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Knowledge and Understanding in Human Learning

Knowledge and Understanding in Human Leaming (KUL) is an umbrella term for a loosely connected set
of activities lead by Stellan Ohlsson at the Leaming Research and Development Center, Unlversity of
Plttsburgh. The alm of KUL is to clarify the role of world knowledgs in human thinking, reasoning, and
problem solving. World knowledge consists of general principles, and contrasts with facts (episodic
knowledge) and with cognitive skills (procedural knowledge). The long-term goal is to answer four
questions: How are new principles acquired? How are principles utilized in insightful performance? How
are principles utilized in learning to perform? How can instruction facilitate the acquisition and utilization of
principled (as opposed to episodic or procedural) knowledge? Different methodologies are used to
investigate these questions: Psychological experiments, computer simulation, historical studies,
semantic, logical, and mathematical analyses, instructional intervention studies, etc. A list of KUL reports
appear at the back of this report.
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Abstract

School children leam an'thmet&: procedures by rote, rather than by constructing them on the basis of
their understanding of numbers. Rote leaming produces lack of flexibility, nonsensical errors, and other
difficulties in learming. Mathematics educators have proposed that if arithmetic procedures were
constructed under the influence of conceptual understanding of the principles of arithmetic, then
procedure acquisition would not sutfer from these difficulties. However, little effort has been investigated
in conceptual analysis of this hypothesis, or in proving its viability. We propose a theory of conceptual
understanding and its role in the leaming and execution of arithmetic procedures. The basic hypothesis
of the theory Is that principles constrain the possible states of affairs, and thereby enable the leamner to
monitor his/er .own performance and to correct hisher errors. We propose a new knowledge
representation, the state constraint, which captures this view c! principled knowledge. The state
constraint theory has been implemented in the Heuristic Searcher (HS), a computer model that learns
arithmetic procedures on the basis of general principles encoded as constraints on search states. We
have simulated (a) the discovery of a correct and general counting procedure In the absence of elther
instruction or solved examples, (b) flexible adaptation of an aiready leamed counting procedure in
response to changes in the task demands, and (c) the correction of errors in muitl-column subiraction in
the absence of extemal feedback. The state constraint theory provides novel answers to several
questions with respect to conceptual understanding in arithmetic, generates counter-intuitive but testable
predictions about human behavior, deals successfully with technical issues that cause difficulties for other
explanations of the function of knowiedge in learning, and fares well on evaluation criteria such as
generality and parsimony. The state constraint theory is incomplete; it does not explain how procedure
acquisition proceeds in the absence of conceptual understanding, or how leamers overcome errors that
can not be described as violations of principles. Future work will focus on the question of how knowledge
and experience interact in procedural learning.

g
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Ohisson & Rees 4 Rational Learning

Rate vs. Meaningful Learning in Arithmetic

School childreri tend to leam arithmetic procedures by memorizing them, rather than by constructing
them on the basis of their understanding of numbers. Consequently, they execute those procedures
mechanically, as saquencas of physical actions on written characters rather than as abstract operations
on numbers. If thay arrive at correct answers, it is because they recall the relevant procedurs accurately,
not because they understand the underlying mathematical ccncepts and principles.

Rote leaming of arithmetic procedures has several negative consequences. Memorized procedures
are brittle. They lack the flexibility required to transfer to unfamiliar problems or even to minor variations
of famlliar problems. Students often fail on a novel task that Is conceptually equivalent to, but
procedurally distinct from, some other, already mastered task. Inabiiity to adapt a procedure to changes
in the task implies that each new lask has to be lcamed separately.

Memorized procedures are also prone to nonsensical errors. For Instance, in the go-called
SMALLER-FROM-LARGER error in multi-colurin subtraction (Brown & Burton, 1978; Burton, 1942), the
student subtracts the smaller number from the !arger within each column without regard for which number
belongs to the minuend and which number belongs to the subtrahend. In the so-called FRESHMAN error
(Silver, 1986, p. 189) in the addition of fractions the leamer adds the denominators as well as the
numerators, and in what we might call the DECIMAL-AS-INTEGER error, the leamer judgey the rolative size of
decimal fractions on the basis of their integer values (Hiebert & Wearne, 1986, p. 205). These errors are
nonsensical because they violate the meanirg of the corresponding arithmetic opereiions. MNonsensical
errors siow down learning because they resist remedial instruction.

Finally, memorized procedures resist being incorporatsd as subprocedures into higher-order
procedures. Students often fail to perform steps A and Bin combination, even though they are capable of
performing both A and B in isolation. For instance, we have observed in our field studies children who
know how to put two fractions on the same denominator and who also know how to add two fractlons with
equal denominators, but who nevertheless are unabie to figure out how to add two fractions with unequal
denominators.! Since mathematics is a hierarchically organized >isbject matter, inability to build on
previously mastered procedures severely limits the mathematics that can be leamed.

The working hypothesis that dominates current research in mathematics education is that conceptual
understanding is the cure for these negative effects. We will refer to this belief as the Conceptual
Understanding Hypothesis. Hf children understood what they are doing, this hypothesis claims, children
could discover procedures on their own, lsamed procedurss would be flexible, nonsensical srrors would
be corrected spontaneously (or at least not be persistent to remediation), and already mastered
procedures would easily combine -to form higher-order procedures. The Conceptual Understanding
Hypothesis claims that procedures can be derlved from the learner's knowledge, in contrast to being

'Our empirical research on the learning of fractions will be reported elsewhere.

August KUL-88-03
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Ohisson & Rees 5 Ratlonal Learning

derived either from experiance or from an external source such as a teacher or a textbook. In previous
work we called this type of leamiag rational learning (Ohlsson, 1986, 1987b; Ohlsson & Raes, 1987). The
Conceptual Understanding Hypothesis extends the Idea of rational learning by claiming that procedures
vihich are derived from knowledge are more flexible and less encs-prone than procedures that are
leamed In other ways.

Common sense strongly supports the Conceptual Undarstanding Hypothesls, but, as Brooks and
Dansereau (1987, pp. 134-136) paint out in their recent review of wiiat they call content-to-skill transfer, it
has been the subject of a surprisingly small amount cf systematic research. There are scattered studies
that demonstrate a facilitating effect of understanding a principle on subsequent problem solving (Egan &
Greeno, 197&; Mayer, Stiehl, & Greeno, 1375; Katona, 1967). However, the strongest case for
conceptually based procedure acquisition has been made by Gelman and co-workers with respect to
counting (Gelman & Gallistel, 1978; Gelman & Meck, 1983, 1987 Gelman, Meck, & Merkin, 1986;
Greeno, Riley, & Gelman, 1284). Gelman and Gallistel (1978) formulated a set of principles that
determine the correct procedure for counting. The three most Important are the One-One Mapping
Principle, the Cardinal Principle, and the Stable Order Principle. The One-One Mapping Principle states
that @ach object should be assigned exactly one number. The Cardinal Principle staies that the fast
number to be assigned to an object Is also the answer to the countinj problem. The Stable Ordsr
Principle states that the numbsrs have to be considered in numerical order. Gelman and CO-'NOTkers
have presented evidence for the hypothesis that children know thesa principles before they have a
procedure that snables them to count comectly, and hat they construct thelr counting procedures on the
basls of these principles. The evidence Includes the facts that children typlcally acquls the correct
procedure for counting without formal instruction In couniing, and that their counting procedures are
flexible. Children readily adapt their procedures for counting to non-standard counting tasks, such as
counting objects in a particular order, or in such an order that a specified object is assigned a specified
number (Gelman & Gallistel, 1978). Greeno, Riley, and Gelman (1984) and Smith, Greeno, and Vitolo (In
press) have proposed a theoretical analysls that shows how flexible counting performance can be derived
by a planning mechanism from a set of action schemata that embody the counting principles, thus lending
support to this interpretation of the evidence. In shor, research suggests that the normal acquisition of
counting in our culture exemplifies the Conceptual Understanding Hypothesis.2

It counting represents a clear example of knowledge-based procedure acquisition In arithmetic, then

2The conclusion that children know the counting principles before they leam counting procedures is not uncontested. Plaget
(1952) concluded on the basis of his research that chikiren do not understand number In the pre-oparational stages. because the
construction of number is coordinated with the construction of logical operations. Bralnard (1979) has argued on the basis of
extensive empirical studies that the notion of ordinaiity develops before the nction of cardinality, a conclusion which complicates the
relation between counting and the Cardinality Principle. Both Fuson & Hai (1983) end Brlars and Slegler (1984) have proposed
accounts of childrens' counting that assume that procedures are leamed before principles, Baroody & Ginsburg (1986, pp, 76-78)
agree with this view. This view is further supported by recent studles by Douglas Frye, Nicholas Bralsby, John Lowe, Celine
Maroudas, and Jon Nicholls at the Universky of Cambridgs, Englend (personal communication). Since our purpose in this report is
to presant a computational interpretation of the Conceptual Understanding Hypothesis, rather than to make a critical appraisal of the
empirical literature, we have adopted the princioles first view s our working hypothesis. Clearly, the Conceptual Understanding
Hypothesis retaine #s interest as a pedagoglcal stance, even if thefoUto about children.’ counting should ultimatet, be resolved in
favour of the procedures first view.

August KuUL-88-03
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multi-column subtraction represents the opposite. The evidence for ro*~ leaming is particularly strong
with respect to this procedure. Over one hundred distinct error types have been identified in childrens’
subtraction performances, most of them as nonsensical as the prototypical SMALLER.FROM-LARGER error
mentioned above (Brown & Burton, 1978; Burton, 1982; Young & O'Shea, 1981). Kurt VanlLehn has
proposed a theory that aseumes that understanding of, say, place value does not enter Into the
acquisitlon of the procedure for multi-column subtraction as it actually occurs in the classroom (Brown &
VanLehn, 1980, 1982; VanlLehn, 1983a, 1983b, 1985a, 1985b, 1986). According to his theory, children

\ pay iittie attention to, or are intellectually unequipped to make much use of, teachers’ explanations of the
subtraction procedure. Instead, they construct the procsdure by Induction over the solved examples
provided by textocoks and teachers. If the resulting procedure is incomplete, the learner may encounter
situations in which the procedure cannot be axecuted, so-called impasses. The leamer is hypothesized
to respond to such difficulties by making local changes In the procadure. VanLehn's theory expiains a
significant proportion of the emplrically observed procedural errors for multi-column subtraction, thus
strongly supporting the notion that children leam the subtraction procedure by rote.

In summary, research has provided us with in-depth analyses of two contrasting examples of
procedure acquisition In arithmetic. The case of counting exemplifies procedure acquisition based on
understanding of the relevant principles, and the case of subtraction exemplifies procedure acquisition
through memorization. The subtraction research Is silent on the question of whether conceptual
understanding could facilitate the learning of subtraction. It only makes the case that the acquisition of
the subtraction procedure as it currently occurs in schools dees not, in fact, engage the learer in the
mathematics that underlles that precedure. The pedagogical hope expressed In the Conceptual
Understanding Hypothesls Is that the subtraction procedure could be acquired in the same Intelligent
manner as the counting procedure, if caly children understood the principles of subtraction as well as they
understand the principlas of counting.

The obvious Instructional Implication of the Conceptual Understanding Hypothusls Is that we need to
find ways of teaching children to understand the conceptual underpinnings of arithmetic procedures. A
significant proportion of research In mathematics education is directed towards this goal (ses, e. g., Bell,
Costallo, & Kuchemann, 1983; Davis, 1984; Hieber, 1986; Romberg & Carpenter, 1986; Shoenfeld,
198S; Sliver, 1985).

The research reported here has a different purpose. Our goal is fo clarify the nature of the
hypothesized link betwoen conceptual understanding and procedure acquisition. How does conceptual
understanding faclitate procedure acquisition? In a major review of the psychology of mathematics
Resnick and Ford (1981) summarized the state of the research with respect to this questions as follows:

I3
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The relationship betwoen computational skili and mathematicai und./standing is one of the oldest
concerns in the psychoiogy of mathematics. It Is akso one that has consistentiy -eluded successful
formulation as a research question. ... Instead of focusing on the inferaction between computation and
understanding, between practice and insight, psychologists and mathematics sducators have been busy
trying to demonstrate the superiority of one over ‘he other. .. The relationships between skili and
understanding were never efisctively slucid_.ad. What is Needed, and what no'w seems a possible rasearch
agenda, is to focus on how understanding Influences the aquisition of computational routines ... .

(Resnick & Ford, 1981, p. 246) l

inforinatian procassing analyses of human cognition imply that an analysis uf the relation between
concepiual understanding and performance consists of two companents: A representation for conceptual
understanding plus a computational machinery that can derive a procedure for a particular task from that
understanding (Greeno, Riley, & Geiman, 1 684; Smith, Greeno, & Vitalo, in press). Such an analysis
shouid explain how conceptual understanding is represented In migmory how it funstions in pesformance,
and how it can faciiltate learning, The work reported here is based on 1...s formulation of the problem.

We approach this problem by building a computer model of lsaming that instantiates the Conceptual
Understanding Hypothesis. Such a model t:a5 many uses. First, the model can provide what is known as
a suiticiency proof (Newell and Simon, 1959, p. S). The madel can provide a concrete demonstration that
the kind of leaming that mathematics ecucators envisiol S, in fact, possible. Second, the model can
serve as a tool for generating prudictions from a particular: . t of hypotheses about understanding. Third,
it can serve as a focus of debate. Other researchers tnay not agree that our model reprasants leaming as
it actually occurs in, say, the case of counting, or as it ought to proceed in the classroom. The formulation
of alternative interpretatisns of the Conceptual Understanding Hypothesis ought to be facilitated by
having something precise to disagree with. Fourth, our mode! can serve as a tool for the planning of
empirical studies of the role of concsptual understanding in the leaming of procedures. Fifth, it can be the
basis of diagnostic instruments that focus on misconcaptions rather than on bugs (Langley, Wogulis, &
OFilsson, in prese). Sixth, it can faciiitate comparison between the Conceptual Understanding Hypottesis
and other hypotheses being explored in cumrent research on leaming. Seventh, it can be used to derive
instructional impiizations that can be tested in classroom interventions.

The report is organized as follows. We begin by stating a theory of concaptual understanding and its
relation to parformance ar.4 to procedure acquisition (The State Constraint Theory of Understanding, p.
8). In the secoitd section we describe a computer model based on this theory (A Computer Model, p. 19),
and In the following section (Computations! Results, p. 28) ..e rep 1 on three applications of the model:
(&) the construction of a counting procedure in the absence of explicit instruction or solved examples, (b)
tha agaptation of an existing couniing procedure to changes in the counting task, and (c) the spontaneous
comecion of proeedural emors in multi-column subtraction, We then compare our work with previous
efforts to simulate procedure acquisition in arithmetic (s/ation to Previous Researzh, p. 60), and d'scuss
its implications (General Discussion, p. 69).

12
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The State Constraint Theory of Understanding

A theory of the role of conceptual understanding in the acquisition of procedures consists, at the
broadest level of analysis, of two components: a representation for conceptual understandirg and a
computational machinJry that maps that understanding onto a procedure for a particular task (Greeno,
Riley, & Gelman, 1984; Smith, Greeno, & Vitolo, in press). More specifically, such a theory should
ar.swer at least the following questions:

1. What is the nature of conceptual understanding, anc how is it represented in the mind?
What kind of cognitive structures are we referring to when we speak of someone as
understanding, say, multi-column subtraction?

2. What function does conceptual understanding have in perfermance? How does
understanding interact with the procedure during execution? What is the difference
between executing a pracedure correctly and with understanding, as opposed to executing
it correctiy but without understanding?

3. What function does conceptual understanding have in the /eaming of procedures? By what
mechanism does understanding enter into the construction of a procedure? How does
understanding enable the learer to discover a procedure, to apply a procedure in a flexible
manner, to correct nonsensical errors, and to combine procedures into higher-order
procedures?

The theory proposed here is based on the idea that leamers act with understanding when they
internally monitor their performance on a problem by comparing the successive states of the problem with
what they know about the task environment. According to this theory leamers execute the procedure for,
say, multi-column subtraction with understanding when t.ay think about each state of the subtraction
problem in terms of the principles of arithmetic. Leaming occurs when an incorrect or incomplete
procedure generates a problem state that is inconsistent with the principles that govern the task
environment®. Cognitive change is in the direction of greater consistency between the leamer’s actions
and the structure of the task environment (to the extent that the latter is known to the learner). For
instar:ce, an incorrect subtraction procedure may result in a differsnce between two integers that is larger
than the minuend. To the extent that the leamer knows that n - m = r implies r < n, the subsequent
revision of the regrouping procedure is in the direction of preventing violations of this principle in future
applications of that procedure, or so the theory claims.

The purpose of this section Is to state our hypothesss about understanding, about performance, and
about leaming. In the next section we describe a comuuter model that instantiates these hypotheses (A
Computer Model, p. 19). In a later section we describe some resuits obtained by running the model

3t may seem as if problem states that violate the principles of the environment are impossible in non-symbolic domains. For
Instance, one cannot construct, say, an electronic circuit that violates the principles of electricity. However, the term "problem state”
as used in our theory refers to the mental representation of the state of the problem, not to the physical problem situation. This point
will be clarified in the subsaction that presents our performance theory (Hypotheses about performance, p. 12).

13
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(Computational Results, p. 28). The simulation runs show that the hypotheses stated here predict
leaming behavior that is consistent with the Conceptual Understanding Hypothesis.

Hypotheses about understandirig

In this report we use the term "understanding” to refer to a collection of general principles about the
environment, formulated as constraints on the possible states of affairs. We unpack this notion in four
steps.

Understanding consists of knowledge about the task environment

The Conceptual Understanding Hypothesis claims that correct and flexible performance is achieved
when the leamer constructs the required procedure on the basis of his/her understanding. The type of
understanding that we focus on in this research is understanding of the domain in which a procadure
operates. To understand a domain is to know the principles that govem the objects and events in that
domain. For instance, to understand electricity is to know the principles that govern the behavior of
electric currents; to understand arithmetic is to know the laws of numbers. This wpe of understanding is
central to the lsaming-by-doing scenario, in which the learner constructs a procedure in the absence of
instruction.

An alternative view is that to understand a procedure is to know the purpose of each step in tho
procedure. Such an understanding is sometimes called a teleological semantics for the procedure
(VanLehn & Brown, 1980). A second view of understanding is that one understands X when one
subsumes X under some existing cognitive structure. We might call this repressntational understanding,
since it emphasizes the encoding of a problem ‘as opposed to the procedure for solving it). The
subsumption theory of understanding has been appiied both to problem solving (Greeno, 1978, 1983;
Anderson, Greeno, Kline, & Neves, 1981), and to text understanding (e. g., Galambos, Abelson, & Black,
1986; Schank, 1986). Yet another view is that to understand a procedure is to know the justification for
the procedure. This conception of understanding is common among professional mathematicians. Both
teleological and justificatory understanding are crucial in the learning-by-being-told scenario, in which a
teacher demonstrates the execution of a procedure and then explains that procedure, i. e., verbally
communicates its teleology and its justification. A complete theory of understanding would specify the
nature and function of both conceptual, teleological, representational, and justificatory understanding.
Michener (1978) has proposed such a multi-facetted view of mathematical understanding.

Knowledge is declarative rather than procedural

Cument cognitive theory recognizes two kinds of knowledge, declarative knowledge and procedural
knowledge (Winograd, 1975). This distinction is essential to the theory proposed here. For instance,
consider the assertion that

Uppsala is ninety ki'ometers north of Stockholm.

This assertion Is not a pracecure; it does notisgech‘y how to accomplish any task. But it is relevant for
b
Bd
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many different procedures®, such as if you are in Uppsala and your goal is to get to Stockholm, then
travel south for ninety kilometers and if you are in Stockholm, and your goal is to get to Uppsala, then
travel north for ninety kilometers. The set of procedures for which an assertion is relevant is cpen-ended.
As an example of a less immediate consequence of the abova assertion, consider the procedure if you
are midway between Uppszla and Stockholm, and fee! like getting as far away from both as possible,
then travel either straight west or straight east. The only limits on the set of procedures for which an

assertion is relevant are the limits on our imagination. As a second example, consider the following
. arithmetic principle:

A set of numbers always yield the same sum, regardless of ihe
order in which they are added.

This principle does not in itseif specify how to accomplish any particular task, but the set of procedures for
which itis relevant is open-ended. For instance, the above principle is crucial for the standard procedure
for multi-column subtraction because it enables regrouping of the minuend.

Declarative and procedural knowledge differ along three dimensions. First, declarative knowledge is
goal-independent, while procedural knowledge is goal-related. Declarative knowledge is knowledge
about what the world is like, while procedural knowledge is knowledge about how to attain particular
objectives. Declarative knowledge is potentially useful in reaching an infinite range of goals, including
goals that the learner had never thought of at the time of storing the knowledge in memory.

Second, declarative knowledge is context-free while procedural knowledge is situated. Uppsala is
always ninety kilometers north of Stockholm; the distance is not a function of the current situation of the
person who is making use of this fact. But the procedure for getting to Uppsala by travelling ninety
kilometers northward is only useful if the person finds himselt/herself In Stockholm; it does not lead to the
goal if executed in any other situation. Similarly, a sum of a set of numbers is unique; it Is not a function
of the problem the agent is trying to solve. But the regrouping procedure is appropriate only with respect
to subtraction problems in which some minuend digit is larger than the corresponding subtrahend digit.

