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PREFACE

The research reported in this Note was supported jointly by the National Science

Foundation, as a part of its Applications of Advanced Technologies Program, and The

RAND Corporation, from its own research funds.

This study will also be published in the proceedings of the International Conference

on Intelligent Tutoring Systems, held in Montreal in June 1988.
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SUMMARY

Multiple alternative representations of mathematical reasoning have interesting

applications in the context of an intelligent tutor for basic algebra. This Note describes the

notion of multiple representations at a general level. It then describes RAND's intelligent

algebra tutor and specific tools it contains that support multiple representations: a boxes-

md-weights tool and goal commands. These tools provide students with important learning

opportunities.

The Note concludes with comments about continuing research in this ann. It is

important to continne implementing different representational systems and testing them in

real educational contexts. In addition, theoretical work must be directed toward deriving a

general classification scheme for representations.

6



CONTENTS

PREFACE iii

SUMMARY v

FIGURES ix

Section
I. INTRODUCTION 1

II. MULTIPLE REPRESENTATIONS OF ALGEBRA AND
ALGEBRAIC REASONING 2

Discussion 2

Features of a Desirable Notation for Algebra Problem Solving 4

III. OVERVIEW OF AN INTELLIGENT TUTOR FOR BASIC
ALGEBRA 6

Example 1: The Boxes-and-Weights Notation for Linear Equations 7

Example 2: Commands for Solving Algebraic Equations 11

IV. RELATED RESEARCH AND D CONCLUSIONS 15

REFERENCES 17



- ix -

FIGURES

1. The basic interface for the algebra tutor 6

2. Configuration of the tutor using the boxes-and-weights representation 8

3. Response to a correct student step 9

4. Response to an incorrect student step 10

5. Branching of alternative solution lines 10

6. Commands tool with lower-level commands available to student 12

7. Commands tool aith higher-level commands available to student 13



- 1 -

I. INTRODUCTION

This Note discusses the role of multiple alternative representations of mathematical

reasoning within the context of an intelligent tutor for basic algebra. Section II discusses the

notion of multiple representations at a general level. In Section III we describe our

intelligent algebra tutor and discuss several specific tools that exploit multiple

representations to provide students with important learning opportunities. Section IV

presents our conclusions and comments about continuing research in this area.
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II. MULTIPLE REPRESENTATIONS OF ALGEBRA AND ALGEBRAIC REASONING

DISCUSSION

The traditional notation of mathematics' was not deliberately designed by an

individual or committee. It has evolved slowly, largely in response to the preferences and

needs of the mathematicians and professionals who use it. Perhaps as a consequence of this

evolutionary development, the notation has several unusual properties which are often

difficult to perceive because they are so deeply ingrained in our culture. The most

distinctive feature of the notation is the complexity of its structure and of the deductive

machinery used to manipulate it. This complexity is not an accident. Bertrand Russell has

astutely pointed out that the notation is deliberately arcane, to ensure that the results it yields

cannot be influenced by our intuition. In addition, the traditional representation is
appropriately terse for the expert; however, this terseness is achieved at the expense of
syntactic ambiguity.

Neither teachers nor students have played a role in shaping the traditional language of
algebra. As a consequence, the notation alone causes many students to find mathematics a

difficult subject. Unfortunately, teaching students basicalgebra is almost always

synonymous with teaching them to effectively manipulate expressions in the traditional
notation. Indeed, few people realize that mathematics and the traditional notation are not

identical. The traditional notation is only one possible representation, just as FORTRAN is

only one of many representation systems for algorithms.

Since the traditional representation is not optimal for Plaming, it makes sense to
investigate altemative representations that may be more appropriate. In computer science,

students do not begin with specialized languages, such as APL, or highly general languages,

such as ADA. Instead, they start with simple languages, such as PASCAL, or languages

deliberately designed for learning, e.g., LOGO. Once students learn the basic concepts, they

progress to more powerful languages or languages that are more effective for specific tasks.

