DOCUMENT RESUME

ED 303 369 SE 050 359

AUTHOR Goldenberg, E. Paul; Kliman, Marlene

TITLE Metaphors for Understanding Graphs: What You See Is
What You See.

INSTITUTION Educational Technology Center, Cambridge, MA.

SPONS AGENCY Office of Educational Research and Improvement (ED),
Washington, DC.

REPORT NO ETC-TR-88-22
PUB DATE 88
" CONTRACT OERI-400-83-0041
NOTE 30p.; Drawings may not reproduce well.
PUB TYPE Reports - Research/Technical (143)
EDRS PRICE MF01/PC0O2 Plus Postage.
DESCRIPTORS Computer Assisted Instruction; =*Computer Graphics;

Computer Oriented Programs; »Graphs; *Mathematical
Concepts; Mathematical Enrichment; =*Mathematics
Instruction; Mathematics Materials; *Metaphors;
Scaling; Secondary Education; *Secondary School
Mathematics

ABSTRACT

Computer graphing makes it easier for students and
teachers to create and manipulate graphs. Scale issues are nearly
unavoidable in the computer context. IL interviews and protocol
analysis with six students from grade 8, and 12 students from grades
11 and 12, it became apparent that some aspects of scale are clearly
understood very early while other aspects remain confusing to even
some of the moct successful students in pre-calculus and calculus,
and that there is a consistency and meaning in metaphors which
students invoked in explaining their ideas to themselves and
teachers. Three metaphors inferred from students' words and one
metaphor supplied by the authors are discussed. These are: (1) the
computer as automatic paper and pencil; (2) scaling is like using a
magnifying glass; (3) scaling as a rubber sheet (supplied by the
authors); and (4) the mathematical curve as a bead necklace. Some
implications concerning the curriculum are discussed. (YP)

ARRRRRARA AR RRRAR R AR R AR AR RN R RN AR RRRRR R AR R AR RN RN RARNRARRRRARNRARRRR AR RRRARRRRRR R

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. ®
RRRARERRARARARRRRARRRRRRRARNRRARARNRARANRRARRRRRRRRRRRARRRRRARRARRRNRRRARRARARRRAARRRRR R




ED303369

TR88-22

METAPHORS FOR UNDERSTANDING GRAPHS:

WHAT YOU SEE IS WHAT YOU SEE*

Educationn] Tevinelogy Cenfer
Harvard Grajduate School of Education
337 Gutman Library  ..ppizn Wa, Cambridge MA02128

oo

U S DEPARTMENT OF EDUCATION
Office of Educational Ressarch and improvemen)
EDUCATIONAL RESQURCES INFORMA\ION

CENTER (ERIC)
This document has been reproduced as
received from the person or OrQanizstion
onginating
£ Minor CHanges have been made to improve
reproduction Quaity

® Points of view Of OpINIONS stated In this docu-
ment do not necessarily represent officiat
OERI pos:tion or policy




Metaphors for Understanding Graphs:
what you see is what you see*

Prepared by:
E. Paul Goldenberg and Marlene Kliman
Educaticn Development Center, Inc.

The work discussed in this paper was conducted at the Center for Learning Technology, Education Development
Center, Inc., under a subcontract from the Educational Technology Center at the Harvard Graduate School of
Education. Preparation of this report was supported in part by the U.S. Office of Educational Research and
Improvement (contract # OERI 400-83-0041). Opinions expressed herein are not necessarily shared by the OERI and
do not represent Office policy.




1/31/89 Algebra research_ 1

Metaphors for Understanding Graphs:
what you see is what you see*

E. Paul Goldenberg and Marlene Kliman

Education Development Center, Inc.
55 Chapel Street
Newton, MA 02160

Graphing has traditionally been a paper-and-pencil activity and, ' ecause of the time and
effort involved, has not constituted a large part of mathematics curricula. This is changing
as greater classroom access to computer graphing makes it easier for studs 'ts and teachers
to create and manipulate graphs. The growing interest in the curricular use of graphing
raises a need for insight into students’ approaches to the graphing process.!

Insights are necessarily conditioned by the context in which they are developed.
Therefore, if we wish to understand computer graphing, it is essential that students’
approaches to graphing be studied, at least in part, in a computer context, which brings its
own particular set of issues to the fore. For_example, issues of scale—of paramount
importance in understanding both graphs and the concept of significance as it is used in
mathematics—are typically not noticed and may even be deliberately avoided in paper-and-
pencil work.2 By contrast, scale issues are nearly unavoidable in the computer context.

The research reported here was conducted by the Center for Leaming Technology, Education Develop-
ment Center, Inc. (EDC) under a subcontract from the Educational Technology Center, Harvard Graduate
School of Education, supported by the United States Office of Educational Research and Improvement
(Contcact # OERI 400-83-0041). The original draft of this report was prepared under the same contract.
Revision for publication in the Journal of Mathematical Behavior, 1989, was supported in part by EDC.
Opinions expressed herein are not necessarily shared by OERI and do not represent Office policy.

1. When we first began our work (Goldenberg, 1988), neither research nor teaching literatures had dealt
much with this issue. The research literature was almost nonexistent (but see Goldenberg, 1988, for a list
of what we had found at that time), and the teaching literature, also fairly small, focused almost exclusively
on ways to teach graphing skills in a paper-and-pencil context.

2. Because of scale’s nearly total absence from most curricula, its mathematical importance is generally
overlooked. The value of scale is discussed in Goldenberg (1988), and summarized here for convenience:

-a. Attention to scale is essential in reading any graph accurately.

" b. Scale is at the root of understanding significance in its various mathematical senses: statistical sig-
nificance, significant figures, etc. It also has a special importance in graphs, in that the usefulness
of a graphic (as opposed to tabular or formulaic) representation of a mapping resides primarily in the
gestalt that it shows. Scale affects which aspects of that gestalt are emphasized and de-emphasized,
strongly influencing the impression one has of the relationship between the variables.
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Scale and its interaction with function in generating graphs captured our interest quite
early and seemed particularly worthy of study. But scale issues are subtle. In working
with students from 8th to 12th grades, it became apparent that some aspects of scale are
clearly undersi »od very early while other aspects remain confusing to even some of the
most sophisticated and mathematically successful students in pre calculus and calculus.

Scale is also difficult to isolate from the mathematical context in which it is en-
countered. What emerged from our study was nothing like a sequence in the development
of scale ideas or a taxonomy of scale issues. Rather, we began to see the most consistency
and meaning in what we shall call the “metaphers” students invoked in explaining to
themselves and to us their ideas about the scale-related graphing problems we posed.

We discuss four such metaphors here, three inferred from our students’ words and
actions and one supplied by us.

* The paper-and-pencil metaphor is, at one level, a denial of dynamic scale change.
As paper may be cut, graphs may be cropped, but stretching and shrinking are not
natural operations if one thinks of graphs only as they exist on paper.

