understood in relation to the task everyone is assembled to accomplish (Mehan,
1979; Cazden, 1988). The teacher has more power over how acts and utterances get
interpreted, being in a position of social and intellectual authority, but these
interpretations are finally the result of negotiation with students about how activity
is to be regarded.

Sociolinguistic research suggests that alterations in patterns of interaction can
be initiated by the teacher to build a "participation structure” that redefines the roles
and responsibilities of both teacher and students in relation to learnin‘ and knowing
(Au & Jordan, 1981; Au & Mason, 1981). The notion of a classroom participation
structure is taken from the work of Florio (1978) and Erickson and Shultz (1977).
They define a participation structure to be the allocation of interactional rights and
obligations among participants in a social event; it represents the consensual
expectations of the participants about what they are supposed to be doing together,
their relative rights and duties in accomplishing tasks, ar.d the range of behaviors
appropriate within the event. Teachers and students thus form communities of
discourse who come to agree on working definitions of what counts as knowledge
and the processes whereby knowledge is assumed to be acquired (Cazden, 1988).

In the classroom, words like "know", "think", “revise", "explain”, "problem”,
and "answer” come to have meaning by being associated with particular kinds of
activities. Who is responsible for doing the activities associated with these words
gets determined in interaction between the teacher and the students. In
conventional lessons the participants agree that it is the teacher's responsibility to
explain and the students' responsibility to give answers. Problems are questions, and
finding the correct answers to those questions is an indication of knowing
mathematics. The teacher is responsible for knowing whether the answers a student
gives are correct and to be asked by the teacher to revise means "you've done it

a different direction in their lab work the year before (Wiske & Houde, 1988). This
sort of restructuring of the architecture of the course from one year to the next could

be interpreted as a teaching strategy that connects curriculum and student thinking at
a larger level than that reported in this paper.
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wrong" and "you've got to do it over” until more of the answers are correct. When
the teacher asks a students to think it is often an admonition to be quiet; thinking is
not considered to be a process that students—- or teacher and students— engage in
together.

In order to challenge conventiona’ assumptions about what it means to know
mathematics and enact a pedagogy of guided inquiry, teachers and students working
with the Supposers needed to do different sorts of activities together, with different
kinds of roles and responsibilities. As they used the strategies described above, the
Supposer teachers connected novel, student-initiated activities with words like
"know", "think", "revise", "explain”, "problem", and "answer". By basing some of
their lessons on conjectures derived from students' inductive thinking about the
figures they constructed and measured in the computer lab, the teachers legitimated
that approach to acquiring and verifying knowledge. They built the formal language
of geometry in steps, from the very idiosyncratic and context-embedded pointing that
students did in front of tne computer screen, to "natural language" descriptions of
patterns in the data collected from measuring the figures, to mathematical words,
and finally to symbolic expressions. At each step, the transition to a less personal
more conventional way of speaking about observations was taken for the purpose of
communicating assertions to a wider and wider audience. Thus the students’
evolution and expression of mathematical knowledge and conviction followed a
path "from pointing to proving" that is similar to the way knowledge grows in the
discipline (Freudenthal, 1978, p.242).

Shifting authority by making room for exploratory speech

Another framework for interpreting the Supposer teachers' pedagogical
strategies, also derived from sociolinguistics, is the distinction between the kinds of
thinking that can be ascertained in speech patterns as they occur with different
audiences (Barnes, 1976). Simply put, this theory suggests that we speak to an
“intimate” audience ir an improvised and exploratory way, while speech to a
"distant” audience expresses pre-planned and explicitly ordered patterns of thinking.
Applied to the Supposer classes, the lab activities would fall into the category of
intimate communication, and the classroom discussions into the category of
speaking to a distant audience. Many of the strategies used by the teachers were
intended to break down this distinction, so that students would share their
conjectures and argue about them in class discussions, in front of the teacher, as well
as with their partners in the lab, and thereby make their thinking a part of the formal
agenda.

Barnes observed several instances of small group and whole class interactions
in school settings and found:

many of the children were rearranging their thoughts during
improvised talk [in small group discussions]. This dic not make for
explicit communication, but it played an important part in problem
solving... the tentativeness of exploratory talk may for many children
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may be a necessary condition for achieving hypothesis forming and
testing.

When teachers entered the groups, asking questions intended
to further their pupils' understanding, the style of speech shifted
away from exploratory towards a style approprite to showing the
teacher that they had 'the right answer'. The use of exploratory
language did not seem to reflect different abilities of particular
children but rather the degree of control over knowledge which they
felt themselves to have. They ceased to use language to shape
knowledge for themselves as soon as the authority of the teacher was
present. (1976, p. 108)

Although the teachers that Barnes observed did not attempt to change students
perceptions of who has control over knowiedge, he cites other studies to suggest that
making such a change is possible. He asserts that the inexplicitness, confusion, and
dead-ends that are a part of exploratory talk, and a condition of student's sense of
control over the revised, "final draft" expressions that result from its clarification can
be a part of teacher-student as well as student-student interaction. There was
certainly a tone of exploration such as Barnes describes in the lab sessions as students
worked on Supposer problems with their peers. The teachers sometimes suceeded, as
can be seen from the above cases, in bringing this tone into whole class discussions,
and carrying it over to material that was unrelated to Supposer problems.