Third, deciarative knowledge is assertive or descriptive, while procedural knowledge is exhortational
or imperative. Declarative knowiedge relates objects and events in the world to other objects or events,
while procedural knowledge relates situation/goal pairs to actions. Procedural knowledge Is knowledge
about what to do In in order to obtain some particular state of affairs. It is neither true nor false, but more
or less effective; executing a certain action in a particular situation will lead to attainment of the relevant
goal with more or less expenditure of time, cost, or effort.

In the research reported here we take the stance that the term "procedural knowledge” is, strictly

*A procedure typically consists of a (possibly very large) collection of rules. The simple procedures discussed in this section
consist of just a single rule each.

15
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speaking, a misnomer.> Procedures do not encode knowledge; they encode dispositions to act in
particular ways under particular circumstances. Hence, understanding cannot be encoded in action
schemata, methods, operations, rules, or other procedural representations. The opposite stance s that
all knowledge is procedural. For example, the Soar simulation model by Allen Newell and co-workers
(Laird, Rosenbloom, & Newell, 1986) is build on the assumption that all knowledge Is encoded in
production rules; the Soar system does not have any other representational format. A compromise .
stance is that knowledge can be either procedural or declarative. For example, the ACT* model
(Anderson, 1976, 1983) is build on the assumption that there are separate memories for propositions and
for rules.

Understanding consists of principled rather than factual knowledge

Declarative knowledge can be divided into two types. Abstract or principled knowledge consists of
assertions about universals. The principle that the sum of a set of numbers is unique states something
about arithmetic sums in general. Factual knowledge, in contrast, consists of assertions about particular
objects or events. The statement that Uppsala is ninety kilometers north of Stockholm is an example of
factual knowledge. A factual assertion that refers to a particular spatiotemporal context is sometimes
classified as an instance of episodic knowledge.

Cognitive psychology has produced a wealth of information about the storage, retention, and retrieval
of factual, particularly episodic, information. However, the Conceptual Understanding Hypothesis
emphasizes principled rather than factual knowledge. The idea that we have explored in the research
reported here is that general principles can guide the construction of arithmetic procedures. Factual
knowledge is not foreign to arithmetic—for instance, three is an odd number s a factual assartion--but it is
less relevant for our current purpose than principled knowledge.

There are savere philosophical problems associated with the concept of principled knowledge. For
instance, since abstract properties of the world are not directly percelivable, the question arises how we
can have knowledge about them. Furthermore, since a general principle is not tied to a particular
spatiotemporal context, it is not clear what it means for such a principle to be either true or false. A
significant proportion of research in epistemology is davoted to clarifying these problems. However, the
research we report here does not presuppose solutions to the problems of philosophy. We are
investigating the psychologlcal question of how the principles a student believes can guide his/her
procedure acquisition; we are not trying to decide whether he/she is justified In believing those principles.

The alternative hypothesis Is that declarative knowledge consists malinly or exclusively of factual
knowledge. This hypothesis has the advantage of avoiding the philosophical problems associated with
principled knowledge. But we do not percsive a need to argue for the existence or the psychological
reality of prl;wclpled knowledge as a praliminary to the research reported here. On the contrary, we expect

Ssince the use of the term "procedural knowledge” to refer to dispositions to act Is so widespread, we will adhere to that usage
throughout this report.
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a conclusion about the usefulness of the concept of principled knowledge to be one of the outcomes of
our research.

Principles constrain the possible states of affairs

Traditional debates about the nature of knowledge assume that knowledge consists either of
descriptions ("All swans are white") or predictions ("The sun will rise tomorrow"). In this report we focus
on a different aspect of principled knowledge. We view principles as constraints on the possible states of
the worid. An obvious example is the following common sense principle:

Two obfects cannot occupy the same space at the same time.

As a descriptive statement, this principle is not very informative; it does not tell us much about what the
world is like.® Nor Is it predictive; it does not by iself assert that such and such an event will happen.”
The impact of the above principle is to rule out certaln states of affalrs as impossible; it claims that
situations in which two material objects occupy the same physical space will not accur. Many physical
laws, e. g. laws of conservation, have the character of constraints (Feynman, 1965).

The notion of principled knowledge as consisting of constraints on the possible states of affairs is
particularly relevant for arithmetic. Arithmetic principles, e. g. the principies of commutativity and
associativity, do not predict which arithmetic operations will occur. Instead, they classify states of affairs
into mathematically valid and invalid states, as it were. For instance, the' principle of commutativity of
addition claims that it cannot happen that we add two numbers in two different orders and get two
different answers.

An alternative hypothesis is that principled knowledge consists mainly of predictive principles (Hollan,
Holyoak, Nisbett, & Thagard, 1986). We are not claiming that all principies can be formulated as
constraints. We would expect an exhaustive investigation into principled knowledge to reveal many
ditferent kinds of principles. We do claim that constraints are frequent and particularly important in
arithmetic, a domain in which other types of principles, particularly predictive principles, are not ralevant.

Hypotheses about performance

Leaming is a change in performance. Hence, spscific hypotheses about leamning presupposes
specific hypotheses about the nature of performance. The purpose of this subsection is to state our
hypotheses about the cognitive machinery that executes a procedure, and about the function of principled
knowledge in such execution.

%kt contrasts in this regard with a principle like planets travel in elliptical orbits, which does have descriptive content.

"It contrasts in this regard with a principle like the traditional Swedish saying that i the roenneberries tum bright rec’ in the fall, the
winter will be very cold, which does have predictive content. (That fact that an assertion has predictive conten: cbviously does not
imply that # also has predictive accuracy.)
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Thinking Is heuristic search

We have chosen fo work within the theory of thinking proposed by Newell and Simon (1972). The
basic idea of their theory is that humans think by searching a problem space. A problem space is defined
by (a) the initfal state of the problem, (b) the ensembie of operators avalilable for prooessin'g the problem,
and (c) the criterion for what counts as a goal state. Searching such a space means tentatively applying
operators to states in order to find a sequence of operators that lead from the initial state to the goal state.
The search is guided by heuristics, rules of the general form when trying to obtain goal G, and the current
situation have properties Py, P,, ..., P,, then consider action A. The reader is referred to the original
statement of the theory for details (Newell & Simon, 1972).

There are several reasons for selecting the theory of heuristic search as aur pedormance theory.
First, we prefer building on previous research over inventing computational mechanisms ad hoc o suit
our current purpose. By choosing the main performance theory to emerge in recent research on thinking,
we integrate our efforts with other research efforts. Second, the theory of heuristic search is a general
theory. The mochanisra of heuristic search is applicable to many task domains, not just to arithmetic. By
using a computational mechanism that has been applied to a wide range of tasks we increase the
plausibility of our theory. Third, the theory of heuristic search is precise enough to guide the construction
of a simulation model. Fourth, the theory of heuristic search is better grounded in psychological data than
any other current theory of human thinking. It has been used to explain why some problems are more
difticult than others (e. g., Kotovsky, Hayes, & Simon, 1985), why people perform differently on a
particular problem (e. g., Newell & Simon, 1972, Chaps. 7, 10, and 13), how procedures can be leamed
from practice (e. g., Anzai & Simon, 1979), etc. Ir: short, there is no other theory with comparable
generality, conceptual precision, and empirical grounding.

A further reason to select the hypothesis of heuristic search as our performance theory is that it
satisfies the following criterion of adequacy: N

Criterion of Executability of Partial Procedures. Since procedure
learning is gradual, the performance theory underiying a learning
theory must enable a procedure to bs executable at each slage
during its construction.

A cognitive procedure is not ieamed in an all-or-none fashion. Rather, the student learns some part of
the procedure, flounders, leams some more parts, makes mistates, etc., in a gradual progression through
different stages of competence until the procedure is completed.® But at each moment in time during this
gradual construction the leamer is capable of acting, of executing the procedure as it exists at that point
in time. This observation constrains the possible theories about the human performance system to those
which enable procedures to be executable at each stage of completeness:

At this point, further practice may lead to the discovery of short-cute, memorization of special cases, ¢fimination of redundancies,
chunking of steps that always follow each other, etc. In the research reported here we are concemed with the initial construction of
a procedure, rather than with its subsaquent automatization.
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The hypothesis of heuristic search satisfies the Criterion of Executability of Partial Procedures,
because the function of knowledge, acisording io this hypothesis, is to constraln search, and search can
be constralned to a higher or lesser di:gree. At the most constrained end of the scale the search follows
a single, unbranching path through the problemn space. To an external observer the resulting behavior
looks algorithmic. At the other extreme, the problern space is searched by randomly selecting operators.
To an outside observer the resulting behavior looks like aimless floundering. A typical performance
during procedural leaming is located somewhere between thesa extremes: The learer knows something
about how to search the relevant space, bui not everything; hence, he/she proceeds In the general
direction of the solution, but makes mistakes along the way. A collection of search heuristics is always
executable, ~agardless of how Incompletely it represents the target procedure. The resulting behavior
might be ineffectual, but it will be task oriented.

An alternative hypothesis to heuristic search is what we might call the problem reduction theory,
following the ciassification by Nilsson (1971) of problem solving methods into search methods and
problem reduction methods. The problem reduction theory says that a procedure consists of a hisrarchy
of goals and subgoals. Each goal acts like a procedure callin an applicative programming language like
(pure) Lisp. A call to a procedure (goal) is executed by caliing its subprocedures (subgoals), which leads
to calls to its subprocedures (subgoals), etc., untii the procedure called Is a primitive operator that can be
executed without further reduction. In order for the problern reduction theory to satisfy the Criterion of
Executability of Partial Procedures, it must be augmented with an hypothesis about what happens when a
procedure call cannot be executed. The theory of repairs proposed by Brown and VanLehn (1980, 1982)
is such an hypothesis. Repair theory says that when a problern solver cannot execute a procedure call,
he/she edits the cument control structure for the execution of that procedure in such a way that the
problematic procedure call is sliminated; normal execution then resumes. -

Principles constrain search through state evaluation

Given the choice of heuristic search as our performance theory, and given our focus on principled
knowledge, the research problem we have posed can be re-stated as follows:

What role can principled knowledge play in a heuristic search
system? How can principled knowledge improve parformance and
facilitate the revision of search heuristics ?

Heuristic search consists of the execution of actions in the pursuit of some goal in a particular context;
where do principles, context-free knowledge items that do not relate to goals and that do not mention
actions, impinge on that process? The hypothesis of heuristic search suggests two different functions for
knowledge: Knowledge can enter into the generation of search steps and/or it can enter into the
evaluation of search steps. in accordance with our decision to view principles as constraints, we focus on
the evaluative function. We envision principled knowledgé as a device for internal self-monitoring of
performance. Since this is the central notion of our theory, we will expand it briefly here; more technical
detalls are provided in the section on the performance mechanism of our simulation model (The
performance mechanism, p. 19).
13
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We hypothesize that principles are encoded in memory as state constraints, criteria which a search
state has to satisfy In order to be valid or correct. A heuristic search mechanism can compare each
search state with those constraints, and decide whether it satisfies the constraints. States that violate
one or more constraints are inconsistent with the system's knowledge and should be avoided: they are
the results of incomplete or incorrect procedural knowledge. The colisction of state constraints thus
constitutes a knowledge-based evaluation mechanism that snables the search system to monitor the
performance of its own procedural knowledge. For instance, an incomplete or incorrect arithmetic
procedura is likely to generate states of affairs that are not In accord with the laws of the number system. ¢
A counting procedure that does rot select a new object before gsnerating the next number counts the
same object repeatedly, thereby violating the constraint that each objects should be associated with
exactly one number. A regrouping procedure that performs a decrement without performing the
corresponding increment will change the value of the number being regrouped, thereby violating the
constraint that the value of the minuend should remain constant during subiraction. State constraints
enable a performance mechanism to catch itsett, as it were, in making errors.

The hypothesis that the function of principled knowledge is to evaluate search states satisfies the
Criterion of Executability of Partial Procedures. The search procedure may be more or less effective, but
at each level of effectiveness it is possible to classify the search states generated as either consistent
with the ava'iable constralnts or as violating them. I the search procedure is nearly complete and correct,
then there will be few states that violate the system'’s constraints; if is radically incomplete or incorrect,
then many search states will cause constraint violations. But the system is executable regardiess of the
level of completeness of its procedural knowledge. Principled knowledge can also be more or less
complete. If the systsm knows many constraints, then a large proportion of the invalid states will be
caught, as it were. If the system knows only & few of ths relevant constraints, then invalid states will slip
through, possibly resulting in a wrong answer. But the computational mechanism does not cease to
function in the presence of incomplste knowledge.

g taret

The altérnative hypbtl)ééig is that principled knowledge impinges on heuristic search in the
generation, rather than In the evaluatlon, of search steps. This hypothesis is intuitively plausible, and it is
implicitly presupposed in many analyses of human thinking, e. g., in analyses of scientific problem solving
(e.g., Jones & Langley, 1988), medical reasoning (e. g., Patel & Groen, 1986), etc. There is no reason to
expect knowiedge to have a single function in thinking and leaming. Human beings obviously use
knowledge both in generating ideas about what to do and in evaluating the outcomes of their actions. A
complete cognitive theory must explain both the generative and the evaluative functions of principled
knowledge.

=g

Hypotheses about learning

A theory of learning has two questions to answer. First, when does cognitive change occur? When
will the performance machinery roll on unchanged, and when will it undergo revision? Second, what
change will occur? Given the mental conditions that trigger learning, which krowledge structure will be
revised, and hcw will it be revised? 2 O
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Constraint violations trigger procedure revision

What events trigger the internal change mechanisms? Given a heuristic search system which is
equipped with a collection of state constraints and which can monitor its own performance by comparing
search states with those constraints, it is natural to assume that leaming is triggered by constraint
violations. The constraints--the principled knowledge of the system--enables the system to know that its
procedure is incorrect and that revisions are needed. If the search procedure is correct and comnlete, it
should never generate a state that violates any constraint. A constraint violation indicates that the
procedure is faulty, and should be revised in such a way that application of that procedure in the future
wiil not lead to further constraint violations.

Many alternative hypotheses about the mental conditions that trigger leaming are possible. Some
leaming theories assume that learning is continuous. For instance, Neves and Anderson (1981, p. 73)
investigated the assumption that whenever two procedural rules are applied in sequence, the procedure
is extended with the composition of those two rules. Traditional S-R theories (Neimark & Estes, 1967) as
weil as connectionist leaming theories (Hinton, 1987) also assume that learning happens on every trial.
Other learning theories tie learning to the goal structure of the procedure being executed. For instancs,
the UPL model (Ohlsson, 1983a, 1987a) and the Soar model (Laird, Rosenbloom, & Newell, 1986) both
leam when they succeed in satisfying a subgoal. A different triggering criterion was proposed by Neches
(1981, 1982, 1987). His mode! of heuristic procedure modification is based on the assumption that
leaming is triggerad by the discovery of patterns in the intemal trace of a procedure, patterns that indicate
that there are redundancies in the procedure that can be eliminated. The formulation of the triggering
condition for a particular theory obviously depends on the knowledge structures postulated by that theory.

Constraint violations inform procedure revisions

Given that the current search procedure has generated a search state that violates a constraint, what
change should occur? We postulate that a constraint violation not only signals that a revision is needed,
but also that it contains information about how the faulty procedure shouid be revised. We propose that
the required change can be derived from the system's knowledge. We have called this idea the Rational
Learning Hypothesis in previous work (Ohisson, 1987b; Ohlsson & Rees, 1987), because it claims that
the leaming mechanism has rational grounds for the change that it brings about.

The leaming mechanism of our simulation model can identify the circumstances that lead to a
constraint violation, and revise the relevant rule in the appropriate way. A precise statement of the
algorithm that accomplishes this will be given in the next section. The basic idea is as foliows. Suppose
that state S is consistent with all available state constraints, but that operation A transforms S, into state
S,, which does violate a constraint C. The cause of the violation is then to be found in the changes A
caused in S,. By looking at the those changes, and relating them to the violation, we can pinpoint the
reason why executing A in S, lead to the violation of a constraint. The rule that applied A can then be
revised in such a way that it recognizes situations in which A will have the effect of violating that
constraint, and avoids executing A in those situations.

()a
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August KUL-88-03 1988




Ohisson & Rees 17 Ratlonal Learning

The hypathesis of raticnal learning contrasts with the two altemnative hypotheses of learmning by
induction and leaming by analogy. The dominant hypothesis in current learning theory is that new
cognitive structures are constructed by identification of the commonalities of a set of examples. When the
examples are successful problem soiving steps, the inductive hypothesis hecomes a theory of leaming
through practice. A number of variaiions on this theme have been explored (see the collections of articles
edited by Anderson, 1981; by Bolc, 1987; and by Kiahr, Langley, & Nechas, 1987). Another ajternative
hypothiesis is that humans leam primarily f;cm: factual or episodic knowledge. The solution to a novei
problem is hypothesized to be constructed by remembering the solution to some previously solved
problem, which Is then edited, as it were, to fit the new problem. Tha hypothesis of leaming by analogy
has been explored by a number of researchers (Adelson, Gentner, Harmmond, Holyoak, & Thagard, 1988;
Carbonell, 1982, 1983; Gentner, 1987; Holyoak, 1984; Rumelhart & Norman, 1981). Human beings are
also capable of leaming by being told (Hayes-Roth, Klahr, & Mustow, 1981). Both inductive leaming,
analogical leaming, and learming by being told are important psychclogical processes that will have to be
included in a complete theory of leaming.

Summary of hypotheses

The theory of principled knowledge and its role in performance and leaming that constitutes the basis
of the computer model that we describe in this report can be summarized as follows:
* Hypotheses about the nature of understanding:
* Conceptual understanding of a procedure consists of knowledge about the task

environment in which the procedure operates (rather than of the teleological semantics
of the procedure).

* Knowledge is declarative, I. e., goal-independent, context-free, and asse:tive (rather
than procedural).

*The type of deciarative knowledge that is essential for procedural leaming Is
knowledge of general principles (rather than knowledge of facts and episodes).

> Principles constrain the possible states of affairs (rather than describe or predict),

¢ Hypotheses about performance:

* A cognitive performance is a heuristic search through a problem space (rather than a
problem reduction).

* Procedural knowledge consists of collections of search heuristics (rather than of
collections of subgoaling rules).

* The function of principled knowledge in a heuristic search system is to facilitate the
evaluation of search states (rather than to facilitate the generation of search states).

. Hypo.theses about leamning:
* Leaming is triggered when an incorrect or incomplete procedure generates a search
state that violates one or more principles of the relevant domain (rather than, for
instance, when two related rules fire in sequence).
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* A faulty procedural rule is revised on the basis of information In the learner's principled
knowledge (rather than on the basis of the information in a collection of Instances).

As we have indicated in the presentation of these hypotheses, atternative hypotheses are possible
with respect to each issue. In principle, each constellation of hypotheses define a possible cognitive
model.? The particular choices we rmade in constructing the above theory were guided by our purpose of
constructing a computational interpretation of the Conceptual Understanding Hypothesis. The next
section describes a computer implernentation of these hypotheses (A Computer Model, p. 19), and a later
section describes the application of that model to the learning of arithmetic (Computational Resuits, p.
28).

®In practice, the design cholces are not completely m~Jular. A cholce with respect tc one issuo sometinas Iimits the cholees viith
respact to others. For Instance, having choosen heuristic £sarch as our performance theory, we are forced to assume that
knowledge enters into either the generation or the evaluation of search states; there are no other options within that performance
theory. The view of psychological theory construction as proceeding through successive decisions with respect to a st of design
issues was first made explicit In Moore and Newell (1974), and has been developed further by Langlsy (1983a) and by VanLehn,
Brown, & Greeno (1982).
23
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A Computer Mode!

The theory presented in the previous section can be viewed as an absfract specitication of an
information processing system. A computer model of the theory is a runnable program that satisfies that
speciticaticn. Implemeantation involves inventing coniputational mechanisms that work in accordz.ce with
the principles of the theory. We have implemented the Hsuristic Searcher (H3), a computer model of the
theory presanted above. We first describe the perfermance system of the model =nd then its leamning
mechanism.

The performance system

HS is a production system architscture'® augmented with a representation for principied knowledge.
The system operates by searc.iing a problem space. 1t selects an as yet unexpanded search state, and
applies its current procedure to that state, thereby generating one or more new states. Search states are
evaluated on the basis of their consistency with the system's principled kriowledge.

ReL.resentation for procedurai knowlecge

A procedure in HS consists ¢i a collection of production rules. The condition of a production rule is
matched against the cun int search state. The action of a production rule conisists of a single problem
solving operator. An operator consists, in tum, of a de’etion jist and an addition list. When the operator is
executed, the expressions in the deletion list are deleted from the current state and the expressions in the
addition list are added, thereby creating a new search state.

Production rulss encode search heuristics. The intended interpretation of rule R --> O is ™if the
current search state has property R, th+n consider operator O." There is no distinction in HS between
seavch procedures and other kinds of procedures. An aigorithm i a search procedure that is constraines
encugh to generate a single path through the problem space. &.iice the actlon side of the production rule
consists of a problem solving operator, a production rule cannot write, edit, or delete expressions
arbiirarily from working memory. Each computation peiformed fas to coiraspond to a step through the
problam space.