* The magnifying-glass metaphor is a concretization of dynamic scale change. It
treats mathematical objects under magnification as if they were physical objects, and
allows them, therefore, to appear rougher or grainier when sufficiently enlarged.

* The rubber-sheet metaphor, supplied by us, is also a concretization of dynamic
scale change. It substitutes concepts of stretch and distortion for the magnification,
resolution, and closeness that are fundamental to the magr Fying-glass metaphor.

*  The bead necklace metaphor allows ideas of scale to be applied to points, which are
unscalable. Students seem generally to regard points as extremely small rather than
dimensionless; the attribution of any size whatsoever to points allows them to be
conceptually magnified, lined up in a row, and so on.

These metaphors are of central importance because they served to focus, aid, direct,
and misdirect our students’ explorations of graphs, and to inform and limit their
understanding of the mathematics behind those graphs. An exposition of these metaphors
therefore became the major product of our study.3

Any discussion of student metaphors makes it hard not to sound as if our study were
about “how students think about graphs.” But claims made with integrity about “how
students think” tacitly promise to be about “the typical student,” or “a great many students,”

¢. In order for students to generalize appropriately from experiences wiih graphs, they must learn to see
essential features and ignore inessential ones. Our carly work (Goldenberg, 1988) suggested that
student manipulation of scale as well as manipulation of function is critical to this process.

3. The metaphors we speak of are similar in several respects to the components of intuitive knowledge
about physics that diSessa (e.g., diSessa, 1983) postulates. diSessa’s phenomenological primitives, or
p-prims, function as explanatory constructs that guide approaches to and explanations of physical
phenomena. Like the metaphors we have just enumerated and describe further below, p-prims originate
with our interpretations of our interactions with the physical world.

.5
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or at least “a reasonable diversity of students” and are, therefore, essentially statistical in
nature. By contrast, our study focussed on a small number of selected students and
endeavored to iearn how they mobilized the knowledge and strategies that they built out of
their everyday real-world experiences, and how they applied these strategies in the abstract
visual world of graphed functions. Our goal was therefore not to make claims about the
typical or even atypical student’s approach to the problems, but to understand what
complexities lurk within the mathematical problems we pose.

METHODS

In all interviews that we conducted—twelve with juniors and seniozs taking mathematics at
least at the pre-calculus level, and six with eighth graders taking first year algebra—we
chose to work with bright and articulate students. Our purpose in selecting the most
successful students was to eliminate from our study, insofar as such a thing is possible,
results that could be attributed primarily to a particular student’s gross lack of interest or
broad mathematical incompetence. By interviewing students who had, for the most part,
done well in mathematics, we could feel relatively assured that the confusions they
evidenced were probably widespread, and reflected areas of genuine difficulty.

Of the twelve high-school students, only four had previously used computers much in
any context except for (limited) word-processing. The four who had had significant
contact with computers were programmers with varying degrees of experience, and three of
those had spent some of their programming time teaching computers to graph functions.
This latter experience seems to have been influential in their responses, as we shall explain
later in this paper. No other experiences with graphing programs of any type were reported
by any of the students or their teachers.

Five of the interviews were videotaped, and rrovide the central data set in this study.
The pre-calculus students in these interviews created functions on the computer using an
experimental prototype of a program called The Function Analyzer.4 They observed the
graphs, manipulated them in various ways (e.g., by changing the function or by changing
the scale of the graph), and explained what they saw and did. Two video cameras, one
trained on the screen and the other on the participants, recorded each interview.

Transcriptions of the videotaped interviews were heavily annotated with visual
information about context (such as the state of the computer screen), writing or drawing

4 The Function Analyzer, one component in EDC's Algebra Series, has since been published by Sunburst
Communications, Inc. It allows one to explore relationships between symbolic expressions and their
graphs by manipulating either representation and tracking the effect on the other. Students may freely mark
reference points on the graph and may also create, edit, and study tables of values associated with their
marked points, graphs, or symoolic expressions. Scale change, the issue we chose to explore in this
rescarch, can be accomplished either through a non-numeric stretch-shrink operation, or through explicit
numeric setting of coordinate boundaries. For the purposes of this research, we felt the latter command
structure would give us a richer picture of students’ strategies, although, as we shall speculate later, it
conditioned, in part, the kinds of responses we would be likely to see.
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that the student or interviewer might have done, typing, pointing or other communicative
gestures, and other clarifications or supplemcats t~ ihe spokan parts of the dialogue.

The other thirteen interviews—five exploratory interviews with juniors and seniors on
computer, two similar interview. off computer, and six interviews with 8th grade students
using work-sheet material on various graphing issues—served as preparation, comparison,
background, and follow-up data. Audiotapes of eight of these were transcribed.

Students in all eighteen interviews had plain or horizontal-lined paper on which to
perform computations or sketch graphs. No graph paper was used. In the off-computer
interviews, we tried whenever possible to follow the same general format that we follewed

on computer. We asked the same kinds of questions and encouraged students to express
and explain their reasoning.

Our strategies in these interviews and our interpretations of the new data are both
strongly influenced by data we collected ir. our first study (Goldenberg, 1988), which
inctuded other computer-based interviews, paper-and-pencil tests with larger groups of
students, formal experiments with small groups of students, and intervie ws with teachers.

From this various research, we selected the metaphor data as the most significant and
informative for future curriculum and materials design.

Analysis

The gestures and casual language our students used as they worked on the scale-related
problems we presented became increasingly important in onr analyses, as important as the
mathematical manipulations that the students performed.

While we are reluctant to label our insights too broadly by claiming they represent
students’ thinking, we do find the language and actions of our students very revealing
about the complexity of the problems we nave posed, the nature of the graphing process,

and the kinds of knowledge that bear on graphing—a complex of characteristics we call the
“problem space.”

As mentioned earlier, we also allowed ourselves to postulate metaphors—were it not so
bulky, we might prefer to call these “experience-based conceptions of graphs”—from the
language and actions our students use. One such metaphor—interpreting a graph as if it
were a partial view of a scene one might observe while looking out of one’s office
window—was reported in Goldenberg (1988). Interviews with high school students using
graphing software lead us now to add to the office window metaphor three others—the
paper-and-pencil, magnifying glass, and bead necklace metaphors mentioned above—and

to use them as a basis for considering the problem space and implications for the teaching
of mathematics.

The metaphors are, of course, constructs of our own; we do not ascribe them to our
students thinking. Nevertheless, these metaphors are such close derivatives of our
students’ communicative acts—words, gestures, drawings, and computer-aided manipu-
lations—that it feels entirely sound to treat them as the tacit organizing ideas behind our
students’ attempts, using the means they had available, to describe their thinking. The
difference is subtle, but important to our purpose. It is the communicative acts and our
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perception of the organizing theme behind them, and not the thinking itself, that we claim to
know. But because these acts represent our students’ attempts to communicate, we also
assume that they choose a means they feel is likely to have shared meaning with an
interviewer who is previously unknown to them. As a result, we believe that the
metaphors are not largely idiosyncratic and would communicate with a far broader
population of students than our bright and articulate sample represents.

