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tract

This paper offer* a framework for examining the role of subject matter

knowledge in the teaching of mathematics. Starting with a brief review of the

history of efforts to investigate the role of subject matter knowledge, the

paper continues with an in-depth look at what "subject matter knowledge of

mathematics" might mean. An approach to examining and analyzing teachers'

knowledge of mathematics is illustrated, using the topic of place value as an

example. Three cases of teaching multiplication in fourth grade are presented

in the final section of the paper. The analysis explores how each teacher's

knowledge of mathematics interacts with her ideas about the teaching and

learning of mathematics and her ideas about pupils and context.



RESEARCH ON TEACHING MATHEMATICS:
MAKING SUBJECT MATTER KNOWLEDGE PART OF THE EQUATION*

Deborah Loewenberg Ball**

Introduction

Subject matter understanding and its role in teaching mathematics are the

focus of this paper. Although few would disagree with the assertion that, in

order to teach mathematics effectively, teachers must understand mathematics

themselves, past efforts to show the relationship of teachers' mathematical

knowledge to their teaching of mathematics have been largely unsuccessful.

How can this be? My purpose here is to unravel this intuitively indisputable

yet empirically unvalidated requirement of teaching by revisiting what it

means to "understand mathematics" and the role played by such understanding ir

teaching.

The thesis of this paper is that teachers' subject matter knowledge in-

teracts with their assumptions and explicit beliefs about teaching and

learning, about students, and about context to shape the ways in which they

teach mathematics to students. There are three parts to the development of

this argument. First, I briefly analyze past investigations of the role of

teachers' subject matter knowledge in teaching mathematics. Next, I unpack

the concept of subject matter knowledge for teaching mathematics and illus-

trate what is entailed in finding out what teachers know. The last section

*
This paper will appear in J. Brophey (Ed.) Advances in research on

teaching: Vol. 2. Teacher's subject matter knowledge and classroom instruc-
tion. Greenwich, CT: JAI Press.

**Deborah Ball is a senior researcher in the National Center for Research
on Teacher Education and an instructor in teacher education at Michigan State
:niversity. The author gratefully acknowledges Magdalene Lampert, G. William-
son McDiarmid, and Robert Floden for their advice and encouragement on this
work.
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presents three cases of teaching multiplication and analyzes how each teach-

er's understanding of mathematics figures in.her teaching.

To provide a context, I begin by tracing briefly the history of efforts

to identify and understand the critical variables in effective mathematics

teaching. This history is inevitably nested within the larger story of re-

search on teaching, for it is only recently that many researchers have begun

to think about teaching as subject-matter specific.

Research on Teaching Mathematics:
Coming Full Circle on Subject Matter Knowledge

Through three phases of research on teaching, teachers' subject matter

knowledge has figured, faded, and reappeared as a key influence on the

teaching of mathematics. Driven by common sense and conventional wisdom about

teaching, the earliest research compiled characteristics of teachers whom

others perceived as effective (Medley, 1979). The second phase of research

attempted to establish connections between what teachers do and what their

students learn. In the most recent phase, researchers have investigated

teacher thinking.

What Are Effective Teachers Like?

Researchers began by collating the characteristics of good teachers.

Based on pupils' assessments of their best teachers, these studies reported

that good teachers were enthusiastic, helpful, and strict. Students also said

that the best teachers knew the subject matter better (e.g., Hart, 1934).

Although such findings seemed intuitively valid, the early studies did not

empirically test the influence of "good" teachers' characteristics on what

they did or what their students actually learned.
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Recognizing the weakness of such claims, researchers began defining

"effective teaching" as teaching that resuitsin measurable student learning.

In the most ambitious effort to identify teacher characteristics associated

with student achievement in mathematics, the National Longitudinal Study of

Mathematical Abilities followed 112,000 students from over 1500 schools in 40

states during the 1960s. Twenty teacher characteristics were studied, in-

cluding years of teaching experience, credits in mathematics, having a major

or minor in mathematics, personal enjoyment of mathematics, and philosophical

orientation to learning. Overall, neither teacher background characteristics

nor teacher attitudes were strongly related to student learning; significant

positive relationships were found in fewer than 30 percent of the possible

cases. No single teacher characteristic proved to be "consistently and sig-

nificantly correlated with student achievement" (Begle and Geeslin, 1972).

Begle (1979) concluded from these results that many widely held beliefs about

good teaching "are false, or at the very best rest on shaky foundations"

(p. 54).

One of these beliefs was the notion that the more one knows about one's

subject, the more effective one can be as a teacher. "The empirical litera-

ture suggests that this belief needs drastic modification," wrote Begle (1979,

p. 51). The aralyses showed that students whose teachers had majored or

mirrored in mathematics scored significantly higher in only 20 percent of the

cases. The number of teacher credits in college mathematics was actually

negatively associated with student achievement in 15 percent of the cases.

Convinced by these results that "the effects of a teacher's subject matter

knowledge and attitudes on student learning seem to be far less powerful than

many of us assumed," Begle argued that researchers should focus their in-

quiries elsewhere (p.53).
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Begle's (1979) conclusion was counterintuitive. Teaching is fundamen-

tally tied up with knowledge and the growth of knowledge (Buchmann, 1984).

What sense does it make to say that what teachers know abovt mathematics is

not a significant influence on what their students learn? Yet, in spite of

the weight of common sense, tha empirical results were discouraging. Few

questioned the assumptions underlying the research or offered alternative

interpretations. For example, is the number of courses in college-level

mathematics a reasonable proxy for teachers' mathematical knowledge? What is

acquired through majoring in mathematics in terms of disciplinary under-

standings or ideas about pedagogy? Some of what is gained through sitting in

upper-level mathematics courses may in fact serve as counterproductive

preparation for teaching (Kline, 1977).

What Do Effective Teachers Do?

Instead of critically appraising the reported findings, however, re-

searchers began a new search. Driven to understand what distinguished more

effective from less effective teachers, the field turned from the investi-

gation of teacher characteristics to study generic teacher behaviors such as

pacing, questioning, explanation, and praise, as well as qualities such as

clarity, directness, and enthusiasm. Medley (1979) explained the basis for

this shift, arguing that "it is what the teacher does rather than what a

teacher Ia that matters" (p. 13). Most of the new studies chose to focus on

elementary school teaching of mathematics and reading, ',ecause achievement in

these subjects in the early grades was considered central and outcomes thought

to be unambiguous to measure. Subject matter was part of the context, not the

focus of the research.
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Rosenshine (1979) summarizes the picture of effective instruction that

emerged from this work:

Large groups, decision making by the teacher, limited choice of
materials and activities by students, orderliness, factual ques-
tions, limited exploration of ideas, drill,and high percentages of
correct answers. (p. 47)

He argues' that, although this picture appeared gCm, such orderly, business-

like classrooms need not be cold nor humorless. Furthermore, these findings,

he suggested, were primarily applicable to instruction in basic skills- -

reading, writing, and mathematics--and that looser approaches ("messing

around") might be perfectly appropriate in other subjects. While some feared

that students would enjoy school less in such tightly supervised, teacher-

controlled settings, studies indicated that there was little difference on

such "affective outcomes" (Peterson, 1979). Some researchers even concluded

that students were more anxious in informal classrooms (Bennett, 1976; Wright,

1975).

Critical to understanding this phase of research on effective teaching

are its assumptions about mathematics and the goals of teaching and learning

mathematics. Taking the prevalent school curriculum as given, it assumed that

elementary school mathematics consists of a body of skills to be mastered

through drill and practice. Careful to disclaim the assumption that learning

meant accumulating facts and principles, researchers nevertheless talked about

students' mathematics learning in terms of "gains." It was not surprising

that within this set of assumptions researchers found that students "learned"

the most from direct explanations, seatwork, and frequent quizzes in time-

efficient, quiet settings.

As they spent more time in classrooms and analyzed complicated data, many

researchers became increasingly appreciative of the complexity of classrooms

and of the job of teaching. They saw that teachers work with a broad range of
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students who cone with different understandings and attitudes and who do not

learn in the same ways. Teachers are also responsible for a variety of

educational outcomes that require different approaches. In light of these

features of the job, it was simplistic to seek a single most effective

teaching approach (Clark and Yinger, 1979; Peterson, 1979). Some scholars

sought to uncover optimal patterns of instruction
for students with particular

characteristics, or "aptitude
treatment interactions" (ATI) (e.g., Brophy,

1980; Evertson, Anderson, and Brophy, 1978; Solomon and Kendall, 1976). In

1982, Tobias wrote that even ATI studies were failing to specify one mode of

instruction appropriate for students with a particular set of characteristics.

How Do Teachers Understand Their Work and Decide What to Do?

Several years earlier, Gage (1977) had cautioned that "no one can ever

prescribe successfully all the twists and turns to be taken as the classroom

teacher uses judgment, sudden insight, sensitivity, and agility to promote

learning" (p.15). In a third significant shift in research on teaching,

researchers increasingly turned away from their focus on teacher behaviors and

began examining teachers' thoughts and decisions. Writing in 1979, Clark and

Yinger observed that this

new approach to the study of teaching assumes that what teachers dois affected by what they think. This approach, which emphasizes theprocessing of cognitive information, is concerned with the teachers'judgment, decision making, and planning. The study of the thinkingprocesses of teachers--how they gather, organize, and interpret, andevaluate information--is expected to lead to understandings of theuniquely human processes that guide and determine their behavior.
(p. 231)

In search of what makes some teachers more effective than others, researchers

were hot on a new trail by redefining teaching as an activity of both thought

And action. How do teachers decide on content and goals, select materials and
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approaches, in order to help different students learn a variety of concepts

and skills?

It was in studying teacher thinking and decision making that teachers'

knowledge and beliefs about subject matter began to reappear as potentially

significant variables. For example, Shroyer (1981) studied how junior high

mathematics teachers coped with student difficulties or unusual responses and

found that the teachers with weaker mathematics backgrounds had more diffi-

culty generating alternative responses to these critical moments. And, in a

study of fourth-grade teachers' curricular decisions, Kuhs (1980) concluded

that their conceptions of mathematics and recognition of topics influenced

both what the teachers taught and how they modified curriculum materials.

Thompson (1984) investigated the influence of teachers' conceptions of

mathematics on their teaching. Her findings further substantiated the notion

that what teachers' know about math affects what they do. One of the teachers

in her study, Lynn, described mathematics as "cut and dried": a process of

following procedures and producing right answers. Lynn did not provide

opportunities for her students to explore or engage in creative work; instead

she emphasized memorizing and using specified procedures. In contrast, Kay,

who saw mathematics as a "subject of ideas and mental processes," not a

"subject of facts," emphasized problem solving and encouraged her students to

make and pursue their own mathematical conjectures (Thompson, 1984, pp. 112-

113).