Representation for principied knowiadge

Principles are represented In the HS systers as state constraints. A state constraint C is an ordered
pair <C,, C¢> of pattems, each pattern similar to the condition of a Production rule. The lsft-hand pattern
C, Is called the refovance pattem, because it detarmines the class f search states to which the constraint

1%roduction systems consist of collections of condition-action rules that are executed by (a) cemparing thelr conditions vith the
contents of a working mentory, (b) kisntifying those rules that have their conditions salisfied by the cumrant contents of wurking
meraory, {*) selecting one or more of those rules, and (d) evoking the aciions of the selected rule(s). Production systems wore first
used In cognitive psychology by Newell (1966) but are widely used in the anaiyals of human cogriive piusesses (Anderson, 1983;
Neweil and Simon, 1972; Klahr, Langley, & Neches, 1987; Laird, Rosenbloom, & tewaell, 1986). Computer implemsnte:. production
system languages were first proposed by Newall (1972, 1973). The reader who Is urfamillar with the production system format is
referred to Neches, Langley, and Klahr {1987).

D0
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is relevant. The right-hand pattem C, is called the satisfaction pattem, because it encodes the criterion
that a state must match in order to satisfy the constralint (given that the relevance pattern matches). The
relevance and satisfaction pattems are matched against the search states with the same pattern matcher
that matches the production rule conditions. No new computational machinery has to be postuiated in
order o augment a production systern architecture with this knowledge representation.

To illustrate the difference between the relevance pattern and the satisfaction pattern, consider the
eneial principle traffic should keep to the right side of the road. This principle is violated If a person finds
himself or herself on the left side of the road while driving. if the person is not driving, the principle is
irrelevant. The HS system would encode this principle as if HS Is driving, then HS ought to be on the right
side of the road. If the current state does not contain the information that HS is driving, then the
reievance pattemn of the constraint does not match and the constraing is irrelevant, If the constraint is
relevant, then two cases are possible. Either the current state contains the information HS fs on the right
side of the road, in which case the satisfaction pattem matches and the constraint is satisfied, or else the
constraint is violated.

The operating cycle

The system takes one step forward in the probiem space during each cycle of operation. A cycle
begins by HS selecting an as yet unexpanded search state as the current state. The content of that state
then becomes the etfective working memory for that cycle. There is no other working memory than the
selected search state. The system then matches all production rules in the current procedure against the
selected state. One or more of those rules ara evoked, and one or more new states generated. The
system then matches its constralnts agalnst each new state, and records which constraints, if any, are
violated by that state,

The reaction to a constralnt viciation depends upn whether the systern is run in performance mode
or in leaming mode.!! In performance mode HS executes a best-first search with the number of
constraint violations as. the cost function. The cost of a path is thus interpreted as the degree to which that
path contradicts the system's principled knowledgs, rather than as the amount of computational effort
required to generate the path. Consequently, HS prefers solution paths that are rmore congruent with its
principied knowledge over those that are less congruent.

In leaming mode HS executes a breadth-first search, because it stops to leam as soon as it
encounters a search state that violates a constraint. If a state violates some constraint, HS applies its
learning mechanism to the rule that produced the constraint violation, thereby revising i, [ there Is more
than one constraint violation, HS salects one of them at random to feam frormn. After revising a rule, HS
backs up to the initial state and tries anew to solve the current problem.

""The HS system can also run In diagnostic mode. The details of how HS can be used In cognitive dlagnosls will be reported
elsewhere,
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The HS learning mechanism

A mechanism for procedural leamning performs so.me editing operation on a procedure in order ’o
improve it. The HS leaming mechanism opsrates by replacing single production ruies with more
constrained rules. Hence, it is a form of discrimination learning (Langley, 1983b 1985, 1987). HS learns
while doing, I. e., the leaming mechanism operates in the context of the current state of the heuristic
search. A mechanism for leaming while doing must contain a specification of when--under what
conditions--to pause and revise the procedure (the triggering probles~ Y criterion for which kncwledge
item to revise (the assignment of blame problem), and an algorithm 1or how fo revise that ite~ (the
rgvision problem).

The triggering problem

Constvaint violations indicate that the system’s current procedure is not congruent with what the
system knows about the task environment. Conseyuently, HS learns when it generates a search slate
that violates one or more state constraints. When a constraint violation occurs, the system terminate: the
current effort to solve its prublem, applies its revision algorithm (see below), and then starts over from the
Initial state of the problem.

The assignment of blame problem

Given that the leaming mechanism has besn triggered, which rule should it revise? YWhaich rule is to
blame for the generation of the invalid state? The construction of the HS system Impiies that the
constraint violation was produced by the rule that fired the operator that lead to the current state. This is
shown by the following argument. Suppose that some operator further back In the search path generated
an invalid state. That state would then have triggered the learning mechanism, HS wouid have revised
the rule that lead to that state, and started over from the initial state. it would never have generated the
current state. Hence, all states preceeding the cument state are valid. The rule to revise is therefore the
last rule to fire before the current state. 12

The revision problem

Given a constraint violation the HS system tries to revise the rule that lead to the violation In such a
way that future applicatlons of that rule wiil not lead to violations of that constraint. The revislon problem
can be stated as follows:

"*This argument presupposes that all emrors are principled errors. The argument does not hold In domains where there are
procedural errors. A procedural error ks a step that does not violate any principlo of the domaln, but which neverheless is not on the
corract solutior: path. This point is discussed further in a later section (so0 p. 74).

o
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Let S, and S, be two consecutive states in a search path. Hence,
some production P with condition R was evoked in S,, and fired
some operator O with deletion list Oy and addition list O,, thersby
producirg state S, Assums that S, violates constraint C with
relevai. ‘e pattern C, and satisfaction pattern Cy I e, that S,
matches the relevance pattern but not the satisfaction pattern.
What Is the appropriate revision of production P?

Since HS learns as soon as it encounters a state that violates a constraint, S does not violate C (or
any other constraint). Hence, there are two types of constraint violations. In a Type A violation C is
Irelevarit in S,, and it becomes relevant but not satisfied as the result of the application of operator O, In
a Type Bviolation C Is both relevant and satisfied in S,, and remains relevant but becomes unsatisfied as

the result of the application of O. We discuss the revision needed to handle the first type of constraint
violation in detall.

Revision algorithm for a Type A violation. To repeat, in a Type A violation C is irrelevant in state S,,
and it becomes relevant but not satisfied in state S, as the result of the executicn of operator O. If the
relevance pattern C, does not match S;, but does match S,, then the effect of executing operator O must
have been to create expressions that enabled C, to match. But since, ex hypothesi, the constraint C is
violated in §,, O did not create the expressions needed to complete the match for the satisfaction pattern
C,. This situation warrants two different revisions of the rule P that fired O. First, the condition of P
should be revised so that the revised rule--call it P'-only fires in situations in which O will not complete
the relevance pattemn for C. Second, the condition of P should be revised so that the revised rule--call it
P"--only fires in those situations in which both the relevance and the satisfaction patterns of C will
become completed. The details of the two rule revisions are as follows:

* Revision 1. Ensuring that the constraint is not relevant. The purpose of the first revision is to
avoid constraint violation by preverting constraint C from becoming relevant when operator
O is executed. O will complete C, when the parts of C, that are not added by O are already
present in §;. Those parts are given by (C, - O,), where the symbol "-* signifies set
differenc.". To limit the execution of O to situations in which it will not complete C, we
augment the condition of P with the negated expression

not (C, - 0,)
In summary, if the expression (C, - O,) matches the current state, then executing O will make
C relevant, so we execute O only in situations in which that conjunction does not match.'3
The new rule created is:
PR & nofC,-0,)-->0

* Revision 2. Ensuiing that the constraint is satisfied. The purpose of the second rule revision
s to avoid constraint violation by forcing constraint C to become both relevant and satisfied

'*The notation we use to describe the revision algorithm mixes sot-theoretic notions fike set diference with logical notions like
negation. This should not cause any difficulties, bacause there is an obvious one-one mapping between sets of exprussions and
conjunctions of expressions: the set of exprassions {E,, E,, ... E,} correspond to the conjunction (E,&E, & ...&E).
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when O is executed. To guarantee that C, will become complete, we augment the condition
with the conjunction

(C,-0,).
To guarantee that C, will also become complete we augment the condition of P with a
conjunction that contains the parts of Cq that are not added by O. They are given by

(C, - 0,).
Hence, the desired effect is achieved by appending the expression

(C,-0,) u(Cs-0,)
to the condition of P, where the symbol "u” signifies set unlon. If this expression is present in
the condition of a rule evoking O, then O is guaranteed to make the constraint C both
relsvant and satisfied. The new rule created is:
P":Ru(C,-0,)u(C,-0,) >0

Summary of revision algorithm for Type A violations. if rule P with ccndition R evokes operator O in
some state S, in wi'ich constraint C is irelevant, thereby creating a new state S, In which constraint C is
relevant but not satisfied, then we replace rule

P:. R->0
with the two rules
P': R&nof(C,-0,) -->0
and
P": Ru(C,-0y) u(Cy-0,)->0,

where "&" signifies conjunction, *-" signifies set difference and "u" signifies set union. The first ruie limits
the application of O to situations where C will not become relevant. The second rule evokes O in
sltuations where C will become both relevant and satisfied. The section on computational resuits
(Computational Results, p. 28) contains several detailed examples of how this leaming algorithm
functions In the context of leaming arithmetic precedures.

The above description of the HS revision algorithm is simplified in the following respects: (a) We have
not described the ravisions needed to handle Type B violations, L. e., violations in which C is both relevant
and satisfied in S,, and becomes relevant but not satisfied in S, as the resuit of operation O. (b) In order
to add parts of a constraint to a rule condition, comespondances must be established between the
variables in the constraint and the variables in the rule. HS computes those comespondances by
comparing the current instantiation of the rule to the current instantiation of the constraint.!# (c) We have

“The way in which HS handles Type B violations and how it salves the problem of varable names are doscribed in Ohlsson &
Rees (1887). ’
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not described the case in which the operator O deletes expressions. (d) Negated conditions can occur i
both in production rules and constraints. A negated condition can cease to match as the result of the '
addition of expressions to a search siate, and the analysis has to be revised accordingly. {e) There are
cases in which either of the two revisions results in the empty list of new conditions. In those cases only
one new rulse is created.

The definition of the leaming algorithm is heavily infiuenced by the particular knowledge
representation that we have chosen for the HS model. The key feature of the knowledge representation
is the split betweon the relevance pattern and the satisfaction pattern. This feature implies the existence
of two different revisions of the faulty rule, one that ensures that the constraint does not become relevant
inappropriately, and one that ensurss that the constraint is satisfied whenever it is relevant. If we had
chosen a different representation for principled knowledge, we would have defined a different learmning
algorithm.

Discussion

HS share certain structural features with other production system architectures used to simuiate
cognitive processes.'® Each system consists of an interpreter that miatches a set of condition-action rules
against a working memory, and selects one or more of the satistied rules for execution. However,
production systems differ with respect to the syntax of rules, the details of the matching process, the
number of working memories, the method of confiict resolution, the leaming mechanisms, etc. Four
central features dlstinghlsh HS from other architectures: the simple mapping between architecturai
concepts and problem solving concepts, the separate representation for principled knowledge, the trade-
off between generative and evaluative selectivity, and the rational learming mechanism. Each feature will
be discussed in turn.

The first central feature of the HS system is that the architecture has been designed in accordance
with the performance theory we are using. Constructs such as opsrating cycie, production ruie, working
memory, and conflict resolution belong to the theory of information processing systems (Newsell & Simon,
1972, Chap. 2). A specification in terms of these constructs defines a particular, general-purpose
information processing system. Although production system architectures are typicaily used to model
human cognitive processes, they couid, in principle, be used as general purpose programming
languages. Constructs such as search, heuristic, problem space, operator, search state, and evaluation
function, on the other hand, belong to the theory of problem solving (Neweli & Simon, 1972, Chap. 2 and
3). A heuristic search system could, in principle, be implemented in any general purpose programming
language such as Foriran or Lisp. There is no intrinsic connection between the concept of a production
system and the concept of heuristic search.

'SProduction system architectures of the type to which HS belongs are sometimes called neo-classical’in order to distinguish
them from so-called baroque production systems used in oxpert systems resoarch (Davis and King, 1976). The main difference
betwaen the two types of architectures Is that In neo-classical systems the production rule is a procedural construct, while in
baroque systems the production rule Is a data-unit that Is interpreted by unrestricted Lisp procedures. Neo-classical production
systems languages are descendants from the PSG system developed by Newell (1972, 1973). They have recently been reviewed
by Neches, Langley, & Kiahr (1987). See also Langley (1983a) for an analysis of the space of production system architectures.
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However, Newell (1980) has proposed the hypothesis that problem solving is a fundamental category
of human cognition, 1. e., that all central cognitive processes take the form of pioblem solving processes.
Problem solving s the activity of the human cognitive architecture. This hypothesls implies that there
should be a close relation between architectural constructs and problem solving constructs in models of
human cognition. The mapping between architectural constructs and problem solving constructs is
particularly straightforward in the HS system:

* Production rules correspond to search heuristics. The action of a production rule is
constrained to be a single problem solving operator. Preduction rules cannot arbitrarily
revise the contents of working memory. It is impossible to fire a production rule without
taking a step through the problem space.

¢ The working memory is the current search state. The system has no working memory that is
independent of the search process.

¢ Conflict resolution is done by state evaluation. All production rules that match the cument
state are evoked in parallell, thereby generating all possible descendarits of the cumrant state.
A state Is selected for expar sion on the basis of its value on an evaluation function. ihere is
no architectural process ot conflict resolution that is independent of the problem solving
process.

* An operation cycle consists of selecting a search state, matching the rules against that state,
evoking all satisfied rules, and computing the evaluation function for each new state
generated. In each operating cycle the system takes one step through tho problem space.

The system does not perform any other kind of computation.
In short, HS is an information processing architecture that has been designed in accordance with a
particular theory of problem solving. The mapping between architectural constructs and problem solving
constructs Is similar in intent, but not identical in its detalls to the comesponding mapping in the Soar
system (Laird, Rosenbloom, & Newell, 1986). The differerices derive in part from our decision to
represent principled knowiedge as distinct from procedural knowiedge.

The second central feature of the HS systern is that principled knowledge is represented in the form of
state constraints. A state constraint is a two-part pattern that a search state has to satisfy in order to be
valid. The first part of the pattem is used to decide whether the .constraint is relevant in a particular state
or not; if so, then the second part of the pattemn is used to decide whether the constraint is satisfied or not.
State censtraints have superficial similarities to several other computational constructs, but they function
ditferently. A state constraint is not a production rule. It does not evoke motor actions, nor does it revise
the content of working memory. A state constraint is not an inference rule; in particular, it is not a Horn
clause.'® The satistaction pattern is not inferred or created when the relevance pattern matches. A state
constraint does not guarantee that its right hand side is true when its left-hand side is true; it claims that

1°A Hom clause is a restricted implicational formula in first-order predicate logic. The Hom clause Is the representational format
used in logic programming (Clark & Taemlfund, 1982).

August KUL-88-03 1988




Ohisson & Rees 26 Ratlonal Learning

the right hand side ought to be true. State constraints have three different functions in the HS system:
they constrain search during performance, they control when learning Is to occur, and they serve as a
source of information about how the current procedure should be revised. The notion of a state constraint
Is, as far as we know, unique to the work reported here. Other mechanisms for interfacing declarative
and procedural knowledge have been proposed in the context of other simulation models. They will be
discussed i later section (Relations to Previous Research, p. 60).

The third central feature of the HS system is that performance is guided by both generative and
evaluative selectivity. Generative selectivity operates through strategic rules that propose good moves.
Strategic rules improve the efficiency of search by focusing attention on the most promising actions in
each state. Evaluative selectivity operates through evaluation functions that measure the promise of a
state. Evaluation functions improve the efficiency of search by focusing attention on the most promising
states. Confusingly, both strategic rules and evaluation functions are called heuristics in the search
literature (Groner, Groner, & Bischof, 1983; Pearl, 1984). A.I. systems typically employ one or the other
type of selectivity, but not both. The HS system operates with both generative and evaluative selectivity.
Generative selectivity resides in the procedural knowledge (the production rules), while evaluative
selectivity resides in the principled knowledge (the state constraints). The production rules generate
actions, and the state constraints evaluate the states produced by those actions. The performance of the
system Is a function of both, and one type of selectivity can be traded off for the other. If either the
procedure or the principled knowledge is correct and complete, comect performance will resutt. if both are
deficient, performance raay or may not be correct; the outcome depends on particular interactions
between them.

The fourth central feature of the HS system is the rational leaming mechanism. HS does not lear by
being told the procedure it is trying to leam, nor by inducing it from a set of solved examples, nor by
generalizing over a set of successful steps found by trial and error. The HS system constructs a
procedure by constraining it to be consistent with the relevant principles. The state constraints control
when learning is to occur: HS learns when a production rule generates a search state that violates some
state constraint. By monitoring its performance with the state constraints, HS can know that a particular
rule is faulty without being told by an outside source, and before it has completed even a single solution
path. The revision of the faulty rule is guided by the particular way in which the relevant state violates the
constraint. The required revision of the rule is derived from the constraint violation through the HS
revision algorithm (see page 21). Principled knowledge enables HS to deduce the proper revision of the
rule. This type of leaming mechanism bears a family resemblance to other types of knowledge-based
mechanisms, particularly to A. i. mechanisms for explanation-based leaming (DeJong & Mooney, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986) but it contrasts with the experience-oriented character of most
mechanisms proposed in psychological theories of procedure acquisition.

The HS architecture is a model of the theory presented in the previous section in the sense that each
hypothesis stated there is true of HS. Howevor, HS is not the only possible model of that theory. in order
to bridge the gap between the abstract hypotheses of the theory and the concrete details of the model,
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auxillary assumptions had to be introduced as implementation proceeded. The most global auxiliary
assumption is that the human cognitive architecture is a production system. Although the production
systam format has extenslve support from other modelling efforts, a model of our theory could have been
implemented within some other type of information processing architecture. Even gliven the production
system format, many details of the model could have been implemented differently. For instance, we
choose to represent state constraints as binary patterns, and to relate them to search states through
pattern matching. Clearly, there are other implementations of the idea that principles enable error
detection. There are no hard and fast rules for how to construct the model for a particular theory.'” The
particular implementation reported here was choosen on a variety of criteria such as interest and
simplicity. The justification for the implementation does not reside in the basis for the design decisions,
but in the behavior of the resulting model.

A large number of hypotheses are required to specify an information processing architecture. It is
almost impossible to derive predictions about the bshavior of such a system by hand. The main purpose
of fleshing out ihe hypotheses of the theory with the auxiliary assumptions required for implementation is
precisely to use the implemented model to derive the behavioral predictions by running the model. The
next section describes a sample of behaviors of the HS system in the coniext of the acquisition of
arithmetic procedures.

'7The difficulties associated with this aspect of computer simulation models have been discussed by Neches (1982), by Ohlsson
(1988a), by VanLehn, Brown, & Greeno (1982), as well as by others.

12 -
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Computational Results

The purpose of this section is to report three applications of the HS model that are relevant to the
Conceptual Understanding Hypothesis. The first two applications demonstrate that HS can replicate the
basic phenomena of children’s learning in the domain of counting. First, we demonstrate that HS can
construct a general counting procedure on the basis of the principles of counting, without receiving
instruction in the procedure and without being given any solved examples. Second, we demonstrate that
once HS has acquired a procedure for counting, the system can adapt that procedure to changes in the
definition of the counting task. The third application demonstrates that the same mechanism that leams
successfully in the domaln of counting also learns successfully in the domain of symbolic algorithms: We
verify that HS can cure itself from errors in its procedure for multi-column subtraction, if it is'supplled with
a state constraint representation of the conceptual basis for that procedure.

Constructing a procedure for an unfamiliar task

The basic claim of the Conceptual Understanding Hypothesis is that if a leamner has principled
knowledge about the environment in which a particular task appears, then he/she can discover a corect
and general procedure for that task. The strongest evidence for this daim comes from the domain of
counting. Our first application of HS shows that HS can construct a procedure for counting on the basis
of a computational interpretation of the principles of counting. We describe the initial procedural
knowledge of HS in this application, the principled knowledge, the leaming process, and the outcome of
the learning process.

Initial procedural knowledge for standard counting

To count a set of unordered objects is to repeatedly select an object from that set, incremant the
current number, and associate the new number with the selected object. When all objects in the set have
been associated with numbers, the last number to be associated with an object is asserted to be the
answer to the counting problam. Riiey, Greeno, and Gelman (1984) call this task standard counting.
Figure 1 shows a representational language for standard counting. The representation includes symbols
for objects, sets, and numbers, and for a handful of properties and relations that are relevant for the
counting task. Figure 2 shows a problem space for standard counting that bullds on that representation.
The problem space includes six operators, corresponding to the capabilities to select an arbitrary object
from a set, to move attention from one object to another, to initialize counting at some number, to move
aftention from one number to another, to associate a number with an object, and to assert that a
particular number Is the answer to the current task. This set of capabilities is minimal in the sense that
there is no smaller set that enables the leamer to count: if one of these capabilities is missing, the leamer
Is not ready to leam how to count. The initial state is encoded in the language defined In Figure 1. It
contains a segment of the number line and some objects, some of which are members of the set of
objects to be counted. The goal state Is reached when soms number as been identified as the answer to
the counting problem.

Figure 3 shows an Initial HS rule set for standard counting, as well as natural language paraphrases
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Types of entities:
The representational language used in the counting application of HS assumes three types of entities:

* objects x4, X ...

* numbers ny, N, ...