The idea of representing algebra in a different notation is not new. Over the past 50

years, several such Iaiguages have been proposed, but none has managed to attain any real

1In this Note, we use the phrases " traditional notation" and "traditional
representation" to refer to the way mathematics is expressed in mathematics textbooks, and,
more generally, to describe the idea that doing mathematics is equivalent io manipulating
expressions that are in this syntax.
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popularity. (See Lesh (1987) for a discussion of some of the reasons for these failures.) We

propose several new twists to the idea of changing the mathematical notation. First, we are

not suggesting replacing the traditional language; rather, we propose to augment it with other

notations. More than casting doubt on the standard representation, we are calling into

question the whole idea of learning algebra through a single notational vehicle. Just as in

computer science, we should seek multiple representations, each with its own particular

strengths and weaknesses. In teaching, we should use a particular representation for the

tasks suited to it and go on to others as the pedagogical rif.Ixt ari,les. Adopting a view of

mathematics teaching that is not wedded to a particular representation focuses learning on

abstract problem-solving skills, rather than on notion-dependent features. Multiple

representations have frequently been suggested as a way of helping students abstract the

"meaning" from mathematical manipulations (Lesh, 1987; Linn, 1986).

Our approach also differs from previous approaches in that we are interested in

exploring novel representations that facilitate the process of mathematical reasoning, not just

the comprehension of mathematical expressions. The most common objection to

mathematical notation is that it is syntactically ambiguous. While this objection is valid, we

do not regard it as the. most important pedagogical difficulty with the traditional language.

An equally significant limitation is that visible solutions to problems contain little

information about the reasoning process that generated them. The visible steps in a solution

correlate little with the reasoning steps underlying them. The important consequence of this

disparity is that teaching the notation is of little help in teaching how to solve problems in the

notation. We are interested in exploring representations that facilitate dynamic problem

solving, as well as static comprehension.

Finally, we have introduced the innovation of using computers as a basis for

designing new representations of algebra. One reason for maintaining the traditional

notation for algebra has been the constraints of the pencil-and-paper medium. Less terse or

nonlinear representations have been impractically awkward to use, however natural they

might be for learning. V/ith the advent of computers, these constraints are no longer valid.

Using computers as a medium for doing mathematics makes a wide variety of

representational possibilities feasible. For example, highly graphical representations can be

considered without concern for efficiency. On computers, it can be easier to draw pictures

than to write characters.
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FEATURES OF A DESIRABLE NOTATION FOR ALGEBRA PROBLEM SOLVING

To help constrain the search for al:el:native representations, we have sought

representations that complement the standard language of mathematics. We are interested in
finding notations that are strong where the traditional notailon is weak, from the student's
point of view. The alternative notations need not be able to accomplish easily the things that
the traditional representation already facilitates.

A representation for mathematics that complements the trzditional notation might
exemplify several of the properties listed below. These properties refer not only to the
representation per se, but also to the reasoning processes used to nanipulate expressions in
order to solve a problem. We emphasize that we have not attempted a complete analysis of

the strengths and weaknesses of the traditionalnotation for mathematics; such an analysis
must await the development of a more thorough theory of symbols for mathematics (Kaput,
1987). The following discussion is only a first attempt in this direction.

An effective notation for algebra problem solving should be:

Unambiguous and syntactically regular. The traditional notation is ambiguous,
in that precedence is not a) -says noted explic"y. As a result, the student must

have special knowledge of the operations to disambiguate expressions. For
ex .mple, the student must know that multiplication has a higher precedence

than addition to interpret 2x + 6 correctly. Similarly, the traditional

representation is irregular, in that operations am not treated systematically. In

most cases, operators appear in infix position; however, in other cases (e.e..,

exponentiation), spatial position denotes the operation. An example of a regular
Ind unambiguous notation is the prefix representation of Lisp, in which, for

example, (+ (* 3 (A x 2)) (* 6 x) 4) denotes 3x2 + 6x + 4.

