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INTRODUCTION

Item response theory (IRT) provides the test developer (for programs
that pretest their items) with powerful tools chat in theory allow the
construction of better tests while simultaneously increasing the efficiency
of the test development process. With IRT, multiple forms of a test can be
constructed to be more parallel than could be done with conventional item
statistics. Test reliability, condicional standard errors of measurement,
and test equating functions could al.1 be estimated before a test was ever
administered as a whole.

The success of the application of such tools depends upon two
important factors: the extent to which IRT is an appropriate approach to the
analysis of the test and items in question, and the extent to which the
theoretical usefulness of the available tools can be realized in the
practical environment of the test developer. In exploring these factors, we
have structured this paper based on issues confronted when implementing a
system of IRT tools for test development at ETS. These issues include:

selecting and assessing the appropriateness of IRT models,
o choosing methods of IRT scaling for item pools,
so a consideration of test scoring strategies, and
m a consideration of IRT tools and their applicability in the

context of different test scoring strategies.

ASSESSMENT OF MODEL FIT

Before one uses any statistical model for any purpose, it is obviously
necessary to insure the model chosen is appropriate fur the data. Statistical
models, such as item response theory, are based on assumptions. The
assumptions of item response theory model are embodied in formulae that
express the relationship between the probability of selecting a particular
response to an item with the statistical characteristics of the item and the
abilities of a person.

The most common type of test item is typically scored either right or
wrong. IRT models appropriate for such binary-scored items differ in
the number of parameters used to describe item characteristics; typically one
or more of three parameters -- item difficulty (b), item discrimination (a),
and lower asymptote (c) -- is used. Models may also differ in the number of
ability dimensions; typically one dimension is used, but some researchers
have been exploring the use of multidimensional IRT models (for example,
Reckase, 1985). Other IRT models exist for more complex item-scoring
strategies, such as the graded response model (Samejima, 1969) and continuous
response model (Samejima, 1972) for responses that can be ordered on the
basis of correctness, the nominal response model (Bock, 1972) that utilizes
information contained in incorrect responses, and partial credit model
(Masters, 1982). The first step in using item response theory to develop a
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test is to choose one or more IRT models for consideration, based on your
knowledge of the test items and the assumptions of each model. The next step
is to test the assumptions of the chosen model for each testing program for
which you are considering its use.

This paper deals only with models for binary-scored items since all
items currently used in ETS testing programs are scored either right or
wrong. However, some of the methods described here would be appropriate,
with some modification, for other types of item scoring strategies and
corresponding models. The models discussed here will be unidimensional ones;
there are many unresolved issues regarding multidimensional models.

There are two assumptions of the most commonly used item response
models: unidimensionality, and particular shape of the item response
function. There are a number of ways that unidimensionality has been
assessed in the item response theory literature. Hambleton and Swaminathan
(1985, Chapter 8) and Hambleton and Rogers (1986) have written comprehensive
reviews of the IRT model-fit literature, and we will not try to replicate
their efforts here

There is one tint with regard to dimensionality assessment that we
would like to emphasize, however. The apparently straightforward approach of
factor analyzing binary test data is far more complicated than it appears.
Phi coefficients are not appropriate for the factor analysis of binary data.
Tetrachoric correlations are difficult to estimate accurately and, when based
on responses to multiple-choice items, should be corrected for guessing.
Also, in item response theory, the relationship between item responses and
the underlying trait is not linear, while most factor analytic methods
require a linear relationship. What is needed is a factor analytic method
based on item response theory. Such a method is new available.

Full-information factor analysis (Bock, Gibbons, & Muraki, 1985), as
implemented in the program TESTFACT (Wilson, Wood, & Gibbons, 1984) uses the
marginal maximum likelihood method (Bock & Aitken, 1981) to estimate,
(reparameterized) discrimination and difficulty parameters for
multidimensional IRT models. The lower asymptote for each item is treated as
a known value that is input by the program user. TESTFACT allows a stepwise
factor analysis to be performed. First a one-factor solution is obtained,
then a two-factor solution. The difference between likelihood ratio
chi-squares for the two solutions is used to test the statistical
significance of the added factor. A third, fourth, or even more factors can
be added, but computer time and expense increase exponentially with the
number of factors.

The only truly unidimensional set of mental test data is one that has
been artificially generated using a unidimensional model. Given a
sufficiently large sample, any real set of data can be shown to be
multidimensional. For practical applications the important question is not
"Are these data unidimensional?" but instead, "How strong is the first factor



compared to the other factors?" Hand-in-hand with the answer to the latter
question is the question, "How robust are IRT methods to violations of
unidimensionality?" Several researchers have looked at this question in the
context of stability of parameter estimates and accuracy of equating (for
example, Dorans & Kingston, 1985; Drasgow & Parsons, 1983; Kingston, Leary, &
Wightman, 1985; Reckase, 1979). In general, these studies have shown that
parameter estimates and equatings are very stable in the face of minor
departures from unidimensionality. There has been no direct research,
however, on the robustness of IRT test development methods in the face of
multidimensionality.

