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Abstract

Many applications of educational testing have a missing data aspect.

This is, for example, the case when person and item parameters are to

be estimated in a design in which examinees respond to different tests.

Fischer's approximate minimum-chi-square method for the estimation of

item parameters for the Rasch model efficiently produces item parameters

even in that situation. An exception is the case with a certain amount

of tailoring of test items. Without special measures only MML produces

adequate item parameter estimates under item tailoring.
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2 The Rasch model and missing data

INTRODUCTION

There are virtually no data without missing data. An example of an

application which can be viewed as a missing data problem is the equating

or scaling of two different test forms. Here examinees have taken one

of two test forms and a possibly internal, common linking test. Responses

on one of the two tests are missing. This view on equating within the

context of item response theory is nicely exemplified by the approach

of Wingersky and Lord (1984), where equating is achieved by estimating

all item parameters simultaneously on basis of the available information.

The missing data aspect is perhaps most pronounced in item banking,

where each examinee responds to a different subtest of items from a

large item pool and where both person and item parameter estimates are

needed. Such an application will be addressed in the present study.

First, the Rasch model is introduced, and the important and convenient

property of this model that the item parameters can be estimated from

countsnwhere n.. is the number of times item is answered cor-

rectly and item j incorrectly. Next a nonparametric counterpart of the

Rasch model will be discussed briefly. Then the possibility of tailor-

ing test items in combination with their estimation will be considered.

It will be made clear that most methods for the estimation of item

parameters are inadequate under tailoring. Next, we will return to the

estimation of Rasch item parameters from counts with a discussion of

Fischer's (1974) approximate minimum chi-square method, MINCHI for short.

Finally, the use of MINCHI in item banking with some amount of tailoring

will be treated.

THE RASCH MODEL AND THE MOKKEN SCALE

neprobabilityofacorrectresponseR.-1 on item i, given ability 0,

can be written in the Rasch model as

P(R1-110) a exp(0-bi)/[1+exp(0-bi)], (1)

where bi is the difficulty parameter of item i. An alternative formula-

tion, which will be used generally in the present context, is

P(R1-11e) a eci/(1 + eci),

with

3

(2)
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e v exp(0)

e. a exp(-bi).

Under the assumption of local stochastic independence the probability

of a correct response on item i, given one correct response to both

item i and j, equals

P(R.=1, R.=01R.+R.-1) = eigel+ei).
J

(3)

This probability is independent of the ability level e. This is a fun-

damental result for the Rasch model; reversely, the only model which

is continuous in terms of its parameters and for which this result holds,

is the Rasch model (Fischer, 1974).

Equation 3 implies that the item parameters can be estimated from the

relation

n../(n.. + n..) = p.. = e./(e. + E.).
1J 1J J1

(4)

The larger the item easiness becomes s in comparison to the easiness

of item j, e., the larger the expected dominance, reflected in Equation

,., becomes. In this respect the Rasch model belongs to a wider class of

models, which all share the property of doubly monotone items. Doubly

monotone items have item characteristic curves P(R. lI0) which never

cross or touch, except asymptotically. This property implies a weak

form of the dominance from Equation 3:

if P(Ri-1, RiOIRI+Rj-1, 00) > 0.5, for some value 00

then P(R.-1, R.OIR.+R.-1, 0 ) > 0.5 for all 0.
J J

When no specific assumptions on the form of P(RI-110) are made, we have

the nonparametric Mokken-scale (Mokken & Lewis, 1982). This model has

been implicitly used by Cliff (1977) who proposed the ranking of items

on basis of counts n1 in a nonparametric way, starting with the Guttman

scale.

Note that ordering of items is trivial in the case of complete data-

every examinee responds to all items: ranking on basis of number correct

then suffices. The more interesting applications deal with incomplete

4
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data. It should be clear how practical estimation methods based on counts

are: as new data are gathered, one only has to update the values n...

The models in this sectiol are symmetric with respect to items and persons.

So, persons may be ranked on basis of counts s.., where s.. is the number
j j

of times person i answers an item correctly and person does j not do

so. This idea will not be pursued, however. With an increasing number

of examinees the procedure would become unwieldy. For the Rasch model a

simple alternative solution exists: first item parameter estimates may

be obtained and secondly person. parameter estimates, through maximum

likelihood, using the item parameter estimates obtained in the first step.