Concrete. The traditional notation for algebra is abstract, in that the semantic

interpretation of expressions is impossible :o discern without knowledge of the
special conventions for mapping syntax to semantics. It is possible to devise

representations in which expressions, especially the notion of variables, map
naturally onto students' existing cognitive structures; this can give the

expressions an immediate and reasonable semantic interpretation.

12
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The above two properties apply to the notation per se. The following properties

pertain to reasoning in the notation:

History preserving. As noted above, solutions in the traditional notation contain

little information about the reasoning process that generated them. We would

like to design alternative representations that reflect and preserve (reify) the

reasoning process that generated them.

Connected to physical intuition. This attribute, like concreteness, refers to the

ability to root the representation in prior knowledge or models of systems.

However, unlike concreteness, the connection to physical intuition refers to the

naturalness of inferencing that the representation affords. It should be possible

to map the syntax of the representation onto familiar objects that impart a

.,,,:mantic interpretation. It should also be possible to map inferences in the

formalism onto intuitively comprehensible processes.

The representations we have investigated do not necessarily exemplify all of these

properties. Since we are considering multiple representations, each one need only possess a

few desirable properties. However, the collective notations should include at least one that

excels for each of the representational goals. In the following section, we briefly describe

some novel representations for algebraic equations and their solution. These notations have

been developed as part of an intelligent tutoring system for basic algebra.

13
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III. OVERVIEW OF AN INTELLIGENT TUTOR FOR BASIC ALGEBRA

We have built and tested our intelligent algebra tutor in a series of versions. The first

version runs on the Symbolics 3600 Lisp machine and on Sun Microsystems workstations

(McArthur, 1986, 1987). It has been tested at The RAND Corporation, with local high

school students, and it currently runs on six Sun 3/50 workstations at Santa Monica

(California) High School, where it will be mere extensively tested and developed over the

next several years.

The student sees the tutor as a collection of windows and menus, as shown in Fig. 1.

The menus on the left allow the tutor and student to converse about reasoning and problem

solving. To the right of the menus, at the bottom of the screen, is the Work Space, where the

student creates each new line in his or her solution. New lines or reasoning steps can be

created either by typing expressions or by writing them on an electronic tablet which

recognizes the strokes as characters and passes them to the tutor, where they are interpreted.

To the right of the Workspace is the Comment Space, where the tutor provides textual

feedback to the student.

f Al. I 1 i1

3y+9 -2y+7
Scroll eight

Scroll Left

Scroll Wen

Scroll up 5y+91= 7 3y+2y = 7+-9

5y i -2
putt

p

Vest Input

11.0 MMIn Y
LidT

So Sect

mew Ott

Stop Ot?

fitborate Step

Explain Stop

Pint Next Step

Do Next Step

Do Sao Step

Fig. 1The basic interface for the algebra tutor
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The large window is the Display Space, where the student's reasoning is recorded and

queried. Problem solving is represented here as a reasoning tree. Many of the menu items

are used to manipulate the "nodes" in this tree. For example, the student can test one of his

own steps by selecting Step OK? and then pointing between two nodes. The tutor will

respond, telling the student that the step is reasonable, that it is logically invalid, or that it is

valid but may be strategically unreasonable.

In a simple way, the reasoning tree is itself a subtly different representation of algebra

problem solutions. Students typically write solutions as linear sequences of steps. When

they think they have made a mistake, they usually have to abandon the current sequence and

start a new one. They thus lose the history of their reasoning. The reasoning tree, however,

preserves the reasoning history. Each branch in the tree represents an alternative solution, or

line of attack. Hence a tree representation allows easy comparison of different solutions,

both the student's and the tutor's. Moreover, menu items such as Go Back permit the

history to be exploited effectively. The student selects this item when he or she wants to

return to a previous solution path. The tutor then pennits the new current expression (i.e.,

the one that it boxed) to be changed by pointing to any other expression in the tree. That

expression then becomes the current one.