Interview approach and interpretation

We deliberately chose problems that we fel: were likely to elicit conflict and discrepancies
in students’ approaches to graphing. The nature of the conflict itself was of interest to us,
and the students’ strategies for resolving the conflict helped to tell us about the relative
strength and resiliency of their approaches. Most of our problems were designed not to
pinpoint a single issue we wished to study while excluding others, but rather to embed the
issue we wished to s+1dy in what we felt was a reasonably natural context. This added
complexity contribut., in part, to the richness and variety in the protocols, though it also
made the protocols more difficult to interpret.

Having students confront and reason about conflict is both a research tool and a
pedagogical philosophy. Conflict evokes strong reactions: it makes the interview more
interesting and elicits more vivid language and gesture. As long as the students do not feel
threatened in the interview situation, the puzzle also builds investment in the interview and
pulls quite naturally for an explanation of both the similarities ard discrepancies between
students’ predictions and observations.

Typically, we began by inviting students to 2
describe the graph of “‘a quadratic function.” They
all said without hesitation that it would be a
parabola. Presented with the task of describing the
graph of a specific one like x2+7x+1 without using
the computer, the students varied; some worked
analytically while others generated points. Still, all -2 2
expected that the graph would be a parabola. We
ther show:d them the graph in figure 1, asserted
that it was an accurate graph’ of x2+7x+1, and
asked them to explain it.

Figure 1
After students discovered (always with help, in our sample) that scale changes could

make a parabola look like a line, they were asked to explore that idea in various ways.
Could a graph that they identified as a parabola be made to look like a straight horizontal

5 What constitutes an “accurate graph™ is a very interesting issue raised by our research but beyond the
scope of this paper. It will be touched upon briefly, however, later in this paper. See, in particular,
footnote 7
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line? A vertical line? Both diagonals? Despite having once seen the parabola rendered as a
straight lire, many students—good students—would continue to deny that it would be
possible to show it as a different straight line, or would say things like “maybe but I don’t
think so.”

The following extended excerpt from an interview illustrates such a confrontation with
conflict and something of our questioning and interpretive style.

Inwvwr I'm going to put in the paraboia x2+7x+1. And I wonder if you
would sketch [on paper] more or less what you thiik that will be.

Syl (laughs) OK. ... OK. OK. (after about 15 seconds) Do you want
me to draw like spaces and stuff? Like...

Int However it would make sense....

After some thinking and hesitation, she
drew the graph shown in figure 2—no
numbers, but two axes, seven ticks
along x and two along y, a big dot at the
vertex, and the curve swinging upward.
Though incorrect in many respects, her
graph showed that she had a clear idea

of what a parabola should look like. She | it
explained that she did not evaluate the
function expression to generate points, Figure 2

but rather tried to analyze the ecuation to
determine what transformations from “a
regular parabela” she would need to
show in her graph.

Although she was generally wrong about how those transformations could
be derived from the symbolic expression, her concept of the transformations
that might be performed was clear and correct. She was certain the parabola
would not go through the origin, but she used the coefficients 7 and 1 as
coordinates of the vertex. She knew that “there’d be a negative sign
[somewhere in the expression]” if the parabola opened downward, but
didn’t indicate that she knew tha it mattered where that negative sign was.
About the width of her parabola she remarked:

Syl  Ididn’tchange it, but I made it like a regnlar parabola.
Int  ..What would that be’
Syl At the origin and then at points 1 and 1 [at point (1,1)], it'd be y=x2

’, - A} . - M e
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She admitted uncertainty about the placement, 2
but she was quite certain that the graph /
should “look like a parabola.” Having estab-

lished this certainty, the interviewer showed /
her the graph in figure 3, raising the conflict 2

toward which the rest of her thinking and

analysis would be aimed.
Int  ..OK. I'have a graph of it up on the screen...
2
Syl  That’sit?! (laughing) Figure 3

Int  That’sit.
Syl  That’s not a parabola!

Int It doesn’t look like a parabola at all! Um ... But how does this
differ from what you're... first of all, how is it similar ir any ways
to what you were expecting?

Syl Um, no. (laughs) Where's the origin? You're saying this is the
middle, like a regular graph?

Note that her notion of a “regular graph” includes syzumetry around the
origin. After receiving confirmation that the origin is in the middle, she
answers how the computer graph is similar to what she had predicted.

Syl ..The line, OK. Um ... Well, it’s not on the origin, which I didn’t
think it would be. I don’t know, I've never seen anything like that... _

The interviewer then suggests she draw a box on her paper-and-pencil
graph (figure 2) that contains the same space as is indicated on the computer
screer: {figure 3), a square space centered around the origin and measuring 2
units out from the origin.

Syl (I™mediately.) Well, then my graph won’t be in it at all...

The interviewer confirms her understanding—the box won’t even touch the
graph she had sketched (figure 2)—but explains that the computer’s graph
does pass through the box. The interviewer then ske‘ches in the segment
that the computer shows and asks the student to sketch how she thinks the
graph might continue beyond the confines of the boxed area.

Int  OK.... What might that look like if you looked beyond the edges of
this box?

Syl The rest of the graph?
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Although the interview does not captu:e J
it, we infer from the rest of Syl’s |

knowledge that she is well aware that
“the rest of the graph” is infinite, and
cannot be drawn. Rather, her question
reveals her sense that something about
this graph is peculiarly incomplete.’

At this point in the interviews, some of
our students were trapped by the per-
ception of the graph as a straight line, / Figure 4
and drew extensions to it as straight

lines also. But when Syisketched her

idea of the behavior of the curve outside

of the boxed region, she made it clearly

parabolic (figure 4).

Syl You mean like this? Something like that? -

Int  Again, you went back to this ides of parabola, why are you holding
on to it?

So firmly is she convinced that this must be a parabola that she assumes the
interviewer’s questica is directed not at why she has chosen a parabola at
all, but rather at why she has chosen the upward rather than downward
orientation.

Syl Idon’t know, that’s ’cause, I don’t know, I gucss in class you
always do them like that, I mean, for the most part. She gestures a
U-shape. Exceptions are going another way. Gestures an upside

down U.
Int  Oh, I see, you mean the orientation.
Syl  Yeah.
Int  But you really want it to be a parabola despite this straight line.
Syl  Yeah.