Alerted by these and other similar findings, some researchers have

returned to press on subject matter as a critical variable in teaching

mathematics. However, "subject matter knowledge" in current studies is a

concept of varied definition, a fact that threatens to muddy our progress in

learning about the role of teachers' mathematical understanding in their
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teaching. The next section takes up the question of what researchers should

mean by "knowlsdge of mathematics" in the new research on math teaching.

Breaking the Circle*, moving Away From Past Errors

Philosophical arguments (e.g., tuchmann, 1984), as well as common sense,

have already persuaded us that teachers' knowledge of mathematics influences

their teaching of mathematics. In the most extreme case, teachers cannot help

children learn things they themselves do not understand. More subtle, and

much less well understood, are the ways in which teachers' understandings

shape their students' opportunities to learn. The dead end of earlier

attempts to investigate the relationship of teachers' understandings to

teachers' effectiveness was a consequence of the ways in which both "subject

matter knowledge" and "effectiveness" were defined. With different defini-

tions and approaches, the new research on teacher knowledge has already begun

to corroborate our tenacious conviction that teachers' subject matter under-

standing does, after all, play a significant role in the teaching of mathe-

matics. However, if we are to move beyond what we already believe, if this

research is to help us to understand the subtler effects and to improve

mathematics teaching and learning, then significant conceptual issues--about

what we mean by "subject matter knowledge" or by its "role" in teaching

mathematicsmast be addressed.

Subject M.,..ter Knowledge in Mathematics

Although most researchers have moved away from the earlier use of course

lists or credits earned as a proxy for teachers' knowledge, how they concep-

tualize and study "subject matter" varies. Some researchers examine teachers'

conceptions of or beliefs about mathematics (e.g., Blaire, 1981; E nest, 1988;



Ferrini-Mundy, 1986; Kuhs, 1980; Lerman, 1983; Peterson, Fennema. Carpenter,

and Loaf, in press; Thompson, 1984). These researchers use a variety of

methods to identify teachers' conceptions, including interviews, question-

naires, and inferences based on teachers' practices. These studies generally

highlight the influence of teachers' assumptions about mathematics on their

teaching of the subject.

Other researchers focus on teachers' understanding of mathematical

concepts and procedures (e.g., Ball, 1988a; Ball and McDiarmid, in press;

Leinhardt and Smith, 1985; Owens, 1987; Post, Behr, Hamel, and Lesh, 1988;

Steinberg, Haymore, and Marks, 1985). Using interviews and structured tasks,

they explore how teachers think about their mathematical knowledge and how

they understand (or misunderstand) specific ideas. What counts, according to

these researchers, is the way teachers organize the field and how they

understand and think about concepts (as opposed to just whether they can give

"right" answers).

What does it mean to "know" mathematics? Does "knowing math" mean being

able do it oneself? Does it mean being able to explain it to someone else?

Is subject matter knowledge a question of "knowledge structures"--that is, a

function of the richness of the connections among mathematical concepts and

principles? What is the relationship among "attitudes," "conceptions," and

"knowledge" of mathematics?

Mathematical Understc
Interweaving Ideas Of and About the Subject

Understanding mathematics involves a melange of knowledge, beliefs, and

feelings about the subject. Substantive knowledge includes propositional and

procedural knowledge 21 mathematics--that is, understandings of particular

topics (e.g., fractions and trigonometry), procedures (e.g., long division and
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factoring quadratic equations), and concepts (e.g., quadrilaterals and in-

finity), and the relationships among these topics, procedures, and concepts.

This substantive knowledge of mathematics (Schwab, 1961/1978) is what is most

easily recognized by others as "subject matter knowledge."

Another critical dimension, however, is knowledge about mathematics.1

This includes understandings about the nature of knowledge in the discipline --

where it comes from, how it changes, and how truth is established. Knowledge

about mathematics also includes what it means to "know" and "do" mathematics,

the relative centrality of different ideas, as well as what is arbitrary or

conventional versus what is necessary or logical, and a sense of the philo-

sophical debates within the discipline. Many of these aspects of mathematics

ate more often communicated purely by their absence from traditional mathe-

matical study--understanding the history of mathematics, for instance. Rarely

do math students learn about the evolution of mathematical ideas or ways of

thinking.

Nevertheless, teachers do convey many explicit and implicit messages

about the nature of the discipline. If the teacher's guide is the source of

right answers, for example, this suggests that the basis for epistemic

authority in mathematics does not rest within the knower. Teachers com-

municate ideas about mathematics in the tasks they give students, from the

kinds of uncertainties that emerge in their cl.assee and the ways in which they

respond to those uncertainties, as well as from messages about why pupils

should learn particular bits of content or study mathematics in general.

Finally, in addition to all of this, understanding mathematics is colored by

one's emotional responses to the subject and one's inclinations and sense of

self in relation to it.
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Interviews with prospective and experienced teachers2 illustrate how

understanding mathematics is a product of an interweaving of substantive

mathematical knowledge with id:tits and feelings about the subject. Asked how

she would respond tc. a student who asked what seven divided by zero is,3

Laura, a prospective elementary teacher, responded:

Zero is such a stupid number! It's just one of those you wonder why
it's there sometimes. I'd just say, "Anything divided by zero is
zero. That's just a rule, you just know it.". . You know, it's
empty, it's nothing. Anything multiplied by zero is zero. I'd just
say, "That's something that you have to learn, you have to know." I
think that's how j was told. You just knom it. . . . I'd just say,
you know if they were older and they asked me "Why?" I'd just have
to start mumbling about something, I don't know. . . . I don't know
what. I'd just tell them "Because!" (laughs) That's just the way
it is, it's just one of those rules, like in English--sometimes the
C sounds like K--you just have to learn it. I before E except after
C--it's one of those things, in my view.

Laura's answer reveals that she understands division by zero in terms of

a rule. She thinks of it as something one must remember, not something one

can reason about. Like rules of thumb in English, what to do when one divides

by zero is something one just must know. In addition, Laura is impatient about

the number zero. She describes it as "stupid": useless and empty. Further-

more, the rule she invokes--"Anything divided by zero is zero"--is also false.

In other parts of her interview as well, Laura repeatedly refers to rules that

she remembers and some that she has forgotten. She talks about hating math

and not being good at it. In this tiny snapshot of Laura's understanding of

mathematics, we see that what she does not know in this case is framed by her

beliefs about mathematical knowledge and her feelings about its senselessness.

Abby, a prospective secondary teacher, also thought of mathematics in

terms of rules and arbitrary facts. Unlike Laura, however, Abby was comfort-

able with the rules: She could remember them and felt safe within their struc-

ture and certainty. When asked about division by zero, she said emphatically:
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I'd just say . . . "It's undefined," and I'd tell them that this is
a rule that you should never forget that anytime you divide by zero
you can't. You just can't do it. It's' undefined, so . . . you just
can't. They should know that anytime you get a number divided by
zero, then you did something wrong before. It's just something to
remember.

Abby added that dividing by zero is "something that you won't ever be able to

do in mathematics, even in calculus." Unlike Laura, Abby's rule was correct- -

division by zero is "undefined"--but, like Laura, her understanding was nested

within her larger view of mathematics as a collection of rules to remember.

She did not try to make meaning out of the "fact" that division by zero is

undefined but simply emphasized that it is not permitted.

Mathematical Understanding: Examining What Teachers Know

Next, in order to illustrate the kind of analysis needed in studying

teachers' subject matter knowledge, a closer look will be taken at some

prospective elementary and secondary teachers' understanding of place value in

multiplying large numbers (Ball, 1988a). Later this topic will be returned to

in discussing the role of subject matter knowledge in teaching mathematics.

The following discussion is based on the analysis of a single question taken

from a series of interviews conducted with teacher education students, half of

whom were mathematics majors intending to teach secondary school and half of

whom were prospective elementary teachers with no academic major. Analysis of

the topic, place value, and of the interview question itself, is followed by a

discussion of the results. These results highlight the danger of assuming

what teachers understand about the mathematics they teach.

background: Place Value and Numeration

The question discussed deals with the concept of place value and its role

in the algorithm for multiplying large numbers. Some background is necessary

12
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to understand the question and the analysis of teachers' responses. The base

10 positional numeration system is part of the working knowledge of most

members of our culture. Tnat is, adults read, write, and make sense of

written numerals. They know that "56" does not mean 5 + 6 or' 11. They know

that "04" represents the same quantity as "4" but that "40" does not.

Still, children do not automatically understand this and the way they

learn arithmetic may be a hindrance rather than a help to understandinb. In

fact, some research suggests that place value is particularly difficult for

children to learn. Elementary school students may write 365 as 300605, for

example, which represents the way the number sounds rather than place value.

Kamii (1985) argues that traditional math instruction actually forces young

children to operate with numerals without understanding what they represent.

We have all heard children performing addition calculations reciting, "5 plus

7 is 12, put down the 2, carry the 1," or doing long division calculations

such as 8945 divided by 43 by saying, "43 goes into 89 twice, put up the 2, 2

times 43 is 86" and so on. These "algorithm rhymes"4 which pupils learn

interfere with paying attention to the essence of the numeration system--that

numerals have different values depending on their place. The "1" in the

addition rhyme actually means 10. The "89" in the division chant actually

means 89 hundred and that "2" represents the fact that there are 2 hundred

groups of 43 in 8945.

Place Value in Multiplication Computation

What is the nature of adult working knowledge of place value and numera-

tion? How does it equip teachers to help pupils make sense of written

numerals and procedures with numbers? I designed the following question to

elicit teachers' understanding of place value in use:

13
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Some eighth -grade teachers noticed that several of their students were makingthe same mistake in multiplying large numbers. In trying to calculate

123
645

the students seemed to be forgetting to "move the numbers" (i.e., tne partialproducts) over on each line. They were doing this:

instead of this:

123
x 645

615
492
738

1845

123

x 645
615

492
738

79335

While these teachers agreed that this was a problem, they did not agree onwhat to do about it. What would you do if you were teaching eighth grade andyou noticed that several of your students were doing this?

Discussion of item. The algorithm for multiplying large numbers is

derived from the process of decomposing numbers into "expanded form" and

multiplying then in parts. To understand this, one must understand decimal

numerals as representations of numbers in terms of hundreds, tens, and ones,

that is, in the numeral 123, the 1 represents 1 hundred, the 2 represents 2

tens, and the 3 represents 3 ones. In the following example, 123 x 645, first

one multiplies 5 x 123:

123

615

14 19



then 4Q x 123:

a.od then 622 x 123:

123
x 40

4920

123
x 600,

73800

In the final step, one adds the results of these three products:

123
x 645

615
4920

__73800

In effect, one is putting the "parts" of the number back together--that is,

645 x 123 (600 x 123) + (40 x 123) + (5 x 123).