Over the past year, we have extended the basic tutoring environment shown in Fig. 1,

using it as the foundation for a series of divergent intelligent tutoring tools. The following

sections briefly describe two such tools, each of which demonstrates the value of multiple

replesentations of mathematical reasoning.

EXAMPLE 1: THE BOXES-AND-WEIGHTS NOTATION FOR LINEAR EQUATIONS

The Boxes-and-Weights Tool

Figure 2 shows an example of the boxes-and-weights tool, in which students are

given a problem to solve, i.e., 4(x + 1) + 2(x + 1) = -6, but instead of solving it by typing in

successive algebraic transformations, they manipulate an analogous boxes-and-weights

representation. The boxes-and-weights representation is shown in the upper left window,

and corresponding equational representations are shown in the upper right window.

The primitive objects in the concrete model are weights, boxes, and a balance scale.

A positive unit weight is a mass of single-unit size (according to some arbitrary linear scale).

All unit weights are identical. Each positive unit weight is designated by a plus sign. A

positive unit weight denotes the numeral 1 or +1. A negative unit weight is a mass of single-

unit size whose weight is the inverse of a positive unit weight on our arbitrary linear scale.

15
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Add %Tito eou
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Neu Quntion

Stop FinisInd

Answer FinishAd

Quit

Fig. 2Configuration of the tutor using the boxes-and-weights representation

Intuitively, a negative weight is "lighter than air" and combined with a positive unit weight

would yield a compound with exactly 0 weight. Each negative unit weight is designated by

a minus sign. A negative unit weight denotes the numeral -1.

A black box is a weightless container that holds a fixed number of weights, K. For

any given problem, a black box contains either all positive weights or all negative weights.

We refer to this as the valence of the black box. A white box is a weightless container that

must have the same number of unit weights as a black box. For any given problem, a white

box must have a valence opposite to that of a black box. If a black box contains only

positive unit weights, a white box must contain negative unit weights. A black box denotes a

variable (e.g., x).

When a student is given a problem like that in Fig. 2, the initial configuration of

boxes and weights is "balanced," indicating a true algebraic statement. The goal of the

student is to deductively determine the number of unit weights in a black box and the

valence of the black box. Students must arrive at their answer by transforming the given

problem configuration into a final configuration in which one black box is on one side of the

balance, and only unit weights are on the other side.
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Configurations are transformed by using a mouse and menu that enable the student to

add or delete boxes or weights from either side. When the student thinks he has made a

balance-preserving transformation, he clicks the menu item Step Finished. The tutor

underlying the interface will then (1) translate the configuration of boxes and weights to an

equational representation and display the equation on the window on the right; (2) determine

whether the manipulation represents a valid deduction; (3) provide textual feedback about

the validity of the step (in the lower right window); and (4) graphically unbalance the

configuration if the step is invalid. Figures 3, 4, and 5, show several of these activities in the

course of solving the problem displayed in Fig. 2.

The student is able to play several different roles in this learning environment. In the

version shown in the figures, the student manipulates the concrete boxes-and-weights

representation and observes its effect on the corresponding equations. In another version,

the student effects the equation transformations, and boxes-and-weights manipulations are

done automatically. In a third version, the student merely watches as the tutor solves the

problem in both representations.

t i n no4ow I oo I 1.

+
+
+

Neu Question

Step Finished

Answer Finished

Quit

A

6(x +1). -6

(x. )2 (is .1 )

I s (xi -s I

YOU did the step correctly. Assume,

ti

Fig. 3Response to a correct student step
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Fig. 4Response to an incorrect student step

Fig. 5Branching of alternative solution lines
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Implications of the Boxes-and-Weights Tool for Learning
through Multiple Representations

The boxes-and-weights notation is somewhat limited in its expressive capacity. It is

applicable to only a well-defined subset of basic algebra equation solving and cannot be

thought of as a possible replacement for the traditional representation for algebra. However,

viewed as one of several representational systems in a heterogeneous package, it has several

potential pedagogical advantages. Most important, it is a concrete representation. Symbols

and combinations of symbols have natural interpretations in the form of physical objects and

forces with which the student is already familiar. The student can use his or her existing

intuition abouts weights and balances to guide the interpretation of a given configuration. In

addition, the same physical intuition can guide the student in the process of problem solution.