* sets

The HS model for standard counting considers a single set, namely the set of to-be-counted objects,
called ToCountSet.

Properties:
There at< four properties that apply to these entities:

o First
* Current
s Answer -~

» Origin
Both objects and numbers can have the properties of being the first object or number, and of being the
current object or number (in a sequence of events). A sequence of events can only have one entity that
has the property of being the first entity considered, and only one entity can be the current entity at any
one point in time. Only a number can have the property of being an answaer. The property of being the
origin belongs to the smallest whole number the person knows. We assume in this application that it
belongs to unity.

Relations:
There are four binary relations that hold between these entities:

o Next
¢ Associate
o Member

« After

Numbers are linked through the next relation. The expression (Next n, ny,) means that n, is the
successor of n, in the number line. A number and an object can be associated with each other. An
object can be a member of a set. In this application we only consider members of the set of to-be-
counted objects. One entity can be considered after another entity (In a temporal sequence of events).

Figure 1: A representational language for standard counting.

of the rules. The initial rules impose minimal guidance on the application of the operators. Their main
effect is to retrieve bindings for the operator arguments from working memory. Since the HS architecture
is a search system, the collection of rules in Figure 3, although seriously incomplete, nevertheless
constitutes an executable procedure. Executlon of this procedure will generate ineffective but task
relevant behavior, For instance, counting will be initiallzed at an arbitrarily chosen point in the number line
(rule 3), and the number line will be traversed in random order (rule 4). Figures 2 and 3 together

1
X

r

-
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The initial knowledge state:

The Initial knowledge state for standard counting contains the number sequence (the numbers 1 through
n, where 1is marked as the origin and each number is linked to its successor with the next relation), the
set ToCountSet of objects to be counted, and some additional ebjects that are not members of the
ToCountSet. There Is neither a current object nor a current number in the initial state.

Operators:

PlckFirst(X) Declares object x as the first object; it thereby also becomes the current object.
The addition list O, is {(First X)(Current X)}.
The deletion list Oy is empty.

PickNext(X,, X,) Moves the property of being the current object from X; 0 X, Also records the
information that x, was attended to after x,.
The addition list O, Is {(Current X,)(Atter X, X,)}.
The deletion list O is {(Current X))

initlalize(N) Declares the number n the first number; it thereby ailso becomes the current number.
The addition list O, is {(First N)(Current N)}.
The deletion list O is empty.

Increment(N,, Ny) Moves the property of being the current number from Nyto n, 1talso records the fact
that N, was considered after N,.
The addition iist O, is {(Current N,)(After N, N,)}.
The deletion list O is {(Current N,k

Assoclate(X, N)  Assoclates the number n with the object x.
The addltion list 0, is {(Assoclate X N)}.
The deletion list O is empty.

Assert(N) Asserts that the number nis the answar.
The addition list O, is {(Anewer N)}.
The deletion list O is empty.

Qoal state:

The goalis to reach a state in which some number has the property of being the answer.

Figure 2: A problem space for standard counting.
constitute the initial procedural knowledge of HS in this application.

Principied knowledge for standard waunting

Principled knowledge is encoded in HS in the form of state constraints, each constraint consisting of a
relovance pattern and a satisfaction pattern. The state constraints for standard counting are shown in
Figure 4 (Part 1 and Part 2). For each constraint the relevance pattern C, is show to the left and the
satistaction pattern C, to the right, separated by the arbitrarlly chosen symbol **. For simplicity, type
designations like (Object X) and (Number N) have been left out of the statemant of constraints. The
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1. If xis any object, then select x as the first object.
(Object X) ===> PlckFirst(X)

2. If x, is the current object, and X, ls any other object, then make X, the current object.
(Object X,)(Current X,)(Object X,) ===> PickNext(X,, X,)

3. If nis any number, then initialize counting at n.
(Number N) ===> Inltlallze(N)

4.1 n, is the current number, and n, is any other number, then switch to ny as the current
number.

(Number N,)(Current N,)(Number N,) ===> Increment(N,, N,)
5. I nis the current number, and xis the current object, then associate n with x.
(Number N)(Current N)(Object X)(Current X) ===> Assoclate(X, N)

6. If nls the current number, then assert that n is the answer.

(Number N)(Current N) ===> Assert(N)

Figure 3: Inftial rules for standard counting.

constraiits are intended to capture the same ideas as the counting principles proposed by Gelman and
Qallistel (1978), but our analysis differ from theirs in its details. We have broken down the counting
principles into their componant ideas and we have added some ideas that are not discussed by Gelman
and Gallistel (1978).

The One-One Mapping Principle states that counting consists of establishing a one-to-one mapping
between numbers and objects. As Part 1 of Figure 4 shows, we break this principle down into four
component ideas: that an object is associated with at least one number, that an object is associated with
at most one number, that a number is associated with at most one object, and that a number is
associated with with at least one object. The Cardirial Principle states that the answer to a counting
problem is the last number to be associated with an object. We break this principle down Into three
component ideas: that the size of a set cannot be known until all objects in the set have been associated
with numbers, that the answer is a number associated with some object, and that the answer Is the last
number considared (see Part 1 of Figure 4). Our conception of the one-one mapping and cardinal
principles is essentially the same as that of Geiman and Gallistel (1978). The difference is mainly that we
are using a more fine-grained analysis of the ideas involved.

The Stable Order Principle, on the other hand, does not appear in our analysis. Thls principle says
that the numbers used in counting must have a stabie, repeatabie order. We want to suggest that this
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principie contains four distinct ideas. The first idea is that the numbers form a linear ordering. This idea
is represented in the HS modei (as i axiomatic theories of the number system) by the fact that the
symbois for the numbers are linked together with the successor relation (calléd Next). This
representation amounts to an assumption that children have a cognitive representation of the number
line, an assurnption that is supported by the available evidence (Resnick, 1983). Because the Next
relations are stored in the modei's memory, no state constraints are needed to encode this idea.

The second Idea hiding In the Stable Order Principie is that the number iine is traversed in a particular
way during counting. For correct counting the numbers must be generated in numerical order. Once the
number iine has been stored in memory, it can be traversed in many different ways. For instance, it can
be traversed by skipping every other number, by generating numbers in descending order, etc.. Also,
traversal of the number line can, in prirciple, begin at any point along the iine (aithough human beings
may find some potential starting points easler to access than others). But the only way of traversing the
number iine that gives correct results in counting Is to begin at unity and then follow the successor
relations. Wa call this the Regular Traversal Principle. The state constraint representation breaks this
idea down into four component ideas: Counting begins with the origin of the number line, each number
considered is the successor of the previous number, the numbers are considered one at a time, and each
number is associated with some object. The four state constraints corresponding to these Ideas are
shown in Part 2 of Figure 4.

The third idea hiding in the Statle Order Principie Is that counting imposes a linear ordering on the
objects counted. By assigning numbers, which have an intrinsic linear ordering, to objects, which do not,
we are imposing a linear ordering on those objects. We call this idea the Order Imposition Principle. It is
broken down into six component Ideas: Only one object is designated as the first object In the ordering,
objects are considered one at a time, no object is considered twice, an object Is not considered after itself,
the first object is never considered again,'® and, finally, no object that Is not a member of the to-be-
counted set Is consldered. The six state constraints that encode these ideas are shown in Part 2 of
Figure 4.

Finally, the actions of traversing the number iine In the right way and imposing an order on the objects
are not sufficient to produce comect counting. In addition, the two processes must be connected with
each other In the right way. The fourth idea hiding in the Stable Order Principie is that objects and
numbers are assoclated with each other in the order in which they are attended to. We call this the
Coordination Principle. The state constraint representation for this idea is shown in Part 2 of Figure 4.

The state constraints in Figure 4 (Part 1 and Part 2) represent the principled knowledge of the HS
system in this appiication. The set of constraints is not unique. Aitemative formulations of the constraints
are possibie. Also, the set is not minimal. The constraints overiap in meaning. For Instance, constraints

'*The two constraints that an object Is not to be considered after itself, and that the first object should never be considered a
second time are, of course, special cases of the general constraint that no objects should be considered a eecond time.
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A. The One-One Mapping Principle

1. An object should be associated with at most one number,
(Assoclate X, N,)(Assoclate X, N,) ** (Equal N, N,)

2. Every object considerad during counting should be associated with some number.
(Current X;)After X; X,) ** (Assoclate X, N)

3. A number should be assoclated with at most one object.
(Assoclate X, N,)(Assoclate X, N,) ** (Equal Xy X,)

4. For every number retrieved during counting there should be some object with which it can
be assoclated.

(Current N)(Not (Assoclate X, N)) ** (Current X,)

B. The Cardinal Principle

1. A number Is the answer to a counting problem only if there are no objects which are
members of the to-be-counted set but which has not been assoclated with some number.

(Answer N) ** (Not (Member X ToCountSet)(Not (Assorlate X N))
2. The answer to a counting problem Is one of the numbers assoclated with some object.
(Answer N) ** (Assoclate X N)

3. The answer to the counting problem Is the last number to be consldered In the counting
process.

(Answer N) ** (Current N)

Figure 4: State constraints for standard counting, Part ).

B1 {see Flgure 4, Part 1) and C4 (see Figure 4, Part 2) express the idea that all objects should be
counted In two different ways. Also, constraints D4 and D5 are speclal cases of D3. Overiap In the
meaning of state constraints implies that leamning from one constraint may make leamning from another
constraint unnecessary. As a result, all constraints are not Involved In every leaming run. The set of
state constraints In Figure 4 Is complete. it Is sufflclent to determine correct counting.

The leaming process

HS takes difiurent paths through the procedure space on different leaming runs, for two reasons.
First, if HS generates more than one state that violates some constraint on a particular cycle, it selacts
one at random to leam from. Second, since the domain theory Is not minimal, leaming from one
constraint may preempt lsaming from another constralnt. Hence, the order in which constraint violations
are noted by the system Influences the path through the procedure space. The final procedures leamed
In different leaming runs are, of course, very simifar, but not identical.
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C. The Regular Traversal Principle

1. Initialize counting at the first number in the number line.
(First N) ** (Origin N)

2. Consider one number at a time.
(Current Ny)(Current N,) ** (Equal N; N,)

3. The numbers should be considered in the order defined by the next relations.
(Current N,)(After N, N,)(Not (Equal N; No)) ** (Next N, N,)

4. For each number considered, the preceeding number should be associated with some
object (i. e., use all numbers).

(Current N,)(Next N, N,) ** (Associate X N,)

D. The Order Imposition Principle

1. Initialize counting with a single object.
(FIrst X,)(Flrst X;) ** (X, = X,)

2. Do not consider an object that is already associated with a number.
(Current X)(Not (Current N)) ** (Not (Assoclate X N))

3. Do not cycle back to the first object.
(First X,) ** (Not (After Xq X5))

4. Do not consider an object after itself.
(After X, X,) ** (Not (Equal X, X,))}

5. Consider only one object at a time.
(Current X, X,)) ** (Equal Xy X5)

6. Do not consider objects that are not in the set of to-be-counted objects.
(Current X) ** (Member X ToCountSet)

E. The Coordlination Principle

1. Numbers and objects are associated with each other in the order in which they are
considered.

(Current X)(Current N,)(Assoclate X N,) ** (Equal N, N,)

Figure 4: State constraints for standard counting, Part 2.
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We wiil analyze a particuiar ieaming experiment in which HS was started with the initial ruie set for
counting shown in Figure 3 and the state constraints shown in Figure 4 and was given practice on
counting a set with three objects. During ieaming the model commits the types of counting errors
observed in chiidrens’ performance, such as counting an object more than once, skipping numbers, and
choosing the wrong number as the answer. It successively corrects these errors by noticing vioiations of
the state constraints, and revising the initiai ruies accordingiy.

As an exampie of the construction of a ruia, consider ruie 6 (see Figure 3): If n Is the current number,
then assert that n is the answer. This ruie wiii prematureiy assert that the current number is the answer
when there are stiil objects ieft to be counted. HS ieams thia comrect ruie by transforming ruie 6 in two
steps. Figure 5 shows a graph representation of the path through the rule spaca for this particuiar ruie.
Leaming proceeds from top to bottom. At the top of the figure is the formal version of the initiai rule as
stated in Figure 3. The vertical arrows represent ieaming steps. At the head of the arrow is the condition
or conditions that were added to the ruie in that step. Each ieaming step is triggered by the violation of a
state constraint. The construint is shown to the right of the vertical arrows. The iabais on the constfraints
refer to Figure 4. The finai rule is shown at the bottom of the graph. The reader who intends to foiiow tha
description how of the comect rule is ieamed in detaii may want to review the HS leamning algc.ithm (p.
21) at this point.

The first learning step is triggered when the initial ruie vioiates constraint B2: The answer 10 a
counting problem is one of the numbers assoclated with some object. The formal version of this
constraint is shown to the right in Figure 5. Suppose that, say, 2 is the cumrent number. The condition
side R of ruie 6 then becomes instantiated to:

R = {(Number 2)(Current 2)}
The additiz list O, of operator Assert (see Figurs 2, p. 30) is then equal to
O, = {(Answer 2)}
while the deietion list O. is empty. The constraint is imrelevant before the Assert operator is fired, so we
have a Type A constrain. Vvioiation, in which the execution of the an operator makes the constraint
reievant but not satisfied. Two revisions of the fauity ruie are attempted.

Revision 1. Ensuring that the constraint Is not relevant. The HS leaming aigorithm first tries to
construct the expression
not(C, - O,).
However, in this case C, is equal to
C, = {(Answer 2)}
so the relevance pattem and the addition iist are identical. Hence, the expression
nof(C, - O,) = {(Answer 2)} - {(Answer 2)}
which is equal to the empty set, so no new rule can be created in this revision.

Revision 2. Ensuring that the constrairit Is satisfled. Next, the ieaming mechanism tries to construct
the expression

: A
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INITIAL RULE:

((Number N1)
(Current N1)) = = = > Assert(N1)

B2:
v oL (AnswerNt)**
(Associate X1 N1)

(Associate X1 N1)

B1:

(Answer Nt)**
2 | (Not(Member X2 ToCountSet)
(Not (Associate X2 N2)))

(Not (Member X2 ToCountSet)
(Not (Associate X2 N2)))

FINAL RULE FOR STANDARD COUNTING:

((Number N1)
(Current N1)
(Associate X1 N1)
(Not (Member X2 ToCountSet)
(Not (Associate X2 N2)))) = = = > Assert(N1)

Figure 5: A learming path for rule 6 (see Figure 3).
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(C,-O,)u(C,-0,).
The left-hand term is, as we just showed, empty, so this expression reduces to
(C,-0,).
The satisfaction pattern C, is in this case equal to
C, = {(Associate X, 2)}
where X is some object. This expression will not change by the subtraction of O, = {(Answer 2)}, so we
have
(Cs - O,) = {(Associate X, 2)}
Propei substitution of variables for constants leads to the expression (Associate X, N,), which is added to
the rule.!® In other words, the learning mechanism adds the condition that the number designatsd as the
answer has to be assigned to some object to the rule. The formal verslon of this condition is shown on
the path in Flgure 5, at the head of the vertical arrow.. Having revised the ruls HS backs up to the initial
state, and tries to do the counting task again, using the new rule instead of the original rule.

In the second leaming step, the revised rule violates constraint B1 (see Figure 4): A number is the
answer to a counting problem only if there are no objects which are members of the to-be-counted set but
which has not been associated with some number. The rule is now constrained to select only numbers
that have been assigned to objects, but it does not yet know that it has to wait until all objects have been
counted. i prematurely asserts that the current number is the answer, as soon as that number has been
assigned to an object. This is a Type A violation, because the constraint is not relevant until the operator
Assert has been fired. As in the previous leaming step, the expression

no{G, - O,)
is emply so Revision 1 doses not lead to the creation of a new rule. In Revision 2 HS constructs the
expression
(C,-0O,)u(C,-0,)

which is equal to
(C, - O,).
Since
C4 = {(Not (Member X ToCountSet)(Not (Associate X N)
and

0, = {(Answer N)}
the subtraction of the addition list from the satistaction pattern simply gives the satisfaction pattern
unchanged. Therefore, the expression added to the rule in Rovision 2 is equal to C,. In short, the
leaming mechanism adds the condition element the set of to-be-counted objects is emply, or, formally, it
shouid not be the case that there exists an bbject which is a member of the to-be-counted set and which
has not been assigned a number. The condition of the rule then becomes as shown in the bottom of

"in order for the new expression fo interface correctly with the previous expressions In the rule, HS has to coordinate the variable
names. The computations involved in the coordination of variable names are not descrived In this repont, but sae Ohlsson & Rees
(1287). In this report we will simply assume that the variablas are given the correct names.

42
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INITIAL RULE:
((Object X1)
(Current X1)
(ObjectX2)) = = = > PickNext(X1, X2)
A2:
(Current X2)
1 (After X2 X1) **
(Associate X1 N1)
(Associate X1 N1)
D4:
2 (After X2 X1) **
{Not (Equal X2 X1))
(Not (Equal X2 X1))
D6:
3 (Current X2) *~
(Member X2 ToCountSet)
(Member X2 ToCountSet)
D3: .
4 (First X2) **
(Not (After X2 X1))
(Not (First X2))
E1l:
(CurrentN1)
(Current X2)
5 {Associate X2 N2) **
(Equal N1 N2)
(Not (Current N3) (Current N3)
(Associate X2 N2J) (Assotiate X2 N2)
(Equal N3 N2)

FINAL RULE FOR STANDARD COUNTING:

{{(Object X1)

(Current X1)

(Object X2)

{Associate X1 N1

(Not (Equal X2 %.1))
(Member X2 ToCountSet)
(Not (First X2))

(Not (Current N3)

(Associate X2 N2))) = = = > PickNext(X1, X2)

Figure 6: A leaming path for rule 2 (see Figure 3).
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Figure 5. The result of this second leaming step is a correct rule.2°

The leamning of the correct rule for asserting the answer is a particularly simple example of a rule
transformation. The initial rule only has to be extended with two additional conditions, and only one new
rule is created in each learning step. The rule for selecting the next object, rule 2 in Figure 3, presents a
more complex case. Figure 6 shows the construction of the correct version of this rule. As in Figure 5,
the initial rule is shown at the top of the figure, the constraints that are violated are shown to the right of
the path, and the conditions added to the rule are shown along the path. The final, correct, rule is shown
at the bottom of the figure. Five leamning steps are required to construct the correct rule in this particular
simulation run.

In the first leaming step rule 2 violates the constraint that each object has to be associated with at
least one number (see Part 1 of Figure 4, constraint A2). This happsnis because the system moves
attention from one object to the next without counting it. This constraint violation follows the same pattem
as {ne ones analyzed previously. It is a Type A violation, where the first revision does not yield a new rule,
and the second revision consists of adding the satistaction pattem of the constraint to the rule. Since C,
in this case is

C, = {(Associate X N)}
the leaming mechanism adds the constraint that the current object has to be counted before a new
current object can be selected. The next two viclations follow the same pattern. The revised rule violates
the constraint that objects should not be counted repeatedly, and so the learning mechanism adds the
condition that counted objects should net be selscted for counting again:
Cg = {{Not (Equal X, X,))}
The rule next selects some object that is not in the set of objects to be counted, and so is constrained to
deal only with those objects:
Cs = {(Member X ToCruntSet)}

In the fourth leamning step the revised rule violates the constraint that it should not retum to the first
object (see constraint D3 in Part 2 of Figure 4). This is yat another Type A violation, but in this case
Revision 1 yields a new rule but Revision 2 does not. Since in this case

C, = {(First X,)}
and
0O, = {(After X, X,)(Current X,)}
the expression
(C,- O,)
is instantiated to
{(First X,)} - {(After X, X,)(Current X}

2Tha third constraint that expresses the Cardinality Principle (constraint B3 in Part 1 of Figure 4) was not violated in this |3aming
run. This iflustrates the eardier comment that the overlap in meaning betwesn state constraints implies that learning from one
constraint may preempt learning from anoti or.

4.
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so we have
no{(C, - O,) = (Not (First X,))

which is added to the rule. This condition prevents the rule from firing when the object it considers making
the current object was, in fact, the first object counted. Revision 2 illustrates the complexities introduced
by negation. The satisfaction pattern of the relevant constraint is a negated pattern, and it happens to be
the case that the oparator PickNext adds the positive part of that pattern to the stats. Hence, Revision 2
cannot succeed. There is no way of revising the rule so that both the relevance pattern and the
satisfaction pattems are guaranteed to be true. In fact, whenever the Assert operator fires, the
satisfaction pattern is guaranteed to be false. The learning mechanism recognizes that the operator adds
the negation of the satisfaction pattern, and does not create a second rule for this violation.

Finaliy, in the fifth leaming step, the rule gets out of step, as it were, and violates constraint E1 (see
Part 2 in Figure 4) which says that numbers and objects are associated with each other crder in which
they are generated. This is, once again, a Type A violation, but in this case both revisions generate
non-empty extensions of the ruie, so two new rules are created.

Revision 1. Ensuring that the constraint is not relevant. We have
C, = {(Current N, )(Current X,)(Associated _X1 No)}
and
O, = {(After X; X,)(Current X,)}
Hence, the expression
not(C, - O,)
is in this case equat to

noff{(Current N, )(Current X, }(Associated Xy No)}
- {(After X; X,)(Current X,)}]

which reduces to

not{(Current N, )(Associated X, No)).
This expression is a“ed to the ruls. The final result is a rule that says "lf the current object has been
associated with a number, and there is a second object that is a member of the set of objects to be
counted, but that is not the first object, and that has not been associated with a number, then move
attention to that second object®, which is the corract rule, shown at the bottom of Figure 6.