Many people do not write their computation out this way, but rather

"shortcut" it by writing:

123
x 645

615

492
738

This shortcut, in effect, hides the conceptual base of the procedure. Because

its logic depends on place value and the distributive property of multipli-

cation over addition, the multiplication algorithm affords a strategic site

for investigating the nature of people's mathematical understandings.

Analyzing, Teachers' Knowledge of Place Value

In this section the results of this interview question are discussed,

focusing on four issues: the interpretation of what people say when they talk

15
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about mathematics, the role of explicitness in understanding mathematics for

teaching, the connectedness of mathematical understanding, and the inter-

weaving of knowledge of and about mathematics.5

Place value or "places"? Some of the prospective teachers' responses

were relatively easy to interpret because they focused explicitly either on

the role of place value in the algorithm or the steps of the procedure. For

example, Mike, an elementary major, said that he would "have to explain about

that not being 123 x 4. That it's 123 x Q." In contrast, Tara, a prospec-

tive elementary teacher focused on the steps:

I would show them how to line them up correctly. I would do what Istill do, which is once I multiply out the first number and then Istart to do the second line, put a zero there. That's how I wastaught to do it and that's how I still, when I have big numbers tomultiply, I do, because otherwise I'd get them too mixed up,probably. It helps to keep everything in line, like after the firstline, you do one zero and then you do two zeroes to shift thingsover.

Mike's answer showed that he understood that "moving the numbers over" is

not just a rule to remember, but reflects that 123 x 4 is 4,920, not 492.

Tara's understanding was wholly procedural: the numbers must be lined up and

the zeroes help you to remember to "shift things over." There was no hint in

her answer that she sue any meaningful basis for the procedure.

While these responses were explicit and unambiguous, some prospective

teachers' responses were much harder to interpret because they used conceptual

language--for example,"the tens place"--to describe procedures, or procedural

language--for example, "add a zero"--to (perhaps) refer to concepts. Rhonda's

response was an example of this ambiguity:

You would take the last number and multiply it by all three of the
top numbers and you put those underneath and then you start with the
next one. You'd want to put it underneath the number that you areusing. They aren't understanding that they need to be underneath ofthat instead of just down in one straight row.
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So far this seemed like an answer focused on the rules of the multiplication

algorithm. Rhonda was talking only about where to put the numbers and what to

do next. But then she said that the students would "probably need to know

about places":

You know, the hundreds, the thousands, you know, whatever. If they
don't understand that there is a difference in placing, that could
also lead to this if they don't remember. . . . They need to under-
stand that there is a difference in the placing, too.

What did Rhonda mean when she said "placing"? She may have been talking about

where to write the numberswhere to place them--or she may have been talking

about the difference in the value of a number depending on its placing. To

probe how she understood "places." I asked her why this mattered. She replied:

Because of the fact that you are working with such a large number,
like your second and third numbers are not going to be ones. . . .

Your numbers get larger and larger and since you are working with
such a large sum, you have to know how to work in the thousands, you
know, to keep your numbers that way. I guess it all goes back to
then understanding why the numbers should be underneath of what you
are multiplying.

She added that she wasn't sure "how that affects the placing."

Rhonda's response was not as cleat as Mike's or Tara's. She seemed to

focus on lining up the numbers correctly, but then she talked about "places,"

too. Was her reference to "placing" and "places" conceptual--that is,

addressing the values of different places within a numeral? Or was Rhonda

just talking about "placing" the numbers in the right place--so that they

would be lined up correctly?

Zero as a "placeholder,." Also ambiguous were the responses of several

prospective teachers who talked about the importance of writing in zeros in

the partial products. Joanie, a secondary candidate and mathematics major,

said she would get her students to focus on putting the numbers "in the right

'plsces" and would "encourage them to use zero as a placeholder" and Karen,

another matt. major, commented, "We were taught to put a zero here, and a zero
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there, to represent the places." Chris, an elementary major, tried to explain

the role of zero:

I don't exactly know how to explain it, but something having to do
with this first column . . . is the ones, and the next column is the
tens, and maybe something like there's a zero, you know, the tens
there's always one zero, and so you have--God, I don't know. Liketo make it balance out for the tens you'd have to add the zero and
for the hundreds you'd have to add two zeros. Something to that
effect. 1 don't know.

In some of these cases, interpreting what the prospective teachers

understood about place value was difficult. Although their answers focused on

how to write the partial products, it is not clear what that meant to them.

People could talk about the importance of zero as a "placeholder" and mean

simply that using zeros helps one remember to get the numbers lined up

correctly.

Some prospective teachers who talked about zeros did elaborate their

answers very explicitly and their responses reveal different kinds of thinking

chat can underlie answers focused on "putting down zeros." The responses of

Patty and Mike, both elementary teacher candidates, illustrate such differ-

ences in thinking. Patty said she would show pupils to "physically put a zero

every time you moved down a line." She explained that "zero doesn't add

anything more to the problem. It's just empty. But instead of having an

empty space, you have something to fill in the space so that you can use it as

a guideline."

Mike also said he would "make it mandatory that the zeros start showing

up" on his pupils' papers. But he explained it differently. He said he would

"have to explain about that not being 123 x 4. That's 123 x 4Q, which is a

multiple of 12--which has that zero on the right side which is why the zero

has to be there."
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Both Patty and Mike would have their pupils put the zeros down, yet their

explanations revealed strikingly different understandings of the role of zero

in our decimal positional numeration system. Patty saw the zero as useful for

keeping the columns of numbers lined up but says that zero "adds nothing" to

the number. Her statement suggested that she confused "adding zero" z2 a

number (78 + 0 78; with the role of zero in a pumeral (e.g., 78Q). Mike

knew that 123 is multiplied by 5, 40, and 600. He said the zeros "have to be

there" because the products are "a multiple of 10 off." Still, his response

did not show what he understood about the zeros in place value numeration.

Was it a rule he had memorized--that multiples of 10 have one zero, multiples

of 100 have two zeros, and so forth? Or did he understand why putting a zero

"on the right side" produces a number that is ten times the original?

Partial and inexplicit understanding. Those who mentioned "places" and

"ones, tens, and hundreds" may have had a partial, fuzzy, understanding of the

underlying concepts of place value. Sore students figured it out in the

course of answering the question. Becky, a post-B.A. student with an under-

graduate mathematics major, was one of these. She began her answer much as

many others did, focusing on "moving over" from column to column:

You start in the units column and you multiply that, and then you
start in your tens column and so you have to start in your tens
column of the next one and you multiply 4 x 123 and then you move
over into your hundreds column over here where you're taking 6 x
123.

Then she talked about how she was taught to "put the zeros there because it

helped me line up my columns." She pondered this aloud:

A lot of the time you say, "Well, put a zero here, put a zero there,
and zero there, and you put a zero here, and a zero there," and you
get into the method of it and you know that you put a zero here, but
they don't really understand why. And I think it goes back to the
units and tens and hundreds and all that. And that might be an
easier way to take a look at it. Cause you're going to take 5 times
that, and you take 40, and then 600, and you can see where those
zeros come from.
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She still wasn't entirely clear about this, though. She said that "when you

take the 4 or the 40, you're gonna want to start in, understand that you'm

working with tens now, so you watt to move into the tens column." Becky

stopped suddenly and said, "God, I don't know any other way that I'd be Fble

to describe ..: than, I'd have to think about it." She paused and looked at

the problem. Suddenly she realized that 123 x 40 "is going to be the same as

this (492] with a zero on it!" She talked to herself under her breath and

then a few moments later looked up and said, "Wow, I haven't even thought

about it that way before!
. . . that's where those zeros come from, 2h! Wow.

okay."

Although Becky could multiply correctly, she did not know the mathe-

matical principles underlying the procedure. She was, however, able to put

different pieces of understanding together and figure it out as she talked.

Others who lacked explicit understanding also seemed to realize that there was

more to know than just procedures, but could not always uncover the deeper

levels. Sarah, an elementary major, struggled and then gave up. Her answer

seemed to focus on the rules of lining up the numbers:

I would explain that every time you move over this isn't ones, this
is tens, so it's ten more, so you have to have an extra ten there,
you have to put the zero there to hold it in place. Does that make
sense?

I asked if it made sense to ha. She replied, "Oh, I know what I'm

saying, I know what I'm thinking, I just, I don't know if I can explain

it. . . .1 guess it's because the stuff is so basic me." What Sarah could

la was that "you have to put the zero there to hold it in place." Moreover,

her explanation that in the tens place "it's ten T2re" misrepresents the fact

that the value of the tens place is ten times more. Still, her comment that

she knew what she was thinking but does not know if she can explain it is
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worth pondering. Sarah seemed to have part of the idea, that something about

the value of the places mattered, but was unable to pull it together.

Tacit Versus Explicit Ways of Knowing

Assuming that people have conceptual knowledge of procedures which they

have learned to perform is a fallacy (Hatano, 1982). As one of the math majors

reflected when he tried to explain the basis for the multiplication procedure,

"I absolutely do it (multiplication] by the rote process--I would have to

think about it." Certainly many children and adults go through mathematical

motions without ever understanding the underlying principles or meaning. For

example, while most people can divide fractions using the rule to "invert and

multiply," very few are able to connect any meaning to the procedure (Ball,

1988a; NCRTE data, see Ball, in press).6

Still, mathematical understanding may also be tacit. Successful mathe-

maticians can unravel perplexing problems without being able to articulate all

of what they know. Not unrelated to Schon's (1983) "knowing-in-action," the

mathematicians' work reflects both tacit understanding and intuitive and

habituated actions. Experts in all domains, while able to perform skillfully,

may not always be able to specify the components of or bases for their

actions. Their activity nevertheless implies knowledge. Similarly, in

everyday life, people understand things which they cannot articulate. For

instance, a woman may find her way around the town she grew up in, identifying

friends' homes and old hangouts, yet not be able to give directions to a

visitor. A man may use colloquial French expressions in speaking French but

be unable to explain their meaning to a fellow American.

Polyani (1958) describes what he calls the "ineffable domain"--those

things about which our tacit understandir.0 far exceeds our capacity to
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articulate what we know. He argues further that "nothing we know can be said

precisely, and so what I call 'ineffable' may simply mean something I know

and can describe even less precisely than usual, or even only very vaguely"

(p. 88). It is unclear whether we would want to say that the woman understands

her way around less well than someone who can give directions, or that the man

understands French less well than someone who can translate. Clumsy attempts'

articulate understanding may reflect an area in which, according to Polyani

(1958) the tacit predominates.