Barnes found that in classrooms where teachers make a distinction between
"presenting” talk and "sharing" talk, students were less likely to assume that the
teacher was always going to judge what they had to say to be correct or incorrect. In
trying to get students to make and critique conjectures in the mathematics classroom,
this distinction would be essential. Within mathematics, a good conjecture is not
necessarily the same thing as a correct conjecture. The Supposer teachers found it
difficult to free students from the worry about whether their conjectures were correct.
Like the students that Barnes sbserved, their students wanted only to say things in
whole class discussions that they knew would get the teacher's approval. In order to
do this, students formalizes what they "know" to fit what are perceived to be the
teachers' standards. But if the teacher responds to student talk in a way that is
accepting rather than evaluative, the student can retain control over the
formalization of his or her own knowledge. Barnes concludes:

The distinction between exploratory and final draft is essentially a
distinction between different ways in which speech can function in
the rehearsing of knowledge. In exploratory talk and writing, the
learner himself takes responsibility for the adequacy of his thinking;
final draft talk and writing looks toward external criteria and distant,
unknown wdiences. Both uses of language have their place in
education... T m emphasizing exploratory language because the
social order established in many schools excludes it in favor of final
drafts. (1976, p. 114)
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What counts as knowledge in school has conventionally only been associated with
“final draft" talk, from the teacher's as well as the learner's point of view. Changing
that view of knowledge means niaking room for exploratory talk that is treated
seriously and sanctioned as an 2ppropriate way to learn what one needs to know to
be successful in school. The two students quoted above (pages 6 and 7) suggest that
the Supposer teachers have been differentially successful in getting their students to
use their own capacity for making sense of geometry &s the standard for judging the
validity of their knowledge. The student who considers the Supposer work to be a
waste of time 1s still relying heavily on the teacher to determine what he needs to
know and how he should know it.

The Supposer teachers’ strategies gave students many opportunities for
exploratory talk in the activity of learning geometry. When students talked together
at the computer, they were most able to work according to their own, rather than the
teacher's standarc’s for appropriateness. When the teacher talked with individual
pairs in the labs, students were able to express their conjectures more tentatively than
they were able to do in whole class discussions, where they would be publicly judged
by both teacher and peers. But even in those whole class discussions, using teacher-
to-student and student-to-teacher interaction patterns like challenging one another
to "Prove it!" brought more exploratory talk into the situation. Both teacher and
students asked "what if" questions, and the thinking that went into rejecting a
conjecture was valued as much as the proof of a valid conjecture.

DIRECTIONS FOR FURTHER RESEARCH

The hypothesis ‘hat the strategies described above change the learners' sense
of his or her role in the learning process could be tested by a careful observational
study, taking account of how often the strategies ave used and in what configuration,
and comparing student interview data before and a‘ter being taught with these
strategies with data collected in classrooms where such strategies are rarely if ever
used. The teachers who have been experimenting with the Supposer and developing
the strategies along with the project advisor have probably reached a point where
they have practiced the strategies enough to participate in such a study. But the
simple counting of teacher actions would be unlikely to capture thc more subtle
shifts in epistemology that have been occurring along with the change in behavior.
It would be important in sucl a research project to take account of teachers' and
participants’ beliefs about the nature of mathematical knowledge, as well as the
strategies they use to enact these beliefs in their practice. The simple introduction of
new behaviors, without a complimentary shift in attitudes about what causes and
constitutes knowing would be unlikely to have long term effects on either teachers
or students (Cf. Stephens, 1982; Cooney, 1987).

On a more pessimistic note, it would be well to examine the practices that
Supposer teachers and other school teachers use that might counteract the possibility
of students taking more responsibility for their own learning. (Assessment practices
and tracking, which are partly done by teachers and partly done by the school as an
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institution would be possible candidates. See Silver, in press and Cuban, 1985.)
These counterproductive practices might be so strong that no matter how genuine
the attempts at getting stidents to take an alternative approach to knowing, they will
not counteract the prevailing sense that teachers and textbooks are the ultimate
standards againsi . nich the validity of students’ knowledge is to be judged. The
Supposer is a powerful tool for teachers to use in the enactment of a pedagogy of
guided inquiry, but it may be that there are elements of teacher behavior or school
structure that make it 50 difficult for teachers to use this tool, that it would be
unreasonable to expect it to have a major impact.

The National Council of Teachers of Mathematics Commission on Standards
for School Mathematics (NCTM, 1987) has asserted that "to gain mathematical
power, students need to make conjectures, abstract properties and relationships from
problem situations, explain their reasoning, validate assertions, and communicate
results in a meaningful form” (p.7). Tn describing the goals for middle and secondary
school students, in particular, the Commission asserted: "Problem solving should be
a process that actively engages students in making conjectures, investigating and
exploring ideas, discussion and questioning their own thinking and the thinking of
othe” * validating results, and making convincing arguments (p. 54)." Whether
thes ,0a's can be achieved in a public education system, and what it takes to achieve
them is largely unknown. We need ways of thinking about what students with
“mathematical power” would be able to do so that we can know whether attempts >
achieve such goals are successful. Mathematical power certainly has something to dc
with the generative nature of mathematical thinking, such as making conjectures
and arguing about the extent of their application Lakatos, 1976; Polya, 1954). But very
little research has been done which gives attention to what such activities should
look like when they are done competently by students in school, or on what they
might contribute to the learning of the mathematics we expect students to know at
the :nd of their coursewc:  (Silver, in press). The Supposer research is a hopeful
teginning, establishing that such generative thinking can occur in geometry
classzooms in different kinds of ordinary public schools as well as in more precious
"demonstration” settings (Cf. Fawcett, 1934; Crosswhite, 1987). We need a better
picture of what the "power” might be that students gain from this experience.
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