Revision 2. Ensuring that the constraint is satisfied. Next, we have the expressicn
(C,-Ox)u(C,-0,)
which does not reducs to the empty list in this case. The part (C, - O,) is, as we have sean above, equal
to
{(Current N,)(Associated X, N,)}.
The expression (C, - 0,) becomes
{(Equal Ny N,)} - {(After X, X,)(Current X, )}
which reduces to
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{(Equal N, N,)}.
Hence, the set union of the two expressions is equal to
{{Current N,)(Associated X, N,){Equal Ny No)}
which is then added to to create a second new rule.

The rule created in Revision 2 of the fifth and last leamning step is not a correct n.'e, but a so-cailed
monster rule. It is a syntacticaily correct and executable rule which is simply not part of correct counting.
The rule says that if the current object X; has been assigned to the current number n, and some other
object x, has previously been assigned to n, then select X as the next object, which is a manifestedly
incorrect counting rule. The rule is harmless, i. e., it will never fire, if all the other rules are correct,
because two objects wiil never be assigned to the same number. However, if other rules are also
Incorrect, then this rule might fire. it wiil generate the error of going back and counting a previously
counted object as second time.

Although we have analyzed the construction of rules 6 and 2, respectively, as sequences of leaming
steps, those steps did not occur on successive trials during the leaming run. HS does not first go through
all required revisions of one rule, and then turn to another rule, etc. The leaming steps required to
construct the correct versions of rules 2 and 6 occurred interspersed among the leamning steps required to
construct the other rules. The order of leaming steps is determined by the order in which HS encounters
violations of constraints. In order to make the leaming process easier to follow, Figures 5 and 6 abstract
out the revisions of rules 6 and 2, respectively, from the trace of the simuiation run, and presents them in
sequence. This is an exposition technique, it is not how HS learns.

An overview of the entire learning process is given in Table 1. The particular learning run anaiyzed
here required twenty-two trials. HS practiced on a set of three objects. Each trial consists of a problem
solving attempt in ‘which HS executes its procedure until a constraint violation is discovered, revises the
faulty rule, and starts over. The twenty-two learning trials were accomplished in 97 production system
cycles. Each line in Table 1 coresponds to one trial. The first column s! Jws the trial number. The
second column shows the number of cycles before a constraint violation was detected for each trial, As
the table shows, the number of cycles increases over trials. HS gradually performs farger and larger
portion of the task correctly. The third column shows the constraint that was violated in that trial. The
violated constraint is the constraint that HS leamed from in that trial. Finally, the last column represents
the six rules with the digits 1 through 6; the rule that was revised on that trial corresponds to the
bracketed number. In the twenty-third trial (not shown in the table), HS counted correctly the set of three
objects. The correct solution to the problem cf counting three objects required eleven production system
cydles.

As the table shows, the two leaming steps that transformed rule 6 into the correct rule occurred on
trials 8 and 12, respectively, while the five learning steps required to learn the correct form of rule 2 are
spread out over the entire leaming process, beginring with trial 5 and ending with trial 22. The table also
shows that a constraint can be violated by several different rules. For instance, constraint E1 is violated
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Table 1: Overview of the leamning process for standard counting.

No. of cycles before Constraint Rules 1-6;
constraint violation vioiated revised [x]

A4 12[3]456
D6 [1]23456
D1 [1123456
c4 12[3]456
A2 1{2]3456
c4 123[4]56
D4 123[4]56
B2 12345(8]
D4 1[2]3456
D6 10213456
E1 12[3]456

B1 12345][6]
3 123[4]56
D1 12[3]456
D1 12[3]456
A3 1234[5]6
D4 123[4]56
D3 123[4]56
D3 1[2]3456
D3 12[3]456
c3 1234156
E1 1[2]3456
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by rules 2 (trial 22), 3 (trial 11), and 4 (trial 13). The table also shows that not all constraints are involved
in the leaming run. For instance, constraint D2 was not violated in this particular run. The particular
learning process HS goes through on the way to mastery of standard counting is a function of the
represantation, the initial rules, the state constraints, and the order in which violations are discovered.
Different simulation runs will yields slightly different learning processes.

The learning outcome

The final outcome of learning is a procedure for standard counting that counts correctly. It consists of
six rules, corresponding to the six rules in the initial procedural knowledge (see Figure 3), but with the
conditions revised in such a way as to produce correct performance. The final rules are shown in Figure 7
(Part 1 and Part 2). The level of generality of the earned counting procedure is the same as the level of
generality of the constraints. The learned procedure transfers to arbitrarily large sets, i. ., to sets it has
not practiced on.

The outcoma of the above Ieaming simulation is in accord with the empirical data from the counting
domain, as well as with the Conceptual Understanding Hypothesis: HS is able to discover thé comect
procedure for standard counting without being given a description of the procedure, without seeing any
solved examples, and without being given an exi «anation of the procedure. The procedure is constructed
incrementally in an effort to avoid violating the counting principles. The Conceptual Understanding
Hypothesis also claims that procedures constructed in this way are flexible when confronted with a
variation of the relevant task. The next application deals with this phenomenon.

Adapting a procedure to a change in a familiar task

Life rarely presents us with totally new tasks. There are always some similarities between a new task
and some previously mastered task. The Conceptual Understanding Hypothesis claims that if a
procedure has been construcled on the basis of principled knowledge of the task environment, then the
learner should be able to adapt that procedure to a conceptually equivalent but procedurally different
task. Hence, in our second application we verify that the counting principles enables HS to adapt its
procedure for standard counting to two changes in the task. First, we modify the standard counting task
by requiring that the objects be counted in a predefi~ed order (ordered counting). Second, we modify the
standard counting task by requiring that the objects are counted in such a way that a particular object is
assigned a particular number (constrained counting). Empirical research has shown that children can
readily adapt to these two non-standard counting tasks (Gelman & Gallistel, 1978; Gelman & Meck, 1983,
1986; Gelman, Meck, & Merkin, 1986). In both simulations, we first have HS discover the procedure for
standard counting in the way analyzed in the previous subsection. Then we change the task, and observe
how HS transfers the old procedure to the new task.

Transferring from standard to ordered counting

In ordered counting, objects are counted in accordance with some predefined ordering. Oidered
counting differs from standard counting with respect to the selection of objacts. Rather than selecting any
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1. 1f x, Is any object, x, is a member of the ToCountSet, and no object hés yet been selected
~ as the first object, then select x, as the first object.

(Object X,)(Member X, ToCountSet)(Not (Object X,)(First X,))
z==> PlckFlrst(X,)

2.1f x; is the current object, x, has been associated with some number Ny X, is any other
object, x, Is a member of the ToCountSet, x, is not the first object, and it is neither true that
there Is a current number n,, nor that x, has been associated with some number ny, then
switch to X, as the current object.

(Object X;)(Current X,)(Assoclate X; N)(Object X,)(Member X, ToCountSet)
(Not (First X,)) (Not (Current N,)(Assoclate X, Ny)) ===> PickNext(X,, X,)

3. It ny Is any number, there is no object x, such that n, been associated with X4, some object
Xz has been selected as the curent object, and there is no number n, such that n, is the
successor to n, then begin counting with n,.

(Number N,)(Not (Object X,)(Assoclate X, N,))(Object X,)(Current X,)
(Not (Number N,)(Next M, N,)) ===> Initlalize(N,)

4.1t ny is the current number, n, is any other number, n, is the predecessor of Ny ngls
associated with some object x, x Is not the current object, and ny is the predecessor of n,,

then switch to n, as the current number.2

(Number N,)(Current N, }(Number N,)(Next N, N,)(Assoclate X N,)(Not (Current X))
{Not (Equal N, N,))(Next N, N,) ===> Increment(N,, N,)

5.1f nis the current number, and x, is the current object, and n has not been associated with
any other object x, then Assoclate nwith x,.

(Number N)(Current N)(Object X,)(Current X;)(Not (Assaclate X, N))
===> Assoclate(X,, N)

6. If n, is the current number, and n, has been associated wi: some object Xp and there is no
object x, in the ToCountSet that has not been associated with some number n,, then assert
that n, is the answer.

(Number N,)(Current N,)(Object X,)(Assoclate N, X,)
(Not (Object X,)(Member X, ToCountSet)(Not (Number N,)(Assoclate X, N,)))
===> Assert(N,)

Figure 7: Final rules discovered by HS for standard counting.

#"fhe formulation of this rule is opaque, because # Introduces two symbols, n, and n,, for the same number, The two conditions
that claim that n, and n, are predecessors to n, constitute an implict equality-test that binds together the expressions in the rile
condition. If the program knew the meaning of #1e predecessor relation, it could, in principle, transform the ruls into a less opaque
form. Hovsever, the rule as stated here Is the form that was actually leamed in the particular lsaming axperiment we are reporting.
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F. Ordering Constralnts

1. Objects are considered from left to right.

(Current X, ){After X, X,)(Adjacent Xy X3)(LeftOf X; X,) ** (Equal X, X;)
2. Objects are associated with numbers in order from left to right.

(Current X,)(Object X,)}(Object X,(Adjacent X, X,)(LeftOf X, X,) ** (Assoclate X, N)

Figure 8: Constralrts that define ordered counting.

object, the system now has to cslect one according to certain criteria. The ordered counting task was
defined for HS by extending the inputs to the program in two ways. First, we extended the initial
knowledge state by adding /sft of and adjacent relations batween the objects, thereby Imposing an order
on the set of objects to be counted. Second, we extended the principled knowledge of the model. In
unordared counting, the act of counting imposes a linear ordering « a set of objects that does not have
en intrinsic order. In ordered counting, however, tha set of to-be-counted objects has an ordering given to
i by the eetiing, and the task is to traverse that order. In this application HS was required to count
objects in order fror Isft to right. Two new constraints express this idea. The first order constraint says
that if the ciirrent object Is considered after another object, then It shouid be immediately to the left of that
abject, 1. e., objects shouki be considered in order from right to left. The secon4 order constraint says that
objscis shurid ba assigne-: numbers according to the given crder, which In this case means from left to
right. he state consisaint reprasentation of itiese two ideas is shown in Figurs 8.

In thirs simuladsn experiment HS first joamed the procedure for standard counting In the way
Jescribed in the previous subsection. We then posed the sk of counting the objects In order from left to
righ. end run the system again or ***~ new task. Some of the rules HS learned for standar< counting task
ars car-act far ordered counting .« The rules for initia'izing connting at unity, for incrementing the
couiting number, for associating a number with an nbject, aiid for asserting a nur, as the answer are
all curvact for the ordered counting task. But the two ruias for selecting a first object and for selecting a
next object produce constraint violations, and are revised to fit the new task:.

For instance, rule 2, the rule tht selects the next object, has no conditions that constraln it to select
objects in order from left to right. Figure 9 shews the search through the rule space for rule 2 in this
application. The iop part of the figure, before the box labelled "Adaptation to ordered counting”, shows
the initial construction of nile 2 and is identical with Figure 6. The leaming step inside the box is caused
by the rule violating ordering constraint F1 (see Figure 8).

Two new rules are created in this leaming step. The rule created by Revision 2, shown at the bottom
and to the right in Figure 9, is the correct rule for selecting the next object in the ordered counting task.
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INITIAL RULE:
((Object X1)
Ohisson & Rees (Current X1) Ratlonal Learning
(Objert X2)) = = = > PickNext(X1, X2)
A2:
(Current X2)
1 (After X2 X1) **
(Associate X1 N1)
(Associate X1 N1)
D4:
2 (After X2 X1) **
(Not (Equal X2 X1))
y /
(Not (Equal X2 X1))
Dé6:
3 (Current X2) **
(Member X2 ToCountSet)
(Member X2 ToCountSet)
4 D3:
(FirstX2) **
(Not (after X2 X1))
/
(Not (First X2))
El:
{Current N1)
(Current X2)
5 (Associate X2 N2) **
N (Equal N1 N2)
. (Current N3)
(Not (Current N3) (Associate X2 N2)
(Associate X2 N2)) (Equal N3 N2)
o ";‘-‘i:“"""""""""‘"""""": __________ "I
| (Current X2) Adapting to Ordered |
. (After X2 X1) Countin .
1 (Not (Equal X2 X1)) ounting |
) (Adjacent X2 X3) i
. 6 (LeftOf X3 X2) ** .
| (Equal X2 X3)) |
! i
i .
i !
| (Adjacent X2 X3) !
i (Not (Adjacent X2 X3) (LeftOf X3 X2) |
i (LeftOf X3 X2)) (Equal X1 X3))) i
FINAL RULE FOR STANDARD COUNTING: FINAL RULE FOR ORDERED COUNTING:
((Object X1) ((Object x1)
* (Current X1) (Current X1)
(Object X2) (Object X2)
(Associate X1 N1) (Associate X1 N1)
(Not (Equal X2 X1)) (Not (Equal X2 X1))
(M2mber X2 ToCountSet) {Member X2 ToCountSet)
(Not (First X2)) (Not (First X2))
(Not {Current M3) {Not {Current N3)
(Associate X2 N2)) (Associate X2 N2))
(Not (Adjacent X2 X3) (Adjacent X2 X3)
(LeftOt X3 X2))) = = = > pickNext(X1, X2) (LeftOf X3 X2)

(Equal X1 X3)) = = = > PickNext(X1, X2)

Figure 9: Revisions of rule 2 (see Figure 7) in adaption to ordsred counting.
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The rule created in Revision 1, shown at the bottom and to the ieft in Figure 9, is a modification of the ruie
for standard counting. The parformance of this ruie wili depend on the perceptual encoding of the
probiem situation. If the Initial knowledge state encodes the objects to be counted as unordered, this ruie
wiil function correctly. Hence, the outcome of this tearning step is a procedure that can soive both task
correctly. However, if the initial state contains information about the ordering reiations of the objects to be
counted, then this rule will refuse to fire. This amounts to a Prediction that having adapted to ordered
counting, the ieamer cannot perform unordered counting if he/she pays attention to the ordering refations
betwesn the objects. After this adaptation the system wili always count according to the ordering
relations between the objects, if those are encoded in the initial state.

Without principied knowledge about the task--without a representation of the task that is more abstract
than the rules themseives--there is no way of knowing which ruies are stiii relevant and which are not
when the task is changed. Therefore, an empirical leaming system wouid have to construct a new
Procedure from scratch for the new variant of the task. HS, on the other hand, knows that a ruie needs to
be revised only if it produces constraint vioiations, but not otherwise. Hence, it can back up the minimal
distance In the procedure space that is needed to transfer its current procedure to the new task. The
construction of the procedure for standard counting required twenty-two ieaming steps, but the adaptation
to the ordered counting task only requires two leamning steps. HS shows considerabie transfer from one
task to the other.

The abiiity of HS to adapt to a change in the task does not depend on the particuiar characteristics of
the switch from unordered to ordered counting. For instance, it doses not depend on the fact that this
switch invoives the addition of constraints. In a different ieaming experiment HS iearned to adapt in the
opposite direction. In this experiment HS began by constructing the procedure for ordered counting. We
then switched the task to standard counting. Figure 10 shows the path through the ruie space for ruie 2
in this learning experiment. The initiai construction of the correct rule for ordered counting is shown along
the right branch of the figure. It consists of three ieaming steps, caused by the vioiation of constraints D3,
F1, and A2, in that sequence. The final, correct, ruie for ordered counting is shown to the right in the
figure.

As the figure shows, ieaming step 2 produces a pair of ruies, oniy one of which is the correct rule for
ordered counting. When HS is confronted with the standard counting task, the system backs up in the
rule space to this point, and fires the other rule produced in ieaming step 2. This ruie, a supposediy
"incorrect” rule generated during the ieaming of ordered counting, s develioped into the correct ruie for
unordered counting in three further ieaming stegs, shown Inside the box iabeiied "Adaptation to
unordered counting” in Figure 10. Henge, the finial result is again a procedure that can do both standard
counting and ordered counting coractly.

The third ieaming step inside the box (iabelied step 61 * the figure) produces two ruies, one of which s
the final rule for standard counting. The other ruie Is yet another examplie of a ruie created during
ieaming that is not part of the correct procedure. [t does not fire in either standard or ordered counting,
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INITIAL RULE:

((Object X1)
(CurrentObject X1)

Ratlonal Learning

(Object T(Z)) = = = > PickNext(X1, X2)

V
(Nut (First X2))

D3:
{First X2) **
(Not (After X2 X1))

Fi:
(Current X2)
(After X2 X1)
(Not (Equal X2 X1))
(Adjacent X2 X3)

(LeftOf X3 X2) **
: (Equal X1 X3)

(Not (Not (Equal X2 X1))

(Adiacent X2 X3)
(LeftOf X3 X2))
' 'aT:t'i?ié_té ............................. -
A2:
i Unordered (Current X2)
. Counting 4 (Afterx2Xij**
I (Assocrate X1 N1))
(Associate X1 N1)
D6:
(CurrentObject X2) **
5 {Member X2 ToCountSet)

(Member X2 ToCountSet)

El:

(Current N2)
(Current X2)
(Associate X2 N3, **
(Equal N2 N3)

(Current N2)
(Not (Current N2) (Associate X2 N3)
(Associatee X2 N3))) (Equal N2 N3))

|
|
I
I
|
|
I
I
i ‘
|
I
I
I
I
i
L

FINAL RULE FOR STANDARD COUNTING:

((Object X1)
(CurrentObject X1)
(Object X2)

(Not (First X2))

(Not (Not (Equal X2 X1))
(Adjacent X2 X3)
(LeROf X3 X2))

(Associate X1 N1)

(Member X2 ToCountSet)

(Not (CurrentTag N2)
(Associate X2 N3))) = = = > PickNext(X1, X2)

(Not (Equal X2 X1))
(Adjacent X2 X3)
(LeftOf X3 X2)
(Equal X1 X3))

A2:
(Current X2)
3 (Aftar X2 X1) **
(Associate X1 N1)

(Associate X1 N1)

FINAL RULE FOR ORDERED COUNTING:

((Object X1)

(CurrentObject X 1)

(Object X2)

(Not (First X2))

(Not (Equal X2 X1))

(Adjacent X2 X3)

(LeftOf X3 X2)

{Equatl X1 X3))

(Associate X1 N1) = = = > PickNext(X1, X2)

Flgure 10: Revisions of rule 2 (see Figure 7) in adaption to unordered counting.
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but could concsivably fire in some other, yel-to-be-invented task.

The amount of leaming required to adapt from ordered to standard counting is not the same as the
amount of learning required to adapt In the other direction. The switch from standard to ordered counting
only required two leaming steps, one step for each of rure 1 and rule 2, while the switch in the opposite
direction requires a total of five leaming steps, three for rule 2 (shown in Figure 10) and two for rule 1 {not
shown). HS predicts that transfer of training between pairs of tasks is asymmetric.

Transferring from standard to constrained counting

In the task of constrained counting the leamer counts an unordered set, but is required to choose
objects in such a way that a designated object becomes associated with a designated number. For
instance, the learner might be instructed to count in such a way that, say, third object from the jeft
becomes associated with, say, the number five. We present this task to HS Ly adding the constraints
shown in Figure 11. The first constraint represents the general Idea that the designated object is
associated with the designated number. The two ‘oliowing constraints express the speciai case of this
idea for the Initial object and the first number.

F. Designation Constraints

1. Assodiate the designated object with the c{eslgnated number.

(Current X,)(Deslgnated X;)(Designated N;)(After X, X,)(Assoclate X; Ny) ** (Next N,

2. Choose the designated object as the first object only if the designated number is the first
number in the number line.

(Current X)(Designated X)(Flrst X)(Designated N) ** (Orlgin N)

3. When the designated number is the first number in the number iine, and the current object
is the first object counted, then it should be the deslgnated object.

(Current X, )(First X,)(Designated X,)(Deslgnated N,)(Origin N,) ** (Equal X X,)

Figure 11: Constra'ats that define constrained counting.

As in the previous simulation experiment HS: first leamed the procedure for standard counting. We
then changed the task to constrained counting, and run the system again. Figure 12 shows the effect on
the rule for selecting the next object. At the top of the figure is the final rule for unordered counting. As
we see the rule violated the first constraint in Figure 11, which leads to the construction of two new rules.
In this case, both of the new sules are relevant for the task of constrained counting. There is considerable
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transfor from one task to the other in this case also, because HS knows, as it were, which rules to revise.
As Figure 12 shows, It only requires one leaming step to adapt rule 2 to the constrained counting task. it
required a total of three learning steps to adapt to constrained counting.

The two demonstrations in this section show that HS can do what Gelman and ce¢ workers have
shown that children can do: Adapt a counting procedure to a change in the task demands, rather than
having to construct a new procedure from scratch. The pedagogical hope expressed in the Conceptual
Understancing Hypcthesis is that since children can leam to count with understanding, they might also be
able to leamn to carry out the symbolic algorithms for arithmetic with understanding. The next question is
therefore whether the HS learing mechanism can produce intelligsnt learning in the domaln of symbolic
algorithms. This s the topic of the nexi application.