In contrast, apparent clumsiness in expression may not be clumsy o.c

inarticulate at all, but rather may reflect how the speaker actually under-

stands what he or she is talking about. Orr (1987) argues that teachers often

"fill in" the gaps in what their pupils say, assuming they know what the

pupils "mean." She said that when her high schc3l geometry students would

talk about distances as locations and locations as distances, she thought

these were careless mistakes or awkward woreing. Suddenly it occurred to her

that these nonstandard ways of talking might actually represent nonstandard

understandings of the relationship between location and distance. She began

asking some different questions of her students to try to elicit what they

understood--asking them to construct diagrams showing where certain cities

were located and the distances among them, for example. She discovered in

case after case that her students' explanations were accurate reflections of

how they were thinking.

Just like mathematicians, ordinary people do things in mathematics--and

do them correctly--which they cannot, however, explain. The prospective

teachers whom I interviewed all clearly knew the steps of the traditional

procedure for multiplying large numbers and could calculate the answer

correctly. Yet very few had examined this habituated procedure. Almost no one
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was able to talk about Nhz the numbers "move over" in the partial products,

except to say that the product of 123 x 4 must be "lined up under the 4

because that's what you're multiplying by." This raises two issues critical

for research on teacher knowledge: one methodological and one theoretical.

What do teachers understand? Problems of inference. Analyzing teachers'

knowledge is complicated by the extent to which they are able to talk or

otherwise represent that knowledge. If someone talks about "lining up the

numbers," one cannot fairly assume that the person has no understanding of the

role of place value in the multiplication algorithm. At a tacit level, the

person may understand that 123 x 4 is realLy 123 x 4Q, but may never explicit-

ly consider this in performing or thinking about the procedure. This issue

clearly presents methodological problems of inference in studies of teachers'

subject matter knowledge. A second consideration, however, affords a way out

of this methodological tangle.

What do teachers need to know? Tacit knowledge, whatever its role in

independent mathematical activity, is inadequate for teaching. In order to

help someone else understand and do mathematics, being able to "do it" oneself-

is not sufficient. A necessary level of knowledge for teaching involves being

able to talk about mathematics, not just describing the steps for following an

algorithm, but also about the judgments made and the meanings and reasons for

certain relationships or procedures.? Explicit knowledge of mathematics

entails more than saying the words of mathematical statements or formulas;

rather, it must include language that goes beyond the surface mathematical

representation. Explicit knowledge involves reasons and relationships: being

able to explain Nhy, as well as being able to relate particular ideas or

procedures to others within mathematics. This is more than "metacognitive

awareness" of the processes used in solving a mathematics problem or carrying
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out a procedure; it includes the ability to talk about and model concepts

and procedures.8

The Degree of Connectedness Within
Teachers' Substantive Knowledge of Mathematics

To investigate the degree to which teachers' knowledge of place value is

connected across contexts, the elementary teacher candidates' understanding of

place value was explored in a structured exercise focused on teaching subtrac-

tion with regrouping (another procedure dependent on concepts of place value).

In this exercise, which was longer than the rest, the teacher candidates were

asked to examine a section from a second-grade math book. This section (two

pages) dealt with subtracting two-digit numbers with regrouping. The teacher

candidates were asked to appraise the section, to talk about what they

perceived as its strengths and weaknesses, and then to describe how they might

go about helping second graders to learn "this." I did not specify what

"this" was because I wanted to see what they would focus on. I also asked

them what they thought pupils would need to know before they could learn this,.

and what they would use as evidence that their pupils were "getting it."

Finally they examined an actual second grader's work on one of the pages, and

were asked to talk about what they thought she understood and what they would

do next with her.

In their responses, almost all of the teacher candidates focused explicitly

on concepts of place value. Their responses showed that they were aware that

"tens and ones" played some sort of role in teaching subtraction with regroup-

ing (which they all referred to as "borrowing ").9 For some, this awareness of

tens and ones was at the surface, readily accessible. For example, Tara

described what she would say:

29

24



I would say, you know, obviously these numbers, you can't subtract
in your head. Alright, you have to cross out one of the tens from
the top. And put it over in the ones column on the top, so you are
able to subtract the two numbers. And then when you cross that tens
number, change it, like subtract 1 from it. So you change, like if
it was 64, change it to uh, you know, the 6 to a 5, and the 4 to a
14. And maybe I would show them, like 64, like maybe I would write
64 on the board. And then put that it equals 50 plus 14, so they
see it is still the same amount.

5 14

Tara, in the midst of a procedural description ("change the 6 to a 5"),

explicitly added an important piece of conceptual understanding: that 64

equals 50 plus 14 and so the crossing out has not changed the value of the

number.

Almost all the teacher candidates were more explicit about place value

when talking about subtraction with regrouping than they were when they

discussed the multiplication algorithm. With multiplication, for instance,

Tara focused on "lining up the numbers" and "shifting things over" on each

line. She did not seem to understand that the partial product written as 492

was really 4920 ("adding the zero just keeps everything in i=e"). Yet, in

talking about subtraction with regrouping, Tara talked explicitly about 50 +

14 being "the same amount" as 64.

The teacher candidates seemed to understand the role of "tens and ones,"

or place value, in "borrowing" but did not connect that understanding with the

multiplication algorithm. Their understanding of piece value was compartmen-

talized within specific contexts (e.g., borrowing), and not readily accessible

in other relevant ones (e.g., multiplication computation). Similar evidence

of fragmented understandings emerged within other topics examined in the

interviews -- division, for example. Prospective teachers did not connect the

concept of division across different division contexts: division of fractions,
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division by zero, and division in algebra. Instead, they treated each as a

specific case, for which they had to invoke a particular rule or procedure.1°

These results point to the importance of investigating the connections within

teachers' substantive understanding of mathematics. In seeking to examine

what teachers know, researchers should create opportunities to explore

teachers' knowledge of particular concepts across different contexts or from a

variety of perspectives.

The Interaction of Knowledge Of and About Mathematics

In addition to the explicitness and connectedness of teachers' knowledge

of concepts and procedures, another critical area of inquiry and analysis is

the way in which their ideas about mathematics influence their representations

a mathematics. What do they emphasize? What stands out to them about the

mathematical issues they confront?

The prospective teachers tended to focus on the procedures of multiplica-

tion for reasons that also went beyond the nature of their substantive

understanding of place value and had more to do with their ideas about

mathematics. Some of the predominant assumptions included the following:

o Doing mathematics means following set procedures step-by-step toarrive at answers.

o Knowing mathematics means knowing "how to do it."

o Mathematics is largely an arbitrary collection of facts and rules.

o A primary reason to learn mathematics is to progress to the next
level in school.

o Another main purpose for learning math is to be able to calculate
prices at the store.

o Most mathematical ideas have little or no relationship to real
objects and therefore can be represented only symbolically.
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The prospective teachers' assumptions about the nature of mathematical

knowledge and what it means to know somethingin mathematics formed the

boundaries of what they considered to be a response on all of the intervi.w

questions. In talking about the multiplication question, for example, one

commented that "you just have to move the number over a place value every

time--it's just knot ng how to do something." Several others vowed that they

would "enforce" or "make mandatory" that pupils use "placeholders" in order to

remember to move the numbers over on each row. No one suggested using

objects, pictures, or real situations to model the procedure.

Obviously the prospective teachers' ideas about mathematics do not exist

separately from their substantive understandings of particular concepts or

procedures. Most of them did not have access to any explicit understanding of

why the multiplication algorithm works. As such, they could do nothing else

but respond in terms of rules and procedures. Still, at the same time, many

were emphatic about the importance of teaching students to follow the steps

correctly and they tried to think of ways to "imbed" those steps into stu-

dents' heads, rather than seeking to figure out the underlying ideas.

Although people have many ideas about the nature of mathematics, these

ideas are generally implicit, built up out of years of experience in math

classrooms and from living in a culture in which mathematics is both revered

and reviled. While such ideas influenced the ways in which they experienced

mathematics, the prospective teachers seemed to take their assumptions about

mathematics for granted. Unlike their understandings of the substance of

mathematics, which some of them wished to increase or deepen, the teacher

candidates did not focus on their understandings about mathematics. They did

not seem dissatisfied with them, nor did they even seem to think explicitly

about them.
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The Role of Subject Matter _Knowledge in Teaching Mathematics.

The discussion thus far shows that seriously examining and analyzing

teachers' knowledge of mathematics is a complicated endeavor. Another knot in

the pursuit of understanding the role of subject matter knowledge in teaching

mathematics, however, lies in the nonlinear relationship between knowledge of

mathematics and teaching. In teaching, teachers' understandings and beliefs

about mathematics interact with their ideas about the teaching and learning of

mathematics and their ideas about pupils, teachers, and the context of

classrooms.

To make this assertion more concrete, put yourself in a math teacher's

shoes. Imagine you are teaching first grade and you are teaching your

students to identify geometric shapes. One little girl points to the blue

wooden square and says that it's a rectangle. Then another child tilts the

square ane says that now it is a diamond.

Er

How would you respond? Or suppose you are a high school math teacher. Bored

and frustrated, the students in your fifth-period geometry class demand to

know why they have to learn proofs. What would you say? Before reading

further, take a moment to consider what you would do or say next.

Now consider your responses. The choices you made in each of these

situations was based on wnat you interpreted it to be about. In other words,
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teaching is as much a process of problem setting as it one of problem solving.

Your interpretation of each situation, perhaps implicit, was shaped by two

main factors: your knowledge about pupils of d, vent ages and your under-

standing of the mathematics involved. For instance, did you think that either

of the children in the first example had said something either incorrect or

insightful? Gan a square be correctly labeled a rectangle or a diamond? Is a

diamond a mathematical term? What is the effect of changing the orientation

of a geometric shape? How does one answer such questions in mathematics? Are

these issues things that first graders can or need to understand? Would

exploring the hierarchical relationship between rectangles and squares be

confusing for the rest of the class?

Ira the second example, why did you think these high school students were

bored and frustrated? Maybe you hated proofs in high school, too, and you

sympathized with them. Maybe you thought the pupils were just trying to get

you off on a tangent. Why 42 you think you are teaching proofs? These

questions, and others like them, played a role in the way you interpreted and

defined each situation.