Should a test be too multidimensional for the use of a unidimensional
IRT model for the test as a whole, that test could be broken down into
relatively more unidimensional subtests that could be separately developed
(and equated) using IRT methods. By developing subtests that are each highly
parallel to the appropriate subtests in another form of the test, the
resulting total tests will also be highly parallel.

In addition to satisfying assumptions about dimensionality, it is also
necessary to choose, and confirm, the selection of the number of item
parameters. Models incorporating different numbers of parameters impose
various restrictions on allowable shapes for item response functions. For
example, if a one-parameter model is chosen, do all items have the same
slope? Is the probability of a correct response a monotonically increasing
function of ability? There are two approaches to assessing the fit of the
form of the model to the data: graphical approaches such as the analysis of
item-ability regressions (see, for example, Kingston & Dorans, 1985) and
statistical approaches such as Yen's Q

1
(Yen, 1981, 1984). Graphical

approaches have the advantage of allowing one to see readily where and how
the model does not fit the data, but they do not provide information
regarding whether discrepancies are "real" or due to sampling variability.
Existing statistical approaches have not solved this problem: that is, there
is no research regarding any statistical approach appropriate for all IRT
models in which the probability distribution of the sample statistic is known.
Thus, for anything other than simple models, such approaches can only be used
as informal guides. Work with likelihood ratio chi-square tests (based on
marginal maximum likelihood estimation with no priors on item statistics) may
overcome this difficulty.

CHOICE OF IRT SCALING METHOD

True IRT parameters are invariant across samples of items or persons
as long as a scale for expressing them has been established. Estimates of
these parameters will not have this property for two reasons: 1) the scales
may be different (we can fix this) and 2) the errors of estimation may be
differ,lt (we can not fix this). The difference in scales arises because IRT
parameters and their estimates have no natural origin or unit of measurement,
as does temperature or length for sxample. Typical computer programs select
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a convenient origin and unit; LOGIST ( Wingersky, 1983; Wingersky, Burton, &
Lord, 1982) and BILOG (Mislevy & Bock, 1982), for example, essentially choose
these values so that the mean and standard deviation of estimated abilities
are zero and one respectively. Thus, even in the absence of errors of
estimation, all item parameter estimates will be different if estimated once
based on a very high ability group and a second time based on a low ability
group. If the model holds, however, the relationship between the two
arbitrary scales will be linear, and once determined, can be used to place
estimates from different groups on the same scale. Note that this can be
contrasted with classical item statistics, where the ranking of items by
difficulty can be different in different groups, and thus no monotonic
transformation can correctly put all item statistics on a single scale.

If a testing program pretests its items on non-equivalent groups,
some method must be used to place the IRT parameter estimates on a single
scale. A number of methods exist to do this. Although it is possible to use
a "common person" design, more typical methods use a "common items" design.
By this we mean that there is a set of items administered to two different
groups of people who, in turn, may have responded to some non-common items.
This communality of items is what allows the construction of a single IRT
scale for expressing the results.

One relatively simple method of placing parameter estimates on a
single scale is often referred to as concurrent calibration. In concurrent
calibration, all items are parameterized in a single calibration run of a
program such as LOGIST. All items that were not administered to an examinee
are coded as "not reached" and are not used as part of the estimation
process for that examinee. Concurrent calibration is a powerful method of
maintaining one's IRT scale, but if not used in conjunction with other
methods it can be very expensive for a test with an ongoing pretesting
program. This is so, becatise one would have to perform progressively larger
and larger LOGIST runs to calibrate one's items.

Several other methods of IRT parameter scaling using results of
individual calibrations have been developed. We will not describe these
methods here, but references are given for those who are interested. These
methods include: 1) fixed b's (see, for example, Hicks, 1983), 2) robust
mean and sigma method (Stocking E Lord, 1983), 3) characteristic curve
transformation (Stocking & Lord, 1983), and 4) minimum chi-square (Divgi,
1985).

TEST SCORES

The appropriateness of the various IRT tools in test construction is a
function of the scaling metric in which the test developer feels most
comfortable working. Different IRT test development tools are more or less
useful depending upon the metric chosen.
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If examinee responses to items in a conventional test are scored
either right, wrong, or omitted, there are a number of important aggregates
of these item responses that can be called "total test" scores. Perhaps the
most familiar of these "observed scores" is the sum of the number of right
answers: the number-right score. A variant of this is a scoring mechanism
that imposes a "penalty for guessing," generally called a formula score. A
less familiar member of the same family is the optimally-weighted sum of item
scores: the maximum likelihood estimate of ability, theta-hat. All of these
observed scores may be transformed to a different scale by either linear or
nonlinear methods for the purposes of score reporting. An observed score
obtained in this fashion is referred to as an observed scaled score.

Each of these scoring procedures deals with observed responses
provided by examinees to items in a test. Corresponding to each of these
observed scores are unobservable and unmeasurable quantities that we wish we
could obtain, but cannot. These are (in the same order as above)
number-right true score, true formula score, true ability, and true scaled
score. Since we cannot obtain these unobservable quantities, the best we can
do is to estimate them. While the distinction between observable and
unobservable quantities may seem of interest only to theoreticians, such
distinctions become important in the selection of appropriate IRT tools for
test developers.