7 This interesting issue—W1.at constitutes enough of a graph?—is beyond the scope of this paper, but it,
too, suggests the significance of scale. Even when one is fully aware that no graph can show the entire
parabola, one almost automatically regards this graph as showing only “part of” the parabola, and is thus
incomplete by comparison with a conveutional presentation. Critical features of the function, and even
canonical form (in conflict with “symmetrv around the origin”), seem to be part of the casual definition of
“a graph of the function” although special purposes may lead one to choose other graphic presentations—
“portions of the graph.”
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Int Why?
Syl  Because usually a pz.abola, that’s what we learn, is that one side of
it’s squared.

This extended excerpt illustrates several features of our interview and analytic style.
Principally, it shows how we try to construct situations that ask the students to resolve
conflicting idezs. For example, we did not present our oddly scaled graph uniil after Syl
had declared wt.at a quadratic should look like and identified those characteristics that might
distinguish one quadratic from another.

Also, the interviewer allowed himself to be quite active during the interview, and to
teach as well as to question. For example, when he asked Syl to draw a box on her paper-
and-pencil graph that contained the same space as was indicated on the computer screen, he
was consciously suggesting a strategy for interpreting the screen graph. Although such
interventions woald require us to qualify our interpretations, they served us in other ways.
In this case, we were able to see that Syl took no time at all to find the scale information on
the screen, and were therefore confident to infer that it had simply not been salient to her
earlier—it was not something she was in the habit of attending to. We also felt that
appropriately timed teaching was part of our responsibility to these cooperative and
interested students.

MOBILIZING KNOWLEDGE FROM REAL-WORLD EXPERIENCES:
THREE METAPHORS

Over the course of the interviews, students seemed to invoke metaphors as “tools” for
naking predictions about, explaining, and creating graphs. Metaphors did rot appear as
internally consistent, carefully thought out, and well articulated models of graphs, but
rather as a relatively fluid and freely shifting set of analogies between graphic situations and
real-world experiences that seemed to share some features. A single student might shift
from one mewaphor to another in the course of an interview, using whichever best suited the
specific graphing issue of the moment.

In this section, we describe three of the metaphors we derived from the interviews. To
give a sense of the ways in which we inferred these metaphors from students’ words and
actions, we begin each description with an illustrative anecdote. With many examples of
each metaphor to choose among, we have deliberately chosen those that suggest the
complexity of interaction between the metaphor to be illustrated and other aspects of the
student’s thinking.

As in this kind of work it is easiest to see metaphors when they lead the student astray,
we therefore demonstrate the existence of the metaphor when it leads to « mathematically
less than optimal approach or answer. We do not contend, however, that having or using
metaphors is itself a problem. In our conclusion we in fact discuss issues of enriching
student metaphors as a way of augmenting their mathematical ability and suggest further
research in the area of metaphor enrichment.
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Metaphor 1: Computer as automatic paper and pencil

'Computer graphs are treated like paper and pencil graphs that can be
' .opped, but not stretched or shrunk.

Later in the same *nterview excerpted above, 20
Syl changed the scale of her on-screen graph to
show the parabolic shape she expected (figure
5). The interviewer asked her i. some region
of it could be displayed ir. a way that makes it
look like a horizontal line.

She picked the vertex region on which to
experiment, but despite having just seen and
undone a sinilar scale manipulation in which
this parabola appeared as a slanted line (see
above, figure 3), s..c expressed doubt that it
could be made to look horizontal. 2

Figure 5
Syl I think it’s going to be impossible, just because a parabola doesn’t

really have [a horizontal line at the vertex]; it just has a peint. But
I'lltry it.

Visually, she estimated correctly that the vertex would be found within -7<x<-2, and
(mcomectly) within -5Sy<-4. When she indicated to the Function Analyzer that she wished
to change the coordinate values, a small copy of the graphing window appeared below the
screen on which her graph was drawn.

Figure 6 shows the screen after
she has reset the x coordinates, and as
she is about to set the upper extent of
the y coordinate (highlighted). The y
ax1; does not appear on the scaling
window because the subdomain
-7<x<-2 does not contain it. After 20 20
making all of the changes she wishes \/
to make, she presses RETURN to graph
her function at that scale.

Enter new coordinate values

After some experimentation, she 2
lowered the bottom extent © the y fx=x=s 7x +1
coordinate to -12, producing the r
graph in figure 7. From this graph,

she further refined her estimate of the 7 2
X extents, producing the graph in ]
figure 8. Notice that this represents 20




1/31/89 Algebra research 11

her choice to narrow the graphed domain to exclude the left-side hill, without chan ging the
Y scale, even though both scales may be changed at the same time and in the same way.

-4 -4
7 -2 -4 2
12 12
Figure 7 Figure 8

She then set about excluding the right-side hill, and at the same time tried to center the
graph vertically (figure 9). Note that in the latter move, she added to the bottom exactly
what she removed from the top, performing a translation and not a dilation as her previous
moves hiad been. The window on the graph was moved downward without reducing its
scope ar all. It still measure~. 8 units from top to bottom. Her next step was to eliminate
curves on both sides by moving both sides toward the center, again without any change in
vertical dimension (figure 10). Her line is now nearly perfect: a horizontal line with a
single jog in it.

-6 ' -6

14 14
Figure 9 Figure 10
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These last two experiments can be graphically -4
summarized as shown in figure 11. Super- \

imposed on the graph shown in figure 7 arc a
dotted box, representing the region graphed in
figure 9, and a narrower solid box representing
the region graphed in figure 10. The fact that
she successively narrowed her domain while -7 -2
maintaining the same “height” as the original
graph suggests that she was attending to /

domain only, and not to sczle.

Figure 11

She performed a final step to cut off the jog on the right. The interviewer then asked
her to explain a contradiction. She had asserted not long ago that “a parabola doesn’t really
have [a horizontal line at the vertex]; it just has a point.” Nevertheless, she succeeded in
producing a graph on the screen that clearly showed a line.

Syl (puzzled and amused) ...It doesn’t make sense!

Int  But you reasoned it out. I mean, it’s not as if it was just an
accident. You actually made that happen.

Syl (laughs) Idon’t know how, though.
This rzsponse is, itself, something of a puzzle. _

" Recall that although she doubted it would be possible to make the graph look like a

horizontal line, she knew exactly how to go about doing it, if it could be dore. She created
this transformation entirely on her own: she conjecture that a small neighborhooc around
the vertex was what she wanted, estimated the size of the neighborhood, performed
successive adjustments, and had her method confirmed by achieving the desired result.
Because she invented the method, we might therefore expect that she would unde. stand
why it worked. Yet she acted stunned by the contradiction between a firmly held belief,
that parabolas do not have flat bottoms, and the observation that she, herself, was able to
create a graph of a parabola that was a horizontal line.