Having framed each situation, your response--what you think you would

42--was then nested within your assumptions about good math teaching. These

assumptions are grounded in your ideas about how pupils of particular ages

learn, what you believe about the teacher's role, what you think is important

to learn in math and what you know about the school mathematics curriculum, as

well as your ideas about the context of classroom learning. Your own under-

standing of mathematics is a critical factor in this interplay of interpreta-

tion and response in teaching mathematics.

The examples illustrate that the role of subject matter knowledge in

teaching can be more complicated than whether or not you can define a
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rectangle. But-, what matters about your knowledge of mathematics depends on a

host of other factors which, taken together, comprise your view of mathematics

teaching. It is a cycle: What you need to understand about shapes or proofs

depends on what you think the point of teaching geometry is, which is in turn

connected to your larger understanding of mathematics in general, and geometry

in particular. Unanimity about good math teaching does not exist among

mathematics educators, researchers, or teachers; to gloss over such differ-

ences of view is to doom current research efforts to a new set of failures.

To establish this argument, three cases of the teaching of long multi-

plication in fourth grade are presented. The three teachers are all teaching

the same topic, to the same age students, and, in the vignettes, arr at

similar points in their work on this topic. However, because of what these

three teachers understand about mathematics, what they believe about teaching

and learning mathematics, about pupils, and about the context of classroom

teaching, they approach the teaching of multiplication in distinctly different

ways. The purpose of examining these cases is to highlight the role of

subject matter knowledge in teaching mathematics, showing the ways in which

subject matter knowledge interacts with other kinds of knowledge in teaching

mathematics. After each case, each teacher's approach and the factors that

seem to shape that approach are summarized. Following the three cases is an

analytic discussion of the three cases and what they demonstrate about the

interaction of subject matter knowledge in teaching mathematics.

Bridget Smithll

Bridget Smith teaches in a small suburban community of white middle class

families. She has been teaching for over 20 years. Her preferred approach to

teaching math is to "individualize"--allowing the pupils to proceed at their
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own pace through the text material and, when necessary, "going over and

reteaching with them skills that they either had forgotten or had never been

taught." Sometimes she works with the whole grow. if she wants to "expose all

of them" to something they haven't yet done--such as long division or multi-

plying by two numbers--or if the pupils are unable to work well alone, which

is the case with this year's group.

Smith believes that some of her pupils are naturally good at math while

others have personalities that make it difficult for them to comprehend

mathematics at all. She describes one of her best students:

He is capable of listening to a direction and following it and
catching on very quickly. He has got, he has just got real good
math sense. Very bright boy . . . he just has a real uncanny sense
of just listening and it all makes sense to him. It just makes
sense.

She thinks "it is just something about him" that enables him to be successful

in doing math. In zontrast, her struggling studerts

always have to be reminded that they have to borrow in subtracting.
They know how to do it but to give them a problem if they have not
been working in subtracting, they just take the smallest number away
from the largest number and cannot understand why it is wrong. They
have to be reminded to move, if they multiply by a second number, to
go over one place. And in dividing by two numbers, they just cannot
handle that at all.

Smith believes that if researchers could figure out "what kinds of per-

sonalities are like that," she might better be able to help these kinds of

pupils "catch on."

Smith's goal in teaching math is to teach for mastery of the procedures

required in fourth grade: adding, subtracting, multiplying, and dividing.

She explens, "What I am after is the answer." This Is important to her

b-,cause the pupils' coir'tational skills determine their placements into

groups in fifth grade. She finds that, for many of her students, it is just a

natter of remembering what to do. For example, on Mondays, they often have
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forgotten the steps of the procedures and need to be reminded. Then their

papers are better on Tuesday.

To help them remember, Smith gives her students mnemonic aids. For

exempla, to remind them what to do in long division, she wrote the following

on the board:

x

bring down

To check division:
x ans by number outside

and + remainder R

This mnemonic represented the steps of the division algorithm--"divide,

multiply, subtract, bring down" and the process by which division solutions

can be "checked."

I presented Smith with the place value in multiplication question

discussed in the last section. It was a familiar problem to her since she

teaches multiplication. She said she would try to

get the students to see that when they multiply, well, 3 x 5, and
that would come under the 5. And then because we have used that,
that becomes a zero and they could hold that place with a zero if
they want to. And then when they multiply 3 x 4, it would come in
the same column as the 4. And when you multiply 3 times 6, it is in
the same column as the 6.

123
g 645
615

492
738

79335

She explained that, although the second partial product IA 4,92Q and that is

why the zero makes sense, she gives her pupils "the option" about putting the

zeros in because some students get "very confused about the zero." Although

Smith knows why the 492 is shifted over (i.e., because it is really 4,920),

she said she does not talk with her students about the meaning of the



procedure. Her concern is to get the students to be able to perform the

computation and so she emphasizes using the zero only to help them "hold the

place" and to remember to move one column over on each line.

TeacIling multijalication. Smith's approach to helping her students learn

to multiply large numbers is to provide reminders, practice, and feedback.

One day she starts class by distributing a ditto with multiplication problems.

She has been working on multiplication with her class for a while, but does

not think they have entirely mastered it. Without comment or question, the 20

students begin the computations; the room is absolutely silent. Smith has

written a reminder on the board:

x
x

signifying the steps for multiplying large numbers--multiply, multiply, then

add. Smith walks around, looking over pupils' shoulders at their work. She

pats one of the girls on the shoulder, smiles, and comments quietly, "Good

job!" She circulates to other students, placing her hand on their shoulders

as she pauses to glance at their papers.

After about 15 minutes everyone has completed the ditto and they have

turned them into the basket of finished assignments. Smith announces that

the class will now go over the problems together on the board so that "you can

see if you were on the right track." She writes the first five problems on

the board and calls five pupils up to do them in front of the class. Since

they have turned their papers in, they are doing these from scratch, not

copying their own work. When they are done, Smith checks each one against

her answer sheet, and marks a large C above each one that is correct.

Discovering two that are incorrect, she clucks: "Uh-uh-uh-uh-uh! We're doing

AultiVlicstion here." She has those two children return to the board to redo

their problems.
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By now, the noise level is high and few children are looking at the

board. Smith erases the first five, and writes three more problems on the

board. She calls students to come up to do them, including the "bonus

problem," a 3-digit by 3-digit multiplication, something she said they had not
yet been taught. She picks Jon, her best student, to do the bonus problem.

223
x 417

Smith checks over the students' work on the board and then asks, "Anybody
have any questions about the more difficult problems? How many of you feel

you had the bonus question right?" She walks them through it: "How many of

you remember--when you multiply by the 7, you put it here [under the 7], when

you multiply by the 1, you put s zero? Then when you multiply by another

number, you put 1E2 zeroes here." She asks again if anyone has any questions.

No one does. She reminds them of their social studies homework for tomorrow

and the class is dismissed.

Smith's approach. Ms. Smith thinks it is most important for students to

become proficient in the multiplication algorithm, to be able to put together
_

the steps in order to produce the right answer. Her eye is fixed on her

students' future in school, that ia, on their placement level in middle

school. What she emphasizes derives from this concentration. Although she

understands the conceptual basis for the rule to "shift the numbers over," she

does not feel this is important for her students to understand: No one will

expect them to know that in fifth grade (or ever). Her assessment of her

students' ability also reflects her conception of mathematics as a set of

rules to remember and follow: The better students listen well and follow

directions; the weaker ones have to be reminded all the time.

Overall, correct answers are Smith's goal and she is the source of thqse

answers in her class. She checks the students' written work snd grades it.
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When she has pupils do problems in front of the class, she herself marks them

right or wrong. Smith's purpose in going over the assigned problems is so

that stud.ts can see the right answers, not to discuss the reasonableness of

the answers or the process by which they were obtained. When two students got

wrong answers at the board, Smith had them redo the problems; she did not ask

the others to try to figure out where the errors lay.

Interestingly, she did offer them a problem which they have not been

taught to do (a 3-digit times 3-digit multiplication). In keeping with her

belief that math just makes sense to some students, though, she picks her best

student to do this one at the board. When he gets it right, she does not

choose to engage the class in a discussion of what he did or why it made

sense. Instead, she tells them the ,..teps of the procedure and asks if anyone

has any questions.

Finally, Smith's approach is based on her belief that students learn

mathematics by independently practicing examples in a quiet setting until they

remember the steps. Her role is to give them structured opportunities to

practice, provides them with helpful mnemonic aids to reduce their tendency to

forget parts of the procedures, and confirms the accuracy of their work. The

next teacher seems in some ways to take a similar approach. yet some sig-

nificant differences in emphasis and rationale are apparent, reflecting a

different interaction among subject matter knowledge, ideas about teaching and

learning, about learners, and about the context of is classroom.

Belinda Rosen12

A teacher for over 10 years, Belinda Rosen teaches in a white middle

class suburban community. Her school regroups children across classes for

mathematics and reading instruction, and Belinda receives the weakest students
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in the fourth grade. She uses a whole group approach to teaching math and

focuses heavily on computational skills. She is, however, very torn about the

appropriateness of this focus, wondering how much time she should spend on

computational skills on one hand and problem solvaig on the other. She

realizes that "math is not just computation and the books are written as if

math were just computation." This pulls !7.1r to do "a variety of things," suet

as "time, money, graphs, and Cuisenaire rods." At the same time, she ac-

knowledges that her pupils will "have to be able to subtract if they are going

to have a checkbook" or buy wallpaper. In addition, they must know how to

add, subtract, multiply, and divide for fifth grade.

Rosen's goals are shaped by her ideas about her pupils. Because they are

weak, she believes she should emphasize following directions and understanding

math vocabulary: "To really get that clear when you say product, what does

that mean, what does that word key, you know?--That it should be multiplica-

tion." She said she tries to "inculcate" them with some of the essential

material, so that "when and if something clicks," they'll have had exposure to

it before. Rosen also wants the students to develop more confidence that

they can figure things out for themselves and to enjoy math class. She thinks

variety is important just to help her pupils feel happy about coming to class,

and she gives little rewards to encourage them.

Rosen thinks that some students are perhaps "math disabled." They may

have "great reasoning ability," but they cannot remember what they have been

taught from one day to the next: Every day is "a bran4 new day." While she

cares about finding ways to help these students and believes she can "get to

them eventually," she thinks some approaches would not work with her class

because they would not be able to handle them. "Discipline" is her least
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favorite part of teaching, and she thinks that these weaker students tend to

be more distractable and have more behavior problems.

When I presented Rosen with the place value in multiplication question

she thought that t-sching the students to "do a placeholder" would help. She

said she would emphasize the sequence of steps and show them that "the first

line down is one placeholder, second one down is two placeholders." Her

strategy would be to do several problems together with them, starting with

easy ones that "didn't have regrouping or hard math facts" so that she could

emphasize "the process."