The student can assess the validity of a step through his or her understanding of how balance

changes with the the addition, deletion, or rearrangement of weights. For example, it should

be obvious to the student that any manipulation that simply rearranges the objects on a single

side of the balance will not cause it to become unbalanced. Corresponding transformations

of equations (e.g., the distributive law of multiplication over addition) are not at all obvious

to many students. Thus, the representation is dynamic in the sense of Lesh (1987) and

Dienes (1960). It is not merely another way to state static algebraic equations; it is an

alternative way to reason mathematically, however simplified. Students can not only

translate structures of one representation into structures in the other, they can transform

structures in either representation to arrive at solutions, and this may help them understand

reasoning in the other representation.

EXAMPLE 2: COMMANDS FOR SOLVING ALGEBRAIC EQUATIONS

The Commands Toot

Figure 6 shows a second tutoring tool that exploits alternative representations of

algebra and algebraic reasoning. In this version, students solve typical problems, but instead

of manipulating equations or boxes, they issue commands, which the tutor uses as

instructions to effect the actual algebraic symbol manipulation. For example, in Fig. 6, the

student has issued commands to add +2x to both sides, simplify, subtract 8 from both sides,

and divide both sides by 5. Commands are recorded in the CommandSpace at the right.

Commands issued by the tutor (e.g., in response to a succession of Help Next Step requests)

are shown in inverse video. As in other versions of the tutor, the student is free to explore

alternative lines of reasoning. When the student moves from one line to another, the tutor

19
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Fig. 6Commands tool with lower-level commands available to student

simply restores the commands that generated the new line to the CommandSpace window.

In Fig. 6, for example, the commands in the CommandSpace are those that generated the

current (right) path in the DisplaySpace. If the student used Move Box to change the current

focus back to the left path, the CommandSpace would be updated to show the commands

that generated that line.

We have implemented several variants of the commands tool, each offering students

different levels of commands or imposing different tasks on them. Figure 7, for example,

shows a variant with a different command set. Here, students choose from a much higher-

level set of options. The commands in this version do not describe the desired symbolic

transformation of the current expression, but rather mention the strategic goal to be achieved

by the next step. The tutor takes the responsibility of interpreting this goal in terms of a

lower-level symbolic transformation. Permitting students to focus on very high-level

decisionmaking while ignoring the details of symbol manipulation opens up some exciting

learning possibilities. For example, we have seen students speed through the whole Algebra

I curriculum for linear equations in a matter of hours, rapidly acquiring a general feeling for

the kinds of skills they need, while leaving the practice of detailed symbol-manipulation

skills until later.
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Implications of the Commands Tool for Learning
through Multiple Representations

The commands described above are a different kind of representation of algebra from

the boxes-and-weights tool. Like Dienes blocks in arithmetic, the boxes-and-weights

representation is isomorphic to the traditional notation. For a subset of algebra, boxes-

and-weights structures map one-to-one onto traditional structures.' On the other hand, the

commands shown in Figs. 6 and 7 do not map onto traditional structures in obvious ways.

Essentially, they cannot be regarded as alternative representations for algebraic expressions;

rather, they are representations of algebraic transformations or of reasoning intentions. This

distinction has several implications. First, the commands representation does not stand by

itself. While problems in the boxes-and-weights representation can be solved by themselves,

without reference to the traditional notation, the commands representation is useful only if it

is coupled with the traditional notation (or some isomorph). The commands do not result in

transformations within their own notational system, but rather within the system to which they

are coupled. Thus, the commands are a dependent representation, not an autonomous one.