TAILORING OF TEST ITEMS

We speak of tailoring of test items when the probability that an item

will be selected for presentation, depends on the previous responses of

the examinee. The purpose of tailored test administration is to present

items, adequate for the provisional estimate of the ability level of an

examinee. Testing becomes more accurate this way and this enables the

test administrator to shorten the test length. In tailored testing it

is commonly assumed that accurate item parameter estimates are avail-

able. In estimating examinee abilities it then is assumed that the item

parameters are known. Cliff (1975) suggested that tailoring might be

possible in a nonparametric context even in the absence of a definite

rank order of items. Will it be possible to tailor items in the parametric

case and at the same time improving initial item parameter estimates?

A simple demonstration will make it clear that a combination of tailoring

and estimation fails when estimation of item parameter estimates is

based on counts. Table 1 gives the frequencies of response patterns for

fourRaschitemsfromwhichcountsn.j can be computed. Evidently, the

counts n.j are all equal, implying the equality of item parameters c..

Table 1

Now, let us drop the fourth item when the total score on the first three

items equal 2 or 3. This simulates tailoring where the fourth item is

administered only after a total score less then two on the other items.

In this case ni4
< n4. (i

1, 2, 3), i.e. the fourth item seems easier
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than the other items. This effect was demonstrated by Fischer (1986).

The bias will disappear under special conditions, when items do not

discriminate or discriminate perfectly, i.e. in case of the Guttman

scale. Cliff (1975, 1977), who suggested tailoring in combination with

ordering the items for imperfect Guttman scales, mentioned the possibility

of an artificial degree of consistency in his approach.

The bias was also discussed by De Gruijter (1980), in connection with

ML. He argued that the effect arises be-tause of the imperfect measure-

ment in a routing test. Another way to describe the effect is in terms

of ignorability (Rubin, 1976). The local independence, formulated as

m
P(R

1
r

1
R
m

) H P(R.r.)," m
1-1

(5)

does not describe the process accurately with missing data in tailoring

when item parameters are to be estimated. However, under marginal maximum

likelihood (MML) the missing data process can be ignored. De Gruijter

(1980) argued that characteristics of the posterior distribution after

a routing test can be used to obtain unbiased item parameter estimates.

The robustness of MML was proved mathematically for the Rasch model by

Glas (1988).

There is one additional problem to which some attention should be given.

In the Rasch model the response data are condensed in the form of the

sufficient statistic, the total score. In MML this implies the introduc-

tion of an elementary symmetric function, which relates to all possi-

bilities to obtain the total score. In tailoring test items there will

be a smaller number of combinations leading to a given total score on

basis of a given subset of i.,.ems than the case of no tailoring. Take

for example two-stage testing. The total score on the test t can be

written as t
1
+t

2'
where t

1
is the total score on the routing test and

t
2

is the total score on a particular second-stage test. In order to

have this second-stage test ti should lie within a certain interval and

this restricts the number of ways in which the total score t can be

obtained. Fortunately, the elementary symmetric functions can be elimi-

nated in the estimation process (Thissen, 1982).

So the tailoring process may be ignored completely under MML and item

parameter estimates can be obtained in the same way as when item responses

are missing randomly. This implies that estimation can be done with any

MML-estimation program which allows for missing data. The unbiasedness

6
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of MML presents a strong case for its use in applications. However, MML

has disadvantages too. In practice data may be gathered over a long

period of time. During this period the composition of the examinee

population might change. When at the same time the composition of the

item pool changes through the addition of new items, MML on basis of

the assumption of one fixed population will fail (De Gruijter, 1987).

For this reason it is important to investigate whether bias in other

estimation _;hods might be circumvented. It will become clear that

this is possible with a method based on counts under partial tailoring

conditions. First, we will introduce the MINCHI-procedure in the next

section.

MINCHI

Fischer (1974) suggested an approximate minimum chi-square procedure

based on Equation 3. More specifically, he suggested to minimize the

function

F = E E
i

[n..1. .-(n.1 .+nj)p..]
2
/[(n..+n..)p..0.-p..)]

J J
i<j

(6)

w.r.t. the parameters. Differentiating and setting the results equal to

zero gives a set of equations

with

x.i e /(E x..e
J
.),

1 J J 1.1

2
x.. =
1J 1J 1J

ji)

(i-1,...,m) (7)

and m items in total. This set of equations can be solved very fast

iteratively. Results from simulation studies (Fischer, 1974; Zwinderman

& Van den Wollenberg, 1987) indicate that the method is accurate as

well. This might be a bit surprising while the method is only an ap-

proximation to minimum chi-square. Dependencies between counts n.j and

nik are neglected in the target function F from Equation 6. An alternative

would be to eliminate the dependencies, which Van der Linden and Eggen

(1986) did by selectively removing data for each examinee. The impact
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of the dependencies should decrease when different examinees obtain

different subtests from a large item pool.

Agraphicalmodelcheckbasedoncountsn..was already suggested by
./..]