Perhaps more puzzling is why she would have made an attempt to find a horizontal line
in the first place. She clearly did not believe it existed, even after she saw it.
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The interviewer then suggested she draw on 4
her paper and pencil graph a box representing
the region displayed on the screen—in a style
similar to that shown in figure 11. She did so
with no difficulty. To help her consider
relationships between the shape of the region
on paper and the appearance of the graph that -7 -2
was displayed on the computer, the interviewer
asked her what difference it might make if the
graph she showed on the screen represented a
shorter, squarer region (figure 12) than she
was currently showing,

=12
Figure 12

Syl  (after a short pause) 1don’t think it would matter ... as long as you
don’t make it [the region of the graph] wider [again).
Int  Explain what you mean by you don’t think it would matter.

Syl  Idon’t think the straight line [on the screen] would change—the

horizontal line—as long as you keep the width [the x extents] the
same.

Int  Why not?

Syl  Because, um, [if you change the vertical dimensions, too] you're

) just locking at the [same] view from a shorter—— I mean, you're
not looking at anything different on the parabola; you’re looking at
the same thing but from a smaller box.

A heavy dependence on experience in the paper-and-pencil graphing world would
explain all three pu. .15 why she would seck a horizontal line that she thought did not
exist, why she could :c: - xplus: 2 successful procedure that she invented herself, and why
she expected that .10 alieii i1 .. the graph would result from this latest experiment that
suggested making a shorter, ~guarer box around the segment she was graphing.

Although she. \fic >2d that no truly straight and horizontal segment existed, she saw an
almost straight anJ .orizontal segment of the parabola—the best she could find. In a
paper-and-pencil world, she could “cut away” the unwanted portions of the paratcla, as if
with scissors, to show her chosen segment by itself.8 Thus, her willingness to offer a tny

8 There are two kinds of flatness to be understood in tis problem: the mathematical flatess that is
reflected in the limiting nature of Ay/Ax as Ax—0, and the suppression of change in y value by measuring
it on a much grosser scale than that used for changes in x, effectively magnifying more along the x axis
than along the y. It is interesting to consider what Syl’s response might have been to a graphing utility
that used a cutting and cropping metaphor as part of its scaling interface. In some utilities, the user may
construct a reciangle and slide it around on the graph to indicate what portion of the graph is to be
magnified, which is to say scaled up while maintaining the existirg aspect ratio, or ratio between x and y

i6
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chunk of curved line as an approximation to the desired straight line led her to apply a
technique—cutting away distracting features—that she understood in a concrete way.

She is a bright student, and if she had been asked to anticipate what the computer
would display as the result of her first such cut, she might well have figured it out. But she
was not asked to predict, and most likely she saw the result before thinking much about it.?
This allowed her to be seduced perceptually into repeating the process without ever quite
noticing where she was being led. When, after several iterations, she saw a truly straight,
horizontal line, and not a tiny curved approximation, she did not know what to make of it.

If our conjecture is correct—if, that is, her strategy is based on some notion like cutting
off unwanted paper with a scissors and if she never accounted for the unexpected
expansion of what was left—then it would also explain why, once she had succeeded in
displaying a horizontal line, she could not see how snipping off blank space could change
anything about its appearance.

This is exactly the behavior we would expect if we were performing the operations on -
paper. If we snip away portions of a paper and pencil graph, the size and shape of the
remaining piece changes, but the curve drawn on that piece is not altered at all. Syl had not
expected that any amount of surgery on figure 5 would reduce the parabola to a horizontal
line. The paper-and-pencil metaphor cannot explain her observation that the surgery did
make a change, but she appears to cling to this metaphor because she has nothing to replace
it. Consequently, she approaches the removal of the blank space in the same way.10
Cutting off all but a very narrow band above and below the horizontal line on a paper-and-
pencil version of figure 10 would result in an unconventionally shaped graph, but would,
as she maintained, produce just as horizontal a line as the graph began with.

The effect o.. the computer screen was quite different from what the paper and pencil
metaphor would suggest. “Snipping away” a portion of the graph did not change the size
and shape of the window in which the remaining portion would be displayed. Therefore,
choosing to display only a very narrow band above and below what appeared to be a
horizontal line would stretch the band to the full height of the cisplay window. If there
was, in fact, any curvature to the line, this magnification might be enough to show it.

Metaphor 2: Scaling is like using a magnifying glass

better. Thus, if it is curved, one sees the curves better. As with a physical

As one looks closer at a curve, one sees its true nature and compositio?l
object, magnification shows roughness that may not otherwise be visible.

measures. Software using such a metaphor favor the separation of these two sources of flatness, but at a
~ sacrifice of some clarity about scale changes that expand rather than contract the viewing window.

9 The role of doing the computer’s work in one’s head—both prediction of and reflection on the outcome
of an experiment—will be explored later.

10 Notice that it is her continued surprise at ‘he results that gives us a sense for the strength and tenacity
of the ruetaphor. This will be apparent in later examples, as well.




1/31/89 Algebra research 15

When Dan first saw a graph of x2+7x+6 scaled to make it look like a lirie, he rejected his
original prediction that it would be a parabola, explaining the discrepancy with the
disclaimer that “because you add the new, other x term [7x], it changes from a parabola to a
line... you’re changing the whole equation, which changes the ultimate graph.”

He then set about computing the formula for the line that he saw on the screen, using
the knowledge from the formula that the y-intercept was 6, and the observation from the
screen that the x-intercept was -1. He compared the two graphs—f{(x)=x2+7x+6 and
J1(x)=6x+6—Dby displaying one on the screen, tracing over it with a felt-tip pen, and then
displaying the other. They were indistinguishable by this method of comparison.

Despite having so quickly capitulated to the image and given up his original prediction
that the graph would be curved, and further, despite having apparently proven chat the
quadratic was equivalent to a line, Dan maintained a sense that something was amiss. At
the mere suggestion that things might be different outside of the small territory he was
viewing—a suggestion like the one to Syl that he draw a box around the graphed region—
he spontancously returned to his expectation that these functions should be different and,
also spontancously, explained why.

Dan  Well just the range that we’re using, ultimately...because of the
squared term, the larger number you use, the greater it [the squared
term] is going to get, and that’s going to throw the 6x.

He then changed the scale (figure 13) to show the 23
parabola in the form he had anticipated. X2+ 7K+ 6

The interviewer asked him to explain the new graph
that he produced.

Int OK. Now what are you seeing? -25 25

Dan  We're seeing that this [neighborhood \/
of -1] is the part that I was seeing [in
the earlier graph]). [When the
parabola just looked like a line, we

were] seeing just part of the parabola. -25
And then when you expand it [you Figure 13
see the parabola].
Int .. Let’s see if we can get this thing to change appearance even

more. Before, it was a straight line; now it’s a curve. Can you get
it to be a different straight line, like, for example, a straight line
going that way? [Gestu.re indicates NW-SE diagonal.]
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Dan pointed to a short segment of the parabola
just left of the vertex and said he was “trying to target
that section down there.” As it was then displayed,
the segment was quite small and appeared very
straight, partly due to its size and partly due to the
pixel approximation that represented it. When he did -8 -4
succeed in viewing just that section (figure 14), it
became apparent that the segment was curved. He
did not use this new figure as a basis for further

transformation as Syl did, but remarked immediately X2+ 7x+6

on its non-satisfaction of the request to generate a

straight line. -0
Figure 14

Dan  That’s slightly —— gesture indicates a curve

Int  That’s slightly curved. What would you have to do to make that
look very straight? Or is it possible?