IRT TOOLS

There are three important concepts from IRT that are applicable in the
context of test development: Information functions, conditional standard
error functions, and relative efficiency functions. None of these has a
counterpart in conventional item and test analysis.

Information functions are functions of test scores. The word
"information" has an intuitive meaning in this context: it is essentially
how well we can do when using an observable quantity (for example the
observed number-right score) to make inferences about an unobservable
quantity (number-right true score). It is obvious that a collection of items
that is administered as a test cannot measure with equal precision at all
score levels. Information is therefore a function of test score.

If the observable test score is an unbiased estimator of the
unobservable quantity it attempts to measure, then conditional standard error
functions are computed as the inverse of the square root of information
functions. The use of this function puts questions of precision into the
metric of the test score.

Tests may be compared with each other in terms of relative efficiency
functions. Relative efficiency functions are the simple ratio of two
information functions at corresponding values of the test scores.
Information functions can change shape drastically depending upon the scoring
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metric being used. The conclusions drawn from information functions are only
valid for the metric on which they are computed. Relative efficiency
functions, however, do not change when the scoring metric is changed. For
this reason, relative efficiency functions are very powerful for making
comparisons between tests.

IRT TOOLS WHPS THE OBSERVED SCORE IS THETA-HAT

Theta-hat is an optimally weighted sum of item scores. While the
computation of optimal weights is complex, the details of the procedure need
not concern us here. Although quite useful in theoretical work in IRT, this
method of test scoring has not yet achieved wide popularity. The only
published conventional test scored using this method is the Comprehensive
Test of Basic Skills published by CTB/McGraw Hill (Yen, 1982). Theta-hat is
a natural scoring metric for adaptive tests, and as these types of tests
become more common, its use is likely to increase.

In this scoring metric, the IRT item parameters (a, b, c) have an
interpretation for test developers. More important, the item information
function, that is, the amount of information available from a single item
response for making inferences about true ability, can be used to indicate
where and how well an item is functioning. In addition, the ability level at
which the item yields maximum information is easily determined.

But the most important aspect of this metric for test development
purposes is the information function for the total test. This information
function indicates the amount of information available for estimating true
ability, theta, from estimated ability, theta-hat. This function has a
unique property -- it is the sum of the independent and additive
contributions from each item information function. This means that the
measurement properties of the test in this metric can be analyzed in terms of
the measurement properties of each item, independent of all other items in
the test. In addition, it represents the maximum amount of information
available for making inferences about true ability from any method of scoring
a test (Lord, 1980, chapter 5.6).

Conditional standard error functions and relative efficiency functions
are also tools that are useful in this metric. Relative efficiency functions
computed in this metric lead, of course, to the same conclusions in this
metric as in any other metric.

IRT TOOLS WHEN THE OBSERVED SCORE IS NUMBER-RIGHT OR FORMULA SCORE

Number-right and formula scores are (non-optimally) weighted sums of
item scores. In this metric, the natural interpretation of the IRT item
parameters disappears. In addition, item information functions become less



intuitively appealimg, since information functions for a total test are no
longer simple sums of item information functions.

There are two informations of interest in this context. The first is
the information available for estimating true ability from the observed
score. This is most usef-1 in comparisons with information functions when
the observed score is theta-hat (see, for example, Lord, 1980, page 74). We
see from these comparisons that using number-right or formula scores
diminishes the precision of estimate somewhat for high ability levels, but
has a much greater effect at low ability levels. In general, observed
number-right or formula score dos not fully utilize all of the data for
making inferences about true ability.

Most conventional tests rarely seek to make inferences about true
ability, but rather about number-right true score or true formula score.
This second information function is the one that is likely to be most useful
for test development purposes, along with its corresponding conditional
standard error of measurement function.

IRT TOOLS WHEN THE OBSERVED SCORE IS A SCALED SCORE

This metric is perhaps the most common metric for published
conventional tests. In this metric, observed scores on a test are
transformed to another metric before reporting, by equating the Lest to some
previously scaled test. The IRT tools of item parameters and item
information functions are not helpful here.

What is extremely useful, however, is the information function for
making inferences about true scaled score from observed scaled score. To
compute this function requires an intact, previously equated test form as
part of the item pool. As a by-product of the computations to obtain this
information, it is also possible to generate an equating table for the
candidate test form. This table can be used as a rough guide to what the
operational equating might be, or as the final equating for the candidate
form, in which case the new test is considered to be "pre-equated."

As with all other metrics considered, conditi:mal standard error
functions and relative efficiency functions are also useful in this metric.

CONCLUSION

In order to use IRT for test development there are a number of steps
one must take:

1. Collect pretest data,
2. Select an IRT model,
3. Assess the appropriateness of the model,



4. Place all item parameters on a single scale,
5. Choose IRT tools appropriate for your test scoring

method,
6. Develop one or more forms of your test, and
7. Assess the success of your test development effort.

Exactly how we accomplish each of these tasks is likely to change as
we gain more experience.
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