Rosen also suggested a couple of other strategies that she thought would

help. She said she has the students put an asterisk inside the placeholder

(the zero) so that they don't "get confused with other zeros":

It the first one that they had to multiply in that row was, say, 5 x
8, and they are going to put down another zero, I don't want them to
get confused about whether they had actually already put their
placeholder down.

375

&12
1125

0

She said that, with her students, she would also emphasize writing neatly

because poor penmanship is often the root of errors in lining the numbers up

correctly. She said she sometimes uses graph paper to help them keep the

number lined up.

Teaching multiplication. Rosen has been working on multiplication with

her pupils for several days. One day she asks a pupil to distribute chalk to

the ot:Itrs, all of whom have individual slates at their desks, and says that

they are going to work on 3-digit times 2-digit multiplication. She announces

that she will give a sticker to everyone who works on multiplication if she

doesn't have to talk to them about their behavior. The following series

illustrates :.he detail with which Rosen proceeded to "work on" multiplication
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with her class. She writes the following on the board and asks what the first

step is:

243

ic_22

Ronnie: 3 x 2.
Rosen: We're going to take the number that's in the ones

column and we're going to multiply it, and 3 x 2,
Karen?

Karen: 6
Rosen: And what's our next step?
S: 2 x 4
Rosen: 2 x 4. And Darrell, what are you going to say for 2 x4?
Darrell: (pause, being silly with a silly voice) 4
Rosen: 4? 1 x 4 is 4. What's 2 x 4?
Darrell: 2 x 4? . . . 8

(Several other students applaud.)
Rosen: And then?
S: 2 x 2
Rosen: And what's our next step?
S: Put the placeholder down.

Rosen repeats, "Put the placeholder down," and writes a zero with an asterisk

inside under the ones column in the second row.

243

N22
486

e

Rosen: We're going to multiply the number in the tens column
by 3.

S: 6

The pupils and teacher continue in this manner until they have finished

multiplying. She reminds them to put a plus sign down.

243

x 22

486
+ 4860

Rosen: 6 + 0? Karen?
Karen: 6

Rosen: And then?
S: 14

(Rosen writes the 4 down and carries the 1.)
Rosen: Darrell, take over?
Darrell: 8 x 4 . . .
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Rosen breaks in: "We're going to Add, remember, Darrell?
Remember about Adding?"

Darrell: $ + 4 is 12.

They finish the problem together. Rosen says she is going to give each of

them a problem, "but before I do, let's review the steps. What's our first

step?"

S: Multiply?
Rosen: We're going to multiply by the number in the ones

place. (She writes "mult x #1's place.") Jim, what's
our next step?
Placeholder.

Rosen: Then we're going to do placeholder. (She writes
"placeholder. ")

What ar3 we going to do next?
S: Multiply.
Rosen: We're going to multiply by the number in the tens

place.
(She writes "mult x #10 place.")
Rosen: Next step? Lynn?
Lynn: Add
(Rosen writes "ackL")

1. Mult x #1's place
2. Plsceholder
3. mult x #10's place
4. Add

The teacher writes another problem on the board and the children procced

to do it on their slates. She walks around helping kids, mostly reminding

them about the placeholder step and urging them to work slowly and carefully.

Rosen talks one girl through adding up the products. When everyone is done,

Rosen goes through the problem, step by step, on the board. She gives the

pupils a few more problems to do; the last one requires regrouping (none of

the others have). Before class ends, they go over this last one together.

Rosen walks them through the steps, asking different pupils to calculate each

step as before. Rosen passes out a ditto with more multiplication problems

and assigns the first two rows for seatwork.

Rosen's approach. Ms. Rosen is driven by her concern for her weak pupils

and her ideas about what they need. She wants them to be successful in the
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school curriculum, but knows that this has been very difficult for them. She

tries to offer them as much support as possible to enable them to do multi-

plication correctly. She not only spells out the steps in detail and reviews

them several tines, she also carefully walks the class through many problems

together.

Rosen is aware of many little things that go wrong in her pupils' use of

the algorithm--such as forgetting whether the zero one has written down is a

"placeholder" or part of the next computational step--and she tries to build

in safeguards--such as the asterisk--to ensure that pupils will not fall into

these traps. One of these pitfalls is that students forget to ad4 the partial

products and multiply them instead. Rosen tells the students to put an

asterisk inside the placeholder zero and to write down a plus sign in order to

help them remember what to do. For Rosen, learning the steps is what there is

to know about multiplication. The help she provides is designed to enable

these students, who have trouble learning math, to be successful.

The students are kept,active in Rosen's class--with paper and pencil

tasks, with slates, or by being called upon to provide answers - because she

thinks they are very distractable and that she must keep their attention in

order to help them learn. She even offers stickers to encourage them to stay

on task. On some days, Rosen provides a break from computation by doing

"time, money, graphs, or Cuisenaire rods." This list reflects a conception

of worthwhile mathematics curriculum shaped by beliefs about pupils, grounded

more in utility and fun than in mathematical significance. Time and money are

mathematical topics in school only; Cuisenaire rods are a representational

tool, not content.

Rosen is the one with the answers, the source of validation in her

classroom. She leads them skillfully through the steps ("And what do we do
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next? Whit's our next step?") When they say something wrong--for example,

when Darrell says that 2 x 4 is 4--she corrects them. She does not wait to

see if other students object or if the student who has made the error catches

it. Rosen says she wants her students to be able to "figure things out for

themselves"; what she means is that she wants them to be able to follow the

procedures without guidance. Although she might not argue with such a goal,

she is not focusing on developing conceptual autonomy or epistemic power.

The third teacher approaches the teaching of multiplication in an

entirely different way than either Smith or Rosen. Her approach, driven by a

view of mathematics as a discipline, reflects a different pattern of interac-

tion among subject matter, teaching and learning, learners, and the classroom

context.

Magdalene Lampert"

Magdalene Lampert teaches fourth-grade mathematics in a heterogeneous

school in which over a third of the students speak English as a second

language. An experienced elementary teacher of over 10 years, Lampert is also

a university professor and researcher, who draws on her classroom teaching in

her research and writing. Her students' mathematical skills range broadly,

from those who do not add or subtract accurately to those who can add,

subtract, multiply, and divide with whole numbers. In Lampert's approach to

teaching mathematics, learning what mathematics is and how one engages in it

are goals purposefully coequal and interconnected with acquiring the "stuff"- -

concepts and procedures--of mathematics. Lampert's goal is to help students

acquire the mathematial skills and understanding necessary to judge the

validity of their own ideas and results, in other words, to be "independent

learners" of mathematics (or to be "empowered"; see Prawat, 1988).
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Lampert's pedagogy subtly blends goal and process. For example, when

students give answers or make assertions, Lampert almost always comes back

with, "Why do you think that ?" or "How did you figure that out?" She explains

that this strategy helps her to understand how her students are thinking,

critical information for subsequent pedagogical decisions. Yet she also uses

this strategy because it contributes to her goal of fostering "a habit of

discourse in the classroom in which work in mathematics is referred back to

the knower to answer questions of reasonability" (Lampert, 1986, p. 317).

In her teaching, Lampert tries to balance her pedagogical responsibility

to make sure students learn what they are supposed to know with her commitment

to helping students invent and construct mathematical ideas -nd procedures.

She, for example, chooses the tasks on which students work. Their solutions,

however, form the basis for the class discussion and further work. Lampert

also introduces various representational systems, such as coins and the number

line, with which students can explore mathematical problems. She models

mathematical thinking and activity, and asks questions that push students to

examine and articulate their ideas.

Although she leads class discussion, its substance grows out of students'

ideas and proposals for strategies. Perhaps most critical in this approach is

her role in guiding the direction, balance, and rhythm of classroom discourse

by deciding which points the group should pursue, which questions to play

down, which issues to table for the moment. This leads to Inevitable dilemmas

about when and how much to intervene in their puzzlements. For example, she

describes an occasion in her class when a heated debate arose about whether

decimal numbers are actually negative. She pondered what she should do:

Should my first priority in the second lesson be simply to tell
these students that decimals are definitely n2 negative numbers?
My wish to present mathematics as a subject in which legitimate
conclusions are based on reasoning, rather than acquiescing to
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teacherly authority led me away from this approach. (Lampert, in
press, p. 24)

Lampert believes that all her students are capable of learning and

engaging in significant mathematics and she corroborates that conviction

frequently, noting with pleasure when her pupils become embroiled with the

meaning of negative numbers or the infinity of numbers between zero and one

(Lampert, in press). She also assumes that elementary school students can be

absorbed by abstract work as well as by problems centered in interesting real-

life contexts. Sometimes she constructs problems that draw on familiar

knowledge, such as money, and at other times sets tasks which are wholly

separate from her pupils' everyday experience.

Lampert, in preparing to teach her students to multiply large numbers,

analyzed what it means to understand multiplication. Knowledge of multiplica-

tion, she decided, could be of four kinds: intuitive, computational, prin-

cipled, or concrete (Lampert, 1986). Intuitive knowledge of multiplication is

reflected in people's informal reasoning in solving real-world multiplication

problems, independent of formal knowledge about multiplication. Computational

knowledge refers to the traditional procedural knowledge taught in school;

principled knowledge is the Ay of computational knowledge--for example,

knowing that 23 x 5 can be calculated by decomposing 23 into 20 + 3, multiply-

ing 20 x 5 and 3 x 5, and adding the resulting products. Concrete knowledge is

being able to represent a problem with objects in order to solve it. Based on

her analysis of the content, Lampert determined that what she wanted was to

provide experiences that would enable her students to strengthen their

competence in each of these four ways of knowing about multiplication and to

help them to build connections among them (p. 314).

Teaching multiplication. In Lampert's (1986) series of lessons on

multiplication she reached a point comparable with Smith and Rosen--midway in
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helping students learn about multiplication. She had decided to engage her

students in telling and illustrating multiplication stories. After a couple

of lessons in which the class constructed stories and pictures to represent

multiplications like 12 x 4, she introduced 2-digit by 2-digit problems. By

now the pupils were familiar with this mode of representation and she felt

they were ready to take on this more complex challenge.