Rasch (1960).This suggestion will be slightly modified in connection

withestimationusingMCM.Givencountsn_and n.. greater than
./..] J1

zero,thedifferencebetweenb.J andb.1 (Equation 1) is estimated as

est(b
i i 1J J
-b ) In (n../n..). (8)

The differences can be computed for fixed i, with est(bi-bi)-0, and

plotted against the MINCHI-estimates t.. When the model fits, the points

should lie along a straight line, with a slope of 45 degrees and an

intercept d
i

equal to b
1 .

For purposes of illustration a simulation was done with a 'Rasch' model

with a common guessing parameter equal to 0.25. Ten equally spaced bs

ranged from -2.0 to 2.5. The simulation entailed the computation of

relativefrequenciesfij instead of counts, for an infinite popula-

tion, according to a rough approximation to the standard normal distri-

bution. For each item a plot was made as suggested above. The results

are given in Figure 1. From this figure no violations of the Rasch

Figure 1

model can be detected. Clearly some model deviations, like those of the

example with double-homogeneous items, cannot be detected with counts

n... There is an obvious reason for this insensitivity. The counts are
./..]

obtained by using weighted averages over score groups (assuming complete

data) and with this averaging information is lost.

The results demonstrate that one should preferably check the extent of

model fit before condensing the data into counts n../.]. (De Gruijter, 1987).

When the items are double-homogeneous MINCHI might very well be able to

rank the items appropriately, due to the fact that these items exhibit

a weak form of the property in Equation 3. In this case however, the

exact parameters should not be taken seriously.

a
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MINCHI-ESTIMATION AND TAILORING

As long as there is no tailoring, MINCHI seems a good method for the

estimation of Rasch item parameters, especially when the data are in-

complete. The results of the section on tailoring indicate that MINCHI

cannot be used under a full-fledged tailoring approach to testing.

Fortunately, this does not mean that the estimation of item parameters

or the updating of item parameters becomes impossible with even the

slightest amount of tailoring. On the contrary, as long as tailoring is

not complete, estimation remains possible. This can be illustrated with

the presentation schemes in Figure 2.

Figure 2

In both schemes we have two-stage testing. The second-stage test is

tailored to the estimated ability level of examinees after a routing

test of n
1

items. In the first scheme items for the routing test are

selected from a fixed subset A of the item pool. When the score on the

routing test exceeds t. n2 items are selected from subset B, otherwise

n
2

items are selected from subset C.

The items in A are not selected on basis of previous 1-,.cpras,.s. Q^ the

useofcountsn..1..) in order to obtain item parameters is legitimate for

items in subset A. The responses to items in B (or C) depend only on

the unknown abilities 0, and item parameter estimation based on counts

n..
1..)

is also possible for B(or C). It is illegitimate, however, to use

countsn..1..) for i(j) in A and j(i) in B or C. So, three separate Rasch

scales are obtained.

One common Rasch scale can be obtained when the presentation scheme is

slightly changed like in the righthand side of Figure 2. In this case

each item is eligible for the routing test and information on item pairs

with one item in A and the other item in B (or C) becomes available. To

be more specific, assume iA, jB. Then it is possible to update count

n..1..) orn..1.,then both items i and j are selected for the routing test.
.12

If both are selected, but j is selected for the second-stage test, updating

is not allowed. This scheme is, of course, only one out of the multitude

of possibilities of partial tailoring where a common Rasch scale is

obtained. A sound procedure would be to have little or no tailoring in

5
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the first phase of data collection, and to increase the degree of tailoring

when increasing the accuracy of item parameter estimates becomes less

important.

DISCUSSION

In many applications one wants to have information on examinees as

efficiently as possible. Tailoring of test items is a tool in order to

increase testing efficiency. Usually tailoring is done with parameters

assumed to be known. Tailoring and item parameter estimation are not

incompatible under MML. Other estimation methods will have to be adapted

in order to make partial tailoring and estimation possible. For the

Rasch model there is a very simple estimation method for item parameters

based on counts, which can easily be adapted to a situation where some

of the items are administered on basis of previous examinee responses.

The adaptation simply consists of ignoring data influenced by the tailoring

process.
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Table 1. Frequency distribution for response patterns with four items.

pattern frequency (N large)

1110 9N

1101 9N

1011 9N

0111 9N

1100 3N

1010 3N

0110 3N

1001 3N

0101 3N

0011 3N

1000 1N

0100 1N

0010 1N

0001 1N

12
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(a) two-stage testing with test forms

selected from disjoint item sets

A, B en C

(b) modified two-stage

testing procedure; T1

is the set of items

selected for the routing

test

Figure 2. Two possible item presentation schemes with partial item

tailoring.
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