'In reality, the mapping is not quite so simple, but one-to-one is a reasonable
approximation for purposes of this Note.
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The commands tool as a whole can be thought of as a hybrid representational system,

composed of two distinct but complementary notations: Mathematical reasoning is done in

the dependent notation, while the results of reasoning are represented in the coupled

notation. As noted earlier, traditional representations for mathematics do not record the

history of reasoning that leads to results. The commands representation is a simple first

attempt to provide a vocabulary mat enables the process of reasoning, not merely the

products of reasoning (Brown, 1984). to be explicitly recorded.
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IV. RELATED RESEARCH AND CONCLUSIONS

We believe a two-pronged approach must be taken if progress is to be made in

developing effective alternative representations for mathematics learning. First, it is

important to continue implementing specific different representational systems and to test

them in real educational contexts. Several researchers who are developing intelligent

tutoring systems have begun to investigate the role of multiple representations of reasoning

cjanvier, 1987). One such system, Algebra land (Foss, 1987), is similar to our commands

tool in structure, although its intent is to help students learn metacognitive skills through

"productive thrashing." Lesh (1987) describes several systems that provide multiple

embodiments of arithmetic and algebraic concepts in computer environments. Graphical

representations of algebraic notions, not discussed in this Note, play a central role in Lesh's

work. The Word Problems Project at Harvard's Educational Technology Center is also

examining the power of different representations for amplifying or transforming students'

reasoning capabilities (Kaput, 1986).

In additioh to these experiments, theoretical work directed toward deriving a general

classification scheme for representations must continue. The number of possible alternative

representations is so vast that without general organizing principles, it will be impossible to

make principled comparisons between apparently different kinds or representations.

Moreover, there will be no systematic way of judging vhat types of representations should

be sought most intensively. The study reported in this Note is merely a small first effort at

such an analysis. Kaput (1987) has recently begun a more amb:::ous attempt to develop a

theory of the use of symbols in mathematics.

23

0.



- 17 -

REFERENCES

Brown, J. S. (1984). Process versus product: A perspective on tf.,0* tor communal and
informal electronic learning. In Education and the Electronic Age, proceedings ofa
conference sponsored by the Educational Broadcasting Company.

Dienes, Z. (1960). Building up mathematics (4th ed.). London: Hutchinson Educational Ltd.

Foss, C. (1987). Acquisition of error management skills. Third International Conference on
Artificial Intelligence and Education, p. 27.

Janvier, C. (ed). (1987) Problems of Representation in the Teaching and Learning of
Mathematics. Hillsdale, NJ: Lawrence Erlbaum.

Kaput, J. (1986). Towards a theory of symbol use in mathematics. In C. Janvier (ed.),
Problems of Representation in the Teaching and Learning of Mathematics. Hillsdale, NJ:
Lawrence Erlbaum.

Kaput, J., C. Luke, J. Poholsky, and A. Sayer (1986). The Role of Representations in
Reasoning with Intensive Quantities: Preliminary Analyses. Educational Technology
Center Technical Report, September.

Lesh, R., M. Behr, and T. Post (1987). Representations and translaf.ions among
representations in mathematics learning and problem solving. in C. Janvier (ed.),
Problems of Representation in the Teaching and Learning of Mathematics. Hillsdale, NJ:
Lawrence Erlbaum.

Linn, M. (I 986). Annual Report: Computers and Problem Solving.

McArthur, D. (1986). Developing computer tools to support performing and learning
complex cognitive skills. In K. Pedzek, D. Berger, and B. Bankes (eds.), Applications of
Cognitive Psychology: Computing and Education. Hillsdale, NJ: Lawrence Erlbaum
Associates.

McArthur, D., C. Stasz, and J. Hotta (1987). Learning problem- solving skills in algebra.
Journal of Educational Technology Systems, 15(3), pp. 304-324.

24



RAND/N-2758-NSFIRC