Correcting errors in a symbolic algorithm

The Conceptual Understanding Hypothesis claims that a leamer who constructs a procedure on the
basis of principled knowledge is able to spontaneoissly correct nonsensical errors, without being told what
the correct rule is by an outside source, and without having access to a correctly solved example. If the
leaming of symbolic algorithms such as the subtraction algorithm can proceed in an insightful fashion, the
leamer should be able to recover from the standard subtraction bugs observed in children’s performance.
In our third application we show that the HS system can correct errars in a procedure for mutti-column
subtractior: on the bass of knowledge of the principles of subtraction.

In this application HS operates in the standard problem space for subtraction (Ohlsson & Langley,
1985, 1988).22 A subtraction Jroblem is described in terms of the values (v4, ...) of the digits in the
problem, columns (d,, ... ), and rows (rys ...). The columns are numbered from right to left. The initial
state contains a description of the spatial layout of the rews and columns, the particular digits of the
current problem, a portion of the number line, and the relevant number facts.

There are eleven operators in this problem space: Select a column, move to the next column, .
decrement a digit, increment a digit, recall the difference between two single digit numbe:s, recall that the
ditference between two equal numbers is zezo, mark a column as the column %o increment, mark a
coiumn as the coiumn to decrement, move attention to the left, move attention to the right, and write a
digit. The operators for the standard subtraction spaca is shown in Figure 13 (Part 1 and Part 2). The
correct procedurs for subtraction with regrouping consists of eleven rules that fire those operations. The
state constraints for subtraction that we have developed are \nspired by Resnick (1984) and by Resnick
and Omanson (1987). We will state each ruie and constraint as we analyze each example of how HS
leams in this domain. A more detailed description of the subtraction mods! has heen given in a previous
report (Ohisson & Ress, 1987).

Leaming experiments in the subtraction domain are not carried out by having HS leam subtraction

2We are currently implemanting two other reprasentations for subtraction in HS. They will be reported elsewhere.
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FINAL RULE FOR STANDARD COUNTING:

{(Object X1)

(Current X1)

(Object X2)

(Associate X1 N1)

* (Not (Equal X2 X1))

(Member X2 ToCountSet)

(Not (First X2))

(Not (Current N3)
(Associate X2 N2))) = = = > PickNext(X1, X2)

G1:
(Designated X2)
(Designated N4}
{Current X2)
1 After X2 X1)
(Associate X1 N1) **
(Next Ni N4)
(Not (Designated x2) (Designated X2)
(Designated N4)) (Designated N4)
(Next Nt N3)
FINAL RULE FOR CONSTRAINED COUNTING: FINAL RULE FOR CONSTRAINED COUNTING:
(Case 1- Designated Number Occurs Next) (Case 2: Designated Number Does Not Occur Next)
(Ovject X1)° (Object X1)
(Current X1) (Current X1)
(Object X2) (Object x2)
(Associate X1 N1) (Associate X1 N1)
(Not (Equal X2 X 1)) (Not (Equal X2 x1))
(Member X2 ToCountSet) (Member X2 ToCountSet)
(Not (First {2) (Not (First X2))
" {Not(Current N3) (Not (Current N3)
(Associate X2 N2)) (Associate X2 N2))
(Not (Designated x2) (Designated X2)
(Designated N4)) = = = > PickNext(X1, X?) (Designated N4)

(Next N1 N4) = = = > PickNext(X1, X2)

Figure 12: Revisions of rule 2 (see Figure 4) in adaptation to constrained counting.
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FirstColumn(C)  Takes a column as input and declares that columnn as the tirst column.
The addition iist is {{Processing C);.
The deletion list is empty.

NextColumn(C,, C,)
Takes two columns as inputs, and moves attention from one to the other.
The addition list is {(Processing Cok
The deletion list is {{Processing C,L

Decrement(R, C,, C,, V)

Takes as.input the position that Is being decremented during a regrouping operation,
the position that Is being Incremented, writes the new valus for the decremented digit,
and records that the decrement has occured.

The addition list is {{BorrowedFrom C, for C,)(CrossedOut R Cy)XR C, Value V)}.
The deletion list is {(BorrowingFrom C, For Gy}

Increment(R, C, V) Takes as input the position that is being incremented during a regrouping oparation,
writes the new value for the incremented digit, and records that the increment has
occured.

The addition list is {(Regrouped C)(CrossedOut R C)(R C value V)}].
The deletion list is {{Regrouping C)}.

RecallDifi(V,, V,, C)

Takes two numbers and a column as inputs, recalls the difference between the
values, and writes the result in the answer-row of the column.

The addition fist is {{AnsRow C Value V,)}, where V4 = V, - V.

The deletion list is empty.

Figure 13: Operators for subtraction, Part 1.

from scratch. Instead, we take the correct subtraction procedure and inflict errors of various kinds on it,
rin HS with the emoneous procedure, and otserve whether HS can comect the error or not. We have
verified that HS can correct the most frequent errors that have been identified empirically in children’s
performance. We will illustrate this capability with (a) the SMALLER-FROM-LARGER bug, hecause it is the
wtost frequent of all bugs, (b) a borrowing bug, becuuse borrowing bugs are the conceptually most ditficuit
bugs, and (c) an ordering bug, bscause it provides a contrast to the other bugs. More extended examples
of leaming in the subtraction domain can be found in Ohlsson and Rees (1987).

Recovering from the SMALLER-FROM-LARGER bug

Consider the following faulty rule for subtraction:

If ¢, Is the current column, v, is in column c,, v, is in row e V5 isin

column ¢, v, is in row r, and v, is smaller than v,, then

RECALLDIFF(v,, vV C,).

The operator RECALLDIFF creates an expression that encodes the retrieved difference, call it v,, as the

-
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SameDIi#{(C) Takes a column as input and writes zero in the answer-row for that column.
The addition list is {{AnswRow C Value 0)}.
The deletion list is empty.

MarkColumn(C)  Takes a column as input, marks it as the column needing to be regrouped.
The addition list Is {{Regrouping C)}.
The deletion list is empty.

FindColumn(C, C,)

Takes the column to be regrouped and a second column &as inputs, and marks the
first as the column to be regrouped.
The addition list is {(BorrowingFrom C, For C,)}.

The deletion list is empty.

ShiftLeft(C, C, C;)Takes three columns as inputs, and designates C, and C, as the columns to be
decremented and incremented, respectively.
The addition list is {(Regrouping C,){BorrowingFrom C, For C,)}.
The deletion list is {(Regrouping C,)(BorrowingFrom C, For C,)}.

ShiftRIght(C, C,) Takes two columns as inputs, and designates the second one as the one to be
incremented.
The additicn list {(Regrouping C,}}.
The deletion list is {(BorrowingFrom C, For C,)}.

Writevalue(C, R, V)
Takes a position, given by a column C and a row R, and a value V as inputs, and
writes N in the given position.
The addition listis {(R C Value V)}.
The deletion list is empty.

Figure 13: Operators for subtraction, Part 2.

result for column ¢,/ e., O, contains the single expression vy is the resuft in column ¢,. RECALLDIFF does
not delete any expressions, i. 8., O4 is empty. This rule ignores the distinction between the minuend and
the subtrahend, thus causing the so-called SMALLER/FROMLARGER buy (Browr: & Burton, 1978).

The principle that is violated by the above rule consists of two ideas. First, the purpose of subtracticn
is to take the subtrahend from the minuend. Second, in the arithmetic of whole numbers, subtraction is
undefined when then the minuend is smaller than the subtrahend. The constraint given to HS is:

If row r,, is the subtrahend row, row r,. is above g, V.. IS in

Cys Vnin 1S IN FOW Iy V1, 1S IN €y Vg, IS IN POW £y, Voo iS Smaller

than v, then nol(the result in columnc, is v,).

If the minuend in a particular column is smaller than the subtrahend, then there should be no result in that
column. {t should be noted that the satisfaction pattern is enclosed in a "not” meaning that the constraint
is satisfied when the pattern does not match. Also, once the cclumn has been regrouped, the new
minuend will not be smaller and tinis constraint will cease to be relevant.
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When applied to the right-most column In, for example, the problem 505 - 19 = 2, the rule condition R
becomes Instantiated to

¢y is the current column, 9 is in column c,, 9 is in row Ty Sisin

column ¢y, Sisinrowr,,, and §is smaller than 9,

and the addition list O, becomes (4 is the result in column ¢;). The relevance pattsrn C, of the constraint
becomss instantiated to

FOW foyp, iS the subtrahend row, row r,. is above r,, 5isin c,, 5

Is in row r,;, 9isincy, 9isinrow r,,, 5is less than 9,
and the satisfaction pattem C, becomes
41s the result in column c,.

Since having any result in this column violates the constrzirt, HS tries io leam from the violation.
Obviously, this rule should never fire when the subtrahend is greater then the minuend. To put it another
way: If this rule fires wien the constraint is relevant, the constraint is guaranteed to be violated. Thus,
the rule should fire oniy when the constraint is not relevant. The learning mechanism does attempt to
create two revisions to the rule, but it is successfui in only one case.

Revision 1. Ensuring that the constraint is not ralevant. First, HS computes (C, - O,), using the
Instantlztions of these pattems. However, RECALLDIFF adds only the single expression that matches e
satisiaction pattern, so the result is C,. Next HS removes any parts that are already part of the rule
pattem. The resuit is a single expression which is part of C,, but not part of either O, or R: ryis above r,
HS replaces the constants r, and rp with the appropriate variables, and creates a new rule by adding the
negation of this expression to the condition of the faulty rula:

not (ry is above r,).
This correction cures HS from the SMALLER/FROMLARGER bug.

Revision 2. Ensuring that the constraint is satisfied. HS computes (C, - O,). However the result is
empty, RECALLOIFF adds the single expression that matches the satisfaction pattern. The learning
mechanism stops at this point and does not attempt to create a second rule.

Recovering from a borrcwing oug

The following incomect subtraction rule finds a column to borrow from: when regrouping is needed:

If c, is the column to be regrouped, ¢y is a column, v, is in column

Cp VyISINTOW I, TOW Iy, is the subtrahend row, and row r,_. is

min
above row i, than FINDCOLUMN(c,, c,).

The rule says that if a particular column neede to be regrouped and there is a second column that
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contains a minuend valus, then mark the second column to be borrowed from in order to regroup the first
column. FINDCOLUMN adds a single expression representing the fact that cy is to be borrowed from to
regroup c,. It does not make any deletions. This rule will choose any column to borrow from. I, for
instance, a particular problem contains three columns, this rule will match three times, once for each
column (including the column that is supposed to be regrouped). This rule produces several paths which
result in different subtraction bugs. For instance, if the column to the left of the column to be regrouped
contains a zero in the minuend, one of the paths will produce the well known BORROW.ACROSS-ZERO bug
(Brown & Burton, 1978). This error is produced because this rule attempts to initiate horrowing from all
columns. It does not detsct the zero and deliberately skip it. Other paths prcduced by this faulty rule
generates other, not necessarily observed, subtraction bugs.

It is possible to apply principled knowledge to this rule to produce a comrect rule. The relevant
principle states that the column that is borrowed from during regrouping should be just to the left of the
column that is being regrouped.2® This principle is expressed in the following state constraint:

If ¢, is the column to be regrouped and ¢, is the column to borrow

from then c, is to the left of ¢,

There are two differences that should be noted between this constralnt and the previous one. First,
the satisfaction pattern is not enclosed inside & "not” Thus, the constralnt Is satisfied when the
satisfaction pattern matches rather than when it does not match. Second, because the rule will fire only
when there is a column to regroup and because ths operator always adds a colunw to borrow frem, this
rule Is guaranteed to make the constraint relevant. Thus, the task of Iearning is to ensure that it will fire
only when it will also make the constraint satisfied.

Revision 1. Attempt to ensure that the constraint is not relevant. The difference tetween the
operator's addition and the relevance pattern (C, - 0,) is: ¢, is the column to be regrouped. This clause is
already part of the rule pattern, however, and adding the negation of it to the rule would produce a new
rule that cannot possibly match. Thus, this bransh of learning ceases without producing a new rule.

Revision 2. Ensure that the constraint is satisfied. Because the satisfaction pattem and the
operator’s addition do not overlap, (Cs - O,) is just C,. The attempt to compute Revision 1 showed that
there Is nothing from the relevance pattern to add because (C, - O,) is already present in the rule pattern.
The revision is to add ¢, is to 13 laft of ¢, to the rule, which produces a comect rule.

ZThis particular HS model of subtraction explicitly increments and decrements columns that have zerses in the top row. In the
aigorithm taught in schools this process is sometimes abbreviated to cross ou? the zero and write & nine, then decrement the next
column to the left.
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Recovering from an ordering bug

New rule upon leaming, new rules often appear in pairs. One rule of the pair will fire when the
particular constraint will not become relevant and the other rule will fire when the constraint will become
relevant and satisfied. In the previous two examples, only one of the two revisions succeeded, so only
one new rule was created in each learning step. In this final example of error cormrection in subtraction two
new rules are produced.

The relevant rule decides which column to start with in a subtraction problem. It will choose any
column, not just the rightmost, i. e., units, column:

If there is no current column and ¢, is a column then

FIRSTCOLUMN(C )

FIRSTCOLUMN adds (c, is the current column) to working memory and does not delete anything. Like the
faulty borrowing rule discussed above, this rule produces branching in the search space. Various odd
results are possible along the various branches. For instancs, if the rule for choosing the next column to
work on comrectly chooses the next column to the left, then it might happen that one or mcre columns to
the right are never processed. If the rule for selecting the next column is faulty as weli, then columns may
be processed in any arbitrary ordsr.

The principle that is violated is that columns should be processed In right to left crder. The
corresponding state constraint says that if a column is being processed and it is to the left of another
column, there should be an answer in that column:

If ¢, is the current column and ¢, is to the left of c, then v, is the

resultin cy

This constraint is sufficient to catch both ermrors in choosing the first column and ermors in choosing the
next column.

Revision 1. Enst:ring that the constraint is not relevant. FIRSTCOLUMN adds the current column so (C, -

0,) is the second dlause in C. ¢, is to the left of ¢, Adding the negation of this expression to the rule

produces the obvicus requirement that the first column can not be to the left of any other column. This is,
of course, the correct rule.

Revision 2. Ensuring that the constraint is satisfied. The satisfaction pattern and the addition do not
overlap so (C - O,) is just C,: v, is the sesult in ¢, Adding the express’sn computed for Revision 1 and
this expression produces the following rule:

If there is no curent column, c, is a column, c, is to the left of Cyr

andv,is the resultin Cy then FIRSTCOLUMN(c,)
In the particular representation of subtraction we have chosen for this application, once processing has
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sta.rted there is always a current column. Thus, it is not possible for there to be no current column and a
column with an answer in it at the same time, which means that this rule will never match. Because
reasoning about the representation is required to discover that this rule will not match, this conclusion is
beyond the power of the leaming mechanism, so this rule is added to the rule set. This addition is
useless but harmless.

The above examples are simplified in several respects. (a) We usually ive HS several deficient initial
rules, and we inflect more severe ceficiencies on them, so the syster starts o :t with a mixture of different
bugs, rather than with a single bug. (b) A severely deficient rule usually violates several constraints, and
so has to be revised repeatedly. (c) In order to make the computation of the patterns to be added to
faulty rules easier to follow, we have not shown any operators that perform deletions from working
memory. (d) For the same reason, we have not shown any constraints that include negated subpattems.
The subtraction model that these examples of error corrections are taken from has been discussed in
more detail in Ohlsson & Rees (1987).

Discussion

The behavior of the HS system has several interesting features. First, HS necessarily learns while
doing. Only by executing its procedure can the system discover that it generates invalid search states.
The principled and the procedural knowledge only communicate through the reprasentation fo. a
particular problem situation. Unless the procedurs Is applied to some problem, therse is no way that HE
can discover inconsistencies between its procedural and its declarative knowledge. The design of the
system is such that HS, like humans, must act in order to learn.

Second, HS is not dependent upon external feedback. It uses its princirled knowledge to monitor its
own performance, and to discover errors along the path to an answer. it catches itself in mid-air, as it
were, leams, and starts over on the current task befors it reaches an answer, This type of behavior is
frequently observed in human leamers, but difficult to explain with experience-based learning
mechanisms.

Third, HS learns gradually. Rules have to be revised repeatedly. The ract that a rule has been cured
from violating one constraint does not guarantse that it will not violate some other constraint. Successive
transformations are needed to construct a correct rule even for such a simple task as counting, as the
examples above show. Since the learing mechanism works by revising existing rules, the output from
one learning step is the Input to the next learning step. For HS as for humans, the construction of a new
Procedure is necessarily a gradual process.

Fourth, the learning mechanism of HS revises a rule by splitting it into two different rules, each version
constrained in a different way with respect to the original rule. In most situations only one of those
versions is correct from the point of view of the target procedure, and the other other version Is a so-
called manster rule, i. e., a syntactically correct and executable rule that is not part of the procedure to be
learned. In some cases the monster rule can be weeded out on the basis of syntactic criteria, but in many
cases it is impossible to decide whether a rule is fruitful or not by inspecting the ruie. In those cases both
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versions of the rule are executed in future trials, and HS gets rid of the monster rule by further learning.
The monster rules are executed and consirained repeatedly, until they are so constrained that they
cannot match any search state. They are then harmless and have, functionally speaking, been deleted.2*
If we think of HS' learning as a search through the procedure space, we can describe this phenomenon
by saying that HS does not have a criterion for when it has reached the goal state, i. e., a cormect
procedure. Therefore, it has to cuntinue searching in order to verify that there are nc further
improvements to make.

The fact that HS weeds out monster rules by further leaming constitutes a prediction that human
leamers wlll continue to make mistakes even after they have acquired the correct rules for a procedure.
The reason is that they have not yet leamed to ignore the altemative, incorrect rules that were
constructed in the same learning step as the correct rule. Further practice is necessary in order to get rid
of those rules. Hence, HS predicts that practice will be beneficial for some period of time over and above
what is needed In order to reach correct performance. This point illustrates well the complex interactions
between knowledge and practice. It also illustrates the necessity of implementing and running information
processing models. The result that further practice is necessary even after the correct rule has been
constructed is a rather complicated, and unanticipated, prediction from our theory that we almost certainly
would not have discovered without computer implementation of t:e theory.

Fifth, HS can transfer a procedure from one task to another. The flexibility of HS’ procedura for
counting does not reside in the final procedure that HS learns. The set of final productiors rules learned by
HS is, taken by itself, as brittie a procedure as any other. It is only when those ruies are execute~ in the
context of the state constraints that flexibility is achieved. The flexibility of HS does ot reside in the type
of procedure it learns, or in the problem solving method embodied in that procedure, but in the fact that
the procedure is executed within a cognitive context that includes principled knowiedge of the task
environment.

Sixth, HS finds It easier to transfer between tasks in one direction than in the other. For instance, the
leaming process that transforms a procedure for unordered counting into a procedure for ordered
counting is not the same as the process tha! transforms a procedure fcr ordered counting into a
procedure for unordered counting. Depending upon which constraints are violated, the number of
teaming steps Invoived In adapting from one task to another may be different fron, the number of ieamning
steps required to adapt In the opposite direction. This ~onstitutes a prediction that transfer of training
between pairs of tagks is asymretric.

Seventh, leaming in HS consists of « transition from a knowledge-based to a procedure-based
performance. In the initiaf phase of leaming, the system makes much use of its principled knowledge,
because the grossly incomplete procedure makes errors at every step. As the procedure Is gradually

24We could model actual deletion of such rules by assigning weights to rules, and postulating (a) that the woight decays over time
unlass the rule is fired, and (b) that rules with a weight below some threshold value iz purged from the system. We have not
implemented such a mechanism in the current version of the HS model.
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compieted, fewer and fewer of the steps are incorrect, and the state constraints kick Into action iess and
less. At the end of leaming, ths state constraints have dropped out of sight completely, because the
production rules now generate only correct solutions. If we assume that the state constraints have levels
of activation and that the activation level is a function of how often the constraint is violated, then HS
models the transition from mindful action, in which all steps are thought about in relation to the system’s
principled knowledge, to routine action, In which an already mastered procedure Is simply run off, as it
were, without much thought. The principied knowledge of HS only plays a role In its performance when
sometitling goes wrong, I. e., some inconsistency between the current state of the world and its knowledge
Is detected. In short, HS only thinks, as it were, about the current problem when It Is forced to do so by
some difficuity.

Elgit, adaptation to a new task Involves revision of those rules that are not appropriate for the new
task. Rules that are Inappropriate will be revised, because they will violate some constraint for the new
task. Rules that are appropriate for the new *ask will not be revised, since they do not cause any
constraint violations. Hence, by construction, HS knows which parts of a procedure to retain and which to
revise when faced with a change in the task demands. Like humans, HS can bulld on what it has
previously learned when leaming a new procedure.

K.
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Relations to Previous Research

The purpose of this section Is to outline the major conceptual ditferences between the HS model and
other computational models of the acquisition of arithmetic procedures. To the best of our knowizdge,
there a: ; only two previous analyses of the problem ¢* deriving arithmetic procedures from principled
knowledge, both of which make use of sc-called planning nets, but neither of which resulted in an
implemented simulation modsl! (VanLehn & Brown, 1980; Greeno, Riley, & Gelman, 1984; Smith, Greeno,
& Vitolo, in press). We also know of two efforts to simulate hurnan procedure acquisition In arittmetic
which employ experience-tased, rather than knowladge-based, leaming methods (VanLehn, 1983a,
1983b, 1985a, 1985b, 1986; Neches, 1981, 1982, 1987; Neches & Hayes, 1978).