Lampert asks her pupils to come up with a story for 28 x 65. Colleen

suggests 28 glasses with 65 drops of water in each glass. Lampert accepts

this proposal, but sfls she does not want to draw 28 glasses on the board so

she will draw big .ugs that hold the equivalent of 10 glasses. She asks the

class how many jugs and how many glasses she needs in order to represent

Colleen's 28 glasses. They tell her: 2 jugs and 8 glasses. As she draws big

jugs and glasses on the chalkboard, she queries again: How many drops of water

in each glass and in each jug? Once again, students reply Each time a

student answers, Lampert asks the student to explain his or her answer. The

chalkboard drawing looks like this now:
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Next Lampert asks the class how they can find out how many drops of water

there are altogether. They say that they should add the jugs and glasses

together. The pupils understand readily that the two jugs contain a total of

1,300 drops. Lampert then proceeds to teach them a "trick" that makes it

easier to add the 8 glasses together: She suggests that they could take 5

drops of water out of each glass and put them in another container, leaving 60

drops in each glass. She asks the class how many drops would there be in all

the glasses then. Someone explains that it would be 480 with just 40 drops in

the other container. Combining those yields 520 drops, and adding those to the

1,300 equals 1,820.

Lampert points out that by using "clever groupings" they have figured out

28 x 65 without doing any paper-pencil computation. Just as she thinks they

have finished this problem And is ready to move on, however, one of her girls,

Ko, says she has come up with "another way of thinking about it." Lampert,

listening intently, writes Ko's explanation on the board "so as to give it

equal weight in the eyes of the class" (p. 329).

Ko proposes that they could have thought about three jugs. Two jugs

would hold 1,300 drops, but the third would have 2 glasses, or 130 drops, too

much water. She explains that if you remove the 130 drops from the third jug,

you are left with 520 drops (650-130), which, added to the other two jugs

yields a total of 1,820 drops of water. Lampert draws a picture of Ko's idea

on the board and together the class explores why it made sense mathematically.

Lampert spent a few more days using students' stories to draw pictures

and examine the ways in which the numbers could be decomposed, multiplied in

parts, and recombined. Next she constructed assignments which required the

students to make up and Illustrate stories, as well as write the numerical

representations. Sometimes she asked them to decompose and recombine the
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quantities in more than one way. They presented and defended their solutions

to other class members. Lampert moved on from this to work with her class on

the meanings of the steps in paper-pencil computation, using alternative

algorithms (i.e., "no-carry" method) as well as the traditional one.

In writing about this work, Lampert (1986) reflected on the contributions

of this series of lessons to her overall goals in teaching multiplication:

They were using the language and drawings we had practiced to build
a bridge between their intuitive

knowledge about how concrete
knowledge can be grouped for counting and the meaning of arithmetic
procedures using arithmetic symbols. By rewarding them for invent-ing reasonable procedures rather than for simply finding the correct
answer, I was able to communicate

a broader view of what it means toknow mathematics and learn something from what they were doing abouthow they would use mathematical procedures in a concrete context.
(p. 330)

She observed also that her students were gaining in their ability to substan-

tiate, their claims using reasons "that came very close to the steps of a

mathematical proof as well as inventing "legitimate variations on both

concrete and computational procedures" (Lampert, 1986, p. 337).

Lampert's auuroach. Lampert draws the strategy and rationale for her

approach from the discipline of mathematics itself: The goal is to help

students develop mathematical power and to become active participants in

mathematics as a system of human thought. To do this, pupils must learn to

make sense of and use concepts and procedures that others have invented--the

"body" of accumulated knowledge in the discipline--but they also must have

experience in developing and pursuing mathematical hunches themselves,

inventing mathematics, and learning to make mathematical arguments for their

ideas. Good mathematics teaching, according to this perspective, should

result in meaningful understandings of concepts and procedures, but also in

explicit and appropriate understandings 'bout mathematics: what it means to



"do" mathematics and how one establishes the validity of answers, for in-

stance.

While exploring the mathematical foundations of multiplication, Lampert's

students were also encountering some strong and intentional messages about

what it means to "do" and to "know" mathematics. Lampert consciously tried to

ensure that students would have to turn back upon themselves and upon their

mathematical knowledge in order to validate their answers and strategies. She

explains that the essence of her approach is to teach her pupils

to use representational tools to reason about numerical relation-
ships. In the public discourse of the classroom, such reasoning
occurs as argument among peers and between studants and teacher. II
is the ability to participate in such arguments that is the mark of
mathematics learning [emphasis added]. (Lampert, in press)

Lampert's approach thereby fuses assumptions about how learning occurs with a

view.of what it means to do and 4-o know mathematics. Both entail and depend

upon discussion and argument, pursued within a community of shared standards

and interests. In the interest of learning, Lampert strives to create a

classroom culture in which this kind of intellectual activity is the norm

(different from the traditional context of classroom life); within this

culture she simultaneously constructs an explicit curriculum of mathematical

activity.

5mith. Rosen. and Lampert:
What is Mathematics?

Whether they do it consciously or not, teachers represent the subject to

students through their teaching. With the tasks that they select, the

explanations that they provide, and the kinds of things that they emphasize,

teachers convey messages to their student about both the substance and the

nature of mathematical knowledge (McDiarmid, Ball, and Anderson, in press).



Looking at substance first, how do Smith, Rosen, and Lampert represent

multiplication to their students? Smith and Rosen use the symbolic form only,

without connection to concrete or real-world objects. Neither do they

use visual representations. Multiplication is represented as symbolic

manipulation and shorthand language is provided to summarize the procedure so

that students will remember the steps and their order.

Lampert represents multiplication using drawings. While the objects

(containers and water drops) were proposed by a student, Lampert chose the

specific pictorial representation of the student's idea to represent an

essential conceptual component of the procedure: grouping by tens. Instead of

drawing 28 glasses, each with 65 drops of water, she feigned laziness and

suggested drawing jugs that hold the equivalent of 10 glasses. This move

allowed her to represent the decomposition of numbers that underlies the

reasonableness of the multiplication algorithm. At the same time, she was

incorporating student ideas into the process of constructing and using

representational tools in doing mathematics.14

The ways in which Smith, Rosen, and Lampert approach the teaching of

multiplication also reflect and portray to students different views of what

counts as "mathematics"--that is, what students are supposed to learn, what

matters about learning mathematics, what it means to know and to do mathe-

matics, and where the authority for truth lies. In both Smith's and Rosen's

classes, learning multiplication means learning to calculate; mathematics is

thereby synonymous with computation. Students are taught the computational

algorithm which they practice so that they will memorize the procedure and

increase their speed and accuracy in using it. Neither the meaning of the

concepts nor the principles underlying the procedure were addressed. In this

kind of teaching, knowing mathematics means remembering definitions, rules,
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and formulas and doing mathematics is portrayed as a straightforward step-by-

step process. The goals derive from the school curriculum and what students

r'ed in order to move on. Epistemic authority rests with the teacher, who

gives explanations and evaluates the correctness of students' answers.

In Lampert's classroom, students encounter a different view of mathe-

matics. While she teaches the required fourth-grade curriculum, the ways in

which she approaches .t are colored by what she thinks is central to knowing

mathematics. On one hand, she emphasizes meaningful understanding. Students

are helped to acquire knowledge of concepts and procedures, the relationships

among them, and why they work. Although she is teaching the same common

fourth-grade topic as Smith and Rosen, her goals are different. Learning

about multiplication is valued more for what students can learn about numbers,

numeration, and operations with numbers than as an end in itself.

On the other hand, she also explicitly emphasizes the nature and epis-

temology of mathematics. Just as central as understanding mathematical

concepts and procedures is understanding what it means to 42 mathematics,

being able to validate one's own answers, having opportunities to engage in

mathematical argument, and seeing value in mathematics beyond its utility in

familiar everyday settings. Lampert (in press) discusses how the substantive

and epistemological dimensions of mathematical knowledge go hand in hand in

this view of mathematics. She explains that she tries to

shift the locus of authority in the classroom - -away from the teacher
as a judge and the textbook as a standard for judgment and toward
the teacher and students as inquirers who have the power to use
mathematical tools to decide whether an answer or a procedure is
reasonable.

But, she adds, students can do this only if they have meaningful control of

the ideas:

Students will not reason in mathematically appropriate ways about
objects that have no meaning to them; in order for them to learn to
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reason about assertions involving such abstract symbols and opera-
tions as .000056 and a2 + b3, they need to connect these symbols andopera Ans to a domain in which they are competent to "make sense."

, I' t- I i !! I t U
standings. Views of Teaching. Learning, Learners, and Context

These kinds of teaching differ not only in what counts as knowledge of

mathematics, but also in their assumptions about the teaching and learning of

mathematics: about pupils, teachers, and the context of classrooms. What each

of these teachers does is a function of the interactions among these under-

standings, assumptions, and beliefs. Smith's eye is on the fourth-grade

curriculum; she feels responsibid for her students' mastering the required

mate; -.1 in order to go on to the next grade. For Smith, knowing math means

remembering procedures and her teaching approach is based on the assumption

that mathematics is learned through repeated practice and drill. She sees her

role as showing pupils how to do the procedures, assigning and carefully

monitoring their practice, and remetating individual students who have

difficulty.

Like Smith, Rosen also believes that learning mathematics requires

repeated practice. For both teachers, teaching multiplication begins with

explanation and demonstration; the rest of the unit consists of practicing the

procedure. Rosen, however, is more influenced by her view of her students

than is Smith. Because Rosen 5tlieves her students to be weak, even "math

disabled," she takes a more directive role throughout the practice phase than

does Smith. This includes giving pupils tricks, mnel4nics, and shortcuts, as

well as walking them through the procedures over and ovcr Smith's classroom

is very quiet; she assumes that pupils are engaged, and worries less than

Rosen about keeping them in contact with the content. Rosen, who believes her

students to be highly distractible and prone to behavior problems, plans
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activities which control her pupils' engagement with the subject matter. In

both classes, pupils are expected to absorb and retain what they have been

shown.

Lampert makes very different assumptions than either Smith or Rosen about

what there is to be learned and why, as well as about how fourth graders can

learn mathematics. She assumes that students must be actively involved in

constructing their own understandings and meanings both individually and in

groups. Practice takes on an entirely different meaning in this approach than

in either of the other two approaches. Here, instead of a learning view of

practice--that is, practicing mathematics by doing repeated examples of the

skill being taught--students engage in a disciplinary view of practice: the

practice of mathematics. Class activities are designed to involve the

students in what it means to think about and do mathematics as mathematicians

do (Collins, Brown, and Newmann, in press; Lave, 1987).

Lampert's view of her role appears to grow out of the interaction of her

constructivist assumptions about learning and her disciplinary focus. With a

goal of involving students in mathematical community, she must strive for a

balance between helping students acquire established mathematical knowledge

and encouraging them to invent and construct ideas themselves. Lampert

believes, therefore, that the teacher has a critical role to play in facili-

tating students' mathematical learning. She introduces a variety of represen-

tational systems which can be used to reason about mathematics, models

mathematical thinking and activity, and asks questions that push students to

examine and articulate their ideas.