Dan ... Well, the smaller you get, tl.e more it looks straight.

Int  How do you know? You said that awfully fast, without
experimzats, what do you mean?

He seemed to have said the correct thing instantaneously and so the interviewer wanted
to know how he figured it out. But, in fact, the interviewer misunderstood his meaning.
From the interviewer’s notes:

I assumed that he meant “the closer in you zoom” or “the smaller the
segment you look at under magnification,” the more it looks straight. In
fact, what he means is something quite different. As he perceived the
phenomenon, what had looked straight to him in the original parabola
turned out to be slightly curved under magnification, and so what he means
by “the smaller you get, the more it looks straight” is “the less magnified the
segment is (i.c., the smaller it is), the less well you are able to see whatever
curvature it has.” As he indicates below, this belief is quite firm with him.

Dan  Well, just because, you know, when you're looking at a bigger...
like a magnification of something, you can see the imperfection,
say, of the line a lot better than when it’s smaller. I mean, if you
were to take this part [points to a part of the curve currently on the
screen] and magnify it, then it would— it would, you know, look
curved, more curved than if you shrunk it down into a smaller piece.

Dan Like, if you move the scale back to the 25s (figure 13)—you know,
25s all around—this segment right here, the segment that I was
targeting, looks like a straight line... Because of just the resolution
or whatever. It looks like a straight line... But when you zoom in,

19
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and you get a magnification of that area, (figure 14) it’s actually
curved. It will be curved.

Here, t00, is a puzzle. Dan had already seen a parabola so convincingly represented as
a line that he actually computed a formula for that line. Furthermore, in his explanation of
figure 13, he seemed to comprehend immediately what transformation had been responsible
for the straight line he had first been shown. Can it be, then, that he now believes such a
transformation could nct be applied a second time or to a different portion of the parabola?

Even the wording of the challenge—*“Before, it was a straight line; now it’s a curve.
Can you get it to be a different straight line?"—suggests such a thing can be done. Why
does he now seem to reject the possibility?

One interpretation is that he is not rejecting the possibility, but having difficulty
divorcing himself sufficiently from what he perceives as the mathematical “reality”—that
there are no straight lines in a parabola—to consider appearances alone. He might, for
example, be trying to say something like “If on¢ looks closely enough at a parabola, one
can sec that it is never quite straight”—a statement about some kind of mathematical
looking closely, and not about what one sees on a graph. But everything about his
language suggests instead that he is indeed talking about appearance, and not about the
mathematical reality.

The interviewer tests the strength of Dan’s beliefs first by trying to convince him to take
the next step, as Syl did, and repeat the scale change an_ _isplay an even smaller segment
of the curve, but Dan is so convinced that he knows what will happen that iie merely
explains his reasoning and does not perform the experiment.

-Dan  I'mean, there you can see that it is slightly curved, if you magnified
it a lot more, you’d see there’s even more of a curve....

Int ~So if we were to look at, let’s say, just rhat part [inside the dotted
box in figure 14], it would seem more curvy?

Dan  If you were to take this part [inside the dotted box] and magnify it
more, it would. ..If you take [it] where it is now, it looks like a
line... But if you take [it] and magnify it... putting, you know, more
dots in for the screen, you’d be able to see that it is curved.

So, the interviewer pushes harder, even arguing outright.

Int  Tdon’tbelieve that... I mean if it were more curved, wouldn’t that
mean that this whole thing is like full of ripples? If there’s a lot of
curve here and a lot of curve here and a lot of curve here.
(Interviewer points to contiguous segments of curve and tries very
hard to argue him ous of kis position.)

Momentarily shaken, Dan’s argument becomes incoherent, but he quickly recovers and

returns to his original position.

Dan ... Well, it’s the curvature in, in, you know, total, the total
curvature. Whereas, whereas, when you're looking at here, I mean,
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if you take this segment, and, you know, take it to there, I mean that
looks like a viable line.

Int  Well it certainly looks like a line.

Dan  On a screen, but when, you know, the more you look at it, I mean,
if you were to shrink this down to that, change the scale, it would

look a lot more like a line than if, than if you took this part and
magnified it to there.

Behind Dan’s use of “magnified” and “resolution” and “zoom in” is an optical
metaphor, a notion that a dilating scale change on a mathematical curve behaves somehow
like looking at a physical object in a magnifying glass. It certainly is true that when we
look at something smooth under strong enough magnification, we see curves and holes and
bumps that aren’t apparent without magnification. This experience is generalized
inappropriately to the mathematical object.!!

This is a particularly powerful metaphor for several reasons. For one thing, until a
student has much experience with “magnifications” of mathematical objscts—or, in place of
the concrete experience, sufficiently clear formal understanding of such difficult ideas as
continuity and infinity—physical magnification seems the only available analogue in the
real world. Further, the vocabulary of optics seems naturally to be used by just about all
the students and teachers with whom we have spoken. Also, there is ample confirmation
on the computer of the observation that some very small segment that appears straight at
one scale can appear quite curved when enlarged just enough. For a single example of that,
compare the zigzag straight-line look of the “distance view” (left) in figure 15 with the
smoother, more curved representation of those hills and valleys in the enlargement (right).

y Figure 15

€4v

Finally—and perhaps most seductive of all—the metaphor is backed up by what one
already believes about the mathematical reality. That i, although Dan seemed (until much
later in the interview) to be talking strictly about appearv.nces, it became clear that he did
believe “If one looks closely enough at a parabola, one. czn see that it’s never straight.”

-—

11 Except that students do not fully extend the idea and imagine that a computer-“magnified” mathematical
line would appear wider, as would, say, a graphite line under a real magnifying glass.

21
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Although it is not an experiment Dan had tried, there is even a mathematical experience
with scale that may strengthen this metaphor. Critical features—e. g., a local bump—on a
mathematical curve can be missed when one views the curve on too large a scale. For
example, in the sequence shown below, the function f{x)=x5-3x3+3x varies from a roller
coaster (figure 16a) through a slightly broken line (figure 16d) to something that cannot be
distinguished visually from a nearly vertical straight line (figure 16e).

2
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Just as Syl held two opposing operating principles—one that told her that parabolas
contained no horizontal line segments, and another that nevertheless allowed her to design
and perform a successful procedure for displaying such a segment if it existed—Dan
worked from two such opposing principles. Alongside his magnifying glass metaphor
resides a sufficiently clear understanding of scale to let him perform a correct
transformation (producing figare 13) and explain it well.