Planning ne! analyszs of arithmetic procedures

VanLehn and Brown (1980) have pol.ited out that a program for a precedure does not reveal the
purpose of that procedure. Programs an ‘ow dlagrams specify the steps of a procedure and the
conditions under which those steps are to be carried out, but they do not describe the reason why a
particular step Is included in the procedure, or why it is executed under those conditions. For instance,
the procedure for carrying in multi-column addition can be described as follows: when the sum of column
nis larger than nine, then detach the units part of the sum, record that part as the result for column n, and
add the remaining part to the column to the left. But this description does not reveal that the purpose of
the camying operation is to make sure that each exponent of ten is represented by a single-digit
coefficient in the answer. VanLehn and Brown (1980) introduce the term "telelogical semantics” to refer
to a descriptlon of the purpose of the steps in a procedure. ’

Drawing upon A. I. analyses of planning, VanLehn and Brown (1980) proposed a methodology for
generating a procedure from a goal in such a way that the trace of the generation constitutes a
teleological semantics for the procedure. Their methedology assumes that planning begins with a goal, a
set of operations, a set of planning heuristics, and a characterization of a problem situation. Planning
begins by posing the goal, and proceads by expanding it, i. e., replacing }t with a structure consisting of
subgoals and/or executable operations. Each step in the process is guided by a planning heuristic. The
process continues untll all goals have been expanded into executable operations, and the execution of
the procedure does not contradict any features of the problem situation. The trace of a planning process
consists of a graph in which the nodes are (partial) procedures, . e. procedures that contain yet-to-be-
expanded subgoals. The links between the nodes are labslled with the planning heuristic that led from
one procedure to the next. VanLehn and Brown (1980) call such a trace a planning net.

VanLehn zid Brown (1980) invented planning nets in order to comparo procedures with respect to
closeness or similarity. They found that program-ievel representations of procedures do not yield
reasonable similarity metrics: A minor conceptual chang® in a procedure can give raise to huge
ditferences in the program for that procedure. They propose a closeness metric based on the planning
net representation that does reproduce intuitive judgments about similarity between procedures. They
use the metric to discuss the pedagogical merit of concrete models for arithmetic such as Dienes blocks,
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and to design a sequence of concrete models for instruction in subtraction (VanLehn & Brown, 1980, pp.
132-136). The planning mechanism is not implemented as a computer program. They do not claim that
the process of deriving a planning net for an arithmetic procedure correspond to the mental process of
someone who Is trying to learn that proczdure.

The Idea of deriving a procedure by successively expanding goals into operations within the
constraints imposed by a particular problem situation was taken up by Greeno and co-workers in their
theory of counting compstence (Greeno, Riley, and Gelman, 1984; Riley & Greeno, 1980; Smith &
Greeno, 1983; Smith, Greeno, & Vitolo, in press). The basic assumption of thelr theory is that knowledge
of principles Is encoded in action schemata. A schema is an action described at a high level of
abstraction. The description includes both inputs {prerequisites), success criteria (postrequisites), outputs
(consequences and effects), and conditions that have to remain true during the execution of the action
(corequisites). For instance, the following schema describes the action of picking up an object:

PICK-UP(a)

Prerequisities: ~ movable{a);

empty(Hand).
Consequences:  In{a, Hand).

The PICK-UP schema says that the prerequisites for plcking up an object a are that a is movable ana that
one’s hand is empty. The consequence of picking up an object is that the object is in the hand (Greeno,
Riley, & Gelman, 1984, p. 105). The PICK-UP schema is an example of a schema that can be exzcuted
without e«pansion Into other schemata. Exscutable schemata comrespond to what Is called operators in
most computational models of problem solving.

Knowiedge of the counting principles is encoded in a total of twelve different action schemata, most of
them considerably more complicated than the PICK-UP schema. A central schema is the description of
the action of mapping a set onto a subset of another set:

MATCH(X, Y)

Prerequisities: empty(A);

empty(B).

Corequisities: subsel(A, X), where A = {x: tagged(x)gs;
subse(B, ), where 8 = {y: used(y)};
equalA, B).

Postrequisities:  For all x, member(x, X) --> member(x, A).

Consequence: equal(X, B).

The MATCH schema says that in order to match a set X tc a set Y, we must first have an empty subset of
each set. We then act on those subsets (in some manner that is not specified In the schema itself) until
the subset A of X becomes equal to X itself. We cause A to grow, as it ware, until it Includes all of
X. While doing this, we make sure (in some yet-to-be-specified way) that it always remairs the case that

The two properties tagged and used serve bookkeeping purposes in the Greeno ot. al (1984) analysis of counting.
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the subset B of Y has the same number of members as A, i. e, we cause B to grow at the same rate as
A. The result of acting in this way is that when A includes all of X, X is guaranteed to have the same
number of elements as B. Since B is a subset of Y, X has thereby been mapped onto Y. The MATCH
schema is part of the encoding of the one-to-one mapping principle (Greano, Riley, & Gelman, 1984, p.
113). Itis a: example of a non-executable schema; it cannot be executed as it stands, but has to be
expanded into executable schemata.

The computational mechanism postulated in the action schema theory is a planning mecharism that
bears a family resemblance to the type of mechanism sketched by VanLehn and Brown (1980). it takes
as inputs the goal of deciding the cardinality of a set, the collection of twelve action schemata, and a
setting. The setting describes the probfem and the physical situation in which the problem is to be solved.
The pianning mechanism consists of two components. The first component is a machar.ism for backward
chaining that matches the goal agalﬁét the consequences of the action schemata.2® Schemata that can
satisfy that goal are posed as potential actions in the plan. The prerequisites of those schemata are then
posed as subgoals. This process centinues until ail goals are satisfied elther by the setting or by the
consequences of executable schemata that are included in the plan. The second component of the
planning mechanism is a theorem prover that decides whether a particular pre-, co-, or postrequisite is
satisfied in a particular setting by trying to prove that requisite as a {heorem.

The trace of the planning m¢ .anism is a graph that Greeno et. al {1984) call a planning net, with
reference to the work by VanLehn and Brown (1980). However, there Is little formal resemblance
between the two types of graphs. The planning nets of VanLehn ard Brown (1980) have partial
procedures as nodes. Links ar2 labelied with planning heuristics. The label H on the link from node N to
node M means that applying planning heuristic H to procedure N yields procedure M (see Figure 18.2,
VanLehn and Brown, 1980, p. 115). In contrast, the planning nets in Greeno et. al (1984) have action
schemata, tests, and goais as nodes, and the links are labelled as pre-, post, or co-requisities. The
meaning of, say, the preisquiste link R frem, say, action schema node A to, say, goal node G is that
obtainment of goal G satisfies prerequisite R for action A (see Figure 4, Greeno et. al, 1984, p. 119). The
two types cf graphs, although formally different, share the purpose of explaining a procedure by relating
steps to goals.

The main phenomenon investigated by Greeo et. al (1984) is the flexibility?” of childrens’ counting
performances, in particular, the “act that children can adapt their counting procedures to a variety of
setlings. Flexibility of performance is explained in the action schema theory by the fact the planning
mechanism can derive different procedures for different settings from one and the same set of action

% 1een0, Riley, & Gelman (1984, p. 116-117) Incorrectly descrive their mechanism as a form of means-ends anaiysis. However,
means-ends analysls consists of computing a ditfereco between a goal and a situation, and retrieving an operator that can reduce
that difference from a difference-operator table (Ernst & Newell, 1969). The mochanism described In Greeno ot. al (1984) doos not
eompute differences, and does not make use of a ditferance-operator table.

“7Greeno of. al (1984, p. 122) make a distinction between flexiility and robustness. This distinction Is not necessary for the
discussion here, so we use the term “Hexibility" to cover both concepts.
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schemata. The planning mechanism does not appaar to have any resources for making use of the
procedure for one setting in the derivation of a procedure for another setting; each procedure is derived
de novo.

Since both the state constraint thaory proposed here and the action schema theory by Greeno and
co-workers address the same psychological Pheromenon, it ought to be possible to make a detailed
comparison between them with respect ability to account for data, clarity, simplicity, generality, etc.
However, such a comparison is complicated by the fact that the action schema theory s not proposed as
a process theory, but as a competence theory. Greeno et. al explicitly reject any claims about the
psychological reality of the planning mechanism that they describe:

We note that we do not necessarily Identlty the process of darivation of planning nets as a plausible
psychological hypothesis. As with other hypotheses about competence, we restrict our claim to
psychologlcal reality to the content of the knowledge that Is attributed to individuals and to the structures
that e implled by that knowledge. In our analysis, the rela‘ion between compstence and performance
structures has the form of derivations in which the performance structures are consequences of
competence structures, derived by a plc .ning system. Howcver, we 1ave not tried to detsrmins the form of
the dependence between compster.ce and performance structures in human cognltion.

(Gre=io, Riley, & Gelman, 1984, p. 104)

We conslider the content of the competence In our analyss a plausible set of hypotheses abaut children's
tacit lnowledge, but the way in which the thres components of competence are used In deriving planning
nets should be interpreted as a formal relation, not nocessarily corresponding to cognitive mechanisma,

(Greeno, Riley, & Gelman, 1984, p, 138)

in short, the action schema theory epells out the rational connections betwaen the counting principles,
encoded as action schemata, and the procedures that generate counting bshavior, but ths planning
process that generates those connections does not (necessarily) correspond to any mental process.

It the computational machinery of the actiu.t schema theory is not to bs interpreted as a psychological
hypothesis, what are the emgical claims of the theory? In what respects can the theory he comparad to
a process model such as the HS system? In the two excerpts quoted above Greeno at. ai claim that
children know the content of the action schemata. But the action schemata are supposed toc encode the
counting principles, so this =la'm appears, at first glance, as a mere restatement of the conclusiun by
Gelman and Qalliate! (1978 .1..» *."dren know those principles.

However, inspection of the ac... schamata doss not support the Idea that they are notbing hut an
encading of the counting principles § or Instance, tha MATCH schema (s8e above) can be pa.~phrased
as sayling that If an initially empty subset A of a set X is changed so as to include more and more of X,
and if an Infiially empty subset B of an other set Y Is changed so as to always have tho same size as A,
then, when A has bevome Identical to A, B will have the same size as X. This is a rather complicated
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set-theoretic theorem that cannot reasonably be said to be included among the counting princinles. The
claim that children have the knowledge encoded in the action schemata is therefore a claim that they
know the counting principles plus the other principles embedded in those schemata. But the authors do
not speci.y those other principles.

Identification of which principles are encoded in the action schemata is further complicated by the fact
that principles are spread out among the schemata, and that children are not hypothesized to either know
or not know the principles:

We did not formulate a schema for understanding of order, another schema ior one-to-one
correspondance, and so on. Instead, it seemed more reasonable to hypothesize schhemata that represent
different aspects ot the various principles, and often include aspects of different principles. If our analysis is
accepted, then competence for each of the principles is distributed among several schemata, rather than
being located in any single structure. This emphasizes that a child should not be considered as eijther
having or not having competence regarding any of the principles ... .

(Greeno, Riley, & Gelman, 1984, p. 137)

Even if we had a list of the principles encoded in the action schemata, the evaluation of the claim that
children know those principles would still be problematic. The action schemata are hypothesized to be
known implicitly (Greeno, Riley, & Gelman, 1984, pp. 106 and 137). Hence, the claim cannot be tested by
interviewing children directly about the content of the schemata. Knowledge of the schemata must be
Inferred from observations of performance. But we do not know what to 100k for in children’s performance,
since the action schema theory does not cfair * psychological reality for its process mechanisms.

However, the act«n schema theory can be interpreted as raking a different kind of empirical claim,
althcugh it is not stated explicitly by Greenu, et. al (1984). The authors draw an analogy tv,tween their
work and the chomskyan methodology for competence theories in the study of syntax  Strict
interoretation of ihis analogy implies that we can assign a psychological interpretation to the set o* all
counting procedures that can be generated from the action schemata with the dascribed planning
mechanism. The theory can be interpreted as claiming that the action schemata and the planning
mechanism generats all counting procedures that competent number users would judge as correct2® a
claim that is, in principle, empirically testable, and which can te used to compare the action schema
theory to other theories. For axample, it would be interesting to compare the set of counting procedures
that can be generated by action schema theory with the set of counting procedures that can be leamed
by the HS system. Greeno et. al (1984, pp. 137-138) mention the possibility of deriving such a prediction
from thair theory, but they do not develop it, with the motivation that there is no characterization of the set
of all possible procedures, analogous to the characterization of the set of all possible strings of symbols in
alanguage.

#%An alternative intorpretation Is that they generae all counting procedures that humans can laam.
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A mgjor difficulty in the evaluation of the implicit claim that the set of procedures that can be
generated from action schema theory coincides with the set of correct counting procedures Is that the
planning mechanism postulated in that theory is not fully specified.?® The backward chaining mechanism
is given an informal specification that appears precise enough to support implementation (Greeno et. al,
1984, p. 116-117). However, it is radically incomplete: Greeno et. al does not dea! ith the issus of how
to order sibling subgoals, one of the central problems for planning mechanisms. Ordering subgoals is
crucial for the derivation of even the simplest procedure. The authors themseives express doubts as to
the sufficiency of the computational mechanism they describe (see Greeno et. al, 1984, p. 116, footnote
7, and p. 122). Furthermore, the theorem prover that decides whether requisites are satisfiad is not
described, even in outliiie. it is supposed to have access to inference rules and general propositions. An
example of & general proposition is that objects in a straight line can be ordered, starting at one end and
proceeding to the other (Greeno et. al, 1984, p. 178). The relation betwesn general propositions and
action schemata is rot clarified. Without a fully specified computational mechanism, the set of
procedures that can be: derived from the action schemata is not well defined.

In summary, the planning net analyses of arithmetic procedures by VanLehn and Brown (1980) and
by Gresno et. al (1984} are based on the notion of constructing a procedure by successively expanding a
goal into a plan for how to achieve that goal. However, the analysis by VanLehn and Brown (1980) is not
intended as a psychological thsory, but is aimed at the definition of a similarity metric for procedures. The
action schemata theory of Greeno et. al (1984) is a competence theory, and the empirical claims of the
theory are unclear. Neither analysis has been embodied in an implemented system that can generate
runnable procedures.

Simulaticn models of empirical learning in arithmatic

Neches (1981, 1982, 1987) has described the Heuristic Procedure Modification sys~tem (HPM), a
production system arzhitecture of leaming based on the idea that significant improvements in a procedure
can be computed by noticing pattems in the irternal trace of the procedure, pattems that indicate some
labour-saving transformation of the procedure is possible. The HPM system is based on a typology of
strategy transformations that eliminates redundancies, produces shortcuts, replaces one method with a
computationally more efficient method, etc. (Neches & Hayes, 1978). For instance, if a procedure uses a
partial resuit at two different points in a computation, that procedure caii be improvad by storing that result
when it is first computed, and retiieving it, rather than recomputing it, when it is needed the <econd time.
In srder to support the detection of the triggering pattems for these sirategy transformations, the HPM
architecture stoies a very detalled trace of the execution of a procedure. For every expression that is
written into working memory, information is stored about the production rule that was responsible for the

¥The implementation status of the action schema theory of counting competance is someishiut complicated. The first published
account of the thaory (Greeno, Riley, & Gelman, 1984) mentions an implemented performance model for counting, described in
detall in Riley and Greeno (1980). This perfurmance model, called "SC" for "Standard Counting”, consists of 54 ACTP production
1ules that count comectly in four ditferent settings. Howaever, the computational mechanism that is supposed to derive those rules
from action schemata was 1ot, according to the authers, implamer “ed (footnote 8, Greeno, Riley, & Gelan, 1984, p. 116). More
racent publications (Smith, Gresno, & Voo, in prass: Smith & Gresno. 1983) mention an implementauun of the plznning
mechanism in the PRISM production system language. Hewever, no technical detans are given in these publications.
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creation of that expression, the conditions that led to the firing of that rule, the goal that was active when
the rule was fired, etc. Each strategy transformation mechanism inspects this trace for the occurrence of
the type of redundancy that it is designed to deal with, and transforms the procadure accordingly.

The mzjor phenomenon explained by the HPM system is the discovery of the so-called MIN-strategy
for simple addition. There is evidence that children who are taught to solve simple addition problems by
combining the sets comesponding to the two addends and then counting the combined set quickly realize
that they can proceed more efficiently by initializing their counting with the larger addend, and then
counting only the elements in the smaller set (Groen & Resnick, 1977). The HPM application to this
phenomenon shows how the relevant strategy transformation can be achieved through the elimination of
redundancy (Resnick & Neches, 1984). For irstance, HPM notices that in counting the combined set, the
number comesponding to the larger addend is generated 6n route to the answer. Since that number can
always be retrieved from the problem statement, it is redundant to re-compute it. Hence, the counting can
Legin with the larger addend. The HPM system expfains procedure acquisition through the application of
content-independent mechanisms to a trace of a procadure. It doss not explain the role and function of
gansral knowledge in procedure acquisition.

VanLehn (1983a, 1985a, 1985b) has described Sierra, a procedure induction system that can
generate a subtraction precedure from a set of solved examples. The main phenoimenon explained by
Sierra is the multitude of bugs in children’s performanca on multi-column subtraction problems. The
Sterra system outputs a set of procedures in response o a sequence of solved examples. One
explanatory principle of VanLehn's theory is that procedure induction is an intrinsically hard problem;
indeed, som= induction problems are known to be unsolvable. As a result, a procedure induced from
scived examples can be expecied to be incomplete. Incomplete procedures may lead to ‘mpasses,
situations in which the procedure either cannot determine the next step, or finds that the preconditions for
the next step are not satisfied. A second explanatory principle of VanLehn's theory is that the learner w"
deal with impasses by making local changes to hisfher procedure (Brown & VanLehn, 1950, 1982). He
has identified a small set of general transformations, called repairs, that a leamer can apply to a
procedure in order to break out of an impasse. For instance, an impasse can be repaired by skipping the
step that cannot be carricd out, or by replacing it by another step. If the repairs are applied to the
procedures generated by Sierra the resuft is a set of buggy algorithms, i. e., algorithms that solve
subtraction problems, but solve them incorrectly. The Uierra model plus the theory of repalrs explain a
significant proportiors of the subtraction bugs that have baen chserved in the performance of school
children. Nelther the procedure inductior: mechanism nor the repair mechanism: make use of arithmetic
principles.

The theory of Kurt VanLehn and co-workers is the dual of the theary produced here. They assume
thot schooi children do not, in fact, consult principled knowledge of arithmetic in the construction of
arithmetic procedures, but leam fi®m by rote. The goal of their theory is to provide a computational
model of rote leaming, and thereby explain the actual behaviur of school children. Mathematics
educators, on the other hand, assums that school children could, in principle, learn aiithmetic procedures
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in a meaningful way. The goal of the state constraint theory is to provide a computational model of
meaningful learning, and thereby illustrate the desired behavior of school childrén. Obviously, these two
research efforts, although based on opposite hypotheses about learning, are complementary rather than
contradictory.

Discussion

The computer simulation technique is applied to educationally «.!evant task domains with increasing
frequency (Ohisson, 1988a). Howsver, in spite of this fact, and in spite of the large amount of research
devoted to the psychology and pedagogy of elementary arithmetic, only three computational models of
the acquisition of arithmetic procedures have been proposed prior to the work reported here. The two
process models--the strategy transforma‘ion model by Robert Neches and the procedure induction/repair
model by Kurt VanLaehn--both use experience-based leaming techniques, and hence do not address the
question of the role ana iunction of principled knowledge in procedural leaming. The action schema
theory of counting competence does address the problsm of principled knowledge, but it has not been
embodied in a runnable system that can generate behavioral predictions.

The leamning of arithmetic procedires is a complex process that is uniikely to have a simple
explanation. Each of the theories reviewed address a different aspect of arithmetic :eamlnb. A complete
model of arithmetic learning would presumably be able to plan, tc detect and correct mistakes, to detect
and eliminate redundancies, to induce procedures from examples, as well as to repair a procedure in
order to break out of an impasse. The action schema theory, state constraint theory, strategy
transformation theory, and the procedure induction theory, and the repalr theory are complementary
research efforts.

Other research efforts have addressed the issue of the role and function of principled knowledge in
Procedure acquisition. Anderson (1982, 1983a, (983b, 1986) have proposed the mechanism of
proceduralization, in which a declarative principie, e. g., a geometric theorem, is stapwise contextualized
and converted into procedural form. Ohlsson (1987b) has proposed a related model that specifies tn~
conditions under which .* is meaningful to apply preceduralization. Both of these theories assume that
declarative principles occur as data-elements in working memory. The psychological interpretation of this
is that principles are known explicitly rather than implicitly. This assumption is plausible with respect to
domains like high school geometry and Lisp programming, but not with respect to the domain of counting.
Hagert (1986) has proposed a methodology for deriving procedures from abstract specifications vs/hich
bears a family resemblance to the planning net analyses, but which uses the methodology of logic
programming. Procedures are derive” from abstract specifications through a deductive argument.
Principles of the domain appear as premises in the derivation. The notion of deriving a principle from an
abstract specification has also been investigated in software engineering (see, e. g., Balzer, 1985).
Firally, Artificial Intelligence research has invented the technique of explanation-based leaming, in which
principled knowiedge is used to construct an explanation why an example is an instance of a particular
concept. By collapsing the explanation into a single ruls, a general recognition ruls for that concept is
created without any need to consutt further examples (DeJong & Mooney, 1986; Mitchell, Keller, & Kedar-
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Cabelli, 1986). These leaming techniques have not been applied to arithmetic.
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General Discussion

The first subsection bsiow summarizes the argument we have bsen making. In thg following
subsection we state the strengths cf the state constraint theory and of the HS model. Finally, we go on to
describe the major weaknesses of our theory, and the problems they pose for future work.