However, perhaps most significant in the classroom context is her role in

guiding the direction, balance, and rhythm of classroom discourse by deciding

which points the group should pursue, which questions to play down, :,rich
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issues to table for the moment, decisions which she makes based on her

knowledge of mathematics. The classroom group is critical in Lampert's

approach for it represents the mathematical community within which students

must establish their claims. In Smith's and Rosen's classes, learning

mathematics is considered an individual matter; the group is a feature of the

classroom context to be managed in fostering individual learning. Smith, in

fact, prefers to "individualize" rather than to work as a group.

Subject Matter Knowledge: A Term in the Pedagogical Eauation

A teacher's understanding of mathematics is a critical part of the

resources available which comprise the realm of pedagogical Possibility in

teaching mathematics. A teacher cannot explai,-. to her students the prin-

ciples underlying the multiplication algorithm if she does not explicitly

understand them herself. The representations she chooses may be mathematical-

ly misleading or may even fail to correspond at all. Yet a teacher who does

understand the role of place value and the distributive property in multiply-

ing large numbers will not necessarily draw upon this understanding in her

teaching, if her ideas abour learners or about learning intervene.

If she thinks, for example, that fourth graders will not profit from such

knowledge, olc that procedural competence should precede conceptual understand-

ing in learning mathematics, she may choose to emphasize memorization of the

algorithm. Two teacher.. who have similar understandings of place value and

numeration ray teach very differently based on differences in their assump-

tions about the teacher's role. One may talk directly about place value and

explicitly show pupils what the digits in each place of a numeral represent.

The other may engage students in a co.nting task which is designed to help
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them discover the power of grouping. These differences are a function of

different assumptions lbout the teaching and learning of mathematics.

Still, a teacher who lacks Lampert's disciplinary knowledge of vithe-

attics will not he able to teach as she does, for her approach to teaching is

not possible without that kind of understanding of and about mathematics.

Making the judgments about which student suggestions to pursue, developing the

tasks that encourage certain kinds of exploration, and conducting fruitful

class discussions--all these tasks depend heavily on the teacher's subject

matter knowledge.

Are all these domains--subject matter, teaching and learning, learners,

and context--coequally influential in teaching mathematics? Or does one

domain tend to drive and shape a particular teacher's approach? Rosen, for

example, seems to start from her ideas about her pupils. Her knowledge of

mathematics, her view of her role, and her assumptions about learning all

appear to be shaped by that starting point. Lampert's approacit, however,

seems clearly rooted in the subject matter; the pedagogy follows. In order to

understand the role of subject matter knowledge in teaching mathematics, we

need to explore the balance and interaction among the critical domains in

different teachers' teaching of mathematics. This includes closely examining

teachers' knowledge of and about mathematics as well as how that knowledge

shapes or is shaped by their other ideas and assumptions.

The other side of the pedagogical equation is student learning. Studying

the whole equation--frw teacher knowledge to teacher thinking to teacher

actions to student learning--is an agenda to which we must return. Research

currently underway tends to focus on only part of the equation. This is

appropriate, for in order to understand the subtle relationships among the

terms, we need better ways of thinking about and studying each part of the
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equation. Past efforts often came up short as a result of unexamined or

simplistic assumptions about subject matter knowledge, teaching, or student

learning, or about the relationship among them. Still, we must keep our eye

on the whole equation, for it is in studying these relationships that we will

better understand what goes into teaching mathematics effectively.

We also need to pursue similer questions in research on teacher learning

if teacher education is to be a more effective. intervention in preparing

people to teach mathematics well (Ball, 1988b). What do prospective teachers

bring with them to teacher education? How do the ideas and understandings

across these domains grow and change over time? We need to investigate the

relative contributions of teachers' own schooling in mathematics, formal

teacher education, and teaching experience to their subject matter knowledge

and their approaches to teaching mathematics.

This paper ends with the reflection from a prospective teacher who, in

trying to teach the concept of permutations, had abruptly discovered that he

needed to revise his assumptions about learning to teach mathematics:

When I decided to be a teacher, I knew there were a lot of things I
had to learn about teaching, but I felt I knew everything there was
to teach my students. During the permutation activities, I found I
was as much a learner of subject matter as I was a learner of the
art of teaching. My education in the future will not be limited to
"how to teach," but also what it is I'm teaching. My knowledge of
math must improve drastically if I am to teach effectively. (Ball,
1988b)

Like many people, he had taken subject matter knowledge for granted in

teaching mathematics. To sum up, three points discussed in this chapter call

this assumption sharply into question. First, learning to do mathematics in

school, given the ways in which it is typically taught, may not equip even the

successful student with adequate or appropriate knowledge of 21 about mathe-

matics. Second, knowing mathematics for oneself may not be the same as

knowing it in order to teach it. While tacit Xnowledge may serve one well
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personally, explicit understanding is necessary for teaching. Finally, sub-

ject matter knowledge does not exist separately in teaching, but shapes and is

shaped by other kinds of knowledge and beliefs.



Footnotes

'Schwab (1961/1978) refers to this as knowledge of the stag of the
discipline.

2The results in this section are drawn from my dissertation research andall names used are pseudonyms. In this study, 19 prospective elementary andsecondary teachers were interviewed at their point of entry into formal
teacher education. I asked them questions to uncover what they knew andbelieved about mathematics, about teaching and learning math, about students,
and about learning to teach. The goal of the research was to learn about the
knowledge and beliefs of these 19 individuals as well as to contribute to thedevelopment of a theoretical framework for the question, "What do prospective
teachers bring with them to teacher education that is likely to affect theirlearning to teach math?" (See Ball, 1988a.)

3Following is a brief exploration of the substantive underpinnings of thequestion. It deals with four importaat ideas in mathematics: division, theconcept of infinity, what it means for something to be "undefined," and thenumber O. In addition, this question elicits respondents' ideas about
mathematical knowledge: Is division by zero understood in terms of a
rule--that is, "you can't divide by zero"--or is it logically related to theconcept of division? Is the answer an arbitrary fact or a reasonable con-clusion?

Division can be represented two ways:

1. I have seven slices of pizza. If I want to serve zero slices
per person, how many portions do I have? (Answer: an infinite
number of portions, or as many or as few portions as you like)

2. I have seven slices of pizza. I want to split the pizza
equally among zero (no) people. How much pizza will each person
get? (Answer: This doesn't make sense. You actually aren't
splitting, or dividing, the pizza at all.)

Note the two different meanings for division. In the first case, the referent
for the answer is a number of portions; in the second case it is the portion
size.

Since the second meaning for division does not make sense here, take a
closer look at the first. What does it mean for there to be an infinite number
of 1:ortions? In a way, it is a kind of oxymoron, for the idea of "portion"
implies some way of dividing into a finite number of parts. Here the point isthat you have endless portions if a portion is "zero amount"--that is, you
could go on "dividing" it foreverand never finish.

The idea that one could "divide" seven forever conflicts with the
definition of division--that is, that dividing something into some finite
number of equal parts that, when recombined, form the whole. Dividing 10 into
five groups, for lAstance, yields groups of two. One can reverse the process:five portions of two equals the original qtantity 10 (5 x 2 10). Dividing
seven by zero does not work this way, however. To divide seven by zero,
theoretically, one could divide as long as one wishes. One might decide to
stop at 15 or 710 or 5,983 groups of zero. Yet, there is no number of
portions of zero that can be recombined to total seven--that is, there is no
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number that can be multiplied by zero to equal seven. Therefore, division by
zero is actually undefined--it does not fit the definition of division.

41 borrow the term "algorithm rhyme" from Blake and Verhille, 1985.

5A provocative finding was the lack of difference by level between the
responses of secondary teacher candidates, who are math majors, and of
elementary teacher candidates, who are not. This issue and its implications
are taken up in Ball (1988a).

6Researchers are currently pursuing critical questions about the rela-
tionship between conceptual and procedural knowledge in mathematics. See, for
example, Hiebert and Lefevre, 1986.

7This requirement of explicit understanding holds even for teachers who
do not choose to teach by telling. Facilitating students' construction of
mathematical understanding, for instance, involves selecting fruitful tasks,
asking good questions, and encouraging helpfully. In order to do this well,
teachers must know what there is to be learned.

8The distinction between tacit and explicit ways of knowing is not
intended as a dichotomy, but rather as a qualitative dimension along which
understanding varies.

9The use of "conceptual" language creates significant problems of
interpretation. In the multiplication question, discussed above, many of the
teacher candidates mentioned "places" and yet did not necessarily seem to
focus on place value. In the subtraction task, most of the prospective
teachers gig seem to be talking about place value--tens and ones. On one hand,
this suggests that they did have some explicit understanding of the decimal
numeration system.

On the other hand, unlike the steps of the multiplication algorithm, the
steps of the "borrowing rhyme" refer explicitly to tens and ones (e.g.,
"borrow one from the tens, move it to the ones"). This may explain why
teacher candidates seemed to focus more on place value when they talked about
subtraction with regrouping.

Mention of "tens and ones" may be more procedural than conceptual,
however. "Borrow one from the tens" is an ambiguous statement. In the example
on page 25 it may mean, literally, take 1 away from the number in the tens
place--that is, cross out the 6 and make it a 5. Or it may mean take 1 un
away from 6 tens, leaving 5 tens. Several responses suggested that referring
to ones and tens is possible without engaging the concept of grouping (and
regrouping) by tens, just as reference to places in the multiplication
algorithm may not signal attention to place value.

10Critical to note here is that the standard school mathematics cur-
riculum to which most prospective teachers have been subjected treats mathe-
matics as discrete bits of knowledge. The results of these interviews with
prospective teachers reflect in large measure the way in which mathematics is
taught in this country.
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11Bridget Smith is a pseudonym. The data about this teacher are part of
the Teacher Education and Teacher Learning Study currently being conducted bythe National Center for Research on Teacher Education. For more information
about the study and, in particular, about the theoretical framework and
instrumentation of the research, see Ball and McDiarmid (in press) or NCRTE(.988).

12Belinda Rosen is a pseudonym. These data are also part of the TeacherEducation and Teacher Learning Study being conducted by the NCRTE.

13Magdalene Lampert (her real name) teaches fourth- and fifth- grade
mathematics and is also a university professor and researcher. The materialin this section is drawn from her own writing about her teaching (Lampert,1986, in press).

14This provides a striking contrast with the way in which many r:ospec-
tive teachers choose representations. They tend to focus more on using media
which will appeal to students (e.g., candies) and often neglect to consider
the mathematical appropriateness of the representation its helpfulness inteaching.
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