Metaphor 3: Mathematical curve as a bead necklace

Points in a curve, like beads in a bead necklace, line up “next to each other.”
A radical enough scale can magnify these points so that they can be seen,
and certain scale changes can distort the appearance of these points.

When Syl had succeeded in showing a horizontal line at the bottom of the parabola, she
claimed that she did not know how she had done it. She tried to explain the result anyway:

Syl I guess ... um, the points are... I don’t know... The computer
doesn’t show the points small enough or something?

Int Whatdo you mean by that?

Syl Well, a parabola is only supposed 1> have one point [at the
“bottom”—the vertex], but I've blown it up big enough so that the
point looks longer than, longer than, like in reality.

Several students invoked notions of the computer not showing points “small enough,”
as if points, themselves, had a physical existence. Syl’s description of a point that “looks
longer than in reality” suggests a distortion of an otherwise more symmetric point, again
attributing shape and size—albeit very small size—to the point. Several students spoke as
if very small scales allowed them to see (or the computer to represent or misrepresent)
individnal points, and-further, to alter the appearance of these points with scale changes.

The bead necklace metaphor treats curves as if they are strings of extremely tiny but still
physical beads. Enlarged sufficiently, these individual bead-points can be seen (Figure 17)
and can even be distorted (Figure 18). Like the magnifying glass metaphor, the bead
necklace may be to ;ome extent encouraged by limitations of computer representation. The
“steps” that appear when a section of a curve is enlarged may be construed as (perhaps
somewhat distorted) “points” (Figure 19).

23
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Figure 17
Figure 18
—
7/
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7/
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7/
= |
Figure 19

Further contributing to the “bead necklace” metaphor is the impossibility of represen-
ting a point visually without treating it as a dot with finite (in fact, visible) size. Visual
representation of the “absere” of a point—e.g., the Fole in the graph of (x2-4)/(x-2)—also
feeds the metaphor. But there is even a subtlety buried rightin that statement that attests to
the insidious nature of this metaphor. The point is not absent. A point is a location, not the
“ink” in the location. The point is present. Rather, because the function is undefined at the
value x=2, it does not pass through, or exist at, the point (2,4). This kind of language is
so casually and widely used that we suspect this metaphor to be pervasive. Graphing
software might help students recognize the special characteristics of functions like
(x2-4)/(x-2) by representing the hole as a gap in the curve, but such a representation also
contributes to the notion that such a hole is visible, which it cannot be at any scale.12

Corollaries of the bead-necklace metaphor are the notion of a finite aumber of points in
a given section of a-curve and the notion of “adjacency” of points. This latter idea was
invoked by a few of our students. For example, in trying to explain why he thought he

12 Of course, the graph itself feeds the metaphor. Not only are points invisible at all scales, but so are
cac-dimensional objects, including the graphs we are examining.
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could not display a parabola in a way that would look like a horizontal line, Dan argued that
parabolas do not have two consecutive points in a horizontal line.

GRAPHING IN ONE'S HEAD

Because we had observed so often that the students who wcre experimenting with graphs
on the computer were seduced by what they saw, we conducted a preliminary interview
with two high school juniors—both sophisticated computer users—without providing a
computer on which to work.

There are too many differences between the treatment and experiences of the on- and
off-computer students to draw undisputable conclusions from a comparison. However the
unanticipated differences in treatment and the magnitude of the differences in results make
such a comparison thought provoking nonetheless.

When the students working off-computer were first asked to sketch x2, and were then
shown a straight-line graph that they were told was also a graph of a parabola (recall figure
1), they immediately assumed the graph was a parabola at a scale that gave it a non-
stanuard appearance. When the students working on-computer were given a similar
problem, no one seemed even to consider without the aid of the interviewer that scale
might be responsible—even though the scale was on the graph!

One very different way in which the absence of graphing software may have influenced
students’ approaches centers around dimensionality. The computer screen, paper and
pencil, and rubber sheet are all two-dimensional. During the off-computer interview, one
of the students supported an explanation he gave with the fact that the parabola may be
gencrated from the slicing of a cone. No one in the on-computer interviews mentioned the
parabola as derived from a cone. Is the fluency with which one may shift between two-
and three-dimensional imagery reduced when one faces a two-dimensional image or when
one faces a piece of relatively unfamiliar technology? '

A metaphor for talking about scale: The rubber sheet

In the absence of a computer on which to perform experiments and see the results, we felt it
necessary to provide a common language for talking about the mental experiments the
students would be asked to perform.

Early in the off-computer session, we asked the students to determine whether it was
possible to stretch a section of a parabola drawn on a rubber sheet so that it looked
horizontal. The students readily adopted this “rubber sheet” metaphor and continued to use
it throughout the rest of the interview. They sometimes referred to it in describing their
methods of problem solution and defending their solutions (e.g. “you can stretch it out so
much in the x direction that it appears horizontal” ), and produced suggestive gestures such
as using their hands to stretch an imaginary rubber sheet while solving problems.

The rubber “heet view of scaling is primarily an action on the plane. As the plane is
stretched, all of 1ts points—both those identified as the graph and the non-graph points—
are moved. Computer rescaling looks like an action on the graph alone and not on the
plane because its action on non-graph points is invisible and the stand-in for the plane—the
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computer screen—suggests rigidity with a flow of movement on it. The importance of the
rubber-sheet metapior is the explicitness of the action on the plane.

This metaphor seemed to contribute to several fundamental differences between the on-
computer and the off-comyputer interviews. Perhaps the most striking of these concerns
students’ use of numbers. Since the rubber sheet is essentially qualitative, the students had
little need to find specific coordinates. Perhaps the c-itical element here is the introduction
of a new metaphor. Would the introduction of new metaphors have aiced the computer-
using students as well? This is an importaat pedagogical as well as futare research issue.

Absence of numbers may free students to think qualitatively

Although the problems we posed were e_sentially the same for students on and off of the
computer, the way the students navigated through the problems was not. All problems
were qualitative in nature, but the on-computer students communicated scale-changes to the
computer only through numbers, while, partly as a result of the rubber-sheet metaphor, the
off-computer students could focus exclusively on the qualitative aspects of the problems. 13

Inability to experiment may free students to predict and reason

Although no computer was available, lined paper was provided during the off-computer
interview, and the interviewer made use of it a few times in posing problems. Remarkably,
the students made very little use of paper, despite an invitatiou to do so0; and when they
used it, it served primarily for communicating to the interviewer o~ to each other (e.g., for
indicating a particular part of a curve) and not for working out details of the problem.
Unlike the students with access to computer graphics, these students solved problems
almost exclusively “in their heads.” Even when a problem was posed with a paper and
pencil graph, the smdents chose to stretch, cut, or otherwise manipulate the graph mentally,
rather than draw or sketch graphs.