Summary

The research problem addressed in this report is the problem of the function of conceptual
understanding in performance and leaming, with special emphasis on arithmetic leaming. Mathematics
educators have proposed the Conceptual Understanding Hypothasis, which claims that if children knew
the concepts and principles of asithmetic, acquisition of computational algorithms would proceed
smoothly. If children understood what they are doing, this hypothesis claims, they could discover
procedures on their own, leamed procedures would be flexible, nonsensical errors would be cormrected
spontaneously, and leamed procedures would easily combine to form higher-order procadures. The
major example of knowledge-based procedure aquisition in arithmetic is the domain of counting.30
Emplrical studies have shown that children know the principles of this domaiﬁ, that they can construct
correct and general procedures for counting without formal instruction, and that the leamed procadures
are flexible. The per’ vogical hope expressed in Conceputal Understanding Hypothesis is that if we teach
children the conceptuai basis of the arithmetic Procedures, then the acquisition of those procedures will
proceed in the same insightful fashion.

Evaluation of the Conceptuai Understanding Hypoitasis requires explicit hypotheses about (a) what is
meant by understanding, the ccntent of understanding, and how that content is represented in human
memory, and about (b) the computational machanisms by which understanding influences performance
and procedurs acquisition. The theoiy proposed in this report is based on the idea that understanding
e.1ables the leamer to notice and carrect his/her own mistakes. According to this theory understanding
cunsists of piinciples that constrain the possible problem states. “vhe principles can guide perfonnance,
because tha system tries to avoid solution paths that violate them. Furthermore, the principles can guide
Procedure acquisition, because the particular way in which a procedure violates a principle contains
information about how that procedure should be ravised.

We implemented the theory in a production system architecture called HS. The struciure of HS
corresponds closely to the structure of heuristic ssarch. Production rules correspond to search heuristics,
and working memory commespond ts the current search state. HS takes one step through the problem
space during each cycle of operation. The major innovation of the model is the augmentation of these
mechanisms with the state constraint representation of principled knowledge. We represent principles as
ordered pairs of patterns, where the rslevance pattern circumscribes the set of situations in which a
principle is relevant, and the satisfaction paftern is a criterion which a situation has to satisfy in order to be
consistent with the principl. The two pattems are matched against search states with the same pattern

39As wa noted on page 5, this <onciusion is not shared by all recearchiors in the fiald.
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matcher that matches the conditions of production rules against working memory. The state constraints
influence performance in that the number of constraint violations serves as a cost variable in the
evaluation function for search states. The state constraints influence leaming in that the HS Ieaming
algorithm reacts to a constraii t violation by replacing the faulty rule with two other rulss, constralned so
as to avoid producing simitar constraint violations in future applications.

We reported three applications of the HS system. The first two applications reproduce the major
phenomena with respe o children’s counting: Children can construct a correct and general counting
procedure without formal instruction in counting, and they can adapt the procedure to changes in the task.
The third application investigated the bshavior of HS in the domain of multi-column subtraction. If HS is
given a subtraction procedure that suffers from one or more subtraction bugs, it can correct those bugs
without extemal feedback, given a state constrai. t rapresentation of the concepts and principles of
subtraction. These three applications constitutes a substantiation of the Conceptual Understanding
Hypothesis: a leaming system that can acquire a counting procedure in an insightful way has been
demonstrated to be capable of leaming in the domain of multi-column subtraction as well.

The HS leaming algorithm is a rational leaming technique, because it derives a procedure from
knowledge rather than from experience. Ratiunal leaming processes have not been widely studied in
cognitive psychology, and there are few theoretical efforts to clarify them. The analyses most relevant to
Jur work are the plann ., net analyses by Vantehn and Brown ,1980) ard by Greeno, Riley, and Gelman
(1984). However, neither of these analyses attempted to provide a process model of procedure
acquisition, and neither resulted in an implemented system. There have been other attempts to formulate
leaming rachanisms that make use of a declarative representation of domain knowlege, but they have
not been applied to arithriietic. The process models of procedure acquisition in arithmetic that have been
proposed are models of experience-based, rather than knowledge-based, leaming. The HS system goes
beyond previous theoretical eiforts in that it presents an implemented process model of knowledge-based
procedure acquisition in arithmetic.

Strengths of the state constraint theory

The state constraint theory provides interesting and novel answers to several difficult questions with
respect to the relation between ur‘srstanding and performance. It also generates qualitative predictions
which ars, in principle, empirically tostable. Finally, the state constraint theory fares well on other
evaluation criteria such as gensraliity arid parsimeny.

Interpretation of meaningful leaming

What is the difference between solving a problem correctly hut blindly, and solving that same problem
correctly and with understanding? According to the state constraint theory, there is no difference in the
;Jrocedure being executsd in the two situaticns. A procedure is just a set of dispositions to act in certain
ways under certain circumstances; it cannot be aither blind or intelligent, only more or less efficient. The
theory says that understanding is present wher: the procedure is executed in the context of the learrier's
world knowlgdge. Thoughtful execution consists of matching the outcomes of the procedural steps
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against the concepts and principles of the relevant domain. Thoughtiess execution, on the other hand,
consists of doing the steps without reflection on their outcomes. Hence, the exhortation "think about what
you are doing!” is slightly off-target; according to the state constraint theory, the better advice is "think
about the resuits of what you are doing!".

What is the nature of knowledge? Discussions about this question usually assume that principles are
either descriptive (e. g., "All swans are white”) or predictive (e. g., "The sun will rise tomorrow"). The state
constraint theory claims that neither of these two models of principled kriowledge is essential for
procedure acquisition. Instead, principled knowledge consists of constraints on the possible states o.
affairs (e. g., "You cannot withdraw more money than you have in your account bank”). Conservation
laws in physics, e. g., the principle that energy cannot be destroyed or created, are examples of
constraints, as are arithmetic principles, e. g., the laws of commutativity and assodciativity.

What function does knowiedge have in performance? What good does it c'o to think about the results
of what you are doing, and how are constraint principles helpful? For every procedure there will exist
situations in which that procedure is applicable, but in which it will not produce desirable iesults.
Intelligent behavior therefore depends on the ability to imagine the outcomes of actions, and to weed out
the mistaken actic s before they are carried out. The function ~ srincipled knowl~4ge is to enable a
person to catch and correct the mistakes that his/her procedure--any procedure--wili unavoidably make
when confronted with unfamiliar situations.

This interpretation of the function of knowledge solves two technical problems that other accounts of
the function of knowledge have been unable to deal with. The first problem concerns the etfect of adding
more knowledge to the system. Humans perform and leamn better and faster the more they know. But all
computational mechanisms for using knowledge proposed to date suffer from combinatorial explosions:
The more knowledge the mechanism is provided with, the slower it wili work and the less likely it is to
behave inteliigently. For instance, the more action schemata the Planning mechanism of Greeno, Riley,
and Gelman (1984) is supplled with, the harder the planning probler, because the more alternatives have
to be considered at each point in the planning process. In general, mechanisms that combine knowledge
unite into larger struiiures cannot explain why people function better, the larger their knowledge base.
However, according to our theory, state constraints are not combined with each other. Each stale
consiraint is matched against the current search state independentiy of the other constraints. Hence,
there is no combinatorial explosion as the number of knowledge items grows.3!

The second problem that state constraint theory deals successfully with concerns the effect of partial
knowledge. Human beings operate very well with partial knowledge; in fact, they hardly ever operate in
any other way. But most computational mechanis.;is for using principled knowledge cannot function if
their knowledge base is incomplete. This is a serious problem with, for instance, explanation-based

3The amount of computation required to match constraints against states grows with the number of knowledge items, but the
growth need not be exponential, or even linear (Forgy, 1982).
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leaming (DeJong & Mooney, 1986; Mitchell, Keller, & Kedar-Cabelii, 1986). In general, techniques that
build larger knowicdge structures out of smaller units--an explanation, a plan, a proof, etc.--cannot
proceed if one of ine units is missing. But the state constraints in our theory are not combined into
higher-order structuras. If one of the constraints is missing, the system beeomes less constrained, and it
will therafore have to search more. But the power of the other constraints to guide performance and
leaming is not affected. We have verified that HS can use a partial set of state constraints to guide its
performance on subtraction problems.

What is the nature of the change that occurs during meaningful procedure acquisition? The state
constraint theory claims that the essenca of learning with understanding is that structure is transferred
from deciarative to procedural knowledge.3> When a person first confronts an unfamiliar problem
situation he/she needs to think {iard about it, because almost every action generctes constraint violations.
As the procedure is gradually corrected, the state censtraints need to kick into action less and less often;
execution of the procedure can he removed from reflection and becomes more mechanical. Finally, when
the procedure is correct, there is no need to consuii the state constraints in order to execute it. Hence,
the acquisition of a procedure is a process of moving from acting under the influsnce of knowledge to
"just doing it", as common sense would have it.”

In summary, the siai¢ constraint theary locates understanding in the cognitive context within which a
procedure is executed, it asumes that knowledge constrains the possible states of atfairs, and it ctaims
that the function of understanding is to enable the leamer to catch and correct hisfher mistzkes. The
theciy explains why the cognitive machinery does not suffer from combinatorial explozion as the number
of knowledge ‘tems grows, but on the contrary becomes more efficient. It also explains why humans can
operate well with partial knowledge. These two phenomena pose major difficulties for other
computational models of understanding. Finally, the theory explains the passage from reflection to action
during meaningful learning, because it claims that the leamer only consults hisfher knowledge, as it were,
when something goes wrong.

Qualitative predictions about behavioral phenomena

The state constraint thec  makes four qualitative predictions about human behavior. First, the theory
predicts that additional leaming is required after the correct rules for a particuler task have been
discovered. The reason is that the leaming mechanism creates rules in pairs, each member of the pair
constraining the parent rule in a different way. When t.e correct rule is created, another, probably
incorrect, companlon rule Is therefore created also. At the time of creation, it is impossible to kncw which
of the two rules is the correct rule. HS can only identify the correct rule by evoking the rules anc observe
their effects. HS gets rid of the incorrect rule by constr=‘niny it until it is over-constrained, and cannot fire.
Her<s, additional leaming trials are necessary after the correct rule has been created in order to get rid of
the superfiuous companion rule. Those learning trals will generate errors. Hence, the theory predicts that

32in computer science terms, structure is transforrod from the test (the knowledge) to the gensnator (the procadure).
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errors will necessarily occur after the correct rule has been discovered.

The cecond prediction of the HS system concemns the interaction between knowledge and
performance. Since state constraints guide performance by assigning a cost to a search state that
violates a principle, it Is possible for HS to produce incorrect solutions in the presence of a complete set of
constraints. It tums out that incomect solution paths in the subtraction domain =re shorter than correct
paths. Hence, if the cost of a constraint violation is less than the cost of taking an extra step, HS prefers
the shorter path, even tnough it violates one or more constraints. We have verified that if HS is given an
incomplste subtraction procedure but a complete set of principles, it produces incorrect answers on some
subtraction problems for some settings of the cost parameters.

The third prediction derived irom the state constraint theory concerns the leval of difficuity of learning
a particular procedure. The theory predicts that a procedure will ba easy to learn to the extent that each
step in the procedure has results that can be judged for correctness on the basis of the principles of the
domain. Counting is easy to learn according to this theory, because every step in counting either “sllows
or violates the one-one mapping pinciple. Mistakes are therefore immediately detectable by soi. .ne
who knows the one-one mapping principle. A procedure is hard to leam to the exterit that it contains a
large number of steps that are not on the correct solution nath, but which nevertheless are consistent with
all the principles of that domain that the iearmer knows. In shor, state constraint thaory makes the
counterintuitive prediction that the /arger the number of cor straints tiat have to be satisfied by a particular
procedure, tt » ~asier that procedure is to acquire.

The fourth prediction that we discovered in the simulation runs is that the amount of cognitive effort
required to switch from task A to task Bis not the same as the cognitive effort required to switch from task
Bto task A. If HS learns to count objects in arbitrary order, it c2n learn to take a pre-definec order into
account in a single leamning step. However, if it initially leams to count objects in a particular order,
learning to count objects when that order is not present requires several leaming steps. This amounts to
a prediction that transfer between tasks will be greater in one direction than in the other. Such asymmetry
in transfer between related tasks is intultively plausible.

Other evaluation criteria

The state constraint theory is well integrated into current cognitive theory. The theory is an extension
of the major hypothesis about problem solving to emerge in the past decades, namely that problem
solving consists of heuristic search, carried out by a oroduction system architecture. The HS model is
build out cf off-the-shelf computational mechanisms that have already been proven fruitful in explaining a
wide range of Ccgnitive phenomana. Although the simulation runs analyzed in this veport are from the
domain of arithmetic, the state constraint theory is nevertheless a general theory. The computational
mechanisms of heuristic search and of production system architectures are formulated in domain-
independent terms. They are not limited to arithmetic but can, in principle, be applied to any task domain.
The mechanism of matching state copstraints against search states and counting the number of
constraint violations is a general mechanism, not limited to arithmetic. The mechanism for revising rulos
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in response to constraint violations is also formulated in domain-independent terms. The state constrz.nt
theory postulates a simple computational mechanism. The constraints are compared to search states
with the same pattern matcher that compares production rules to search states. Hence, no new maior
computational mechanisms had to be invented in order to augment the standard theory of problem
solving wih the state constraint representation.

Weaknesses and future directions

The state constraint theory errs by being incomplete. There are several aspects of procedure
acquisition that it does not deal with, among them the role of experience, procedural ervors, remote errors,
undetected errors, and the hierarchical organization of cognitive skills.

The state constraint theory as embodied in the HS simulation model does not explain the function of
experience in the learning of procedures. While the experience-based learning models for arithmetic
proposed by Neches (1981, 1982, 1987) and by VanlLehn (1983a, 1983b, 1985a, 1985b, 1986) contain
no mechanisms by which principled knowledge can influence procedure acquisition, the HS mode! errs in
the opposite direction. It contains no mechanism by which procedures can be created by storing and
gereralizing steps that experience has shown give the right results. HS only leams by deriving
procedures from its knowledge. But human beings obviously learn both by applyir.g their knowledge and
by generalizing from experiences. The state constraint theory is therefore radiczlly incomplete. It does
not describe how experience-based leaming happens, nor how empirical and rational leaming
mechanisms collaborate in the creation of procedures.

The lack of experience-based learmning mechanisms prevents HS from handling purely procedural
errors, 1. e., errors that cannot be described as violations of the principles »f the relsvent domain. Such
errors will occeur under two circumstances. First, in the case of incomplete principled knowledge, there
might be errors that can, in principle, be described as principle violations, but which the system cannot, in
fact, so describe, because it does not know the relevant principle. Second, in some domains there might
be steps which are not on the correct solution path, but which are not incorrect in the sense of violating
any domain principle. For instance, in mathematical proof tas™s there are a large number of proof paths
which are valid, but wkich do not lead to the target theorem. The leaming mechanism that we have
implemented for the HS model cannot correct such errors.

The state constraint theory Is also unable to deal with remote errors. The assumption that ail errors
violate principles of the domain implies a simple sclution to the assignment of blame problem. if all errors
violate constraints, then it is always the last rule to fire before an error is detected that needs to be
revised. If, however, there are errors that do not violate constraints, then those errors will not be detected
at the time they are made. But they could cause constraint violations several steps later. In that case the
faulty rule fired several steps before the step in which the error was detected, and identifying the rule that
is respornisible for the error is a difficult problem:.

The HS model is an idealization n the sense that it does not suffer from undetected errors; it is

guaranteed to discover every violation of its constraints. Clearly, people often fail to detect the errors they
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make. This phenomenon can be modeled in HS by assigning a probability to the pattem matching
process that compares search states with constraints. The system would then make errors that it could,
in principle, detect, but which would, in {act, go undetected on some proportion of the trials in which they
occur. There are two reasons why we have not implemented such a mechanism in the current version of
HS. The first reason is that the structure of the S architecture implies that if the detection of constraint
violations is probabilistic, so is the matching of production rules: both processes are carried out by the
same pattern matching mechanism. Production systems with probabilistic rule matching have not heen
explored, and nothing is known about how to program them.33 Hence, such a step is major theoretical
move which is not immediately reiated to our main objective of understanding the role and function of
principled knowledge in procedure acquisition. The second reason is that iittle is gained by introducing
quantitative parameters without independent empirical grounding at this stage in the development of the
model.

The state constraint theory is also incomplete in that it does not deai with the hierarchical organization
of procedural skills. The HS leaming algorithm does not create hierarchically organized procedures. As a
consequence the state constraint theory cannot explain why understanding faciltates the combination of
already leamed procedures into higher-order procedures, which is one of the effects hypothesized by
adherents of the Conceptual Understanding Hypothesis. In contrastboth the planning mechanism
proposed by Greeno und co-workers (Greeio, Riiey, and Gelman, 1984; Smitk, Greeno, & Vitolo, in
press) deais readily with the hierarchical organization of cognitive skills, as does the model of procedure
induction proposed by VanLehn (1983a).

The weaknesses of the state constraint theory stem from Hts exclusive focus on errors that violate
principies of the domain. Future work will extend the knowledge-based leaming mechanism described in
this report with one or more experience-based leaming mechanisms. There are many ways to combine
experience-based and knowledge-based learning. For exampie, one possibility is to combine a planning
mechanism like the one proposed by Greeno et. al (1984) with the state constraint mechanism. Such a
system would iearn by constructing an initial procedure through planning, and then revise it in the course
of execution if {i twne out to violata principles of the domain. Many other hypotheses are possibie. We do
not yet have any conclusions as to which type of combination of experience-based and leaming-based
leamning mechanisms is most likely to predict the details of human behavior.

Future work wiil move from a concem with explaining qualitative features of human behavior, such as
the ability to adapt a procedure to changes in the relevant task, to a concern with quantitative predictions.
We can, in principie, derive quantitative predictions from the cutrent version of the HS model. For
instance, by running HS repeatedly on the task of ieaming to count, we can generate predictions about

Bprobabilistic matching is ralated 10, but not dentical with, partial matching (Langley, 1583a, p. 291). In partial matching only a
part of a rule pattern has to match in order for a rule to fire. In probabilistic matching a rule will only fire on some proportion of the
cycles in which its rule pattemn did match completely.
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the frequency distribution of error types3* at ditferent levels of leariing. Deriving such predictions would
be premature at the present stage of development of the mode’

One might object to the work reported here that the most radical weakness in the state constraint
theory is that it does not explain where principled knowledge comes from in the first place. However, thiz
objection represents a misunderstanding of the problem we set out to solve. We have tried to fermulate a
theory of how knowledge of principles, once acquired, can be used in the (earning of procadures; we have
net trled to explain the acquisition of principles. This way of proceeding seemingly presupposes that the
principles of a particular task domain can be known before one knows how to act in that domain, an
Intuitively implausible idea.3® However, the state constraint theory does not require that a/l principles are
known before procedural leamning starts. This is an ideal case only. In a real leamning situation we would
expect the learning of principles and the leaming of procedures to be interleaved.

The idealization that all principles are acquired before procedural leaming starts is appropriate for the
work reporied here, because our goal was to clarify the nature of the link between understanding and
procedure acquisition hypothesized In the Conceptuai Understanding Hypothesis. The pedagogical hope
expressed In that hypothesis is precisely that concepitual understanding can be the basis for procedure
acquisition. The state constraint theory is one explanation of how access to conceptual understanding
can enable a leamer to discover arithmetic procedures, adapt procedures to changes in the task
environmant, and self-correct nonsensical errors. Future work will address the question of how principles
are acquired.

What are the instructional implications of 1. state constraint theory? Suppose, for the sake of the
discussion, that we decide to adopt the theory in its current fortn, without augmentation with additional
leaming mechanisms. The theory then implies that a procedure cannot be taught by describing the steps
In the procedure to the learner. There are no mechanisms in HS that can make use of an instruction like
"first you do X, then you Y". In particular, the state constraint theory implies that it is not useful to tell a
leamer who just comniitted a mistake what the correct action would have been. The theory implies that
instruction should focus on the state of the problem, not on the learner’s actions. In correcting an error
the instructor should help the leamer to focus on the problem, and to see what is wrong with its current
state, reminding hinvher of the principles of the domain, if necessary. The instructor should not tell the
leamer what he/she should have done to avoid the error, but describe which state the problem ought to
be in, and leave It to the learner to figure out what action or actions would achieve that state. We are not
proposing that mathematics teachers revise their instruction in according with these implications. We are
not ready to-derive specific recommendations for teaching from our theory until the theory has been
subject to stringent empirical tests. These admittedly speculative comments are ment to lilustrate that

HThere are four types of errors in counting: skipping an object, counting an object repeatedly, .kipping a number, using a number
repeatedly, answering without having counted all objects, and continuing to generate numbers after all objects have been counter
thus answering with too high a number,

35Notice tha' Gelman and Meck (1983) have argued on the basis of axtensive empirical studies that this is, in fact, the case in the
domain of counting,

August KUL-88-03




Ohisson & Rees 77 Rational Learning

idealized computational thcories of the function of - undarstanding in the leaming of arithmetic
procedures can generate rather specific implicatic an.
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