Because no computer was used, they had not anly to devise the experiment, but also to
imagine the result. By contrast, the on-computer students often saw results of their
experiments before they had a chance to make formal predictions. Recall, in particvlar, our
conjecture that that may have weakened Syl’s performance. They also tended to iterate
their experiments in a successful direction without necessarily taking the time to reflect on
why that direction was succ:ssful. In fact, on-computer interviews occasionally adopted
an almost laborious “trial and error” flavor as students went through a series of coordinate
changes in an attempt to fine tune an idea or to recover from earlier misjudgments in
estimation. Precise answeis, rather than general ideas, sometimes became the focus for the
on-computer students where off-computer work precluded such precision.

13 As mentioned carlier, The Function Analyzer, has a non-numeric stretch-shrink operation, but we felt
that the greater freedom provided by the option to set coordinate boundaries freely would give us a richer
picture of students’ strategies. A mouse-driven system would combine the flexibility of setting conrdinates
at will with the qualitative sense we lost by specifying coordinates numerically.
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Absence of external pictures may free students to create internal ones

The impetus to conduct these interviews was our observation that students are ofte:. trapped
by the images they see in front of them. The picture is already there and they have no room
to imagine it arott.er way. By contrast, the off-computer students, as a result of shunning
paper as well as having no computer, had little or nothing relevant to look at while solving

graphing problems.

The absence of numbers, the absence of experimental checks, and the absence of
external pictures may all help bright, confident students focus on generalizable ideas rather
than on the particular data of the moment.

Here, of course, is where our sclection of very capable students may be most strongly
biasing our results. Less able students may depend more on experimentation and pictures
than these students did and therefore fare particularly poorly without the computer.

Advantages of extensive computer experience outside of the interview

Among the differences between the on-computer and the off-computer interviews is the
nature of the students. Their style, and their facility with the problems we posed, reminded
ur f Che, a remarkable student in our early exploratory interviews who did use the
¢ puter during his interview but primarily to demonstrate the validity of predictions he
made. Beyond doing our problems mentally, Che and the off-computer boys had
something else in common. All three were long-time computer users who had considers Jle
experience with graphics and programming.

Che readily explained some of his extraordinary clarity and quickness as the direct
result of his having worked on a graphing program in Pascal for his school computer
center. Although he had never encountered scale in mathematics, he had had to think about
how to pick values of x to evaluate and to maximize the speed of plotting while maintaining
~easonable resolution in t':« graph. It was this experience that he invoked several times in
c) plaining ideas he had. Exnerimenting with and reflecting on this issue gave him
tremendous mathematical insight which he brought to bear on the problems we presented.

THE INTCRACTION OF EXPERIMENTATION AND REFLECTION: SOME
THOUGHTS ABOUT CURRICULUM

It is interesting to speculate about the off-computer group, but let us not overclaim. With
an n of 2 and at least six difference: .rom the on-computer interviewees (in addition to the
five differences mentioned in the previous s=ction, the two off-comp: :=r students worked
with a different interviewer!), even our speculations about what made these students so
much more clear and successful must be attributed riore to our biases than to our data.

But having presented the relevant caveats, it would then seem just plain miserly to
withhold our speculations, especially as they point to rich areas for research and plavsible
areas for curriculum development.

27




o
1

1/31/89 Algebra research 25

The two things that Che and the off-computer group had in common were their exten-
sive prior experience cn the computer and their inclination to work on problems mentally.14
It is quite plausible that these are not merely coincidental with their extraordinary per-
formance.

All of our students found their work on the computer very thought-provoking; most, in
the course of the computer exploration, confronted and sorted out one or more miscon-
ceptions that they had brought into the interview. If such clarification of mathematical ideas
could be observed in a single 40-minute problera-solving session on the computer, how
much more expectable it must be when students regularly engage in similar, but pertaps
more didactically organized, thoughtf: * sxploration over days, months, or years! For the
three computer-experienced students, such a long-term exploration was at their own
initiative and largely extracurricular. If the kind of exploration that our on-computer
interviewees performed for 40 minutes and that the computer-rich students performed for
months can be incorporated into a curriculum, it might provide some of the experience that
we hypothesize was so contributory to the success of the computer-rich three.

But the other advantage that we think may have helped the off-computer group was the
fact that thei.  ork was off the computer. Pictures can be overpowering, and the ease of
performing what was, in our study, a quantitatively accurate computer-aided experiment
can seduce one away from performing a qualitative version of the same experiment
mentally. Che, too, worked off the computer to the extent that he invariably chose to
predict the results and then use the computer to demonstrate his claims to the interviewer or
to check them quantitatively. The off-computer students had no quantitative check available
and so relied solely on analogy and reason. And we had conjectured much earlier that if
Syl had had the opportunity to think about what she expected before she was overwhelmed
with what the computer claimed was Truth, she would not have been led quite so far astray
by her experiments.

In other words, both computer cxpcrien_é—c and reflective internalization of that
experience, especially away from the computer, seem to be important ingredients.

And what about the fact that graphing in the computer context secems inevitably to raise
a complex tangle of issues—the relation between the continuous and the discrete, the
behavior of the infinite and the infinitesimal, the interaction between scale and function in
generating the images we call graphs? Isn’t it better to present students with a somewhat
more tame and restricted experience first?

Certainly, there is a level of complexity which just becomes overwhelming to a student
and is therefore not helpful. But, as a general pedagogical prizciple, we feel that presenting
students with (real and appropriate) complexity is not as harmful as protecting them from it.
Through careful selection, one may generate sets of classroom exercises that avoid certain

14 We have not overlooked the fact that these were also unusually bright students, perhaps even by
comparison to the rest of our sample. But we choose to speculate that the behaviors that we observe as
“bright” are at least as much the result of opportunity and experience—such as exploring on the computer—
as they are the prerequisites to such experience.
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complexities, but the selection process imposes a pattern that may be so strong that it
distracts students’ attention from the pattern in the underlying mathematics or obscures that
pattern altogether. We are all familiar, for example, with students’ assumptions that if the
division doesn’t “come out even” they must have made an error somewhere in their
computation. If students are going to be looking for some kind of structure in their
classroom—*psyching out the teacher” or finding the “trick” in the lesson—then we might
as well make that structure the mathematical message rather than the criteria by which
problems are selected or presented.

Last year (Goldenberg, 1988), we convinced ourselves that the fact that computer
graphing opens up a can of worms may be a blessing—in fact, the appropriate treatment—
rather than a problem merely to be coped with. This year we have seen still more worms,
and with them still more fertile soil in which to grow mathematics. When conflit is
avoided, misconceptions have time to ossify. When students are given the opportuni.y to
confront their own misconceptions and work out the conflicts between incompatible
theories or images, we believe they deepen their understanding.
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